WO2012056834A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2012056834A1
WO2012056834A1 PCT/JP2011/071816 JP2011071816W WO2012056834A1 WO 2012056834 A1 WO2012056834 A1 WO 2012056834A1 JP 2011071816 W JP2011071816 W JP 2011071816W WO 2012056834 A1 WO2012056834 A1 WO 2012056834A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
electrolyte secondary
Prior art date
Application number
PCT/JP2011/071816
Other languages
English (en)
French (fr)
Inventor
山本 諭
長谷川 和弘
峻 野村
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2012056834A1 publication Critical patent/WO2012056834A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery, and in particular, has a positive electrode active material in which fine particles made of a rare earth element compound adhere to the particle surface, and is excellent in high-temperature cycle characteristics even when the charging voltage is high, and battery swelling is suppressed.
  • the present invention also relates to a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries represented by high-capacity lithium ion secondary batteries are widely used.
  • the positive electrode active material of these nonaqueous electrolyte secondary batteries is represented by LiMO 2 (where M is at least one of Co, Ni, and Mn) capable of reversibly occluding and releasing lithium ions.
  • a carbon material such as graphite or a material alloyed with lithium such as Si or Sn is used as the negative electrode active material.
  • lithium-cobalt composite oxides and heterogeneous metal element-added lithium-cobalt composite oxides are often used because various battery characteristics are superior to others.
  • cobalt is expensive and has a small abundance as a resource. Therefore, in order to continue using these lithium cobalt composite oxides and lithium cobalt composite oxides containing different metal elements as positive electrode active materials for non-aqueous electrolyte secondary batteries, further enhancement of the performance of non-aqueous electrolyte secondary batteries is desired. ing.
  • non-aqueous electrolyte secondary batteries are required to have higher capacities due to demands for increased power consumption and long-term driving of HEVs and EVs with enhancement of entertainment functions such as video playback and game functions in recent mobile information terminals.
  • As a measure to increase the capacity of non-aqueous electrolyte secondary batteries (1) Increase the capacity of the active material, (2) Increase the charging voltage, (3) Increase the filling amount of the active material to increase the filling density, Such a method is conceivable.
  • Patent Document 1 listed below discloses a positive electrode active material in which rare earth hydroxide and oxyhydroxide fine particles are dispersed on the surface of a lithium transition metal composite oxide. It has been shown that the use of can suppress the electrolyte decomposition reaction when charged and stored at a high temperature, and can suppress battery swelling.
  • Patent Document 1 WO2010 / 004973
  • the present invention has been made to solve the above-described problems of the prior art, and even when the charging potential is increased, the oxidative decomposition of the nonaqueous electrolytic solution at the positive electrode is suppressed,
  • An object of the present invention is to provide a nonaqueous electrolyte secondary battery in which the deposition of lithium metal on the negative electrode is suppressed, the cycle characteristics at high temperatures are excellent, and the gas generation is suppressed.
  • a nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material, a negative electrode having a negative electrode active material, a separator, and a nonaqueous electrolyte.
  • the positive electrode active material is at least one of lithium cobalt oxide and nickel / cobalt / manganese manganate, and is composed of at least one of a rare earth element hydroxide and an oxyhydroxide on the particle surface.
  • non-aqueous electrolyte secondary battery of the present invention a non-aqueous electrolyte secondary battery having excellent high-temperature cycle characteristics and well-suppressed battery swelling can be obtained even when the charging voltage is increased.
  • the positive electrode active material A whose particle surface is coated with a rare earth element compound, deterioration of the positive electrode material is suppressed.
  • the positive electrode active material A when used alone as the positive electrode active material, when the charging voltage is increased, the material deterioration of the negative electrode becomes relatively faster than the deterioration of the positive electrode material, so that the charge capacity of the negative electrode is increased. Lithium metal begins to be deposited on the negative electrode when the charge capacity falls below the charge capacity of the battery, and the reductive decomposition of the electrolyte solution is accelerated by the deposited lithium. As a result, the battery capacity deteriorates and the battery swells. .
  • the positive electrode active material B when a small amount of the positive electrode active material B is contained in the positive electrode active material A, the positive electrode active material B has a feature that the transition metal is easily dissolved along with charge / discharge, that is, the cycle deterioration is quick.
  • the positive electrode material is appropriately deteriorated.
  • the balance between the deterioration rate of the positive electrode material and the deterioration rate of the negative electrode material is improved, and the oxidative decomposition of the electrolyte solution at the positive electrode is sufficiently suppressed, while the lithium metal is deposited at the negative electrode.
  • high-temperature cycle characteristics are improved, and battery swelling is also suppressed.
  • the content of the positive electrode active material B is too small or too large, the balance between the deterioration rate of the positive electrode and the deterioration rate of the negative electrode is deteriorated, and the cycle characteristics and battery swelling are deteriorated. Therefore, it is necessary that the content be 0.01% by mass or more and less than 5.0% by mass, and 0.01% by mass or more and 2.0% by mass or less with respect to the positive electrode active material mixture. More preferably, it is 0.01% by mass or more and 1.0% by mass or less.
  • the fine particles comprising at least one of rare earth element hydroxide and oxyhydroxide in the positive electrode active material A are, for example, particles comprising at least one of lithium cobaltate and nickel / cobalt / lithium manganate.
  • the rare earth element hydroxide is precipitated in a solution in which is dispersed, and the rare earth element hydroxide is adhered to the surface of particles of at least one of lithium cobaltate and nickel / cobalt / lithium manganate. It can be obtained by a manufacturing method including a step and a step of performing a heat treatment.
  • the temperature of the heat treatment is generally preferably in the range of 80 to 600 ° C, more preferably in the range of 80 to 400 ° C.
  • the heat treatment temperature is preferably 600 ° C. or lower.
  • the hydroxide is in the form of hydroxide, oxyhydroxide, oxide, etc.
  • the rare earth element compound adhering to the surface of the positive electrode active material in the present invention is hydroxide, oxyhydroxide. It adheres in the form of objects, oxides, etc.
  • heat-treated at 400 ° C. or lower it is mainly in the state of hydroxide or oxyhydroxide.
  • the heat treatment time is preferably about 3 to 7 hours.
  • the rare earth elements that can be used in the positive electrode active material A of the present invention include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium ( Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) can be used.
  • Promethium (Pm) is also a kind of rare earth element, but it is a radioisotope and a stable isotope cannot be obtained.
  • the positive electrode in the nonaqueous electrolyte secondary battery of the present invention may contain a conductive agent or a binder that has been conventionally used.
  • a conductive agent or a binder that has been conventionally used.
  • aluminum or an aluminum alloy can be used as a core of a positive electrode.
  • carbon materials such as graphite and coke, metals that can be alloyed with lithium such as tin oxide, metallic lithium, and silicon, and alloys thereof can be used. What consists of copper or a copper alloy can be used.
  • Nonaqueous solvents that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic carbonates.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic carbonates.
  • Esters cyclic carboxylic acid esters such as ⁇ -butyrolactone (BL) and ⁇ -valerolactone (VL), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), dibutyl Chain carbonates such as carbonate (DBC), fluorinated chain carbonates, chain carboxylates such as methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, N, N′— Dimethylformamide, N- Amide compounds such as chill oxazolidinone, sulfur compounds such as sulfolane, etc.
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • EEC diethyl carbonate
  • MPC methyl propyl carbonate
  • DBC dibutyl Chain carbonates
  • fluorinated chain carbonates chain carboxylates such as methyl pivalate, e
  • ambient temperature molten salt such as tetrafluoroboric acid 1-ethyl-3-methylimidazolium
  • tetrafluoroboric acid 1-ethyl-3-methylimidazolium can be exemplified. It is desirable to use a mixture of two or more of these.
  • cyclic carbonates and chain carbonates having a particularly high dielectric constant and a high ionic conductivity of the nonaqueous electrolytic solution are preferable.
  • a separator made of a microporous film formed from a polyolefin material such as polypropylene or polyethylene can be selected.
  • a resin having a low melting point may be mixed, and further, a laminate with a high melting point resin or a resin carrying inorganic particles may be used to obtain heat resistance.
  • vinylene carbonate (VC), vinyl ethyl carbonate (VEC), and succinic anhydride (SUCAH) are further used as a compound for stabilizing the electrode.
  • a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used.
  • Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated.
  • LiPF 6 lithium hexafluorophosphate
  • the amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 1.5 mol / L.
  • the non-aqueous electrolyte secondary battery of the present invention may be not only liquid but also gelled.
  • the average particle diameter of the fine particles comprising at least one of the rare earth element hydroxide and oxyhydroxide is 100 nm or less.
  • the lithium transition metal composite oxide it becomes difficult to adhere to the surface of the film, and it is difficult to achieve the desired effect.
  • the average particle size of these fine particles becomes small, it tends to adhere to the surface of the lithium transition metal composite oxide, but since the surface of the lithium transition metal composite oxide is densely coated, the lithium transition metal composite oxide The characteristic as a positive electrode active material of an oxide comes to fall.
