WO2012064104A1 - 자기 특성이 우수한 선재, 강선 및 이들의 제조방법 - Google Patents

자기 특성이 우수한 선재, 강선 및 이들의 제조방법 Download PDF

Info

Publication number
WO2012064104A1
WO2012064104A1 PCT/KR2011/008515 KR2011008515W WO2012064104A1 WO 2012064104 A1 WO2012064104 A1 WO 2012064104A1 KR 2011008515 W KR2011008515 W KR 2011008515W WO 2012064104 A1 WO2012064104 A1 WO 2012064104A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rod
wire
steel
magnetic properties
rolling
Prior art date
Application number
PCT/KR2011/008515
Other languages
English (en)
French (fr)
Inventor
김동현
이유환
신우기
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP11839832.0A priority Critical patent/EP2639326B1/en
Priority to US13/824,428 priority patent/US9728332B2/en
Priority to CN201180053756.7A priority patent/CN103201402B/zh
Priority to JP2013538640A priority patent/JP5826284B2/ja
Priority to RU2013126473/02A priority patent/RU2538846C1/ru
Publication of WO2012064104A1 publication Critical patent/WO2012064104A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/143Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of wires

Definitions

  • Wire rods steel wires with excellent magnetic properties and methods of manufacturing them
  • the present invention relates to a wire rod, steel wire and a manufacturing method thereof having excellent magnetic properties, and more particularly, a wire rod and steel wire having excellent magnetic properties that can be used in transformers, automobiles, electrical and electronic products requiring low iron loss and high permeability. And it relates to a production method thereof.
  • the core material of most medium and large transformers As the core material of most medium and large transformers, directional or non-oriented electrical steel sheet is used.
  • the grain-oriented electrical steel sheet is manufactured to be easy to magnetize in the rolling direction of the steel sheet and has high magnetic properties in the rolling direction, it is necessary to artificially form a texture showing magnetic properties by adding high Si to the ultra low carbon steel.
  • the Si component may contain at least about 6.5% of the grain-oriented electrical steel sheet to exhibit the characteristics of the grain.
  • the patent is to manufacture a material for electronic steel wire having excellent drawing processability, in particular cold drawing processability even in the hot rolled state (As rolled), including Si in the range of 0.1 to 8% and at the same time the sum of C + N + 0 + S
  • the component system is limited to less than 0.015%.
  • the carbon component is controlled by ultra low carbon, the RH (Ruhrstahl-Hunteres) degassing process should be added, and the complex deoxidation should be carried out while the vacuum degassing time is lengthened. It has a disadvantage.
  • Cr is added in an amount of 0.1 to 153 ⁇ 4 to improve magnetic properties, it is not possible to solve the problem of price increase due to the addition of alloying elements.
  • Japanese Patent Laid-Open No. 2000-045051 As a technology complementing the above patent, there is Japanese Patent Laid-Open No. 2000-045051.
  • the patent relates to an electronic steel wire having excellent iron loss and workability that limits the sum of C, N, 0, and S components to 0.015% or less, and defines the diameter of the wire rod after crystal grain diameter and drawing. : 2% or less, A1: 2% or less, Cu: 2% or less are added, and the steel wire which is excellent in iron loss and workability is disclosed.
  • the electronic steel wire disclosed in the patent has the disadvantage that there is no problem of the source material price increase due to the increase in the addition amount of alloying elements, there is no magnetic proposal in the hot rolling state, The disadvantage is that there is no specification.
  • One aspect of the present invention is to control the composition by activating the Goss structure (Goss Structure), using a general low carbon steel, not ultra-low carbon steel and excellent wire properties, the wire rods and steel wires and their excellent manufacturing through a conventional process rolling process To provide a way.
  • Goss Structure Goss Structure
  • the present invention comprises, by weight, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, balance Fe and other unavoidable impurities. Provides wire rods with excellent magnetic properties.
  • the wire rod contains a goose structure of more than two areas 3 ⁇ 4, it is preferable that the saturation magnetic flux density is 180 emu or more.
  • the present invention has a weight of 3 ⁇ 4, consisting of C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, balance Fe and other unavoidable impurities.
  • the steel wire contains a goose structure of 7 area% or more, and the saturation magnetic flux density is preferably 250 emu or more.
  • the present invention has a weight of 3 ⁇ 4, consisting of C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, balance Fe and other unavoidable impurities.
  • the process of rolling is carried out at 900 to 1000 ° C., and the reduction ratio of the cross section is preferably 50 to 80%.
  • the cold rolling step it is preferable to engrav the cold rolled steel at a rate of o.rc / s or less.
  • the present invention provides a method for producing a steel wire having excellent magnetic properties, including a drawing step of drawing a wire produced through the manufacturing method.
  • the drawing step is preferably carried out at a cross-sectional reduction rate of 10 to 80%.
  • wire rods and steel wires having directivity can be provided by a normal manufacturing process without the addition of manufacturing equipment without using expensive alloying elements.
  • Figure 1 is a schematic diagram showing the change in structure during the wire rod rolling through the simulation of the ball rolling ⁇
  • Figure 2 is a photograph of the EBSD organization for Inventive Materials 1 to 5 in the embodiment of the present invention.
  • FIG. 3 is a graph showing emu measurement values for Inventive Materials 1 to 5 according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing the structure changes during the wire rod rolling through the simulation of the rolling. As can be seen in Figure 1, by using the characteristics of the rolling of the wire in the wire rod unidirectionally by causing the strain (Strain) that can generate a large amount of goth structure affecting the magnetic properties The present invention was completed. Hereinafter, the present invention will be described in detail.
  • the C is dissolved in the wire rod and causes lattice distortion and aging during processing, while reducing ductility.
  • the C is added at less than 0.03%, there is a problem in that it is not possible to form a uniform goth structure in the wire rod, and when it exceeds 0.05%, the magnetic content is reduced, the carbon content is 0.03-0.05% It is preferable to limit.
  • Si is an effective component to improve the iron loss and magnetism by increasing the electrical resistance of the wire, but if less than 33 ⁇ 4, the magnetism is lowered due to the insufficient amount of addition, if it exceeds 5%, the work hardening during the wire rod is rapidly progressed and cannot be rolled Because of the disadvantages ⁇ the content of the silicon is preferably limited to 3.05.0% by weight.
  • Manganese (Mn): 0.1-2.0 wt% Mn is a useful component to improve the electrical resistance and improve the iron loss characteristics of the wire rod, but when added to less than 0.1%, Mn can not play a role of compensating the strength when rolling, and when exceeding 2.0%, Mn is processed as There is a problem that causes a hot rolling problem by increasing the curing effect. Therefore, the content of the manganese is preferably limited to 0.1 ⁇ 2.0%.
  • A1 it is preferable to limit the content in conjunction with the nitrogen control range because it is an element effective for improving the magnetic properties through the control of nitrogen in the steel.
