WO2012060006A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2012060006A1
WO2012060006A1 PCT/JP2010/069670 JP2010069670W WO2012060006A1 WO 2012060006 A1 WO2012060006 A1 WO 2012060006A1 JP 2010069670 W JP2010069670 W JP 2010069670W WO 2012060006 A1 WO2012060006 A1 WO 2012060006A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
flow rate
rotation speed
rotational speed
internal combustion
Prior art date
Application number
PCT/JP2010/069670
Other languages
English (en)
French (fr)
Inventor
龍太郎 森口
田中 聡
真知子 勝俣
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP10859262.7A priority Critical patent/EP2636869A4/en
Priority to CN201080069947.8A priority patent/CN103189616B/zh
Priority to JP2012541690A priority patent/JP5505511B2/ja
Priority to US13/883,449 priority patent/US8938960B2/en
Priority to PCT/JP2010/069670 priority patent/WO2012060006A1/ja
Publication of WO2012060006A1 publication Critical patent/WO2012060006A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B2037/122Control of rotational speed of the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine including a turbocharger.
  • Patent Document 1 discloses a control device for an internal combustion engine including a turbocharger.
  • a turbocharger is modeled for each component, and a turbine model, a shaft model, and a compressor model are set.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • Japanese Unexamined Patent Publication No. 2006-22773 Japanese Unexamined Patent Publication No. 2008-309004 Japanese Unexamined Patent Publication No. 2008-274797 Japanese Unexamined Patent Publication No. 2000-220462
  • the turbine rotational speed (turbo rotational speed) of the turbocharger changes with changes in exhaust energy supplied to the turbine. Therefore, when constructing a system for calculating the turbine rotation speed, there is a problem that the calculation accuracy of the turbine rotation speed deteriorates unless changes in exhaust energy are taken into consideration.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a control device for an internal combustion engine that can calculate a turbine rotational speed with high accuracy in an internal combustion engine with a turbocharger.
  • a first invention is a control device for an internal combustion engine, A turbocharger provided in the exhaust passage with a turbine operated by exhaust energy of the internal combustion engine; Turbine rotation speed calculating means for calculating the turbine rotation speed of the turbine; Rotational speed correction for correcting the turbine rotational speed calculated by the turbine rotational speed calculation means based on at least one of ignition timing, intake valve and / or exhaust valve opening timing and / or closing timing, and air-fuel ratio Means, It is characterized by providing.
  • the second invention is the first invention, wherein
  • the internal combustion engine An exhaust bypass passage for bypassing the turbine;
  • a waste gate valve for opening and closing the exhaust bypass passage;
  • the control device for the internal combustion engine includes: WGV state quantity acquisition means for acquiring a WGV state quantity indicating the open / closed state of the waste gate valve; Relation information defining a turbine rotation speed maintenance flow rate required to maintain the current turbine rotation speed based on the relationship between the turbine rotation speed and the WGV state quantity is provided, and the turbine rotation speed maintenance is performed according to the relation information.
  • the rotational speed correction means is a means for correcting the turbine rotational speed used as a basis for calculating the turbine rotational speed maintenance flow rate.
  • the third invention is the second invention, wherein
  • the control device for the internal combustion engine includes: Exhaust gas flow rate acquisition means for acquiring a flow rate of exhaust gas discharged from the cylinder of the internal combustion engine; A flow rate change amount calculating means for calculating a turbine flow rate change amount which is a difference between the exhaust gas flow rate and the turbine rotation speed maintenance flow rate; On the basis of the turbine flow rate change amount calculated by the flow rate change amount calculation unit, a rotational speed change amount calculation unit that calculates a turbine rotational speed change amount that is a change amount of the turbine rotational speed; Further comprising The rotation speed calculation means is based on the turbine rotation speed change amount calculated in the current calculation cycle by the rotation speed change amount calculation means and the turbine rotation speed calculated in the previous calculation cycle. It is means for calculating the turbine rotation speed in a calculation cycle.
  • the internal combustion engine An exhaust bypass passage for bypassing the turbine; A waste gate valve for opening and closing the exhaust bypass passage; Further comprising
  • the control device for the internal combustion engine includes: Exhaust gas flow rate acquisition means for acquiring a flow rate of exhaust gas discharged from the cylinder of the internal combustion engine; WGV state quantity acquisition means for acquiring a WGV state quantity indicating the open / closed state of the waste gate valve; Further comprising
  • the rotation speed calculation means includes relationship information that defines a steady turbine rotation speed that is the turbine rotation speed at a steady state based on a relationship between the exhaust gas flow rate and the WGV state quantity, and the steady turbine according to the relationship information.
  • the rotation speed correction means is a means for correcting the steady turbine rotation speed calculated according to the relationship information.
  • the waste gate valve is a valve that opens and closes according to the diaphragm pressure acting on the diaphragm interlocked with the waste gate valve.
  • the WGV state quantity is the diaphragm pressure;
  • the WGV state quantity acquisition means is means for detecting or estimating the diaphragm pressure.
  • the first invention it is possible to calculate the turbine speed with high accuracy in consideration of the influence of the change in the exhaust energy.
  • the turbine rotational speed used as the basis for calculating the turbine rotational speed maintenance flow rate is corrected in consideration of the effect of changes in exhaust energy.
  • the turbine rotational speed change amount is calculated from the turbine flow rate change amount which is the difference between the exhaust gas flow rate and the turbine rotational speed maintenance flow rate, and the current turbine rotational speed change amount and the previous turbine rotational speed are calculated.
  • the turbine rotational speed change amount is calculated from the turbine flow rate change amount which is the difference between the exhaust gas flow rate and the turbine rotational speed maintenance flow rate, and the current turbine rotational speed change amount and the previous turbine rotational speed are calculated.
  • the fourth aspect of the present invention it is possible to calculate the steady turbine rotational speed with high accuracy in consideration of the effects of the exhaust energy and the WGV state quantity.
  • the diaphragm pressure is used as the WGV state quantity, not the WGV opening degree, which is difficult to measure in mounting, so that the influence of the WGV state quantity can be favorably reflected in the calculation of the turbine rotation speed. Become.
  • FIG. 1 It is a schematic diagram for demonstrating the system configuration
  • FIG. 1 is a schematic diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention.
  • the system of this embodiment includes a spark ignition type internal combustion engine (gasoline engine) 10.
  • An intake passage 12 and an exhaust passage 14 communicate with each cylinder of the internal combustion engine 10.
  • An air cleaner 16 is attached in the vicinity of the inlet of the intake passage 12.
  • An air flow meter 18 that outputs a signal corresponding to the flow rate of air taken into the intake passage 12 is provided in the vicinity of the downstream side of the air cleaner 16.
  • a compressor 20 a of the turbocharger 20 is installed downstream of the air flow meter 18. The compressor 20a is integrally connected to a turbine 20b disposed in the exhaust passage 14 via a connecting shaft.
  • An intercooler 22 for cooling the compressed air is provided downstream of the compressor 20a.
  • An electronically controlled throttle valve 24 is provided downstream of the intercooler 22.
  • Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 26 for injecting fuel into the intake port. Further, each cylinder of the internal combustion engine 10 is provided with a spark plug 28 for igniting the air-fuel mixture.
  • the internal combustion engine 10 includes an intake variable valve mechanism 30 and an exhaust variable valve mechanism 32 for opening and closing intake valves (not shown) and exhaust valves (not shown).
  • these variable valve mechanisms 30 and 32 are mechanisms capable of changing the opening / closing timing of the intake valve or the exhaust valve.
  • a specific configuration for realizing such variable valve mechanisms 30 and 32 is not particularly limited.
  • the rotational phase of the camshafts 34 and 36 is changed with respect to the rotational phase of a crankshaft (not shown).
  • a phase variable mechanism VVT (VariableariValve Timing) mechanism) (not shown) that can change the opening / closing timing of the intake valve or the exhaust valve can be used.
  • An intake cam angle sensor 36 for detecting the rotational position (advance amount) of the intake camshaft 34 is provided in the vicinity of the intake variable valve mechanism 30, and in the vicinity of the exhaust variable valve mechanism 32. Is provided with an exhaust cam angle sensor 40 for detecting the rotational position (advance amount) of the exhaust cam shaft 38.
  • the exhaust passage 14 is connected to an exhaust bypass passage 42 that bypasses the turbine 20b and connects the inlet side and the outlet side of the turbine 20b.
  • a waste gate valve (WGV) 44 that opens and closes the exhaust bypass passage 42 is provided in the middle of the exhaust bypass passage 42.
  • the opening degree of the WGV 44 is controlled by a pressure regulating actuator 46.
  • a diaphragm (not shown) that interlocks with the WGV 44 is provided inside the actuator 46.
  • a negative pressure generated by the negative pressure pump 48 is supplied via a negative pressure passage 50 to one of the pressure chambers (not shown) divided into two by the diaphragm.
  • a vacuum switching valve (VSV) 52 that opens and closes the negative pressure passage 50 is provided in the middle of the negative pressure passage 50.
  • the diaphragm is biased in a direction to open the WGV 44 by a spring (not shown). According to such a configuration, the negative pressure supplied to the diaphragm can be adjusted by driving the VSV 52 with an arbitrary duty ratio, and the opening degree of the WGV 44 can be adjusted.
  • the waste gate valve is not necessarily limited to the pressure-regulating type, and may be, for example, an electric type valve.
