WO2012063711A1 - ズームレンズ及び撮像装置 - Google Patents

ズームレンズ及び撮像装置 Download PDF

Info

Publication number
WO2012063711A1
WO2012063711A1 PCT/JP2011/075332 JP2011075332W WO2012063711A1 WO 2012063711 A1 WO2012063711 A1 WO 2012063711A1 JP 2011075332 W JP2011075332 W JP 2011075332W WO 2012063711 A1 WO2012063711 A1 WO 2012063711A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
group
refractive power
zoom
Prior art date
Application number
PCT/JP2011/075332
Other languages
English (en)
French (fr)
Inventor
尾崎雄一
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012542889A priority Critical patent/JPWO2012063711A1/ja
Publication of WO2012063711A1 publication Critical patent/WO2012063711A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145129Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+++
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis

Definitions

  • the present invention performs zooming by moving a predetermined lens group among a plurality of lens groups in the optical axis direction, and moves the lens in a direction orthogonal to the optical axis with respect to fluctuations in the imaging position on the image plane due to camera shake.
  • the present invention relates to a zoom lens to be corrected and an imaging device including the zoom lens.
  • imaging devices such as CCD (Charge Coupled Device) type image sensors or CMOS (Complementary Metal Oxide Semiconductor) type image sensors
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • thin-type imaging devices often use a bending optical system that bends the optical axis by 90 degrees using a reflective optical element such as a prism.
  • a reflective optical element such as a prism.
  • imaging apparatuses having a camera shake correction function for preventing image blurring of a captured image due to camera shake during imaging have become common.
  • camera shake correction methods There are two types of camera shake correction methods: one that moves the solid-state imaging device and one that moves the lens in the optical system.
  • the second lens group and the fourth lens group are moved in the optical axis direction to perform zooming, and positive
  • There is known one that performs blur correction by moving a third lens group having refractive power in a direction orthogonal to the optical axis see, for example, Patent Document 1).
  • the zoom lens has a five-group configuration, and the second lens group and the fourth lens group are moved in the optical axis direction to perform zooming, and a lens having a positive refractive power constituting the fifth lens group is used as a light.
  • a lens having a positive refractive power constituting the fifth lens group is used as a light.
  • the method of moving the lens is often lighter than the solid-state image sensor, and the load on the actuator is small, resulting in lower power consumption and faster camera shake correction. Is possible.
  • there are problems such as the occurrence of aberration (eccentric aberration) caused by moving the lens in the direction perpendicular to the optical axis, and the enlargement of the entire zoom lens due to the increase in the effective diameter of the moved lens.
  • Patent Documents 1 and 2 since the lens group having positive refractive power or the lens having positive refractive power on the image side of the negative lens is moved in the direction perpendicular to the optical axis, camera shake correction is performed.
  • the divergent light from the negative lens is incident on the lens that performs camera shake correction, and the effective diameter tends to increase. Further, it is necessary to secure a shift space for moving the lens that performs camera shake correction.
  • the thickness is further increased, which greatly hinders reduction in the thickness direction of the bending optical system.
  • the present invention has been made in view of such problems, and it is possible to reduce the effective diameter of a lens that performs camera shake correction, while achieving reduction in the thickness direction of the bending optical system, and further
  • An object of the present invention is to provide a zoom lens in which various aberrations are favorably corrected and an image pickup apparatus including the zoom lens.
  • the zoom lens according to claim 1 has, in order from the object side, a first lens group that includes a reflective optical element that has positive refractive power and bends the optical path, and a second lens that has negative refractive power. And a third lens group having positive refracting power, a fourth lens group having positive refracting power, and a fifth lens group, and changing magnification by changing the interval between the lens groups.
  • the zoom lens In the zoom lens, the second lens group moves in the image side direction by zooming from the wide-angle end to the telephoto end, the fourth lens group moves in the object side direction, and the fifth lens group includes at least A blur correction lens having a negative refractive power composed of a single lens that corrects fluctuations in the image formation position on the image plane by moving in a direction perpendicular to the optical axis, and a positive correction lens disposed on the image side of the blur correction lens.
  • the basic configuration of the present invention for obtaining a compact zoom lens having a well-corrected aberration, in order from the object side, has a positive refractive power and has a function of bending an optical path by reflecting a light beam.
  • the fifth lens group includes at least a blur correction lens having a negative refractive power, which includes a single lens that corrects a change in an image forming position on the image plane by moving in a direction perpendicular to the optical axis, and an image thereof.
  • a blur correction lens having a negative refractive power which includes a single lens that corrects a change in an image forming position on the image plane by moving in a direction perpendicular to the optical axis, and an image thereof.
  • the effective diameter of the shake correction lens which is a negative lens
  • the effective diameter of the lens portion group having a positive refractive power by moving only the shake correction lens in the direction perpendicular to the optical axis and using it for camera shake correction, It is easier to secure a shift space for camera shake correction than in the case where the entire fifth lens group and the positive lens are used for camera shake correction, and the zoom lens can be made thinner.
  • moving only the image stabilization lens which is a single lens, can reduce the weight of the image stabilization lens compared to moving the entire fifth lens group, thereby reducing the actuator load and reducing power consumption during image stabilization. At the same time, high-speed camera shake correction is possible.
  • the zoom lens according to claim 2 is characterized in that, in the invention of claim 1, the following conditional expression is satisfied. 30.0 ⁇ 5n ⁇ 50.0 (1) However, ⁇ 5n : Abbe number of image stabilization lens
  • Conditional expression (1) defines the Abbe number of the blur correction lens.
  • aberration eccentric aberration
  • chromatic aberration occurs if the lens is moved perpendicular to the optical axis.
  • the conditional expression (1) by exceeding the lower limit value of the conditional expression (1), the dispersion of the camera shake correction lens becomes small, and decentered chromatic aberration when performing camera shake correction can be suppressed.
  • by falling below the upper limit value of conditional expression (1) it is possible to suppress the occurrence of lateral chromatic aberration when no camera shake correction is performed.
  • a zoom lens according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression is satisfied. -1.0 ⁇ (1-m 5n ) ⁇ m 5L ⁇ -0.5 (2) However, m 5n : Lateral magnification at the telephoto end of the blur correction lens m 5L : Composite lateral magnification of the lens part group
  • Conditional expression (2) represents the ratio of the amount of movement of the axial ray on the image plane when the blur correction lens moves by 1 perpendicular to the optical axis. Therefore, by moving below the upper limit value of conditional expression (2), it is possible to perform camera shake correction while suppressing the movement amount of the blur correction lens. On the other hand, by exceeding the lower limit value of the conditional expression (2), it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the blur correction lens.
  • the zoom lens according to claim 4 is characterized in that, in the invention according to any one of claims 1 to 3, focusing is performed by moving the fourth lens group.
  • the lens portion group is a single lens and satisfies the following conditional expression. 10.0 ⁇ 5p ⁇ 5n ⁇ 60.0 (3)
  • ⁇ 5p Abbe number of a single lens constituting the lens subgroup
  • ⁇ 5n Abbe number of a blur correction lens
  • Conditional expression (3) defines the difference in the Abbe number between the single lens and the vibration reduction lens by configuring the lens portion group with a single lens.
  • the blur correction lens has a negative refractive power
  • the single lens that is the lens part group has a positive refractive power.
  • chromatic aberration such as lateral chromatic aberration can be corrected effectively.
  • by falling below the upper limit of conditional expression (3) it is possible to suppress the occurrence of chromatic aberration when the blur correction lens is moved perpendicularly to the optical axis.
  • a zoom lens according to a sixth aspect of the present invention is the zoom lens according to any one of the first to fifth aspects, wherein the third lens group has an aperture stop.
  • the zoom lens according to a seventh aspect of the present invention is the zoom lens according to any one of the first to sixth aspects, wherein the lens portion group does not move during zooming or focusing.
  • the solid-state image sensor can be sealed even if the image stabilization lens on the object side moves in the direction of the optical axis in order to correct fluctuations in the image formation position on the image plane. It is possible to prevent dust and other dust from entering and adhering to the upper surface of the solid-state imaging device.
  • the lens portion group is a single lens made of plastic and has an aspherical surface on at least one surface.
  • the fifth lens group is a lens group arranged closest to the image side, and the lens portion group arranged in the fifth lens group has a smaller luminous flux passing through the lens than the other lens groups. Therefore, the influence of the change in refractive power on the whole is small compared to other lens groups, and even if a single lens made of plastic is used for the lens portion group, the influence on the optical performance due to the temperature change can be suppressed.
  • an injection molded plastic lens can easily manufacture an aspheric lens
  • the aspheric lens can effectively correct each aberration such as field curvature and distortion.
  • a zoom lens according to a ninth aspect of the present invention is the zoom lens according to any one of the first to eighth aspects, wherein the first lens group includes a lens having a negative refractive power closest to the object side, and satisfies the following conditional expression: It is characterized by doing. 2.0 ⁇
  • Conditional expression (4) defines the ratio between the focal length of the lens closest to the object side in the first lens group and the focal length of the entire system at the wide-angle end.
  • the lens has an appropriate negative refractive power, and a wide angle of view can be secured at the wide angle end.
  • the lower limit value of the conditional expression (4) it is possible to suppress the occurrence of aberration due to an increase in the refractive power of the lens.
  • conditional expression (4) ′′ is satisfied. 2.8 ⁇
  • An imaging apparatus includes the zoom lens according to any one of the first to ninth aspects.
  • the present invention it is possible to reduce the effective diameter of a lens that performs camera shake correction, it is possible to reduce the thickness direction in a bending optical system, and to further favorably correct various aberrations, and the zoom lens It is possible to provide an imaging apparatus including
  • FIG. 2A and 2B are cross-sectional views of the zoom lens according to the first exemplary embodiment, in which FIG. 1A is a cross-sectional view at a wide-angle end, FIG. 2B is a cross-sectional view at an intermediate position, and FIG. FIG.
  • FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 1, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration at the telephoto end.
  • FIG. FIG. 4 is a cross-sectional view of a zoom lens according to a second embodiment, where (a) is a cross-sectional view at the wide-angle end, (b) is a cross-sectional view at the middle, and (c) is a cross-sectional view at the telephoto end.
