WO2012063791A1 - ピラゾリノン塩の製造方法 - Google Patents

ピラゾリノン塩の製造方法 Download PDF

Info

Publication number
WO2012063791A1
WO2012063791A1 PCT/JP2011/075648 JP2011075648W WO2012063791A1 WO 2012063791 A1 WO2012063791 A1 WO 2012063791A1 JP 2011075648 W JP2011075648 W JP 2011075648W WO 2012063791 A1 WO2012063791 A1 WO 2012063791A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
compound represented
mixture
Prior art date
Application number
PCT/JP2011/075648
Other languages
English (en)
French (fr)
Inventor
正哉 三浦
正夫 小塩
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020137014755A priority Critical patent/KR101867639B1/ko
Priority to CN201180053786.8A priority patent/CN103209965B/zh
Priority to AU2011327253A priority patent/AU2011327253B2/en
Priority to US13/881,199 priority patent/US8921574B2/en
Priority to BR112013011753-2A priority patent/BR112013011753B1/pt
Priority to EP11839486.5A priority patent/EP2639225A4/en
Publication of WO2012063791A1 publication Critical patent/WO2012063791A1/ja
Priority to ZA2013/02947A priority patent/ZA201302947B/en
Priority to IL225979A priority patent/IL225979A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D231/08Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with oxygen or sulfur atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/44Oxygen and nitrogen or sulfur and nitrogen atoms
    • C07D231/52Oxygen atom in position 3 and nitrogen atom in position 5, or vice versa