  • A1 is added below 0.02%, it has a disadvantage in that it cannot effectively control nitrogen, and when A1 is added above 0.08%, A1 may precipitate in an atomic state and degrade the magnetism.
  • the content is preferably limited to 0.02 to 0.083 ⁇ 4
  • N the formation of goth structure is suppressed through lattice deformation and nitride formation with alloying elements due to penetration into the crystal lattice, which causes aging and ductility deterioration.
  • Nitrogen is controlled at less than 0.0015% because it is a very harsh process in the steelmaking process and cannot be implemented in the actual process.If it exceeds 0.003%, nitrogen in the steel can move freely, and A1N is increased by increasing the content of A1. In order to make it possible, the content of nitrogen is preferably limited to 0.0015-0.003%.
  • the goth structure is less than 2% by area, whereas the wire rod of the present invention includes a Goss structure of 2% or more by area, and thus has a conventional electrical steel sheet or magnetic properties.
  • the wire rod has excellent magnetic properties, that is, directivity. More specifically, based on the goth tissue generated at this time, the tissues around the annealing are changed in the direction of the goth tissue to improve magnetic properties. That is, the goth structure acts as an effective directional accelerator, enables movement of magnetic momentum, and magnetization of surrounding tissues during annealing can be easily acted.
  • the goth structure is not only magnetic in the rolling direction but also in the rolling right direction. It is an organization that is essential for steel that can display magnetism because it can be expressed.
  • the goose tissue is less than 2%, the wire rod cannot be given directivity, and thus the non-directional magnetic property is obtained. That is, the more the goth tissue is generated, the better.
  • the upper limit of the goth tissue is limited to 1OT.
  • the wire rod has a saturation magnetic flux density of 180 emu or more. When the saturation magnetic flux density is less than 180 emu, it is difficult to impart orientation to the wire rod and may have non-directional magnetic properties.
  • the present invention provides not only the wire rod mentioned above, but also a wire rod using the wire rod, and by providing the wire rod freshly, it is possible to impart better magnetic properties to the wire rod.
  • the steel wire contains a Goth structure of 7 area% or more, and has a saturation magnetic flux density of 250 emu or more.
  • the steel wire also limits the upper limit of goth structure and saturation magnetic flux density to 14 area% and 300 emu, respectively, due to process limitations.
  • the wire rod of the present invention has excellent magnetic properties even when manufactured under ordinary conditions of ordinary rolling, as long as it satisfies the composition range, it does not specifically limit the rolling conditions or other manufacturing conditions.
  • an example of the manufacturing process of the wire rod for implementing the present invention more preferably As follows.
  • heating is performed in ioocKLioo o c for steel materials satisfying the composition range of the present invention. If the heating temperature is less than 1000 ° C in the wire rod process, the steel is extracted from the furnace and the rough rolling causes a surface strain problem due to the severe strain increase, and if it exceeds 1100 ° C, the limit and the surface of the furnace Increasing the scale will reduce the quality of the product. Thereafter, the reheated steel is subjected to ball rolling.
  • the process of rolling the wire is an essential process for wire rod rolling, and through the rolling of the wire, the structure of the aggregate structure, that is, the Goss structure, which is involved in magnetic properties is caused by causing a strain by unidirectionally rolling the wire in the wire rod.
  • the cold rolling is preferably carried out at 900 ⁇ 1000 ° C. If it is less than 900 ° C, may cause surface defects of the wire rod due to the process load, the fracture of the wire rod may occur. If it is more than 1000 o C, the strain can not be effectively induced due to the increased ductility of the wire during rolling. It is preferable that the reduction ratio of the cross section is 50 to 80% when the rolling is performed. When the reduction ratio of the cross section is less than 50%, it is impossible to distribute the tissue to the magnetic wire because the generation of goth structure is insufficient due to the lack of strain. If it exceeds 80%, the re-stretch force may increase due to severe stretching of the wire rod tissue, and the goth tissue itself may be transformed.
  • the wire rod can be further manufactured to produce a steel wire, and the wire rod further improves the magnetic properties of the wire rod.
  • the cross-sectional reduction rate is preferably in the range of 10 to 80%. When the cross-sectional reduction rate is less than 10%, there is a drawback that there is no increase in the amount of goth structure because the freshness is not divided. The greater the amount of fresh processing, the better.
  • the range of cross-sectional reduction rate is 10 to 80%.
  • the range of a more preferable cross section reduction rate is 50 to 80%.
  • a more preferred range of cross sectional reduction is 70-80%, where the goth structure accounts for more than 11.5% of the area fraction.
  • Comparative Steel 3 0.06 3.0 0.01 0.01 0.007-0.002 Comparative Steel 4 0.06 4.0 0.01 0.01 0.007-0.002 Inventive Steel 1 0.031 3.0 0. 185 0.011 0.007 0.023 0.002 Inventive Steel 2 0.045 3. 1 0.
  • FIG. 2 is an EBSD texture photograph of Inventive Materials 1 to 5 of the present invention, and a portion indicated in red in the microstructure photograph represents a goth structure.
  • the invention materials 1 to 5 which is a wire rod that satisfies the composition range of the present invention is formed of a goth structure up to 2.0 ⁇ 6.73 ⁇ 4.
  • the fraction of goth tissue after hot rolling is less than about 2%, while Inventive Materials 1 to 5 are invented by Goose, which exhibits the worst characteristics.
  • the wire rod of the present invention has superior magnetic properties than the conventional oriented steel sheet because it contains a goth structure.
  • the saturation magnetic flux densities of the inventive materials 1 to 5 are 181 to 255 emu and have excellent saturation magnetic flux densities of 180 emu or more and exhibit excellent magnetic properties.
  • 3 is a graph showing the result of the saturation magnetic flux density, which is measured using VSM (Vibration Sample Measurement).
  • Inventive Material 3 has the best saturation magnetic flux density, which is because it has the optimum carbon and silicon content, suppresses the solid solution or aging of the crystal lattice, and This is because it inhibits nitrogen, thereby maximizing lattice stability and activating goth tissue.
  • the steel wires manufactured through the drawing process increased the Goth tissue fraction by a certain level or more as compared with the wire rod.
  • the invention materials 1 to 5 in accordance with the conditions of the present invention is a Goth tissue fraction of 9.9 area% or more and It was found to have a saturation flux density of more than 271 emu.
  • the steel wires of the present invention has excellent magnetic properties.
  • the comparative materials 1 to 4 it can be seen that the goose structure fraction increase is relatively small because it does not satisfy the steel composition of the present invention, the comparative materials 5 to 8 noticeably increase the goth structure fraction because it satisfies the steel composition It can be seen that.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Electromagnetism (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

