WO2012060377A1 - 燃焼加熱システム - Google Patents

燃焼加熱システム Download PDF

Info

Publication number
WO2012060377A1
WO2012060377A1 PCT/JP2011/075184 JP2011075184W WO2012060377A1 WO 2012060377 A1 WO2012060377 A1 WO 2012060377A1 JP 2011075184 W JP2011075184 W JP 2011075184W WO 2012060377 A1 WO2012060377 A1 WO 2012060377A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
plate
outer peripheral
path
flame
Prior art date
Application number
PCT/JP2011/075184
Other languages
English (en)
French (fr)
Inventor
佐藤 公美
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to BR112013010561A priority Critical patent/BR112013010561A2/pt
Priority to CN201180051914.5A priority patent/CN103180667B/zh
Priority to JP2012541876A priority patent/JP5445691B2/ja
Priority to KR1020137007877A priority patent/KR101405277B1/ko
Priority to US13/882,252 priority patent/US9447968B2/en
Priority to EP11838027.8A priority patent/EP2636950B1/en
Publication of WO2012060377A1 publication Critical patent/WO2012060377A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/125Radiant burners heating a wall surface to incandescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C3/00Combustion apparatus characterised by the shape of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/126Radiant burners cooperating with refractory wall surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/03001Miniaturized combustion devices using fluid fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the fuel gas is burned at the fuel gas discharge port provided on the surface of the radiation surface, and the exhaust gas is exhausted to the surrounding environment without being collected. Therefore, it is difficult to improve the radiation intensity because the exhaust heat cannot be recovered, the thermal efficiency is lowered, and the area of the radiation surface is reduced by the formation of the fuel gas discharge port. Furthermore, there is a possibility that the surrounding environment cannot be improved due to the temperature around the device being increased by the heat of the exhaust gas or the exhaust gas being filled.
  • combustion heater called a micro combustor with improved thermal efficiency.
  • This combustion heater has a sealed structure in the range extending from the fuel gas introduction path, the combustion chamber, and the exhaust gas exhaust path after combustion, and the introduction path and the exhaust path are adjacent to each other, and the heat of the exhaust gas is used before the combustion.
  • the fuel gas is preheated to increase thermal efficiency (see, for example, Patent Document 2).
  • the combustion heater as in Patent Document 2 described above has a sealed structure for efficiently using the heat of the exhaust gas and collecting the exhaust gas.
  • the thermal deformation of the partition plate that separates the introduction path and the outlet path in the combustion heater increases, resulting in uneven temperature distribution and increased CO (carbon monoxide) emission concentration due to incomplete combustion.
  • CO carbon monoxide
  • an object of the present invention is to provide a combustion heating system capable of achieving both fire transfer properties and flame holding properties even when a plurality of combustion heaters are connected. .
  • the combustion heating system of the present invention includes a heating plate, an arrangement plate disposed opposite to the heating plate, an annular outer peripheral wall arranged between the heating plate and the arrangement plate, and between the heating plate and the arrangement plate.
  • a partition plate disposed along the outer peripheral wall, a combustion chamber that holds the flame by causing fuel gas to collide with a flame holding portion that is a part of the outer peripheral wall, and the placement plate and the partition plate serve as side walls.
  • a plurality of combustion heaters connected to each other.
  • the combustion heating system of the present invention includes a communication passage that is disposed at a connecting portion of the plurality of combustion heaters and that allows the respective combustion chambers to communicate with each other.
  • the flame-holding portion and the communication path are arranged in parallel in the opposing direction of the heating plate and the arrangement plate.
  • the communication path may be disposed at a position where the distance between the combustion chambers of the plurality of connected combustion heaters is the shortest.
  • the combustion heating system of the present invention is connected to the introduction path to flow the fuel gas into the combustion heater, and connected to the outlet path to direct the exhaust gas to the outside of the combustion heater.
  • a communication pipe that communicates each of the second pipe parts of the plurality of combustion heaters with each other. Further, the communication pipe may have an enlarged portion having a larger flow area than the second piping portion.
  • first piping part and the second piping part may be arranged inside the other to form a double pipe.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. It is the enlarged view in the area
  • 3B is a perspective sectional view taken along line BB in FIG. 3A.
  • FIG. It is a perspective view which shows the external appearance example of a combustion heating system. It is a top view for demonstrating the structure of a combustion heating system.
  • FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A.
  • FIG. 5B is an enlarged view of a region X2 in FIG. 5B. It is a perspective view for demonstrating a fire transfer part.
  • the combustion heater is formed with a combustion chamber, a fuel gas (unburned gas: gas before combustion) introduction path, and an exhaust gas (combustion gas: gas after combustion) outlet path sealed.
  • a main body container is provided. Further, the combustion heater realizes excess enthalpy combustion in the combustion chamber by preheating the fuel gas flowing through the introduction path with the heat of the exhaust gas flowing through the outlet path. Since such a combustion heater recovers the heat of the exhaust gas, the thermal efficiency is high and the exhaust gas is also recovered, so that the surrounding environment is not impaired. Further, since it is not necessary to form the fuel gas discharge port on the radiation surface, the area of the radiation surface is not reduced and the radiation intensity is high.
  • FIG. 1 is an assembly diagram for explaining the structure of the combustion heater 110.
  • 2A is a cross-sectional view taken along line AA in FIG.
  • FIG. 2B is an enlarged view of region X1 in FIG. 2A.
  • 2A is the vertical direction of the combustion heater 110.
  • the combustion heater 110 includes a heating plate 118, an arrangement plate 120, an outer peripheral wall 122, a partition plate 124, a combustion chamber 126, an introduction passage 128, a lead-out passage 130, a first passage,
  • the piping part 132 and the 2nd piping part 134 are included.
  • the combustion heater 110 will be described with an example in which the outer dimension in the two-dimensional direction is about 220 mm ⁇ 140 mm (440 mm ⁇ 140 mm when two are connected in the longitudinal direction as will be described later).
  • the external shape of the combustion heater 110 is not limited to this size, and can be set to an arbitrary size.
  • the heating plate 118 and the arrangement plate 120 are formed of a material having high heat resistance and oxidation resistance, for example, stainless steel (SUS: Stainless Steel Used), or a material having high thermal conductivity, for example, brass (brass). Yes.
  • the heating plate 118 and the arrangement plate 120 are arranged opposite to each other and are arranged substantially parallel to each other (substantially parallel for causing excess enthalpy combustion in the present embodiment).
  • the heating plate 118 and the arrangement plate 120 also function as a radiator that is heated by the combustion heat generated in the combustion chamber 126.
  • positioning board 120 is not restricted to the structure which functions as a radiator, For example, it is good also as a heat insulation structure.
  • the outer peripheral wall 122 has an inner periphery formed in a track shape (a shape composed of two substantially parallel line segments and two arcs (semicircles) connecting the two line segments) in a plan view, and an outer periphery formed in a rectangular shape. ing.
  • the outer peripheral wall 122 is disposed between the heating plate 118 and the arrangement plate 120. Moreover, the outer peripheral surface of the outer peripheral wall 122 can also be used as a radiation surface.
  • the outer peripheral wall 122 is arrange
  • the main body container of the combustion heater 110 includes an outer peripheral wall 122, a heating plate 118 that closes the outer peripheral wall 122 from above and below, and an arrangement plate 120.
  • the area of the upper and lower wall surfaces (the plate surface of the heating plate 118 and the arrangement plate 120) is larger than the area of the outer peripheral surface (the outer peripheral surface of the outer peripheral wall 122). That is, the upper and lower wall surfaces occupy most of the outer surface of the main body container.
  • the partition plate 124 has a smaller outer shape than the heating plate 118 and the arrangement plate 120 and is formed in a shape along the inner peripheral surface of the outer peripheral wall 122.
  • the partition plate 124 is disposed between the heating plate 118 and the arrangement plate 120 substantially in parallel with the heating plate 118 and the arrangement plate 120. Gaps are formed between the partition plate 124 and the heating plate 118 and between the partition plate 124 and the arrangement plate 120, respectively.
  • the partition plate 124 is formed of a material having high heat resistance and oxidation resistance, such as stainless steel, or a material having high thermal conductivity, such as brass.
  • the partition plates 124 may be disposed to face each other as long as a gap is formed between the heating plate 118 and the arrangement plate 120.
  • positioning board 120 do not have a restriction
  • the positional relationship among the heating plate 118, the arrangement plate 120, the outer peripheral wall 122, and the partition plate 124 will be described with reference to the assembly diagram of FIG. A partition plate 124 and an outer peripheral wall 122 are superimposed on the arrangement plate 120 from above.
  • the arrangement plate 120 is fixed to the end of the first piping portion 132, while the partition plate 124 protrudes upward from the first piping portion 132. It is fixed to the end of 134. Therefore, the arrangement plate 120 and the partition plate 124 are separated by a distance between the end portion of the first piping portion 132 and the end portion of the second piping portion 134.
  • the partition plate 124 is disposed inside the outer peripheral wall 122. At this time, a gap as a combustion chamber 126 is formed between the outer peripheral end of the partition plate 124 and the cylindrical inner peripheral surface of the outer peripheral wall 122.
  • the heating plate 118 is overlaid on the outer peripheral wall 122 from above.
  • the lead-out path 130 is a space sandwiched between the heating plate 118 and the partition plate 124 with the heating plate 118 and the partition plate 124 as side walls.
  • the lead-out path 130 collects the exhaust gas from the combustion chamber 126 at the center of the main body container and flows it toward the outside of the combustion heater 110.
  • the introduction path 128 and the lead-out path 130 overlap each other in the thickness direction in the main body container, the heat of the exhaust gas is transmitted through the partition plate 124, and the fuel Gas can be preheated.
  • the light gray arrow indicates the fuel gas flow
  • the dark gray arrow indicates the exhaust gas flow
  • the black arrow indicates heat transfer.
  • the partition plate 124 is formed of a material that is relatively easy to conduct heat, and the heat of the exhaust gas that passes through the lead-out path 130 is transferred to the fuel gas that passes through the introduction path 128 via the partition plate 124 (heat transfer). .