  • the average particle diameter of the fine particles comprising at least one of a rare earth element hydroxide and an oxyhydroxide is in the range of 1 to 100 nm, and more preferably in the range of 10 to 100 nm.
  • the amount of fine particles comprising at least one of the rare earth element hydroxide and the oxyhydroxide in the positive electrode active material A is the lithium cobalt oxide. And it is preferable that they are 0.01 mol% or more and 0.3 mol% or less with respect to at least 1 sort (s) of nickel * cobalt * lithium manganate.
  • the adhesion amount of the fine particles comprising at least one kind of rare earth element hydroxide and oxyhydroxide in the positive electrode active material A is less than 0.01 mol%. In some cases, the gas generation suppression effect during the high-temperature cycle cannot be sufficiently obtained. Further, if the adhesion amount of the fine particles exceeds 0.3 mol%, the durability of the positive electrode active material increases, and it becomes difficult to maintain the positive / negative electrode discharge performance balance during a long-term cycle.
  • the adhesion amount of the fine particles comprising at least one kind of rare earth element hydroxide and oxyhydroxide is the adhesion amount to the positive electrode active material A, for example, the adhesion amount of the fine particles is 0.1 mol%. In this case, 0.001 mol of fine particles are attached to 1 mol of the positive electrode active material A to which fine particles are attached.
  • the amount of fine particles attached is a value in terms of rare earth elements.
  • the charging potential of the positive electrode can be 4.35V or more and 4.6V or less on the basis of lithium.
  • the charging potential of lithium cobaltate widely used as a positive electrode active material is 4.3 V based on lithium.
  • the charge potential of the positive electrode can be set to 4.35 V or more on the basis of lithium, so that it is used to a value closer to the theoretical capacity than when lithium cobaltate is used as the positive electrode active material.
  • the upper limit of the charging potential is preferably 4.6 V or less on the basis of lithium.
  • the negative electrode active material is preferably made of graphite.
  • a negative electrode active material used for a non-aqueous electrolyte secondary battery is made of graphite, dendrite grows while having a discharge potential (0.1 V based on lithium) comparable to lithium metal or lithium alloy.
  • the safety is high, the initial efficiency is excellent, the potential flatness is good, and the density is high, so that a high-capacity nonaqueous electrolyte secondary battery can be obtained.
  • the lithium cobalt oxide as the positive electrode active material material a obtained as described above was pulverized to an average particle size of 15 ⁇ m with a mortar, and then 1000 g was added to 3 liters of pure water and stirred to disperse the lithium cobalt oxide particles.
  • a predetermined rare earth nitrate hydrate was added in an amount of 0.1 mol% with respect to lithium cobaltate in terms of rare earth elements (in Example 1, erbium trinitrate ⁇ 5 water).
  • tetrahydrate (Er (NO 3) 3 ⁇ 5H 2 O) 4.53g) was added as an aqueous solution prepared by dissolving.
  • the pH of the suspension is adjusted to 9 by adding a 10% by mass sodium hydroxide aqueous solution. Kept.
  • the lithium cobalt oxide suspension added with the rare earth nitrate obtained as described above is subjected to suction filtration and washed with water to obtain a powder.
  • the powder is then dried at 120 ° C.
  • a rare earth hydroxide, that is, lithium cobaltate having erbium hydroxide uniformly adhered thereto was obtained.
  • the lithium cobalt oxide having the rare earth hydroxide adhered to the particle surface is heat-treated at 300 ° C. for 5 hours in an air atmosphere, so that the lithium cobalt oxide having the erbium compound adhered to the particle surface (hereinafter referred to as “positive electrode active material a”). 10 "hereinafter), which was a positive electrode active material a according to the first embodiment.
  • the positive electrode active material A obtained as described above and the lithium molybdate (Li 2 MoO 3 ) as the positive electrode active material B are 96 parts by mass as a predetermined ratio and the total amount of the positive electrode active material, that is, In addition to 95.95 parts by mass of the positive electrode active material a 10 , 0.05 part by mass of lithium molybdate, and further 2 parts by mass of carbon powder as a conductive agent, polyvinylidene fluoride (PFdV) as a binder
  • PFdV polyvinylidene fluoride
  • a positive electrode active material mixture was prepared by mixing so that the powder was 2 parts by mass, and then mixed with an N-methylpyrrolidone (NMP) solution to prepare a positive electrode active material mixture slurry.
  • NMP N-methylpyrrolidone
  • This positive electrode active material mixture slurry is applied to both sides of an aluminum foil as a positive electrode core having a thickness of 15 ⁇ m and a length of 334 mm.
  • the applied mass on one side is 21.2 mg / cm 2 , and the applied part on one side is 277 mm, not applied.
  • the coating was performed so that the portion was 57 mm, the coated portion on the other side was 208 mm, and the uncoated portion was 126 mm. Thereafter, the electrode plate was obtained by passing through a dryer and drying. Subsequently, the positive electrode plate concerning Example 1 was produced by compressing so that the thickness of a double-sided application part might be 132 micrometers using a compression roller.
  • Example 2 That is, in Examples 2 to 5, instead of the positive electrode active material a 10 in Example 1, ytterbium compound (Example 2), terbium compound (Example 3), holmium compound ( Example 4), except that the positive electrode active materials a 2 , a 3 , a 4 , and a 5 to which the lutetium compound (Example 5) was attached were used as the positive electrode active material A in the same manner as in Example 1. A positive electrode plate was prepared.
  • a positive electrode active material A was obtained in the same manner as in Example 1 except that the rare earth nitrate oxide dissolved in the aqueous rare earth element nitrate solution added to the lithium cobaltate suspension was changed. That three-ytterbium nitrate trihydrate in Example 2 (Yb (NO 3) 3 ⁇ 3H 2 O) of 4.22 g, in Example 3 trinitrate terbium hexahydrate (Tb (NO 3) 3 4.63 g of 6H 2 O), 4.51 g of holmium trinitrate pentahydrate (Ho (NO 3 ) 3 ⁇ 5H 2 O) in Example 4 and lutetium trinitrate trihydrate in Example 5 1000 g of lithium cobaltate as positive electrode active material a was added to 3 liters of pure water and stirred, with 4.24 g of each product (Lu (NO 3 ) 3 ⁇ 3H 2 O)) dissolved therein By adding while adding a 10% by mass aqueous
  • the powder obtained after suction filtration and washing with water of the lithium cobalt oxide suspension to which the rare earth nitrate is added is dried at 120 ° C. so that a predetermined rare earth hydroxide is uniformly attached to the surface of the particles.
  • Lithium cobaltate was obtained.
  • lithium cobalt oxide having a rare earth hydroxide adhering to the particle surface is heat-treated at 300 ° C. for 5 hours in an air atmosphere to obtain lithium cobalt oxide having a predetermined rare earth element compound adhering to the particle surface.
  • Cathode active materials A according to Examples 2 to 5, that is, positive electrode active materials a 2 , a 3 , a 4 , and a 5 were used, and positive electrode plates according to Examples 2 to 5 were produced.
  • Example 6 and 7 In Example 6 and 7, in place of the positive electrode active material a 10 in the first embodiment, the deposition amount of the erbium compound adhered to the particle surface of the lithium cobalt oxide, the lithium cobalt oxide, 0.01 mol% (example 6), was 0.3 mol% (example 7), the positive electrode active material a 11, a 12, except for using as the positive electrode active material a was prepared a positive electrode plate in the same manner as in example 1 .
  • Example 6 an aqueous solution in which 4.53 g of erbium trinitrate pentahydrate was dissolved in Example 1 was added, 0.45 g of erbium trinitrate pentahydrate (Example 6) to 13 .59 g (Example 7)
  • the amount of erbium trinitrate hydrate added to the lithium cobaltate suspension was 0.01 mol% (based on erbium) with respect to lithium cobaltate.
  • a positive electrode active material A was obtained in the same manner as in Example 1 except that it was changed to Example 6) to 0.3 mol% (Example 7), and positive electrode plates according to Examples 6 to 7 were produced.
  • Example 8 and 9 and Comparative Examples 1 to 4 Example 1 was different from Example 1 except that the mixing ratio of the positive electrode active material A and the positive electrode active material B was changed to prepare a positive electrode active material mixture slurry. A positive electrode plate was produced in the same manner. Further, in Comparative Examples 1 and 2, which do not apply together the positive electrode active material B when the positive electrode active material a not to adhere rare earth element: the cathode active in (positive electrode active material A 'Comparative Example 1) to a positive electrode active material a 10 A positive electrode plate was prepared in the same manner as in Example 1 except that the material B not applied (Comparative Example 2) was used.
  • the mixing ratio of the positive electrode active material a 10 and lithium molybdate was 95.95 parts by weight and 0.05 part by weight in Example 1, 95.99 parts by mass of 0.01 parts by weight (Example 8) 95.0 parts by mass and 1.0 parts by mass (Example 9) 95.995 parts by mass and 0.005 parts by mass (Comparative Example 3) 91.0 parts by mass and 5.0 parts by mass (Comparative Example 4) ), Or 96 parts by mass (only Comparative Example 1) or 96 parts by mass (only the positive electrode active material a 10 ) of the positive electrode active material A ′ composed of only the positive electrode active material a to which no rare earth element is adhered ( For Comparative Example 2), 2 parts by mass of carbon powder as a conductive agent and 2 parts by mass of polyvinylidene fluoride powder as a binder were mixed to prepare a positive electrode active material mixture, which was then mixed with N-methylpyrrolidone. Positive electrode active material obtained by mixing with solution With slurry, Example 8, Example 9 was
  • Example 10 a positive electrode plate was prepared in the same manner as in Example 1 except that lithium tungstate (Li 2 WO 3 ) was used as the positive electrode active material B instead of lithium molybdate in Example 1. Produced.
  • lithium tungstate Li 2 WO 3
  • Example 11 In Example 11, a positive electrode active material that instead of the positive electrode active material a 10 in Example 1, nickel-cobalt-lithium manganate (LiNi 0.33 Co 0.34 Mn 0.33 O 2) except that nickel, cobalt, and lithium manganate (hereinafter referred to as “positive electrode active material b 1 ”) obtained by attaching an erbium compound to b and having an erbium compound attached to the particle surface is used as the positive electrode active material A.
  • a positive electrode plate was produced in the same manner as in Example 1.