  • a catalyst 54 for purifying exhaust gas is disposed in the exhaust passage 14 on the downstream side of the turbine 20b.
  • An A / F sensor 56 for detecting the air-fuel ratio of the exhaust gas is disposed upstream of the catalyst 54.
  • a crank angle sensor 58 for detecting the engine speed is provided in the vicinity of the crankshaft.
  • the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 60.
  • ECU Electronic Control Unit
  • Various sensors for detecting the operating state of the internal combustion engine 10 such as the air flow meter 18, the cam angle sensors 36 and 40, the A / F sensor 56, and the crank angle sensor 58 described above are connected to the input portion of the ECU 60.
  • various actuators for controlling the operation state of the internal combustion engine 10 such as the throttle valve 24, the fuel injection valve 26, the spark plug 28, the variable valve mechanisms 30, 32, and the VSV 52 described above. It is connected.
  • FIG. 2 is a block diagram showing a configuration of a turbine rotation speed model 70 provided in the ECU 60 shown in FIG. Inside the ECU 60 described above, a turbine speed model 70 having the configuration shown in FIG. 2 is virtually constructed.
  • the turbine speed model 70 changes with a transient change in the operating state of the internal combustion engine 10 (more specifically, a change in the gas flow rate passing through the intake valve (hereinafter referred to as “intake valve flow rate”)).
  • intake valve flow rate a change in the gas flow rate passing through the intake valve
  • the intake valve flow rate Mc is input to the turbine rotation speed model 70.
  • the intake valve flow rate Mc is a value that can be acquired using the output of the air flow meter 18.
  • the intake valve flow rate Mc input to the turbine speed model 70 is converted into an exhaust gas flow rate Mtb in consideration of a time delay until the gas passing through the intake valve is discharged to the exhaust passage 14.
  • the exhaust gas flow rate Mtb here is strictly the flow rate of the exhaust gas in the exhaust passage 14 upstream of the connection point with the exhaust bypass passage 42 on the upstream side of the turbine 20b.
  • FIG. 3 is a diagram showing a steady line that defines the relationship between the turbine rotation speed Ntb, the WGV state quantity indicating the open / closed state of the WGV 44, and the intake valve flow rate Mc.
  • Ntb turbine rotational speed
  • Mc intake valve flow rate
  • the turbine rotational speed Ntb increases as the intake valve flow rate Mc (exhaust gas flow rate Mtb) increases. Further, when the WGV 44 is opened, the gas flow rate flowing through the exhaust bypass passage 42 in the exhaust gas flow rate Mtb increases, so that the gas flow rate flowing through the turbine 20b (hereinafter sometimes referred to as “turbine flow rate”) decreases. For this reason, when the WGV 44 is opened, as shown in FIG. 3, under the same intake valve flow rate Mc, the turbine rotational speed Ntb (steady turbine rotational speed Ntbs) is compared to when the WGV 44 is closed. ) Will decrease.
  • FIG. 3 shows an example when the exhaust energy increases.
  • ignition timing, intake / exhaust valve opening / closing timing (including valve overlap period), And changes in the air-fuel ratio (including fuel cut information) are taken into account.
  • a predetermined reference state that is, the ignition timing is a base ignition timing which will be described later, and the intake opening / closing timing InVT and the exhaust opening / closing timing ExVT are set to a predetermined intake reference opening / closing in which the valve overlap period is zero).
  • a steady line at the time InVT0 and the exhaust reference opening / closing timing ExVT0 and when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric) is provided as a reference steady line.
  • a reference steady line according to the WGV state quantity (WGV opening in the example of FIG. 3) is provided.
  • the exhaust gas energy correction unit 72 uses the turbine rotation speed Ntb of the previous calculation cycle (that is, one step before) obtained by using the delay element (1 / Z).
  • the rotational speed (hereinafter simply referred to as “corrected turbine rotational speed”) is corrected to Ntba.
  • the corrected turbine rotation speed Ntba is input to the steady line (reference steady line).
  • the diaphragm pressure Pwgv for controlling the WGV 44 is used as the WGV state quantity used for the steady line, not the WGV opening that is difficult to measure in mounting.
  • a steady line for the turbine speed Ntb and the intake valve flow rate Mc exhaust gas flow rate Mtb
  • the diaphragm pressure Pwgv is used here while considering this delay as a primary delay.
  • the diaphragm pressure Pwgv may be estimated according to a map (not shown) set in advance in relation to the duty ratio for controlling the VSV 52, or may be measured with a separate pressure sensor. It may be.
  • the steady line is stored in the ECU 60 as a map in which the turbine rotation speed maintenance flow rate Mtb0 is determined based on the relationship between the turbine rotation speed Ntb and the diaphragm pressure Pwgv.
  • the above-mentioned steady line is not limited to that stored as such a map, and may be stored in the ECU 60 as a predetermined relational expression, for example.
  • a turbine flow rate change amount ⁇ Mtb that is a difference between the exhaust gas flow rate Mtb and the turbine rotational speed maintenance flow rate Mtb0 necessary for maintaining the current turbine rotational speed Ntb constantly is calculated. Is done.
  • This turbine flow rate change amount ⁇ Mtb is considered to be related to energy for increasing or decreasing the speed of the turbine 20b. More specifically, when the turbine flow rate change amount ⁇ Mtb is positive, that is, when the current exhaust gas flow rate Mtb is larger than the turbine rotational speed maintenance flow rate Mtb0, the turbine rotational speed Ntb increases. On the other hand, when the turbine flow rate change amount ⁇ Mtb is negative, that is, when the current exhaust gas flow rate Mtb is smaller than the turbine rotational speed maintenance flow rate Mtb0, the turbine rotational speed Ntb decreases.
  • the turbine flow rate change amount which is a change amount of the turbine rotation speed Ntb corresponding to the turbine flow rate change amount ⁇ Mtb is obtained by multiplying the turbine flow rate change amount ⁇ Mtb by a predetermined change amount coefficient A.
  • ⁇ Ntb is calculated.
  • This variation coefficient A is a value set in advance in relation to the exhaust gas flow rate Mtb and the diaphragm pressure Pwgv (handled as a first-order lag as in the case of the steady line).
  • the turbine rotational speed change amount ⁇ Ntb is calculated from the turbine flow rate change amount ⁇ Mtb while considering the influence of the exhaust gas flow rate Mtb and the diaphragm pressure Pwgv.
  • the turbine rotation speed change amount ⁇ Ntb calculated as described above is added to the turbine rotation speed Ntb calculated in the previous calculation cycle (one step before), thereby calculating the current calculation.
  • the turbine speed Ntb in the cycle is calculated.
  • the turbine rotational speed model 70 described above when the operating state of the internal combustion engine 10 changes, the intake valve flow rate Mc (exhaust gas flow rate Mtb) and the diaphragm pressure Pwgv that change every moment are sequentially input.
  • the transient turbine speed Ntb can be calculated sequentially. Further, since the turbine flow rate change amount ⁇ Mtb becomes zero at the steady time when the operating state of the internal combustion engine 10 does not change, the turbine rotation speed change amount ⁇ Ntb also becomes zero. For this reason, the turbine rotation speed Ntb converges to a value corresponding to the current exhaust gas flow rate Mtb and the WGV state quantity. That is, according to the turbine rotational speed model 70, calculation of the turbine rotational speed Ntb at the steady state can be ensured.
  • FIG. 4 is a diagram for explaining the setting of the diaphragm pressure Pwgv.
  • a steady line defining the relationship between the turbine speed Ntb and the intake valve flow rate Mc (exhaust gas flow rate Mtb) can also be obtained in the relationship with the diaphragm pressure Pwgv.
  • the actuator 46 used in this embodiment is configured such that the force with which the WGV 44 is closed becomes stronger as the diaphragm pressure Pwgv becomes more negative.
  • the “closed region” in FIG. 4B is a region where the WGV opening does not change with respect to the change in the diaphragm pressure Pwgv, and the “dead zone” refers to the change in the WGV opening.
  • This is a region where the turbine speed Ntb (turbine flow rate) does not change.
  • FIG. As a lower limit value (a value for determining that the WGV 44 is fully closed) of the diaphragm pressure Pwgv used as the input of the steady line based on data obtained in advance through experiments or the like, FIG.
  • the upper limit value of the closed region is used as shown in FIG. Further, as shown in FIG.
  • an upper limit value of the diaphragm pressure Pwgv used as an input for the steady line (a value for determining that the flow rate of the exhaust gas flowing through the exhaust bypass passage 42 is maximum) is set to the lower limit of the dead zone. The value was used.
  • the lower limit value of the diaphragm pressure Pwgv is set to a lower value (for example, 20 kPa) with a margin than the upper limit value of the closed region, for example, even when the diaphragm pressure Pwgv is actually a value that can fully close the WGV 44 (for example, 40 kPa), the rotational speed of the turbine is maintained assuming that the WGV 44 is opened by interpolating the steady line (map). It is conceivable that the flow rate Mtb0 is erroneously calculated.
  • FIG. 5 is a diagram for explaining the flow of calculation of the turbine rotation speed maintenance flow rate Mtb0 using the turbine rotation speed Ntb exhaust energy correction unit 72 shown in FIG.
  • the exhaust energy correction unit 72 includes an ignition timing correction amount calculation unit 74 that calculates an ignition timing correction amount, a VVT correction amount calculation unit 76 that calculates a VVT (Variable Valve Timing) correction amount, and A The A / F correction amount calculation unit 78 calculates the / F correction amount (including the correction amount based on the fuel cut information).