본 발명은 자기 특성이 우수한 선재, 강선 및 이들의 제조방법에 관한 것으로서, 보다 상세하게는 저철손, 고투자율이 요구되는 변압기, 자동차, 전기・전자제품 등에 사용될 수 있는 자기 특성이 우수한 선재, 강선 및 이들의 제조방법에 관한 것이다. 본 발명은 중량%로, C: 0.03~0.05%, Si: 3.0~5.0%, Mn: 0.1~2.0%, Al: 0.02~0.08%, N: 0.0015~0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 자기 특성이 우수한 선재, 강선 및 이들의 제조방법을 제공한다. 본 발명에 의하면, 고가의 합금원소를 사용하지 않으면서도 제조설비의 추가없이 통상의 제조공정만으로도 방향성을 갖는 선재 및 강선을 제공할 수 있다.

Description

【명세서】
【발명의 명칭]
자기 특성이 우수한 선재, 강선 및 이들의 제조방법
【기술분야】
본 발명은 자기 특성이 우수한 선재, 강선 및 이들의 제조방법에 관한 것으로서, 보다 상세하게는 저철손, 고투자율이 요구되는 변압기, 자동차, 전기ᅳ전자제품 등에 사용될 수 있는 자기 특성이 우수한 선재, 강선 및 이들의 제조방법에 관한 것이다.
【배경기술】
대부분의 중대형 변압기의 철심 재료로는 방향성 또는 무방향성 전기강판이 사용되고 있다. 특히, 기존보다도 뛰어난 효율성을 필요로 하면서, 기계 장치의 소형화, 경량화를 위한 다양한 연구 개발의 필요성이 대두되고, 이에 따라 고급 방향성 전기강판의 개발 및 연구는 매우 필수 블가결한 현실이다. 특히, 방향성 전기강판은 강판의 압연방향으로 자화가 용이하도록 제조하여 압연방향으로 고자기특성을 가져야만 하기 때문에, 극저탄소강에 고 Si를 첨가함으로써 자성을 나타내는 집합조직을 인위적으로 형성해야만 한다. 그러나, 이러한 방향성 전기강판의 경우 자성을 향상시키기 위하여 Si성분을 약 6.5%이상 함유하여야만 고급 방향성 전기강판의 특성을 나타낼 수 있다. 또한, 방향성 전기강판의 경우, 집합조직인 고스 조직 (Goss Structure)을 인위적으로 형성시키기 위해 고온, 질소 분위기에서 열처리를 행하여야 한다는 단점을 가지고 있다. 이러한 이유는 최대 자기유도값을 가지기 위한 결정방위인 <100>결정방위를 제어해야 하기 때문이다. 한편, 최근에는 방향성 전기강판의 집합조직 제어 혹은 표면 코팅을 '통해, 전기강판의 자성을 향상시킬 수 있는 방안을 개선하였음에도 불구하고, 변압기로 사용되는 전기강판의 경우, 전기강판 적충시 야기되는 강판의 슬릿 (Slit), 전단 또는 휨 등을 억제하기 위해 정밀한 가공이 필요하며, 철심이 비교적 소형인 경우에는 가공 자체가 곤란해진다는 문제점을 가지고 있으며, 철심의 전체 곱에 차지하는 가공에 의한 왜곡 부분의 체적이 상대적으로 커지고, 이로 인해 자기 특성이 현저하게 저하한다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해, 전자강선 혹은 전기강선을 제조하여 소형 변압기 또는 자동차에 탑재되는 소형 모터용 선재를 제조하는 기술이 개발되었는데, 전기강판이 선재로 제조될 경우, 압연 및 표면 결함 억제를 위한 가흑한 공정 제어가 필요치 않으며, 전기강판 적층에 의한 수율 감소 문제를 해결할 수 있다는 장점을 가지고 있다. 이러한 대표적인 기술로는 일본 공개특허공보 2001— 115241호가 있다. 상기 특허는 열간압연된 상태 (As rolled)에서도 신선 가공성 특히 냉간 신선 가공성이 우수한 전자 강선용 소재를 제조하고자 하는 것으로서, Si를 0.1~8%의 범위로 포함하는 동시에 C+N+0+S의 합을 0.015%이하로 제한하는 성분계를 제시하고 있다. 그러나, 상기 특허의 경우, 극저탄소로 탄소 성분을 제어하기 때문에 RH(Ruhrstahl-Heraues) 탈가스 공정을 추가해야 하고 진공탈가스 시간을 길게 가져가면서 복합탈산을 실시하여야 하기 때문에 공정단가 상승을 피할 수 없다는 단점을 가지고 있다. 또한, 자성 향상을 위해 Cr을 0.1~15¾까지 첨가하기 때문에 합금원소 첨가에 의한 가격 상승 문제를 해결할 수 없다. 상기 특허를 보완한 기술로는 일본 공개특허공보 2000-045051호가 있다. 상기 특허는 C, N, 0, S 성분의 합을 0.015%이하로 한정하고, 결정입자 지름과 신선 후, 선재의 직경을 한정한 철손 및 가공성이 우수한 전자강선에 관한 것으로서, 합금원소 성분에 Ni: 2%이하, A1: 2%이하, Cu: 2%이하를 첨가하여 철손 및 가공성이 우수한 전자강선이 개시되어 있다. 그러나, 상기 특허에 개시된 전자강선은 합금원소 첨가량 증가에 따른 원천소재 가격 상승 문제, 열간압연상태에서의 자성 제안이 없다는 단점을 가지고 있으며, 집합조직 분율에 대한 명시가 없다는 단점을 가지고 있다. ' 한편, 다른 발명으로는 일본 공개특허공보 2001-131718호가 있는데, 상기 특허는 C, N, 0, S 성분의 합을 0.025%이하로 한정하고, 신선을 통해 제조되는 지름이 0.01~1.0顯인 선재를 제시하고 있다. 그러나, 상기 특허 역시 Cr, Ni, Cu 등 고가의 합금원소 첨가가 필수적이고, 자성에 대한 구체적 조직제안 및 자성값의 제시가 없다는 단점이 있다. 특히, 상술한 특허들의 경우, 자성특성이 모두 무방향성 전기강판과 가까운 값을 지니고, 또한 후속 소둔열처리를 행하여만 자성의 증가를 가져올 수 있다는 단점을 가지고 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 일측면은 조성성분을 제어하여 고스 조직 (Goss Structure)을 활성화시킴으로써, 극저탄소강이 아닌 일반 저탄소강을 이용하고 통상의 공형압연공정을 통해 자기 특성이 우수한 선재, 강선 및 이들의 제조방법을 제공하고자 하는 것이다.