  • the positive electrode plate according to Example 11 was produced as follows.
  • lithium hydroxide LiOH.H 2 O
  • nickel is used as a nickel, cobalt, and manganese source.
  • Nickel-cobalt-manganese composite hydroxide obtained by coprecipitation of a predetermined amount of cobalt and manganese was used. These were weighed so that the molar ratio of lithium to nickel / cobalt / manganese was 1: 1, mixed in a mortar, baked at 400 ° C. for 12 hours in an oxygen atmosphere, crushed in a mortar, and then in an oxygen atmosphere
  • the nickel, cobalt, and lithium manganate were obtained by baking at 900 degreeC for 24 hours below.
  • Nickel, cobalt, and lithium manganate as the positive electrode active material b obtained as described above were pulverized to an average particle size of 15 ⁇ m in a mortar, and then 1000 g was added to 3 liters of pure water and stirred. After preparing a suspension in which cobalt-lithium manganate particles were dispersed, an aqueous solution in which 4.60 g of erbium trinitrate pentahydrate was dissolved in this suspension was obtained in the same manner as in Example 1. While maintaining a pH of 9 at 10%, a 10% by mass aqueous sodium hydroxide solution was added together.
  • the nickel-cobalt-manganese manganate suspension added with erbium trinitrate obtained as described above was subjected to suction filtration and water washing in the same manner as in Example 1, and the obtained powder was washed at 120 ° C.
  • heat treatment is performed at 300 ° C. for 5 hours in an air atmosphere, whereby the positive electrode active material b 1 is obtained.
  • Nickel / cobalt / lithium manganate having an erbium compound adhered to the particle surface was obtained and used as the positive electrode active material A according to Example 11.
  • the mixing ratio of the positive electrode active material A and the positive electrode active material B is the same as in Example 1, that is, molybdic acid with respect to 95.95 parts by mass of the positive electrode active material b 1.
  • a positive electrode active material mixture was prepared by adding 0.05 parts by weight of lithium, 2 parts by weight of carbon powder, and 2 parts by weight of polyvinylidene fluoride powder to prepare a positive electrode active material mixture, which was then mixed with N-methylpyrrolidone.
  • a positive electrode active material mixture slurry was prepared by mixing with a solution, and a positive electrode plate according to Example 11 was produced.
  • Comparative Example 5 In Comparative Example 5, when preparing the positive electrode active material mixture slurry in Example 1 was mixed with the positive electrode active material a 10 as a positive electrode active material A, lithium molybdate as a positive electrode active material B In contrast, when preparing the positive electrode active material mixture slurry, lithium molybdate as the positive electrode active material B is not added. Instead, in the preparation process of the positive electrode active material A, a lithium source and a cobalt source are used. A cathode active material obtained by adhering an erbium compound to the surface of particles of molybdenum-added lithium cobalt oxide (hereinafter referred to as “cathode active material c”) obtained by adding molybdenum to the mixture and firing. Only material c 1 to prepare a positive electrode plate used as a cathode active material.
  • cathode active material c A cathode active material obtained by adhering an erbium compound to the surface of particles of molybdenum-added lithium cobal
  • a mixture of lithium carbonate and tricobalt tetroxide (a molar ratio of lithium and cobalt of 1: 1) is 95.95.
  • a mixture of lithium carbonate and molybdenum trioxide as a molybdenum source (a molar ratio of lithium and molybdenum of 2: 1)
  • firing was performed at 850 ° C. for 20 hours in an air atmosphere.
  • the positive electrode active material c obtained by doing this it was produced in the same manner as in Comparative Example 1, and a specific production method will be described below.
  • the positive electrode active material c obtained as described above was pulverized in a mortar to an average particle size of 15 ⁇ m, and then 1000 g was added to 3 liters of pure water and stirred to obtain a suspension in which the positive electrode active material c was dispersed.
  • a liquid was prepared.
  • To this suspension was added an aqueous solution in which 4.53 g of erbium trinitrate pentahydrate was dissolved, together with a 10% by weight aqueous sodium hydroxide solution so that the pH of the suspension was maintained at 9. Added.
  • the positive electrode active material c and erbium trinitrate suspension obtained as described above were subjected to suction filtration and water washing in the same manner as in Example 1, and the obtained powder was dried at 120 ° C.
  • the positive electrode active material c 1 obtained by uniformly adhering erbium hydroxide to the surface of the particles and then heat-treating at 300 ° C. for 5 hours in an air atmosphere was used as the positive electrode active material A according to Comparative Example 5. .
  • the positive electrode active material B was not added, but 2 parts by mass of carbon powder as a conductive agent and binding were performed.
  • a positive electrode active material mixture slurry was prepared by mixing with 2 parts by weight of polyvinylidene fluoride powder as an agent, and then mixing this with an N-methylpyrrolidone solution. The positive electrode plate concerning 5 was produced.
  • a positive electrode active material made of nickel, cobalt, and lithium manganate (LiNi 0.33 Co 0.34 Mn 0.33 O 2 ) produced in the same manner as in Example 11.
  • the positive electrode active material B 1 obtained by attaching an erbium compound to the material b and using 96 parts by mass of the positive electrode active material b 1 made of nickel, cobalt, and lithium manganate with the erbium compound attached to the particle surface as the positive electrode active material A was used.
  • a positive electrode plate was produced in the same manner as in Example 11 except that was not added.
  • the coated mass on one side was 11.3 mg / cm 2 , the coated part on one side was 284 mm, the uncoated part was 15 mm, It applied by the doctor blade method so that the application part of one side might be 226 mm and an unapplication part might be 73 mm. Thereafter, the electrode plate was obtained by passing through a dryer and drying. Subsequently, the negative electrode plate used by each Example and a comparative example was produced by compressing so that the thickness of a double-sided coating part might be set to 155 micrometers using a compression roller. Note that the potential of graphite during charging is about 0.1 V on the basis of Li.
  • the positive electrode and negative electrode active material filling amount is such that the charge capacity ratio between the positive electrode and the negative electrode (negative electrode charge capacity / positive electrode charge capacity) is 1.0 to 1.1 at the potential of the positive electrode active material as a design standard. Adjusted.
  • Comparative Example 1 in which the surface of the positive electrode active material particles is not coated with a rare earth element compound, an increase in polarization resistance due to gas generation due to electrolytic solution oxidative decomposition at the positive electrode accompanying charge / discharge and deposition of decomposition products, While the high-voltage and high-temperature cycle characteristics are poor and the battery thickness is increased due to the deterioration of the positive electrode material due to the dissolution of the positive electrode active material, the comparative example 1 has a rare earth element such as erbium. By covering the surface of the positive electrode active material particles with this compound, side reactions on the surface of the positive electrode active material are suppressed, and gas generation and deterioration of the positive electrode material are less likely to occur.
  • lithium molybdate or lithium tungstate is a chargeable / dischargeable material and functions as a positive electrode active material.
  • the transition metal easily dissolves with charge / discharge, and the cycle deterioration is fast.
  • the dissolved metal component does not deteriorate the battery characteristics of the negative electrode.
  • the positive electrode active material in addition to the positive electrode active material A whose particle surface is coated with a rare earth element compound, a small amount of the lithium molybdate, lithium tungstate, or the like is added as the positive electrode active material B, whereby the positive electrode material becomes Since it deteriorates moderately, the balance between the deterioration rate of the positive electrode material and the deterioration rate of the negative electrode material is improved, and the high voltage and high temperature cycle characteristics can be improved while sufficiently suppressing the oxidative decomposition of the electrolyte. Become.
  • the amount of lithium molybdate or lithium tungstate contained in the positive electrode active material mixture as the positive electrode active material B is 0.005% by mass or less with respect to the positive electrode active material A, Or when it is 5.0 mass% or more, it turns out that the high voltage high temperature cycling characteristics improvement effect and the battery thickness increase amount reduction effect are not sufficiently obtained.
  • the amount of lithium molybdate or lithium tungstate contained in the positive electrode active material mixture as the positive electrode active material B is 0.01% by mass or more with respect to the positive electrode active material A, It can be seen that an improvement in the high voltage and high temperature cycle characteristics and a reduction in the increase in battery thickness can be obtained sufficiently.
  • the upper limit of the amount of lithium molybdate or lithium tungstate to be contained in the positive electrode active material mixture as the positive electrode active material B may be 2.0% by mass or less. Preferably, 1.0 mass% or less is more preferable.
  • rare earth elements include lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), dysprosium (Dy), thulium ( Tm).
  • La lanthanum
  • Ce cerium
  • Pr praseodymium
  • Nd neodymium
  • Sm samarium
  • Eu europium
  • Gd gadolinium
  • Dy dysprosium
  • Tm thulium
  • the adhesion amount of the rare earth element covering the particle surface of the positive electrode active material A was at least 0. 0 with respect to lithium cobaltate as the active material of the positive electrode active material A. It can be seen that the effect of the present invention is surely achieved when the content is 01 mol% or more and at most 0.3 mol% or less.
  • the method of adding molybdenum or tungsten at the time of firing the positive electrode active material is not preferable and prepared separately.
  • the positive electrode plate is preferably prepared by mixing the positive electrode active material A and the positive electrode active material B at the time of preparing the positive electrode active material mixture slurry.