  • the correction amounts calculated by the correction amount calculation units 74, 76, and 78 are added together, and then the current (previous calculation cycle). Multiplied by the turbine speed Ntb).
  • an exhaust energy correction turbine rotational speed (hereinafter simply referred to as “corrected turbine rotational speed”) Ntba in which correction based on exhaust energy is reflected is calculated.
  • the turbine rotation speed maintenance flow rate Mtb0 is calculated using a steady line (more specifically, a map set according to the tendency of the steady line) having the corrected turbine rotation speed Ntba and the diaphragm pressure Pwgv as inputs. .
  • the ignition timing correction amount calculation unit 74 is an element that calculates an ignition timing correction amount according to the difference between the base ignition timing and the final ignition timing.
  • FIG. 6 is a diagram for explaining the setting of the base ignition timing and the relationship between the base ignition timing and the final ignition timing.
  • the MBT (Minimum advanced for the best Torque) ignition timing is an ignition timing at which the torque is maximized, in other words, an ignition timing at which the exhaust energy is minimized.
  • the knock limit ignition timing takes a retarded value on the high load (high load factor KL) side. Therefore, the ignition timing for obtaining the optimum torque while considering knock avoidance is the base ignition timing indicated by the broken line in FIG.
  • the ECU 60 stores a base ignition timing having a tendency as shown in FIG. 6 as a map in relation to the load factor KL and the like.
  • the final ignition timing in FIG. 6 is a value when the ignition timing is retarded by the retardation control with respect to the base ignition timing.
  • this retard control is temporarily performed at the time of acceleration or start-up, and the ignition timing is changed from the base ignition timing to the final ignition timing only when the retard control is performed. It will be corrected.
  • the ignition timing correction amount calculation unit 74 calculates an ignition timing correction amount according to the difference between the base ignition timing and the final ignition timing.
  • the reference steady line is provided in relation to the base ignition timing control, and the ignition timing correction amount calculated by the ignition timing correction amount calculation unit 74 is provided. Based on the above, the turbine rotational speed Ntb is corrected.
  • the VVT correction amount calculation unit 76 is an element that calculates a VVT correction amount of the turbine speed Ntb according to changes in the intake opening / closing timing InVT and the exhaust opening / closing timing ExVT.
  • the intake opening / closing timing InVT set so that the intake valve opens at the exhaust top dead center is the intake reference opening / closing timing InVT0
  • the exhaust opening / closing timing ExVT set so that the exhaust valve closes at the exhaust top dead center is the exhaust reference.
  • the opening / closing timing ExVT0 The opening / closing timing ExVT0.
  • the valve overlap period is expanded, the exhaust energy is reduced. Get higher. That is, the change amount of the exhaust energy depends on the change of the intake opening / closing timing InVT and the exhaust opening / closing timing ExVT (or the valve overlap period).
  • the VVT correction amount calculation unit 76 the turbine rotation acquired in advance in relation to the changes in the intake opening / closing timing InVT and the exhaust opening / closing timing ExVT (or the valve overlap period) with respect to the reference opening / closing timing InVT0 and ExVT0.
  • the VVT correction amount is calculated based on the change amount of several Ntb.
  • the turbine rotational speed model 70 as described above, the relationship between the predetermined intake reference opening / closing timing InVT0 and the exhaust reference opening / closing timing ExVT0 that makes the valve overlap period zero (or the minimum value of the valve overlap period). In the relationship), a reference steady line is provided, and the turbine rotational speed Ntb is corrected based on the VVT correction amount calculated by the VVT correction amount calculation unit 76.
  • the A / F correction amount calculation unit 78 calculates the A / F of the turbine speed Ntb according to the change in the air-fuel ratio (A / F) of the exhaust gas flowing into the turbine 20b (including the change in the air-fuel ratio accompanying the execution of fuel cut). This is an element for calculating the F correction amount.
  • the A / F correction amount calculation unit 78 calculates the A / F correction amount based on the change amount of the turbine rotational speed Ntb acquired in advance in relation to the change amount of the air-fuel ratio with respect to the stoichiometry by experiments or the like. Like to do.
  • the turbine rotational speed model 70 as described above, a steady line when the air-fuel ratio is stoichiometric is provided as a reference steady line, and the A / F correction amount calculation unit 78 calculates the A The turbine rotation speed Ntb is corrected based on the / F correction amount.
  • FIG. 7 is a diagram for explaining the influence of the number of cylinders that perform fuel cut on the steady line that defines the relationship between the turbine rotational speed Ntb and the intake valve flow rate Mc (exhaust gas flow rate Mtb) during steady state.
  • FIG. 7 is a diagram showing the relationship under the same WGV state quantity.
  • the A / F correction amount calculation unit 78 not only the above-described correction according to the air-fuel ratio at the time of normal ignition operation in which fuel cut is not executed, but also in relation to the ratio of the number of cylinders in which fuel cut is performed in advance through experiments or the like.
  • the A / F correction amount is calculated based on the obtained change amount of the turbine rotational speed Ntb.
  • FIG. 8 is a diagram for explaining the effect of the processing of the turbine rotational speed model 70 according to the first embodiment of the present invention.
  • changes in three parameters that is, ignition timing, intake / exhaust valve opening / closing timing, and air-fuel ratio
  • the exhaust energy correction turbine rotational speed Ntba is calculated by reflecting the effect of the change of the three parameters on the turbine rotational speed Ntb by the added three correction amounts. Then, as shown in FIG.
  • the turbine rotational speed maintenance flow rate Mtb0 is calculated using the corrected turbine rotational speed Ntba and a reference steady line (map) corresponding to the WGV state quantity. According to such processing, as shown in FIG. 8, the turbine rotation speed maintenance flow rate Mtb0 corresponding to the current turbine rotation speed Ntb on the steady line (solid line) in consideration of the influence of the change in the exhaust energy is substantially equal. It will be asked for.
  • the influence of the exhaust energy is reflected on the turbine rotational speed Ntb used as the basis for calculating the turbine rotational speed maintaining flow rate Mtb0, so that the turbine rotational speed maintaining flow rate Mtb0 is used.
  • the map related information
  • only the standard map a map having a tendency of the reference steady line corresponding to the current WGV state quantity
  • the influence of the exhaust energy and the WGV state quantity is taken into consideration. It is possible to calculate the turbine rotation speed maintenance flow rate Mtb0.
  • the processing of the present embodiment it is possible to improve the estimation accuracy of the turbine rotational speed Ntb in the turbine rotational speed model 70 while minimizing the increase in the number of maps and processing. Furthermore, by using the turbine rotational speed Ntb calculated by the turbine rotational speed model 70 as a basis for calculating the intake air amount (for example, the compressor passage flow rate) or the supercharging pressure, the intake air amount and excess The estimation accuracy such as the supply pressure can be improved.
  • the intake air amount for example, the compressor passage flow rate
  • the supercharging pressure the intake air amount and excess The estimation accuracy such as the supply pressure can be improved.
  • the ECU 60 calculates the turbine rotational speed Ntb using the turbine rotational speed model 70 so that the “turbine rotational speed calculating means” in the first invention is the turbine rotational speed model.
  • the “rotational speed correction means” in the first aspect of the present invention is realized.
  • the steady line (a map set according to the tendency of the reference steady line) provided in the turbine rotation speed model 70 corresponds to the “relation information” in the second aspect of the invention.
  • the ECU 60 estimates the diaphragm pressure Pwgv according to the aforementioned map set in advance in relation to the duty ratio for controlling the VSV 52, whereby the “WGV state quantity acquisition means” in the second invention is the reference steady line.
  • the “rotation speed maintenance flow rate calculation means” in the second aspect of the present invention is realized by calculating the turbine rotation speed maintenance flow rate Mtb0 using the above relationship.
  • the ECU 60 acquires the intake valve flow rate Mc (exhaust gas flow rate Mtb) using the air flow meter 18, whereby the “exhaust gas flow rate acquisition means” in the third aspect of the invention is By calculating the turbine flow rate change amount ⁇ Mtb using the turbine rotational speed model 70, the “flow rate change amount calculating means” in the third aspect of the invention calculates the turbine rotational speed change amount ⁇ Ntb using the turbine rotational speed model 70. Thus, the “rotational speed change amount calculation means” in the third aspect of the invention is realized.
  • FIG. 9 is a diagram for explaining a flow of calculation of the steady turbine rotational speed Ntbs in the second embodiment of the present invention.
  • the steady turbine rotational speed Ntbs is calculated from the current intake valve flow rate Mc (exhaust gas flow rate Mtb) by the following method using the hardware configuration shown in FIG.
  • a reference steady turbine speed Ntbr is calculated according to a reference steady line (map) that defines the steady turbine speed Ntbr.
  • an exhaust energy correction unit including an ignition timing correction amount calculation unit 74, a VVT correction amount calculation unit 76, and an A / F correction amount calculation unit 78. 72 is provided.
  • the three correction amounts calculated by the three correction amount calculation units 74 and the like are added and multiplied by the reference steady turbine rotational speed Ntbr. Thereby, the steady turbine rotational speed Ntbs after the exhaust energy correction is calculated.
  • FIG. 10 is a diagram for explaining the effect of the processing of the system according to the second embodiment of the present invention.
