WO2012065300A1 - 一种微晶玻璃陶瓷面板的制备方法 - Google Patents

一种微晶玻璃陶瓷面板的制备方法 Download PDF

Info

Publication number
WO2012065300A1
WO2012065300A1 PCT/CN2010/078808 CN2010078808W WO2012065300A1 WO 2012065300 A1 WO2012065300 A1 WO 2012065300A1 CN 2010078808 W CN2010078808 W CN 2010078808W WO 2012065300 A1 WO2012065300 A1 WO 2012065300A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
glass
ceramic
temperature
raw material
Prior art date
Application number
PCT/CN2010/078808
Other languages
English (en)
French (fr)
Inventor
杨秀莲
Original Assignee
江西隆丰工贸有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西隆丰工贸有限责任公司 filed Critical 江西隆丰工贸有限责任公司
Priority to PCT/CN2010/078808 priority Critical patent/WO2012065300A1/zh
Publication of WO2012065300A1 publication Critical patent/WO2012065300A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents

Definitions

  • the invention relates to a method for preparing a microcrystalline glass ceramic panel, in particular to a method for preparing a glass ceramic panel for manufacturing a home decoration material.
  • Microcrystalline glass ceramics also known as glass crystals, are a new type of material with superior performance. They are widely used in aerospace, optical instruments, precision machine tools, electronics, and special construction.
  • the glass-ceramics have the dual characteristics of glass and ceramics.
  • the atomic arrangement inside the ordinary glass is disordered, resulting in poor mechanical properties of ordinary glass and brittleness.
  • the atomic arrangement of the glass-ceramics is orderly and therefore higher than that of ceramics. Brightness, and better toughness than glass. Using this property, glass-ceramics can be used as home improvement materials, such as induction cooktop panels, etc., with high mechanical strength, wide temperature range, excellent insulation performance, low dielectric loss, chemical resistance, wear resistance, and good thermal stability. Etc.
  • the raw materials for producing microcrystalline glass ceramic materials are basically industrial chemical raw materials, which directly lead to high raw material cost and increase the production cost of the enterprise.
  • lead and zinc The residual residue of smelting will cause great damage to the environment.
  • the method for producing glass-ceramics provided by the present invention can reasonably utilize lead smelting slag, reduce the processing cost of the enterprise, and reduce the ecological environment. Risk of damage
  • the present invention is directed to the deficiencies in the production of microcrystalline glass ceramic panels in the prior art, and provides a method for preparing a microcrystalline glass ceramic panel having a low production cost and excellent product quality.
  • a method for preparing a microcrystalline glass ceramic panel characterized in that the weight ratio of each constituent raw material is: wollastonite: 15 to 25 parts, lead and zinc Smelting slag: 10 ⁇ 25 parts, lithium feldspar: 10 ⁇ 15 parts, granite: 15 ⁇ 30 parts, fluorite: 2 ⁇ 5 parts, borax: 1 ⁇ 3 parts, MgO: 2 ⁇ 5 parts, Li 2 0: 0.3 to 4 parts, ZnO: 0.2 to 2 parts, sodium potassium oxide: 1 to 3 parts.
  • the preparation steps are as follows:
  • the glass liquid is conveyed from the molding channel to the flow rolling calender, and calendered to obtain a glass ceramic, the molding temperature is 1050 to 1120 ° C, and the molding pressure is 40 to 100 MPa;
  • MgO and ZnO can significantly reduce the crystallization tendency and crystallization speed of the glass-ceramics, and improve the chemical stability and mechanical strength of the product. Excessive amounts can lead to the formation of by-products.
  • the raw material weight ratio of MgO is 2 to 3 parts.
  • the raw material weight ratio of ZnO is from 0.5 to 1.5 parts.
  • Sodium potassium oxide can effectively reduce the melting temperature of glass-ceramic ceramics and balance the negative expansion generated during production.
  • the sodium potassium oxide in the raw material is a mixture of an oxide of sodium and an oxide of potassium, and the ratio of the two may be arbitrary.
  • the raw material mass ratio of the sodium potassium oxide is 0.5 to 2 parts.
  • Li 2 0 can act as a flux during the preparation of the product, reducing the thermal expansion coefficient of the glass ceramic. Excessive mass percentage will lead to unstable product quality during crystallization. The product is prone to cracking and increases costs.
  • the raw material mass ratio of Li 2 0 is 2 to 3 parts.
  • the electric melting furnace in the step 3) is a crucible kiln or a box type electric furnace.
  • the invention improves the formulation and preparation process in the production process of the glass-ceramic ceramic panel, firstly ensures uniform molding of the finished product, and has the advantages of easy polishing, high temperature resistance, good impact resistance and high strength.