Abstract

本発明の非水電解質二次電池は、コバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種であって粒子表面に希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子が付着している正極活物質Aと、モリブデン酸リチウム及びタングステン酸リチウムのうちの少なくとも1種からなる正極活物質Bとを含んでおり、前記正極活物質Bの含有量は、前記正極活物質合剤に対して0.01質量%以上2.0質量%以下であることを特徴とする。本発明の非水電解質二次電池によれば、充電電位を高くした場合であっても、高温下での充放電サイクル特性に優れ、かつ、電池膨れが抑制された非水電解質二次電池を提供することができる。

Description

非水電解質二次電池
 本発明は、非水電解質二次電池に関し、特に粒子表面に希土類元素化合物からなる微粒子が付着した正極活物質を有し、充電電圧が高くても、高温サイクル特性に優れ、電池膨れが抑制された非水電解質二次電池に関する。
 今日の携帯電話機、携帯型パーソナルコンピューター、携帯型音楽プレイヤー等の携帯型電子機器の駆動電源として、さらには、ハイブリッド電気自動車(HEV)や電気自動車(EV)用の電源として、高エネルギー密度を有し、高容量であるリチウムイオン二次電池に代表される非水電解質二次電池が広く利用されている。
 これらの非水電解質二次電池の正極活物質としては、リチウムイオンを可逆的に吸蔵・放出することが可能なLiMO(但し、MはCo、Ni、Mnの少なくとも1種である)で表されるリチウム遷移金属複合酸化物、すなわち、LiCoO、LiNiO、LiNiCo1-y(y=0.01~0.99)、LiMnO、LiCoMnNi(x+y+z=1)や、LiMn又はLiFePOなどが一種単独もしくは複数種を混合して用いられている。また、負極活物質としては、黒鉛等の炭素材料や、Si又はSn等のリチウムと合金化する材料などが用いられている。
 このうち、特に各種電池特性が他のものに対して優れていることから、リチウムコバルト複合酸化物や異種金属元素添加リチウムコバルト複合酸化物が多く使用されている。しかしながら、コバルトは高価であると共に資源としての存在量が少ない。そのため、これらのリチウムコバルト複合酸化物や異種金属元素添加リチウムコバルト複合酸化物を非水電解質二次電池の正極活物質として使用し続けるには非水電解質二次電池のさらなる高性能化が望まれている。
 特に、近年の移動情報端末における動画再生、ゲーム機能といった娯楽機能の充実に伴う消費電力の増大化及びHEVやEVの長時間駆動の要望から、非水電解質二次電池のさらなる高容量化が要求されている。非水電解質二次電池を高容量化する方策としては、
 (1)活物質の容量を高くする、
 (2)充電電圧を高くする、
 (3)活物質の充填量を増やし充填密度を高くする、
などの方法が考えられる。
 しかしながら、特に充電電圧を高くした場合、具体的には正極の充電電位をリチウム基準で4.3Vよりも高くした場合、正極活物質の結晶構造が不安定になり、酸素分子、もしくは酸素ラジカルが発生しやすくなる。その結果、電解液の酸化分解が起こりやすくなり、電解液の酸化分解によるガス発生の増大や、分解生成物の堆積による分極抵抗の増大、正極活物質の溶解の進行に伴う正極材料の劣化が促進されて、サイクル特性が低下したりガス発生により電池厚みが増加したりするという問題が存在する。
 電解液の酸化分解を防止する技術として、例えば下記特許文献1には、リチウム遷移金属複合酸化物の表面に希土類水酸化物・オキシ水酸化物の微粒子を分散した状態で付着させた正極活物質を用いることで、高温で充電保存した時の電解液分解反応を抑制し、電池膨れを抑制できることが示されている。
 特許文献1:WO2010/004973号公報
 しかしながら、充電電圧を高くすると、非水電解質二次電池の正極に上記特許文献1に示されるような希土類元素化合物で粒子表面を被覆した正極活物質を用いた場合、高温充電保存時の容量低下や電池膨れは十分に抑制されるものの、高温サイクル時の容量低下や電池膨れが大きいとの課題が判明した。これは、正極活物質粒子表面が希土類元素化合物で被覆されたことにより、充放電に伴う劣化が進行し難くなった正極に対して、電解液還元分解生成物の堆積や充放電に伴う結晶構造の脆性破壊などが一定のスピードで進行する負極の材料劣化が相対的に速やかに進行することになり、その結果、負極の充電容量が正極の充電容量を下回った時点で負極上へリチウム金属が析出し始め、析出したリチウム金属は非常に反応性が高いため、電解液の還元分解を加速してしまうことによる。
 一方、表面が希土類元素で被覆されていない正極活物質を用いた場合は、充電電圧を高くすると、上述したように正極での電解液の酸化分解が抑制されないため、サイクル特性の低下や、ガス発生による電池厚みの増加の問題がある。
 本発明は、上述のような従来技術の問題点を解決すべくなされたものであり、充電電位を高くした場合であっても、正極での非水電解液の酸化分解が抑制されるとともに、負極へのリチウム金属の析出が抑制されて、高温下でのサイクル特性に優れ、かつ、ガス発生が抑制された非水電解質二次電池を提供することを目的とする。
 上記目的を達成するため、本発明の非水電解質二次電池は、正極活物質を有する正極と、負極活物質を有する負極と、セパレータと、非水電解質とを備える非水電解質二次電池において、前記正極活物質は、コバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種であって、粒子表面に希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子が付着している正極活物質Aと、モリブデン酸リチウム及びタングステン酸リチウムのうちの少なくとも1種からなる正極活物質Bとを含んでおり、前記正極活物質Bの含有量は、前記正極活物質Aに対して0.01質量%以上2.0質量%以下であることを特徴とする。
 本発明の非水電解質二次電池によれば、充電電圧を高くしても、高温サイクル特性に優れ、電池膨れが良好に抑制された非水電解質二次電池が得られる。
 希土類元素化合物で粒子表面が被覆された正極活物質Aを用いることによって、正極材料の劣化は抑制される。しかしながら、正極活物質Aを単独で正極活物質として用いた場合には、充電電圧を高くすると、負極の材料劣化が正極材料の劣化よりも相対的に早くなることで、負極の充電容量が正極の充電容量を下回った時点で負極上へリチウム金属が析出し始め、析出したリチウムによって電解液の還元分解が加速されて、その結果、電池の容量劣化が進むとともに、電池膨れが大きくなってしまう。
 ここで、正極活物質Aに対して微量の正極活物質Bを含有させると、正極活物質Bは充放電に伴って遷移金属が溶解しやすい、すなわちサイクル劣化が早い、という特徴を有するため、正極材料が適度に劣化するようになる。その結果、充電電圧を高くしても、正極材料の劣化速度と負極材料の劣化速度とのバランスが良くなり、正極での電解液の酸化分解を十分抑えつつ、負極でのリチウム金属の析出も抑制されて、高温サイクル特性が向上し、電池膨れも抑制されたものとなる。
 上記正極活物質Bの含有量は、少な過ぎても、多過ぎても、正極の劣化速度と負極の劣化速度のバランスが悪くなり、サイクル特性及び電池膨れが悪化する。そのため、前記正極活物質合剤に対して、0.01質量%以上かつ5.0質量%未満であることが必要であり、0.01質量%以上かつ2.0質量%以下であることがより好ましく、0.01質量%以上かつ1.0質量%以下であることが最も好ましい。
 なお、正極活物質Aにおける希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子は、例えばコバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種からなる粒子を分散させた溶液中で希土類元素の水酸化物を析出させ、この希土類元素の水酸化物をコバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種からなる粒子の表面に付着させる工程と、熱処理を行う工程を含む製造方法によって得ることができる。
 熱処理の温度としては、一般に80~600℃の範囲であることが好ましく、さらに、80~400℃の範囲にあることが特に好ましい。熱処理の温度が600℃より高くなると、表面に付着した希土類元素化合物の微粒子の一部が活物質の内部に拡散し、初期の充放電効率が低下する。したがって、容量が高く、より選択的に表面に希土類元素化合物を付着した状態の活物質を得るには、熱処理温度は600℃以下にすることが好ましい。また、水酸化物は熱処理により水酸化物、オキシ水酸化物、酸化物などの形態となるから、本発明における正極活物質表面に付着している希土類元素化合物は、水酸化物、オキシ水酸化物、酸化物などの形態で付着している。ここで、400℃以下で熱処理した場合には、主に水酸化物や、オキシ水酸化物の状態である。熱処理時間は、3~7時間程度であることが好ましい。
 また、本発明の正極活物質Aに使用し得る希土類元素としては、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)及びルテチウム(Lu)から選択される少なくとも1種を用いることができる。なお、プロメチウム(Pm)も希土類元素の一種であるが、放射性同位元素であって安定同位体が得られないため、使用しない方がよい。
 また、本発明の非水電解質二次電池における正極として、正極活物質以外に従来から普通に使用されている導電剤や結着剤等を含んでいてもよい。また、正極の芯体としてはアルミニウム又はアルミニウム合金からなるものを用いることができる。さらに、負極活物質としては、黒鉛、コークス等の炭素材料や、酸化スズ、金属リチウム、珪素などのリチウムと合金化し得る金属及びそれらの合金等を使用することができ、負極の芯体としては銅又は銅合金からなるものを用いることができる。