  • FIG. 4 is aberration diagrams (spherical aberration, astigmatism, distortion) of the zoom lens of Example 2, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration at the telephoto end.
  • FIG. FIG. 4 is a cross-sectional view of a zoom lens according to Embodiment 3, where (a) is a cross-sectional view at the wide-angle end, (b) is a cross-sectional view at the middle, and (c) is a cross-sectional view at the telephoto end.
  • FIG. 4 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 3, (a) is an aberration diagram at the wide angle end, (b) is an aberration diagram at the middle, and (c) is an aberration at the telephoto end.
  • FIG. FIG. 4 is a cross-sectional view of a zoom lens according to a fourth exemplary embodiment, where (a) is a cross-sectional view at the wide-angle end, (b) is a cross-sectional view at the middle, and (c) is a cross-sectional view at the telephoto end.
  • FIG. 7A is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 4; (a) is an aberration diagram at the wide-angle end; (b) is an aberration diagram at the middle; and (c) is an aberration at the telephoto end.
  • FIG. FIG. 6 is a cross-sectional view of a zoom lens according to a fifth exemplary embodiment, where (a) is a cross-sectional view at the wide-angle end, (b) is a cross-sectional view at the middle, and (c) is a cross-sectional view at the telephoto end.
  • FIG. 6 is aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the zoom lens of Example 5, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration at the telephoto end.
  • FIG. 6 is aberration diagrams (spherical aberration, astigmatism, distortion aberration) of the zoom lens of Example 5, (a) is an aberration diagram at the wide-angle end, (b) is an aberration diagram at the middle, and (c) is an aberration at the telephoto end.
  • FIG. 1 is a diagram illustrating an example of an internal arrangement of main constituent units of an imaging apparatus 100 including a zoom lens according to the present embodiment.
  • FIG. 3 is a perspective view of the imaging apparatus 100 as viewed from the subject side.
  • the zoom lens 50 of the bending imaging optical system is arranged as shown in the figure, and the opening 51 is arranged to take in the subject luminous flux.
  • the opening 51 is provided with a lens barrier (not shown) that is in an open state that exposes the opening 51 and a closed state that covers the opening 51.
  • FIG. 52 is a flash light emission window
  • 53 is a flash unit composed of a reflector, a xenon tube, other main capacitors, a circuit board and the like arranged behind the flash light emission window.
  • Reference numeral 54 denotes an image recording memory card.
  • a battery 55 supplies power to each unit of the imaging apparatus. The memory card 54 and the battery 55 can be inserted and removed from a not-shown lid.
  • a release button 56 is disposed on the upper surface of the imaging apparatus 100, and a shooting preparation operation, that is, a focusing operation and a photometry operation are performed by pressing the first step, and a shooting exposure operation is performed by pressing the second step.
  • a main switch 57 is a switch for switching the imaging apparatus between an operating state and a non-operating state. When switched to the operating state by the main switch 57, the lens barrier (not shown) is opened and the operation of each part is started. When the main switch 57 is switched to the non-operating state, the lens barrier (not shown) is closed and ends the operation of each unit.
  • an image display unit 58 that is configured by an LCD, an organic EL, or the like and displays an image, other character information, or the like is disposed.
  • a zoom button for zooming up and down a playback button for playing back a captured image, a menu button for displaying various menus on the image display unit 58, and a desired function are selected from the display.
  • An operation member such as a selection button is arranged.
  • each part is connected between these main constituent units and a circuit board on which various electronic components are mounted is arranged to drive and control each main constituent unit. Yes.
  • an external input / output terminal, a strap attaching portion, a tripod seat, and the like are provided.
  • FIG. 2 is a cross-sectional view of an example of the zoom lens according to the present embodiment and a lens barrel including the zoom lens.
  • This figure is a cross-sectional view of a surface that is perpendicular to the optical axis OA before bending (see FIG. 1) and includes the optical axis OB after bending, and shows the state of the wide-angle end of the zoom lens.
  • the zoom lens shown in the figure includes a first lens group Gr1 fixed in order from the object side, a second lens group Gr2 moving on the optical axis for zooming, a fixed third lens group Gr3, and zooming and focusing. In order to perform the above, it is composed of five lens groups, a fourth lens group Gr4 that moves on the optical axis, and a fixed fifth lens group Gr5.
  • the first lens group Gr1 has a positive refractive power, has a first lens L1 disposed closest to the object side, a reflective optical element (right angle prism) PR disposed behind the first lens L1, and a reflective optical element PR. It is comprised by the 2nd lens L2 arrange
  • the reflective optical element PR bends the optical axis by approximately 90 °.
  • the second lens group Gr2 has negative refractive power, and in this example, is composed of a third lens L3, a fourth lens L4, and a fifth lens L5, and is held by the second lens group lens frame 2k.
  • the second lens group frame 2k is guided by guide shafts 15 and 16 and is movable in the direction of the optical axis OB.
  • the second lens group lens frame 2k is engaged with a nut 2n that is screwed with a lead screw 22r rotated by a stepping motor 22.
  • the second lens group frame 2k is moved in the image side direction along the optical axis OB from the illustrated state by the rotation of the stepping motor 22.
  • the third lens group Gr3 has a positive refractive power, and in this example, is constituted by the sixth lens L6 and is a lens group fixed to the main body 10.
  • An aperture stop S is disposed on the image plane side of the third lens group Gr3.
  • the fourth lens group Gr4 has a positive refractive power, and in this example, is composed of a seventh lens L7 and an eighth lens L8, and is held by the fourth lens group lens frame 4k.
  • the fourth lens group frame 4k is guided by the guide shafts 15 and 16 and is movable in the direction of the optical axis OB.
  • the fourth lens group lens frame 4k is engaged with a nut 4n that is screwed with a lead screw 24r rotated by a stepping motor 24.
  • the rotation of the stepping motor 24 causes the fourth lens group frame 4k to move in the object side direction along the optical axis OB from the illustrated state.
  • the fourth lens group Gr4 moves at the time of zooming and also performs focus adjustment (hereinafter also referred to as focusing).
  • the fifth lens group Gr5 is composed of three lenses, a ninth lens L9, a tenth lens L10, and an eleventh lens L11, and is a lens group that does not move in the optical axis direction.
  • the fifth lens group Gr5 includes a tenth lens which is a blur correction lens having a negative refractive power, which is formed of a single lens that corrects a change in the image formation position on the image plane by movement in a direction perpendicular to the optical axis OB.
  • the tenth lens L10 is assembled to a lens shift mechanism AS fixed to the main body 10.
  • the lens shift mechanism AS performs camera shake correction by moving the tenth lens L10, which is the blur correction lens of this example, in a plane orthogonal to the optical axis OB.
  • F1 is an optical filter in which an infrared light cut filter and an optical low-pass filter are stacked.
  • the image sensor 6 is a CCD (Charge Coupled Device) type image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor, or the like.
  • F ⁇ b> 2 is a parallel plate that is a seal glass of the image sensor 6.
  • the lens shift mechanism AS shown in FIG. 2 moves the tenth lens L10 in a plane orthogonal to the optical axis OB, and may be a known mechanism. For example, FIG. 10 to FIG. 12 can be applied.
  • f Focal length (mm) of the entire imaging lens system
  • Fno F number 2 ⁇ : Angle of view (°)
  • R radius of curvature (mm)
  • D Shaft upper surface distance (mm)
  • Nd Refractive index with respect to d-line of lens material
  • ⁇ d Abbe number of lens material
  • the surface described with “*” after each surface number is an aspheric surface, and the aspheric shape Is expressed by the following “Equation 1” where the vertex of the surface is the origin, the X axis is taken in the direction of the optical axis, and the height in the direction perpendicular to the optical axis is h.
  • a power of 10 (for example, 2.5 ⁇ 10 ⁇ 02 ) is expressed using E (for example, 2.5E-02).
  • the lens group data is Lens group Start surface Focal length (mm) 1 1 14.05 2 7 -5.00 3 12 12.56 4 15 16.03 5 18 275.14 It is.
  • FIG. 3 and 4 are cross-sectional views of the zoom lens of Example 1.
  • FIG. 3 and 4 are cross-sectional views of the zoom lens of Example 1.
  • Gr1 is the first lens group
  • Gr2 is the second lens group
  • Gr3 is the third lens group
  • Gr4 is the fourth lens group
  • Gr5 is the fifth lens group
  • L1 is the first lens
  • L2 is the second lens group.
  • L3 is a third lens
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens
  • L7 is a seventh lens
  • L8 is an eighth lens
  • L9 is a ninth lens
  • L10 is a tenth lens
  • L11 Is an eleventh lens.
  • S represents an aperture stop
  • I represents an imaging surface.
  • PR indicates a reflective optical element (for example, a right-angle prism) that can bend a light beam from the object side at a right angle
  • F1 is an optical filter assuming an optical low-pass filter or an IR cut filter
  • F2 is a seal for a solid-state image sensor.
  • the parallel plate which assumed glass etc. is shown.
  • FIG. 3 is a cross-sectional view showing a state at the wide-angle end.
  • the reflective optical element PR is represented as a parallel plate equivalent to the optical path length.
  • 4A is a cross-sectional view at the wide-angle end
  • FIG. 4B is a cross-sectional view at the middle
  • FIG. 4C is a cross-sectional view at the telephoto end.
  • FIG. 5 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 1.
  • 5A is an aberration diagram at the wide-angle end
  • FIG. 5B is an aberration diagram at the middle
  • FIG. 5C is an aberration diagram at the telephoto end.
  • the solid line represents the d-line and the broken line represents the g-line
  • the solid line represents the sagittal image plane and the broken line represents the meridional image plane.
  • the zoom lens of Example 1 when zooming from the wide-angle end to the telephoto end, the second lens group moves toward the image side along the optical axis direction, and the fourth lens group moves toward the object side along the optical axis direction.
  • the zooming can be performed by moving and changing the distance between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance is performed by moving the fourth lens group.
  • the second lens and the sixth lens are made of a glass mold lens
  • the ninth lens and the eleventh lens are made of a plastic material
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Example 1 the tenth lens L10 corresponds to the shake correction lens according to the claims, and the eleventh lens L11 corresponds to the lens portion group according to the claims. Therefore, in the first embodiment, camera shake correction is performed in which the tenth lens L10 is shifted in a plane perpendicular to the optical axis OB direction to correct a change in the image formation position on the image plane due to camera shake.
  • the shift movement amount of the tenth lens L10 at the time of 0.3 degree camera shake is 0.033 mm at the wide angle end, 0.073 mm at the middle, and 0.157 mm at the telephoto end.
  • FIG. 6 is a cross-sectional view of the zoom lens of Example 2.
  • Gr1 is the first lens group
  • Gr2 is the second lens group
  • Gr3 is the third lens group
  • Gr4 is the fourth lens group
  • Gr5 is the fifth lens group
  • L1 is the first lens
  • L2 is the second lens group.
  • L3 is a third lens
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens
  • L7 is a seventh lens
  • L8 is an eighth lens
  • L9 is a ninth lens
  • L10 is a tenth lens
  • L11 Is an eleventh lens.
  • S represents an aperture stop
  • I represents an imaging surface
  • PR indicates a reflective optical element (for example, a right-angle prism) that can bend a light beam from the object side at a right angle
  • F1 is an optical filter assuming an optical low-pass filter or an IR cut filter
