WO2012060435A1 - 画像診断装置及び画像診断装置の制御方法 - Google Patents

画像診断装置及び画像診断装置の制御方法 Download PDF

Info

Publication number
WO2012060435A1
WO2012060435A1 PCT/JP2011/075399 JP2011075399W WO2012060435A1 WO 2012060435 A1 WO2012060435 A1 WO 2012060435A1 JP 2011075399 W JP2011075399 W JP 2011075399W WO 2012060435 A1 WO2012060435 A1 WO 2012060435A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
value
trigger
threshold
tdc
Prior art date
Application number
PCT/JP2011/075399
Other languages
English (en)
French (fr)
Inventor
博基 田口
昌快 津雪
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201180002644.9A priority Critical patent/CN102665563B/zh
Publication of WO2012060435A1 publication Critical patent/WO2012060435A1/ja
Priority to US13/613,266 priority patent/US9307947B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/467Arrangements for interfacing with the operator or the patient characterised by special input means
    • A61B6/469Arrangements for interfacing with the operator or the patient characterised by special input means for selecting a region of interest [ROI]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/488Diagnostic techniques involving pre-scan acquisition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0037Performing a preliminary scan, e.g. a prescan for identifying a region of interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Definitions

  • Embodiments described herein relate generally to an image diagnostic apparatus and a method for controlling the image diagnostic apparatus.
  • contrast imaging with injection of a contrast agent is performed by an X-ray CT (computed tomography) apparatus.
  • CT value changes according to the concentration of the contrast agent in the region of interest (ROI: region of interest) prior to imaging in order to determine the data collection timing after injection of the contrast agent. Monitored. Then, an imaging scan is started with a timing when the CT value in the ROI exceeds a preset threshold as a trigger.
  • ROI region of interest
  • An image diagnostic apparatus includes a density change acquisition unit, a trigger generation unit, and a control unit.
  • the concentration change acquisition unit acquires data corresponding to the temporal change in the concentration of the contrast agent injected into the subject.
  • the trigger generation unit generates a trigger by the second threshold process for the data excluding the abnormal data when the abnormal data is detected by the first threshold process for the data.
  • the control unit performs control for contrast imaging of the subject based on the trigger.
  • the control method of the diagnostic imaging apparatus includes a step of acquiring data corresponding to a temporal change in the concentration of the contrast agent injected into the subject, and a first threshold process for the data.
  • FIG. 1 is a functional block diagram of an image diagnostic apparatus according to an embodiment of the present invention.
  • TDC time density curve
  • Curve time density curve
  • the flowchart which shows the flow which performs the contrast imaging of a subject at the timing set by monitoring TDC of a contrast agent by the diagnostic imaging apparatus shown in FIG.
  • FIG. 1 is a functional block diagram of an image diagnostic apparatus according to an embodiment of the present invention.
  • the diagnostic imaging apparatus 1 has a function of performing contrast imaging of a subject.
  • the diagnostic imaging apparatus 1 includes a contrast medium injection device 2, a data collection system 3, a control unit 4, a data processing system 5, an input device 6, and a display device 7.
  • components that process digital data can be constructed by causing a computer to read a program.
  • Examples of the image diagnostic apparatus 1 include an X-ray CT apparatus and an MRI apparatus capable of performing contrast imaging.
  • the contrast medium injection device 2 has a function of injecting or intravenously injecting a contrast medium into a subject.
  • the data collection system 3 has a function of collecting biological data from a subject by executing a scan according to a predetermined condition.
  • a data collection system 3 that collects X-ray detection data as biological data from a subject is configured by components such as an X-ray tube and an X-ray detector.
  • a data collection system 3 that collects MR data as biological data from a subject is configured by components such as a coil and a magnet.
  • the control unit 4 has a function of causing the data acquisition system 3 to execute an imaging scan and a pre-scan prior to the imaging scan by controlling the data acquisition system 3 based on a trigger signal output from the data processing system 5.
  • the imaging scan is a scan for collecting contrast image data as diagnostic image data.
  • the prescan includes a scan for collecting image data for setting ROI and a scan for monitoring the contrast agent concentration in a desired ROI in order to determine the start timing of the imaging scan. For this reason, the control unit 4 has a function of setting an ROI according to information from the input device 6.
  • control unit 4 displays a function for controlling the data acquisition system 3 necessary for performing contrast imaging based on a trigger signal output from the data processing system 5 and information necessary for performing contrast imaging.
  • a function of outputting to the device 7 and other devices is provided.
  • the control unit 4 has a function of outputting a guide voice when an index such as a CT value indicating the contrast effect within the ROI of the subject exceeds a predetermined value, and when the index indicating the contrast effect has passed a peak.
  • the function of controlling the data processing system 5 to increase the imaging interval the function of controlling the data processing system 5 to reduce the tube current supplied to the X-ray tube when the index indicating the contrast effect exceeds the peak, A function for changing the imaging mode based on a trigger signal and a function for outputting information, such as a function for controlling the data processing system 5 to end imaging when an index indicating a contrast effect is equal to or less than a predetermined value Is provided.
  • the data processing system 5 includes an image data generation unit 8, a density change acquisition unit 9, a trigger generation unit 10, and an abnormality notification unit 11.
  • the density change acquisition unit 9 includes an ROI setting unit 12 and an ROI correction unit 13.
  • the trigger generation unit 10 includes a first threshold processing unit 14 and a second threshold processing unit 15.
  • the image data generation unit 8 generates image data by performing image reconstruction processing on biological data collected by the imaging scan or pre-scan by the data collection system 3, and displays the generated image data on the display device 7. It has a function to make it.
  • the concentration change acquisition unit 9 acquires the data corresponding to the temporal change of the contrast agent concentration as the TDC of the contrast agent based on the biological data collected by the pre-scan by the data acquisition system 3, and the TDC of the contrast agent.
  • the display device 7 has a function of displaying.
  • a contrast agent TDC can be created as a change in CT value within the ROI set in the X-ray CT image data.
  • a contrast agent TDC is created as a change in the pixel value in the ROI set in the MR image data or the signal value of the MR signal collected from a predetermined region. be able to.
  • the ROI setting unit 12 has a function of setting the ROI for creating the TDC of the contrast agent according to the information from the input device 6. Since there are a plurality of pixel positions in the ROI, one TDC can be created for each ROI using a representative value such as an average value of a plurality of pixel values or CT values. Therefore, a plurality of TDCs can be created by setting a plurality of ROIs.
  • the ROI correction unit 13 specifies a range in which the data exhibits an abnormal value by threshold processing, and sets a range excluding the range exhibiting the abnormal value from the ROI as a new ROI.
  • a function of executing correction processing That is, by the ROI correction processing by the ROI correction unit 13, the density change acquisition unit 9 can create a TDC using data in a range excluding a range exhibiting an abnormal value when an abnormal TDC is created. Composed. Information about whether or not an abnormal TDC has been created is given to the ROI correction unit 13 from the first threshold processing unit 14 of the trigger generation unit 10.
  • the trigger generation unit 10 has a function of detecting abnormal data of TDC by the first threshold processing for the TDC of the contrast agent. When abnormal data is detected, the trigger generation unit 10 generates a trigger signal by the second threshold processing for the TDC excluding abnormal data. It has a function to generate. In other words, even if the trigger signal generation condition is satisfied by the second threshold processing for the TDC, the trigger generation unit 10 stores the TDC data that is the target of the second threshold processing by the first threshold processing. When it is determined that the data is abnormal data, the trigger signal is not generated. In other words, either the first threshold process or the second threshold process may be executed first.
  • the trigger generation unit 10 has a function of causing the control unit 4 to start scanning, change the imaging mode, or output necessary information by outputting the generated trigger signal to the control unit 4.
  • the first threshold processing unit 14 has a function of performing first threshold processing on the TDC for determining whether or not the local data of the TDC is abnormal data. For example, when a first threshold value is set for the TDC value or variation amount of the contrast agent, and the TDC value or variation amount exceeds the first threshold value, the TDC of the portion exceeding the first threshold value is calculated. It can be determined as abnormal data.
  • the first threshold value can be determined empirically based on, for example, an abnormal value of TDC observed in the past.
  • the second threshold processing unit 15 has a function of performing a second threshold processing on the TDC for determining the trigger signal generation timing. If the trigger signal is a signal for starting an imaging scan, the second threshold processing is processing for determining that the trigger signal generation condition is satisfied when the TDC value exceeds the second threshold. be able to. If the trigger signal is a signal for changing the imaging mode or outputting information, the second threshold value and the second threshold processing method for the TDC are set according to the conditions for changing the imaging mode and outputting information. Is done.
  • the second threshold value can be determined to an empirical value that is conventionally used to determine the generation timing of the trigger signal.
  • the second threshold processing unit 15 determines a trigger signal generation condition for starting an imaging scan and the trigger generation unit 10 generates a trigger signal for starting the imaging scan will be described as an example.
  • FIG. 2 is a diagram for explaining an example of a method for generating a trigger signal by performing the first and second threshold processing on TDC with abnormal data
  • FIG. 3 is a generation target of the TDC shown in FIG. It is a figure which shows the example which excluded the range of the pixel which exhibits an abnormal value from other ROI.
  • the horizontal axis represents time
  • the vertical axis represents the CT value within the ROI.
  • the dotted line in FIG. 2 indicates TDC expressed as a temporal change in CT value within the ROI
  • the solid line circle indicates plot data of the CT value at each time for generating the TDC.
  • X-ray detection data is dynamically collected from the subject after contrast agent injection by pre-scan, and the CT value in the ROI is calculated in real time.
  • TDC in ROI can be obtained.
  • concentration of the contrast agent in ROI can be monitored as TDC.
  • the TDC corresponds to the concentration of the contrast agent in the ROI, the TDC does not rapidly increase or decrease but gradually increases.
  • an X-ray high-absorber exists in the vicinity of the ROI, an artifact may occur in the ROI of the X-ray CT image data due to the influence of the high-absorber.
  • the TDC increases rapidly and then decreases rapidly again.
  • the TDC when the trigger signal of the imaging scan is generated when the TDC exceeds the second threshold TH2, the TDC rapidly increases due to the artifact and exceeds the second threshold TH2. Then, the trigger signal is generated even though the contrast agent does not reach the ROI.
  • the trigger generation unit 10 is controlled not to generate a trigger signal. can do.
  • the first threshold TH1 can be set to about 30 HU (Hounsfield Unit).
  • the CT value difference ⁇ CT is compared with the first threshold value TH1, and if it is determined that the CT value difference ⁇ CT is equal to or less than the first threshold value TH1, the CT value and the second threshold value TH2 are compared. It is also possible to make a comparison determination with. Also, if the difference ⁇ CT between adjacent CT values is used as an indicator of the amount of fluctuation in TDC, it can be determined whether the cause of the increase in CT values is due to artifacts. A difference from the average value of n (n is a natural number) CT values may be compared with the first threshold TH1 as an index of the amount of variation in TDC.
  • the trigger generation unit 10 can be controlled so as not to generate.
  • the predetermined time ⁇ T can be determined empirically based on the appearance time of abnormal data in the past.
  • the CT value can be corrected to a normal value. In this case, since artifacts are excluded from the ROI, the next sampled CT value is also corrected to a normal value.
  • the pre-scan for monitoring the TDC can be continuously executed without starting the imaging scan.
  • the TDC gradually increases according to the concentration of the contrast agent and the CT value exceeds the second threshold value TH2
  • the difference ⁇ CT from the CT value sampled immediately before is first.
  • FIG. 4 is a diagram for explaining another example of a method for generating a trigger signal by performing first and second threshold processing on TDC with abnormal data.
  • the horizontal axis indicates time
  • the vertical axis indicates the CT value within the ROI.
  • a dotted line in FIG. 2 indicates TDC representing temporal change of CT value in ROI
  • a solid line circle indicates plot data of CT value at each time for generating TDC.
  • the first threshold processing can be performed using the CT value itself as an index of the amount of variation in TDC.
  • the first threshold value TH1 is set to a value that sufficiently exceeds the second threshold value TH2 and an assumed value that can be increased by the arrival of the contrast agent. For this reason, even if the CT value exceeds the second threshold value TH2 due to the artifact, the trigger signal is not generated if the CT value exceeds the first threshold value TH1.
  • At least a predetermined time ⁇ T elapses when the CT value is corrected by removing the artifact from the ROI, or when the CT value is determined to be abnormal data. It is possible to control the trigger generation unit 10 so as not to generate the trigger signal.
  • the abnormality notification unit 11 has a function of causing the display device 7 to display detection information of abnormal data when abnormal data is detected in the first threshold processing unit 14. That is, the abnormality notification unit 11 has a function of notifying the user of information such as that the increase in TDC is due to an artifact.
  • the diagnostic imaging apparatus 1 is an X-ray CT apparatus and the first and second threshold processing shown in FIG. 2 is performed to generate a trigger signal for an imaging scan.
  • FIG. 5 is a flowchart showing a flow of executing contrast imaging of a subject at a timing set by monitoring TDC of a contrast agent by the diagnostic imaging apparatus 1 shown in FIG.
  • step S1 image data for setting ROI, which is a target for creating a contrast agent TDC, is collected by pre-scanning. That is, under the control of the control unit 4, the data acquisition system 3 executes a pre-scan in a desired mode such as S & S (scan & scan) mode, S & V (scan & view) mode, helical scan mode, volume scan mode, etc. As a result, X-ray detection data at the site to be examined of the subject is collected.
  • a desired mode such as S & S (scan & scan) mode, S & V (scan & view) mode, helical scan mode, volume scan mode, etc.
  • X-rays are exposed to the subject from the X-ray tube provided in the data collection system 3, and the X-rays that have passed through the subject are detected by the X-ray detection device.
  • X-ray detection data detected by the X-ray detection device is collected by a data acquisition system (DAS: “data acquisition system”), and the X-ray detection data is output from the DAS to the data processing system 5 as a digital signal.
  • DAS data acquisition system
  • the image data generation unit 8 of the data processing system 5 generates image data by performing image reconstruction processing on the X-ray detection data, and causes the display device 7 to display the generated image data.
  • the ROI setting unit 12 sets the ROI for creating the TDC of the contrast agent according to the information from the input device 6. That is, when the user refers to the image displayed on the display device 7 and operates the input device 6 to input ROI setting information to the ROI setting unit 12, the ROI setting unit 12 performs FIG. 3 according to the ROI setting information. Set the ROI as shown in A).
  • step S3 the contrast medium injector 2 injects a contrast medium into the subject.
  • step S4 under the control of the control unit 4, the data collection system 3 executes a pre-scan for monitoring the TDC injected into the subject. That is, X-ray detection data is output from the DAS to the data processing system 5 in the same flow as in step S1. However, X-ray detection data is dynamically collected in the pre-scan for TDC monitoring.
  • step S5 the density change acquisition unit 9 of the data processing system 5 generates X-ray CT image data in real time by image reconstruction processing of the X-ray detection data, and performs CT in the ROI of the X-ray CT image data. Measure the value. Then, the concentration change acquisition unit 9 creates the time change of the CT value in the ROI as the TDC of the contrast agent, and causes the display device 7 to display the created TDC of the contrast agent.
  • the concentration change acquisition unit 9 may store the CT value at each time without displaying the TDC of the contrast medium on the display device 7.
  • step S6 the second threshold processing unit 15 performs second threshold processing on the TDC for determining the trigger signal generation timing. That is, the second threshold processing unit 15 determines whether or not the CT value in the ROI sampled at the latest time exceeds a preset second threshold TH2. If it is determined that the CT value does not exceed the second threshold TH2, the pre-scan for TDC monitoring from step S4 is subsequently executed to obtain the TDC of the contrast agent.
  • the second threshold value processing unit 15 may determine that the CT value has exceeded the second threshold value TH2.
  • step S7 the first threshold processing unit 14 calculates a difference ⁇ CT between the CT value determined to have exceeded the second threshold TH2 and the CT value sampled immediately before.
  • step S8 the first threshold value processing unit 14 determines whether or not the CT value exceeding the second threshold value TH2 is abnormal data that has increased due to the artifact.
  • a first threshold process is performed on the difference ⁇ CT. That is, the first threshold value processing unit 14 determines whether or not the CT value difference ⁇ CT exceeds a preset first threshold value TH1.
  • step S9 the first threshold value processing unit 14 gives detection information of abnormal data to the abnormality notification unit 11, and the abnormality notification unit 11 causes the increase in TDC due to artifacts to the display device 7.
  • the occurrence information of abnormal data such as is displayed. For this reason, the user can confirm that the increase in CT value is due to artifacts.
  • the ROI correction unit 13 determines a range in which the CT value exhibits an abnormal value in the ROI, for example, a range of pixels in which the CT value exceeds the second threshold TH2 or a CT value. A range of pixels in which the difference ⁇ CT exceeds the first threshold TH1 is specified by threshold processing. Then, the ROI correction unit 13 performs ROI correction processing for excluding the specified abnormal data range from the ROI as shown in FIG. As a result, the CT value sampled from the corrected ROI exhibits a normal value without being affected by the artifact.
  • step S11 the trigger generation unit 10 waits for a predetermined time ⁇ T.
  • the rapid increase of the CT value due to the influence of the artifact ends, and the CT value returns to the normal value.
  • step S9, step S10, and step S11 can be performed in any order independently of each other.
  • the first threshold value processing unit 14 determines that the CT value difference ⁇ CT does not exceed the first threshold value TH1.
  • step S12 the trigger generation unit 10 generates a trigger signal serving as an imaging scan start timing, and outputs the generated trigger signal to the control unit 4.
  • step S13 the control unit 4 that has received the trigger signal controls the data acquisition system 3, and the data acquisition system 3 executes a contrast imaging scan.
  • contrast CT image data in which the ROI is stained with a contrast agent can be collected as diagnostic image data.
  • the first threshold processing for detecting abnormal data may be performed prior to the second threshold processing for determining a trigger signal generation condition.
  • the diagnostic imaging apparatus 1 determines whether the variation in TDC is caused by the contrast agent or other causes by the threshold processing for the TDC of the contrast agent, and is caused by the contrast agent. Thus, only when the TDC rises or falls, a trigger signal for determining the timing of starting an imaging scan, changing the imaging mode, or outputting information is generated.
  • a trigger signal for controlling the contrast imaging scan can be generated at an appropriate timing.
  • the trigger signal can be generated at an appropriate timing by excluding the portion of TDC that has risen due to the appearance of the artifact.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 実施形態に係る画像診断装置は、濃度変化取得部、トリガ生成部及び制御部を備える。濃度変化取得部は、被検体に注入された造影剤の濃度の時間変化に対応するデータを取得する。トリガ生成部は、前記データに対する第1の閾値処理によって異常データが検出された場合に、前記異常データを除くデータに対する第2の閾値処理によってトリガを生成する。制御部は、前記トリガに基づいて前記被検体の造影イメージングのための制御を行う。

Description

画像診断装置及び画像診断装置の制御方法
 本発明の実施形態は、画像診断装置及び画像診断装置の制御方法に関する。
 従来、X線CT (computed tomography)装置により造影剤の注入を伴う造影イメージングが行われている。X線CT装置による造影イメージングでは、造影剤の注入後におけるデータ収集タイミングを決定するために、イメージングに先だって関心領域(ROI: region of interest)内における造影剤の濃度に応じたCT値の変化がモニタリングされる。そして、ROI内におけるCT値が予め設定された閾値を超えたタイミングをトリガとして、イメージングスキャンが開始される。
特開平6-114049号公報
 従来のX線CT装置による造影イメージングでは、CT値変化の測定対象となるROI内又はROI付近にX線の高吸収体等のアーチファクトの要因となる物体が存在すると、造影剤の濃度に関わらずCT値が上昇するため、イメージングスキャンの開始のためのトリガタイミングが誤って設定されるという問題がある。
 これは、磁気共鳴イメージング(MRI: Magnetic Resonance Imaging)装置を用いて造影イメージングを行う場合においても同様である。すなわち、MRI装置によりROI内における造影剤の濃度に応じた信号値をモニタリングしてデータ収集タイミングを決定する場合、アーチファクトにより信号値が上昇すると、データ収集タイミングが誤って設定されるという問題がある。
 更に、造影剤の濃度に応じて撮像モードの変更等の各種制御を行う場合においても、アーチファクトの発生に関わらず制御タイミングを適切に決定することが重要である。
 本発明は、造影剤の濃度に応じて、より適切に造影イメージングスキャンにおける制御タイミングを決定することが可能な画像診断装置及び画像診断装置の制御方法を提供することを目的とする。
 本発明の実施形態に係る画像診断装置は、濃度変化取得部、トリガ生成部及び制御部を備える。濃度変化取得部は、被検体に注入された造影剤の濃度の時間変化に対応するデータを取得する。トリガ生成部は、前記データに対する第1の閾値処理によって異常データが検出された場合に、前記異常データを除くデータに対する第2の閾値処理によってトリガを生成する。制御部は、前記トリガに基づいて前記被検体の造影イメージングのための制御を行う。
 また、本発明の実施形態に係る画像診断装置の制御方法は、被検体に注入された造影剤の濃度の時間変化に対応するデータを取得するステップと、前記データに対する第1の閾値処理によって異常データが検出された場合に、前記異常データを除くデータに対する第2の閾値処理によってトリガを生成するステップと、前記トリガに基づいて前記被検体の造影イメージングのための制御を行うステップとを有する。
本発明の実施形態に係る画像診断装置の機能ブロック図。 異常データを伴う時間濃度曲線(TDC: Time Density Curve)に対する第1及び第2の閾値処理を行ってトリガ信号を生成する方法の一例を説明する図。 図2に示すTDCの生成対象となったROIから異常値を呈する画素の範囲を除外した例を示す図。 異常データを伴うTDCに対する第1及び第2の閾値処理を行ってトリガ信号を生成する方法の別の一例を説明する図。 図1に示す画像診断装置により造影剤のTDCをモニタリングすることによって設定したタイミングで被検体の造影イメージングを実行する流れを示すフローチャート。
実施形態
 本発明の実施形態に係る画像診断装置及び画像診断装置の制御方法について添付図面を参照して説明する。
 図1は本発明の実施形態に係る画像診断装置の機能ブロック図である。
 画像診断装置1は、被検体の造影イメージングを行う機能を有する。そのために、画像診断装置1は、造影剤注入装置2、データ収集系3、制御部4、データ処理系5、入力装置6及び表示装置7を有する。画像診断装置1の構成要素のうち、デジタルデータを処理する構成要素は、コンピュータにプログラムを読み込ませることによって構築することができる。画像診断装置1の例としては、造影イメージングを行うことが可能なX線CT装置及びMRI装置が挙げられる。
 造影剤注入装置2は、被検体に造影剤をボーラス注入又は静注する機能を有する。
 データ収集系3は、所定の条件に従ってスキャンを実行することによって被検体から生体データを収集する機能を有する。画像診断装置1がX線CT装置である場合には、X線管及びX線検出器等の構成要素により被検体から生体データとしてX線検出データを収集するデータ収集系3が構成される。一方、画像診断装置1がMRI装置である場合には、コイル及び磁石等の構成要素により被検体から生体データとしてMRデータを収集するデータ収集系3が構成される。
 制御部4は、データ処理系5から出力されるトリガ信号に基づいてデータ収集系3を制御することによって、イメージングスキャン及びイメージングスキャンに先立つプレスキャンをデータ収集系3に実行させる機能を有する。イメージングスキャンは、診断画像データとして造影画像データを収集するためのスキャンである。また、プレスキャンとしては、ROI設定用の画像データを収集するためのスキャンやイメージングスキャンの開始タイミングを決定するために所望のROIにおける造影剤の濃度をモニタリングするためスキャンなどがある。このため、制御部4には、入力装置6からの情報に従ってROIを設定する機能が備えられる。
 更に、制御部4には、データ処理系5から出力されるトリガ信号に基づいて造影イメージングを行うために必要なデータ収集系3の制御を行う機能及び造影イメージングを行うために必要な情報を表示装置7やその他の機器に出力する機能が備えられる。例えば、制御部4には、被検体のROI内における造影効果を示すCT値等の指標が所定の値を超えた場合にガイド音声を出力させる機能、造影効果を示す指標がピークを過ぎた場合にデータ処理系5を制御して撮像間隔を長くする機能、造影効果を示す指標がピークを過ぎた場合にデータ処理系5を制御してX線管に供給される管電流を低下させる機能、造影効果を示す指標が所定の値以下となった場合にデータ処理系5を制御して撮像を終了させる機能のように、トリガ信号に基づいて撮像モードの変更を行う機能や情報を出力させる機能が備えられる。
 データ処理系5は、画像データ生成部8、濃度変化取得部9、トリガ生成部10及び異常通知部11を有する。また、濃度変化取得部9は、ROI設定部12及びROI補正部13を有する。更に、トリガ生成部10は第1の閾値処理部14及び第2の閾値処理部15を有する。
 画像データ生成部8は、データ収集系3によるイメージングスキャン又はプレスキャンによって収集された生体データに対する画像再構成処理を行うことによって画像データを生成する機能と、生成した画像データを表示装置7に表示させる機能を有する。
 濃度変化取得部9は、データ収集系3によるプレスキャンによって収集された生体データに基づいて造影剤の濃度の時間変化に対応するデータを造影剤のTDCとして取得する機能と、造影剤のTDCを表示装置7に表示させる機能を有する。
 例えば、画像診断装置1がX線CT装置である場合には、X線CT画像データに設定されたROI内におけるCT値の変化として造影剤のTDCを作成することができる。また、画像診断装置1がMRI装置である場合には、MR画像データに設定されたROI内における画素値又は所定の領域から収集されたMR信号の信号値の変化として造影剤のTDCを作成することができる。
 ROI設定部12は、入力装置6からの情報に従って造影剤のTDCを作成するためのROIを設定する機能を有する。尚、ROI内には、複数の画素位置が存在するため、複数の画素値又はCT値の平均値等の代表値を用いてROIごとに1つのTDCを作成することができる。従って、複数のROIを設定することによって、複数のTDCを作成することもできる。
 ROI補正部13は、異常なTDCが作成された場合に、データが異常値を呈する範囲を閾値処理によって特定し、ROIから異常値を呈する範囲を除外した範囲を新たなROIに設定するROIの補正処理を実行する機能を有する。つまり、ROI補正部13によるROIの補正処理によって、濃度変化取得部9は、異常なTDCが作成された場合に、異常値を呈する範囲を除外した範囲のデータを用いてTDCを作成できるように構成される。尚、異常なTDCが作成されたか否かの情報は、トリガ生成部10の第1の閾値処理部14からROI補正部13に与えられる。
 トリガ生成部10は、造影剤のTDCに対する第1の閾値処理によってTDCの異常データを検出する機能、異常データが検出された場合に、異常データを除くTDCに対する第2の閾値処理によってトリガ信号を生成する機能を有する。換言すれば、トリガ生成部10は、TDCに対する第2の閾値処理によってトリガ信号の生成条件が満たされたとしても、第1の閾値処理によって第2の閾値処理の対象となったTDCのデータが異常データであると判定された場合には、トリガ信号を生成しないように構成される。つまり、第1の閾値処理と第2の閾値処理は、どちらを先に実行してもよい。
 また、トリガ生成部10は、生成したトリガ信号を制御部4に出力することによって制御部4にスキャンの開始、撮影モードの変更又は必要な情報の出力を実行させる機能を備えている。
 第1の閾値処理部14は、TDCの局所的なデータが異常データであるか否かの判定を行うためのTDCに対する第1の閾値処理を行う機能を有する。例えば、造影剤のTDCの値又は変動量に対して第1の閾値を設定し、TDCの値又は変動量が第1の閾値を超えた場合に、第1の閾値を超えた部分のTDCを異常データと判定することができる。第1の閾値は、例えば過去に観測されたTDCの異常値に基づいて経験的に決定することができる。
 第2の閾値処理部15は、トリガ信号の生成タイミングを決定するためのTDCに対する第2の閾値処理を行う機能を有する。第2の閾値処理は、トリガ信号がイメージングスキャンの開始のための信号であれば、TDCの値が第2の閾値を超えた場合に、トリガ信号の生成条件が満たされたと判定する処理とすることができる。また、トリガ信号が撮像モードの変更や情報の出力のための信号であれば、撮像モードの変更や情報の出力のための条件に従ってTDCに対する第2の閾値及び第2の閾値処理の方法が設定される。第2の閾値は、トリガ信号の生成タイミングを決定するために従来から用いられている経験的な値に決定することができる。
 以下、第2の閾値処理部15においてイメージングスキャンを開始させるためのトリガ信号の生成条件を判定し、トリガ生成部10がイメージングスキャンを開始させるためのトリガ信号を生成する場合を例に説明する。
 図2は、異常データを伴うTDCに対する第1及び第2の閾値処理を行ってトリガ信号を生成する方法の一例を説明する図であり、図3は、図2に示すTDCの生成対象となったROIから異常値を呈する画素の範囲を除外した例を示す図である。
 図2において横軸は時間を示し、縦軸はROI内におけるCT値を示す。また、図2中の点線は、ROI内におけるCT値の時間的変化として表されたTDCを示し、実線の丸印はTDCを生成するための各時刻におけるCT値のプロットデータを示す。
 図3(A)に示すようにX線CT画像上にROIを設定し、プレスキャンによって造影剤注入後の被検体からX線検出データをダイナミック収集してリアルタイムにROI内のCT値を計算すると、ROIにおけるTDCを取得することができる。そして、TDCとしてROI内における造影剤の濃度をモニタリングすることができる。
 造影剤は、徐々にROI内に流れ込むため、TDCがROI内における造影剤の濃度に対応していれば、TDCは急激に上昇又は減少することはなく連続的に徐々に上昇する。しかし、図3(A)に示すようにROI付近にX線の高吸収体が存在すると、高吸収体の影響によってX線CT画像データのROI内にアーチファクトが生じる場合がある。ROI内にアーチファクトが出現すると、TDCは急激に上昇した後、再び急激に減少する。
 このため、図2に示すように、TDCが第2の閾値TH2を超えた場合にイメージングスキャンのトリガ信号が生成される場合において、アーチファクトによってTDCが急激に上昇して第2の閾値TH2を超えると、造影剤がROI内に到達していないにも関わらずトリガ信号が生成されてしまう。
 そこで、TDC上のあるCT値が第2の閾値TH2を超えた場合に、直前にサンプリングされたCT値との差分ΔCTが算出される。そして、CT値の差分ΔCTと第1の閾値TH1を比較し、第1の閾値TH1よりもCT値の差分ΔCTの方が大きい場合には、トリガ信号を生成しないようにトリガ生成部10を制御することができる。例えば、ROIが頸動脈に設定されている場合には、第1の閾値TH1を30 HU (Hounsfield Unit)程度に設定することができる。
 このような第1の閾値処理によって、TDCの変動量の指標である隣接するCT値の差分ΔCTが急激に変化した場合に、TDCの上昇がアーチファクトに起因するものと判定してトリガ信号を生成しないようにすることができる。
 尚、上述したように、CT値の差分ΔCTと第1の閾値TH1を比較し、CT値の差分ΔCTが第1の閾値TH1以下であると判定された場合にCT値と第2の閾値TH2との比較判定を行うようにしてもよい。また、隣接するCT値間における差分ΔCTをTDCの変動量の指標とすれば、十分にCT値の上昇の原因がアーチファクトによるものか否かを判定できると考えられるが、あるCT値とそれ以前のn個(nは自然数)のCT値の平均値との差分をTDCの変動量の指標として第1の閾値TH1と比較するようにしてもよい。
 ただし、図2に示すように、アーチファクトによってCT値が急激に上昇し、次にサンプリングされたCT値も第2の閾値TH2を超えた場合には、隣接するCT値の差分ΔCTが小さな値となる。
 そこで、あるCT値と直線のCT値との差分ΔCTが第1の閾値TH1を超えて、CT値が異常データであると判定された場合には、少なくとも所定の時間ΔTが経過するまでトリガ信号を生成しないようにトリガ生成部10を制御することができる。所定の時間ΔTは、過去における異常データの出現時間などに基づいて経験的に決定することができる。
 また、上述したように、ROI補正部13によりCT値が異常値を呈する範囲を特定して図3(B)に示すようにROIから除外すれば、図2の点線の丸印で示すようにCT値を正常な値に補正することができる。この場合、ROI内からアーチファクトが除外されているため次にサンプリングされるCT値も正常な値に補正される。
 このようなトリガ生成部10の制御により、TDCに異常データが発生して上昇しても、イメージングスキャンが開始されることなくTDCをモニタリングするためのプレスキャンを引続き実行することができる。
 そして、図2に示すように造影剤の濃度に従って徐々にTDCが上昇することによってCT値が第2の閾値TH2を超えた場合には、直前にサンプリングされたCT値との差分ΔCTが第1の閾値TH1以下となる。このため、適切なタイミングでトリガ信号を生成することができる。
 図4は、異常データを伴うTDCに対する第1及び第2の閾値処理を行ってトリガ信号を生成する方法の別の一例を説明する図である。
 図4において横軸は時間を示し、縦軸はROI内におけるCT値を示す。また、図2中の点線は、ROI内におけるCT値の時間的変化を表すTDCを示し、実線の丸印はTDCを生成するための各時刻におけるCT値のプロットデータを示す。
 図4に示すようにTDCを構成するCT値に対して異常値を除外するための第1の閾値TH1及びトリガ信号の生成条件を判定する第2の閾値TH2を設定することもできる。すなわち、CT値自体をTDCの変動量の指標として第1の閾値処理を行うことができる。この場合、第1の閾値TH1は、第2の閾値TH2及び造影剤の到達によって上昇し得る想定値を十分に超える値に設定される。このため、アーチファクトによってCT値が第2の閾値TH2を超えたとしても、第1の閾値TH1を超えれば、トリガ信号は生成されない。
 また、図4の点線の丸印で示すようにROI内からアーチファクト部分を除外してCT値を補正したり、CT値が異常データであると判定された場合に少なくとも所定の時間ΔTが経過するまでトリガ信号を生成しないようにトリガ生成部10を制御することができる。
 異常通知部11は、第1の閾値処理部14において異常データが検出された場合に異常データの検出情報を表示装置7に表示させる機能を有する。つまり、異常通知部11は、ユーザにTDCの上昇がアーチファクトによるものである等の情報を通知する機能を有する。
 次に画像診断装置1の動作および作用について説明する。ここでは、画像診断装置1がX線CT装置であり、図2に示す第1及び第2の閾値処理を行ってイメージングスキャンのトリガ信号を生成する場合を例に説明する。
 図5は、図1に示す画像診断装置1により造影剤のTDCをモニタリングすることによって設定したタイミングで被検体の造影イメージングを実行する流れを示すフローチャートである。
 まずステップS1において、造影剤のTDCの作成対象となるROIの設定用の画像データがプレスキャンによって収集される。すなわち、制御部4による制御下において、データ収集系3は、S&S (scan & scan)モード、S&V (scan & view)モード、ヘリカルスキャンモード、ボリュームスキャンモード等の所望のモードのプレスキャンを実行することによって被検体の検査対象となる部位におけるX線検出データを収集する。
 具体的には、データ収集系3に備えられるX線管からX線が被検体に曝射され、被検体を透過したX線がX線検出装置により検出される。X線検出装置により検出されたX線検出データはデータ収集システム(DAS: data acquisition system)により収集され、X線検出データがデジタル信号としてDASからデータ処理系5に出力される。
 そうすると、データ処理系5の画像データ生成部8は、X線検出データに対する画像再構成処理を行うことによって画像データを生成し、生成した画像データを表示装置7に表示させる。
 次に、ステップS2において、ROI設定部12は、入力装置6からの情報に従って造影剤のTDCを作成するためのROIを設定する。すなわち、ユーザが表示装置7に表示された画像を参照し、入力装置6を操作することによってROIの設定情報をROI設定部12に入力すると、ROI設定部12はROIの設定情報に従って図3(A)に示すようにROIを設定する。
 次に、ステップS3において、造影剤注入装置2は、被検体に造影剤を注入する。
 次に、ステップS4において、制御部4による制御下において、データ収集系3は、被検体に注入されたTDCのモニタリング用のプレスキャンを実行する。すなわちステップS1と同様な流れで、DASからX線検出データがデータ処理系5に出力される。但し、TDCのモニタリング用のプレスキャンでは、X線検出データがダイナミック収集される。
 次に、ステップS5において、データ処理系5の濃度変化取得部9は、X線検出データの画像再構成処理によってX線CT画像データをリアルタイムに生成し、X線CT画像データのROI内におけるCT値を測定する。そして、濃度変化取得部9は、ROI内におけるCT値の時間変化を造影剤のTDCとして作成し、作成した造影剤のTDCを表示装置7に表示させる。
 尚、造影剤のTDCを表示装置7に表示させずに、濃度変化取得部9が各時刻におけるCT値を記憶するようにしてもよい。
 次に、ステップS6において、第2の閾値処理部15は、トリガ信号の生成タイミングを決定するためのTDCに対する第2の閾値処理を行う。すなわち、第2の閾値処理部15は、最新の時刻においてサンプリングされたROI内のCT値が予め設定された第2の閾値TH2を超えたか否かを判定する。そして、CT値が第2の閾値TH2を超えていないと判定された場合には、引続きステップS4からのTDCのモニタリング用のプレスキャンが実行され、造影剤のTDCが求められる。
 一方、図3(A)に示すようなROI付近におけるX線の高吸収体の影響により、X線CT画像データにアーチファクトが出現すると、CT値が急激に上昇する。このため、第2の閾値処理部15により、CT値が第2の閾値TH2を超えたと判定される場合がある。
 そうすると、ステップS7において、第1の閾値処理部14は、第2の閾値TH2を超えたと判定されたCT値と直前にサンプリングされたCT値との差分ΔCTを算出する。
 次に、ステップS8において、第1の閾値処理部14は、第2の閾値TH2を超えたCT値がアーチファクトに起因して上昇した異常データであるか否かを判定するために、CT値の差分ΔCTに対する第1の閾値処理を行う。すなわち、第1の閾値処理部14は、CT値の差分ΔCTが予め設定された第1の閾値TH1を超えたか否かを判定する。
 そして、CT値の差分ΔCTが第1の閾値TH1を超えたと判定された場合には、引続きステップS4からのTDCのモニタリング用のプレスキャンが実行され、造影剤のTDCが求められる。このため、アーチファクトによりCT値が第2の閾値TH2を超えたとしても、アーチファクトに起因して大きく変動したCT値の差分ΔCTは第1の閾値TH1を超えるため、TDCのモニタリング用のプレスキャンが引続き実行される。
 ここで、必要に応じて、ステップS9において、第1の閾値処理部14は、異常データの検出情報を異常通知部11に与え、異常通知部11は表示装置7にTDCの上昇がアーチファクトによるものである等の異常データの発生情報を表示させる。このため、ユーザは、CT値の上昇がアーチファクトによるものであると確認することができる。
 また、必要に応じて、ステップS10において、ROI補正部13は、ROI内においてCT値が異常値を呈する範囲、例えば、CT値が第2の閾値TH2を超えている画素の範囲やCT値の差分ΔCTが第1の閾値TH1を超えている画素の範囲を閾値処理によって特定する。そして、ROI補正部13は、図3(B)に示すように特定した異常データの範囲をROIから除外するROIの補正処理を行う。これにより、補正後のROIからサンプリングされたCT値はアーチファクトの影響を受けることなく正常な値を呈することとなる。
 更に、必要応じて、ステップS11において、トリガ生成部10は、所定の時間ΔTの経過待ちを行う。これにより、アーチファクトの影響によるCT値の急激な上昇が終わり、CT値は正常値に戻る。
 尚、ステップS9、ステップS10及びステップS11の処理は、互いに独立して任意の順序で行うことができる。
 一方、造影剤がROI内に到達すると、CT値が徐々に上昇し、第2の閾値TH2を超える。この場合、ステップS8において、第1の閾値処理部14は、CT値の差分ΔCTが第1の閾値TH1を超えていないと判定する。
 この場合、ステップS12において、トリガ生成部10は、イメージングスキャンの開始タイミングとなるトリガ信号を生成し、生成したトリガ信号を制御部4に出力する。
 そうすると、ステップS13において、トリガ信号を受けた制御部4は、データ収集系3を制御し、データ収集系3は造影イメージングスキャンを実行する。これにより、ROI内が造影剤によって染影された造影CT画像データを診断用の画像データとして収集することができる。
 尚、上述したように、異常データの検出のための第1の閾値処理をトリガ信号の生成条件の判定のための第2の閾値処理より先に行ってもよい。
 つまり以上のような、画像診断装置1は、造影剤のTDCに対する閾値処理によってTDCの変動が造影剤に起因するものであるか他の原因によるものであるかを判定し、造影剤に起因してTDCが上昇又は下降した場合にのみイメージングスキャンの開始、撮像モードの変更又は情報の出力のタイミングを決定するためのトリガ信号を生成するようにしたものである。
 このため、画像診断装置1によれば、造影剤の濃度をモニタリングするためのデータが造影剤以外の要因によって上昇又は下降しても、造影イメージングスキャンの開始タイミング、撮像モードの変更タイミング又は情報の出力タイミングが不適切なタイミングに設定されることを回避することができる。すなわち、造影イメージングスキャンを制御するためのトリガ信号を適切なタイミングで生成することができる。
 例えば、X線CT装置により収集された造影X線CT画像データにアーチファクトが出現したとしても、アーチファクトの出現により上昇したTDCの部分を除外して適切なタイミングでトリガ信号を生成することができる。
 以上、特定の実施形態について記載したが、記載された実施形態は一例に過ぎず、発明の範囲を限定するものではない。ここに記載された新規な方法及び装置は、様々な他の様式で具現化することができる。また、ここに記載された方法及び装置の様式において、発明の要旨から逸脱しない範囲で、種々の省略、置換及び変更を行うことができる。添付された請求の範囲及びその均等物は、発明の範囲及び要旨に包含されているものとして、そのような種々の様式及び変形例を含んでいる。

Claims (7)

  1.  被検体に注入された造影剤の濃度の時間変化に対応するデータを取得する濃度変化取得部と、
     前記データに対する第1の閾値処理によって異常データが検出された場合に、前記異常データを除くデータに対する第2の閾値処理によってトリガを生成するトリガ生成部と、
     前記トリガに基づいて前記被検体の造影イメージングのための制御を行う制御部と、
    を備える画像診断装置。
  2. 前記濃度変化取得部は、前記異常データが検出された場合に、前記異常データに対応するデータ領域を除くデータ領域について前記造影剤の濃度の時間変化に対応するデータを取得するように構成される請求項1記載の画像診断装置。
  3. 前記トリガ生成部は、前記データの値又は変動量が閾値を超えた場合に、前記閾値を超えたデータを前記異常データとして検出するように構成される請求項1記載の画像診断装置。
  4. 前記トリガ生成部は、前記異常データが検出された場合に、少なくとも所定の時間が経過した後に前記トリガを生成するように構成される請求項1記載の画像診断装置。
  5. 前記制御部は、前記トリガを開始タイミングとして前記被検体の造影イメージングを行うように構成される請求項1記載の画像診断装置。
  6. 前記異常データが検出された場合に前記異常データの検出情報を表示装置に表示させる異常通知部を更に備える請求項1記載の画像診断装置。
  7.  被検体に注入された造影剤の濃度の時間変化に対応するデータを取得するステップと、
     前記データに対する第1の閾値処理によって異常データが検出された場合に、前記異常データを除くデータに対する第2の閾値処理によってトリガを生成するステップと、
     前記トリガに基づいて前記被検体の造影イメージングのための制御を行うステップと、
    を有する画像診断装置の制御方法。
PCT/JP2011/075399 2010-11-05 2011-11-04 画像診断装置及び画像診断装置の制御方法 WO2012060435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180002644.9A CN102665563B (zh) 2010-11-05 2011-11-04 图像诊断装置及图像诊断装置的控制方法
US13/613,266 US9307947B2 (en) 2010-11-05 2012-09-13 Image diagnostic apparatus and method of controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010247967A JP5675280B2 (ja) 2010-11-05 2010-11-05 画像診断装置
JP2010-247967 2010-11-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/613,266 Continuation US9307947B2 (en) 2010-11-05 2012-09-13 Image diagnostic apparatus and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2012060435A1 true WO2012060435A1 (ja) 2012-05-10

Family

ID=46024548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075399 WO2012060435A1 (ja) 2010-11-05 2011-11-04 画像診断装置及び画像診断装置の制御方法

Country Status (4)

Country Link
US (1) US9307947B2 (ja)
JP (1) JP5675280B2 (ja)
CN (1) CN102665563B (ja)
WO (1) WO2012060435A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013210613A1 (de) * 2013-06-07 2014-12-11 Siemens Aktiengesellschaft Verfahren und System zur Ermittlung eines Mess-Startzeitpunktes
CN103565461B (zh) * 2013-09-27 2016-03-30 沈阳东软医疗系统有限公司 一种造影剂跟踪扫描方法和装置
CN106061390B (zh) * 2014-02-21 2021-10-26 西门子医疗有限公司 用于记录医疗图像的方法和设备
US10383590B2 (en) * 2015-09-28 2019-08-20 General Electric Company Methods and systems for adaptive scan control
JP2017074123A (ja) * 2015-10-13 2017-04-20 東芝メディカルシステムズ株式会社 医用画像処理装置及びx線診断装置
US10631798B2 (en) * 2017-01-16 2020-04-28 Biosense Webster (Israel) Ltd. Seeing through mucus in an ENT procedure
JP7002901B2 (ja) * 2017-09-28 2022-02-10 キヤノンメディカルシステムズ株式会社 医用画像診断装置及び医用画像処理装置
KR20190079371A (ko) * 2017-12-27 2019-07-05 삼성전자주식회사 조영제를 주입하여 컴퓨터 단층 촬영하는 방법 및 장치
JP2022068639A (ja) * 2020-10-22 2022-05-10 キヤノンメディカルシステムズ株式会社 医用画像処理装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114049A (ja) * 1992-10-06 1994-04-26 Toshiba Corp X線ct装置
JP2008014813A (ja) * 2006-07-06 2008-01-24 Taiyo Nippon Sanso Corp 真空度測定装置、気相成長装置および真空度測定方法
WO2010064727A1 (ja) * 2008-12-03 2010-06-10 新日本製鐵株式会社 溶銑温度の検知方法及びこれを用いた高炉の操業方法
JP2010213760A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 画像処理装置および画像処理プログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636332B2 (ja) * 1993-12-24 2005-04-06 セイコーエプソン株式会社 画像処理方法および画像処理装置
JP4258966B2 (ja) * 2000-09-29 2009-04-30 コニカミノルタホールディングス株式会社 画像入出力装置
US7085343B2 (en) * 2001-10-18 2006-08-01 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
JP4230724B2 (ja) * 2001-12-20 2009-02-25 株式会社東芝 X線コンピュータ断層撮影装置
JP5254252B2 (ja) * 2007-11-28 2013-08-07 株式会社日立メディコ X線ct装置
JP5562553B2 (ja) * 2008-02-07 2014-07-30 株式会社東芝 X線ct装置およびx線ct装置の制御プログラム
US9421330B2 (en) * 2008-11-03 2016-08-23 Bayer Healthcare Llc Mitigation of contrast-induced nephropathy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114049A (ja) * 1992-10-06 1994-04-26 Toshiba Corp X線ct装置
JP2008014813A (ja) * 2006-07-06 2008-01-24 Taiyo Nippon Sanso Corp 真空度測定装置、気相成長装置および真空度測定方法
WO2010064727A1 (ja) * 2008-12-03 2010-06-10 新日本製鐵株式会社 溶銑温度の検知方法及びこれを用いた高炉の操業方法
JP2010213760A (ja) * 2009-03-13 2010-09-30 Toshiba Corp 画像処理装置および画像処理プログラム

Also Published As

Publication number Publication date
US9307947B2 (en) 2016-04-12
CN102665563B (zh) 2016-02-10
CN102665563A (zh) 2012-09-12
JP2012095927A (ja) 2012-05-24
US20130012814A1 (en) 2013-01-10
JP5675280B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5675280B2 (ja) 画像診断装置
KR101480036B1 (ko) Mri장치에서 영상을 획득하고 화면 상에 정보를 제공하는 방법 및 그 장치
US10159454B2 (en) Contrast agent perfusion adaptive imaging system
US9396535B2 (en) Image processing apparatus, image processing method and storage medium to generate subtraction image
US11259752B2 (en) Method for adapting a medical system to patient motion during medical examination, and system therefor
CN1315433C (zh) 用成像法对生物体进行检查的方法
KR20180059510A (ko) 적응식 스캔 제어를 위한 방법 및 시스템
JP6752064B2 (ja) 磁気共鳴イメージング装置、画像処理装置、及び拡散強調画像計算方法
US11747424B2 (en) Magnetic resonance imaging apparatus, image processing apparatus, and image processing method
KR20060071350A (ko) 영상 내 불균질성을 보정하는 방법 및 상기 방법을수행하기 위한 영상 기기
US10718837B2 (en) 3D UTE imaging using variable-TE stack-of-spirals acquisition
JP5839710B2 (ja) 解析点設定装置および方法、並びに体動検出装置および方法
JP2017060737A (ja) 人工的ノイズのない伝送画像を作成する処理
US20200146554A1 (en) Scanning and tracking monitoring apparatus and method
KR101501515B1 (ko) 진단 영상 장치 및 그 동작 방법
CN109729343B (zh) 一种成像设备的帧率检测方法
JP2020089399A (ja) 制御装置及びプログラム
JP2007325641A (ja) 医用画像表示装置
EP3329851B1 (en) Medical imaging apparatus and method of operating the same
KR102067277B1 (ko) 의료 영상 디스플레이 방법 및 장치
JP2016106976A (ja) 磁気共鳴イメージング装置
JP2004344244A (ja) 画像信号処理方法および画像信号処理装置
KR20140013410A (ko) Mri 진단 장치에서 영상 영역을 설정하는 방법 및 그 장치
JP2012110572A (ja) X線ct装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11838085

Country of ref document: EP

Kind code of ref document: A1