 また、本発明の非水電解質二次電池において使用し得る非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、フッ素化された環状炭酸エステル、γ-ブチロラクトン(BL)、γ-バレロラクトン(VL)などの環状カルボン酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)などの鎖状炭酸エステル、フッ素化された鎖状炭酸エステル、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネートなどの鎖状カルボン酸エステル、N、N'-ジメチルホルムアミド、N-メチルオキサゾリジノンなどのアミド化合物、スルホランなどの硫黄化合物、テトラフルオロ硼酸1-エチル-3-メチルイミダゾリウムなどの常温溶融塩などが例示できる。これらは2種以上混合して用いることが望ましい。これらの中では、特に誘電率が大きく、非水電解液のイオン伝導度が大きい環状炭酸エステル及び鎖状炭酸エステルが好ましい。
 また、本発明の非水電解質二次電池で使用するセパレータとしては、ポリプロピレンやポリエチレンなどのポリオレフィン材料から形成された微多孔膜からなるセパレータが選択できる。セパレータのシャットダウン応答性を確保するために、融点の低い樹脂を混合してもよく、更には、耐熱性を得るために高融点樹脂との積層体や無機粒子を担持させた樹脂としてもよい。
 なお、本発明の非水電解質二次電池で使用する非水電解質中には、電極の安定化用化合物として、更に、ビニレンカーボネート(VC)、ビニルエチルカーボネート(VEC)、無水コハク酸(SUCAH)、無水マイレン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネート、ビフェニル(BP)などを添加してもよい。これらの化合物は、2種以上を適宜に混合して用いることもできる。
 また、本発明の非水電解質二次電池で使用する非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10、Li12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF(ヘキサフルオロリン酸リチウム)が特に好ましい。前記非水溶媒に対する電解質塩の溶解量は、0.8~1.5mol/Lとするのが好ましい。
 更に、本発明の非水電解質二次電池においては、非水電解質は液状のものだけでなく、ゲル化されているものであってもよい。
 また、本発明の非水電解質二次電池においては、前記希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の平均粒子径は、100nm以下であることが好ましい。
 本発明の非水電解質二次電池においては、希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の平均粒子径が大きくなって100nmを越えるとリチウム遷移金属複合酸化物の表面に付着し難くなって、所期の効果が奏され難くなる。また、これらの微粒子の平均粒子径が小さくなると、リチウム遷移金属複合酸化物の表面に付着し易くなるが、リチウム遷移金属複合酸化物の表面を緻密に被覆するようになるので、リチウム遷移金属複合酸化物の正極活物質としての特性が低下するようになる。より好ましい希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の平均粒子径は、1~100nmの範囲であり、さらに好ましくは10~100nmの範囲である。
 また、本発明の非水電解質二次電池においては、前記正極活物質Aにおける前記希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の付着量は、前記コバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種に対して0.01mol%以上0.3mol%以下であることが好ましい。
 本発明の非水電解質二次電池においては、正極活物質Aにおける希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の付着量が0.01mol%未満であると、高温サイクル時のガス発生抑制効果を十分に得られない場合がある。また、この微粒子の付着量が0.3mol%を越えると、正極活物質の耐久性が上がるため、長期サイクル時に正負極放電性能バランスを維持することが困難になる。なお、希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の付着量は、正極活物質Aに対する付着量であり、例えば、微粒子の付着量が0.1mol%である場合、微粒子が付着している正極活物質Aの1molに対し、微粒子が0.001mol付着していることを意味する。また、微粒子の付着量は希土類元素換算の値である。
 また、本発明の非水電解質二次電池においては、前記正極の充電電位はリチウム基準で4.35V以上、4.6V以下とすることができる。
 正極活物質として広く用いられているコバルト酸リチウムの充電電位は、リチウム基準で4.3Vである。本発明の非水電解質二次電池では正極の充電電位はリチウム基準で4.35V以上とすることができるので、正極活物質としてコバルト酸リチウムを用いた場合よりも理論容量に近い値まで利用することが可能となり、しかも電池の高容量化及び高エネルギー密度化が可能となる。なお、正極の充電電位の上限は、高くなりすぎると正極活物質が分解するので、リチウム基準で4.6V以下とすることが好ましい。
 また、本発明の非水電解質二次電池においては、前記負極活物質は黒鉛からなることが好ましい。
 非水電解質二次電池に使用される負極活物質として黒鉛からなるものを用いると、リチウム金属やリチウム合金に匹敵する放電電位(リチウム基準で0.1V)を有しながらも、デンドライトが成長することがないために安全性が高く、さらに初期効率に優れ、電位平坦性も良好であり、また、密度も高いために高容量の非水電解質二次電池が得られる。
 以下、本発明を実施するための形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解質二次電池を例示するものであって、本発明をこの実施例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。
[実施例1]
[正極極板の作製]
 <正極活物質Aの調製>
 正極活物質Aの出発原料として、リチウム源には炭酸リチウム(LiCO)を用い、コバルト源には、炭酸コバルトを550℃で焼成し、熱分解反応によって得られた四酸化三コバルト(Co)を用いた。これらをリチウムとコバルトのモル比が1:1になるように秤量した。その後乳鉢で混合し、この炭酸リチウムと四酸化三コバルトとの混合物を空気雰囲気下において850℃で20時間焼成し、正極活物質材料aとしてのコバルト酸リチウム(LiCoO)を得た。
 上記のようにして得られた正極活物質材料aとしてのコバルト酸リチウムを、乳鉢で平均粒径15μmまで粉砕した後、3リットルの純水に1000g添加し撹拌して、コバルト酸リチウム粒子が分散した懸濁液を調製し、この懸濁液に所定の希土類硝酸化物の水和物を希土類元素換算でコバルト酸リチウムに対して0.1mol%(実施例1においては、三硝酸エルビウム・5水和物(Er(NO・5HO)を4.53g)溶解させた水溶液として添加した。なお、希土類硝酸化物の水和物が溶解した液をコバルト酸リチウム懸濁液に添加する際には、10質量%の水酸化物ナトリウム水溶液をあわせて添加することで懸濁液のpHを9に保った。
 上記のようにして得られた希土類硝酸化物の添加されたコバルト酸リチウム懸濁液を吸引濾過及び水洗して粉末を得た後、この粉末を120℃で乾燥することで粒子の表面に所定の希土類水酸化物、すなわち水酸化エルビウムが均一に付着したコバルト酸リチウムを得た。次いで、粒子表面に希土類水酸化物の付着したコバルト酸リチウムを、空気雰囲気下において300℃で5時間熱処理することで、粒子表面にエルビウム化合物が付着したコバルト酸リチウム(以下、「正極活物質a10」という)を得て、実施例1にかかる正極活物質Aとした。
 なお、上記正極活物質a10について、走査型電子顕微鏡(SEM)にて観察したところ、コバルト酸リチウム粒子の表面に、平均粒子径100nm以下のエルビウム化合物が均一に分散された状態で付着していた。エルビウム化合物の付着量をICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分析法により測定した結果、エルビウム元素換算で、コバルト酸リチウムに対して0.1mol%であり、正極活物質a10作製の際に添加されたエルビウムのほぼ全量がコバルト酸粒子表面に付着されていることが確認された。
 <正極活物質合剤スラリーの調製>
 上記のようにして得られた正極活物質Aと、正極活物質Bとしてのモリブデン酸リチウム(LiMoO)とを所定の割合かつ正極活物質総量として96質量部となるように、すなわち、95.95質量部の正極活物質a10に対して、0.05質量部のモリブデン酸リチウム加え、さらに、導電剤としての炭素粉末が2質量部、結着剤としてのポリフッ化ビニリデン(PFdV)粉末が2質量部となるように混合して正極活物質合剤を調製した後、これをN-メチルピロリドン(NMP)溶液と混合して正極活物質合剤スラリーを調製した。
 <正極極板の作製>
 この正極活物質合剤スラリーを厚さ15μm、長さ334mmの正極芯体としてのアルミニウム箔の両面に、片面の塗布質量が21.2mg/cm、一方の面の塗布部分が277mm、未塗布部分が57mm、もう一方の面の塗布部分が208mm、未塗布部分が126mmとなるように塗布した。その後、乾燥機中を通過させて乾燥することにより極板となした。次いで、圧縮ローラーを用いて両面塗布部分の厚みが132μmとなるように圧縮することで、実施例1にかかる正極極板を作製した。
 実施例2~11及び比較例1~6においては、表1及び以下に示すように、実施例1に対して、正極活物質Aの活物質材料の種類、活物質材料の粒子表面に付着させる希土類元素の種類及び付着量、正極活物質Bの種類、正極活物質Aと正極活物質Bとの混合割合等が異なる正極極板を作製した。
[実施例2~5]
 すなわち、実施例2~5においては、実施例1における正極活物質a10に替えて、コバルト酸リチウムの粒子表面に、イッテルビウム化合物(実施例2)、テルビウム化合物(実施例3)、ホルミウム化合物(実施例4)、ルテチウム化合物(実施例5)をそれぞれ付着させた正極活物質a、a、a、aを、正極活物質Aとして用いた以外は、実施例1と同様にして正極極板を作製した。