【기술적 해결방법】
본 발명은 중량 %로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 자기 특성이 우수한 선재를 제공한다.
이 때, 상기 선재는 2면적 ¾이상의 고스 조직을 포함하며, 포화자속밀도가 180emu이상인 것이 바람직하다. 본 발명은 중량 ¾로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 자기 특성이 우수한 강선을 제공한다. 이 때, 상기 강선은 7면적 %이상의 고스 조직을 포함하며, 포화자속밀도가 250emu이상인 것이 바람직하다. 본 발명은 중량 ¾로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N: 0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 강재를 1000~1100°C에서 가열하는 가열단계; 및 상기 가열된 강재를 공형압연하는 공형압연단계를 포함하는 자기 특성이 우수한 선재의 제조방법을 제공한다.
이 때, 상기 공형압연단계는 900~1000oC에서 행하는 것이 바람직하며, 단면감소율은 50~80%인 것이 바람직하다. 상기 공형압연단계 후에는 상기 공형압연된 강재를 o.rc/s이하의 속도로 넁각하는 것이 바람직하다.
본 발명은 상기 제조방법을 통해 제조된 선재를 신선하는 신선단계를 포함하는 자기 특성이 우수한 강선의 제조방법을 제공한다.
이 때, 상기 신선단계는 10~80%의 단면감소율로 행하는 것이 바람직하다. 【유리한 효과】
본 발명에 의하면, 고가의 합금원소를 사용하지 않으면서도 제조설비의 추가없이 통상의 제조공정만으로도 방향성을 갖는 선재 및 강선을 제공할 수 있다.
【도면의 간단한 설명】
도 1은 공형압연의 시뮬레이션을 통한 선재 압연시 조직 변화를 나타낸 모식도이다ᅳ
도 2는 본 발명의 실시예에 파른 발명재 1 ~ 5에 대한 EBSD조직사진이다.
도 3은 본 발명의 실시예에 따른 발명재 1 ~ 5에 대한 emu측정값을 나타낸 그래프이다.
도 4는 본 발명의 실시예에 따른 발명재 3에 대한 EBSD(Electron Back Scatterd Diffraction, 전자 후방 산란 회절) 조직사진 (a) 및 EBSD 스캐닝 (Scanning) 사진 (b)이다. 【발명의 실시를 위한 형태】
본 발명자들은 일반 저탄소강 선재에 우수한 자기 특성을 부여하기 위한 연구를 행하던 중, 조성성분을 제어함으로써 열간압연만으로도 고자기 특성을 가지는 선재 및 강선을 제조할 수 있다는 점을 인지하게 되었다. 이 때ᅳ 상기 열간압연은 공형압연을 의미한다. 도 1은 공형압연의 시뮬레이션을 통한 선재 압연시 조직 변화를 나타낸 모식도이다. 도 1에서 알 수 있는 바와 같이, 공형압연의 특징을 이용하여 선재내 조직을 일방향성으로 압연함으로써 스트레인 (Strain)을 야기시키면 자기적 특성에 영향을 미치는 고스 조직을 다량으로 생성시킬 수 있다는 점을 이용하여 본 발명을 완성하였다. 이하, 본 발명에 대하여 상세히 설명한다. 탄소 (C): 0.03~0.05중량 ¾
C는 선재중에 고용되고 가공시 격자 변형 (distorsion) 및 시효를 、일으킴과 동시에 연성을 감소시킨다. 상기 C가 0.03%미만으로 첨가될 경우, 선재내에 균일한 고스 조직을 형성할 수 없다는 문제점을 가지고 있으며, 0.05%를 초과할 경우, 자성을 저하시키기 때문에, 상기 탄소의 함량은 0.03-0.05%로 한정하는 것이 바람직하다.
실리콘 (Si): 3.0~5.0중량%
Si는 선재의 전기저항을 높여 철손 및 자성을 향상시키는 유효한 성분이지만, 3¾미만일 경우, 첨가량 부족에 의해 자성이 낮아지며, 5%를 초과할 경우, 선재 압연시 가공경화가 급격히 진행되어 압연할 수 없다는 단점을 가지기 때문에 ᅳ 상기 실리콘의 함량은 3.05.0중량 %로 한정하는 것이 바람직하다. 망간 (Mn): 0.1~2.0중량 % Mn은 선재의 전기저항을 향상시키고 철손특성을 향상시킬 수 있는 유용한 성분이지만, 0.1%미만으로 첨가될 경우, 압연시 강도 보상 역할을 수행할 수 없으며, 2.0%를 초과할 경우, Si와 마찬가지로 가공경화 효과 증가에 의한 열간압연 문제점을 야기시킨다는 문제점이 있다. 따라서, 상기 망간의 함량은 0.1~2.0%로 한정하는 것이 바람직하다. 알루미늄 (A1): 0.02-0.08중량 %
A1의 경우, 강중 질소 제어를 통해 자성 향상에 효과적인 원소이기 때문에 질소 제어범위와 연동하여 함량을 한정하는 것이 바람직하다. 상기 A1이 0.02% 미만으로 첨가될 경우, 효과적으로 질소를 제어할 수 없다는 단점을 가지고 있으며, 0.08%를 초과하여 첨가될 경우, A1이 원자 상태로 석출하여 자성을 저하할 수 있기 때문에, 상기 알루미늄의 함량은 0.02~0.08¾»로 한정하는 것이 바람직하다. 질소 (N): 0.0015~0.003중량 %