  • the exhaust gas flowing through the outlet passage 130 and the fuel gas flowing through the inlet passage 128 are opposed to each other (counter flow) with the partition plate 124 interposed therebetween, so the fuel gas is efficiently used by the heat of the exhaust gas. Therefore, it is possible to preheat and to obtain high thermal efficiency.
  • excess enthalpy combustion in which fuel gas is preheated in this way, combustion of the fuel gas can be stabilized, and the concentration of CO generated by incomplete combustion can be suppressed to an extremely low concentration.
  • a representative of the cross-sectional shape perpendicular to the flow of the fuel gas (hereinafter referred to as the flow channel cross-sectional shape) at the connection portion of the introduction passage 128 with the combustion chamber 126.
  • the dimension is preferably set to be equal to or less than the extinguishing distance in consideration of the extinguishing distance (including the extinguishing equivalent diameter) to the extent that the entrance of the flame to the introducing path 128 can be prevented (the combustion reaction is not propagated in the introducing path 128).
  • the representative dimension is a dimension determined by the cross-sectional shape of the flow channel immediately before the fuel gas flows into the combustion chamber 126.
  • the representative dimension indicates a diameter of a circular cross section
  • the representative dimension indicates a hydraulic equivalent diameter of the cross section.
  • the hydraulic equivalent diameter is obtained by 4 ⁇ channel cross-sectional area / wetting edge length.
  • the wetting edge length indicates the length of the wall (arrangement plate 120, partition plate 124) portion in contact with the fuel gas in the cross section of the flow path.
  • the arrangement plate 120 is provided on the lower surface of the partition plate 124 near the combustion chamber 126 (on the arrangement plate 120 side). A plurality of protrusions 152 that are in contact with each other are arranged with a predetermined interval L (see FIG. 3B).
  • FIG. 3A is a perspective view for explaining a plurality of protrusions 152.
  • FIG. 3A is a perspective view of the combustion heater 110.
  • FIG. 3B is a perspective cross-sectional view of the cross section taken along line BB of FIG. 3A viewed from the direction of the arrow.
  • a portion of the protrusion 152 that is hidden by the partition plate 124 is indicated by a broken line.
  • An arrow 154 indicates the direction of fuel gas flow.
  • the introduction channel 128 is narrowed in cross section by a plurality of protrusions 152 provided on the partition plate 124. As shown in FIGS.
  • the extinguishing distance d of the fuel gas is represented by the size of the diameter of the tube wall model, and is obtained from the equation (1).
  • d 2 ⁇ ⁇ Nu1 / 2 / Cp ⁇ ⁇ u ⁇ Su (1)
  • is the thermal conductivity
  • Nu is the Nusselt number
  • Cp is the constant pressure specific heat
  • ⁇ u is the density of the fuel gas
  • Su is the combustion rate.
  • FIG. 4 is a perspective view showing an example of the appearance of the combustion heating system 100.
  • FIG. 5A is a plan view for explaining the structure of the combustion heating system 100.
  • FIG. 5B is a cross-sectional view taken along the line CC of FIG. 5A.
  • FIG. 5C is an enlarged view of region X2 in FIG. 5B.
  • FIG. 6 is a perspective view for explaining the fire transfer section 170.
  • a portion extending to the near side in the drawing of the combustion heating system 100 is omitted, and detailed description regarding a cross section of the omitted portion is omitted.
  • the combustion heating system 100 has a structure in which a plurality of combustion heaters 110 are connected to each other, burns supplied fuel gas, heats each combustion heater 110, and exhausts it. Collect gas.
  • a plurality of combustion heaters 110 having a relatively small amount of heat and a heating area are combined. Since a relatively small combustion heater 110 can be used, individual thermal deformation at the time of combustion can be suppressed as compared with a case where the combustion heater 110 alone is designed to be large. Further, even if the combustion heaters 110 are further connected in response to a request for increasing the amount of heat and the heating area, the individual combustion capacity is not affected by the increase in the number of connections of the combustion heaters 110. Therefore, the stability and durability can be maintained. In the present embodiment, for convenience of explanation, the case where only two combustion heaters 110 are connected is described, but the combustion heater 110 may be arbitrarily connected in the longitudinal direction and the short direction of the combustion heater 110.
  • the combustion heating system 100 having various aspect ratios can be configured.
  • the cross-sectional shape of the communication path 174 is designed so that the flame passes through the communication path 174 (so that the combustion reaction propagates between the plurality of combustion heaters 110 connected).
  • the representative dimension of the communication path 174 is set to be larger than the flame extinguishing distance d in the above-described formula (1). For example, if the flame extinguishing distance d is 3 mm and the cross-sectional shape of the communication path 174 is a rectangle with a height of 3 mm and a width of 10 mm, the representative dimension is 4.6 mm and the flame can be sufficiently propagated. It becomes possible. Therefore, as shown in FIG.
  • the height h 1 of the outer peripheral wall 122 of the combustion heater 110 constituting the combustion heating system 100 is equal to the height h 2 of the flame holding portion 172 required for flame holding. This is the sum of the height h 3 of the communication path 174 determined based on the extinction distance d of the path 174.
  • the communication path 174 is formed at a position where the distance between the combustion chambers 126 of the plurality of connected combustion heaters 110 is the shortest.
  • the communication passage 174 is formed at a connection portion of a plurality of combustion heaters 110 to be connected, and approximately in the center in the short direction of the combustion heating system 100.
  • a plurality of communication paths 174 are positioned on a straight line connecting the centers of the track-shaped arcs. The distance between the combustion chambers 126 is the shortest.
  • the flame extinguishing distance d of the communication path 174 can be shortened by shortening the distance between the plurality of combustion chambers 126. Therefore, even when the representative dimension of the communication path 174 is set small, it is possible to reliably propagate the flame and improve the ignition reliability.
  • the position of the communication path 174 is not limited to the position where the distance between the plurality of combustion chambers 126 is the shortest, and can be arbitrarily set within a range in which a fire transfer is possible. By installing such a communication path 174, stable fire transfer was confirmed under the operating conditions of the combustion heating system 100.
  • FIG. 7 is a plan view for explaining the propagation of the flame.
  • the ignition device 176 ignites the nearby combustion chamber 126
  • flames are sequentially propagated in the combustion chamber 126 along the inner peripheral surface of the outer peripheral wall 122 as indicated by arrows in FIG. 7.
  • the pressure generated in the combustion chamber 126 when the fuel gas is ignited generates a pressure wave in the direction toward the other connected combustion heater 110 (right direction in FIG. 7), and the propagation speed of the flame is generated by the pressure wave. Becomes higher.
  • such pressure waves are concentrated by the inner peripheral surface of the outer peripheral wall 122 having a semicircular shape in plan view, and further accelerated and flow into the communication path 174, the flame is connected to other combustion heating connected Is easily propagated to the vessel 110.
  • the flame-holding portion 172 and the communication path 174 are arranged side by side in the vertical direction, it is possible to achieve both fire transfer properties and flame-holding properties at the time of ignition.
  • all the combustion heaters 110 can be ignited with only one ignition, thereby reducing costs and improving workability.
  • at the time of steady combustion in each combustion heater 110 constituting the combustion heating system 100, it is possible to maintain high thermal efficiency and improve the surrounding environment as described above.
  • piping connected to the main body container of the combustion heater 110 in which the ignition device 176 is arranged is referred to as the first piping portion 132a and the second piping among the first piping portion 132 and the second piping portion 134. It is assumed that part 134a. Further, the pipes connected to the main body container of the combustion heater 110 on the side where the fire is transferred through the communication path 174 are referred to as a first pipe part 132b and a second pipe part 134b.
  • the combustion heating system 100 includes a communication pipe 180 that allows the second piping parts 134 a and 134 b of the plurality of combustion heaters 110 to communicate with each other.
  • the communication pipe 180 has an enlarged portion 182 having a larger flow path area than the second pipe portions 134a and 134b.
  • This flow path area is a cross-sectional area of the flow path in a direction orthogonal to the flow direction of the exhaust gas.
  • the whole flow path of the communication pipe 180 is formed wider than the flow path of 2nd piping part 134a, 134b. That is, the enlarged portion 182 is formed over the entire communication pipe 180.
  • the flow passage area of a part of the communication pipe 180 may be larger than the flow passage area of the second piping parts 134 a and 134 b, and the enlarged part 182 may be provided only in a part of the communication pipe 180.
  • FIG. 9A and 9B are vertical sectional views for explaining the propagation of the pressure wave.
  • FIG. 9A shows the configuration of this embodiment
  • FIG. 9B shows the configuration of a comparative example.
  • a plurality of elliptical arcs 184 are shown closer to each other as the pressure wave becomes stronger.
  • the flow passage area of the communication pipe 10 is equal to the flow passage areas of the second piping portions 134a and 134b.
  • the generated pressure wave hardly weakens in the communication pipe 10 and flows in the direction in which it flows backward through the second piping part 134b of the combustion heater 110 on the fire transfer side (the direction opposite to the flow direction of the exhaust gas). Propagate.
  • the cross-sectional area of the flow path of the enlarged portion 182 is large, the volume of the medium (gas such as exhaust gas and air in the communication pipe 180) through which the pressure wave propagates is large. Therefore, the energy of the pressure wave is easily weakened by propagating through the communication pipe 180 as compared with the comparative example of FIG. 9B.
  • the pressure wave propagates from the pipe having a large channel area toward the pipe having a small channel area, so that the pressure wave is further difficult to propagate.
  • the combustion heating system 100 suppresses the influence of the propagation of the pressure wave through the second piping parts 134a and 134b, and the fire transfer to the other combustion heater 110 to be connected by the flame propagating through the communication path 174. Can be further improved.
  • the inner peripheral surface of the outer peripheral wall 122 is formed in a track shape in plan view, but may be any shape as long as it is annular.
  • the inner peripheral surface of the outer peripheral wall 122 may be formed in an annular shape or a rectangular shape in plan view.
  • the present invention can be used in a combustion heating system in which a plurality of combustion heaters that combust fuel and heat an object to be heated are connected to each other.