 希土類元素化合物を付着させるにあたっては、コバルト酸リチウム懸濁液に添加する希土類元素硝酸化物水溶液に溶解させる希土類硝酸化物を変更する以外は実施例1と同様にして正極活物質Aを得た。すなわち、実施例2においては三硝酸イッテルビウム3水和物(Yb(NO・3HO)を4.22g、実施例3においては三硝酸テルビウム6水和物(Tb(NO・6HO)を4.63g、実施例4においては三硝酸ホルミウム5水和物(Ho(NO・5HO)を4.51g、実施例5においては三硝酸ルテチウム3水和物(Lu(NO・3HO))を4.24g溶解させたそれぞれの希土類硝酸化物水溶液を、正極活物質材料aとしてのコバルト酸リチウムが3リットルの純水に1000g添加及び撹拌されたコバルト酸リチウム懸濁液に、懸濁液のpHを9に保つように、10質量%の水酸化物ナトリウム水溶液をあわせて加えながら、添加することで、所定の希土類硝酸化物がそれぞれの希土類元素換算でコバルト酸リチウムに対して0.1mol%添加されたコバルト酸リチウム懸濁液を得た。
 次いで、上記希土類硝酸化物の添加されたコバルト酸リチウム懸濁液を吸引濾過及び水洗したのち得られる粉末を、120℃で乾燥させることで、粒子の表面に所定の希土類水酸化物が均一に付着したコバルト酸リチウムを得た。次いで、粒子表面に希土類水酸化物の付着したコバルト酸リチウムを、空気雰囲気下において300℃で5時間熱処理することで、所定の希土類元素化合物が粒子表面に付着したコバルト酸リチウムを得て、実施例2~5にかかる正極活物質A、すなわち、正極活物質a、a、a、aとし、実施例2~5にかかる正極極板を作製した。
[実施例6及び7]
 また、実施例6及び7においては、実施例1における正極活物質a10に替えて、コバルト酸リチウムの粒子表面に付着させるエルビウム化合物の付着量を、コバルト酸リチウムに対して、0.01mol%(実施例6)、0.3mol%(実施例7)とした、正極活物質a11、a12を、正極活物質Aとして用いた以外は実施例1と同様にして正極極板を作製した。
 すなわち、実施例1において三硝酸エルビウム・5水和物を4.53g溶解させた水溶液を添加するのに対して、三硝酸エルビウム・5水和物を0.45g(実施例6)、ないし13.59g(実施例7)溶解させた水溶液を用いることで、コバルト酸リチウム懸濁液に添加される三硝酸エルビウム水和物の量を、エルビウム換算でコバルト酸リチウムに対して0.01mol%(実施例6)、ないし0.3mol%(実施例7)とすること以外は実施例1と同様にして正極活物質Aを得て、実施例6ないし7にかかる正極極板を作製した。
[実施例8、9及び比較例1~4]
 また、実施例8、9及び比較例3、4においては、正極活物質Aと正極活物質Bとの混合比を変更して正極活物質合剤スラリーを調製したこと以外は、実施例1と同様にして正極極板を作製した。さらに、比較例1、2においては、正極活物質材料aに希土類元素を付着させないと共に正極活物質Bを印加しないもの(正極活物質A':比較例1)ないし正極活物質a10に正極活物質Bを印加しないもの(比較例2)を用いた以外は、実施例1と同様にして正極極板を作製した。
 すなわち、実施例1において95.95質量部及び0.05質量部であった正極活物質a10及びモリブデン酸リチウムの混合割合を、95.99質量部及び0.01質量部(実施例8)、95.0質量部及び1.0質量部(実施例9)、95.995質量部及び0.005質量部(比較例3)、91.0質量部及び5.0質量部(比較例4)としたもの、又は、希土類元素が付着していない正極活物質材料aのみからなる正極活物質A'を96質量部(比較例1)ないし、正極活物質a10のみからなる96質量部(比較例2)に対して、導電剤としての炭素粉末2質量部、結着剤としてのポリフッ化ビニリデン粉末2質量部と混合して正極活物質合剤を調製した後、これをN-メチルピロリドン溶液と混合することで得られる正極活物質合剤スラリーを用いて、それぞれ実施例8、実施例9、比較例1~4にかかる正極極板を作製した。
[実施例10]
 また、実施例10においては、実施例1におけるモリブデン酸リチウムに替えて、タングステン酸リチウム(LiWO)を正極活物質Bとして用いた以外は、実施例1と同様にして正極極板を作製した。
 すなわち、正極活物質a1095.95質量部と、タングステン酸リチウム0.05質量部とをあわせた正極活物質総量96質量部に対して、炭素粉末2質量部、ポリフッ化ビニリデン粉末2質量部を混合して正極活物質合剤を調製した後、これをN-メチルピロリドン溶液と混合することで得られる正極活物質合剤スラリーを用いて、実施例10にかかる正極極板を作製した。
[実施例11]
 また、実施例11においては、実施例1における正極活物質a10に替えて、ニッケル・コバルト・マンガン酸リチウム(LiNi0。33Co0.34Mn0.33)からなる正極活物質材料bに、エルビウム化合物を付着させることで得られる、粒子表面にエルビウム化合物が付着したニッケル・コバルト・マンガン酸リチウム(以下、「正極活物質b」という)を、正極活物質Aとして用いる以外は実施例1と同様にして正極極板を作製した。
 すなわち、実施例11にかかる正極極板は以下のようにして作製した。正極活物質材料bとしてのニッケル・コバルト・マンガン酸リチウムの作製にあたっては、出発原料として、リチウム源には水酸化リチウム(LiOH・HO)を用い、ニッケル・コバルト・マンガン源には、ニッケル、コバルト、マンガンを所定量共沈させることで得られたニッケル・コバルト・マンガン複合水酸化物を用いた。これらをリチウムとニッケル・コバルト・マンガンのモル比が1:1になるように秤量した後、乳鉢で混合し、酸素雰囲気下において400℃で12時間焼成した後乳鉢で解砕し、次いで酸素雰囲気下において900℃で24時間焼成することで、ニッケル・コバルト・マンガン酸リチウムを得た。
 上記のようにして得られた正極活物質材料bとしてのニッケル・コバルト・マンガン酸リチウムを、乳鉢で平均粒径15μmまで粉砕した後、3リットルの純水に1000g添加し撹拌して、ニッケル・コバルト・マンガン酸リチウム粒子が分散した懸濁液を調製した後、この懸濁液に実施例1と同様に、三硝酸エルビウム・5水和物を4.60g溶解させた水溶液を、懸濁液のpHが9に保たれるように、10質量%の水酸化物ナトリウム水溶液をあわせて加えながら、添加した。
 次いで、上記のようにして得られた三硝酸エルビウムの添加されたニッケル・コバルト・マンガン酸リチウム懸濁液を、実施例1と同様に、吸引濾過及び水洗し、得られた粉末を120℃で乾燥させて、粒子の表面に水酸化エルビウムが均一に付着したニッケル・コバルト・マンガン酸リチウムを得た後、空気雰囲気下において300℃で5時間熱処理することで、正極活物質bとしての、粒子表面にエルビウム化合物が付着したニッケル・コバルト・マンガン酸リチウムを得て、実施例11にかかる正極活物質Aとした。
 正極活物質合剤スラリーの調製にあたっては、正極活物質Aと正極活物質Bの混合割合は実施例1と同様であり、すなわち、正極活物質b95.95質量部に対して、モリブデン酸リチウムを0.05質量部として、更に炭素粉末が2質量部、ポリフッ化ビニリデン粉末が2質量部となるように加えて混合して正極活物質合剤を調製した後、これをN-メチルピロリドン溶液と混合することで正極活物質合剤スラリーを調製し、実施例11にかかる正極極板を作製した。
[比較例5]
 また、比較例5においては、実施例1において正極活物質合剤スラリーを調製する際に、正極活物質Aとしての正極活物質a10と、正極活物質Bとしてのモリブデン酸リチウムとを混合して用いるのに対して、正極活物質合剤スラリーを調製する際には正極活物質Bとしてのモリブデン酸リチウムを加えず、その替わりに正極活物質Aの調製過程において、リチウム源とコバルト源との混合物に更にモリブデンを加えて焼成することで得られる、焼成時モリブデン添加コバルト酸リチウム(以下、「正極活物質材料c」という)の粒子表面に、エルビウム化合物を付着させることで得られる正極活物質cのみを正極活物質として用いて正極極板を作製した。
 すなわち、比較例5にかかる正極極板は、比較例1における正極活物質材料aに替えて、炭酸リチウムと四酸化三コバルトとの混合物(リチウムとコバルトとのモル比1:1)95.95質量部と、炭酸リチウムとモリブデン源としての三酸化モリブデンとの混合物(リチウムとモリブデンとのモル比2:1)0.05質量部とを混合した後、空気雰囲気下において850℃で20時間焼成することで得られる正極活物質材料cを用いる点以外は、比較例1と同様にして作製されたものであり、具体的な作製方法を以下に示す。
 まず、上記のようにして得られた正極活物質材料cを乳鉢で平均粒径15μmまで粉砕した後、3リットルの純水に1000g添加し撹拌して、正極活物質材料cが分散した懸濁液を調製した。この懸濁液に、三硝酸エルビウム・5水和物が4.53g溶解した水溶液を、懸濁液のpHが9に保たれるように10質量%の水酸化物ナトリウム水溶液をあわせて加えながら、添加した。
 次いで、上記のようにして得られた正極活物質材料c及び三硝酸エルビウムの懸濁液を、実施例1と同様に、吸引濾過及び水洗し、得られた粉末を120℃で乾燥させることで、粒子の表面に水酸化エルビウムを均一に付着させた後、さらに空気雰囲気下において300℃で5時間熱処理することで得られる正極活物質cを、比較例5にかかる正極活物質Aとした。
 次いで、上記のようにして得られた正極活物質c96質量部に対して、比較例1と同様に、正極活物質Bは加えずに、導電剤としての炭素粉末2質量部及び結着剤としてのポリフッ化ビニリデン粉末2質量部と混合して正極活物質合剤を調製した後、これをN-メチルピロリドン溶液と混合することで得られる正極活物質合剤スラリーを用いて、比較例5にかかる正極極板を作製した。
[比較例6]
 また、比較例6の正極極板としては、実施例11と同様にして作製されたニッケル・コバルト・マンガン酸リチウム(LiNi0。33Co0.34Mn0.33)からなる正極活物質材料bにエルビウム化合物を付着させることで得られる、粒子表面にエルビウム化合物が付着したニッケル・コバルト・マンガン酸リチウムからなる正極活物質bを正極活物質Aとして96質量部用い、正極活物質Bを添加しない以外は実施例11と同様にして正極極板を作製した。