N의 경우, 결정격자내의 침입에 의한 격자변형 및 합금원소들과의 질화물 형성을 통해 고스 조직 형성을 억제하고, 시효 및 연성저하의 원인이 된다. 질소가 0.0015%미만으로 관리되는 것은 제강 공정에서 매우 가혹한 공정이기 때문에 실제 공정에서 구현할 수 없기 때문이며, 0.003%를 초과하는 경우에는 강중 질소가 자유롭게 움직일 수 있고, A1의 함량을 증가시켜 A1N을 조대화 시킬 가능성이 있기 때문에, 상기 질소의 함량은 0.0015-0.003%로 한정하는 것이 바람직하다.
상기와 같이 조성범위를 한정함으로써 선재에 우수한 자기 특성 즉 방향성을 부여할 수 있다. 통상의 전기강판의 경우, 고스 조직이 2면적 %미만으로 생성되는데 반하여, 본 발명의 선재는 2면적 %이상의 고스 조직 (Goss Structure)을 포함하게 되는데, 이와 같이 기존의 전기강판 또는 자기 특성을 지니는 선재에 비하여 많은 양의 고스 조직이 생성됨으로써, 선재가 우수한 자기 특성 즉, 방향성을 가지게 된다. 보다 상세하게는 이 때 생성된 고스 조직을 바탕으로 소둔시 주변의 조직들이 고스 조직 방향으로 변화하면서 자기 특성을 향상시키게 되는 것이다. 즉, 상기 고스 조직은 효과적인 방향성 촉진제로 작용하여, 자기 모멘텀들의 이동을 가능케 하고, 소둔시 주변 조직들의 자화가 용이하게 작용될 수 있으며, 특히 고스 조직의 경우 압연 방향뿐만 아니라 압연 직각방향으로도 자성을 나타낼 수 있기 때문에 자성을 나타낼 수 있는 강재에 필수적인 조직이다. 다만, 상기 고스 조직이 2%미만으로 생성될 경우에는 선재에 방향성을 부여할 수 없어, 무방향성의 자기 특성을 갖게 된다. 즉, 상기 고스 조직은 많이 생성되면 될수록 좋으나 공정상의 한계로 상기 고스 조직의 상한을 1OT로 한정한다. 또한, 상기 선재는 180emu이상의 포화자속밀도를 가지게 된다. 상기 포화자속밀도가 180emu미만인 경우, 선재에 방향성을 부여하기 어려워, 무방향성의 자기 특성을 갖게 될 수도 있다. 상기 포화자속밀도 또한 고스 조직과 마찬가지로 높은 값을 지닐수록 자기 특성에 유리하나, 공정상의 한계로 그 상한을 280emu로 한정한다. 본 발명은 상기 언급한 선재뿐만 아니라, 상기 선재를 이용하여 강선 또한 제공하게 되는데, 상기 선재를 신선하게 됨으로써, 강선에 보다 우수한 자기 특성을 부여할 수 있게 된다. 이 때, 상기 강선은 7면적 %이상의 고스 조직을 포함하며, 250emu이상의 포화자속밀도를 가지게 된다. 다만, 상기 강선 또한 공정상의 한계로 인해 고스 조직 및 포화자속밀도의 상한을 각각 14면적 % 및 300emu로 한정한다. 본 발명의 선재는 상기 조성범위를 만족하는 이상 통상의 공형압연 조건으로 제조되어도 우수한 자기적 특성을 지니게 되므로, 공형압연조건이나 그 외 제조조건을 특별히 한정하지 않는다. 다만, 본 발명을 보다 바람직하게 구현하기 위한 선재의 제조공정의 일례는 다음과 같다.
우선, 본 발명의 조성범위를 만족하는 강재에 대해 ioocKLioooc에서 가열을 실시한다. 선재 공정상 가열온도가 1000°C미만인 경우, 강재를 가열로에서 추출한 뒤, 조압연하게 되면 가혹한 스트레인 증가로 인해 표면 결함 문제가 야기되며, 1100°C를 초과하게 되면, 가열로의 한계 및 표면 스케일 증가로 인해 제품의 품질이 떨어지게 된다. 이 후, 상기 재가열된 강재에 대해 공형압연을 실시하게 된다. 상기 공형압연은 선재압연시 필수적인 공정으로서, 상기 공형압연을 통해, 선재 내 조직을 일방향성으로 압연함으로써 스트레인 (strain)을 야기시키면 자기적 특성에 관여하는 집합 조직 즉, 고스 조직 (Goss structure)의 생성을 활성화시킬 수 있게 된다. 이에 따라, 상기 공형압연을 열간상태에서 실시하기만 하여도 선재에 우수한 자성을 부여할 수 있게 된다. 상기 공형압연은 900~1000oC에서 행하는 것이 바람직한데, 900°C 미만인 경우, 공정 부하로 인해 선재의 표면 결함을 유발할 수 있으며 , 선재 압연 를의 파단이 발생할 수 있다. 1000oC를 초과하는 경우, 압연시 선재의 연성증가로 인해 스트레인을 효과적으로 야기시킬 수 없다. 상기 공형압연시 단면감소율은 50~80%로 행하는 것이 바람직한데, 상기 단면감소율이 50%미만일 경우, 스트레인 (strain) 부족으로 인해 고스조직의 생성이 불층분하여 자성선재로의 조직 배분이 불가능할 수 있으며, 80%를 초과할 경우, 선재 조직의 심한 연신으로 인해 재결정 포스 (force)가 증가하여 고스조직 자체가 변태될 가능성이 있다.
또한, 상기 공형압연 후에는 넁각공정을 갖는 것이 바람직하며, 0.1°C/s이하의 속도로 냉각하는 것이 바람직하다. 상기 넁각속도가 o.rc/s를 초과하게 되면ᅳ 조직내 저온조직이 나타나 페라이트 조직으로 변태될 가능성이 많아지게 된다. 전술한 선재의 제조공정 후에는 신선공정을 추가로 행함으로써 강선을 제조할 수 있게 되는데, 상기 신선공정을 통해 선재의 자기적 특성이 보다 더 향상되게 된다. 상기 신선공정시 단면감소율은 10~80%의 범위를 갖는 것이 바람직한데, 단면감소율이 10%미만일 경우에는 신선량이 층분하지 않아 고스 조직의 증가량이 없다는 단점이 있다. 신선가공량은 많으면 많을수록 바람직하나, 단면감소율이