Abstract

 この燃焼加熱システムは、加熱板と、加熱板に対向配置された配置板と、加熱板と配置板との間に配置された環状の外周壁と、加熱板と配置板との間に配置された仕切板と、外周壁に沿って位置し外周壁の一部である保炎部位に燃料ガスを衝突させて保炎する燃焼室と、配置板と仕切板とを側壁とし燃焼室に向けて燃料ガスを流動させる導入路と、加熱板と仕切板とを側壁とし燃焼室から排気ガスを外部に向けて流動させると共に仕切板を介して排気ガスの熱で燃料ガスを予熱する導出路と、を備える燃焼加熱器を複数連結した構造を有する。また、この燃焼加熱システムは、複数の燃焼加熱器の連結部に配置されると共にそれぞれの燃焼室を互いに連通させる連通路を備える。また、保炎部位と連通路とが、加熱板と配置板との対向方向に並設されている。

Description

燃焼加熱システム
 本発明は、燃料を燃焼させて被加熱物を加熱する複数の燃焼加熱器を互いに連結した燃焼加熱システムに関する。
 本願は、2010年11月4日に日本に出願された特願2010-247371号に基づき優先権を主張し、その内容をここに援用する。
 従来から、燃料ガスの燃焼により生じる燃焼熱で輻射体を加熱し、輻射体の輻射面からの輻射熱で、工業材料や食品等を加熱する燃焼加熱器が広く普及している。このような燃焼加熱器について、例えば、輻射強度を向上させるために輻射面に輻射率の高い材料や形状を適用する技術が提案されている(例えば特許文献1参照)。
 上述した従来の燃焼加熱器では、輻射面の表面に設けた燃料ガス排出口で燃料ガスを燃焼させ、排気ガスを回収せずに周囲の環境に排気している。したがって、排熱を回収できず熱効率が低くなり、また、燃料ガス排出口の形成により輻射面の面積が小さくなることから、輻射強度を向上させることが難しい。さらに、排気ガスの熱によって装置周辺の温度が上昇したり、排気ガスが充満したりして、周囲の環境の改善を図れない可能性がある。
 そのため、熱効率を向上させたマイクロコンバスタと呼ばれる燃焼加熱器が提案されている。この燃焼加熱器は、燃料ガスの導入路、燃焼室、および燃焼後の排気ガスの導出路に亘る範囲を密閉構造とし、導入路と導出路とを隣接させ、排気ガスの熱で燃焼前の燃料ガスを予熱して熱効率を高めている(例えば、特許文献2参照)。
特開2004-324925号公報 特開2007-212082号公報
 上述した特許文献2のような燃焼加熱器は、排気ガスの熱を効率的に利用すると共に排気ガスを回収するための密閉構造を備えている。ここで、燃焼加熱器の熱量や加熱面積を増加させるために、単純に2次元方向(加熱面に平行する方向)に燃焼加熱器を大きくしようとすると、密閉性を安定的に維持するために製造コストが増大する可能性がある。また、燃焼加熱器内の導入路と導出路を仕切っている仕切板の熱変形が大きくなって、温度分布が偏ったり、不完全燃焼によるCO(一酸化炭素)排出濃度が増加したりして、燃焼加熱器の性能を十分に発揮できない可能性がある。そのため、本願発明者は、複数の燃焼加熱器を互いに連結して、その熱量や加熱面積を増加させることを試みた。
 複数の燃焼加熱器を連結する燃焼加熱システムでは、1回の点火で連結するすべての燃焼加熱器を点火する機能が求められる。しかしながら、特許文献2のような燃焼加熱器では、密閉性を保たなければならないので、火移り構造(複数の燃焼加熱器間で燃焼を伝播させるための構造)を安易に形成できない可能性がある。また、燃焼加熱器において外周壁は保炎機能を有するので、火移り構造の設置のために外周壁を欠落させると保炎性が低下し、CO排出濃度の増加や本来の熱効率を得ることができない可能性がある。
 本発明は、このような課題に鑑み、複数の燃焼加熱器を連結した場合においても、火移り性と保炎性とを両立させることが可能な、燃焼加熱システムを提供することを目的としている。
 本発明の燃焼加熱システムは、加熱板と、加熱板に対向配置された配置板と、加熱板と配置板との間に配置された環状の外周壁と、加熱板と配置板との間に配置された仕切板と、外周壁に沿って位置し外周壁の一部である保炎部位に燃料ガスを衝突させて保炎する燃焼室と、配置板と仕切板とを側壁とし燃焼室に向けて燃料ガスを流動させる導入路と、加熱板と仕切板とを側壁とし燃焼室から排気ガスを外部に向けて流動させると共に仕切板を介して排気ガスの熱で燃料ガスを予熱する導出路と、を備える燃焼加熱器を複数連結した構造を有する。また、本発明の燃焼加熱システムは、複数の燃焼加熱器の連結部に配置されると共にそれぞれの燃焼室を互いに連通させる連通路を備える。また、保炎部位と連通路とが、加熱板と配置板との対向方向に並設されている。
 この場合、外周壁の高さは、保炎に必要とされる保炎部位の高さと、連通路の消炎距離に基づいて決定される連通路の高さの和であってもよい。
 また、連通路は、連結した複数の燃焼加熱器のそれぞれの燃焼室間の距離が最短となる位置に配置されてもよい。
 また、本発明の燃焼加熱システムは、導入路に接続されて燃料ガスを燃焼加熱器内に向けて流動させる第1配管部と、導出路に接続されて排気ガスを燃焼加熱器の外部に向けて流動させる第2配管部と、複数の燃焼加熱器のそれぞれの第2配管部を互いに連通させる連通管と、をさらに備えてもよい。また、連通管は、第2配管部よりも流路面積が大きな拡大部を有してもよい。
 また、第1配管部および第2配管部の一方が、他方の内部に配されて二重管を形成してもよい。
 本発明によれば、複数の燃焼加熱器を連結した場合においても、火移り性と保炎性とを両立させることが可能となる。
燃焼加熱器の構造を説明するための組立図である。 図1のA-A線での断面図である。 図2Aの領域X1での拡大図である。 複数の突起部を説明するための斜視図である。 図3AのB-B線での斜視断面図である。 燃焼加熱システムの外観例を示す斜視図である。 燃焼加熱システムの構造を説明するための平面図である。 図5AのC-C線での断面図である。 図5Bの領域X2での拡大図である。 火移り部を説明するための斜視図である。 火炎の伝播を説明するための平面図である。 連通管を説明するための斜視図である。 図8AのD-D線での断面図である。 圧力波の伝播を説明するための垂直断面図である。 圧力波の伝播を説明するための垂直断面図である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。下記実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示であり、特に断る場合を除き、これらの特徴によって本発明は限定されない。なお、本明細書及び図面において、実質的に同一の機能または構成を有する要素については、同一の符号を付して重複説明を省略する。また、本発明に直接関係のない要素は図示を省略する。
 燃焼加熱器は、燃焼室と、燃料ガス(未燃焼ガス:燃焼前のガス)の導入路と、排気ガス(燃焼ガス:燃焼後のガス)の導出路とが密閉された状態で形成された本体容器を備える。また、この燃焼加熱器は、導出路を流れる排気ガスの熱で導入路を流れる燃料ガスを予熱することで、燃焼室において超過エンタルピ燃焼を実現する。このような燃焼加熱器は、排気ガスの熱を回収しているので、熱効率が高く、排気ガスも回収されるため、周囲の環境を損なわない。また、燃料ガス排出口を輻射面に形成する必要が無いため、輻射面の面積は減少せず輻射強度が高い。
 このような燃焼加熱器のうち、特に、ディスク型の燃焼加熱器では、伝熱を担う仕切板が、本体容器を構成する一対の平板(加熱板、配置板)よりも小型の平板からなる。また、ディスク型の燃焼加熱器は、一対の平板の間に空隙を設けて配置するといった簡易な構成で、導入路と導出路との間における熱交換を実施している。さらに、ディスク型の燃焼加熱器は、輻射面を有する平板の形状の自由度が高い。
 このような高い熱効率と排気ガスの回収機能を両立できる使い勝手の良さから、今後、燃焼を終えた排気ガスをそのまま周囲の環境に排気する従来の燃焼加熱器を、本実施形態のようなディスク型の燃焼加熱器に置き換える機会が増えることが見込まれる。しかし、上記従来の燃焼加熱器は比較的大型のものが多い一方で、現在のディスク型燃焼加熱器は比較的小型のものが多く、従来の大型燃焼加熱器を比較的小型のディスク型燃焼加熱器にすぐに置き換えるということが難しい。
 ディスク型燃焼加熱器の熱量や加熱面積を増加させるために、単純に2次元方向(加熱面に平行する方向)に燃焼加熱器を大きくしようとすると、密閉性を安定的に維持するために製造コストが増大する可能性がある。また、燃焼加熱器内の導入路と導出路を仕切っている仕切板の熱変形が大きくなって、温度分布が偏ったり、不完全燃焼によるCO排出濃度が増加したりして、燃焼加熱器の性能を十分に発揮できない可能性がある。そのため、本願発明者は、複数の燃焼加熱器を連結する燃焼加熱システムに着目した。なお、連結とは、燃焼加熱器を連なった状態に設けることを言い、複数の燃焼加熱器を一体的に形成することも含む。しかし、燃焼加熱器では、密閉性を保たなければならないので、火移り構造(複数の燃焼加熱器間で燃焼を伝播させるための構造)を安易に形成できない可能性がある。また、燃焼加熱器において外周壁は保炎機能を有するので、火移り構造の設置のために外周壁を不用意に取り除いてしまうと保炎性が低下し、CO排出濃度の増加や本来の熱効率を得ることができない可能性がある。
 本実施形態における複数の燃焼加熱器を連結した燃焼加熱システムは、火移り性と保炎性とを両立させることを目的とする。以下、理解を容易にするため、まず、燃焼加熱システム100を構成する個々の燃焼加熱器110を説明し、その後、燃焼加熱システム100の、特に火移り機能について詳述する。
(燃焼加熱器110)
 図1は、燃焼加熱器110の構造を説明するための組立図である。図2Aは、図1のA-A線での断面図である。図2Bは、図2Aの領域X1での拡大図である。なお、図2Aの紙面上下方向は、燃焼加熱器110の鉛直方向である。図2Aに示すように、燃焼加熱器110は、加熱板118と、配置板120と、外周壁122と、仕切板124と、燃焼室126と、導入路128と、導出路130と、第1配管部132と、第2配管部134とを含む。なお、本実施形態では、燃焼加熱器110は、2次元方向での外形が220mm×140mm(後述するように長手方向に2つ連結すると440mm×140mm)程度のものを例に挙げて説明する。ただし、燃焼加熱器110の外形は、かかる大きさに限定されず、任意の大きさに設定することができる。
 本実施形態における燃焼加熱器110は、本体容器に、都市ガス等と燃焼用酸化剤ガスとしての空気とが予め混合された燃料ガス(予混合ガス)が供給される予混合タイプである。なお、かかる場合に限定されず、燃焼加熱器110が、燃焼室126や燃焼室126の直前の導入路128において両者が混合して拡散燃焼を行う拡散タイプであってもよい。
 加熱板118および配置板120は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼(SUS:Stainless Used Steel)や、熱伝導率が高い素材、例えば、黄銅(真鍮)等で形成されている。加熱板118および配置板120は、互いに対向して配置されると共に、互いに略平行(本実施形態における超過エンタルピ燃焼を起こさせるための実質的な平行)に配置される。また、加熱板118および配置板120は、燃焼室126で生成された燃焼熱で加熱される輻射体としても機能する。ただし、配置板120は、輻射体として機能する構成に限らず、例えば、断熱構造としてもよい。
 外周壁122は、平面視において、内周がトラック形状(略平行な2つの線分と、その2つの線分をつなぐ2つの円弧(半円)からなる形状)に、外周が矩形に形成されている。外周壁122は、加熱板118および配置板120の間に配される。また、外周壁122の外周面を輻射面として用いることもできる。外周壁122は、加熱板118と配置板120との間に配置され、平面視において環状に形成されている。
 燃焼加熱器110の本体容器は、外周壁122と、外周壁122を上下から閉塞する加熱板118、配置板120とからなる。この本体容器において、外周面(外周壁122の外周面)の面積よりも上下壁面(加熱板118、配置板120の板面)の面積が大きい。つまり、上下壁面は、本体容器の外表面の大部分を占める。この上下壁面のうち、例えば上側の面(加熱板118の上面)が輻射面となり、燃焼室126で燃料ガスが燃焼すると、まず、この燃焼により加熱板118が加熱され、次に、輻射や空気の対流によって輻射面から熱が伝達して燃焼加熱器110の外部の被加熱物が加熱される。また、燃焼加熱システム100のように燃焼加熱器110が複数連結される場合、その複数の燃焼加熱器110すべての輻射面において、ほぼ同等の輻射熱を得ることができる。本実施形態においては、上下壁面のうち上側の面(加熱板118の上面)を輻射面とするが、かかる場合に限定されず、下側の面(配置板120の下面)のみを輻射面としたり上下壁面の両面を輻射面としたりしてもよい。
 仕切板124は、加熱板118および配置板120よりも外形が小さく、且つ外周壁122の内周面に沿った形状に形成されている。仕切板124は、加熱板118および配置板120の間で、加熱板118および配置板120と略平行に配置される。仕切板124と加熱板118との間、および仕切板124と配置板120との間には、それぞれ空隙が形成される。また、仕切板124は、耐熱性および耐酸化性が高い素材、例えば、ステンレス鋼や、熱伝導率が高い素材、例えば、黄銅等で形成される。仕切板124は、加熱板118および配置板120との間にそれぞれ空隙が形成されれば、傾いて対向配置されてもよい。また、仕切板124、加熱板118、および配置板120は、その厚みに制限はなく、平板に限らず凹凸に形成されてもよい。
 図1の組立図を用いて、加熱板118、配置板120、外周壁122、および仕切板124の位置関係を説明する。配置板120には、仕切板124と外周壁122とが上方から重ねられる。詳細には、図2Aに示すように、配置板120が第1配管部132の端部に固定されるのに対し、仕切板124は第1配管部132より上方に突出している第2配管部134の端部に固定される。そのため、第1配管部132の端部と第2配管部134の端部との間の距離だけ、配置板120と仕切板124とが離間する。また、仕切板124は、外周壁122の内部に配置される。このとき、仕切板124の外周端部と、外周壁122の筒状の内周面との間には、燃焼室126としての空隙が形成される。最後に、外周壁122に加熱板118が上方から重ねられる。
 燃焼室126は、外周壁122、加熱板118、配置板120、および仕切板124の外周端部に囲まれており、外周壁122より内側に外周壁122に沿って形成される。このように外周壁122に沿って燃焼室126を形成するため、燃焼室126の体積を十分に確保でき、燃焼負荷率を低くできる。
 図2Aに示すように、本体容器内では、厚み方向(加熱板118の上面に直交する方向)に、導入路128と導出路130とが重ねて形成される。導入路128は、配置板120と仕切板124とを側壁とし、配置板120と仕切板124とに挟まれた空間である。導入路128は、本体容器中央に流入した燃料ガスを燃焼室126に向けて放射状に流動させる。
 導出路130は、加熱板118と仕切板124とを側壁とし、加熱板118と仕切板124とに挟まれた空間である。導出路130は、燃焼室126から排気ガスを本体容器中央に集約して燃焼加熱器110の外部に向けて流動させる。また、図2Aに示すように、本体容器内では、厚み方向に、導入路128と導出路130とが重なって形成されているので、仕切板124を介して排気ガスの熱を伝達し、燃料ガスを予熱することができる。
 第1配管部132は、導入路128に接続され、燃料ガスを燃焼加熱器110内に向けて流動させる。具体的に、配置板120の中心部には、第1配管部132の内径と同一径の孔158が設けられており、この孔158に第1配管部132が接続されている。
 第2配管部134は、第1配管部132の内側に配される。即ち、第1配管部132と第2配管部134とで二重管を形成する。また、第2配管部134は、導出路130に接続され、排気ガスを燃焼加熱器110の外部に向けて流動させる。具体的に、仕切板124の中心部には、第2配管部134の外径と同一径の孔160が設けられており、この孔160に第2配管部134が接続される。さらに、第2配管部134は、その内部を流動する排気ガスの熱を、第1配管部132を流れる燃料ガスに伝達する役割も担う。
 本実施形態においては、第1配管部132の内側に第2配管部134が配されるが、かかる場合に限定されず、第2配管部134の内側に第1配管部132が配されると共に、第1配管部132および第2配管部134を加熱板118側から導入路128および導出路130にそれぞれ接続させてもよい。
 次に、燃料ガスおよび排気ガスの流れを具体的に説明する。図2Aの領域X1を拡大した図2Bにおいて、薄い灰色で塗りつぶした矢印は燃料ガスの流れを、濃い灰色で塗りつぶした矢印は排気ガスの流れを、黒色で塗りつぶした矢印は熱の移動を示す。第1配管部132に燃料ガスを供給すると、燃料ガスは配置板120の中心部から導入路128に流入し、水平方向に放射状に広がりながら燃焼室126に向けて流れる。燃料ガスは、燃焼室126において外周壁122に衝突し、燃焼した後、高温の排気ガスとなる。排気ガスは、燃焼室126から導出路130を通じて第2配管部134に流入する。
 仕切板124は比較的熱伝導し易い素材で形成されており、導出路130を通過する排気ガスの熱は、仕切板124を介して導入路128を通過する燃料ガスに伝わる(伝熱する)。本実施形態では、導出路130を流れる排気ガスと導入路128を流れる燃料ガスとが、仕切板124を挟んで対向流(カウンタフロー)となっているため、排気ガスの熱で燃料ガスを効率的に予熱することが可能となり、高い熱効率を得ることができる。このように燃料ガスを予熱してから燃焼する、所謂、超過エンタルピ燃焼によって、燃料ガスの燃焼を安定化し、不完全燃焼によって生じるCOの濃度を極低濃度に抑えることができる。
 さらに、燃焼室126における安定した燃焼を可能とするために、導入路128の燃焼室126との接続部において、燃料ガスの流れに垂直な断面形状(以下、流路断面形状と称す)における代表寸法は、火炎の導入路128側への進入を防止できる(燃焼反応が導入路128内に伝播されない)程度の消炎距離(消炎等価径を含む)を考慮し、消炎距離以下とすることが好ましい。なお、代表寸法は、燃料ガスが燃焼室126に流入する直前の流路の断面形状によって定まる寸法である。例えば、流路断面形状が円形状である場合には、代表寸法は円形断面の直径を指し、流路断面形状が円形状以外である場合には、代表寸法は断面の水力相当直径を指す。水力相当直径は、4×流路断面積/ぬれ縁長さで求められる。ぬれ縁長さは、流路断面における、燃料ガスが接触する壁(配置板120、仕切板124)部分の長さを示す。
 例えば、配置板120と仕切板124との距離を消炎距離以下とすれば、火炎が導入路128内に進入することが防止され、燃焼が安定化される。しかし、配置板120と仕切板124との距離を消炎距離以下で均一にするためには、配置板120と仕切板124の面精度や取り付け精度を高める必要があり、製造コストが増加する可能性がある。本実施形態においては、配置板120と仕切板124との距離が消炎距離よりも大きくなることを許容するために、仕切板124の燃焼室126近傍の下面(配置板120側)に配置板120と当接する複数の突起部152を所定の間隔L(図3B参照)を空けて配置する。
 図3Aは、複数の突起部152を説明するための斜視図である。また、図3Aは、燃焼加熱器110の透視図である。図3Bは、図3AのB-B線での断面を矢印の方向から見た斜視断面図である。図3Bにおいて、複数の突起部152の構造の理解を容易にするため、突起部152のうち、仕切板124で隠されている部分を破線で示す。また、矢印154は燃料ガスの流れの向きを示す。導入路128は、仕切板124に設けられた複数の突起部152によって、その流路断面が狭められている。図2Bおよび図3Bに示すように、燃料ガスは、導入路128のうち、隣接する突起部152の間の空隙を通じて燃焼室126に流入する。このとき、突起部152同士の間隔Lが流路断面形状の代表寸法となる。すなわち、配置板120と仕切板124との距離を厳密に設定することなく、間隔Lによって流路断面形状の代表寸法を設定することが可能となる。
 燃料ガスの消炎距離dは、管壁モデルの径の大きさで表され、式(1)により求められる。
 d=2λ・Nu1/2/Cp・ρu・Su   …式(1)
 式(1)において、λは熱伝導率、Nuはヌセルト数、Cpは定圧比熱、ρuは燃料ガスの密度、Suは燃焼速度である。
 本実施形態の燃焼加熱器110は、上述した代表寸法(突起部152同士の間隔L)が消炎距離d以下となるように設計されているため、燃焼室126における安定した燃焼が可能となる。また、複数の突起部152を設ける構成に限定されず、仕切板124の燃焼室126近傍の下面に、1つの円環形の突起部を設けてもよい。この場合、突起部と配置板120との距離が代表寸法となる。かかる構成により、より簡易な構造で導入路128の代表寸法を消炎距離d以下とすることができる。
 以上、説明したように、燃焼加熱器110単体においては、導出路130から導入路128に対して熱を伝達するので熱効率を非常に高くできる。また、第2配管部134を通じて排気ガスを回収するので、周囲の環境を損なうことも防止できる。
 続いて、このような燃焼加熱器110を、要求される熱量や加熱面積に応じた数だけ複数連結して構成される、燃焼加熱システム100を説明する。
(燃焼加熱システム100)
 図4は、燃焼加熱システム100の外観例を示す斜視図である。図5Aは、燃焼加熱システム100の構造を説明するための平面図である。図5Bは、図5AのC-C線での断面図である。図5Cは、図5Bの領域X2での拡大図である。図6は、火移り部170を説明するための斜視図である。ただし、図6では、説明の便宜上、燃焼加熱システム100の図中手前側に延長されている部位を省略し、また、省略した部分の断面に関する詳細な記載を省いている。
 図4に示すように、燃焼加熱システム100は、複数の燃焼加熱器110を互いに連結した構造を有し、供給される燃料ガスを燃焼させて、それぞれの燃焼加熱器110を加熱し、その排気ガスを回収する。
 本実施形態では、大きな熱量や加熱面積を得るため、熱量や加熱面積の比較的小さい燃焼加熱器110を複数組み合わせる。比較的小さな燃焼加熱器110を用いることができるため、燃焼加熱器110単体を大きく設計した場合と比較して、燃焼時における個々の熱変形を抑制することができる。また、熱量や加熱面積の増加要求に伴って、燃焼加熱器110をさらに連結したとしても、個々の燃焼能力は、燃焼加熱器110の連結数増加の影響を受けない。そのため、その安定性や耐久性を維持することができる。
 本実施形態では、説明の便宜のため、燃焼加熱器110を2つのみ連結する場合を挙げているが、燃焼加熱器110の長手方向および短手方向に任意に燃焼加熱器110を連結することができ、様々な縦横比の燃焼加熱システム100を構成することができる。
 また、図5Aおよび図6に示すように、燃焼加熱システム100における複数の燃焼加熱器110の連結部位には、連結された複数の燃焼加熱器110内の密閉空間(燃焼室126、導入路128、導出路130)を互いに連通する火移り部170が形成されている。なお、この密閉空間は、燃焼加熱システム100を気体中で用いる場合、必ずしも完全に密閉する必要はない。また、加熱板118と配置板120と外周壁122との間を完全密閉すると、燃焼加熱器110は、液体中においても使用することができる。
 複数の燃焼加熱器110を互いに連結する燃焼加熱システム100では、例えば、イグナイタ等の点火装置による1回の点火によって、連結するすべての燃焼加熱器110を点火する機能が求められる。燃焼加熱器110は、密閉性を保ちつつ火移り部170を形成する必要がある。また、燃焼加熱器110において外周壁122は保炎機能を有するので、火移り部170の形成に際して外周壁122を安易に取り除いてしてしまうと、外周壁122において淀み点(ガスの流動が滞る箇所)が形成されず、保炎性の悪化に伴いCO排出濃度が増加して、本来の熱効率を得ることができなくなる可能性がある。
 本実施形態の火移り部170は、外周壁122の一部である保炎部位172と、連結された複数の燃焼加熱器110におけるそれぞれの燃焼室126同士を連通させる連通路174と、を備える。保炎部位172と連通路174とは、加熱板118の直交方向(加熱板118と配置板120との対向方向、すなわち外周壁122の高さ方向)に並設されている。保炎部位172は配置板120側に設けられ、連通路174は加熱板118側に設けられている。
(保炎部位172)
 本実施形態では、図6に示すように、外周壁122の高さ方向すべてに渡って連通路174を形成せず、保炎に必要とされる高さの保炎部位172として、外周壁122の一部を残している。そのため、導入路128を流れてきた燃料ガスは、図5Bの領域X2を拡大した図5Cに示すように、燃焼室126において保炎部位172に衝突し燃焼する。保炎部位172は、燃焼室126において保炎性を確保するのに十分な高さを有しているので、連通路174が形成されていない燃焼室126と同様の燃焼が可能であり、COを排出することなく熱効率の維持を図ることが可能となる。なお、燃焼室126は、外周壁122の配置板120側の内周面に燃料ガスを衝突させて、その流動を滞らせることにより保炎する。すなわち、燃焼室126は、外周壁122の一部である保炎部位172に燃料ガスを衝突させて保炎する。
(連通路174)
 図5Cに示すように、連通路174は、保炎部位172の上方に、連結された複数の燃焼加熱器110の燃焼室126を互いに連通する貫通孔として形成される。かかる構成により、点火によって一方の燃焼加熱器110で生じた火炎が連通路174を通って他方にも伝播し、連結されたすべての燃焼加熱器110を短時間で点火することが可能となる。本実施形態では、連通路174を保炎部位172の上方に形成する例を挙げたが、保炎部位172として保炎性を確保できれば、保炎部位172の下方に形成することもできる。また、本実施形態では、連通路174の断面形状を矩形に形成する例を挙げているが、かかる場合に限られず、円形や多角形等様々な形状を用いることができる。
 また、導入路128の代表寸法とは異なり、火炎が連通路174を通るように(燃焼反応が連結された複数の燃焼加熱器110間で伝播するように)連通路174の断面形状を設計する必要がある。そのため、連通路174の代表寸法は、上述した式(1)の消炎距離dより大きく設定する。例えば、消炎距離dが3mmであった場合に、連通路174の断面形状を高さ3mm×幅10mmの矩形とすると、その代表寸法は、4.6mmとなって火炎を十分に伝播することが可能となる。したがって、図5Cに示すように、燃焼加熱システム100を構成する燃焼加熱器110の外周壁122の高さhは、保炎に必要とされる保炎部位172の高さhと、連通路174の消炎距離dに基づいて決定される連通路174の高さhの和となる。
 さらに、連通路174は、連結された複数の燃焼加熱器110のそれぞれの燃焼室126間の距離が最短となる位置に形成される。例えば、図5Aにおいて、連通路174は、連結する複数の燃焼加熱器110の連結部分、且つ燃焼加熱システム100の短手方向略中央に形成される。本実施形態では、燃焼加熱器110の外周壁122の内周がトラック形状に形成されているため、そのトラック形状の円弧の中心同士を結ぶ直線上に連通路174を位置させることで、複数の燃焼室126間の距離が最短となる。このように複数の燃焼室126間の距離を短くすることで、連通路174の消炎距離dを短くすることができる。よって、連通路174の代表寸法を小さく設定した場合でも、火炎を確実に伝播させ、点火の信頼性を向上させることが可能となる。なお、連通路174の位置は、複数の燃焼室126間の距離が最短となる位置に限定されず、火移りが可能な範囲で任意に設定することができる。このような連通路174の設置により、燃焼加熱システム100の運用条件下において安定した火移りを確認できた。
 また、連通路174近傍の燃焼室126における燃焼に基づく火炎の伝播のみならず、燃焼加熱器110内に生じる圧力波によっても、火炎の伝播が助けられる。
 図7は、火炎の伝播を説明するための平面図である。例えば、点火装置176が近傍の燃焼室126に点火すると、図7において矢印で示したように、外周壁122の内周面に沿って、順次燃焼室126内で火炎が伝播される。燃料ガスに点火したときに燃焼室126内に生じる圧力によって、連結された他の燃焼加熱器110に向かう方向(図7の紙面右方向)の圧力波が生じ、その圧力波によって火炎の伝播速度が高くなる。また、このような圧力波が、平面視半円形状となっている外周壁122の内周面によって集約され、さらに加速して連通路174に流入するので、火炎は連結された他の燃焼加熱器110に容易に伝播される。
 このように、保炎部位172と連通路174とを上下方向に並設する構成により、点火時において、火移り性と保炎性とを両立させることができる。また、燃焼加熱器110の連結数に拘わらず1回の点火のみですべての燃焼加熱器110を点火し、コスト低減と作業性の向上を図ることができる。また、定常燃焼時には、燃焼加熱システム100を構成するそれぞれの燃焼加熱器110において、上述したように高い熱効率の維持と周囲の環境の向上を図ることが可能となる。
 図8Aは、連通管180を説明するための斜視図である。また、図8Aは、燃焼加熱システム100の配管部分の斜視図である。図8Bは、図8AのD-D線での断面図である。図8A、図8Bおよび後述する図9A、図9Bでは、理解を容易とするため配管部分のみを示すが、かかる配管部分は燃焼加熱器110の本体容器に接続されている。
 また、以下では、第1配管部132および第2配管部134のうち、点火装置176が配された燃焼加熱器110の本体容器に接続されている配管を、第1配管部132aおよび第2配管部134aとする。また、連通路174を通じて火移りする側の燃焼加熱器110の本体容器に接続されている配管を、第1配管部132bおよび第2配管部134bとする。
 燃焼加熱システム100は、図8Bに示すように、複数の燃焼加熱器110の第2配管部134a、134bを連通させる連通管180を備える。かかる連通管180は、流路面積が第2配管部134a、134bより大きな拡大部182を有する。この流路面積は、排気ガスの流れ方向に直交する方向での、流路の断面積である。本実施形態では、図8A、図8Bに示すように、連通管180の流路全体が、第2配管部134a、134bの流路よりも広く形成されている。すなわち、連通管180全体にわたって拡大部182が形成されている。なお、連通管180の一部の流路面積を第2配管部134a、134bの流路面積よりも大きくし、拡大部182を連通管180の一部にのみ設けてもよい。
 燃焼加熱システム100では、点火装置176によって一方の燃焼加熱器110が点火されると、上記したとおり、外周壁122の内周面に沿って順次燃焼室126内で火炎が伝播され、燃料ガスに点火したときに生じる圧力波が連通路174に流入し、火炎は連結された他の燃焼加熱器110に伝播される。このとき、点火された燃焼加熱器110から、第2配管部134a、連通管180、第2配管部134b、火移りする側の燃焼加熱器110の順で圧力波が伝わる場合がある。この圧力波の伝播について図9A、図9Bを用いて詳述する。
 図9A、図9Bは、圧力波の伝播を説明するための垂直断面図である。図9Aは本実施形態の構成を示し、図9Bは比較例の構成を示している。なお、理解を容易とするため、圧力波が強くなるに従い、複数の楕円の円弧184を互いに接近させて示す。図9Bに示す比較例では、連通管10の流路面積は、第2配管部134a、134bの流路面積と等しい。この場合、発生した圧力波は、連通管10内でほとんど弱まることなく、火移りする側の燃焼加熱器110の第2配管部134bを逆流する方向(排気ガスの流動方向と逆の方向)に伝播する。
 このようにして、火移りする側の燃焼加熱器110内に圧力波が伝播すると、この火移りする側の燃焼加熱器110における排気ガスの流れが阻害されるため、連通路174における火炎の伝播が抑制され、火移り性が低下する。すなわち、火移りが可能となる条件の範囲が狭くなって火移りできない場合がある。
 本実施形態の燃焼加熱システム100では、図9Aに示すように、連通管180が拡大部182を有する。火移りする側の燃焼加熱器110に第2配管部134a、134bを通じて伝播する圧力波は、第2配管部134aから拡大部182に伝播したところで、流路の拡大によって減衰される。
 また、拡大部182の流路の断面積が大きいため、圧力波が伝播する媒体(連通管180内の排気ガスや空気等の気体)の体積も大きい。そのため、図9Bの比較例よりも、連通管180内を伝播することで圧力波のエネルギーが弱まり易い。
 また、連通管180と第2配管部134bとの接続部分では、流路面積が大きい配管から流路面積が小さい配管へ向けて圧力波が伝播するため、圧力波はさらに伝播し難くなる。
 このように、燃焼加熱システム100は、第2配管部134a、134bを介した圧力波の伝播の影響を抑え、連通路174を通して伝播する火炎による、連結する他の燃焼加熱器110への火移り性を一層向上できる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態には限定されない。当業者は、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到でき、それらも当然に本発明の技術的範囲に属する。
 例えば、上記実施形態では、外周壁122の内周面は平面視でトラック形状に形成されていたが、環状であればどのような形状であってもよい。外周壁122の内周面が平面視で円環状や矩形環状に形成されていてもよい。
 本発明は、燃料を燃焼させて被加熱物を加熱する複数の燃焼加熱器を互いに連結した燃焼加熱システムに利用することができる。
100  …燃焼加熱システム
110  …燃焼加熱器
118  …加熱板
120  …配置板
122  …外周壁
124  …仕切板
126  …燃焼室
128  …導入路
130  …導出路
132、132a、132b  …第1配管部
134、134a、134b  …第2配管部
170  …火移り部
172  …保炎部位
174  …連通路
176  …点火装置
180  …連通管
182  …拡大部

Claims (5)

  1.  加熱板と、前記加熱板に対向配置された配置板と、前記加熱板と前記配置板との間に配置された環状の外周壁と、前記加熱板と前記配置板との間に配置された仕切板と、前記外周壁に沿って位置し前記外周壁の一部である保炎部位に燃料ガスを衝突させて保炎する燃焼室と、前記配置板と前記仕切板とを側壁とし前記燃焼室に向けて燃料ガスを流動させる導入路と、前記加熱板と前記仕切板とを側壁とし前記燃焼室から排気ガスを外部に向けて流動させると共に前記仕切板を介して排気ガスの熱で燃料ガスを予熱する導出路と、を備える燃焼加熱器を複数連結した燃焼加熱システムであって、
     複数の前記燃焼加熱器の連結部に配置されると共にそれぞれの前記燃焼室を互いに連通させる連通路を備え、
     前記保炎部位と前記連通路とが、前記加熱板と前記配置板との対向方向に並設されている燃焼加熱システム。
  2.  前記外周壁の高さは、保炎に必要とされる前記保炎部位の高さと、前記連通路の消炎距離に基づいて決定される前記連通路の高さの和である請求項1に記載の燃焼加熱システム。
  3.  前記連通路は、連結された複数の前記燃焼加熱器のそれぞれの前記燃焼室間の距離が最短となる位置に配置されている請求項1に記載の燃焼加熱システム。
  4.  前記導入路に接続されて燃料ガスを前記燃焼加熱器に向けて流動させる第1配管部と、
     前記導出路に接続されて排気ガスを前記燃焼加熱器の外部に向けて流動させる第2配管部と、
     複数の前記燃焼加熱器のそれぞれの前記第2配管部を互いに連通させる連通管と、をさらに備え、
     前記連通管は、前記第2配管部よりも流路面積が大きな拡大部を有する請求項1に記載の燃焼加熱システム。
  5.  前記第1配管部および前記第2配管部の一方が、他方の内部に配されて二重管を形成している請求項4に記載の燃焼加熱システム。
PCT/JP2011/075184 2010-11-04 2011-11-01 燃焼加熱システム WO2012060377A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112013010561A BR112013010561A2 (pt) 2010-11-04 2011-11-01 sistema de aquecimento por combustão
CN201180051914.5A CN103180667B (zh) 2010-11-04 2011-11-01 燃烧加热系统
JP2012541876A JP5445691B2 (ja) 2010-11-04 2011-11-01 燃焼加熱システム
KR1020137007877A KR101405277B1 (ko) 2010-11-04 2011-11-01 연소 가열 시스템
US13/882,252 US9447968B2 (en) 2010-11-04 2011-11-01 Combustion-heating system
EP11838027.8A EP2636950B1 (en) 2010-11-04 2011-11-01 Combustion heating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010247371 2010-11-04
JP2010-247371 2010-11-04