[負極極板の作製]
 負極活物質としての黒鉛97.5質量部と、増粘剤としてのカルボキシメチルセルロース(CMC)1.0質量部と、結着剤としてのスチレンブタジエンゴム(SBR)1.5質量部とを、適量の水と混合して負極活物質合剤スラリーとした。このスラリーを厚さ10μm、長さ299mmの負極芯体としての銅箔の両面に、片面の塗布質量が11.3mg/cm、一方の面の塗布部分が284mm、未塗布部分が15mm、もう一方の面の塗布部分が226mm、未塗布部分が73mmとなるように、ドクターブレード法で塗布した。その後、乾燥機中を通過させて乾燥させることにより極板となした。次いで圧縮ローラーを用いて両面塗布部分の厚みが155μmとなるように圧縮することで、各実施例及び比較例で用いる負極極板を作製した。なお、充電時の黒鉛の電位はLi基準で約0.1Vである。また、正極及び負極の活物質充填量は、設計基準となる正極活物質の電位において、正極と負極の充電容量比(負極充電容量/正極充電容量)が1.0~1.1となるように調整した。
[電解液の調製]
 エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを体積比3:7で混合した溶媒に対し、ヘキサフルオロリン酸リチウム(LiPF)を、濃度が1mol/Lとなるように溶解させた後、ビニレンカーボネート(VC)を1質量%添加して、各実施例及び比較例で用いる電解液を調製した。
[扁平状巻回電極体の作製]
 上記のようにして作製した各実施例及び比較例にかかる正極極板と、負極極板とを、正極極板にはアルミニウム製のリード線を、負極極板にはニッケル製のリード線を溶接した後、ポリエチレン製微多孔膜から成るセパレータを介して扁平型に巻回することで、各実施例及び比較例に用いる渦巻状の電極体を作製した。
[非水電解質電池の作製]
 上記のようにして作製した扁平状巻回電極体をラミネート容器に封入し、Arを満たしたグローブボックス内で、上記得られた電解液を注液した。その後、注液口を塞ぐことで、各実施例及び比較例にかかる非水電解質二次電池(設計容量:800mAh)を作製した。
[高電圧高温サイクル特性試験]
 上記のようにして作製された各実施例及び比較例にかかる非水電解質二次電池について、下記の条件で高電圧高温サイクル特性試験を行った。
 ・充電:0.5It(400mA)の電流で電池電圧が4.4V(正極電位はリチウム基準で4.5V)となるまで定電流充電を行い、その後4.4Vの定電圧で電流値が40.0mAとなるまで充電した。
 ・放電:0.5It(400mA)の電流で電池電圧が3.0V(正極電位はリチウム基準で3.1V)となるまで定電流放電を行った。
 ・休止:充電から放電、放電から充電の間の休止間隔は、それぞれ10分間とした。
 ・環境温度:45℃の恒温槽内で実施した。
 上記の条件での充電-休止-放電-休止を、1サイクルの充放電とし、充放電サイクルを500サイクル繰り返し、1回目の放電容量及び500回目の放電容量から、以下の計算式によって得られる値を、高電圧高温サイクル特性(%)として求めた。
  高電圧高温サイクル特性(%)
      =(500サイクル目放電容量/1サイクル目放電容量)×100
 また、上記サイクル特性試験の前と後のそれぞれにおいて、各実施例及び比較例について電池厚みを測定し、連続充放電500サイクルによる電池厚みの増加量を求めた。
 これらの結果を表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果より、実施例1~11の非水電解質二次電池はいずれも、比較例1~5のものと比べて、高電圧高温サイクル特性が向上し、電池厚み増加量が良好に抑制されていることがわかる。本効果が奏される理由は以下のように考察される。
 すなわち、比較例1と比較例2の比較により、正極活物質としてのコバルト酸リチウム粒子の表面をエルビウム化合物で被覆することで、高電圧高温サイクル特性の向上及び電池厚み増加量の低減がある程度見られることがわかる。
 これは、希土類元素の化合物で正極活物質粒子の表面が被覆されていない比較例1では、充放電に伴う正極での電解液酸化分解によるガス発生や分解生成物の堆積による分極抵抗の増大、正極活物質の溶解などによる、正極材料の劣化が要因となって、高電圧高温サイクル特性が悪く、電池厚みの増加といった現象が見られるのに対して、比較例1では、エルビウムなどの希土類元素の化合物で正極活物質粒子の表面が被覆されることで、正極活物質表面での副反応が抑制され、ガス発生や正極材料の劣化が起こりにくくなっていることを示している。
 しかしながら、正極活物質として、粒子の表面が希土類元素化合物で被覆された正極活物質、すなわち正極活物質Aを用いるだけでは、高電圧高温サイクル特性の向上及び電池厚み増加量の低減効果は不充分であり、実施例1及び10と比較例1との比較により、正極活物質粒子の表面を希土類元素化合物で被覆した上で、微量のモリブデン酸リチウムまたはタングステン酸リチウムを、正極活物質合剤スラリーに混合することで、高電圧高温サイクル特性の向上及び電池厚み増加量の低減効果が顕著になることがわかる。
 この顕著な高電圧高温サイクル特性の向上及び電池厚み増加量の低減効果は、以下のようなメカニズムによるものと考えられる。すなわち、希土類元素化合物で正極活物質粒子の表面を被覆することで、正極材料の劣化は抑制されるが、そのままでは、電解液還元分解生成物の負極への堆積や充放電に伴う結晶構造の脆性破壊などによる負極の材料劣化は一定のスピードで進行するため、正極材料の劣化よりも負極の材料の劣化が相対的に早くなる。
 そのため、正極の充電容量が負極の充電容量を上回った時点で負極上へリチウム金属が析出し始めるが、析出したリチウムは非常に反応性が高いため、電解液の還元分解を加速し、その結果、電池の容量劣化が進み、電池膨れが大きくなってしまう。
 一方、モリブデン酸リチウムやタングステン酸リチウムは充放電可能な材料であり、正極活物質として機能するが、充放電に伴って遷移金属が溶解しやすく、サイクル劣化が早いという特徴を有する。しかし、溶解した金属成分が負極の電池特性を低下させることはない。
 ここで、正極活物質として、粒子表面が希土類元素化合物で被覆された正極活物質Aに加えて、上記モリブデン酸リチウムやタングステン酸リチウムなどを正極活物質Bとして少量添加することによって、正極材料が適度に劣化するようになるため、正極材料の劣化速度と負極材料の劣化速度とのバランスが良くなり、電解液の酸化分解を十分抑えつつ、高電圧高温サイクル特性を向上させることが出来るものとなる。
 すなわち、高電圧高温サイクル特性向上及び電池厚み増加量低減のためには正極及び負極の材料劣化が同程度に進行させるようにすることが必要であり、正極活物質Bとして正極活物質合剤中に含有させるモリブデン酸リチウムやタングステン酸リチウムの量が、少な過ぎる(比較例3)と正極材料の劣化が進まず、また、多過ぎる(比較例4)と必要以上に正極材料の劣化が進んでしまう。
 なお、比較例3及び4の結果から、正極活物質Bとして正極活物質合剤中に含有させるモリブデン酸リチウムやタングステン酸リチウムの量が、正極活物質Aに対して0.005質量%以下、もしくは、5.0質量%以上の場合は、高電圧高温サイクル特性向上効果及び電池厚み増加量低減効果が十分得られないことが分かる。
 また、実施例8の結果から、正極活物質Bとして正極活物質合剤中に含有させるモリブデン酸リチウムやタングステン酸リチウムの量が、正極活物質Aに対して0.01質量%以上であれば、高電圧高温サイクル特性向上及び電池厚み増加量低減が十分得られることが分かる。一方、正極活物質Bとして正極活物質合剤中に含有させるモリブデン酸リチウムやタングステン酸リチウムの量の上限は、実施例9及び比較例4の結果から、2.0質量%以下とすることが好ましく、1.0質量%以下がより好ましい。
 また、希土類元素は類似の化学的ないし物理的特性を備えていることが周知であるため、本発明においては、正極活物質Aの粒子表面を被覆している化合物として、各種希土類元素化合物を用いることが可能である。このことは、イッテルビウム化合物、テルビウム化合物、ホルミウム化合物、ルテチウム化合物を用いても、エルビウム化合物と同様に本発明の効果が奏されていることが実施例2~5において示されていることからも裏づけられる。
 上記以外の希土類元素としては、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユーロピウム(Eu)、ガドリニウム(Gd)、ジスプロシウム(Dy)、ツリウム(Tm)が挙げられる。
 また、実施例6及び7の結果より、正極活物質Aの粒子表面を被覆している希土類元素の付着量としては、少なくとも正極活物質Aの活物質材料としてのコバルト酸リチウムに対して0.01mol%以上、多くとも0.3mol%以下であれば、確実に本発明の効果が奏されることが分かる。
 また、実施例11及び比較例6の結果が示すように、正極活物質Aの活物質材料として、ニッケル・コバルト・マンガン酸リチウムを用いた場合でも、本発明の効果が奏されることから、正極活物質Aの活物質材料としては、その他のリチウムコバルト複合酸化物や異種金属元素添加リチウムコバルト複合酸化物を用いても、本発明の効果が奏されるものと推測される。
 なお、正極活物質を焼成する際にモリブデンを添加した比較例5では、比較例1よりも高電圧高温サイクル特性が悪化し、電池厚み増加量の低減もほとんど見られない。これは、モリブデン原子のイオン半径がコバルト原子に比べて非常に大きいため、得られる正極活物質内にモリブデンが固溶せず、正極活物質粒子表面に偏析してしまうことによるものと思われる。すなわち、比較例5では、モリブデン酸リチウムが正極活物質合剤中にほとんど存在しない状態であるため、本発明の効果を奏しないのに加えて、偏析したモリブデンはサイクル中に選択的に溶解するため、粒界抵抗が増大し、電池作動電圧が大きく低下してしまうものとなる。
 従って、正極活物質Bとしてのモリブデン酸リチウムないしタングステン酸リチウムを適切に正極活物質合剤中に含有させるには、正極活物質焼成時にモリブデンないしタングステンを添加する方法は好ましくなく、別々に調製した正極活物質Aと正極活物質Bとを正極活物質合剤スラリー作製時に混合することで正極極板を作製することが好ましいことが分かる。