80¾>를 초과하는 경우에는 신선 한계성이 존재하기 때문에 신선시 선재가 파단되는 문제가 발생한다. 따라서, 단면감소율의 범위는 10~80%로 한정하는 것이 바람직하다. 보다 바람직한 단면감소율의 범위는 50~80%이다. 보다 더 바람직한 단면감소율의 범위는 70-80%이며, 이 때 고스 조직은 면적 분율로 11.5%이상을 차지한다. 이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것일 뿐, 본 발명의 권리 범위가 제한되는 것은 아니다.
(실시예 1)
하기 표 1의 조성성분을 갖는 강재를 하기 표 2의 조건으로 가열한 후, 공형압연하였다. 상기 제조공정을 통해 제조된 선재에 대하여 고스 조직의 분율 및 포화자속밀도를 측정한 뒤, 그 결과를 하기 표 2에 나타내었다.
【표 1】
Figure imgf000011_0001
비교강 3 0.06 3.0 0. 1 0.01 0.007 - 0.002 비교강 4 0.06 4.0 0. 1 0.01 0.007 - 0.002 발명강 1 0.031 3.0 0. 185 0.011 0.007 0.023 0.002 발명강 2 0.045 3. 1 0. 15 0.01 0.007 0.020 0.002 발명강 3 0.042 3.2 0.99 0.01 0.007 0.040 0.002 발명강 4 0.047 3.26 0.98 0.01 0.007 0.041 0.002 발명강 5 0.044 3.05 0.98 0.01 0.007 0.08 0.002 발명강 6 0.03 3.0 0. 1 0.01 0.007 0.02 0.002 발명강 7 0.03 3.0 0. 1 0.01 0.007 0.04 0.002 발명강 8 0.03 5.0 0. 1 0.01 0.007 0.02 0.002 발명강 9 0.03 5.0 0. 1 0.01 0.007 0.04 0.002
【표 2】
Figure imgf000012_0001
발명강 9 비교재 8 1100 1050 50 0.1 0.65 142 도 2는 본 발명의 발명재 1 내지 5의 EBSD 조직사진으로서, 미세조직 사진에서 붉은색으로 표시된 부분은 고스 조직을 나타낸다. 도 2 및 상기 표 2에서 알 수 있듯이, 본 발명의 조성범위를 만족하는 선재인 발명재 1 내지 5는 고스 조직이 2.0~6.7¾까지 형성되어 있다. 통상의 방향성 전기강판의 경우 열간압연 후 고스 조직의 분율이 약 2%미만인데 반해 발명재 1 내지 5는 공형압연에 의해 고스 조직이 활성화되어, 가장 좋지않은 특성올 나타내는 발명재 4도 2%의 고스 조직을 함유하고 있에 본 발명의 선재가 기존의 방향성 강판보다 우수한 자기 특성을 가지고 있음을 알 수 있다. 또한, 발명재 1 내지 5의 포화자속밀도는 181~255emu로서 180emu이상의 포화자속밀도를 가져 방향성을 갖는 우수한 자기 특성을 나타내고 있음을 알 수 있다. 도 3은 상기 포화자속밀도에 대한 결과를 나타낸 그래프로서, VSM(Vibration Sample Measurement)을 이용하여 측정된 결과이다. 그 중 발명재 3은 가장 우수한 포화자속밀도를 가지고 있음을 확인할 수 있는데, 이러한 이유는 최적의 탄소 및 실리콘 함량을 가지고 있어, 결정격자내의 탄소 고용 혹은 시효현상을 억제하고, 알루미늄첨가에 의한 A1N을 이용하여 질소를 억제함으로써, 격자 안정성을 극대화하여, 고스 조직을 활성화시켰기 때문이다. 도 4에는 발명재 3의 EBSD 조직사진 (좌) 및 EBSD 스캐닝 사진 (우)을 나타내었다. 도 4의 좌측에 위치한 EBSD 조직사진에서 검게 나타난 부분이 결정입계 (grain boundary)이며, 붉은색으로 나타낸 부분이 고스 조직을 나타낸다. 도 3에서 알 수 있듯이, 발명재 3의 고스 조직은 6.7%로서, 우수한 자기 특성을 가지고 있음을 알 수 있다. 또한, EBSD 스캐닝 사진에서 붉은색으로 나타난 부분은 추후 추가적인 공정을 통해서 고스 조직으로 변태할 수 있는 부분을 나타내는 것이다. 그러나, 본 발명의 조성범위에 부합되지 않는 비교재 1 내지 4는 고스조직분율과 포화자속밀도의 값이 발명재들에 비해 현저히 낮은 값을 지니는 것으로 확인되었다. 또한, 본 발명의 조성범위를 만족하더라도 제조조건을 만족하지 않는 비교재 5 내지 8 또한 낮은 수준의 고스조직분율 및 포화자속밀도를 갖져, 자성 특성이 좋지 않음을 알 수 있다.
(실시예 2)
상기 비교재 및 발명재에 대하여 하기 표 3의 조건과 같은 신선공정을 행한 후, 고스 조직 분율 및 포화자속밀도를 측정하고, 그 결과를 하기 표 3에 나타내었다ᅳ
【표 3】
Figure imgf000014_0001
상기 표 3에서 알 수 있듯이, 신선공정을 통해 제조된 강선들은 선재일 경우에 비하여 고스 조직 분율이 일정 수준 이상 증가하였음을 알 수 있다. 특히, 본 발명의 조건에 부합하는 발명재 1 내지 5는 9.9면적 %이상의 고스조직분율과 271emu이상의 포화자속밀도를 가지는 것으로 나타났다. 이를 통해, 본 발명의 강선들은 우수한 자기 특성이 지니고 있음을 알 수 있다. 그러나, 비교재 1 내지 4의 경우에는 본 발명의 강 조성을 만족하지 않기 때문에 고스 조직 분율 증가가 비교적 적음을 알 수 있으며, 비교재 5 내지 8는 강 조성을 만족하기 때문에 눈에 띄게 고스 조직 분율이 증가되었음을 알 수 있다.

Claims

【청구의 범위】
【청구항 1】
중량 %로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N:
0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 자기 특성이 우수한 선재.
【청구항 2]
제 1항에 있어서, 상기 선재는 2면적 ¾>이상의 고스 조직을 포함하는 자기 특성이 우수한 선재.
【청구항 3]
제 1항에 있어서, 상기 선재는 포화자속밀도가 180emu이상인 자기 특성이 우수한 선재.
【청구항 4】
중량 %로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%, N:
0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 자기 특성이 우수한 강선 .
【청구항 5】
제 4항에 있어서, 상기 강선은 7면적 ¾>이상의 고스 조직을 포함하는 자기 특성이 우수한 강선 .
【청구항 6】
제 4항에 있어서, 상기 강선은 포화자속밀도가 250emu이상인 자기 특성이 우수한 선재.
【청구항 7】
중량 %로, C: 0.03-0.05%, Si: 3.0-5.0%, Mn: 0.1-2.0%, Al: 0.02-0.08%
0.0015-0.0030%, 잔부 Fe 및 기타 불가피한 불순물로 이루어지는 강재를 1000~1100oC에서 가열하는 가열단계; 및 상기 가열된 강재를 공형압연하는 공형압연단계를 포함하는 자기 특성이 우수한 선재의 제조방법.
【청구항 8]
제 7항에 있어서, 상기 공형압연단계는 900~1000oC에서 행하는 자기 특성이 우수한 선재의 제조방법.
【청구항 9】
제 7항에 있어서, 상기 공형압연단계는 50~80¾의 단면감소율로 행하는 자기 특성이 우수한 선재의 제조방법.
【청구항 10]
제 7항에 있어서, 상기 공형압연단계 후, 상기 공형압연된 강재를 0.1oC/s이하의 속도로 냉각하는 것을 포함하는 자기 특성이 우수한 선재의 제조방법.
【청구항 11】
제 7항 내지 제 10항 중 어느 한 항에 기재된 제조방법을 통해 제조된 선재를 신선하는 단계를 포함하는 자기 특성이 우수한 강선의 제조방법 .
【청구항 12】
제 11항에 있어서, 상기 신선단계는 10~80¾의 단면감소율로 행하는 자기 특성이 우수한 강선의 제조방법 .
PCT/KR2011/008515 2010-11-10 2011-11-09 자기 특성이 우수한 선재, 강선 및 이들의 제조방법 WO2012064104A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11839832.0A EP2639326B1 (en) 2010-11-10 2011-11-09 Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
US13/824,428 US9728332B2 (en) 2010-11-10 2011-11-09 Wire rod and steel wire having superior magnetic characteristics, and method for manufacturing same
CN201180053756.7A CN103201402B (zh) 2010-11-10 2011-11-09 具有优良磁性能的盘条和钢线及其制造方法
JP2013538640A JP5826284B2 (ja) 2010-11-10 2011-11-09 磁気特性に優れた線材、鋼線及びこれらの製造方法
RU2013126473/02A RU2538846C1 (ru) 2010-11-10 2011-11-09 Заготовка для проволоки и стальная проволока, имеющие превосходные магнитные характеристики, и способы их изготовления

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0111614 2010-11-10
KR1020100111614A KR101262516B1 (ko) 2010-11-10 2010-11-10 자기 특성이 우수한 선재, 강선 및 이들의 제조방법

Publications (1)

Publication Number Publication Date
WO2012064104A1 true WO2012064104A1 (ko) 2012-05-18

Family

ID=46051138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008515 WO2012064104A1 (ko) 2010-11-10 2011-11-09 자기 특성이 우수한 선재, 강선 및 이들의 제조방법

Country Status (7)