  • the processing of the system of the present embodiment including the exhaust energy correction unit 72, the reference calculated using the current intake valve flow rate Mc and the reference steady line corresponding to the WGV state quantity.
  • the steady turbine rotational speed Ntbr is corrected using the correction amount calculated by the exhaust energy correction unit 72.
  • the steady turbine rotational speed Ntbs after exhaust energy correction that reflects the effects of changes in three parameters (that is, ignition timing, intake / exhaust valve opening / closing timing, and air-fuel ratio) related to changes in exhaust energy is calculated. Is done.
  • the steady turbine rotational speed Ntbs corresponding to the current intake valve flow rate Mc on the steady line (solid line) in consideration of the influence of the change in exhaust energy is substantially equal. It will be demanded.
  • the map used for calculating the steady turbine rotational speed Ntbs by reflecting the influence of the exhaust energy on the reference steady turbine rotational speed Ntbr calculated using the reference steady line As the relationship information, only the standard map (a map having a tendency of the reference steady line corresponding to the current WGV state quantity) provided in the ECU 60 is used, and the steady turbine rotational speed Ntbs to which the influence of the exhaust energy is taken into consideration is used. It is possible to calculate. For this reason, according to the processing of the present embodiment, it is possible to improve the estimation accuracy of the steady turbine rotational speed Ntbs while minimizing the increase in the number of maps and processing.
  • a reference steady line (a map set according to the tendency of the reference steady line) as shown in FIGS. 9 and 10 corresponds to the “relation information” in the fourth invention.
  • the ECU 60 acquires the intake valve flow rate Mc (exhaust gas flow rate Mtb) using the air flow meter 18, the “exhaust gas flow rate acquisition means” in the fourth aspect of the invention controls the duty ratio for controlling the VSV 52.
  • the “WGV state quantity acquisition means” according to the fourth aspect of the present invention is realized by estimating the diaphragm pressure Pwgv in accordance with the above-described map set in advance in the above relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 精度の高いタービン回転数を算出可能とする内燃機関の制御装置を提供する。 内燃機関(10)の排気エネルギーにより作動するタービン(20b)を排気通路(14)に備えるターボ過給機(20)が備えられている。タービン回転数Ntbを算出するタービン回転数モデル(70)が備えられている。タービン回転数モデル70が備える排気エネルギー補正部(72)によって、タービン回転数Ntbが補正される。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、ターボ過給機を備える内燃機関の制御装置に関する。
 従来、例えば特許文献1には、ターボ過給機を備える内燃機関の制御装置が開示されている。この従来の制御装置は、ターボ過給機をその構成要素毎にモデル化し、タービンモデル、シャフトモデルおよびコンプレッサモデルを設定するようにしている。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開2006-22763号公報 日本特開2008-309004号公報 日本特開2008-274797号公報 日本特開2000-220462号公報
 ところで、ターボ過給機のタービン回転数(ターボ回転数)は、タービンに供給される排気エネルギーの変化に伴って変化する。従って、タービン回転数を算出するシステムを構築する場合には、排気エネルギーの変化を考慮しないと、タービン回転数の算出精度が悪化するという問題がある。
 この発明は、上述のような課題を解決するためになされたもので、ターボ過給機付き内燃機関において、精度の高いタービン回転数を算出可能とする内燃機関の制御装置を提供することを目的とする。
 第1の発明は、内燃機関の制御装置であって、
 内燃機関の排気エネルギーにより作動するタービンを排気通路に備えるターボ過給機と、
 前記タービンのタービン回転数を算出するタービン回転数算出手段と、
 前記タービン回転数算出手段により算出される前記タービン回転数を、点火時期、吸気弁およびまたは排気弁の開き時期およびまたは閉じ時期、並びに空燃比のうちの少なくとも1つに基づいて補正する回転数補正手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記内燃機関は、
 前記タービンをバイパスする排気バイパス通路と、
 前記排気バイパス通路の開閉を担うウェイストゲートバルブと、
 を更に備え、
 前記内燃機関の制御装置は、
 前記ウェイストゲートバルブの開閉状態を示すWGV状態量を取得するWGV状態量取得手段と、
 前記タービン回転数と前記WGV状態量との関係に基づいて現在の前記タービン回転数を維持するために必要なタービン回転数維持流量を定めた関係情報を備え、当該関係情報に従って前記タービン回転数維持流量を算出する回転数維持流量算出手段と、
 を更に備え、
 前記回転数補正手段は、前記タービン回転数維持流量の算出の基礎として用いる前記タービン回転数を補正する手段であることを特徴とする。
 また、第3の発明は、第2の発明において、
 前記内燃機関の制御装置は、
 前記内燃機関の筒内から排出される排気ガス流量を取得する排気ガス流量取得手段と、
 前記排気ガス流量と前記タービン回転数維持流量との差分であるタービン流量変化量を算出する流量変化量算出手段と、
 前記流量変化量算出手段により算出された前記タービン流量変化量に基づいて、前記タービン回転数の変化量であるタービン回転数変化量を算出する回転数変化量算出手段と、
 を更に備え、
 前記回転数算出手段は、前記回転数変化量算出手段により今回の算出サイクルで算出された前記タービン回転数変化量と、前回の算出サイクルで算出された前記タービン回転数とに基づいて、今回の算出サイクルにおける前記タービン回転数を算出する手段であることを特徴とする。
 また、第4の発明は、第1の発明において、
 前記内燃機関は、
 前記タービンをバイパスする排気バイパス通路と、
 前記排気バイパス通路の開閉を担うウェイストゲートバルブと、
 を更に備え、
 前記内燃機関の制御装置は、
 前記内燃機関の筒内から排出される排気ガス流量を取得する排気ガス流量取得手段と、
 前記ウェイストゲートバルブの開閉状態を示すWGV状態量を取得するWGV状態量取得手段と、
 を更に備え、
 前記回転数算出手段は、前記排気ガス流量と前記WGV状態量との関係に基づいて定常時の前記タービン回転数である定常タービン回転数を定めた関係情報を備え、当該関係情報に従って前記定常タービン回転数を算出する手段であり、
 前記回転数補正手段は、前記関係情報に従って算出される前記定常タービン回転数を補正する手段であることを特徴とする。
 また、第5の発明は、第1乃至第4の発明の何れかにおいて、
 前記ウェイストゲートバルブは、当該ウェイストゲートバルブと連動するダイアフラムに作用するダイアフラム圧力に応じて開閉するバルブであり、
 前記WGV状態量は、前記ダイアフラム圧力であり、
 前記WGV状態量取得手段は、前記ダイアフラム圧力を検出または推定する手段であることを特徴とする。
 第1の発明によれば、排気エネルギーの変化の影響を考慮して、精度の良いタービン回転数を算出することが可能となる。
 第2の発明によれば、タービン回転数維持流量の算出の基礎として用いるタービン回転数に対して、排気エネルギーの変化の影響を考慮した補正が行われる。これにより、排気エネルギーおよびWGV状態量の影響が加味されたタービン回転数維持流量が得られるので、これを利用して、例えば、過渡的なタービン回転数の推定が可能となる。
 第3の発明によれば、排気ガス流量と上記タービン回転数維持流量との差分であるタービン流量変化量からタービン回転数変化量を算出し、今回のタービン回転数変化量と前回のタービン回転数とに基づいて今回のタービン回転数を算出するシステムにおいて、排気エネルギーおよびWGV状態量の影響が加味された精度の良いタービン回転数の算出が可能となる。