Claims (5)

  1.  正極活物質を有する正極と、負極活物質を有する負極と、セパレータと、非水電解質とを備える非水電解質二次電池において、
     前記正極活物質は、
     コバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種であって、粒子表面に希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子が付着している正極活物質Aと、
     モリブデン酸リチウム及びタングステン酸リチウムのうちの少なくとも1種からなる正極活物質Bとを含んでおり、
     前記正極活物質Bの含有量は、前記正極活物質Aに対して0.01質量%以上2.0質量%以下であることを特徴とする非水電解質二次電池。
  2.  前記希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の平均粒子径は、100nm以下であることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記正極活物質Aにおける前記希土類元素の水酸化物及びオキシ水酸化物のうちの少なくとも1種からなる微粒子の付着量は、前記コバルト酸リチウム及びニッケル・コバルト・マンガン酸リチウムのうちの少なくとも1種に対して0.01mol%以上0.3mol%以下であることを特徴とする請求項1に記載の非水電解質二次電池。
  4.  前記正極の充電電位はリチウム基準で4.35V以上、4.6V以下であることを特徴とする請求項1に記載の非水電解質二次電池。
  5.  前記負極活物質は黒鉛からなることを特徴とする請求項1~4のいずれかに記載の非水電解質二次電池。
PCT/JP2011/071816 2010-10-29 2011-09-26 非水電解質二次電池 WO2012056834A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-244170 2010-10-29
JP2010244170A JP5623241B2 (ja) 2010-10-29 2010-10-29 非水電解質二次電池

Publications (1)

Publication Number Publication Date
WO2012056834A1 true WO2012056834A1 (ja) 2012-05-03

Family

ID=45993564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071816 WO2012056834A1 (ja) 2010-10-29 2011-09-26 非水電解質二次電池

Country Status (2)

Country Link
JP (1) JP5623241B2 (ja)
WO (1) WO2012056834A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017093A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極活物質
CN110352533A (zh) * 2017-05-25 2019-10-18 株式会社东芝 蓄电单元及蓄电系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370515B2 (ja) * 2012-02-22 2013-12-18 住友金属鉱山株式会社 非水系電解質二次電池用正極材料とその製造方法、および該正極材料を用いた非水系電解質二次電池
US20160006029A1 (en) * 2013-03-26 2016-01-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery positive electrode active material and non-aqueous electrolyte secondary battery by using same
JP6191365B2 (ja) * 2013-09-27 2017-09-06 三洋電機株式会社 非水電解質二次電池
CN112864452A (zh) * 2019-11-27 2021-05-28 恒大新能源技术(深圳)有限公司 钨酸锂固态电解质及其制备方法和固态电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151995A (ja) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004207098A (ja) * 2002-12-26 2004-07-22 Nec Tokin Tochigi Ltd 非水電解液二次電池
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2005251716A (ja) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
WO2010004973A1 (ja) * 2008-07-09 2010-01-14 三洋電機株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259268B2 (ja) * 2008-06-25 2013-08-07 三星エスディアイ株式会社 非水電解質二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05151995A (ja) * 1991-11-29 1993-06-18 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2000011996A (ja) * 1998-06-25 2000-01-14 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2004207098A (ja) * 2002-12-26 2004-07-22 Nec Tokin Tochigi Ltd 非水電解液二次電池
JP2005196992A (ja) * 2003-12-26 2005-07-21 Hitachi Ltd リチウム二次電池用正極材料及び電池
JP2005251716A (ja) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd 非水電解質二次電池用正極活物質、非水電解質二次電池用正極合剤および非水電解質二次電池
WO2010004973A1 (ja) * 2008-07-09 2010-01-14 三洋電機株式会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極及び非水電解質二次電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017093A1 (ja) * 2014-07-30 2016-02-04 三洋電機株式会社 非水電解質二次電池用正極活物質
JPWO2016017093A1 (ja) * 2014-07-30 2017-04-27 三洋電機株式会社 非水電解質二次電池用正極活物質
US10193153B2 (en) 2014-07-30 2019-01-29 Sanyo Electric Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary battery
CN110352533A (zh) * 2017-05-25 2019-10-18 株式会社东芝 蓄电单元及蓄电系统
CN110352533B (zh) * 2017-05-25 2022-07-19 株式会社东芝 蓄电单元及蓄电系统

Also Published As

Publication number Publication date
JP2012099271A (ja) 2012-05-24
JP5623241B2 (ja) 2014-11-12

Similar Documents

Publication Publication Date Title
EP3683873B1 (en) Lithium secondary battery
US10193153B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP6447620B2 (ja) 非水電解質二次電池用正極活物質
WO2010113512A1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法並びにリチウムイオン二次電池
WO2015129188A1 (ja) 非水電解質二次電池
US20180183046A1 (en) Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
WO2014050115A1 (ja) 非水電解質二次電池
JP2011077016A (ja) 非水電解質二次電池および非水電解質二次電池の製造方法
JP6443339B2 (ja) 非水電解質二次電池用正極
JP6828770B2 (ja) リチウムイオン二次電池
WO2014049976A1 (ja) 非水電解質二次電池
JP5623241B2 (ja) 非水電解質二次電池
US10418626B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
JP6627758B2 (ja) 非水電解質二次電池用正極及びそれを用いた非水電解質二次電池
JP7046410B2 (ja) 二次電池用正極活物質の製造方法、及びこれを用いる二次電池
JP5888512B2 (ja) 非水電解質二次電池用正極、その製造方法及び非水電解質二次電池
JP6481907B2 (ja) リチウム鉄マンガン系複合酸化物、それを用いたリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
JP6522661B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP2012054067A (ja) 非水電解質二次電池
JP2011181386A (ja) 非水電解質二次電池
JP6072689B2 (ja) 非水電解質二次電池
JP5181455B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
EP3863092A1 (en) Rechargeable battery with nonaqueous electrolyte, method for producing rechargeable battery with nonaqueous electrolyte, and method for using rechargeable battery with nonaqueous electrolyte
WO2014156116A1 (ja) 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法および非水電解質二次電池
JP2002056845A (ja) リチウム二次電池用正極活物質およびリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835974

Country of ref document: EP

Kind code of ref document: A1