  • F2 is a solid-state imaging element. The parallel plate which assumed the sealing glass of this is shown.
  • FIG. 6A is a cross-sectional view at the wide-angle end
  • FIG. 6B is a cross-sectional view at the middle
  • FIG. 6C is a cross-sectional view at the telephoto end.
  • FIG. 7 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 2.
  • FIG. 7A is an aberration diagram at the wide angle end
  • FIG. 7B is an aberration diagram at the middle
  • FIG. 7C is an aberration diagram at the telephoto end.
  • the zoom lens of Example 2 when zooming from the wide-angle end to the telephoto end, the second lens group moves toward the image side along the optical axis direction, and the fourth lens group moves toward the object side along the optical axis direction.
  • the zooming can be performed by moving and changing the distance between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance is performed by moving the fourth lens group.
  • the second lens and the sixth lens are formed of a glass mold lens, the eleventh lens is formed of a plastic material, and the other lenses are assumed to be polished lenses made of a glass material.
  • Example 2 the tenth lens L10 corresponds to the shake correction lens according to the claims, and the eleventh lens L11 corresponds to the lens portion group according to the claims. Therefore, in Example 2, camera shake correction is performed in which the tenth lens L10 is shifted in a plane perpendicular to the optical axis direction to correct the variation in the imaging position on the image plane due to camera shake.
  • the shift movement amount of the tenth lens L10 at the time of 0.3 degree camera shake is 0.033 mm at the wide angle end, 0.073 mm at the middle, and 0.157 mm at the telephoto end.
  • FIG. 8 is a cross-sectional view of the zoom lens of Example 3.
  • Gr1 is the first lens group
  • Gr2 is the second lens group
  • Gr3 is the third lens group
  • Gr4 is the fourth lens group
  • Gr5 is the fifth lens group
  • L1 is the first lens
  • L2 is the second lens group.
  • L3 is a third lens
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens
  • L7 is a seventh lens
  • L8 is an eighth lens
  • L9 is a ninth lens
  • L10 is a tenth lens.
  • S represents an aperture stop
  • I represents an imaging surface
  • PR indicates a reflective optical element (for example, a right-angle prism) that can bend a light beam from the object side at a right angle
  • F1 is an optical filter assuming an optical low-pass filter or an IR cut filter
  • F2 is a solid-state imaging element. The parallel plate which assumed the sealing glass of this is shown.
  • FIG. 8A is a cross-sectional view at the wide-angle end
  • FIG. 8B is a cross-sectional view at the middle
  • FIG. 8C is a cross-sectional view at the telephoto end.
  • FIG. 9 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 3.
  • 9A is an aberration diagram at the wide-angle end
  • FIG. 9B is an aberration diagram at the middle
  • FIG. 9C is an aberration diagram at the telephoto end.
  • the zoom lens of Example 3 the second lens unit moves to the image side along the optical axis direction and the fourth lens unit moves to the object side along the optical axis direction during zooming from the wide-angle end to the telephoto end.
  • the zooming can be performed by moving and changing the distance between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance is performed by moving the fourth lens group.
  • the second lens and the sixth lens are formed of a glass mold lens, and the tenth lens is formed of a plastic material.
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Example 3 the ninth lens L9 corresponds to the shake correction lens according to the claims, and the tenth lens L10 corresponds to the lens portion group according to the claims. Therefore, in Example 3, camera shake correction is performed in which the ninth lens L9 is shifted in a plane perpendicular to the optical axis direction to correct a change in the imaging position on the image plane due to camera shake.
  • the shift amount of the ninth lens L9 at the time of 0.3 degree camera shake is 0.035 mm at the wide angle end, 0.076 mm at the middle, and 0.164 mm at the telephoto end.
  • FIG. 10 is a sectional view of the zoom lens of Example 4.
  • Gr1 is the first lens group
  • Gr2 is the second lens group
  • Gr3 is the third lens group
  • Gr4 is the fourth lens group
  • Gr5 is the fifth lens group
  • L1 is the first lens
  • L2 is the second lens group.
  • L3 is a third lens
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens
  • L7 is a seventh lens
  • L8 is an eighth lens
  • L9 is a ninth lens
  • L10 is a tenth lens
  • L11 Is an eleventh lens.
  • S represents an aperture stop
  • I represents an imaging surface
  • PR indicates a reflective optical element (for example, a right-angle prism) that can bend a light beam from the object side at a right angle
  • F1 is an optical filter assuming an optical low-pass filter or an IR cut filter
  • F2 is a solid-state imaging element. The parallel plate which assumed the sealing glass of this is shown.
  • FIG. 10A is a cross-sectional view at the wide-angle end
  • FIG. 10B is a cross-sectional view at the middle
  • FIG. 10C is a cross-sectional view at the telephoto end.
  • FIG. 11 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 4.
  • 11A is an aberration diagram at the wide-angle end
  • FIG. 11B is an aberration diagram at the middle
  • FIG. 11C is an aberration diagram at the telephoto end.
  • the zoom lens according to the fourth exemplary embodiment when zooming from the wide-angle end to the telephoto end, the second lens group moves to the image side along the optical axis direction, and the fourth lens group moves toward the object side along the optical axis direction.
  • the zooming can be performed by moving and changing the distance between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance is performed by moving the fourth lens group.
  • the second lens and the sixth lens are made of a glass mold lens
  • the ninth lens and the eleventh lens are made of a plastic material
  • the other lenses are assumed to be polished lenses made of a glass material.
  • Example 4 the tenth lens L10 corresponds to the shake correction lens according to the claims, and the eleventh lens L11 corresponds to the lens portion group according to the claims. Therefore, in the fourth embodiment, camera shake correction is performed in which the tenth lens L10 is shifted in a plane perpendicular to the optical axis direction to correct the variation of the imaging position on the image plane due to camera shake.
  • the shift movement amount of the tenth lens L10 at the time of 0.3 degree camera shake is 0.051 mm at the wide angle end, 0.111 mm at the middle, and 0.242 mm at the telephoto end.
  • FIG. 12 is a cross-sectional view of the zoom lens of Example 5.
  • Gr1 is the first lens group
  • Gr2 is the second lens group
  • Gr3 is the third lens group
  • Gr4 is the fourth lens group
  • Gr5 is the fifth lens group
  • L1 is the first lens
  • L2 is the second lens group.
  • L3 is a third lens
  • L4 is a fourth lens
  • L5 is a fifth lens
  • L6 is a sixth lens
  • L7 is a seventh lens
  • L8 is an eighth lens
  • L9 is a ninth lens
  • L10 is a tenth lens
  • L11 Is an eleventh lens.
  • PRM indicates a reflective optical element (for example, a right-angle prism) that can bend a light beam from the object side at a right angle
  • F1 is an optical filter assuming an optical low-pass filter or an IR cut filter
  • F2 is a solid-state imaging element. The parallel plate which assumed the sealing glass of this is shown.
  • FIG. 12A is a cross-sectional view at the wide-angle end
  • FIG. 12B is a cross-sectional view at the middle
  • FIG. 12C is a cross-sectional view at the telephoto end.
  • FIG. 13 is an aberration diagram (spherical aberration, astigmatism, distortion) of the zoom lens of Example 5.
  • FIG. 13A is an aberration diagram at the wide-angle end
  • FIG. 13B is an aberration diagram at the middle
  • FIG. 13C is an aberration diagram at the telephoto end.
  • the zoom lens of Example 5 when zooming from the wide-angle end to the telephoto end, the second lens group moves to the image side along the optical axis direction, and the fourth lens group moves toward the object side along the optical axis direction.
  • the zooming can be performed by moving and changing the distance between the lens groups.
  • the remaining lens groups are fixed during zooming.
  • focusing from infinity to a finite distance is performed by moving the fourth lens group.
  • the second lens, the sixth lens, and the eleventh lens are glass mold lenses, and the other lenses are polished lenses made of a glass material.
  • Example 5 the tenth lens L10 corresponds to the shake correction lens according to the claims, and the eleventh lens L11 corresponds to the lens portion group according to the claims. Therefore, camera shake correction is performed in which the tenth lens L10 is shifted in a plane perpendicular to the optical axis direction to correct a change in the imaging position on the image plane due to camera shake.
  • the shift movement amount of the tenth lens L10 at the time of 0.3 degree camera shake is 0.027 mm at the wide angle end, 0.059 mm at the middle, and 0.129 mm at the telephoto end.
  • Conditional Expression (1) Conditional Expression (2)
  • Conditional Expression (4) ⁇ 5n (1-m 5n ) ⁇ m 5L ⁇ 5p- ⁇ 5n
  • Example 1 35.2-0.80 20.9 3.04
  • Example 2 35.2-0.80 20.9 3.01
  • Example 3 31.3-0.77 24.8 3.01
  • Example 4 40.8 -0.52 15.3 3.02
  • Example 5 31.3-0.97 50.2 3.09
  • the lens portion group is exemplified as a positive single lens.
  • the present invention is not limited to this, and the present application uses a negative lens disposed in the fifth lens group.
  • the plurality of lens groups closer to the image plane than the blur correction lens corresponds to the lens portion group according to the claims.
  • the object side negative lens is shifted.
  • negative and positive lenses on the image side correspond to the lens portion group according to the claims.
  • the fifth lens unit is composed of positive, negative, negative, and positive lenses from the object side, and the combined focal length of the negative and positive lenses on the image side is positive, the negative lens on the object side is shifted.
  • the negative and positive lenses on the image side correspond to the lens portion group according to the claims.
  • the inorganic fine particles can be mixed in the plastic material to reduce the temperature change of the plastic material. More specifically, when fine particles are mixed with a transparent plastic material, light scattering occurs and the transmittance is lowered. Therefore, it has been difficult to use as an optical material. By making it smaller than the wavelength, it is possible to substantially prevent scattering.
  • the refractive index of the plastic material decreases with increasing temperature, but the refractive index of inorganic particles increases with increasing temperature. Therefore, it is possible to make almost no change in the refractive index by using these temperature dependencies so as to cancel each other.
  • a plastic material with extremely low temperature dependency of the refractive index is obtained.
  • niobium oxide (Nb 2 O 5 ) in acrylic the refractive index change due to temperature change can be reduced.
  • a plastic material in which such inorganic particles are dispersed in the ninth lens and the eleventh lens it is possible to further suppress the image point position fluctuation when the temperature of the entire imaging lens system changes. Become.
  • a reflow process (heating process) is performed on a substrate on which solder is previously potted while an IC chip or other electronic component and an optical element are mounted.
  • a technique has been proposed in which an electronic component and an optical element are simultaneously mounted on a substrate by melting solder.
  • an energy curable resin as the lens material, optical performance degradation when exposed to high temperatures is small compared to lenses using thermoplastic resins such as polycarbonate and polyolefin. It is effective for processing, is easier to manufacture than a glass mold lens, is inexpensive, and can achieve both low cost and mass productivity of an imaging apparatus incorporating an imaging lens.
  • the energy curable resin refers to both a thermosetting resin and an ultraviolet curable resin.
  • the plastic lens of the present invention may be formed using the energy curable resin described above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 手振れ補正を行うレンズの有効径を小さくすることを可能とし、屈曲光学系における厚さ方向の縮小化を達成しつつ、さらに諸収差が良好に補正されたズームレンズ及び該ズームレンズを備えた撮像装置を提供する。物体側より順に、正の屈折力を有すると共に、光路を折り曲げる反射光学素子を含んで構成された第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とで構成され、広角端から望遠端への変倍で第2レンズ群は像側方向に、第4レンズ群は物体側方向に移動し、第5レンズ群は、少なくとも、光軸に垂直な方向の移動により像面上の結像位置の変動を補正する単レンズで負の屈折力を有するブレ補正レンズと、ブレ補正レンズの像側に配置され正の屈折力を有するレンズ部分群と、を有するズームレンズとする。

Description

ズームレンズ及び撮像装置
 本発明は、複数のレンズ群のうち所定のレンズ群を光軸方向に移動させて変倍を行うとともに、手振れによる像面上の結像位置の変動に対し光軸直交方向にレンズを移動させて補正するズームレンズ及び該ズームレンズを備えた撮像装置に関する。
 近年、CCD(Charge Coupled Device)型イメージセンサあるいはCMOS(Complementary Metal Oxide Semiconductor)型イメージセンサ等の固体撮像素子の小型化に伴い、それらを用いたデジタルスチルカメラ等の撮像装置もさらなる小型化が要望されている。特に厚みが薄いタイプの撮像装置には、プリズム等の反射光学素子を用いて光軸を90度折り曲げる屈曲光学系が多く用いられており、それらの光学系では光軸方向の全長の小型化よりも、光軸と垂直方向となる厚さ方向の縮小化がより望まれている。
 一方、近年では撮像時の手振れ等による撮像画像の像ブレを防ぐ手振れ補正機能を有する撮像装置が一般化している。手振れ補正の方式は大別して、固体撮像素子を移動させるものと、光学系内のレンズを移動させるものがある。
 光学系内のレンズ群を移動させるものとして、正負正正負の5群構成のズームレンズであって、第2レンズ群及び第4レンズ群を光軸方向に移動させて変倍を行い、正の屈折力を有する第3レンズ群を光軸に直交する方向に移動させてブレ補正を行うものが知られている(例えば、特許文献1参照)。
 また、5群構成のズームレンズであって、第2レンズ群及び第4レンズ群を光軸方向に移動させて変倍を行い、第5レンズ群を構成する正の屈折力を有するレンズを光軸直交方向に移動させてブレ補正を行うものが知られている(例えば、特許文献2参照)。
特開2008-32924号公報 特開2009-192771号公報
 レンズを移動させる方法は固体撮像素子を移動させる方法と比べ、被移動体であるレンズが固体撮像素子より軽量である場合が多く、アクチュエータの負荷が小さいため、消費電力の低下や高速な手振れ補正が可能である。一方、レンズを光軸と垂直方向に移動させることによる収差(偏芯収差)の発生や、移動させるレンズの有効径の増大によるズームレンズ全体の大型化等の問題が存在する。
 それに対し、特許文献1や2では正の屈折力を有するレンズ群もしくは負レンズの像側にある正の屈折力を有するレンズを光軸と垂直方向に移動させて手振れ補正を行っているため、負レンズによる発散光が手振れ補正を行うレンズに入射し、有効径が大きくなる傾向にあり、さらに手振れ補正を行うレンズを動かすためのシフトスペースを確保する必要があるため、必要な径方向の大きさは更に大きくなり、屈曲光学系における厚さ方向の縮小化に大きな妨げとなっていた。
 本発明は、このような問題点に鑑みてなされたものであり、手振れ補正を行うレンズの有効径を小さくすることを可能とし、屈曲光学系における厚さ方向の縮小化を達成しつつ、さらに諸収差が良好に補正されたズームレンズ及び該ズームレンズを備えた撮像装置を提供することを目的とするものである。
 上記の目的は、下記の構成により達成される。
 請求項1に記載のズームレンズは、物体側より順に、正の屈折力を有すると共に、光路を折り曲げる反射光学素子を含んで構成された第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群と、から構成され、各レンズ群の間隔を変えることにより変倍を行うズームレンズにおいて、広角端から望遠端に至る変倍で前記第2レンズ群は像側方向に移動するとともに、前記第4レンズ群は物体側方向に移動を行い、前記第5レンズ群は、少なくとも、光軸に垂直な方向の移動により像面上の結像位置の変動を補正する単レンズで構成された負の屈折力を有するブレ補正レンズと、前記ブレ補正レンズの像側に配置され正の屈折力を有するレンズ部分群と、を有することを特徴とする。
 小型で収差の良好に補正されたズームレンズを得るための、本発明の基本構成は物体側から順に、正の屈折力を有すると共に、光線を反射させることで光路を折り曲げる作用を持つ反射光学素子を含んで構成された第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群からなる。このように、第1レンズ群内に反射光学素子を備えることにより、撮像装置の奥行き方向の大きさ(厚み)を小さくすることが出来ると共に、広角端から望遠端に至る変倍で第2レンズ群を像側方向に、第4レンズ群を物体側方向に移動させることにより、2つのレンズ群に変倍機能を分担できるので、単一レンズ群のみで変倍を行うよりも群パワーや変倍移動量を抑え、コンパクト性と良好な光学性能を両立することができる。
 また、第5レンズ群に、少なくとも、光軸に垂直な方向の移動により像面上の結像位置の変動を補正する単レンズで構成された負の屈折力を有するブレ補正レンズと、その像側に配置され正の屈折力を有するレンズ部分群を少なくとも有することにより、負レンズと正レンズの組み合わせとなり倍率色収差等の各収差の発生を抑えることができる。
 さらに、負レンズであるブレ補正レンズの有効径は、正の屈折力のレンズ部分群の有効径より小さくなるので、ブレ補正レンズのみを光軸と垂直方向に移動させ手振れ補正に用いることで、第5レンズ群全体や正レンズを手振れ補正に用いる場合よりも手振れ補正のためのシフトスペースを確保することが容易となり、ズームレンズの薄型化が可能となる。さらに、単レンズである手振れ補正レンズのみを動かすことにより第5レンズ群全体を動かすよりも手振れ補正レンズの軽量化をすることができるので、手振れ補正時におけるアクチュエータの負荷を抑え、消費電力を抑えると共に高速な手振れ補正が可能となる。
 請求項2に記載のズームレンズは、請求項1の発明において、以下の条件式を満足することを特徴とする。
 30.0<ν5n<50.0           (1)
ただし、
ν5n:ブレ補正レンズのアッベ数
 条件式(1)は、ブレ補正レンズのアッベ数を規定したものである。手振れ補正を行う際、光軸に対し垂直にレンズを移動させると、収差(偏芯収差)が発生する。偏芯収差の中でも、分散の大きなレンズを移動させると特に色収差が発生し、色ズレや解像力の低下の原因となる。それに対し、条件式(1)の下限値を上回ることによって、手振れ補正レンズの分散が小さくなり、手振れ補正を行う際の偏芯色収差を抑えることができる。一方、条件式(1)の上限値を下回ることによって、手振れ補正を行わない際の倍率色収差の発生を抑えることができる。
 また、以下の条件式(1)’を満たすと、より望ましい。
 30.0<ν5n<45.0           (1)’
 請求項3に記載のズームレンズは、請求項1又は2の発明において、以下の条件式
を満足することを特徴とする。
 -1.0<(1-m5n)・m5L<-0.5    (2)
ただし、
5n:ブレ補正レンズの望遠端における横倍率
5L:レンズ部分群の合成横倍率
 条件式(2)は、ブレ補正レンズが光軸に対し垂直にレンズが1だけ移動した際の軸上光線の像面上での移動量の比を表したものである。よって、条件式(2)の上限値を下回ることによって、ブレ補正レンズの移動量を抑えつつ、手振れ補正を行うことが可能となる。一方で、条件式(2)の下限値を上回ることによって、ブレ補正レンズの屈折力の増大による収差の発生を抑えることができる。
 また、以下の条件式(2)’を満たすと、より望ましい。
 -1.0<(1-m5n)・m5L<-0.7    (2)’
 請求項4に記載のズームレンズは、請求項1乃至3のいずれかの発明において、前記第4レンズ群を移動させてフォーカシングを行うことを特徴とする。
 第4レンズ群でフォーカシングを行うことにより、繰り出しによる光学全長の増加や前玉レンズ径の増大を招くことなく、近距離物体まで鮮明な画像を得ることが出来る。
 請求項5に記載のズームレンズは、請求項1乃至4のいずれかの発明において、前記レンズ部分群は単レンズであり、以下の条件式を満足することを特徴とする。
 10.0<ν5p-ν5n<60.0        (3)
ただし、
ν5p:レンズ部分群を構成する単レンズのアッベ数
ν5n:ブレ補正レンズのアッベ数
 条件式(3)は、レンズ部分群を単レンズで構成し該単レンズと、ブレ補正レンズのアッベ数の差を規定したものである。レンズ部分群を単レンズとし、条件式(3)の下限を上回ることによって、ブレ補正レンズは負の屈折力を持ち、レンズ部分群である単レンズは正の屈折力を持つので、色消しの関係となり、倍率色収差等の色収差を効果的に補正することができる。一方、条件式(3)の上限を下回ることによって、ブレ補正レンズを光軸に対し垂直にレンズが移動した際の色収差の発生を抑えることができる。
 また、以下の条件式(3)’を満たすと、より望ましい。
 15.0<ν5p-ν5n<55.0        (3)’
 また、以下の条件式(3)”を満たすと、さらに望ましい。
 20.0<ν5p-ν5n<55.0        (3)”
 請求項6に記載のズームレンズは、請求項1乃至5のいずれかの発明において、前記第3レンズ群に、開口絞りを有することを特徴とする。
 固定群である第3レンズ群に開口絞りを配置することによって、開口絞りにシャッタ等を取り付けた際、比較的重量のある機械部品を光軸方向に移動させる必要がなく、消費電力を抑えることができる。
 また、開口絞りの外側を不要光が通過することを防ぐことができるので、シャッタを閉じた際のシャッタ機構の外周に生じる隙間で発生する不要な漏光を防ぐことができる。
 請求項7に記載のズームレンズは、請求項1乃至6のいずれかの発明において、前記レンズ部分群は、変倍時、合焦時ともに移動しないことを特徴とする。
 レンズ部分群を固定することによって、物体側にあるブレ補正レンズが像面上の結像位置の変動を補正するために光軸方向に移動しても、固体撮像素子を封止状態とできるので、固体撮像素子の上面にホコリ等のゴミが混入、付着することを防ぐことができる。
 請求項8に記載のズームレンズは、請求項1乃至7のいずれかの発明において、前記レンズ部分群は、プラスチックからなる単レンズであり、少なくとも1面に非球面を有することを特徴とする。
 第5レンズ群は最も像側に配置されたレンズ群であり、第5レンズ群に配置されるレンズ部分群は他のレンズ群に比べ、レンズを通る光束が細くなる。よって、屈折力の変化が全体へ与える影響は他のレンズ群に比べ小さく、レンズ部分群にプラスチックによる単レンズを用いても、温度変化による光学性能への影響を抑えることができる。
 また、射出成形によるプラスチックレンズは非球面レンズを容易に製造することが可能なため、非球面レンズによって、像面湾曲や歪曲収差などの各収差を効果的に補正することが可能となる。
 請求項9に記載のズームレンズは、請求項1乃至8のいずれかの発明において、前記第1レンズ群は、最も物体側に負の屈折力を持つレンズを有し、以下の条件式を満足することを特徴とする。
 2.0<|f1a/fW|<4.0        (4)
ただし、
f1a:第1レンズ群の最も物体側のレンズの焦点距離
fW:広角端における全系の焦点距離
 条件式(4)は、第1レンズ群の最も物体側のレンズの焦点距離と広角端における全系の焦点距離の比を規定している。条件式(4)の上限値を下回ることによって、レンズが適度な負の屈折力を持ち、広角端において、広い画角を確保することが出来る。一方で、条件式(4)の下限値を上回ることによって、レンズの屈折力の増大による収差の発生を抑えることができる。
 また、以下の条件式(4)’を満たすと、より望ましい。
 2.5<|f1a/fW|<3.5        (4)’
 また、以下の条件式(4)”を満たすと、さらに望ましい。
 2.8<|f1a/fW|<3.2        (4)”
 請求項10に記載の撮像装置は、請求項1乃至9のいずれかに記載のズームレンズを備えたことを特徴とする。
 請求項1乃至9のいずれかに記載のズームレンズを備えることにより、より薄型で、撮影画質の良好な撮像装置を得ることができるようになる。
 本発明によれば、手振れ補正を行うレンズの有効径を小さくすることが可能となり、屈曲光学系における厚さ方向の縮小化ができ、さらに諸収差の良好に補正されたズームレンズ及び該ズームレンズを備えた撮像装置を提供することが可能となる。
本実施の形態に係るズームレンズを備えた撮像装置の主要構成ユニットの内部配置の一例を示す図である。 本実施の形態に係るズームレンズ及びそれを内包する鏡胴の一例の断面図である。 実施例1のズームレンズの断面図である。 実施例1のズームレンズの断面図であり、(a)は広角端における断面図、(b)は中間における断面図、(c)は望遠端における断面図である。 実施例1のズームレンズの収差図(球面収差、非点収差、歪曲収差)であり、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例2のズームレンズの断面図であり、(a)は広角端における断面図、(b)は中間における断面図、(c)は望遠端における断面図である。 実施例2のズームレンズの収差図(球面収差、非点収差、歪曲収差)であり、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例3のズームレンズの断面図であり、(a)は広角端における断面図、(b)は中間における断面図、(c)は望遠端における断面図である。 実施例3のズームレンズの収差図(球面収差、非点収差、歪曲収差)であり、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例4のズームレンズの断面図であり、(a)は広角端における断面図、(b)は中間における断面図、(c)は望遠端における断面図である。 実施例4のズームレンズの収差図(球面収差、非点収差、歪曲収差)であり、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。 実施例5のズームレンズの断面図であり、(a)は広角端における断面図、(b)は中間における断面図、(c)は望遠端における断面図である。 実施例5のズームレンズの収差図(球面収差、非点収差、歪曲収差)であり、(a)は広角端における収差図、(b)は中間における収差図、(c)は望遠端における収差図である。
 以下、実施の形態により本発明を詳しく説明するが、本発明はこれに限定されるものではない。
 図1は、本実施の形態に係るズームレンズを備えた撮像装置100の主要構成ユニットの内部配置の一例を示す図である。同図は、撮像装置100を被写体側から見た斜視図である。
 同図に示すように、撮像装置100は、屈曲撮像光学系のズームレンズ50が図示の如く配置され、開口部51が被写体光束を取り込むよう配置されている。この開口部51には、開口部51を露呈する開状態と開口部51を覆う閉状態とする不図示のレンズバリアが設けられている。
 52はフラッシュ発光窓であり、53はフラッシュ発光窓の後方に配置された反射傘、キセノン管、その他メインコンデンサ、回路基板等で構成されるフラッシュユニットである。54は画像記録用のメモリカードである。55は電池であり、本撮像装置の各部へ電源を供給する。メモリカード54及び電池55は、図示しない蓋部から挿脱が可能となっている。
 撮像装置100の上面には、レリーズ釦56が配置され、その1段目の押し込みにより撮影準備動作、即ち焦点合わせ動作や測光動作が行われ、その2段目の押し込みにより撮影露光動作が行われる。57はメインスイッチであり、撮像装置を動作状態と非動作状態に切り替えるスイッチである。メインスイッチ57により動作状態に切り替えられると、不図示のレンズバリアは、開状態にされると共に、各部の動作が開始される。また、メインスイッチ57により非動作状態に切り替えられると、不図示のレンズバリアは、閉状態にされると共に、各部の動作を終了させる。