Definitions

  • This relates to a method for producing a pyrazolinone salt.
  • the present invention provides a method by which a pyrazolinone derivative can be produced with an excellent yield.
  • the present invention is as follows. ⁇ 1> Hydrocarbon solvent and the following formula A + OH ⁇ (In the formula, A + represents an alkali metal cation.)
  • Ar represents a phenyl group which may have a substituent
  • R 1 represents a hydrocarbon group which may have a substituent.
  • the manufacturing method of the salt represented by these. ⁇ 2> The production according to ⁇ 1>, wherein the second step is a step of reacting the mixture dehydrated in the first step and the compound represented by formula (2) while dehydrating. Method.
  • the amount of water contained in the reaction solution in the second step is adjusted to 0.8 wt% or less for the mixture dehydrated in the first step and the compound represented by formula (2) ⁇ 2>
  • the second step is a step of reacting the mixture dehydrated in the first step and the compound represented by the formula (2) with azeotropic dehydration under reduced pressure in a temperature range of 20 to 100 ° C. ⁇ 2> or ⁇ 3> the production method according to the above.
  • ⁇ 5> The production method according to any one of ⁇ 1> to ⁇ 4>, wherein the amount of water contained in the mixture dehydrated in the first step is 0.8% by weight or less.
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, wherein the first step is a step of performing azeotropic dehydration in a temperature range of 20 to 100 ° C. under reduced pressure.
  • ⁇ 7> The method according to any one of ⁇ 1> to ⁇ 6>, wherein the alkali metal hydroxide is lithium hydroxide.
  • ⁇ 8> The method according to any one of ⁇ 1> to ⁇ 7>, wherein the hydrocarbon solvent is an aromatic hydrocarbon solvent.
  • the second step is a step of reacting the mixture dehydrated in the first step and the compound represented by the formula (2) in the presence of an ether solvent ⁇ 1> ⁇
  • the production method according to any one of ⁇ 8>.
  • ⁇ 10> Hydrocarbon solvent and the following formula A + OH ⁇ (In the formula, A + represents an alkali metal cation.)
  • a second step of reacting the compound represented by formula; and the product obtained in the second step, and the formula (3) R 2 —O—SO 2 R 3 (3) (In the formula, R 2 represents a hydrocarbon group which may have a substituent, and R 3 represents a phenyl group which may have a substituent or an alkyl group having 1 to 10 carbon atoms.)
  • a method for producing a pyrazolinone derivative represented by the formula hereinafter sometimes referred to as derivative (1)).
  • the manufacturing method of salt (4) consists of a 1st process and a 2nd process.
  • the first step is a hydrocarbon solvent and the following formula A + OH ⁇ (In the formula, A + represents an alkali metal cation.)
  • a + represents an alkali metal cation.
  • hydrocarbon solvent used in the first step examples include aliphatic hydrocarbons such as normal pentane, normal hexane, and normal heptane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, and benzene, toluene, xylene, chlorobenzene, and the like. Aromatic hydrocarbons are mentioned.
  • the hydrocarbon solvent used in the first step is preferably an aromatic hydrocarbon, more preferably, for example, toluene and xylene.
  • the amount of the hydrocarbon solvent used in the first step is usually in the range of 0.1 to 1000 parts by weight, preferably 1 to 50 parts by weight with respect to 1 part by weight of the alkali metal hydroxide.
  • the first step may be performed in the presence of an ether solvent in addition to the hydrocarbon solvent.
  • the ether solvent that can be used in the first step include 5 to 20 ring constituent atoms such as dialkyl ether having 2 to 20 carbon atoms such as diethyl ether, tetrahydrofuran, 1,3-dioxane, 1,4-dioxane and the like.
  • examples thereof include cyclic ethers of ⁇ 12, and (poly) alkylene glycol dialkyl ethers of 4 to 12 carbon atoms such as diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and dipropylene glycol dimethyl ether.
  • the ether solvent that can be used in the first step is preferably a cyclic ether having 5 to 12 ring atoms, and more preferably tetrahydrofuran.
  • the amount of the ether solvent used is usually 1 part by weight or less, preferably 0.25 part by weight or less with respect to 1 part by weight of the hydrocarbon solvent.
  • the alkali metal hydroxide used in the first step include lithium hydroxide, sodium hydroxide, and potassium hydroxide.
  • the alkali metal hydroxide used in the first step is preferably lithium hydroxide.
  • the alkali metal hydroxide may be an aqueous solution or a hydrate.
  • the water contained in the hydrocarbon solvent, the water contained in the alkali metal hydroxide (including hydrate water) and the water adhering to the reaction tank used for the dehydration treatment in the first step are dehydrated in the first step. It is processed.
  • the amount of water contained in the mixture after completion of the first step (hereinafter sometimes referred to as the mixture [1]) is preferably 0.8% by weight or less, and more preferably 0.5% by weight or less. .
  • the first step will be specifically described.
  • method B A method of refluxing (hereinafter sometimes referred to as method B) can be mentioned.
  • method B it is preferably carried out under reduced pressure in order to recirculate within the above temperature range.
  • the content of the hydrocarbon solvent contained in the mixture of the alkali metal hydroxide and the hydrocarbon solvent-containing solution obtained in the first step is usually 0.1 to 1000 weights per 1 part by weight of the alkali metal hydroxide. Parts, preferably 1 to 50 parts by weight.
  • the treatment time of the first step is not particularly limited as long as the water content is adjusted to 0.8% by weight or less.
  • the treatment time for the first step is usually in the range of 1 to 24 hours. From the viewpoint of the yield of the salt (4) and the derivative (1), the reaction solution in the first step does not contain the compound (2). That the compound (2) is not contained in the reaction solution in the first step means that the compound (2) contained in the reaction solution in the first step is 100 parts by weight of the compound (2) used in the second step described later.
  • the second step includes the mixture dehydrated in the first step, and the formula (2) (In the formula, Ar represents a phenyl group which may have a substituent, and R 1 represents a hydrocarbon group which may have a substituent. —CH 2 — contained in the hydrocarbon group represents (It may be replaced by a heteroatom or a carbonyl group.) In which the compound (2) is reacted.
  • Ar in the compound (2) is represented by the formula (5)
  • the phenyl group which may have substituents, such as a phenyl group represented by these, is represented.
  • R 4 to R 8 in formula (5) are each independently a hydrogen atom, a halogen atom, an alkyl group, a haloalkyl group, an alkoxy group, an alkoxyalkyl group, a haloalkoxy group, an alkylthio group, a haloalkylthio group, a cyano group, a nitro group, Group, a phenyl group which may have a substituent or a phenoxy group which may have a substituent, or two adjacent groups out of R 4 to R 8 are bonded to each other at the end, and —CH ⁇ A group represented by CH—CH ⁇ CH—, a methylenedioxy group optionally having a halogen atom, or an alkylene group optionally having an alkyl group is represented.
  • the methylene group (—CH 2 —) contained in the alkylene group may be replaced with an oxygen atom (—O—).
  • examples of the halogen atom represented by R 4 to R 8 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • examples of the alkyl group represented by R 4 to R 8 include linear or branched alkyl groups having 1 to 5 carbon atoms (hereinafter sometimes referred to as C1 to C5). Examples thereof include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, and a t-butyl group.
  • the haloalkyl group means a group in which part or all of the hydrogen atoms of the alkyl group are replaced with halogen atoms.
  • Examples of the haloalkyl group represented by R 4 to R 8 include a linear or branched C1-C5 alkyl group having 1 to 11 halogen atoms in the haloalkyl group, specifically, Examples thereof include a trifluoromethyl group, a tetrafluoroethyl group, and a heptafluoropropyl group.
  • Examples of the alkoxy group represented by R 4 to R 8 include a linear or branched C1-C5 alkoxy group, and specifically include, for example, a methoxy group, an ethoxy group, a normal propyloxy group, And isopropyloxy group.
  • Examples of the alkoxyalkoxy group represented by R 4 to R 8 include a linear or branched (C1 to C3) alkoxy (C1 to C3) alkoxy group. Specifically, for example, a methoxymethoxy group Can be given.
  • Examples of the haloalkoxy group represented by R 4 to R 8 include linear or branched C1-C5 alkoxy groups substituted with the same or different 1 to 11 halogen atoms.
  • Examples thereof include a trifluoromethoxy group, a difluoromethoxy group, and a tetrafluoroethoxy group.
  • Examples of the alkylthio group represented by R 4 to R 8 include a linear or branched C1-C5 alkylthio group, and specific examples include a methylthio group and an ethylthio group.
  • Examples of the haloalkylthio group represented by R 4 to R 8 include linear or branched C1-C5 alkylthio groups substituted with the same or different 1 to 11 halogen atoms. Examples include trifluoromethylthio group.
  • the phenyl group which may have a substituent represented by R 4 to R 8 means a phenyl group which may have 1 to 5 substituents which are the same or different.
  • the phenoxy group which may have a substituent represented by R 4 to R 8 means a phenoxy group which may have 1 to 5 identical or different substituents.
  • Examples of the substituent of the phenyl group or phenoxy group include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a C1-C5 alkyl group (for example, a methyl group and an ethyl group), and a C1-C5 alkoxy group.