 第4の発明によれば、排気エネルギーおよびWGV状態量の影響が加味された精度の良い定常タービン回転数の算出が可能となる。
 第5の発明によれば、実装上計測が難しいWGV開度ではなく、上記ダイアフラム圧力をWGV状態量として利用して、タービン回転数の算出においてWGV状態量の影響を良好に反映させられるようになる。
本発明の実施の形態1の内燃機関のシステム構成を説明するための模式図である。 図1に示すECUが備えるタービン回転数モデルの構成を示すブロック図である。 タービン回転数Ntbと、WGVの開閉状態を示すWGV状態量と、吸気弁流量Mcとの間の定常時の関係を定めた定常線を表した図である。 ダイアフラム圧力Pwgvの設定を説明するための図である。 図2に示すタービン回転数Ntbの排気エネルギー補正部を使用したタービン回転数維持流量Mtb0の算出の流れを説明するための図である。 ベース点火時期の設定、およびベース点火時期と最終点火時期の関係を説明するための図である。 タービン回転数Ntbと吸気弁流量Mc(排気ガス流量Mtb)との間の定常時の関係を定めた定常線に対するフューエルカットの実施気筒数の影響を説明するための図である。 本発明の実施の形態1のタービン回転数モデルの処理による効果を説明するための図である。 本発明の実施の形態2における定常タービン回転数Ntbsの算出の流れを説明するための図である。 本発明の実施の形態2のシステムの処理による効果を説明するための図である。
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1の内燃機関10のシステム構成を説明するための模式図である。本実施形態のシステムは、火花点火式の内燃機関(ガソリンエンジン)10を備えている。内燃機関10の各気筒には、吸気通路12および排気通路14が連通している。
 吸気通路12の入口近傍には、エアクリーナ16が取り付けられている。エアクリーナ16の下流近傍には、吸気通路12に吸入される空気の流量に応じた信号を出力するエアフローメータ18が設けられている。エアフローメータ18の下流には、ターボ過給機20のコンプレッサ20aが設置されている。コンプレッサ20aは、排気通路14に配置されたタービン20bと連結軸を介して一体的に連結されている。
 コンプレッサ20aの下流には、圧縮された空気を冷却するインタークーラ22が設けられている。インタークーラ22の下流には、電子制御式のスロットルバルブ24が設けられている。また、内燃機関10の各気筒には、吸気ポートに燃料を噴射するための燃料噴射弁26が設けられている。更に、内燃機関10の各気筒には、混合気に点火するための点火プラグ28が設けられている。
 また、内燃機関10は、吸気弁(図示省略)および排気弁(図示省略)を開閉駆動するための吸気可変動弁機構30および排気可変動弁機構32を備えている。ここでは、これらの可変動弁機構30、32は、吸気弁または排気弁の開閉時期を変更可能な機構であるものとする。このような可変動弁機構30、32を実現する具体的な構成は、特に限定されるものではないが、例えば、クランクシャフト(図示省略)の回転位相に対するカムシャフト34、36の回転位相を変更することで、吸気弁または排気弁の開閉時期を変更可能な位相可変機構(VVT(Variable Valve Timing)機構)(図示省略)を用いることができる。また、吸気可変動弁機構30の近傍には、吸気カムシャフト34の回転位置(進角量)を検出するための吸気カム角センサ36が設けられており、排気可変動弁機構32の近傍には、排気カムシャフト38の回転位置(進角量)を検出するための排気カム角センサ40が設けられている。
 また、排気通路14には、タービン20bをバイパスしてタービン20bの入口側と出口側とを接続する排気バイパス通路42が接続されている。排気バイパス通路42の途中には、排気バイパス通路42の開閉を担うウェイストゲートバルブ(WGV)44が設けられている。WGV44の開度は、調圧式のアクチュエータ46により制御される。
 より具体的には、アクチュエータ46の内部には、WGV44と連動するダイアフラム(図示省略)が設けられている。このダイアフラムによって2つに区画された圧力室(図示省略)の一方には、負圧ポンプ48により生成された負圧が負圧通路50を介して供給されている。負圧通路50の途中には、この負圧通路50の開閉を担うバキュームスイッチングバルブ(VSV)52が設けられている。また、ダイアフラムは、スプリング(図示省略)によってWGV44を開く方向に付勢されている。このような構成によれば、VSV52を任意のデューティ比で駆動することによりダイアフラムに供給する負圧を調整し、WGV44の開度を調整することができる。尚、ウェイストゲートバルブは、必ずしも調圧式のものに限らず、例えば、電動式のバルブであってもよい。
 また、タービン20bよりも下流側の排気通路14には、排気ガスを浄化するための触媒54が配置されている。触媒54の上流には、排気ガスの空燃比を検出するためのA/Fセンサ56が配置されている。また、クランクシャフトの近傍には、エンジン回転数を検出するためのクランク角センサ58が設けられている。
 更に、図1に示すシステムは、ECU(Electronic Control Unit)60を備えている。ECU60の入力部には、上述したエアフローメータ18、カム角センサ36、40、A/Fセンサ56およびクランク角センサ58等の内燃機関10の運転状態を検知するための各種センサが接続されている。また、ECU60の出力部には、上述したスロットルバルブ24、燃料噴射弁26、点火プラグ28、可変動弁機構30、32、およびVSV52等の内燃機関10の運転状態を制御するための各種アクチュエータが接続されている。
[タービン回転数モデルの構成]
 図2は、図1に示すECU60が備えるタービン回転数モデル70の構成を示すブロック図である。
 上述したECU60の内部には、図2に示す構成を有するタービン回転数モデル70が仮想的に構築されている。タービン回転数モデル70は、内燃機関10の運転状態の過渡的な変化(より具体的には、吸気弁を通過するガス流量(以下、「吸気弁流量」と称する)の変化)に伴って変化する過渡的なタービン回転数(ターボ回転数)Ntbを推定可能とするモデルである。
 図2に示すように、タービン回転数モデル70には、吸気弁流量Mcが入力される。吸気弁流量Mcは、エアフローメータ18の出力を用いて取得することができる値である。タービン回転数モデル70に入力された吸気弁流量Mcは、吸気弁を通過するガスが排気通路14に排出されるまでの時間的な遅れを考慮して、排気ガス流量Mtbに変換される。尚、ここでいう排気ガス流量Mtbは、厳密には、タービン20bの上流側における排気バイパス通路42との接続点よりも上流側の排気通路14における排気ガスの流量のことである。
 図3は、タービン回転数Ntbと、WGV44の開閉状態を示すWGV状態量と、吸気弁流量Mcとの間の定常時の関係を定めた定常線を表した図である。
 タービン回転数Ntbと吸気弁流量Mc(=排気ガス流量Mtb)との間には相関があり、両者の定常時の関係は、WGV状態量(図3ではWGV開度)をパラメータとして、図3に示すような関係情報(ここでは、「定常線」と称する)によって表すことができる。
 すなわち、WGV状態量が同一の条件下では、吸気弁流量Mc(排気ガス流量Mtb)が高くなるにつれ、タービン回転数Ntbが高くなっていく。また、WGV44が開かれると、排気ガス流量Mtbのうちの排気バイパス通路42を流れるガス流量が増えるので、タービン20bを流れるガス流量(以下、「タービン流量」と称することがある)が少なくなる。このため、WGV44が開かれた場合には、図3に示すように、吸気弁流量Mcが同一の条件下では、WGV44が閉じられている場合と比べ、タービン回転数Ntb(定常タービン回転数Ntbs)が低下することとなる。
 また、タービン20bに供給される排気エネルギーが変化すると、タービン回転数Ntbが変化するので、図3に示すように、定常線が変化する。より具体的には、図3は、排気エネルギーが増加した場合の例を示している。本実施形態では、図4を参照して後述するように、排気エネルギー補正部72において、このような排気エネルギーの変化として、点火時期、吸排気弁の開閉時期(バルブオーバーラップ期間を含む)、および空燃比(フューエルカット情報を含む)の変化を考慮するようにしている。尚、タービン回転数モデル70では、所定の基準状態(すなわち、点火時期が後述するベース点火時期であり、吸気開閉時期InVTおよび排気開閉時期ExVTがバルブオーバーラップ期間をゼロとする所定の吸気基準開閉時期InVT0および排気基準開閉時期ExVT0であり、かつ、空燃比が理論空燃比(ストイキ)である時)における定常線を、基準定常線として備えているようにしている。また、タービン回転数モデル70では、WGV状態量(図3の例ではWGV開度)に応じた基準定常線を備えるようにしている。
 更に、タービン回転数モデル70では、遅れ要素(1/Z)を利用して得た前回の算出サイクル(すなわち、1ステップ前)のタービン回転数Ntbを、排気エネルギー補正部72において排気エネルギー補正タービン回転数(以下、単に「補正タービン回転数」と称する)Ntbaに補正している。そして、タービン回転数モデル70では、補正タービン回転数Ntbaを定常線(基準定常線)に入力している。
 ここでは、定常線に用いるWGV状態量として、実装上計測が難しいWGV開度ではなく、WGV44を制御するためのダイアフラム圧力Pwgvを用いるようにしている。図4を参照して後で詳述するが、ダイアフラム圧力Pwgvとの関係においても、タービン回転数Ntbと吸気弁流量Mc(排気ガス流量Mtb)についての定常線が得られる。ダイアフラム圧力Pwgvの変化に伴うWGV開度変化には時間の遅れがあるので、ここでは、この遅れを1次遅れとして考慮しながらダイアフラム圧力Pwgvを用いるようにしている。尚、ダイアフラム圧力Pwgvは、例えば、VSV52を制御するためのデューティ比との関係で予め設定したマップ(図示省略)に従って推定するようにしてもよいし、或いは、別途圧力センサを備えて計測するようにしてもよい。
 また、タービン回転数モデル70では、上記定常線は、タービン回転数Ntbとダイアフラム圧力Pwgvとの関係に基づいてタービン回転数維持流量Mtb0を定めたマップとしてECU60に記憶されているものとする。ただし、上記定常線(本発明でいう関係情報)は、このようなマップとして記憶されたものに限らず、例えば、所定の関係式としてECU60に記憶されたものであってもよい。
 また、タービン回転数モデル70では、上記排気ガス流量Mtbと、現在のタービン回転数Ntbを定常的に維持するために必要なタービン回転数維持流量Mtb0との差分であるタービン流量変化量ΔMtbが算出される。このタービン流量変化量ΔMtbは、タービン20bを増速または減速させるエネルギーに関係すると考えられる。より具体的には、タービン流量変化量ΔMtbが正である場合、すなわち、現在の排気ガス流量Mtbがタービン回転数維持流量Mtb0よりも多い場合には、タービン回転数Ntbが増加する。一方、タービン流量変化量ΔMtbが負である場合、すなわち、現在の排気ガス流量Mtbがタービン回転数維持流量Mtb0よりも少ない場合には、タービン回転数Ntbが減少する。