 撮像装置100の背面には、LCD或いは有機EL等で構成され、画像やその他文字情報等を表示する画像表示部58が配置されている。また、図示していないが、ズームアップ、ズームダウンを行うズーム釦、撮影した画像を再生する再生釦、画像表示部58上に各種のメニューを表示させるメニュー釦、表示から所望の機能を選択する選択釦等の操作部材が配置されている。
 また、不図示であるが、これら主要構成ユニットの間には、各部を接続すると共に、各種電子部品が搭載された回路基板が配置され、各主要構成ユニットの駆動及び制御を行うようになっている。同様に、不図示であるが、外部入出力端子、ストラップ取り付け部、三脚座等を備えている。
 図2は、本実施の形態に係るズームレンズ及びそれを内包する鏡胴の一例の断面図である。同図は、屈曲前の光軸OA(図1参照)に垂直で、屈曲後の光軸OBを含む面の断面図であり、ズームレンズの広角端の状態を示している。
 同図に示すズームレンズは、物体側より順に固定の第1レンズ群Gr1、変倍のために光軸上を移動する第2レンズ群Gr2、固定の第3レンズ群Gr3、そして変倍及びフォーカシングを行う為に光軸上を移動する第4レンズ群Gr4、固定の第5レンズ群Gr5の5つのレンズ群よりなっている。
 第1レンズ群Gr1は、正の屈折力を有し、最も物体側に配置された第1レンズL1、第1レンズL1の後方に配置された反射光学素子(直角プリズム)PR、反射光学素子PRの後方に配置された第2レンズL2で構成されている。反射光学素子PRは、光軸を略90°折り曲げるものである。
 第2レンズ群Gr2は、負の屈折力を有し、本例では第3レンズL3、第4レンズL4、第5レンズL5で構成され、第2レンズ群鏡枠2kに保持されている。
 第2レンズ群鏡枠2kはガイド軸15、16により案内されて光軸OB方向に移動可能となっている。第2レンズ群鏡枠2kは、ステッピングモータ22により回転させられるリードスクリュー22rと螺合するナット2nと係合している。広角端から望遠端に至る変倍では、ステッピングモータ22の回転により、第2レンズ群鏡枠2kは図示の状態から光軸OBに沿って像側方向に移動させられる。
 第3レンズ群Gr3は、正の屈折力を有し、本例では第6レンズL6で構成され、主胴10に固定されたレンズ群である。また、第3レンズ群Gr3の像面側には開口絞りSが配置されている。
 第4レンズ群Gr4は、正の屈折力を有し、本例では第7レンズL7、第8レンズL8で構成され、第4レンズ群鏡枠4kに保持されている。
 第4レンズ群鏡枠4kはガイド軸15、16により案内されて光軸OB方向に移動可能となっている。第4レンズ群鏡枠4kは、ステッピングモータ24により回転させられるリードスクリュー24rと螺合するナット4nと係合している。広角端から望遠端に至る変倍では、ステッピングモータ24の回転により、第4レンズ群鏡枠4kは図示の状態から光軸OBに沿って物体側方向に移動させられる。また、第4レンズ群Gr4は、変倍時に移動すると共に、焦点調節(以下、フォーカシングとも言う)をも行う。
 第5レンズ群Gr5は、本例では、第9レンズL9、第10レンズL10、第11レンズL11の3枚で構成されており、光軸方向には移動しないレンズ群である。
 第5レンズ群Gr5には、光軸OBに垂直な方向の移動により像面上の結像位置の変動を補正する単レンズで構成された負の屈折力を有するブレ補正レンズである第10レンズL10と、ブレ補正レンズである第10レンズL10の像側に配置され正の屈折力を有するレンズ部分群(本例では、第11レンズL11が相当)とを少なくとも有している。
 第10レンズL10は、主胴10に固定されたレンズシフト機構ASに組み付けられている。レンズシフト機構ASは、本例のブレ補正レンズである第10レンズL10を、光軸OBに直交する面内で移動させて手振れ補正をおこなうようになっている。
 F1は赤外光カットフィルタと光学的ローパスフィルタが積層された光学フィルタである。
 撮像素子6はCCD(Charge Coupled Device)型イメージセンサ、CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等が用いられる。F2は、撮像素子6のシールガラスである平行平板である。
 図2に示すレンズシフト機構ASは、第10レンズL10を、光軸OBに直交する面内で移動させるものであり、公知の機構でよく、例えば特開2009-300737号公報の図10~図12に記載の構成等が適用できる。
 以下に、本発明のズームレンズの実施例を示す。各実施例における各符号の意味は以下の通りである。
f :撮像レンズ全系の焦点距離(mm)
Fno:Fナンバー
2ω:画角(°)
R :曲率半径(mm)
D :軸上面間隔(mm)
Nd:レンズ材料のd線に対する屈折率
νd:レンズ材料のアッベ数
 各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。
Figure JPOXMLDOC01-appb-M000001
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
である。
 なお、これ以降(レンズデータを含む)において、10のべき乗数(例えば2.5×10-02)をE(例えば2.5E-02)を用いて表すものとする。
 (実施例1)
 実施例1のズームレンズの全体緒元は、次のとおりである。
   広角端   中間   望遠端
f =5.06~11.12~24.02
Fno=3.90~ 4.26~ 4.84
ズーム比=4.75
レンズ全長=54.86mm
 実施例1のズームレンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd    νd   有効半径(mm)
 1    -147.871   0.50   1.84670   23.8     5.82
 2     14.269   1.28                5.29
 3      ∞    8.65   1.84670   23.8     5.21
 4      ∞    1.24                4.81
 5*    12.772   2.38   1.72900   54.0     4.80
 6*    -20.129   d1                4.75
 7     -26.158   0.50   1.90370   31.3     2.69
 8      6.350   1.04                2.41
 9     -11.084   0.50   1.48750   70.4     2.37
 10      7.272   0.98   1.94590   18.0     2.36
 11     25.810   d2                2.30
 12*    12.987   1.16   1.59200   67.0     2.58
 13     -16.815   0.70                2.55
 14(絞り)   ∞    d3                2.39
 15      9.267   0.50   1.92290   20.9     3.31
 16      5.549   2.45   1.56880   56.0     3.19
 17     -20.895   d4                3.30
 18*     2.867   0.50   1.63200   23.4     2.99
 19*     8.686   2.49                2.90
 20     -21.143   0.50   1.91080   35.3     3.01
 21     12.727   1.14                3.13
 22*     8.270   3.50   1.54470   56.2     3.92
 23*    -11.213   1.66                4.26
 24      ∞    0.50   1.51630   64.2     4.08
 25      ∞    0.50                4.05
 26      ∞    0.50   1.51630   64.2     4.02
 27      ∞    1.94                4.00
 非球面係数
第5面
 K=0.00000E+00,A4=-0.10564E-03,A6=0.37936E-06,A8=-0.15631E-07
第6面
 K=0.00000E+00,A4=0.34813E-04,A6=0.50475E-06,A8=-0.13843E-07
第12面
 K=0.00000E+00,A4=-0.19879E-03,A6=-0.12023E-04,A8=0.21024E-05,A10=-0.12887E-06
第18面
 K=0.00000E+00,A4=0.70415E-03,A6=-0.18275E-05,A8=0.17532E-05,A10=-0.24864E-06
第19面
 K=0.00000E+00,A4=0.11524E-02,A6=0.22765E-04,A8=0.29942E-05,A10=-0.48136E-06
第22面
 K=0.00000E+00,A4=-0.91461E-03,A6=0.22379E-04,A8=0.87773E-06,A10=-0.12458E-06,A12=-0.15065E-11
第23面
 K=0.00000E+00,A4=-0.88370E-03,A6=0.16511E-04,A8=0.18001E-05,A10=-0.11952E-06,A12=0.16217E-11
 各ポジションの焦点距離、Fナンバー、画角、可変間隔(群間)データを示す。
 f   Fno  2ω  d1  d2  d3  d4
 5.06  3.90  75.4  0.46  9.35  8.57  1.36
11.12  4.26  38.7  5.74  4.07  4.85  5.08
24.02  4.84  18.5  9.41  0.40  2.00  7.93
 レンズ群データは、
レンズ群   始面   焦点距離(mm)
  1     1      14.05
  2     7      -5.00
  3     12      12.56
  4     15      16.03
  5     18     275.14
である。
 図3及び図4は、実施例1のズームレンズの断面図である。
 図中Gr1は第1レンズ群、Gr2は第2レンズ群、Gr3は第3レンズ群、Gr4は第4レンズ群、Gr5は第5レンズ群であり、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は第6レンズ、L7は第7レンズ、L8は第8レンズ、L9は第9レンズ、L10は第10レンズ、L11は第11レンズである。
 また、Sは開口絞り、Iは撮像面を示す。PRは物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)を示し、F1は光学的ローパスフィルタやIRカットフィルタを想定した光学フィルタであり、F2は固体撮像素子のシールガラス等を想定した平行平板を示す。
 なお、図3は広角端における状態を示す断面図である。また、図4以降の断面図においては、反射光学素子PRは、その光路長と等価な平行平板として表している。図4(a)は広角端における断面図、図4(b)は中間における断面図、図4(c)は望遠端における断面図である。
 図5は、実施例1のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。図5(a)は広角端における収差図であり、図5(b)は中間における収差図であり、図5(c)は望遠端における収差図である。尚、以降の収差図において、球面収差図では、実線がd線、破線がg線を表し、非点収差図では、実線がサジタル像面、破線がメリジオナル像面をあらわすものとする。
 実施例1のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群が光軸方向に沿って像側に移動し、第4レンズ群が光軸方向に沿って物体側に移動して、各レンズ群の間隔を変えることにより変倍を行うことが出来る。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群を移動させることによって無限遠から有限距離へのフォーカシングを行う。なお、第2レンズ、第6レンズはガラスモールドレンズ、第9レンズ、第11レンズはプラスチック材料から形成されており、それ以外のレンズはガラス材料による研磨レンズを想定している。
 実施例1では、第10レンズL10が請求項に係るブレ補正レンズに相当し、第11レンズL11が請求項に係るレンズ部分群に相当する。よって、実施例1では、光軸OB方向に対し垂直な面内で第10レンズL10をシフト移動させて、手振れによる像面上の結像位置の変動を補正する手振れ補正が行われる。
 また、実施例1においては、0.3度手振れ時における第10レンズL10のシフト移動量は、広角端で0.033mm、中間で0.073mm、望遠端で0.157mmである。
 (実施例2)
 実施例2のズームレンズの全体緒元は、次のとおりである。
   広角端   中間   望遠端
f =5.06~11.12~24.02
Fno=3.90~ 4.28~ 4.86
ズーム比=4.75
レンズ全長=54.95mm
 実施例2のズームレンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd    νd   有効半径(mm)
 1    -392.349   0.50   1.84670   23.8     5.85
 2     13.347   1.37                5.29
 3      ∞    8.65   1.84670   23.8     5.22
 4      ∞    1.06                4.81
 5*    12.601   2.41   1.72900   54.0     4.80
 6*    -19.791   d1                4.75
 7     -25.294   0.50   1.90370   31.3     2.71
 8      6.375   1.03                2.42
 9     -11.783   0.50   1.48750   70.4     2.38
 10      7.105   0.98   1.94590   18.0     2.36
 11     23.691   d2                2.30
 12*    13.268   1.13   1.59200   67.0     2.54
 13     -17.149   0.70                2.50
 14(絞り)   ∞    d3                2.35
 15     12.341   0.50   1.84670   23.8     3.36
 16      6.096   2.31   1.61800   63.4     3.29
 17     -21.547   d4                3.30
 18     -11.040   0.62   1.94590   18.0     3.09
 19     -12.891   0.84                3.17
 20     -19.606   0.50   1.91080   35.3     3.19
 21     11.571   0.54                3.29
 22*     6.439   3.50   1.54470   56.2     3.85
 23*    -15.322   1.51                4.11
 24      ∞    0.50   1.51630   64.2     3.98
 25      ∞    0.50                3.97
 26      ∞    0.50   1.51630   64.2     3.94
 27      ∞    1.53                3.92
非球面係数
第5面
 K=0.00000E+00,A4=-0.11215E-03,A6=0.63008E-06,A8=-0.24452E-07
第6面
 K=0.00000E+00,A4=0.31976E-04,A6=0.74999E-06,A8=-0.22100E-07
第12面
 K=0.00000E+00,A4=-0.17331E-03,A6=-0.18348E-04,A8=0.30772E-05,A10=-0.18777E-06
第22面
 K=0.00000E+00,A4=-0.11604E-02,A6=-0.12489E-04,A8=0.25947E-05,A10=-0.14969E-06,A12=-0.15065E-11
第23面
 K=0.00000E+00,A4=-0.82255E-03,A6=-0.20162E-05,A8=0.29320E-05,A10=-0.14422E-06,A12=0.16217E-11
 各ポジションの焦点距離、Fナンバー、画角、可変間隔(群間)データ
 f   Fno  2ω  d1  d2  d3  d4
 5.06  3.90  75.4  0.46  9.19  9.09  4.04
11.12  4.28  38.7  5.62  4.03  4.99  8.14
24.02  4.86  18.5  9.25  0.40  2.00  11.12
 レンズ群データは、
レンズ群   始面   焦点距離(mm)
  1     1      13.82
  2     7      -5.00
  3     12      12.81
  4     15      17.05
  5     18     -474.89
である。
 図6は、実施例2のズームレンズの断面図である。
 図中Gr1は第1レンズ群、Gr2は第2レンズ群、Gr3は第3レンズ群、Gr4は第4レンズ群、Gr5は第5レンズ群であり、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は第6レンズ、L7は第7レンズ、L8は第8レンズ、L9は第9レンズ、L10は第10レンズ、L11は第11レンズである。
 また、Sは開口絞り、Iは撮像面を示す。また、PRは物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)を示し、F1は光学的ローパスフィルタやIRカットフィルタを想定した光学フィルタであり、F2は固体撮像素子のシールガラス等を想定した平行平板を示す。
 なお、図6(a)は広角端における断面図、図6(b)は中間における断面図、図6(c)は望遠端における断面図である。
 図7は、実施例2のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。図7(a)は広角端における収差図であり、図7(b)は中間における収差図であり、図7(c)は望遠端における収差図である。
 実施例2のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群が光軸方向に沿って像側に移動し、第4レンズ群が光軸方向に沿って物体側に移動して、各レンズ群の間隔を変えることにより変倍を行うことが出来る。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群を移動させることによって無限遠から有限距離へのフォーカシングを行う。なお、第2レンズ、第6レンズはガラスモールドレンズ、第11レンズはプラスチック材料から形成されており、それ以外のレンズはガラス材料による研磨レンズを想定している。
 実施例2では、第10レンズL10が請求項に係るブレ補正レンズに相当し、第11レンズL11が請求項に係るレンズ部分群に相当する。よって、実施例2では、光軸方向に対し垂直な面内で第10レンズL10をシフト移動させて、手振れによる像面上の結像位置の変動を補正する手振れ補正が行われる。
 また、実施例2において、0.3度手振れ時における第10レンズL10のシフト移動量は、広角端で0.033mm、中間で0.073mm、望遠端で0.157mmである。
 (実施例3)
 実施例3のズームレンズの全体緒元は、次のとおりである。
   広角端   中間   望遠端
f =5.06~11.12~24.02
Fno=3.90~ 4.28~ 4.90
ズーム比=4.75
レンズ全長=55.00mm
 実施例3のズームレンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd    νd   有効半径(mm)
 1      ∞    0.50   1.84670   23.8     5.88
 2     12.903   1.43                5.31
 3      ∞    8.64   1.84670   23.8     5.23
 4      ∞    0.96                4.81
 5*    12.660   2.44   1.72900   54.0     4.80
 6*    -19.323   d1                4.74
 7     -25.251   0.50   1.90370   31.3     2.73
 8      6.622   1.03                2.44
 9     -11.400   0.50   1.49700   81.6     2.39
 10      7.265   0.96   1.94590   18.0     2.37
 11     22.962   d2                2.30
 12*    13.303   1.12   1.59200   67.0     2.52
 13     -17.365   0.70                2.48
 14(絞り)   ∞    d3                2.33
 15     12.252   0.50   1.84670   23.8     3.36
 16      6.065   2.34   1.61800   63.4     3.29
 17     -20.972   d4                3.30
 18     -12.766   0.87   1.90370   31.3     3.11
 19     20.446   1.27                3.27
 20*     6.638   3.50   1.54470   56.2     4.18
 21*    35.133   1.22                4.17
 22      ∞    0.50   1.51630   64.2     4.03
 23      ∞    0.50                4.00
 24      ∞    0.50   1.51630   64.2     3.96
 25      ∞    1.34                3.93
非球面係数
第5面
 K=0.00000E+00,A4=-0.11055E-03,A6=0.11548E-05,A8=-0.35692E-07
第6面
 K=0.00000E+00,A4=0.36787E-04,A6=0.11595E-05,A8=-0.32296E-07
第12面
 K=0.00000E+00,A4=-0.17338E-03,A6=-0.18233E-04,A8=0.29650E-05,A10=-0.17892E-06
第20面
 K=0.00000E+00,A4=-0.68316E-03,A6=0.56166E-05,A8=0.70142E-06,A10=-0.35418E-07,A12=-0.11975E-11
第21面
 K=0.00000E+00,A4=-0.59309E-03,A6=0.17548E-04,A8=0.17492E-05,A10=-0.75032E-07,A12=0.14863E-11
 各ポジションの焦点距離、Fナンバー、画角、可変間隔(群間)データ
 f   Fno  2ω  d1  d2  d3  d4
 5.06  3.90  75.4  0.46  9.04  9.35  4.84
11.12  4.28  38.7  5.55  3.95  5.20  8.99
24.02  4.90  18.5  9.10  0.40  2.12  12.07
 レンズ群データは、
レンズ群   始面   焦点距離(mm)
  1     1      13.71
  2     7      -4.94
  3     12      12.90
  4     15      16.76
  5     18    -1636.67
である。
 図8は、実施例3のズームレンズの断面図である。図中Gr1は第1レンズ群、Gr2は第2レンズ群、Gr3は第3レンズ群、Gr4は第4レンズ群、Gr5は第5レンズ群であり、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は第6レンズ、L7は第7レンズ、L8は第8レンズ、L9は第9レンズ、L10は第10レンズである。
 また、Sは開口絞り、Iは撮像面を示す。また、PRは物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)を示し、F1は光学的ローパスフィルタやIRカットフィルタを想定した光学フィルタであり、F2は固体撮像素子のシールガラス等を想定した平行平板を示す。
 なお、図8(a)は広角端における断面図、図8(b)は中間における断面図、図8(c)は望遠端における断面図である。
 図9は、実施例3のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。図9(a)は広角端における収差図であり、図9(b)は中間における収差図であり、図9(c)は望遠端における収差図である。
 実施例3のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群が光軸方向に沿って像側に移動し、第4レンズ群が光軸方向に沿って物体側に移動して、各レンズ群の間隔を変えることにより変倍を行うことが出来る。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群を移動させることによって無限遠から有限距離へのフォーカシングを行う。なお、第2レンズ、第6レンズはガラスモールドレンズ、第10レンズはプラスチック材料から形成されており、それ以外のレンズはガラス材料による研磨レンズを想定している。
 実施例3では、第9レンズL9が請求項に係るブレ補正レンズに相当し、第10レンズL10が請求項に係るレンズ部分群に相当する。よって、実施例3では、光軸方向に対し垂直な面内で第9レンズL9をシフト移動させて、手振れによる像面上の結像位置の変動を補正する手振れ補正が行われる。
 また、実施例3において、0.3度手振れ時における第9レンズL9のシフト移動量は、広角端で0.035mm、中間で0.076mm、望遠端で0.164mmである。
 (実施例4)
 実施例4のズームレンズの全体緒元は、次のとおりである。
   広角端   中間   望遠端
f =5.06~11.05~24.02
Fno=3.90~ 4.25~ 4.84
ズーム比=4.75
レンズ全長=54.91mm
 実施例4のズームレンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd    νd   有効半径(mm)
 1    -228.788   0.50   1.84670   23.8     5.85
 2     13.733   1.33                5.30
 3      ∞    8.65   1.84670   23.8     5.23
 4      ∞    1.31                4.81
 5*    12.894   2.39   1.72900   54.0     4.80
 6*    -20.095   d1                4.75
 7     -26.504   0.50   1.90370   31.3     2.69
 8      6.405   1.04                2.41
 9     -10.839   0.50   1.48750   70.4     2.37
 10      7.400   0.97   1.94590   18.0     2.36
 11     26.967   d2                2.30
 12*    12.960   1.16   1.59200   67.0     2.59
 13     -16.719   0.70                2.55
 14(絞り)   ∞    d3                2.41
 15      9.181   0.50   1.92290   20.9     3.31
 16      5.525   2.40   1.56880   56.0     3.19
 17     -22.083   d4                3.30
 18*    10.292   0.50   1.63200   23.4     2.99
 19*     6.140   3.65                2.87
 20     -15.669   0.50   1.88300   40.8     3.23
 21      3.831   0.48                3.41
 22*     9.347   3.49   1.54470   56.2     3.89
 23*    -11.647   1.36                4.21
 24      ∞    0.50   1.51630   64.2     4.04
 25      ∞    0.50                4.01
 26      ∞    0.50   1.51630   64.2     3.98
 27      ∞    1.64                3.95
非球面係数
第5面
 K=0.00000E+00,A4=-0.10184E-03,A6=0.32779E-06,A8=-0.12723E-07
第6面
 K=0.00000E+00,A4=0.33783E-04,A6=0.48373E-06,A8=-0.11624E-07
第12面
 K=0.00000E+00,A4=-0.21086E-03,A6=-0.10074E-04,A8=0.18302E-05,A10=-0.11344E-06
第18面
 K=0.00000E+00,A4=0.37096E-03,A6=-0.66712E-05,A8=0.20283E-05,A10=-0.25125E-06
第19面
 K=0.00000E+00,A4=0.84536E-03,A6=0.38378E-05,A8=0.58192E-05,A10=-0.63746E-06
第22面
 K=0.00000E+00,A4=-0.56424E-03,A6=0.13337E-04,A8=0.11032E-05,A10=-0.12083E-06,A12=-0.15065E-11
第23面
 K=0.00000E+00,A4=-0.84655E-03,A6=0.17831E-04,A8=0.13587E-05,A10=-0.10238E-06,A12=0.16217E-11
 各ポジションの焦点距離、Fナンバー、画角、可変間隔(群間)データ
 f   Fno  2ω  d1  d2  d3  d4
 5.06  3.90  75.4  0.46  9.42  8.66  1.30
11.05  4.25  38.9  5.76  4.12  4.92  5.05
24.02  4.84  18.5  9.48  0.40  2.00  7.97
 レンズ群データは、
レンズ群   始面   焦点距離(mm)
  1     1      14.07
  2     7      -5.04
  3     12      12.51
  4     15      16.21
  5     18     820.52
である。
 図10は、実施例4のズームレンズの断面図である。図中Gr1は第1レンズ群、Gr2は第2レンズ群、Gr3は第3レンズ群、Gr4は第4レンズ群、Gr5は第5レンズ群であり、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は第6レンズ、L7は第7レンズ、L8は第8レンズ、L9は第9レンズ、L10は第10レンズ、L11は第11レンズである。
 また、Sは開口絞り、Iは撮像面を示す。また、PRは物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)を示し、F1は光学的ローパスフィルタやIRカットフィルタを想定した光学フィルタであり、F2は固体撮像素子のシールガラス等を想定した平行平板を示す。
 なお、図10(a)は広角端における断面図、図10(b)は中間における断面図、図10(c)は望遠端における断面図である。
 図11は、実施例4のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。図11(a)は広角端における収差図であり、図11(b)は中間における収差図であり、図11(c)は望遠端における収差図である。
 実施例4のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群が光軸方向に沿って像側に移動し、第4レンズ群が光軸方向に沿って物体側に移動して、各レンズ群の間隔を変えることにより変倍を行うことが出来る。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群を移動させることによって無限遠から有限距離へのフォーカシングを行う。なお、第2レンズ、第6レンズはガラスモールドレンズ、第9レンズ、第11レンズはプラスチック材料から形成されており、それ以外のレンズはガラス材料による研磨レンズを想定している。
 実施例4では、第10レンズL10が請求項に係るブレ補正レンズに相当し、第11レンズL11が請求項に係るレンズ部分群に相当する。よって、実施例4では、光軸方向に対し垂直な面内で第10レンズL10をシフト移動させて、手振れによる像面上の結像位置の変動を補正する手振れ補正が行われる。
 また、実施例4において、0.3度手振れ時における第10レンズL10のシフト移動量は、広角端で0.051mm、中間で0.111mm、望遠端で0.242mmである。
 (実施例5)
 実施例5のズームレンズの全体緒元は、次のとおりである。
   広角端   中間   望遠端
f =5.06~11.01~24.02
Fno=3.90~ 4.29~ 5.02
ズーム比=4.75
レンズ全長=55.00mm
 実施例5のズームレンズの面データを以下に示す。
面番号    R(mm)   D(mm)   Nd    νd   有効半径(mm)
 1      ∞    0.50   1.84670   23.8     6.05
 2     13.231   1.39                5.32
 3      ∞    8.65   1.84670   23.8     5.25
 4      ∞    1.00                4.82
 5*    12.935   2.35   1.72900   54.0     4.80
 6*    -20.182   d1                4.74
 7     -22.840   0.50   1.90370   31.3     2.72
 8      7.786   0.91                2.46
 9     -13.577   0.50   1.61800   63.4     2.40
 10      7.417   0.98   1.94590   18.0     2.36
 11     29.488   d2                2.30
 12*    13.700   1.08   1.59200   67.0     2.46
 13     -18.493   0.70                2.43
 14(絞り)   ∞    d3                2.29
 15     11.298   0.50   1.84670   23.8     3.37
 16      5.606   2.41   1.63850   55.5     3.29
 17     -21.768   d4                3.30
 18      7.934   0.87   1.80520   25.5     3.11
 19     -6.689   1.09                3.22
 20     -7.414   0.50   1.90370   31.3     3.05
 21     89.887   1.63                3.23
 22*     7.538   2.51   1.49710   81.6     4.08
 23     -21.914   1.78                4.09
 24      ∞    0.50   1.51630   64.2     4.00
 25      ∞    0.50                3.98
 26      ∞    0.50   1.51630   64.2     3.96
 27      ∞    2.08                3.95
非球面係数
第5面
 K=0.00000E+00,A4=-0.10040E-03,A6=0.43656E-06,A8=0.70714E-09
第6面
 K=0.00000E+00,A4=0.27500E-04,A6=0.78091E-06,A8=-0.27847E-08
第12面
 K=0.00000E+00,A4=-0.16462E-03,A6=-0.18234E-04,A8=0.33633E-05,A10=-0.21835E-06
第22面
 K=0.00000E+00,A4=-0.37877E-03,A6=-0.65082E-05,A8=0.21692E-06,A10=-0.55080E-08
 各ポジションの焦点距離、Fナンバー、画角、可変間隔(群間)データ
 f   Fno  2ω  d1  d2  d3  d4
 5.06  3.90  75.4  0.46  9.17  8.90  3.05
11.01  4.29  39.1  5.62  4.01  5.22  6.74
24.02  5.02  18.5  9.23  0.40  2.00  9.96
 レンズ群データは、
レンズ群   始面   焦点距離(mm)
  1     1      14.40
  2     7      -5.08
  3     12      13.46
  4     15      15.23
  5     18    -2505.12
である。
 図12は、実施例5のズームレンズの断面図である。図中Gr1は第1レンズ群、Gr2は第2レンズ群、Gr3は第3レンズ群、Gr4は第4レンズ群、Gr5は第5レンズ群であり、L1は第1レンズ、L2は第2レンズ、L3は第3レンズ、L4は第4レンズ、L5は第5レンズ、L6は第6レンズ、L7は第7レンズ、L8は第8レンズ、L9は第9レンズ、L10は第10レンズ、L11は第11レンズである。
 また、Sは開口絞り、Iは撮像面を示す。また、PRMは物体側からの光線を直角に折り曲げることのできる反射光学素子(例えば直角プリズム)を示し、F1は光学的ローパスフィルタやIRカットフィルタを想定した光学フィルタであり、F2は固体撮像素子のシールガラス等を想定した平行平板を示す。
 なお、図12(a)は広角端における断面図、図12(b)は中間における断面図、図12(c)は望遠端における断面図である。
 図13は、実施例5のズームレンズの収差図(球面収差、非点収差、歪曲収差)である。図13(a)は広角端における収差図であり、図13(b)は中間における収差図であり、図13(c)は望遠端における収差図である。
 実施例5のズームレンズは、広角端から望遠端への変倍に際し、第2レンズ群が光軸方向に沿って像側に移動し、第4レンズ群が光軸方向に沿って物体側に移動して、各レンズ群の間隔を変えることにより変倍を行うことが出来る。残りのレンズ群は、変倍に際し固定されている。また、第4レンズ群を移動させることによって無限遠から有限距離へのフォーカシングを行う。なお、第2レンズ、第6レンズ、第11レンズはガラスモールドレンズ、それ以外のレンズはガラス材料による研磨レンズを想定している。
 実施例5では、第10レンズL10が請求項に係るブレ補正レンズに相当し、第11レンズL11が請求項に係るレンズ部分群に相当する。よって、光軸方向に対し垂直な面内で第10レンズL10をシフト移動させて、手振れによる像面上の結像位置の変動を補正する手振れ補正が行われる。
 また、実施例5において、0.3度手振れ時における第10レンズL10のシフト移動量は、広角端で0.027mm、中間で0.059mm、望遠端で0.129mmである。
 上記の実施例1~5のズームレンズの各条件式に対応する値は、次のとおりである。
    条件式(1) 条件式(2)  条件式(3)  条件式(4)
     ν5n  (1-m5n)・m5L ν5p-ν5n |f1a/fW|
実施例1:35.2  -0.80    20.9    3.04
実施例2:35.2  -0.80    20.9    3.01
実施例3:31.3  -0.77    24.8    3.01
実施例4:40.8  -0.52    15.3    3.02
実施例5:31.3  -0.97    50.2    3.09
 なお、上記の実施例1~5では、レンズ部分群が正の単玉レンズのものを例示しているが、これに限るものでなく、本願は第5レンズ群内に配置された負レンズをブレ補正レンズとし、このブレ補正レンズより像面側に配置された複数のレンズの合成焦点距離が正である場合を含むものである。この場合、ブレ補正レンズより像面側の複数のレンズ群が請求項に係るレンズ部分群に相当する。
 例えば、第5レンズ群が物体側より負、負、正のレンズで構成され、像側の負及び正のレンズの合成焦点距離が正である場合、物体側の負レンズをシフト移動させるものを含み、像側の負及び正のレンズが請求項に係るレンズ部分群に相当するものとなる。また、例えば第5レンズ群が物体側より正、負、負、正のレンズで構成され、像側の負及び正のレンズの合成焦点距離が正である場合、物体側の負レンズをシフト移動させるものも含み、この場合、像側の負及び正のレンズが請求項に係るレンズ部分群に相当するものとなる。
 また、最近では、プラスチック材料中に無機微粒子を混合させ、プラスチック材料の温度変化を小さくできることが分かってきた。詳細に説明すると、一般に透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が20ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性のきわめて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb25)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。本発明において、第9レンズや第11レンズに、このような無機粒子を分散させたプラスチック材料を用いることにより、撮像レンズ全系の温度変化時の像点位置変動をより小さく抑えることが可能となる。
 また近年、撮像装置を低コストに且つ大量に実装する方法として、予め半田がポッティングされた基板に対し、ICチップその他の電子部品と光学素子とを載置したままリフロー処理(加熱処理)し、半田を溶融させることにより電子部品と光学素子とを基板に同時実装するという技術が提案されている。
 このようなリフロー処理を用いて実装を行うためには、電子部品と共に光学素子を約200~260度に加熱する必要があるが、このような高温下では熱可塑性樹脂を用いたレンズでは熱変形し或いは変色して、その光学性能が低下してしまうという問題点がある。このような問題を解決するための方法のひとつとして、耐熱性能に優れたガラスモールドレンズを使用し、小型化と高温環境での光学性能を両立する技術が提案されているが、熱可塑性樹脂を用いたレンズよりもコストが高いため、撮像装置の低コスト化の要求に応えられないという問題があった。
 そこで、レンズの材料にエネルギー硬化性樹脂を使用することで、ポリカーボネイト系やポリオレフィン系のような熱可塑性樹脂を用いたレンズに比べ、高温に曝されたときの光学性能の低下が小さいため、リフロー処理に有効であり、かつガラスモールドレンズよりも製造しやすく安価となり、撮像レンズを組み込んだ撮像装置の低コストと量産性を両立できる。なお、エネルギー硬化性樹脂とは、熱硬化性樹脂および紫外線硬化性樹脂のいずれをも指すものとする。
 本発明のプラスチックレンズを前述のエネルギー硬化性樹脂を用いて形成してもよい。
 本発明は、明細書に記載の実施形態、実施例に限定されるものではなく、他の実施形態、変形例を含むことは、本明細書に記載された実施形態、実施例や技術的思想から本分野の当業者にとって明らかである。明細書の記載及び実施形態、実施例は、あくまでも例証を目的としており、本発明の範囲は後述するクレームによって示されている。
 Gr1 第1レンズ群
 Gr2 第2レンズ群
 Gr3 第3レンズ群
 Gr4 第4レンズ群
 Gr5 第5レンズ群
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 L4 第4レンズ
 L5 第5レンズ
 L6 第6レンズ
 L7 第7レンズ
 L8 第8レンズ
 L9 第9レンズ
 L10 第10レンズ
 L11 第11レンズ
 PR 反射光学素子
 F1 光学フィルタ
 F2 平行平板
 2k 第2レンズ群鏡枠
 4k 第4レンズ群鏡枠
 2n、4n ナット
 6 撮像素子
 10 主胴
 15、16 ガイド軸
 22、24 ステッピングモータ
 22r、24r リードスクリュー
 S 開口絞り
 OA、OB 光軸
 AS レンズシフト機構

Claims (10)

  1.  物体側より順に、
     正の屈折力を有すると共に、光路を折り曲げる反射光学素子を含んで構成された第1レンズ群と、
     負の屈折力を有する第2レンズ群と、
     正の屈折力を有する第3レンズ群と、
     正の屈折力を有する第4レンズ群と、
     第5レンズ群と、から構成され、各レンズ群の間隔を変えることにより変倍を行うズームレンズにおいて、
     広角端から望遠端に至る変倍で前記第2レンズ群は像側方向に移動するとともに、前記第4レンズ群は物体側方向に移動を行い、
     前記第5レンズ群は、少なくとも、光軸に垂直な方向の移動により像面上の結像位置の変動を補正する単レンズで構成された負の屈折力を有するブレ補正レンズと、前記ブレ補正レンズの像側に配置され正の屈折力を有するレンズ部分群と、を有することを特徴とするズームレンズ。
  2.  以下の条件式を満足することを特徴とする請求項1に記載のズームレンズ。
     30.0<ν5n<50.0           (1)
    ただし、
    ν5n:ブレ補正レンズのアッベ数
  3.  以下の条件式を満足することを特徴とする請求項1又は2に記載のズームレンズ。
     -1.0<(1-m5n)・m5L<-0.5    (2)
    ただし、
    5n:ブレ補正レンズの望遠端における横倍率
    5L:レンズ部分群の合成横倍率
  4.  前記第4レンズ群を移動させてフォーカシングを行うことを特徴とする請求項1乃至3のいずれか一項に記載のズームレンズ。
  5.  前記レンズ部分群は単レンズであり、以下の条件式を満足することを特徴とする請求項1乃至4のいずれか一項に記載のズームレンズ。
     10.0<ν5p-ν5n<60.0        (3)
    ただし、
    ν5p:レンズ部分群を構成する単レンズのアッベ数
    ν5n:ブレ補正レンズのアッベ数
  6.  前記第3レンズ群に、開口絞りを有することを特徴とする請求項1乃至5のいずれか一項に記載のズームレンズ。
  7.  前記レンズ部分群は、変倍時、合焦時ともに移動しないことを特徴とする請求項1乃至6のいずれか一項に記載のズームレンズ。
  8.  前記レンズ部分群は、プラスチックからなる単レンズであり、少なくとも1面に非球面を有することを特徴とする請求項1乃至7のいずれか一項に記載のズームレンズ。
  9.  前記第1レンズ群は、最も物体側に負の屈折力を持つレンズを有し、以下の条件式を満足することを特徴とする請求項1乃至8のいずれか一項に記載のズームレンズ。
     2.0<|f1a/fW|<4.0        (4)
    ただし、
    f1a:第1レンズ群の最も物体側のレンズの焦点距離
    fW:広角端における全系の焦点距離
  10.  請求項1乃至9のいずれか一項に記載のズームレンズを備えたことを特徴とする撮像装置。
PCT/JP2011/075332 2010-11-09 2011-11-02 ズームレンズ及び撮像装置 WO2012063711A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012542889A JPWO2012063711A1 (ja) 2010-11-09 2011-11-02 ズームレンズ及び撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010250610 2010-11-09
JP2010-250610 2010-11-09

Publications (1)

Publication Number Publication Date
WO2012063711A1 true WO2012063711A1 (ja) 2012-05-18

Family

ID=46050860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075332 WO2012063711A1 (ja) 2010-11-09 2011-11-02 ズームレンズ及び撮像装置

Country Status (2)

Country Link
JP (1) JPWO2012063711A1 (ja)
WO (1) WO2012063711A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003240A (ja) * 2011-06-14 2013-01-07 Canon Inc ズームレンズ及びそれを有する撮像装置
TWI736246B (zh) * 2020-05-04 2021-08-11 大立光電股份有限公司 成像用光學鏡頭組、取像裝置及電子裝置
TWI803832B (zh) * 2020-08-18 2023-06-01 南韓商三星電機股份有限公司 相機模組以及可攜式終端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071993A (ja) * 2004-09-02 2006-03-16 Sony Corp ズームレンズ及び撮像装置
JP2007033879A (ja) * 2005-07-27 2007-02-08 Sony Corp 撮像レンズ装置及び撮像装置
JP2007328306A (ja) * 2006-05-09 2007-12-20 Sony Corp ズームレンズ及び撮像装置
JP2008145529A (ja) * 2006-12-06 2008-06-26 Sony Corp ズームレンズ及び撮像装置
JP2011085653A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011085654A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011133799A (ja) * 2009-12-25 2011-07-07 Sony Corp ズームレンズ及び撮像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071993A (ja) * 2004-09-02 2006-03-16 Sony Corp ズームレンズ及び撮像装置
JP2007033879A (ja) * 2005-07-27 2007-02-08 Sony Corp 撮像レンズ装置及び撮像装置
JP2007328306A (ja) * 2006-05-09 2007-12-20 Sony Corp ズームレンズ及び撮像装置
JP2008145529A (ja) * 2006-12-06 2008-06-26 Sony Corp ズームレンズ及び撮像装置
JP2011085653A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011085654A (ja) * 2009-10-13 2011-04-28 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011133799A (ja) * 2009-12-25 2011-07-07 Sony Corp ズームレンズ及び撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013003240A (ja) * 2011-06-14 2013-01-07 Canon Inc ズームレンズ及びそれを有する撮像装置
TWI736246B (zh) * 2020-05-04 2021-08-11 大立光電股份有限公司 成像用光學鏡頭組、取像裝置及電子裝置
TWI803832B (zh) * 2020-08-18 2023-06-01 南韓商三星電機股份有限公司 相機模組以及可攜式終端
US11822060B2 (en) 2020-08-18 2023-11-21 Samsung Electro-Mechanics Co., Ltd. Camera module and portable terminal

Also Published As

Publication number Publication date
JPWO2012063711A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP6237106B2 (ja) ズームレンズ及び撮像装置
JP5832271B2 (ja) ズームレンズ及びそれを有する撮像装置
JP5282314B2 (ja) ズームレンズ及び撮像装置
JP5530868B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5413206B2 (ja) ズームレンズ及び撮像装置
WO2013161995A1 (ja) ズームレンズ、撮像装置、及びデジタル機器
WO2016203819A1 (ja) ズームレンズ及びそれを有する撮像装置
JP5557092B2 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5621782B2 (ja) ズームレンズ及び撮像装置
US8964304B2 (en) Zoom lens and image pickup apparatus equipped with the same
US6970298B1 (en) Zoom lens system and image capture apparatus having the same
JP5668409B2 (ja) ズームレンズおよび光学機器
JP5333906B2 (ja) ズームレンズおよび光学機器
WO2012090757A1 (ja) ズームレンズ及び撮像装置
JP6124028B2 (ja) ズームレンズ及び撮像装置
WO2012063711A1 (ja) ズームレンズ及び撮像装置
JP6268792B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
RU2614658C2 (ru) Вариообъектив, оптическое устройство и способ изготовления вариообъектива
JP5532402B2 (ja) ズームレンズおよび光学機器
JP7041403B2 (ja) ズームレンズ及び撮像装置
JP7494228B2 (ja) ズームレンズおよびそれを有する撮像装置
JP2018097321A (ja) ズームレンズ及び撮像装置
US20230213739A1 (en) Zoom lens and image pickup apparatus having the same
JP5252287B2 (ja) ズームレンズおよび光学機器
JP2023099391A (ja) ズームレンズおよびそれを有する撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012542889

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839036

Country of ref document: EP

Kind code of ref document: A1