  • C1-C5 alkylthio group for example, methylthio group and ethylthio group
  • C1-C5 haloalkyl group for example, C1-C2 haloalkyl group such as trifluoromethyl group
  • C1-C5 A haloalkoxy group for example, a C1-C2 haloalkoxy group such as a trifluoromethoxy group and a difluoromethoxy group
  • a C1-C5 haloalkylthio group for example, a C1-C2 haloalkylthio group such as a trifluoromethylthio group
  • a cyano group for example, methoxy group and ethoxy group
  • C1-C5 alkylthio group for example, methylthio group and ethylthio group
  • C1-C5 haloalkyl group for example, C1-C2 haloalkyl group such as trifluoromethyl
  • Examples of the methylenedioxy group optionally having a halogen atom represented by R 4 to R 8 include a methylenedioxy group and a difluoromethylenedioxy group.
  • Examples of the alkylene group (for example, C2-C6 alkylene group) optionally having an alkyl group represented by R 4 to R 8 include a trimethylene group and a tetramethylene group Is mentioned.
  • Examples of the alkylene group in which the methylene group contained in the alkylene group is replaced by an oxygen atom include a group represented by —OCH 2 CH 2 Cl and a group represented by —OCH 2 CH (CH 3 ) Cl.
  • Ar preferably includes a phenyl group, an o-tolyl group, a 2,6-dimethylphenyl group, a 2-chlorophenyl group, a 2,6-dichlorophenyl group, and the like.
  • the hydrocarbon group which may have a substituent represented by R 1 include a linear or branched C1-C10 alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, Butyl group, isobutyl group, secondary-butyl group, 2-methylbutyl group, 2-ethylpropyl group, and t-butyl group); A linear or branched C2-C10 alkenyl group (eg, 1-methyl-2-propenyl group); A linear or branched C2-C10 alkynyl group (eg, 1-methyl-2-propynyl group); A linear or branched C1-C10 alkyl group substituted with 1
  • a C7 to C17 aralkyl group for example, benzyl group, ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, etc.
  • the group include a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a C1-C5 alkyl group (for example, a methyl group and an ethyl group), a C1-C5 alkoxy group (for example, a methoxy group, And ethoxy group), C1-C5 alkylthio group (for example, methylthio group and ethylthio group), C1-C5 haloalkyl group (for example, C1-C2 haloalkyl group such as trifluoromethyl group), C1-C5 haloalkoxy group (for example, A C
  • a halogen atom a fluorine atom, a chlorine
  • Examples of the compound (2) include the compounds described in Table 1.
  • the compound (2) is dissolved in, for example, a hydrocarbon solvent and / or an ether solvent, preferably a mixed solvent of a hydrocarbon solvent and an ether solvent, and added to the mixture [1].
  • Examples of the hydrocarbon solvent and the ether solvent used in this case are the same as those described above.
  • the second step is preferably performed in the presence of a mixed solvent of a hydrocarbon solvent and an ether solvent, and more preferably performed in the presence of a mixed solvent of a hydrocarbon solvent and tetrahydrofuran.
  • the weight ratio of the hydrocarbon solvent and the ether solvent is usually in the range of 1 to 5 parts by weight of the hydrocarbon solvent per 1 part by weight of the ether solvent. It is.
  • the amount of the hydrocarbon solvent used in the second step is usually in the range of 0.1 to 1000 parts by weight, preferably in the range of 1 to 10 parts by weight with respect to 1 part by weight of the compound (2). Since water is generated by the reaction between the compound (2) and the alkali metal hydroxide, the second step is preferably performed while dehydrating.
  • the reaction solution in the second step is adjusted to 0.8% by weight or less, preferably 0.5% by weight or less by dehydration. It is preferable. Further, in the second step, the water content of the reaction solution in the second step is 0.8 wt% or less, preferably 0.5 wt% by gradually mixing the mixture [1] and the compound (2).
  • the reaction time in the second step is not particularly limited as long as the water content of the mixture [1] is adjusted to 0.8% by weight or less, preferably 0.5% by weight or less.
  • the reaction time in the second step is usually in the range of 1 to 18 hours.
  • the second step will be specifically described.
  • ⁇ 2-I> a method of mixing the compound (2) with the mixture [1] while dehydrating the hydrocarbon solvent under reflux
  • ⁇ 2-II> refluxing the hydrocarbon solvent ⁇ 2-III> mixing the mixture [1] into the solution containing the compound (2) while dehydrating the hydrocarbon solvent at reflux
  • the second step of the present invention is preferably carried out by the method ⁇ 2-I>.
  • the formula (4) (In the formula, A + , Ar and R 1 each have the same meaning as described above.)
  • a solution containing a salt represented by the formula (hereinafter sometimes referred to as salt (4)) is obtained.
  • a salt in which R 1 of compound (2) is rearranged to the nitrogen atom at the ⁇ -position of the carbonyl group that is, the formula (4 ′) (Wherein A + , Ar and R 1 have the same meaning as described above.)
  • the solution containing the salt (4) is not limited to the salt having the structure represented by the formula (4), but the formula (4 ′′) (Wherein A + , Ar and R 1 have the same meaning as described above.) It is considered that there is a salt having a structure represented by the formula (i.e., a tautomer of the salt (4)), but as described above, water is mixed into the solution obtained by performing the first step and the second step.
  • the compound (2) can be obtained with good yield, and when the third step described later is performed on the solution, the derivative (1) can be produced with good yield.
  • formula (3) R 2 —O—SO 2 R 3 (3) (In the formula, R 2 represents a hydrocarbon group which may have a substituent, and R 3 represents a phenyl group which may have a substituent or an alkyl group having 1 to 10 carbon atoms.)
  • the formula (1) (In the formula, Ar, R 1 and R 2 have the same meaning as described above.)
  • Examples of the hydrocarbon group which may have a substituent represented by R 2 in the compound (3) include a linear or branched C1-C10 alkyl group (for example, ethyl group, propyl group, isopropyl group).
  • Examples of the C1-C10 alkyl group represented by R 3 include a methyl group, an ethyl group, a normal propyl group, an isopropyl group, and a t-butyl group.
  • Examples of the phenyl group optionally having a substituent represented by R 3 include a phenyl group, a 2-methylphenyl group, a 3-methylphenyl group, a 4-methylphenyl group, a 2-methoxyphenyl group, and a 3-methoxy group.
  • Examples of the compound (3) include the compounds described in Table 2.
  • the mixing ratio of the salt (4) and the compound (3) is, for example, 0.9 to 1.5 with respect to 1 mol of the compound (2) used for the preparation of the salt (4). The range of moles.
  • the reaction temperature in the third step is usually in the range of 40 ° C to 120 ° C, preferably in the range of 60 ° C to 100 ° C.
  • a solution containing salt (4) and a solution containing compound (3) in parallel; and ⁇ 3-III> a solution containing salt (4) is mixed with a solution containing compound (3).
  • a method is mentioned.
  • the third step is preferably performed by the method ⁇ 3-II>.
  • the progress of the reaction in the third step is preferably carried out by confirming the consumption amount of the compound (3) by means such as gas chromatography and high performance liquid chromatography and reacting until the compound (3) is not consumed.
  • the reaction time in the third step is usually in the range of 5 minutes to 72 hours.
  • no water is generated by the reaction, but it is preferable not to add water to the reaction system in the third step.
  • the amount of water contained in the reaction solution in the third step is 0.8% by weight or less, preferably 0.5% by weight or less, more preferably 0.3% by weight or less.
  • Examples of the derivative (1) include compounds shown in Table 3. According to the present invention, derivative (1) can be obtained with an excellent yield.
  • the derivative (1) can be obtained in a high yield without replacing the hydrocarbon solvent with the ether solvent.
  • the solution containing the derivative (1) obtained in the third step and the hydrocarbon solvent can obtain the derivative (1) by a method such as concentration of the hydrocarbon solvent under reduced pressure.
  • the obtained derivative (1) may be purified by recrystallization, chromatography or the like.
  • Example 1 The first step was performed using the apparatus (10) of FIG. First, FIG. 1 will be described.
  • the reaction vessel (1) is provided with a jacket so that it can be heated.
  • a condenser (3) is connected to the reaction tank (1) via a pipe (2), and a separator (9) is connected to the condenser (3) via a pipe (4).
  • the upper layer (6) of the separator (9) and the reaction vessel (1) are connected via a pipe (5).
  • reaction vessel (1 ′′) 273 parts by weight of the solution [2] obtained in the second step (84 parts by weight as 5-amino-3-oxo-4-O-tolyl-2,3-dihydropyrazole-1-thiocarboxylic acid S-allyl ester) ) And a xylene solution containing 51.9 parts by weight of isopropyl methanesulfonate were added dropwise over 1.5 hours, and the mixture was further refluxed at the same temperature for 20 hours.
  • the present invention is industrially applicable as a method for producing the derivative (1) with an excellent yield.
  • Reaction tank (2) Pipe from reaction tank (1) to condenser (3) (3) Condenser (4) Pipe from condenser (3) to separator (9) (5) Separator ( 9) Pipe (6) from the upper layer (6) to the reaction vessel (1) (6) Upper layer of the separator (9), in the example, xylene layer (7) Lower layer of the separator (9), in the example, an aqueous layer (8 ) Pipe for charging to reaction tank (1) (9) Separator (10) Reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