Country Link
US (1) US9728332B2 (ko)
EP (1) EP2639326B1 (ko)
JP (1) JP5826284B2 (ko)
KR (1) KR101262516B1 (ko)
CN (1) CN103201402B (ko)
RU (1) RU2538846C1 (ko)
WO (1) WO2012064104A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102556266B1 (ko) * 2020-12-21 2023-07-14 주식회사 포스코 내산화성이 우수한 고강도 선재, 강선 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045051A (ja) 1998-05-25 2000-02-15 Kawasaki Steel Corp 鉄損特性および加工性に優れる電磁鋼線
JP2001115241A (ja) 1999-10-14 2001-04-24 Kawasaki Steel Corp 伸線加工性に優れた電磁鋼線用鋼材およびその製造方法
JP2001131718A (ja) 1999-11-08 2001-05-15 Kawasaki Steel Corp 高周波磁気特性および加工性に優れた電磁鋼線
JP2003213382A (ja) * 2001-11-26 2003-07-30 Usinor 強磁性部品に使用可能なイオウ含有フェライト系ステンレス鋼
KR20040057215A (ko) * 2002-12-26 2004-07-02 주식회사 포스코 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717959B2 (ja) * 1989-03-30 1995-03-01 新日本製鐵株式会社 一方向性高磁束密度電磁鋼板の製造方法
JP2878501B2 (ja) 1991-10-28 1999-04-05 新日本製鐵株式会社 磁気特性の優れた一方向性電磁鋼板の製造方法
RU2031188C1 (ru) * 1991-11-26 1995-03-20 Верх-Исетский металлургический завод Электротехническая сталь
JPH05230534A (ja) 1992-02-21 1993-09-07 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
KR960009170B1 (en) * 1992-07-02 1996-07-16 Nippon Steel Corp Grain oriented electrical steel sheet having high magnetic flux density and ultra iron loss and process for producing the same
JPH06145802A (ja) 1992-11-05 1994-05-27 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH07258738A (ja) * 1994-03-18 1995-10-09 Nippon Steel Corp 高磁束密度一方向性電磁鋼板の製造方法
RU2096516C1 (ru) * 1996-01-10 1997-11-20 Акционерное общество "Новолипецкий металлургический комбинат" Сталь кремнистая электротехническая и способ ее обработки
US6451128B1 (en) * 1997-06-27 2002-09-17 Pohang Iron & Steel Co., Ltd. Method for manufacturing high magnetic flux denshy grain oriented electrical steel sheet based on low temperature slab heating method
JP4268277B2 (ja) * 1999-07-29 2009-05-27 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
EP2107130B1 (en) 2000-08-08 2013-10-09 Nippon Steel & Sumitomo Metal Corporation Method to produce grain-oriented electrical steel sheet having high magnetic flux density
RU2180924C1 (ru) * 2001-08-06 2002-03-27 Цырлин Михаил Борисович Способ производства электротехнической текстурованной стали с ограниченной анизотропией, полоса, полученная этим способом, и изделие из нее
KR100900662B1 (ko) * 2002-11-11 2009-06-01 주식회사 포스코 침규확산용 분말도포제 및 이를 이용한 고규소 방향성전기강판 제조방법
JP4222111B2 (ja) * 2003-05-30 2009-02-12 Jfeスチール株式会社 被削性および低磁場磁気特性に優れた棒鋼又は線材およびその製造方法
JP2004363512A (ja) * 2003-06-09 2004-12-24 Jfe Steel Kk 加工性および高周波磁気特性に優れる電磁鋼線
JP4148035B2 (ja) * 2003-06-11 2008-09-10 Jfeスチール株式会社 被削性および低磁場磁気特性に優れた棒鋼・線材およびその製造方法
JP2005226118A (ja) 2004-02-12 2005-08-25 Toyota Motor Corp 電磁鋼板の窒化処理方法及び高硬度高磁気特性を有する電磁鋼板
RU2243282C1 (ru) * 2004-04-29 2004-12-27 Шатохин Игорь Михайлович Анизотропная электротехническая сталь и способ ее получения
CN101454465B (zh) * 2006-05-24 2011-01-19 新日本制铁株式会社 高磁通密度的方向性电磁钢板的制造方法
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
JP5361454B2 (ja) 2009-03-05 2013-12-04 株式会社神戸製鋼所 条鋼の熱間孔型圧延方法及び熱間孔型圧延設備

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045051A (ja) 1998-05-25 2000-02-15 Kawasaki Steel Corp 鉄損特性および加工性に優れる電磁鋼線
JP2001115241A (ja) 1999-10-14 2001-04-24 Kawasaki Steel Corp 伸線加工性に優れた電磁鋼線用鋼材およびその製造方法
JP2001131718A (ja) 1999-11-08 2001-05-15 Kawasaki Steel Corp 高周波磁気特性および加工性に優れた電磁鋼線
JP2003213382A (ja) * 2001-11-26 2003-07-30 Usinor 強磁性部品に使用可能なイオウ含有フェライト系ステンレス鋼
KR20040057215A (ko) * 2002-12-26 2004-07-02 주식회사 포스코 열연판 소둔 생략에 의한 방향성 전기강판의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2639326A4

Also Published As

Publication number Publication date
EP2639326B1 (en) 2018-09-26
KR20120050217A (ko) 2012-05-18
US9728332B2 (en) 2017-08-08
CN103201402B (zh) 2015-12-16
JP2013544320A (ja) 2013-12-12
EP2639326A1 (en) 2013-09-18
CN103201402A (zh) 2013-07-10
RU2538846C1 (ru) 2015-01-10
KR101262516B1 (ko) 2013-05-08
RU2013126473A (ru) 2014-12-20
EP2639326A4 (en) 2015-07-01
US20130189148A1 (en) 2013-07-25
JP5826284B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
TWI481724B (zh) Manufacturing method of non - directional electromagnetic steel sheet
JP4126479B2 (ja) 無方向性電磁鋼板の製造方法
KR100702875B1 (ko) 철손이 낮고 또 자속밀도가 높은 무방향성 전자강판 및 그제조방법
WO2013137092A1 (ja) 無方向性電磁鋼板の製造方法
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
KR101842417B1 (ko) (100) 집합조직으로 구성된 전기강판 및 그의 제조방법
KR20120086343A (ko) 고 자기유도를 가지는 무방향성 규소강의 제조 방법
CN111527218B (zh) 无取向电工钢板及其制造方法
KR102062184B1 (ko) 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
JP7350063B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2008127612A (ja) 分割コア用無方向性電磁鋼板
CN106661692A (zh) 磁特性优异的无取向性电磁钢板
JP2008127600A (ja) 分割コア用無方向性電磁鋼板
KR20150016434A (ko) 무방향성 전기강판 및 그 제조방법
KR101262516B1 (ko) 자기 특성이 우수한 선재, 강선 및 이들의 제조방법
JP7245325B2 (ja) 無方向性電磁鋼板およびその製造方法
KR101262463B1 (ko) 우수한 자기 특성을 갖는 신선재 및 그 제조방법
KR101632890B1 (ko) 무방향성 전기강판 및 그 제조방법
KR101262465B1 (ko) 자기 특성이 우수한 선재 및 그 제조방법
KR101262483B1 (ko) 자기 특성이 우수한 선재, 신선재 및 이들의 제조방법
KR101281246B1 (ko) 자기 특성이 우수한 선재 제조를 위한 인라인 장치 및 이를 이용한 선재 제조방법
JPH0753887B2 (ja) 磁気特性と成形性に優れた冷延鋼板の製造方法
KR20150075250A (ko) 무방향성 전기강판 및 그 제조방법
JP2001335898A (ja) 磁気特性に優れた電磁鋼板
JP2001140046A (ja) 高磁場特性に優れた無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824428

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011839832

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013538640

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013126473

Country of ref document: RU

Kind code of ref document: A