Publications (1)

Publication Number Publication Date
WO2012060377A1 true WO2012060377A1 (ja) 2012-05-10

Family

ID=46024491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075184 WO2012060377A1 (ja) 2010-11-04 2011-11-01 燃焼加熱システム

Country Status (8)

Country Link
US (1) US9447968B2 (ja)
EP (1) EP2636950B1 (ja)
JP (1) JP5445691B2 (ja)
KR (1) KR101405277B1 (ja)
CN (1) CN103180667B (ja)
BR (1) BR112013010561A2 (ja)
TW (1) TWI435035B (ja)
WO (1) WO2012060377A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017058124A (ja) * 2016-10-31 2017-03-23 株式会社Ihi 加熱炉および連続加熱炉
US10502487B2 (en) 2011-09-05 2019-12-10 Ihi Corporation Heating furnace and continuous heating furnace

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5961941B2 (ja) * 2011-07-27 2016-08-03 株式会社Ihi 密閉式ガスヒータおよび密閉式ガスヒータを用いた連続加熱炉
JP5849542B2 (ja) * 2011-09-05 2016-01-27 株式会社Ihi 連続加熱炉
US20140260313A1 (en) * 2013-03-12 2014-09-18 The University Of Sydney Micro-mixer/combustor
US20170016618A1 (en) * 2014-03-18 2017-01-19 Cheng-Tung CHAN Stove core structure of infrared gas stove
WO2018095988A1 (de) * 2016-11-25 2018-05-31 Frima International Ag Brennersystem für ein gargerät sowie verfahren zum betreiben eines brennersystems für ein gargerät
USD926520S1 (en) * 2019-01-09 2021-08-03 Whirlpool Corporation Cooking burner
CN111765457B (zh) * 2020-06-28 2023-04-18 江苏科技大学 一种利用余热的组合式微型燃烧器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533956A (ja) * 2000-01-07 2003-11-11 ユニバーシティ・オブ・サザン・カリフォルニア マイクロ燃焼器及び燃焼に基づく熱電マイクロ発電機
JP2004324925A (ja) 2003-04-22 2004-11-18 Shizuoka Seiki Co Ltd 赤外線輻射ヒータ
JP2007093180A (ja) * 2005-09-30 2007-04-12 Ishikawajima Harima Heavy Ind Co Ltd マイクロコンバスタの起動方法
JP2007212082A (ja) 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 燃焼加熱器
JP2010247371A (ja) 2009-04-13 2010-11-04 Frontier:Kk ラベル付き容器の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1125726A (en) * 1914-05-04 1915-01-19 American Stove Co Lighting device for gas-stoves.
US1130747A (en) * 1914-06-13 1915-03-09 Antonio Lozano Liquid and gaseous fuel burner.
JPH0515884Y2 (ja) 1987-07-25 1993-04-26
JPH01310218A (ja) 1988-06-06 1989-12-14 Sanyo Electric Co Ltd バーナ装置
JP3825807B2 (ja) 1995-12-27 2006-09-27 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 無炎燃焼器
FR2791419B1 (fr) 1999-03-25 2001-05-04 Sunkiss Aeronautique Equipement d'emission surfacique d'un rayonnement infra-rouge, du type tunnel, comportant des dispositifs de combustion catalytique
CN2435664Y (zh) * 2000-07-06 2001-06-20 马兰拉面快餐连锁有限责任公司 双眼热对流锅灶
US20070209653A1 (en) * 2003-03-06 2007-09-13 Exhausto, Inc. Pressure Controller for a Mechanical Draft System
US7527495B2 (en) 2003-10-21 2009-05-05 Burner Systems International, Inc. Cooperating bridge burner system
JP2007085617A (ja) 2005-09-21 2007-04-05 Ishikawajima Harima Heavy Ind Co Ltd マイクロコンバスタを用いた熱交換器
JP4818172B2 (ja) 2007-03-16 2011-11-16 東邦瓦斯株式会社 2層式燃焼器
TW200928235A (en) 2007-12-21 2009-07-01 Univ Yuan Ze Catalytic type burner with flat flow channel space
CN201462971U (zh) 2009-07-07 2010-05-12 陈云洪 嵌入式燃气灶

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003533956A (ja) * 2000-01-07 2003-11-11 ユニバーシティ・オブ・サザン・カリフォルニア マイクロ燃焼器及び燃焼に基づく熱電マイクロ発電機
JP2004324925A (ja) 2003-04-22 2004-11-18 Shizuoka Seiki Co Ltd 赤外線輻射ヒータ
JP2007093180A (ja) * 2005-09-30 2007-04-12 Ishikawajima Harima Heavy Ind Co Ltd マイクロコンバスタの起動方法
JP2007212082A (ja) 2006-02-10 2007-08-23 Ishikawajima Harima Heavy Ind Co Ltd 燃焼加熱器
JP2010247371A (ja) 2009-04-13 2010-11-04 Frontier:Kk ラベル付き容器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636950A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10502487B2 (en) 2011-09-05 2019-12-10 Ihi Corporation Heating furnace and continuous heating furnace
JP2017058124A (ja) * 2016-10-31 2017-03-23 株式会社Ihi 加熱炉および連続加熱炉

Also Published As

Publication number Publication date
EP2636950A1 (en) 2013-09-11
JP5445691B2 (ja) 2014-03-19
BR112013010561A2 (pt) 2016-08-02
US9447968B2 (en) 2016-09-20
TWI435035B (zh) 2014-04-21
EP2636950A4 (en) 2016-04-20
US20130216965A1 (en) 2013-08-22
EP2636950B1 (en) 2017-07-19
TW201233952A (en) 2012-08-16
KR20130065699A (ko) 2013-06-19
CN103180667B (zh) 2015-07-08
CN103180667A (zh) 2013-06-26
JPWO2012060377A1 (ja) 2014-05-12
KR101405277B1 (ko) 2014-06-10

Similar Documents

Publication Publication Date Title
JP5445691B2 (ja) 燃焼加熱システム
JP4494346B2 (ja) 燃焼加熱器
JP4041984B2 (ja) マイクロコンバスタ
TWI451049B (zh) 燃燒加熱器
US9410699B2 (en) Combustion heater
JP4720396B2 (ja) マイクロコンバスタ
JP5866845B2 (ja) 燃焼加熱器
JP5909900B2 (ja) 燃焼加熱器および燃焼加熱システム
JP4494345B2 (ja) 燃焼加熱器
US20150377553A1 (en) Continuous heating furnace
JP5724686B2 (ja) 燃焼加熱器
KR20110092293A (ko) 연소기
JP6175814B2 (ja) 燃焼加熱器
JP4689425B2 (ja) マイクロコンバスタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012541876

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20137007877

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011838027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011838027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13882252

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010561

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010561

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130429