 炭化水素溶媒、及び、式 A+OH- で表されるアルカリ金属水酸化物を含む混合物を脱水処理する第1工程、並びに、 第1工程で脱水処理された混合物、及び、式(2)で表される化合物を反応させる第2工程を経て製造される、式(4)で表される塩は、植物病害防除剤の有効成分を製造するために有用である。

Description

ピラゾリノン塩の製造方法
 ピラゾリノン塩の製造方法に関する。
 US6294567にはある種のピラゾリノン化合物が植物病害防除剤の有効成分として有用であることが知られている。
 また、US5869684には式(1A)
Figure JPOXMLDOC01-appb-I000005
で表わされる化合物の製造方法が記載されている。
 本発明は、ピラゾリノン誘導体を優れた収率で製造できる方法を提供する。
 本発明は、以下の通りである。
<1> 炭化水素溶媒、及び、下記式
 AOH
(式中、Aはアルカリ金属カチオンを表す。)
で表されるアルカリ金属水酸化物を含む混合物(但し、下記式(2)で表される化合物を含まない。)を脱水処理する第1工程、
並びに、
 第1工程で脱水処理された混合物、及び、式(2)
Figure JPOXMLDOC01-appb-I000006
(式中、Arは置換基を有していてもよいフェニル基を表わし、Rは置換基を有していてもよい炭化水素基を表わす。該炭化水素基に含まれる−CH−はヘテロ原子またはカルボニル基に置き換わっていてもよい。)
で表される化合物(以下、化合物(2)と記すことがある)を反応させる第2工程
を含むことを特徴とする、式(4)
Figure JPOXMLDOC01-appb-I000007
(式中、A、Ar及びRはそれぞれ前記と同じ意味を表わす。)
で表される塩の製造方法。
<2> 第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、脱水しながら反応させる工程であることを特徴とする<1>記載の製造方法。
<3> 第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、第2工程の反応液に含まれる水量を0.8重量%以下に調整しながら反応させる工程であることを特徴とする<2>記載の製造方法。
<4> 第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、減圧下、20~100℃の温度範囲で共沸脱水しながら反応させる工程であることを特徴とする<2>又は<3>記載の製造方法。
<5> 第1工程で脱水処理された混合物に含まれる水量が0.8重量%以下であることを特徴とする<1>~<4>のいずれか1項記載の製造方法。
<6> 第1工程が、減圧下、20~100℃の温度範囲で共沸脱水する工程であることを特徴とする<1>~<5>のいずれか1項記載の製造方法。
<7> アルカリ金属水酸化物が水酸化リチウムであることを特徴とする<1>~<6>のいずれか1項記載の製造方法。
<8> 炭化水素溶媒が芳香族炭化水素溶媒であることを特徴とする<1>~<7>のいずれか1項記載の製造方法。
<9> 第2工程が、エーテル溶媒の存在下で、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を反応させる工程であることを特徴とする<1>~<8>のいずれか記載の製造方法。
<10> 炭化水素溶媒、及び、下記式
 AOH
(式中、Aはアルカリ金属カチオンを表す。)
で表されるアルカリ金属水酸化物を含む混合物(但し、下記式(2)で表される化合物を含まない。)を脱水処理する第1工程;
 第1工程で脱水処理された混合物、及び、式(2)
Figure JPOXMLDOC01-appb-I000008
(式中、Arは置換基を有していてもよいフェニル基を表わし、Rは置換基を有していてもよい炭化水素基を表わす。該炭化水素基に含まれる−CH−はヘテロ原子またはカルボニル基に置き換わっていてもよい。)
で表される化合物を反応させる第2工程;及び
第2工程で得られる生成物と、式(3)
 R−O−SO  (3)
(式中、Rは置換基を有していてもよい炭化水素基を表わし、Rは置換基を有していてもよいフェニル基又は炭素数1~10のアルキル基を表わす。)
で表される化合物とを反応させる第3工程を含むことを特徴とする式(1)
Figure JPOXMLDOC01-appb-I000009
(式中、Ar、R及びRはそれぞれ前記と同じ意味を表わす。)
で表わされるピラゾリノン誘導体(以下、誘導体(1)と記すことがある)の製造方法。
第1工程及び第2工程に用いる反応装置の一例
 式(4)で表される塩(以下、塩(4)と記すことがある)の製造方法について説明する。
 塩(4)の製造方法は、第1工程及び第2工程からなる。
 第1工程は、炭化水素溶媒、及び、下記式
 AOH
(式中、Aはアルカリ金属カチオンを表す。)
で表されるアルカリ金属水酸化物を含む混合物(但し、下記式(2)で表される化合物を含まない。)を脱水処理する工程である。
 第1工程に用いられる炭化水素溶媒としては、例えばノルマルペンタン、ノルマルヘキサン、ノルマルヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の脂環式炭化水素、及びベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族炭化水素が挙げられる。第1工程に用いられる炭化水素溶媒としては、好ましくは、芳香族炭化水素が挙げられ、より好ましくは、例えばトルエン及びキシレンが挙げられる。
 第1工程における炭化水素溶媒の使用量は、アルカリ金属水酸化物1重量部に対し、通常0.1~1000重量部、好ましくは1~50重量部の範囲である。
 第1工程は、炭化水素溶媒に加えてエーテル溶媒の存在下で行ってもよい。
 第1工程に用いることができるエーテル溶媒としては、例えば、ジエチルエーテルなどの炭素数2~20のジアルキルエーテル、テトラヒドロフラン、1,3−ジオキサン、1,4−ジオキサン等などの環構成原子数が5~12の環状エーテル、及びジエチレングルコールジメチルエーテル、ジエチレングルコールジエチルエーテル、ジプロピレングリコールジメチルエーテル等の炭素数4~12の(ポリ)アルキレングリコールジアルキルエーテルが挙げられる。第1工程に用いることができるエーテル溶媒としては、好ましくは環構成原子数が5~12の環状エーテルが挙げられ、より好ましくはテトラヒドロフランが挙げられる。
 第1工程にエーテル溶媒を使用する場合、エーテル溶媒の使用量は、炭化水素溶媒1重量部に対し、通常1重量部以下、好ましくは0.25重量部以下である。
 第1工程に用いられるアルカリ金属水酸化物としては、例えば、水酸化リチウム、水酸化ナトリウム、及び水酸化カリウムが挙げられる。第1工程に用いられるアルカリ金属水酸化物としては、好ましくは、水酸化リチウムが挙げられる。アルカリ金属水酸化物は、水溶液でもよく、水和物であってもよい。
 炭化水素溶媒が含有する水分、アルカリ金属水酸化物が含有する水分(水和物の水分も含む)及び第1工程の脱水処理に用いられる反応槽などに付着した水分は、第1工程によって脱水処理される。第1工程終了後の混合物(以下、混合物[1]と記すことがある)に含まれる水量は、0.8重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。
 第1工程を具体的に説明すると、例えば、アルカリ金属水酸化物及び炭化水素溶媒を含む混合液が存在する反応槽から水を含む炭化水素溶媒を、常圧下または減圧下で、20℃~100℃の温度範囲内、好ましくは40℃~80℃の温度範囲内で留去し、別途、含水量0.8重量%以下、好ましくは0.5重量%以下に調整された炭化水素溶媒を混合させる方法(以下、A法と記すことがある)、及び該反応槽から前記と同様にして留去された炭化水素溶媒を分液して、水分が低減された炭化水素溶媒を該反応槽に還流させる方法(以下、B法と記すことがある)が挙げられる。第1工程をB法で行う場合、上記温度範囲内で還流させるためには、減圧下で行うことが好ましい。
 第1工程で得られる、アルカリ金属水酸化物と炭化水素溶媒含有溶液との混合物に含まれる炭化水素溶媒の含有量は、アルカリ金属水酸化物1重量部に対し、通常0.1~1000重量部、好ましくは1~50重量部である。
 第1工程の処理時間は、含水量が0.8重量%以下に調整されるまでであれば、特に制限されない。第1工程の処理時間は通常1~24時間の範囲である。
 塩(4)及び誘導体(1)の収率の観点から、第1工程の反応溶液には、化合物(2)を含まれない。第1工程の反応溶液に化合物(2)を含まれないとは、後述する第2工程に用いられる化合物(2)100重量部に対して、第1工程の反応溶液に含まれる化合物(2)の含有量が、5重量部以下、好ましくは1重量部以下、より好ましくは0.1重量部以下であることを意味する。
 第2工程は、第1工程で脱水処理された混合物、及び、式(2)
Figure JPOXMLDOC01-appb-I000010
(式中、Arは置換基を有していてもよいフェニル基を表わし、Rは置換基を有していてもよい炭化水素基を表わす。該炭化水素基に含まれる−CH−はヘテロ原子またはカルボニル基に置き換わっていてもよい。)
で表される化合物、すなわち、化合物(2)を反応させる工程である。
 化合物(2)におけるArは、式(5)
Figure JPOXMLDOC01-appb-I000011
で表わされるフェニル基などの置換基を有していてもよいフェニル基を表わす。
 式(5)におけるR~Rは、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、ハロアルキル基、アルコキシ基、アルコキシアルキル基、ハロアルコキシ基、アルキルチオ基、ハロアルキルチオ基、シアノ基、ニトロ基、置換基を有していてもよいフェニル基または置換基を有していてもよいフェノキシ基を表すか、あるいは、R~Rのうち隣接する2つが末端で結合して−CH=CH−CH=CH−で示される基、ハロゲン原子を有していてもよいメチレンジオキシ基、または、アルキル基を有していてもよいアルキレン基を表す。該アルキレン基に含まれるメチレン基(−CH−)は酸素原子(−O−)に置き換えられていてもよい。
 ここで、R~Rで表わされるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子があげられる。
~Rで表わされるアルキル基としては、例えば直鎖状もしくは分枝鎖状の炭素数1~5(以下、C1~C5と記すことがある)のアルキル基が挙げられ、具体的には、例えばメチル基、エチル基、ノルマルプロピル基、イソプロピル基、及びt−ブチル基があげられる。ハロアルキル基とは、前記アルキル基の水素原子の一部又は全部がハロゲン原子に置き換えられた基を意味する。R~Rで表わされるハロアルキル基としては、例えばハロアルキル基中に1~11個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基が挙げられ、具体的には、例えばトリフルオロメチル基、テトラフルオロエチル基、及びヘプタフルオロプロピル基があげられる。