  • the rational use of industrial production waste on the one hand, it reduces the production cost of the enterprise and the disposal cost of the waste, reduces the operating pressure, and on the other hand reduces the damage to the environment caused by heavy metal scrap, which has potential value and social benefits. And economic benefits. detailed description
  • Control the heating rate is: 4 ° C / min; In the 380 ⁇ 600 ° C temperature rising phase, the control heating rate is: 2 ° C / min; In the 600 ⁇ 850 ° C heating phase, the control heating rate is: 18 ° C / Min; In the temperature rising stage of 850 ⁇ 1200 °C, the heating rate is controlled as: rC/min, after reaching the highest sintering temperature, the nucleation is kept for 1 h; (4) After cooling to 900 ° C and holding for 2 h, cooling to room temperature to obtain a microcrystalline glass ceramic wool board; (5) After cutting, grinding and polishing steps, a microcrystalline glass ceramic panel is obtained.
  • Embodiment 2 Control the heating rate is: 4 ° C / min; In the 380 ⁇ 600 ° C temperature rising phase, the control heating rate is: 2 ° C / min; In the 600 ⁇ 850 ° C heating phase, the control heating rate is: 18 ° C / Min; In the temperature rising stage of
  • the glass ceramic is obtained, the molding temperature is 1050 ° C, the molding pressure is 50 MPa, and the temperature is lowered and annealed; (3) the dried glass ceramic after annealing is placed in a high temperature box type electric resistance furnace, and the temperature is raised at room temperature to 380 ° C.
  • controlling the heating rate is: 3 ° C / min; in the temperature rising phase of 380 ⁇ 600 ° C, the control heating rate is: rC / min; in the temperature rise period of 600 ⁇ 850 ° C, the control heating rate is: 15 ° C / min; In the temperature rising stage of 850 ⁇ 1200 °C, the temperature rising rate is controlled to be 0.5 ° C / min, after reaching the highest sintering temperature, the nucleation is maintained for 0.5 h;
  • the calendering machine is calendered to obtain a glass ceramic, the molding temperature is 1120 ° C, the molding pressure is 100 MPa, and the temperature is lowered and annealed; (3) the dried glass ceramic after annealing is placed in a high temperature box type electric resistance furnace at room temperature.
  • control heating rate is: 3 ° C / min; In the 380 ⁇ 600 ° C heating stage, the control heating rate is: l ° C / min; in the 600 ⁇ 850 ° C heating stage, control the heating rate It is: 15 °C / min ; in the temperature rise period of 850 ⁇ 1200 °C, the temperature rise rate is controlled: 0.5 °C / min, after reaching the highest sintering temperature, the nucleation is kept for 0.5 h; (4) The temperature is lowered to 850 ° C and the temperature is kept. After lh, cooling to room temperature to obtain a microcrystalline glass ceramic wool board; (5) After cutting, grinding, and polishing steps, a microcrystalline glass ceramic panel is obtained.
  • the glass ceramic is obtained, the molding temperature is 1050 ° C, the molding pressure is 50 MPa, and the temperature is lowered and annealed; (3) the dried glass ceramic after annealing is placed in a high temperature box type electric resistance furnace, and the temperature is raised at room temperature to 380 ° C. , controlling the heating rate is: 3 ° C / min; in the temperature rising phase of 380 ⁇ 600 ° C, the control heating rate is: rC / min; in the temperature rise period of 600 ⁇ 850 ° C, the control heating rate is: 15 ° C / min; In the temperature rising stage of 850 ⁇ 1200 °C, the heating rate is controlled to be 0.5 °C/min.
  • Embodiment 5 After reaching the highest sintering temperature, it is nucleated for 0.5 h. (4) After cooling to 850 °C and holding for 1 h, cool to room temperature to obtain micro. Crystal glass ceramic wool board; (5) After the cutting, grinding and polishing steps, a microcrystalline glass ceramic panel is obtained.
  • Embodiment 5 After reaching the highest sintering temperature, it is nucleated for 0.5 h. (4) After cooling to 850 °C and holding for 1 h, cool to room temperature to obtain micro. Crystal glass ceramic wool board; (5) After the cutting, grinding and polishing steps, a microcrystalline glass ceramic panel is obtained. Embodiment 5
  • the calender is calendered to obtain glass ceramics, the molding temperature is 1120 ° C, the molding pressure is lOOMPa, the temperature is lowered and annealed; (3) the dried glass ceramic after annealing is placed in a high temperature box type resistance furnace at room temperature ⁇ 380 During the temperature rise phase of °C, the temperature rise rate is controlled to be: 3 °C/min ; in the temperature rise phase of 380 ⁇ 600 °C, the temperature rise rate is controlled as: l °C/min; in the temperature rise phase of 600 ⁇ 850 °C, the temperature rise rate is controlled as follows: 15 ° C / min; In the temperature rise period of 850 ⁇ 1200 ° C, the control heating rate is: 0.5 ° C / min, after reaching the highest sintering temperature, the nucleation after 0.5 h of heat preservation; (4) After cooling to 850 ° C and after 1 h of heat preservation , cooling to room temperature to obtain a glass-ceramic ceramic wool board; (5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

一种微晶玻璃陶瓷面板的制备方法 技术领域
本发明涉及一种微晶玻璃陶瓷面板的制备方法,特别是用于制造 家装材料的微晶玻璃陶瓷面板的制备方法。 背景技术
微晶玻璃陶瓷又称玻璃水晶,是一种常用的性能优越的新型材料, 其应用领域广泛,可用于航空航天、光学仪器、精密机床、电子工业、 特种建筑等领域。微晶玻璃陶瓷具有玻璃和陶瓷的双重特性,普通玻 璃内部的原子排列杂乱, 导致普通玻璃机械性能较差, 易碎, 而微晶 玻璃的原子排布规则有序, 因而具有比陶瓷较高的亮度, 以及比玻璃 更好的韧性。利用其这一特性, 微晶玻璃陶瓷可作为家装材料, 例如 电磁炉面板等, 具有机械强度高, 使用温度范围广, 绝缘性能优良, 介电损耗少, 耐化学腐蚀, 耐磨, 热稳定性好等优点。
在现有的微晶玻璃陶瓷生产工艺中,需要先后分别经历两次高温 反应过程, 传统工艺限制性地决定了粒料由外至内晶化、界面优先晶 化原则, 使其在经过晶化烧结过程中晶化程度的不均衡性, 严重影响 产品质量; 同时, 生产微晶玻璃陶瓷材料地原料基本上都是工业用化 工原料, 直接导致原料成本高, 加重企业生产成本; 其次, 铅锌冶炼 残余残渣对环境会造成很大破坏, 本发明提供的微晶玻璃生产方法, 能对铅锌冶炼渣合理地予以利用, 减轻企业处理成本, 降低生态环境 破坏的风险 发明内容
本发明是针对现有技术中微晶玻璃陶瓷面板生产中存在的不足, 提供一种能够制备生产成本较低、产品质量优异的微晶玻璃陶瓷面板 的方法。
为了实现本发明的目的,本发明采用了以下的技术方案: 一种微 晶玻璃陶瓷面板的制备方法,其特征在于,各组成原料的重量比例为: 硅灰石: 15〜25份, 铅锌冶炼渣: 10〜25份, 锂长石: 10〜15份, 花岗石: 15〜30份, 萤石: 2〜5份, 硼砂: 1〜3份, MgO: 2〜5 份, Li20: 0.3〜4份, ZnO: 0.2〜2份, 钠钾氧化物: 1〜3份。 制备 步骤如下:
1 ) 称取原料硅灰石, 铅锌冶炼渣, 锂长石, 花岗岩, 萤石, 硼 砂, 分别装入球磨罐中, 研磨为 50〜300目的细粉;
2)按各原料百分比取球磨后上述物质细粉及 MgO、 Li20、 ZnO、 钠钾氧化物, 装入球磨机中混合, 混料时间 10〜30分钟, 得到混合 料;
3)将上述混合料送入电熔窑,在 1560-1600°C温度条件下熔化为 玻璃液, 所述玻璃液经澄清、 均化后进入成型料道;
4) 将玻璃液由成型料道输送至流涎法压延机, 压延成型得到玻 璃陶瓷, 成型温度为 1050〜1120°C, 成型压力为 40〜100MPa;
5)将成型后的玻璃陶瓷温度降为 850〜900°C, 送至退火窑进行 退火处理;
6) 将退火处理后的干燥玻璃陶瓷放入高温箱式电阻炉中, 在室 温〜 380°C升温阶段, 控制升温速度为: 3〜4°C/min; 在 380〜600°C 升温阶段, 控制升温速度为: l〜2°C/min; 在 600〜850°C升温阶段, 控制升温速度为: 15〜18°C/min; 在 850〜1200°C升温阶段, 控制升 温速度为: 0.5〜l °C/min, 达到最高烧结温度后, 保温 0.5〜lh进行 核化;
7) 降温至晶化温度: 850〜900 并保温1〜211后, 冷却至室温 成为微晶玻璃陶瓷毛板;
8) 将上述微晶玻璃陶瓷毛板经裁切、 打磨、 抛光处理, 得到微 晶玻璃陶瓷面板。
其中, MgO、 ZnO能显著降低微晶玻璃陶瓷的结晶倾向和结晶 速度,提升产品的化学稳定性与机械强度,过多的用量会导致副产物 的生成。
进一步地, MgO的原料重量比例为 2〜3份。
进一步地, ZnO的原料重量比例为 0.5〜1.5份。
钠钾氧化物可有效降低微晶玻璃陶瓷的熔制温度,平衡生产过程 中产生的负膨胀。原料中钠钾氧化物是钠的氧化物与钾的氧化物的混 合物, 其两者比例可为任意。
进一步地, 钠钾氧化物的原料质量比例为 0.5〜2份。
Li20可以在产品制备过程中起到助熔的作用, 降低玻璃陶瓷的 热膨胀系数,过高的质量百分比会导致产品质量不稳定, 晶化过程中 产物易发生破裂, 增加成本。
进一步地, Li20的原料质量比例为 2〜3份。
进一步地, 步骤 3 ) 中所述电熔窑为坩锅窑或箱式电炉。
与现有技术相比,本发明改进了微晶玻璃陶瓷面板生产过程中的 配方和制备工艺, 首先确保了成品成型均匀, 使产品具有易抛光、耐 高温、抗冲击性好、强度高的优点; 其次通过对工业生产废物进行合 理利用,一方面降低了企业生产成本和对废物的处理成本, 降低了经 营压力, 另一方面也减轻了对重金属废料对于环境的破坏, 富有潜在 价值, 社会效益和经济效益兼具。 具体实施方式
实施例一
( 1 )配料: 按重量比取硅灰石 24份, 铅锌冶炼渣 18份, 锂长 石 12份,花岗石 28份,萤石 4份,硼砂 2份, Mg04份, Li203份, Zn02份, 钠钾氧化物 3份; (2)将原料球磨得到混合料, 将上述混 合料送入电熔窑, 在 1580°C温度下熔化为玻璃液, 输送至流涎法压 延机压延成型得到玻璃陶瓷,成型温度为 1100 °C,成型压力为 80MPa, 降温并进行退火处理; (3 )将退火处理后的干燥玻璃陶瓷放入高温箱 式电阻炉中, 在室温〜 380°C升温阶段, 控制升温速度为: 4°C/min; 在 380〜600°C升温阶段, 控制升温速度为: 2°C/min; 在 600〜850°C 升温阶段, 控制升温速度为: 18°C/min; 在 850〜1200°C升温阶段, 控制升温速度为: rC/min,达到最高烧结温度后,保温 lh核化;(4) 降温至 900°C并保温 2h后,冷却至室温得到微晶玻璃陶瓷毛板; (5) 经裁切、 打磨、 抛光处理步骤, 得到微晶玻璃陶瓷面板。 实施例二
( 1 ) 配料: 按重量比取硅灰石 22份, 铅锌冶炼渣 25份, 锂长 石 10份,花岗石 30份, 萤石 4份, 硼砂 2份, Mg02份, Li202份, ZnOl份, 钠钾氧化物 2份; (2) 将原料球磨得到混合料, 将上述混 合料送入电熔窑, 在 1560°C温度下熔化为玻璃液, 输送至流涎法压 延机压延成型得到玻璃陶瓷,成型温度为 1050°C,成型压力为 50MPa, 降温并进行退火处理; (3 )将退火处理后的干燥玻璃陶瓷放入高温箱 式电阻炉中, 在室温〜 380°C升温阶段, 控制升温速度为: 3°C/min; 在 380〜600°C升温阶段, 控制升温速度为: rC/min; 在 600〜850°C 升温阶段, 控制升温速度为: 15°C/min; 在 850〜1200°C升温阶段, 控制升温速度为: 0.5°C/min, 达到最高烧结温度后, 保温 0.5h核化;
(4)降温至 850°C并保温 lh后,冷却至室温得到微晶玻璃陶瓷毛板;
(5) 经裁切、 打磨、 抛光处理步骤, 得到微晶玻璃陶瓷面板。 实施例三
( 1 ) 配料: 按重量比取硅灰石 25份, 铅锌冶炼渣 25份, 锂长 石 15份, 花岗石 26份, 萤石 4份, 硼砂 1.5份, Mg02份, Li2O0.3 份, ZnOO.2份, 钠钾氧化物 1份; (2) 将原料球磨得到混合料, 将 上述混合料送入电熔窑, 在 1580°C温度下熔化为玻璃液, 输送至流 涎法压延机压延成型得到玻璃陶瓷, 成型温度为 1120°C, 成型压力 为 100MPa, 降温并进行退火处理; (3)将退火处理后的干燥玻璃陶 瓷放入高温箱式电阻炉中, 在室温〜 380°C升温阶段, 控制升温速度 为: 3°C/min; 在 380〜600°C升温阶段, 控制升温速度为: l °C/min; 在 600〜850°C升温阶段,控制升温速度为: 15°C/min;在 850〜1200°C 升温阶段, 控制升温速度为: 0.5°C/min, 达到最高烧结温度后, 保温 0.5h核化; (4) 降温至 850°C并保温 lh后, 冷却至室温得到微晶玻 璃陶瓷毛板; (5)经裁切、 打磨、抛光处理步骤, 得到微晶玻璃陶瓷 面板。 实施例四
( 1 )配料: 按重量比取硅灰石 22份, 铅锌冶炼渣 20份, 锂长 石 10份,花岗石 30份,萤石 4份,硼砂 2份, Mg04份, Li203份, Zn02份, 钠钾氧化物 3份; (2)将原料球磨得到混合料, 将上述混 合料送入电熔窑, 在 1560°C温度下熔化为玻璃液, 输送至流涎法压 延机压延成型得到玻璃陶瓷,成型温度为 1050°C,成型压力为 50MPa, 降温并进行退火处理; (3 )将退火处理后的干燥玻璃陶瓷放入高温箱 式电阻炉中, 在室温〜 380°C升温阶段, 控制升温速度为: 3°C/min; 在 380〜600°C升温阶段, 控制升温速度为: rC/min; 在 600〜850°C 升温阶段, 控制升温速度为: 15°C/min; 在 850〜1200°C升温阶段, 控制升温速度为: 0.5°C/min, 达到最高烧结温度后, 保温 0.5h核化; (4)降温至 850°C并保温 lh后,冷却至室温得到微晶玻璃陶瓷毛板; (5)经裁切、 打磨、 抛光处理步骤, 得到微晶玻璃陶瓷面板。 实施例五
( 1 )配料: 按重量比取硅灰石 25份, 铅锌冶炼渣 25份, 锂长石 11 份, 花岗石 30份, 萤石 4份, 硼砂 1.5份, Mg02份, Li2O0.3份, ZnO0.2份, 钠钾氧化物 1份; (2)将原料球磨得到混合料, 将上述 混合料送入电熔窑, 在 1580°C温度下熔化为玻璃液, 输送至流涎法 压延机压延成型得到玻璃陶瓷, 成型温度为 1120°C, 成型压力为 lOOMPa, 降温并进行退火处理; (3 )将退火处理后的干燥玻璃陶瓷 放入高温箱式电阻炉中,在室温〜 380°C升温阶段,控制升温速度为: 3°C/min; 在 380〜600°C升温阶段, 控制升温速度为: l °C/min; 在 600〜850°C升温阶段, 控制升温速度为: 15°C/min; 在 850〜1200°C 升温阶段, 控制升温速度为: 0.5°C/min, 达到最高烧结温度后, 保温 0.5h核化; (4) 降温至 850°C并保温 lh后, 冷却至室温得到微晶玻 璃陶瓷毛板; (5)经裁切、 打磨、抛光处理步骤, 得到微晶玻璃陶瓷 面板。