 そこで、タービン回転数モデル70では、上記タービン流量変化量ΔMtbに所定の変化量係数Aを掛け合わせることによって、タービン流量変化量ΔMtbに応じたタービン回転数Ntbの変化量であるタービン回転数変化量ΔNtbを算出するようにしている。この変化量係数Aは、排気ガス流量Mtbとダイアフラム圧力Pwgv(上記定常線の場合と同様に1次遅れとして扱う)との関係で予め設定された値である。このような変化量係数Aを用いることで、排気ガス流量Mtbおよびダイアフラム圧力Pwgvの影響を考慮しながら、タービン流量変化量ΔMtbからタービン回転数変化量ΔNtbを算出することができる。そして、タービン回転数モデル70では、上記のように算出されたタービン回転数変化量ΔNtbを、前回の算出サイクル(1ステップ前)に算出されたタービン回転数Ntbと足し合わせることにより、今回の算出サイクルにおけるタービン回転数Ntbが算出される。
 以上説明したタービン回転数モデル70によれば、内燃機関10の運転状態が変化する場合において、時々刻々と変化する吸気弁流量Mc(排気ガス流量Mtb)およびダイアフラム圧力Pwgvが逐次入力されることによって、過渡的なタービン回転数Ntbを逐次算出することが可能となる。また、内燃機関10の運転状態が変化しない定常時には、タービン流量変化量ΔMtbがゼロになるので、タービン回転数変化量ΔNtbもゼロとなる。このため、タービン回転数Ntbが現在の排気ガス流量MtbおよびWGV状態量に応じた値に収束することとなる。つまり、上記タービン回転数モデル70によれば、定常時のタービン回転数Ntbの算出を保障することもできる。
[ダイアフラム圧力Pwgvの設定について]
 図4は、ダイアフラム圧力Pwgvの設定を説明するための図である。
 図4(A)に示すように、タービン回転数Ntbと吸気弁流量Mc(排気ガス流量Mtb)との関係を定めた定常線は、ダイアフラム圧力Pwgvとの関係においても得ることができる。既述したように、本実施形態で用いるアクチュエータ46は、一例として、ダイアフラム圧力Pwgvがより大きく負圧化するほど、WGV44を閉じる力が強くなるように構成されたものである。アクチュエータ46がWGV44を全閉状態で維持するためには、上記スプリングの付勢力に抗してWGV44を閉じる力と、WGV44に作用する排気圧力に抗してWGV44を閉じる力とが必要とされる。従って、ダイアフラム圧力Pwgvが高いほど(負圧が小さいほど)、図4(A)に示すように、アクチュエータ46がWGV44を閉じる力が弱くなることに起因して吸気弁流量Mcがより少ない(より低負荷側の)条件下においてWGV44が開き始めるようになる。
 ここで、図4(B)における「閉切り領域」とは、ダイアフラム圧力Pwgvの変化に対してWGV開度が変化しない領域のことであり、「不感帯」とは、WGV開度の変化に対してタービン回転数Ntb(タービン流量)が変化しない領域のことである。本実施形態では、予め実験等により得られたデータに基づいて、上記定常線の入力として用いるダイアフラム圧力Pwgvの下限値(WGV44が全閉であることを判断する値)として、図4(B)に示すように上記閉切り領域の上限値を用いるようにした。また、上記定常線の入力として用いるダイアフラム圧力Pwgvの上限値(排気バイパス通路42を流れる排気ガス流量が最大であることを判断する値)として、図4(B)に示すように上記不感帯の下限値を用いるようにした。
 上記のダイアフラム圧力Pwgvの上下限値の設定とは異なり、ダイアフラム圧力Pwgvの下限値として、例えば上記閉切り領域の上限値に対して余裕をもって低い値(例えば、20kPa)を設定した場合には、ダイアフラム圧力Pwgvが実際にはWGV44を全閉にできる値(例えば、40kPa)であった場合であっても、上記定常線(マップ)を補間してWGV44が開かれているものとしてタービン回転数維持流量Mtb0を誤って算出してしまうことが考えられる。これに対し、上記設定によれば、WGV44の開閉特性を考慮して、このような弊害なしにダイアフラム圧力Pwgvの値に応じた正確なタービン回転数維持流量Mtb0を算出することができる。これにより、タービン回転数モデル70の精度を良好に確保することができる。
[排気エネルギー補正部について]
 図5は、図2に示すタービン回転数Ntbの排気エネルギー補正部72を使用したタービン回転数維持流量Mtb0の算出の流れを説明するための図である。
 図5に示すように、排気エネルギー補正部72は、点火時期補正量を算出する点火時期補正量算出部74と、VVT(Variable Valve Timing)補正量を算出するVVT補正量算出部76と、A/F補正量(フューエルカット情報に基づく補正量を含む)を算出するA/F補正量算出部78とからなる。
 本実施形態のタービン回転数モデル70では、図5に示すように、各補正量算出部74、76、78によって算出された各補正量が足しあわされたうえで、現在の(前回の算出サイクルで算出された)タービン回転数Ntbに掛け合わされる。これにより、排気エネルギーに基づく補正が反映された排気エネルギー補正タービン回転数(以下、単に「補正タービン回転数」と称する)Ntbaが算出される。そして、この補正タービン回転数Ntbaとダイアフラム圧力Pwgvとを入力とする定常線(より具体的には当該定常線の傾向に従って設定されたマップ)を用いて、タービン回転数維持流量Mtb0が算出される。
 次に、上記の各補正量算出部74、76、78の具体的な処理内容について説明する。
(点火時期補正量算出部について)
 点火時期補正量算出部74は、ベース点火時期と最終点火時期との差分に応じた点火時期補正量を算出する要素である。
 図6は、ベース点火時期の設定、およびベース点火時期と最終点火時期の関係を説明するための図である。
 図6におけるMBT(Minimum advance for the Best Torque)点火時期は、トルクが最大となるような点火時期、言い換えれば、排気エネルギーが最小となるような点火時期のことである。また、図6に示すように、ノック限界点火時期は、高負荷(高負荷率KL)側では、遅角側の値をとる。このため、ノック回避を考慮しつつ最適トルクを得るための点火時期は、図6中に破線で示すベース点火時期のようになる。ECU60は、図6に示すような傾向を有するベース点火時期が負荷率KL等との関係でマップとして記憶されている。
 一方、図6における最終点火時期は、ベース点火時期に対して遅角制御による点火時期の遅角が行われた場合の値である。図6においては、この遅角制御は加速時や始動時などにおいて一時的に行われるものであり、当該遅角制御が行われた場合に限って、点火時期がベース点火時期から最終点火時期に補正されるようになる。
 上記遅角制御が行われると、ベース点火時期を用いた制御時と比べ、排気エネルギーが高くなる。すなわち、排気エネルギーの増加代は、ベース点火時期からの遅角量に依存することになる。そこで、点火時期補正量算出部74では、ベース点火時期と最終点火時期との差分に応じた点火時期補正量を算出するようにしている。そのうえで、タービン回転数モデル70では、既述したように、ベース点火時期制御時との関係で基準定常線を備えるようにしたうえで、点火時期補正量算出部74により算出された点火時期補正量に基づいて、タービン回転数Ntbを補正するようにしている。
(VVT補正量算出部について)
 VVT補正量算出部76は、吸気開閉時期InVTおよび排気開閉時期ExVTの変化に応じたタービン回転数NtbのVVT補正量を算出する要素である。ここでは、排気上死点において吸気弁が開くように設定された吸気開閉時期InVTを吸気基準開閉時期InVT0とし、排気上死点において排気弁が閉じるように設定された排気開閉時期ExVTを排気基準開閉時期ExVT0とする。
 例えば、排気ガス流量Mtbが同一の条件下において、吸気開閉時期InVTが進角され、かつ、排気開閉時期ExVTが遅角されることによってバルブオーバーラップ期間が拡大された場合には、排気エネルギーが高くなる。すなわち、排気エネルギーの変化代は、吸気開閉時期InVTおよび排気開閉時期ExVT(またはバルブオーバーラップ期間)の変化に依存することになる。
 そこで、VVT補正量算出部76では、予め実験等によって基準開閉時期InVT0およびExVT0に対する吸気開閉時期InVTおよび排気開閉時期ExVT(またはバルブオーバーラップ期間)の変化との関係で取得しておいたタービン回転数Ntbの変化量に基づいて、VVT補正量を算出するようにしている。そのうえで、タービン回転数モデル70では、既述したように、バルブオーバーラップ期間をゼロとする所定の吸気基準開閉時期InVT0および排気基準開閉時期ExVT0との関係(またはバルブオーバーラップ期間の最小値との関係)で基準定常線を備えるようにしたうえで、VVT補正量算出部76により算出されたVVT補正量に基づいて、タービン回転数Ntbを補正するようにしている。
(A/F補正量算出部について)
 A/F補正量算出部78は、タービン20bに流れる排気ガスの空燃比(A/F)の変化(フューエルカットの実行に伴う空燃比の変化も含む)に応じたタービン回転数NtbのA/F補正量を算出する要素である。
 空燃比が変化すると、排気エネルギーが変化する。すなわち、排気エネルギーの変化代は、空燃比の変化に依存することになる。そこで、A/F補正量算出部78では、予め実験等によってストイキに対する空燃比の変化量との関係で取得しておいたタービン回転数Ntbの変化量に基づいて、A/F補正量を算出するようにしている。そのうえで、タービン回転数モデル70では、既述したように、空燃比がストイキである時の定常線を基準定常線として備えるようにしたうえで、A/F補正量算出部78により算出されたA/F補正量に基づいて、タービン回転数Ntbを補正するようにしている。
 図7は、タービン回転数Ntbと吸気弁流量Mc(排気ガス流量Mtb)との間の定常時の関係を定めた定常線に対するフューエルカットの実施気筒数の影響を説明するための図である。尚、図7は、WGV状態量が同一の条件下における関係を表した図である。
 フューエルカット(FC)が実行されると、フューエルカットが実行されていない場合と比べ、排気エネルギーが低下する。従って、図7に示すように、フューエルカットの実施気筒数が増えるほど、吸気弁流量Mcが同一となる条件下におけるタービン回転数Ntbがより大きく低下することになる。
 A/F補正量算出部78では、フューエルカットが実行されていない通常の発火運転時の空燃比に応じた前述の補正だけでなく、予め実験等によってフューエルカットの実施気筒数割合との関係で取得しておいたタービン回転数Ntbの変化量にも基づいて、A/F補正量を算出するようにしている。
 図8は、本発明の実施の形態1のタービン回転数モデル70の処理による効果を説明するための図である。
 以上説明した排気エネルギー補正部72を備えるタービン回転数モデル70の処理によれば、排気エネルギーの変化と関係のある3つのパラメータ(すなわち、点火時期、吸排気弁の開閉時期および空燃比)の変化の影響が、3つ補正量算出部74、76、78において算出した3つの補正量を用いて足し合わされる。そのうえで、足しあわされた3つの補正量によって上記3つのパラメータの変化の影響をタービン回転数Ntbに反映させることによって、排気エネルギー補正タービン回転数Ntbaが算出される。そして、図8に示すように、この補正タービン回転数Ntbaと、WGV状態量に応じた基準定常線(マップ)とを利用して、タービン回転数維持流量Mtb0が算出される。このような処理によれば、図8に示すように、排気エネルギーの変化の影響が考慮された定常線(実線)上における現在のタービン回転数Ntbと対応するタービン回転数維持流量Mtb0が実質的に求められていることになる。