 R~Rで表わされるアルコキシ基としては、例えば直鎖状もしくは分枝鎖状のC1~C5のアルコキシ基が挙げられ、具体的には、例えばメトキシ基、エトキシ基、ノルマルプロピルオキシ基、及びイソプロピルオキシ基があげられる。R~Rで表わされるアルコキシアルコキシ基としては、例えば直鎖状もしくは分枝鎖状の(C1~C3)アルコキシ(C1~C3)アルコキシ基が挙げられ、具体的には、例えばメトキシメトキシ基があげられる。R~Rで表わされるハロアルコキシ基としては、例えば同一もしくは相異なる1~11個のハロゲン原子で置換された直鎖状もしくは分枝鎖状のC1~C5アルコキシ基が挙げられ、具体的には、例えばトリフルオロメトキシ基、ジフルオロメトキシ基、及びテトラフルオロエトキシ基があげられる。
 R~Rで表わされるアルキルチオ基としては、例えば直鎖状もしくは分枝鎖状のC1~C5アルキルチオ基が挙げられ、具体的には、例えばメチルチオ基、エチルチオ基があげられる。R~Rで表わされるハロアルキルチオ基としては、例えば同一もしくは相異なる1~11個のハロゲン原子で置換された直鎖状もしくは分枝鎖状のC1~C5アルキルチオ基が挙げられ、具体的には、例えばトリフルオロメチルチオ基があげられる。
 R~Rで表わされる置換基を有していてもよいフェニル基とは、同一もしくは相異なる置換基を1~5個有していてもよいフェニル基を意味する。R~Rで表わされる置換基を有していてもよいフェノキシ基とは、同一もしくは相異なる置換基を1~5個有していてもよいフェノキシ基を意味しする。フェニル基又はフェノキシ基の置換基としては、例えばハロゲン原子(フッ素原子、塩素原子、臭素原子、及びヨウ素原子)、C1~C5アルキル基(例えば、メチル基、及びエチル基)、C1~C5アルコキシ基(例えば、メトキシ基、及びエトキシ基)、C1~C5アルキルチオ基(例えば、メチルチオ基、及びエチルチオ基)、C1~C5ハロアルキル基(例えばトリフルオロメチル基等のC1~C2ハロアルキル基)、C1~C5ハロアルコキシ基(例えばトリフルオロメトキシ基、ジフルオロメトキシ基等のC1~C2ハロアルコキシ基)、C1~C5ハロアルキルチオ基(例えばトリフルオロメチルチオ基等のC1~C2ハロアルキルチオ基)、シアノ基が挙げられる。
 R~Rで表わされるハロゲン原子を有していてもよいメチレンジオキシ基としては、例えばメチレンジオキシ基、及びジフルオロメチレンジオキシ基が挙げられる。
 R~Rで表わされるアルキル基(例えばメチル基等のC1~C4アルキル基)を有していてもよいアルキレン基(例えばC2~C6アルキレン基)としては、例えばトリメチレン基、及びテトラメチレン基が挙げられる。アルキレン基に含まれるメチレン基が酸素原子に置き換えられたアルキレン基としては、例えば、−OCHCHClで示される基、及び−OCHCH(CH)Clで示される基が挙げられる。
 Arとしては、好ましくは、フェニル基、o−トリル基、2,6−ジメチルフェニル基、2−クロロフェニル基、2,6−ジクロロフェニル基等があげられる。
 Rで示される置換基を有していてもよい炭化水素基としては、例えば直鎖状もしくは分枝鎖状のC1~C10アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、セカンダリ−ブチル基、2−メチルブチル基、2−エチルプロピル基、及びt−ブチル基);
直鎖状もしくは分枝鎖状のC2~C10アルケニル基(例えば、1−メチル−2−プロペニル基);
直鎖状もしくは分枝鎖状のC2~C10アルキニル基(例えば、1−メチル−2−プロピニル基);
同一もしくは相異なる1~21個のハロゲン原子で置換された直鎖状もしくは分枝鎖状のC1~C10アルキル基;
同一もしくは相異なる1~19個のハロゲン原子で置換された直鎖状もしくは分枝鎖状のC2~C10アルケニル基;
同一もしくは相異なる1~17個のハロゲン原子で置換された直鎖状もしくは分枝鎖状のC2~C10アルキニル基;
直鎖状もしくは分枝鎖状のC1~C5アルコキシを有するC1~C5アルキル基(例えば、メトキシメチル基、及び1−メトキシエチル基);
直鎖状もしくは分枝鎖状のC1~C5アルキルチオ基を有するC1~C5アルキル基(例えば、メチルチオメチル基、及び1−メチルチオエチル基);
同一もしくは相異なる1~11個のハロゲン原子を有するC1~C5アルコキシ基を有し、且つ同一もしくは相異なる1~10個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基;
同一もしくは相異なる1~11個のハロゲン原子を有するC1~C5アルキルチオ基を有し、且つ同一もしくは相異なる1~10個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基;
シアノ基を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基(例えば、1−シアノエチル基);
C1~C5アルコキシカルボニル基を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基(例えば、1−(メトキシカルボニル)エチル基);
ハロゲン原子を有していてもよく、不飽和結合を含んでもよい、C3~C8シクロアルキル基(例えば、シクロヘキシル基、及びシクロペンチル基);
C2~C6アルキルカルボニル基(例えば、アセチル基、プロパノイル基、ブタノイル基、及びペンタノイル基);
C3~C6アルケニルカルボニル基(例えば、3−ブテノイル基);
C2~C6アルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基、及びプロピルオキシカルボニル基);
C3~C6アルケニルオキシカルボニル基(例えば、アリルオキシカルボニル基);
C2~C6アルキルチオカルボニル基(例えば、メチルチオカルボニル基、エチルチオカルボニル基、及びプロピルチオカルボニル基);
C3~C6アルケニルチオカルボニル基(例えば、アリルチオカルボニル基);
同一もしくは相異なる置換基を1~5個有していてもよいフェニル基{該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及びヨウ素原子)、C1~C5アルキル基(例えば、メチル基、及びエチル基)、C1~C5アルコキシ基(例えば、メトキシ基、及びエトキシ基)、C1~C5アルキルチオ基(例えば、メチルチオ基、及びエチルチオ基)、C1~C5ハロアルキル基(例えば、トリフルオロメチル基等のC1~C2ハロアルキル基)、C1~C5ハロアルコキシ基(例えば、トリフルオロメトキシ基、ジフルオロメトキシ基等のC1~C2ハロアルコキシ基)、C1~C5ハロアルキルチオ基(例えば、トリフルオロメチルチオ基等のC1~C2ハロアルキルチオ基)、シアノ基等があげられる。};及び
同一もしくは相異なる置換基を1~5個有していてもよいC7~C17アラルキル基(例えば、ベンジル基、α−メチルベンジル基、及びα,α−ジメチルベンジル基等){該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及びヨウ素原子)、C1~C5アルキル基(例えば、メチル基、及びエチル基)、C1~C5アルコキシ基(例えば、メトキシ基、及びエトキシ基)、C1~C5アルキルチオ基(例えば、メチルチオ基、及びエチルチオ基)、C1~C5ハロアルキル基(例えばトリフルオロメチル基等のC1~C2ハロアルキル基)、C1~C5ハロアルコキシ基(例えば、トリフルオロメトキシ基、ジフルオロメトキシ基等のC1~C2ハロアルコキシ基)、C1~C5ハロアルキルチオ基(例えば、トリフルオロメチルチオ基等のC1~C2ハロアルキルチオ基)、及びシアノ基があげられる。}があげられる。
 化合物(2)としては、例えば表1記載の化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000012
 化合物(2)は、例えば炭化水素溶媒及び/又はエーテル溶媒、好ましくは炭化水素溶媒及びエーテル溶媒の混合溶媒に溶解して混合物[1]に加えられる。この場合に用いられる、炭化水素溶媒及びエーテル溶媒としては、それぞれ前記と同じものが例示される。
 第2工程は、炭化水素溶媒とエーテル溶媒との混合溶媒の存在下で行うことが好ましく、炭化水素溶媒とテトラヒドロフランとの混合溶媒の存在下で行うことがより好ましい。
 第2工程が炭化水素溶媒及びエーテル溶媒の混合溶媒の存在下で行われる場合炭化水素溶媒及びエーテル溶媒の重量比は、エーテル溶媒1重量部に対し、通常炭化水素溶媒1~5重量部の範囲である。第2工程における炭化水素溶媒の使用量は、化合物(2)1重量部に対し、通常、0.1~1000重量部の範囲、好ましくは、1~10重量部の範囲である。
 化合物(2)及びアルカリ金属水酸化物が反応することにより水分が生じることから、第2工程は、脱水しながら反応させることが好ましい。具体的には、減圧下、20~100℃、好ましくは40~80℃の温度範囲で化合物(2)及び混合物[1]を混合させる方法が挙げられる。
 塩(4)及び誘導体(1)の収率の観点から、第2工程の反応液は、脱水することにより、0.8重量%以下、好ましくは、0.5重量%以下に調整されていることが好ましい。
 また、第2工程において、混合物[1]と化合物(2)とを徐々に混合することにより、第2工程の反応液の含水量を0.8重量%以下、好ましくは、0.5重量%以下に容易に調整できる。
 第2工程の反応時間は、混合物[1]の含水量を0.8重量%以下、好ましくは、0.5重量%以下に調整する限り、特に制限されない。第2工程の反応時間は通常1~18時間の範囲である。
 第2工程を具体的に説明すると、例えば、<2−I>炭化水素溶媒を還流脱水させながら、混合物[1]に化合物(2)を混合させる方法;<2−II>炭化水素溶媒を還流脱水させながら、混合物[1]および化合物(2)を並行して混合する方法;及び<2−III>炭化水素溶媒を還流脱水させながら、化合物(2)を含む溶液に混合物[1]を混合させる方法が挙げられる。本発明の第2工程は、好ましくは<2−I>の方法で行われる。
 本発明の第1工程及び第2工程を行うと、式(4)
Figure JPOXMLDOC01-appb-I000013
(式中、A、Ar及びRはそれぞれ前記と同じ意味を表わす。)
で表される塩(以下、塩(4)と記すことがある)を含む溶液が得られる。
 本発明によれば、化合物(2)のRがカルボニル基のα位の窒素原子に転位した塩、すなわち、式(4’)
Figure JPOXMLDOC01-appb-I000014
(式中、A、Ar及びRは前記と同じ意味を表わす。)
で表される塩)の生成が抑制される。
 また、塩(4)を含む溶液には、式(4)で表される構造を有する塩のみにとどまらず、式(4”)
Figure JPOXMLDOC01-appb-I000015
(式中、A、Ar及びRは前記と同じ意味を表わす。)
で表される構造を有する塩、すなわち、塩(4)の互変異性体も存在すると考えられるが、前述したように、第1工程及び第2工程を行って得られた溶液に水を混合させた場合、化合物(2)を収率よく得られ、該溶液に後述する第3工程を行う場合、誘導体(1)を収率よく製造できる。
 塩(4)を含む溶液に、式(3)
 R−O−SO  (3)
(式中、Rは置換基を有していてもよい炭化水素基を表わし、Rは置換基を有していてもよいフェニル基又は炭素数1~10のアルキル基を表わす。)
で表される化合物(以下、化合物(3)と記すことがある)を反応させる工程(以下、第3工程と記すことがある)を行うことにより、式(1)
Figure JPOXMLDOC01-appb-I000016
(式中、Ar、R及びRは前記と同じ意味を表わす。)
で表わされるピラゾリノン誘導体が得られる。
 化合物(3)におけるRで表わされる置換基を有していてもよい炭化水素基としては、例えば直鎖状もしくは分枝鎖状のC1~C10アルキル基(例えば、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、セカンダリ−ブチル基、2−メチルブチル基、及び2−エチルプロピル基);
直鎖状もしくは分枝鎖状のC2~C10アルケニル基(例えば、1−メチル−2−プロペニル基等);
直鎖状もしくは分枝鎖状のC2~C10アルキニル基(例えば、1−メチル−2−プロピニル基);
同一もしくは相異なる1~21個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC1~C10アルキル基;
同一もしくは相異なる1~19個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC2~C10アルケニル基;
同一もしくは相異なる1~17個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC2~C10アルキニル基;
直鎖状もしくは分枝鎖状のC1~C5アルコキシを有するC1~C5アルキル基(例えば、1−メチル−2−メトキシエチル基);
直鎖状もしくは分枝鎖状のC1~C5アルキルチオ基を有するC1~C5アルキル基(例えば、1−メチル−2−メチルチオエチル基);
同一もしくは相異なる1~11個のハロゲンを有するC1~C5アルコキシ基を有し、且つ同一もしくは相異なる1~10個のハロゲンで置換された直鎖状もしくは分枝鎖状のC1~C5アルキル基;
同一もしくは相異なる1~11個のハロゲンで置換されたC1~C5アルキルチオ基を有し、且つ同一もしくは相異なる1~10個のハロゲン原子を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基;
シアノ基で置換された直鎖状もしくは分枝鎖状のC1~C5アルキル基(例えば、1−メチル−2−シアノエチル基);
C1~C5アルコキシカルボニル基を有する直鎖状もしくは分枝鎖状のC1~C5アルキル基(例えば、2−メトキシカルボニルエチル基);
ハロゲン原子を有していてもよく、不飽和結合を含んでもよい、C3~C8シクロアルキル基(例えば、シクロヘキシル基、及びシクロペンチル基);
同一もしくは相異なる置換基で1~5個置換されていてもよいC7~C17アラルキル基(例えば、ベンジル基、及びα−メチルベンジル基){該置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及びヨウ素原子)、C1~C5アルキル基(例えば、メチル基、及びエチル基)、C1~C5アルコキシ基(例えば、メトキシ基、及びエトキシ基)、C1~C5アルキルチオ基(例えば、メチルチオ基、及びエチルチオ基)、C1~C5ハロアルキル基(例えばトリフルオロメチル基等のC1~C2ハロアルキル基)、C1~C5ハロアルコキシ基(例えばトリフルオロメトキシ基、ジフルオロメトキシ基等のC1~C2ハロアルコキシ基)、C1~C5ハロアルキルチオ基(例えばトリフルオロメチルチオ基等のC1~C2ハロアルキルチオ基)、及びシアノ基があげられる。}があげられる。
 Rで示されるC1~C10アルキル基としては、例えばメチル基、エチル基、ノルマルプロピル基、イソプロピル基、及びt−ブチル基が挙げられる。Rで示される置換基を有していてもよいフェニル基としては、例えばフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2−ブロモフェニル基、3−ブロモフェニル基、及び4−ブロモフェニル基が挙げられる。
 化合物(3)としては、例えば表2記載の化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000017
 塩(4)と化合物(3)との混合比率としては、塩(4)の調製に用いられた化合物(2)1モルに対し、化合物(3)を、例えば、0.9~1.5モルの範囲である。
 第3工程の反応温度は、通常40℃~120℃の範囲、好ましくは60℃~100℃の範囲である。
 第3工程を具体的に説明すると、例えば<3−I>塩(4)を含む溶液に、化合物(3)を含む溶液を混合する方法;<3−II>炭化水素溶媒及び/又はエーテル溶媒に、塩(4)を含む溶液および化合物(3)を含む溶液を並行して混合する方法;及び<3−III>化合物(3)を含む溶液に、塩(4)を含む溶液を混合する方法が挙げられる。第3工程は、好ましくは<3−II>の方法で行われる。
 第3工程における反応の進行は、化合物(3)の消費量をガスクロマトグラフィー、高速液体クロマトグラフィー等の手段により確認し、化合物(3)が消費されなくなるまで反応することが好ましい。第3工程の反応時間は、通常5分間~72時間の範囲である。
 第3工程においては、反応によって水分は発生しないが、第3工程の反応系内に水分を添加しないことが好ましい。具体的には、第3工程の反応液に含まれる水量を0.8重量%以下、好ましくは、0.5重量%以下であり、より好ましくは0.3重量%以下である。
 誘導体(1)としては、例えば、表3記載の化合物が挙げられる。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-I000019
 本発明によれば、優れた収率で誘導体(1)が得られる。また、前記式(4’)で表される塩の生成が抑制されていることから、第3工程で得られる反応生成物には、誘導体(1)におけるRとRとが入れ替わった不純物の生成が抑制される傾向があることから好ましい。さらに、炭化水素溶媒からエーテル溶媒への置換を行うことなく誘導体(1)を収率よく得られる。
 第3工程によって得られた誘導体(1)と炭化水素溶媒とを含む溶液は、例えば、炭化水素溶媒を減圧濃縮などの方法によって誘導体(1)を得られる。得られた誘導体(1)は、再結晶、クロマトグラフィーなどによって、精製してもよい。
 以下、本発明を実施例に基づいて更に詳細に説明する。実施例、参考例中の「%」及び「部」は、特記ない限り、重量%及び重量部である。反応液の含水量はカールフィシャー法で求めた。
(実施例1)
 第1工程は、図1の装置(10)を用いておこなった。まず、図1を説明する。反応槽(1)には、加熱し得るようにジャケットが具備されている。反応槽(1)には、配管(2)を介して凝縮器(3)が接続され、凝縮器(3)には配管(4)を介して分離器(9)が接続されている。分離器(9)の上層(6)と反応槽(1)とは配管(5)を介して接続されている。
[第1工程]
 反応槽(1)に、キシレン159重量部、水酸化リチウム一水和物12.1重量部を仕込み、ゲージ圧が約10kPaとなるまで減圧した。次に、反応槽(1)内のキシレン溶液が約67℃になるまで昇温したところ、水とキシレンとの共沸蒸気が配管(2)を経由して凝縮器(3)で冷却され、分離器(9)に移送された。分離器(9)内で分液されたキシレンは配管(5)を介して反応槽(1)に還流された。分離器(9)の下層(7)からは4.7重量部の水が回収された。
 反応槽(1)内の混合物[1]の含水量は0.19重量%であった。
[第2工程]
 次に、5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステル(表1における化合物番号(2−1)で表される化合物)80重量部、キシレン240重量部、テトラヒドロフラン80重量部を含む溶液を、反応槽(1)内の混合物[1]に、11時間かけて配管(8)から滴下した。滴下中、水とキシレンとの共沸蒸気が配管(2)を経由して凝縮器(3)で冷却され、分離器(9)に移送された。分離器(9)の下層(7)からは4.7重量部の水が回収された。
 反応槽(1)内から1時間ごとにサンプリングして含水量を求めたところ、0.19~0.22重量%であった。
 滴下終了後の溶液[2]をサンプリングし、当該サンプルに水を加えて液体クロマトグラフィで測定したところ、化合物(2)に相当する5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステルを100%(クロマトグラフの面積)とし、5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−2−チオカルボン酸S−アリルエステル(式(1)におけるArが2−メチルフェニル基、Rが水素原子、RがCH=CH−CH−S−C(=O)−である化合物、すなわち、式(4’)で表される化合物の窒素アニオンがNHとなった化合物)は1.72%(クロマトグラフの面積)であった。リチウムカチオンは、化合物(2)のカルボニル基のα位の窒素原子に結合した水素原子に選択的に置換されていることがわかる。
[第3工程]
 前記反応槽(1)及び(1’)とは異なるが同形の反応槽(1”)に、テトラヒドロフラン241重量部を仕込み85℃まで昇温させ、還流させた。次に、反応槽(1”)に第2工程で得られた溶液[2] 273重量部(5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステルとして84重量部)とメタンスルホン酸イソプロピルエステル51.9重量部を含むキシレン溶液とを1.5時間かけて滴下し、さらに、同温度にて20時間還流させた。
 得られた反応溶液を液体クロマトグラフィ(内部標準法)で定量したところ、5−アミノ−2−イソプロピル−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステル(式(1)におけるArが2−メチルフェニル基、Rがイソプロピル基、RがCH=CH−CH−S−C(=O)−。表3における化合物番号(1−1)で表される化合物)の収率は82.3%であった。
(参考例1)
 還流冷却器を具備する反応槽に、キシレン500重量部及び5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステル105重量部を入れ、得られた混合物を約78℃まで昇温した。該混合物が沸騰するまで減圧した後、キシレンを留去しながら、水酸化リチウム一水和物15.2重量部を加えた。得られた反応液は、さらに同温度にて4時間かけてキシレンの留去(キシレンの留去量としては360重量部)を行った。
 得られた反応液に水を加えて液体クロマトグラフィで測定したところ、化合物(2)に相当する5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−1−チオカルボン酸S−アリルエステルを100%(クロマトグラフの面積)とし、5−アミノ−3−オキソ−4−O−トリル−2,3−ジヒドロピラゾール−2−チオカルボン酸S−アリルエステル(式(1)におけるArが2−メチルフェニル基、Rが水素原子、RがCH=CH−CH−S−C(=O)−である化合物、式(4’)で表される化合物の窒素アニオンがNHとなった化合物に相当)は16.7%(クロマトグラフィの面積)であった。キシレンを留去した場合、化合物(2)におけるカルボニル基のβ位に結合したCH=CH−CH−S−C(=O)−が、カルボニル基のα位に多く転位したことがわかる。
 本発明は、誘導体(1)を優れた収率で製造できる方法として、産業上利用可能である。
(1) 反応槽
(2) 反応槽(1)から凝縮器(3)への配管
(3) 凝縮器
(4) 凝縮器(3)から分離器(9)への配管
(5) 分離器(9)の上層(6)から反応槽(1)への配管
(6) 分離器(9)の上層、実施例ではキシレン層
(7) 分離器(9)の下層、実施例では水層
(8) 反応槽(1)への仕込み用配管
(9) 分離器
(10)反応装置

Claims (10)

  1.  炭化水素溶媒、及び、下記式
     AOH
    (式中、Aはアルカリ金属カチオンを表す。)
    で表されるアルカリ金属水酸化物を含む混合物(但し、下記式(2)で表される化合物を含まない。)を脱水処理する第1工程、
    並びに、
     第1工程で脱水処理された混合物、及び、式(2)
    Figure JPOXMLDOC01-appb-I000001
    (式中、Arは置換基を有していてもよいフェニル基を表わし、Rは置換基を有していてもよい炭化水素基を表わす。該炭化水素基に含まれる−CH−はヘテロ原子またはカルボニル基に置き換わっていてもよい。)
    で表される化合物を反応させる第2工程
    を含むことを特徴とする、式(4)
    Figure JPOXMLDOC01-appb-I000002
    (式中、A、Ar及びRはそれぞれ前記と同じ意味を表わす。)
    で表される塩の製造方法。
  2.  第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、脱水しながら反応させる工程であることを特徴とする請求項1記載の製造方法。
  3.  第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、第2工程の反応液に含まれる水量を0.8重量%以下に調整しながら反応させる工程であることを特徴とする請求項2記載の製造方法。
  4.  第2工程が、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を、減圧下、20~100℃の温度範囲で共沸脱水しながら反応させる工程であることを特徴とする請求項2又は3記載の製造方法。
  5.  第1工程で脱水処理された混合物に含まれる水量が0.8重量%以下であることを特徴とする請求項1~4のいずれか1項記載の製造方法。
  6.  第1工程が、減圧下、20~100℃の温度範囲で共沸脱水する工程であることを特徴とする請求項1~5のいずれか記載の製造方法。
  7.  アルカリ金属水酸化物が水酸化リチウムであることを特徴とする請求項1~6のいずれか1項記載の製造方法。
  8.  炭化水素溶媒が芳香族炭化水素溶媒であることを特徴とする請求項1~7のいずれか1項記載の製造方法。
  9.  第2工程が、エーテル溶媒の存在下で、第1工程で脱水処理された混合物、及び、式(2)で表される化合物を反応させる工程であることを特徴とする請求項1~8のいずれか1項記載の製造方法。
  10.  炭化水素溶媒、及び、下記式
     AOH
    (式中、Aはアルカリ金属カチオンを表す。)
    で表されるアルカリ金属水酸化物を含む混合物(但し、下記式(2)で表される化合物を含まない。)を脱水処理する第1工程;
     第1工程で脱水処理された混合物、及び、式(2)
    Figure JPOXMLDOC01-appb-I000003
    (式中、Arは置換基を有していてもよいフェニル基を表わし、Rは置換基を有していてもよい炭化水素基を表わす。該炭化水素基に含まれる−CH−はヘテロ原子またはカルボニル基に置き換わっていてもよい。)
    で表される化合物を反応させる第2工程;及び
    第2工程で得られる生成物と、式(3)
     R−O−SO  (3)
    (式中、Rは置換基を有していてもよい炭化水素基を表わし、Rは置換基を有していてもよいフェニル基又は炭素数1~10のアルキル基を表わす。)
    で表される化合物とを反応させる第3工程を含むことを特徴とする式(1)
    Figure JPOXMLDOC01-appb-I000004
    (式中、Ar、R及びRはそれぞれ前記と同じ意味を表わす。)
    で表わされるピラゾリノン誘導体の製造方法。
PCT/JP2011/075648 2010-11-12 2011-11-01 ピラゾリノン塩の製造方法 WO2012063791A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020137014755A KR101867639B1 (ko) 2010-11-12 2011-11-01 피라졸리논염의 제조 방법
CN201180053786.8A CN103209965B (zh) 2010-11-12 2011-11-01 吡唑啉酮盐的制造方法
AU2011327253A AU2011327253B2 (en) 2010-11-12 2011-11-01 Method for producing pyrazolinone salt
US13/881,199 US8921574B2 (en) 2010-11-12 2011-11-01 Method for producing pyrazolinone salt
BR112013011753-2A BR112013011753B1 (pt) 2010-11-12 2011-11-01 Process for production of salt pyrazolinone
EP11839486.5A EP2639225A4 (en) 2010-11-12 2011-11-01 PROCESS FOR PRODUCING PYRAZOLINONE SALT
ZA2013/02947A ZA201302947B (en) 2010-11-12 2013-04-23 Method for producing pyrazolinone salt
IL225979A IL225979A (en) 2010-11-12 2013-04-25 METHOD FOR PRODUCING PIERAZOLINEAN SALT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-253567 2010-11-12
JP2010253567 2010-11-12

Publications (1)

Publication Number Publication Date
WO2012063791A1 true WO2012063791A1 (ja) 2012-05-18

Family

ID=46050935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075648 WO2012063791A1 (ja) 2010-11-12 2011-11-01 ピラゾリノン塩の製造方法

Country Status (12)

Country Link
US (1) US8921574B2 (ja)
EP (1) EP2639225A4 (ja)
JP (1) JP5811736B2 (ja)
KR (1) KR101867639B1 (ja)
CN (1) CN103209965B (ja)
AU (1) AU2011327253B2 (ja)
BR (1) BR112013011753B1 (ja)
CL (1) CL2013001293A1 (ja)
IL (1) IL225979A (ja)
TW (1) TWI530487B (ja)
WO (1) WO2012063791A1 (ja)
ZA (1) ZA201302947B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000826A (ja) * 2013-06-14 2015-01-05 出光興産株式会社 脱水化無機金属塩の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413674A (ja) * 1990-05-07 1992-01-17 Mitsui Petrochem Ind Ltd ジヒドロフラノン誘導体の製造方法
US5869684A (en) 1997-07-07 1999-02-09 Sumitomo Chemical Company, Limited Method for producing pyrazolinone compounds
WO1999054307A1 (fr) * 1998-04-23 1999-10-28 Sumitomo Chemical Company, Limited Derives de pyrazolinone
WO2010143598A1 (ja) * 2009-06-08 2010-12-16 住友化学株式会社 ピラゾリノン誘導体の精製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0212922B1 (en) * 1985-08-13 1991-01-02 Exxon Chemical Patents Inc. Overbased additives
JP5034142B2 (ja) * 2001-04-20 2012-09-26 住友化学株式会社 植物病害防除剤組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413674A (ja) * 1990-05-07 1992-01-17 Mitsui Petrochem Ind Ltd ジヒドロフラノン誘導体の製造方法
US5869684A (en) 1997-07-07 1999-02-09 Sumitomo Chemical Company, Limited Method for producing pyrazolinone compounds
WO1999054307A1 (fr) * 1998-04-23 1999-10-28 Sumitomo Chemical Company, Limited Derives de pyrazolinone
WO2010143598A1 (ja) * 2009-06-08 2010-12-16 住友化学株式会社 ピラゾリノン誘導体の精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2639225A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000826A (ja) * 2013-06-14 2015-01-05 出光興産株式会社 脱水化無機金属塩の製造方法

Also Published As

Publication number Publication date
ZA201302947B (en) 2014-06-25
JP2012116831A (ja) 2012-06-21
EP2639225A4 (en) 2014-04-16
EP2639225A1 (en) 2013-09-18
AU2011327253B2 (en) 2016-03-10
TW201229042A (en) 2012-07-16
IL225979A0 (en) 2013-06-27
KR101867639B1 (ko) 2018-06-15
TWI530487B (zh) 2016-04-21
KR20140051815A (ko) 2014-05-02
IL225979A (en) 2016-11-30
BR112013011753B1 (pt) 2017-12-19
CL2013001293A1 (es) 2014-06-20
US8921574B2 (en) 2014-12-30
US20130217890A1 (en) 2013-08-22
CN103209965B (zh) 2016-01-20
AU2011327253A1 (en) 2013-05-23
CN103209965A (zh) 2013-07-17
JP5811736B2 (ja) 2015-11-11
BR112013011753A2 (pt) 2016-07-12

Similar Documents

Publication Publication Date Title
JP5559066B2 (ja) 2−アルコキシメチレン−4,4−ジフルオロ−3−オキソ酪酸アルキルの製造方法
MX2012009782A (es) Procesos para la sintesis de diariltiohidantoina y compuestos de diarilhidantoina.
CN104379551B (zh) 3‑二氟甲基‑1‑甲基‑1h‑吡唑‑4‑羧酸烷基酯及其类似物的制备方法
TW200538116A (en) Process for the preparation of substituted triazole compounds
JP2018118982A (ja) 1−置換メチリデン化合物の製造
WO2012063791A1 (ja) ピラゾリノン塩の製造方法
CN107801390B (zh) 用于制造1-环丙基萘的方法
EP0890573B1 (en) Method for producing pyrazolinone compounds
JP6040079B2 (ja) アミド誘導体の製造方法
US10626102B2 (en) Process for the synthesis of efinaconazol
JP6922924B2 (ja) 含窒素化合物の製造方法
US9296700B2 (en) Method for purifying a pyrazolinone derivative
JP2007519660A (ja) 2−(エトキシメチル)トロパン誘導体の製造方法
US20230373899A1 (en) Method for producing asymmetric linear carbonate
MX2015003902A (es) Procedimiento para la preparacion de fenil y piridil pirrolidinas opcionalmente sustituidas.
KR101478597B1 (ko) 질소 치환 아미노-5,6,7,8-테트라하이드로나프톨의 공업화 제조방법
JP2019094298A (ja) ジフラン化合物の製造方法
EP2644593A1 (en) Dialkoxymethyl oxobutyric acid esters, their manufacture and use
CZ2014792A3 (cs) Způsob přípravy, izolace a čištění farmaceuticky využitelných forem AHU-377

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881199

Country of ref document: US

Ref document number: 2011839486

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 225979

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2013001293

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011327253

Country of ref document: AU

Date of ref document: 20111101

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137014755

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013011753

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013011753

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130510