Claims

权利要求书
1.一种微晶玻璃陶瓷面板的制备方法, 其特征在于, 各组成原料 的重量比例为: 硅灰石: 15〜25份, 铅锌冶炼渣: 10〜25份, 锂长 石: 10〜15份,花岗石: 15〜30份,萤石: 2〜5份,硼砂: 1〜3份, MgO: 2〜5份, Li20: 0.3〜4份, ZnO: 0.2〜2份, 钠钾氧化物: 1〜 3份, 制备步骤如下:
1 ) 称取原料硅灰石, 铅锌冶炼渣, 锂长石, 花岗岩, 萤石, 硼 砂, 分别装入球磨罐中, 研磨为 50〜300目的细粉;
2)按各原料百分比取球磨后上述物质细粉及 MgO、 Li20、 ZnO、 钠钾氧化物, 装入球磨机中混合, 混料时间为 10〜30分钟, 得到混 合料;
3)将上步骤所得混合料送入电熔窑,在 1560- 1600 °C温度条件下 熔化为玻璃液, 玻璃液经澄清、 均化后进入成型料道;
4) 将玻璃液由成型料道输送至流涎法压延机, 压延成型得到玻 璃陶瓷, 成型温度为 1050〜1120°C, 成型压力为 40〜100MPa;
5)将成型后的玻璃陶瓷温度降为 850〜900°C, 送至退火窑进行 退火处理;
6) 将退火处理后的干燥玻璃陶瓷放入高温箱式电阻炉中, 在室 温〜 380°C升温阶段, 控制升温速度为: 3〜4°C/min; 在 380〜600°C 升温阶段, 控制升温速度为: l〜2°C/min; 在 600〜850°C升温阶段, 控制升温速度为: 15〜18°C/min; 在 850〜1200°C升温阶段, 控制升 温速度为: 0.5〜l °C/min, 达到最高烧结温度后, 保温 0.5〜lh进行 核化;
7) 降温至晶化温度: 850〜900 并保温1〜211后, 冷却至室温 成为微晶玻璃陶瓷毛板;
8) 将上述微晶玻璃陶瓷毛板经裁切、 打磨、 抛光处理, 得到微 晶玻璃陶瓷面板。
2.根据权利要求 1所述的微晶玻璃陶瓷面板的制备方法, 其特征 在于: MgO的原料重量比例为 2〜3份。
3. 根据权利要求 1所述的微晶玻璃陶瓷面板的制备方法, 其特 征在于: ZnO的原料重量比例为 0.5〜1.5份。
4.根据权利要求 1所述的微晶玻璃陶瓷面板的制备方法, 其特征 在于: 上述钠钾氧化物是钠的氧化物与钾的氧化物的混合物,两者比 例可为任意。
5. 根据权利要求 4所述的微晶玻璃陶瓷面板的制备方法, 其特 征在于: 钠钾氧化物的原料质量比例为 0.5〜2份。
6. 根据权利要求 1所述的微晶玻璃陶瓷面板的制备方法, 其特 征在于: Li20的原料质量比例为 2〜3份。
7. 根据权利要求 1〜6任一项所述的微晶玻璃陶瓷面板的制备方法, 其特征在于: 步骤 3 ) 中所述电熔窑为坩锅窑或箱式电炉。
PCT/CN2010/078808 2010-11-16 2010-11-16 一种微晶玻璃陶瓷面板的制备方法 WO2012065300A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078808 WO2012065300A1 (zh) 2010-11-16 2010-11-16 一种微晶玻璃陶瓷面板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/078808 WO2012065300A1 (zh) 2010-11-16 2010-11-16 一种微晶玻璃陶瓷面板的制备方法

Publications (1)

Publication Number Publication Date
WO2012065300A1 true WO2012065300A1 (zh) 2012-05-24

Family

ID=46083479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078808 WO2012065300A1 (zh) 2010-11-16 2010-11-16 一种微晶玻璃陶瓷面板的制备方法

Country Status (1)

Country Link
WO (1) WO2012065300A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992589A (zh) * 2012-11-28 2013-03-27 江苏宜达光电科技有限公司 微晶玻璃压延制备方法
CN104071984A (zh) * 2014-07-21 2014-10-01 北京璞晶科技有限公司 一种利用萤石尾矿生产微晶玻璃板的压延工艺方法
CN104445943A (zh) * 2014-12-10 2015-03-25 郴州市金贵银业股份有限公司 一种铅烟化炉渣微晶玻璃及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445325A (zh) * 2008-12-25 2009-06-03 广东博德精工建材有限公司 一种具有新型微晶相的微晶玻璃陶瓷复合板生产方法
CN101718137A (zh) * 2009-11-19 2010-06-02 荥经县腾达石材开发有限责任公司 利用花岗石废弃物生产微晶玻璃装饰板材的方法
CN101759368A (zh) * 2010-03-18 2010-06-30 凤县三联建材有限责任公司 用铅锌冶炼渣制造的绿色微晶玻璃板材及其制造方法
CN101787786A (zh) * 2010-02-10 2010-07-28 姚桂龙 一种无孔纳米微晶玻璃地面装饰砖制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101445325A (zh) * 2008-12-25 2009-06-03 广东博德精工建材有限公司 一种具有新型微晶相的微晶玻璃陶瓷复合板生产方法
CN101718137A (zh) * 2009-11-19 2010-06-02 荥经县腾达石材开发有限责任公司 利用花岗石废弃物生产微晶玻璃装饰板材的方法
CN101787786A (zh) * 2010-02-10 2010-07-28 姚桂龙 一种无孔纳米微晶玻璃地面装饰砖制备方法
CN101759368A (zh) * 2010-03-18 2010-06-30 凤县三联建材有限责任公司 用铅锌冶炼渣制造的绿色微晶玻璃板材及其制造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102992589A (zh) * 2012-11-28 2013-03-27 江苏宜达光电科技有限公司 微晶玻璃压延制备方法
CN104071984A (zh) * 2014-07-21 2014-10-01 北京璞晶科技有限公司 一种利用萤石尾矿生产微晶玻璃板的压延工艺方法
CN104445943A (zh) * 2014-12-10 2015-03-25 郴州市金贵银业股份有限公司 一种铅烟化炉渣微晶玻璃及其制备方法

Similar Documents

Publication Publication Date Title
CN114671618B (zh) 微晶玻璃、强化玻璃及其制备方法与应用
CN105948516B (zh) 抗辐射锂铝硅系低膨胀视窗玻璃及其加工工艺
CN106810079B (zh) 利用花岗岩废渣制备云母微晶玻璃的方法
JP2017535503A (ja) 高硬度透明結晶質ガラス及びその調製方法
CN1325412C (zh) 纳米多晶相玻璃陶瓷及其生产方法
CN103395996A (zh) Cbn 磨具用铝硼硅系低熔点玻璃陶瓷结合剂的制备方法
CN112552032B (zh) 一种合成β-锂辉石固溶体、含该合成β-锂辉石固溶体制造的微晶玻璃及其制造方法
CN102531400A (zh) 一种金刚石复合材料用微晶玻璃陶瓷结合剂
CN1974455A (zh) 整体晶化法微晶玻璃陶瓷复合砖及其生产方法
CN111592225A (zh) 锂铝硅酸盐纳米晶透明陶瓷、其制备方法及产品
CN101381240A (zh) 一种堇青石耐热/耐火材料的制备方法
CN105130196B (zh) 制备陶瓷玻璃板的工艺及该工艺所得板及其用途
JP2010116315A (ja) 結晶化ガラス
CN101024554B (zh) 富稀土、铌、萤石稀选尾矿微晶玻璃及制造方法
Figueira et al. Sinter-crystallization of spodumene LAS glass-ceramic tiles processed by single-firing
WO2012065300A1 (zh) 一种微晶玻璃陶瓷面板的制备方法
CN101125735B (zh) 一种热态浇注法制备黄磷矿渣微晶玻璃的方法
CN101066841B (zh) 岫岩玉废料制备透明玻璃陶瓷的方法
CN103030287B (zh) 一种以蜡石为主料的微晶玻璃及其制备方法
CN111170642A (zh) 一种高强高韧的低膨胀锂铝硅系透明微晶玻璃及其制备方法
CN102849952A (zh) 一种促进玻璃表面析晶的方法
CN101786796A (zh) 用高硅铁尾矿制造低膨胀微晶玻璃的方法
CN105110646B (zh) 一种含三斜铁辉石晶相的微晶玻璃及其制备方法
CN115304259A (zh) 一种低膨胀镁铝硅堇晶石微晶玻璃及其制备方法
CN103030286A (zh) 一种表面致密无气孔的微晶玻璃及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2013).

122 Ep: pct application non-entry in european phase

Ref document number: 10859649

Country of ref document: EP

Kind code of ref document: A1