 つまり、本実施形態の処理によれば、タービン回転数維持流量Mtb0の算出の基礎として用いるタービン回転数Ntbに対して排気エネルギーの影響を反映させることによって、タービン回転数維持流量Mtb0の算出に用いるマップ(関係情報)としては、ECU60が備える標準のマップ(現在のWGV状態量に応じた基準定常線の傾向を有するマップ)のみを利用して、排気エネルギーおよびWGV状態量の影響が加味されたタービン回転数維持流量Mtb0を算出することが可能となる。このため、本実施形態の処理によれば、マップ数や処理の増加を最小限に抑えつつ、タービン回転数モデル70におけるタービン回転数Ntbの推定精度を向上させることができる。更には、本タービン回転数モデル70によって算出されたタービン回転数Ntbを、吸入空気量(例えば、コンプレッサ通過流量)または過給圧などの算出の基礎として用いることにより、これらの吸入空気量や過給圧などの推定精度を向上させることができる。
 尚、上述した実施の形態1においては、ECU60が、タービン回転数モデル70を用いてタービン回転数Ntbを算出することにより前記第1の発明における「タービン回転数算出手段」が、タービン回転数モデル70の排気エネルギー補正部72を用いて排気エネルギー補正タービン回転数Ntbaを算出することにより前記第1の発明における「回転数補正手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、タービン回転数モデル70が備える定常線(基準定常線の傾向に従って設定されたマップ)が前記第2の発明における「関係情報」に相当している。また、ECU60が、VSV52を制御するためのデューティ比との関係で予め設定した前述のマップに従ってダイアフラム圧力Pwgvを推定することにより前記第2の発明における「WGV状態量取得手段」が、基準定常線の関係を利用してタービン回転数維持流量Mtb0を算出することにより前記第2の発明における「回転数維持流量算出手段」が、それぞれ実現されている。
 また、上述した実施の形態1においては、ECU60が、エアフローメータ18を用いて吸気弁流量Mc(排気ガス流量Mtb)を取得することにより前記第3の発明における「排気ガス流量取得手段」が、タービン回転数モデル70を用いてタービン流量変化量ΔMtbを算出することにより前記第3の発明における「流量変化量算出手段」が、タービン回転数モデル70を用いてタービン回転数変化量ΔNtbを算出することにより前記第3の発明における「回転数変化量算出手段」が、それぞれ実現されている。
実施の形態2.
 次に、図9および図10を参照して、本発明の実施の形態2について説明する。
 図9は、本発明の実施の形態2における定常タービン回転数Ntbsの算出の流れを説明するための図である。
 本実施形態のシステムでは、図1に示すハードウェア構成を用いて、以下の手法によって現在の吸気弁流量Mc(排気ガス流量Mtb)から定常タービン回転数Ntbsの算出を行う。
 具体的には、本実施形態のシステムでは、図9に示すように、吸気弁流量Mc(排気ガス流量Mtb)とダイアフラム圧力Pwgv(WGV状態量)との関係に基づいて既述した基準状態における定常タービン回転数Ntbrを定めた基準定常線(マップ)に従って、基準定常タービン回転数Ntbrが算出される。また、本実施形態のシステムにおいても、上述した実施の形態1と同様に、点火時期補正量算出部74とVVT補正量算出部76とA/F補正量算出部78とからなる排気エネルギー補正部72が備えられている。
 本実施形態では、これら3つの補正量算出部74等において算出された3つの補正量が足し合わされたうえで、基準定常タービン回転数Ntbrに掛け合わされる。これにより、排気エネルギー補正後の定常タービン回転数Ntbsが算出される。
 図10は、本発明の実施の形態2のシステムの処理による効果を説明するための図である。
 以上説明したように、排気エネルギー補正部72を備える本実施形態のシステムの処理によれば、現在の吸気弁流量Mcと、WGV状態量に応じた基準定常線とを利用して算出された基準定常タービン回転数Ntbrが、排気エネルギー補正部72により算出された補正量を用いて補正される。これにより、排気エネルギーの変化と関係のある3つのパラメータ(すなわち、点火時期、吸排気弁の開閉時期および空燃比)の変化の影響が反映された排気エネルギー補正後の定常タービン回転数Ntbsが算出される。このような処理によれば、図10に示すように、排気エネルギーの変化の影響が考慮された定常線(実線)上における現在の吸気弁流量Mcと対応する定常タービン回転数Ntbsが実質的に求められていることになる。
 つまり、本実施形態の処理によれば、基準定常線を用いて算出された基準定常タービン回転数Ntbrに対して排気エネルギーの影響を反映させることによって、定常タービン回転数Ntbsの算出に用いるマップ(関係情報)としては、ECU60が備える標準のマップ(現在のWGV状態量に応じた基準定常線の傾向を有するマップ)のみを利用して、排気エネルギーの影響が加味された定常タービン回転数Ntbsを算出することが可能となる。このため、本実施形態の処理によれば、マップ数や処理の増加を最小限に抑えつつ、定常タービン回転数Ntbsの推定精度を向上させることができる。更には、このようにして算出された定常タービン回転数Ntbsを、吸入空気量(例えば、コンプレッサ通過流量)または過給圧などの算出の基礎として用いることにより、これらの吸入空気量や過給圧などの推定精度を向上させることができる。
 尚、上述した実施の形態2においては、図9および図10に示すような基準定常線(当該基準定常線の傾向に従って設定されたマップ)が前記第4の発明における「関係情報」に相当している。また、ECU60が、エアフローメータ18を用いて吸気弁流量Mc(排気ガス流量Mtb)を取得することにより前記第4の発明における「排気ガス流量取得手段」が、VSV52を制御するためのデューティ比との関係で予め設定した前述のマップに従ってダイアフラム圧力Pwgvを推定することにより前記第4の発明における「WGV状態量取得手段」が、それぞれ実現されている。
10 内燃機関
12 吸気通路
14 排気通路
18 エアフローメータ
20 ターボ過給機
20a コンプレッサ
20b タービン
24 スロットルバルブ
26 燃料噴射弁
28 点火プラグ
30 吸気可変動弁機構
32 排気可変動弁機構
36 吸気カム角センサ
40 排気カム角センサ
42 排気バイパス通路
44 ウェイストゲートバルブ(WGV)
46 WGVのアクチュエータ
48 負圧ポンプ
50 負圧通路
52 バキュームスイッチングバルブ(VSV)
54 触媒
56 A/Fセンサ
58 クランク角センサ
60 ECU(Electronic Control Unit)
70 タービン回転数モデル
72 排気エネルギー補正部
74 点火時期補正量算出部
76 VVT補正量算出部
78 A/F補正量算出部

Claims (5)

  1.  内燃機関の排気エネルギーにより作動するタービンを排気通路に備えるターボ過給機と、
     前記タービンのタービン回転数を算出するタービン回転数算出手段と、
     前記タービン回転数算出手段により算出される前記タービン回転数を、点火時期、吸気弁およびまたは排気弁の開き時期およびまたは閉じ時期、並びに空燃比のうちの少なくとも1つに基づいて補正する回転数補正手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記内燃機関は、
     前記タービンをバイパスする排気バイパス通路と、
     前記排気バイパス通路の開閉を担うウェイストゲートバルブと、
     を更に備え、
     前記内燃機関の制御装置は、
     前記ウェイストゲートバルブの開閉状態を示すWGV状態量を取得するWGV状態量取得手段と、
     前記タービン回転数と前記WGV状態量との関係に基づいて現在の前記タービン回転数を維持するために必要なタービン回転数維持流量を定めた関係情報を備え、当該関係情報に従って前記タービン回転数維持流量を算出する回転数維持流量算出手段と、
     を更に備え、
     前記回転数補正手段は、前記タービン回転数維持流量の算出の基礎として用いる前記タービン回転数を補正する手段であることを特徴とする請求項1記載の内燃機関の制御装置。
  3.  前記内燃機関の制御装置は、
     前記内燃機関の筒内から排出される排気ガス流量を取得する排気ガス流量取得手段と、
     前記排気ガス流量と前記タービン回転数維持流量との差分であるタービン流量変化量を算出する流量変化量算出手段と、
     前記流量変化量算出手段により算出された前記タービン流量変化量に基づいて、前記タービン回転数の変化量であるタービン回転数変化量を算出する回転数変化量算出手段と、
     を更に備え、
     前記回転数算出手段は、前記回転数変化量算出手段により今回の算出サイクルで算出された前記タービン回転数変化量と、前回の算出サイクルで算出された前記タービン回転数とに基づいて、今回の算出サイクルにおける前記タービン回転数を算出する手段であることを特徴とする請求項2記載の内燃機関の制御装置。
  4.  前記内燃機関は、
     前記タービンをバイパスする排気バイパス通路と、
     前記排気バイパス通路の開閉を担うウェイストゲートバルブと、
     を更に備え、
     前記内燃機関の制御装置は、
     前記内燃機関の筒内から排出される排気ガス流量を取得する排気ガス流量取得手段と、
     前記ウェイストゲートバルブの開閉状態を示すWGV状態量を取得するWGV状態量取得手段と、
     を更に備え、
     前記回転数算出手段は、前記排気ガス流量と前記WGV状態量との関係に基づいて定常時の前記タービン回転数である定常タービン回転数を定めた関係情報を備え、当該関係情報に従って前記定常タービン回転数を算出する手段であり、
     前記回転数補正手段は、前記関係情報に従って算出される前記定常タービン回転数を補正する手段であることを特徴とする請求項1記載の内燃機関の制御装置。
  5.  前記ウェイストゲートバルブは、当該ウェイストゲートバルブと連動するダイアフラムに作用するダイアフラム圧力に応じて開閉するバルブであり、
     前記WGV状態量は、前記ダイアフラム圧力であり、
     前記WGV状態量取得手段は、前記ダイアフラム圧力を検出または推定する手段であることを特徴とする請求項1乃至4の何れか1項記載の内燃機関の制御装置。
PCT/JP2010/069670 2010-11-05 2010-11-05 内燃機関の制御装置 WO2012060006A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10859262.7A EP2636869A4 (en) 2010-11-05 2010-11-05 CONTROL DEVICE FOR A COMBUSTION ENGINE
CN201080069947.8A CN103189616B (zh) 2010-11-05 2010-11-05 内燃机的控制装置
JP2012541690A JP5505511B2 (ja) 2010-11-05 2010-11-05 内燃機関の制御装置
US13/883,449 US8938960B2 (en) 2010-11-05 2010-11-05 Control apparatus for internal combustion engine
PCT/JP2010/069670 WO2012060006A1 (ja) 2010-11-05 2010-11-05 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/069670 WO2012060006A1 (ja) 2010-11-05 2010-11-05 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2012060006A1 true WO2012060006A1 (ja) 2012-05-10

Family

ID=46024136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069670 WO2012060006A1 (ja) 2010-11-05 2010-11-05 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8938960B2 (ja)
EP (1) EP2636869A4 (ja)
JP (1) JP5505511B2 (ja)
CN (1) CN103189616B (ja)
WO (1) WO2012060006A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031826A (ja) * 2015-07-29 2017-02-09 マツダ株式会社 エンジンの制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267744B2 (ja) * 2011-03-16 2013-08-21 トヨタ自動車株式会社 内燃機関の制御装置
US11072355B2 (en) * 2018-11-15 2021-07-27 Transportation Ip Holdings, Llc System and methods for detecting surge in an engine system
JP7088089B2 (ja) * 2019-03-14 2022-06-21 トヨタ自動車株式会社 ハイブリッド車両、及びハイブリッド車両の異常診断方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077912A (ja) * 1996-08-30 1998-03-24 Mitsubishi Motors Corp 排気ガス還流装置
JP2000220462A (ja) 1998-11-27 2000-08-08 Mazda Motor Corp タ―ボ過給機付エンジンの制御装置
JP2005155384A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp ターボチャージャを備える内燃機関の故障診断装置
JP2006022763A (ja) 2004-07-09 2006-01-26 Denso Corp ターボチャージャを備えた内燃機関の制御装置
JP2008274797A (ja) 2007-04-26 2008-11-13 Toyota Motor Corp 内燃機関システム
JP2008309004A (ja) 2007-06-12 2008-12-25 Nissan Motor Co Ltd ターボ過給機の制御装置および制御方法
JP2009287409A (ja) * 2008-05-27 2009-12-10 Nissan Motor Co Ltd ターボ過給機付きエンジンの排気温度検出装置及びその劣化診断装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716225A (en) * 1980-07-04 1982-01-27 Hitachi Ltd Internal combustion engine with supercharger
JP4583038B2 (ja) 2004-02-09 2010-11-17 株式会社デンソー 過給機付き内燃機関の過給圧推定装置
CN101082318B (zh) * 2006-05-31 2011-09-21 卡特彼勒公司 涡轮增压器控制系统
EP2014894B1 (en) * 2007-07-09 2010-10-13 Magneti Marelli S.p.A. A control method for a turbocharger supercharged internal combustion engine
US7908858B2 (en) * 2007-07-31 2011-03-22 Caterpillar Inc. System that limits turbo speed by controlling fueling
US7788922B2 (en) * 2007-10-04 2010-09-07 Delphi Technologies, Inc. System and method for model based boost control of turbo-charged engines
US7921944B2 (en) * 2007-10-29 2011-04-12 Ford Global Technologies, Llc Compression system for internal combustion engine including a rotationally uncoupled exhaust gas turbine
JP2010180781A (ja) * 2009-02-05 2010-08-19 Toyota Motor Corp 過給機付き内燃機関の制御装置
JP4952848B2 (ja) 2010-02-26 2012-06-13 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1077912A (ja) * 1996-08-30 1998-03-24 Mitsubishi Motors Corp 排気ガス還流装置
JP2000220462A (ja) 1998-11-27 2000-08-08 Mazda Motor Corp タ―ボ過給機付エンジンの制御装置
JP2005155384A (ja) * 2003-11-21 2005-06-16 Toyota Motor Corp ターボチャージャを備える内燃機関の故障診断装置
JP2006022763A (ja) 2004-07-09 2006-01-26 Denso Corp ターボチャージャを備えた内燃機関の制御装置
JP2008274797A (ja) 2007-04-26 2008-11-13 Toyota Motor Corp 内燃機関システム
JP2008309004A (ja) 2007-06-12 2008-12-25 Nissan Motor Co Ltd ターボ過給機の制御装置および制御方法
JP2009287409A (ja) * 2008-05-27 2009-12-10 Nissan Motor Co Ltd ターボ過給機付きエンジンの排気温度検出装置及びその劣化診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636869A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031826A (ja) * 2015-07-29 2017-02-09 マツダ株式会社 エンジンの制御装置

Also Published As

Publication number Publication date
CN103189616B (zh) 2015-05-06
CN103189616A (zh) 2013-07-03
EP2636869A1 (en) 2013-09-11
JP5505511B2 (ja) 2014-05-28
JPWO2012060006A1 (ja) 2014-05-12
EP2636869A4 (en) 2014-10-29
US20130219881A1 (en) 2013-08-29
US8938960B2 (en) 2015-01-27

Similar Documents

Publication Publication Date Title
JP4583038B2 (ja) 過給機付き内燃機関の過給圧推定装置
US8180553B2 (en) Controlling cylinder mixture and turbocharger operation
US7770393B2 (en) Control of turbocharger imbalance
EP2107225B1 (en) Internal combustion engine and method for controlling the internal combustion engine
JP4464924B2 (ja) エンジンの制御装置および制御方法
JP2012251535A (ja) 内燃機関
EP2678544B1 (en) Controller and control method for internal combustion engine
JP2008157057A (ja) 内燃機関の制御装置
JP5786348B2 (ja) 過給機付き内燃機関の制御装置
JP4969546B2 (ja) 内燃機関の制御装置および方法
US9068519B2 (en) Control apparatus for internal combustion engine
JP5505511B2 (ja) 内燃機関の制御装置
JP4706865B2 (ja) 過給機付内燃機関の燃料噴射制御装置
JP2009002249A (ja) 内燃機関のスロットル上流圧推定装置
JP4532004B2 (ja) 可変バルブタイミング機構及び過給機付エンジンの燃料噴射制御装置
JP5800090B2 (ja) 内燃機関の制御装置
EP2354501B1 (en) Control apparatus for internal combustion engine
JP2014020252A (ja) 内燃機関の制御装置
JP2010024995A (ja) 内燃機関の制御装置
JP6406300B2 (ja) エンジンの制御装置
JP2011226311A (ja) 内燃機関の吸入空気量補正方法
JP2012172607A (ja) 過給機付き内燃機関の制御装置
JP2001132516A (ja) 内燃機関の回転制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859262

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012541690

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010859262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010859262

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883449

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE