WO2012056255A1 - Procédé de cartographie et de contrôle de surfaces de tunnels pendant le projet de construction - Google Patents

Procédé de cartographie et de contrôle de surfaces de tunnels pendant le projet de construction Download PDF

Info

Publication number
WO2012056255A1
WO2012056255A1 PCT/GR2011/000040 GR2011000040W WO2012056255A1 WO 2012056255 A1 WO2012056255 A1 WO 2012056255A1 GR 2011000040 W GR2011000040 W GR 2011000040W WO 2012056255 A1 WO2012056255 A1 WO 2012056255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
point
section
calculated
points
Prior art date
Application number
PCT/GR2011/000040
Other languages
English (en)
Inventor
Seraphim Amvrazis
Original Assignee
Seraphim Amvrazis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seraphim Amvrazis filed Critical Seraphim Amvrazis
Publication of WO2012056255A1 publication Critical patent/WO2012056255A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/06Tracing profiles of cavities, e.g. tunnels

Definitions

  • the invention is reported in the industry of manufacture of opening up of tunnels.
  • the calculation of method can be realized with the support of computer.
  • Aim is the direct and generalized revelation of problematic regions in a single drawing. With this way can be achieved directed fast re-establishment in the surfaces that present big overbreaks, as well as in the underbreak surfaces. In this way does not exist the need of diagnosis of thousands of cross-sections that is, in effect, until now.
  • mapping regions contributes in the forecast and evasion of future situations that are critical for the quality, the safety, and the cost of manufacture.
  • the calculation forecasts virtual primary measurements in the space of the tunnel, and calculates the projective development of the virtual primary measurements as it is reported in paragraph 1, so that is attributed the mapping of projection of future excavations of forecast.
  • the calculation of virtual primary measurements of excavation depends from the number of the topographic measurement points of the excavations with explosions that were realized in the past, with specific geologic grouping criteria.
  • the engineers of manufacture should define the geologic grouping criteria.
  • the conditions of the geologic grouping criteria are:
  • Aim of forecast of excavations is to give a solution for the technical issue for all experts of the subject in world level.
  • the technical issue that concerns the engineers in the frames of manufactures of tunnels is because until now does not exist a method of forecast of explosions that would calculate and determine future cross-sections of excavations in the real space of a tunnel, mapped to the projective development.
  • As a consequence of the problem is that there are not visual estimates of blasting before they are made. They thus are increased considerably cases of the estimate errors of quantity of explosives that should be used, as well as the length of perforation.
  • Aim of statistical analysis of excavations is to determine the suitable quantity of explosives that will be used for a blasting.
  • the advantage of transformation is that the observer having the ground plan of mapping can read the analysis that includes all the real width of the developed cylindrical cross-sections.
  • the method of mapping of control of surfaces of tunnels in projective development can be also used like a controlling tool from study services, from government manufacture services, and central offices of big constructional companies where worldwide will be able check the cost, the progress and the quality at the same time in each manufacture of a tunnel.
  • the method of mapping and control of surfaces of tunnels is based on the reception of topographic points from the total station.
  • drawing 1 the primary measurements of points of a cross-section in the surface of a tunnel.
  • drawing 2 the transformation of the cross- section that results afterwards from the calculation of the projective development of the primary points of the cross-section.
  • drawing 2 is presented a theoretical cross-section which includes the following geometric elements:
  • drawing 3 is presented a case of a final attribution of method of mapping and control of surfaces of tunnels in projective development.
  • drawing 6 is presented the three-dimensional case of forecast of excavations as it results from the calculation of the virtual primary surveys of an excavation in the space of the tunnel.
  • drawing 7 is presented a cross-section of an excavation with an explosion that was realized in the past.
  • drawing 8 is presented a cross-section of excavation with an explosion that was realized in the past, and it has the same geology with the cross-section of drawing 7.
  • drawing 12 is presented the cross-section that results from the statistical analysis of forecast of future excavations with explosions.
  • the statistical analysis forecasts the case of reduction of explosive quantities aiming at the better possible approach of future excavations, avoiding thus big overbreaks in the surface of the tunnel.
  • the particular drawing presents again the optical output of cross-section of drawing 9 that results from the reduction of quantity of explosives concerning the quantities that have been realized. It is obvious the reduction of overbreaks that can be created. It then is calculated again the projective transformation as in drawing 10.
  • the aim is the collection of the specific elements so that can be calculated the development of projection.
  • the calculation of the requested elements above can be calculated from any topographic software of road construction.
  • the algorithm of calculation can be realized with the help of a computer.
  • the calculation of Y can become provided when the altitude of axis of road construction is known. That is to say, from the longitudinal profile where has become the projection of points.
  • the theoretical cross-section belongs in the two-dimensional space (x, y), and the primary surveys emanate from the absolute three-dimensional space (x, y, z). It afterwards will be supposed it is fixed as X on the cross-section the distance of point from the axis (receiving the aspect that the sign is left or right according to the serial flow of the alignment), and as Y the difference of (Z of point - Z of road construction), that is to say - 0.449m.
  • STEP 2 Grouping of measurement points in the cross-section.
  • the next step is to calculate the azimuth between the center of the third circle right where the point of measurement belongs, and the point of measurement.
  • the coordinates of the center of the third right circle are known.
  • the next step is to calculate the correct azimuth that will be used for the projective development of the cross-section. That is to say : If the corner AZp is greater than 1 OOgrads, that is to say, greater than the first quadrant of the circle, then it will be as result AZp-400.
  • the next step is to calculate the real length from the beginning of the upper hypsometric level hi of the arc that belongs on the third right circle, up to the point of measurement with code 2579. (Drawing 2)
  • the length of arc That is to say, the length of arc from the upper hypsometric level of arc hi that it belongs on the third right circle, until the point of measurement that belongs also on this circle.
  • the third right circle is the continuity of the top circle and the second right circle.
  • Lm Total length of arc
  • Lm Drawing 2
  • First must be calculated the lengths of the two arcs that precede from the arc where the point belongs, and their length sum will be added in the result that was calculated in Step 6.
  • L3 2.30.
  • azimuth AZ3 The value of azimuth AZ3 will be found from the difference of the azimuth of the lower level of the arc of the third right circle, and the azimuth of the lower level of the arc of the second right circle.
  • Absolute azimuth AZ1 of point of measurement from the axis. (Drawing 1 figure 7) By calculating the azimuth concerning the development, can be calculated rightly and absolute the projective mapping according to the direction of the tunnel axis. In order to calculate the absolute azimuth it will be supposed that is known the XO, YO, and the XI, Yl. Thus the calculation will be as follows:
  • the crowd of points that will be converted in cylindrical development will create the total mapping of the surface of a tunnel.
  • drawing 3 is presented a case of mapping that result from the projective transformation of the crowd of primary topographic points, and is visualized from ground terrain software.
  • figure 1 is presented the line of cross-section of example in projective development.
  • figure 3 are presented regions without bracing of type invert. The characteristic of those regions is that their width is smaller concerning the remaining mapping because the theoretical cross- section includes fewer arcs.
  • figure 2 is presented the axis of the tunnel in which the attribution of projective mapping is directed. It is presented also different chromatic areas as well as contour lines from the proportional altitudes of the points that results from the calculation of Z of points as it is reported in Step 4.
  • the values on the projective mapping are values in centimeters that result from the theoretical cross-section concerning the existing surface of a tunnel, in random areas of the map.
  • figure 1 is presented the projective development of a surface of a tunnel that results from the transformation of the crowd of the primary surveys from the total stations on the existing surface.
  • the primary surveys are presented in figure 6.
  • figure 3 is presented the line of the cross-section from the primary surveys.
  • the line of cross-section includes the point that was calculated in the steps 1-8.
  • figure 2 is presented the three-dimensional projective development of the line of the cross-section as it was calculated in Step 8.
  • figure 4 is presented the axis of the tunnel on which the attribution of mapping is directed.
  • figure 5 is presented the theoretical surface of the tunnel.
  • the acceleration of this working procedure contributes also to the reduction of cost of the manufacture. Furthermore, it contributes in the quality of manufacture. In the quality of manufacture contributes because the mapping reveals all the areas that need to be repaired and does not leave margins of omissions. Omissions from the existing methods are logical to exist, because of the thousands of cross-sections that are printed.
  • drawing 4 is presented a case of mapping that is visualized by software of terrain model creation.
  • the drawing presents the surfaces that exceed the limit of overbreaks (figure 2).
  • figure 1 is presented the line of cross-section of the example. Advantages of method of mapping and control of surfaces of tunnels in projective development.
  • Forecast of future excavations with explosions based according to the existing surface of excavations with explosions that were realized in the past.
  • the forecast of future excavations with explosions is based on the reception of topographic primary surveys that were realized in the tunnel in the frames of excavations with explosions. That is to say, by the topographic primary surveys that are realized, is surveyed the existing morphology of the forehead of a tunnel immediately after each explosion. That is to say, before the covering with concrete.
  • Aim of forecast of future excavations with explosions is the research of explosions that has been already realized in the past. They thus are investigating similar situations of the past, from the start of the manufacture presenting the problems.
  • Requested elements for the calculation of forecast of future excavations with explosions are based on the steps of 1 -8. Suppose that in two cross-sections of excavation with explosives and for each point on the cross section that has been surveyed, according to the Steps 1-5, the calculation of the following elements has been done:
  • Step 1 Calculation in the two-dimensional space (X, Y of cross-section).
  • Step 2 Grouping of measurement points on the cross-section.
  • Step 3 Distance from the center of the circle until the point of measurement.
  • Step 4 Calculation of Z of the points of measurement.
  • Step 5 Calculation of azimuth for each point on the cross-section.
  • the algorithm of calculation of forecast of future excavations with explosions can be realized with the help of a computer.
  • the geology of the forehead is constituted mainly by marble and will be realized perforation of length of three meters and will be used 200 kilos of explosives.
  • Step 3 the radius of each point is calculated.
  • the crowds of points from the two different cross-sections that are presented on the tables above belong to the top arc of the circle.
  • the lower hypsometric level of the left arc of the top circle has the azimuth - 60.120grads, and from right respectively 60.120grads. (Drawing 7, 8).
  • the radius of each point is the distance from the center of the circle on which they belong until the measured points. For example, suppose that it will be calculated the average of the radius of the points per lOgrads.
  • O.OOOgrads O.OOOgrads, lO.OOOgrads, 20.000grads, 30.000grads, 40.000grads, 50.000grads, 60.000grads.
  • the azimuthal determination should be determined from the engineers of manufacture.
  • the azimuthal determmation will be realized for each point that belongs to any circle.
  • the final results of the azimuthal determmation incorporate the cross-sections from the tables 1, 2 and create a single table with the average of the radius of the points from the two cross- sections per 1 Ograds.
  • the merging of cross-sections can be realized from unlimited cross-sections of topographic primary surveys that were realized on the past.
  • Table 3 emanates from the merging of the two cross-sections of drawings 7,8, which the elements of the topographic primary surveys that are constituted, were analyzed on tables 1,2.
  • the elements that present on the table 3 are the followings:
  • drawing 9 is presented in figure 1 the radius R2 of the points that resulted from the mean of radius of the points from the two cross-sections.
  • figure 3 of drawing 9 is presented the beginning of the lower level of the azimuth of the left arc that belongs to the top circle. This azimuth is - 60.120grads.
  • the figure 4 of drawing 9 is presented in figure 1 the radius R2 of the points that resulted from the mean of radius of the points from the two cross-sections.
  • the Z of points that results from the difference of the theoretical value of the radius that comes from the top circle.
  • figure 3 of drawing 9 is presented the beginning of the lower level of the azimuth of the left arc that belongs to the top circle. This azimuth is - 60.120grads.
  • the figure 4 of drawing 9 is
  • azimuth for the two points of the example will be 462.329grads.
  • Coordinates of the axis X0, Y0 where it has been selected by the responsible engineers of manufacture as the beginning of forecast of excavations.
  • the coordinates X0. Y0 is the vertical projection of the virtual points of forecast to the axis. (Drawing 1 figure 2).
  • X0 374258.762
  • Y0 4412377.287.
  • the absolute altitude of the forecasting point it will need to be found its vertical projection to the longitudinal profile of the road construction. That is to say, for the point is requested the altitude of road construction vertical in the axis in which it belongs.
  • the forecasting example as it is reported above is linear.
  • Step 6 will be calculated the development of the cross-section arcs.
  • Step 8 three-dimensional coordinates transformation for the attribution of mapping of cylindrical development of a tunnel
  • Step 8 three-dimensional coordinates transformation for the attribution of mapping of cylindrical development of a tunnel
  • the algorithm of the statistical analysis of forecast of excavations can be realized with the help of a computer.
  • the quantity of explosives that was used for the cross-section of drawing 7 is 200 kilos.
  • the quantity of explosives that was used for the cross-section of drawing 8 is 180 kilos.
  • drawing 12 is presented the cross-section of excavation as it results after the statistical analysis of forecast of excavations.
  • the difference concerning the cross-section of drawing 10 is obvious, and this difference concerns the morphology of surface of excavation.
  • figure 2 is presented the new Xa of the forecasting point that results according to the calculation above.
  • figure 6 is presented the new radius R3 of the forecasting points that results according to the calculation of statistical analysis of excavations with possible reduction in the quantity of explosives.
  • drawing 12 figure 4 is presented the azimuth Azp of the point that was used for the calculation.
  • the azimuth Azp remains same as in drawing 10 figure 2.
  • Step 6 will be calculated the development of the cross-section arcs.
  • the forecasting points belong to the top circle. So there is no other circle to precede from the forecasting points. So the rule of Step 7 will not be included in this calculation.
  • Step 8 three-dimensional coordinates transformation for the attribution of mapping of cylindrical development of a tunnel
  • X0, Y0 the vertical projection of the forecasting points to the axis.
  • X0 374258.762
  • Y0 4412377.287.
  • the new Z of the forecasting point was calculated above and emanates from the algorithm of the statistical analysis of forecast of excavations. It has value:

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Processing Or Creating Images (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

L'invention porte sur un procédé de cartographie et de contrôle de surfaces de tunnels dans un développement de projet, le procédé pouvant être réalisé à l'aide d'un ordinateur. Le procédé est caractérisé par la réception des études primaires par l'ensemble des stations pendant la durée des phases de construction d'un tunnel. Il contribue à la prévision d'excavations futures en fonction de la surface existante d'excavations qui ont été réalisées dans le passé. Le contrôle technique actuel de tunnels en construction ne permet pas (en dehors des sections transversales classiques) un contrôle détaillé et global du projet. En conséquence, ceci contribue à une production de perte de qualité de projet, et, également à une mauvaise estimation des coûts pour une société de construction. Le procédé de cartographie et de contrôle de surfaces de tunnels dans un projet de développement calcule de façon cylindrique les points des études primaires avec une adaptation géométrique du rayon proportionnel de chaque section transversale théorique que l'on souhaite comparer à la surface existante d'un tunnel. Le développement de chaque arc de rayon différent avec des passages géométriques de l'espace proportionnel auquel appartient chaque point contribue à un développement complet et précis de la totalité de la longueur d'arcs de rayon jusqu'à chaque point de mesure. En résultat de la transformation, on obtiendra l'information complète dans toute la longueur et la largeur d'un tunnel. Le calcul de l'algorithme du procédé est effectué dans le but de faire apparaître de façon cylindrique, mais, également, absolument en tout point dans le tunnel, une information concernant le comportement futur d'explosions. Le comportement futur d'explosions examine les régions d'explosions qui ont été réalisées dans le passé. Il présente la façon dont pourrait se produire une explosion suivante en fonction des critères géologiques.
PCT/GR2011/000040 2010-10-25 2011-09-21 Procédé de cartographie et de contrôle de surfaces de tunnels pendant le projet de construction WO2012056255A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GR20100100614A GR1007395B (el) 2010-10-25 2010-10-25 Μεθοδοι χαρτογραφησης και οπτικοποιησης κυλινδρικων προβολων επιφανειων σηραγγων
GR20100100614 2010-10-25

Publications (1)

Publication Number Publication Date
WO2012056255A1 true WO2012056255A1 (fr) 2012-05-03

Family

ID=44759724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GR2011/000040 WO2012056255A1 (fr) 2010-10-25 2011-09-21 Procédé de cartographie et de contrôle de surfaces de tunnels pendant le projet de construction

Country Status (2)

Country Link
GR (1) GR1007395B (fr)
WO (1) WO2012056255A1 (fr)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651251A (zh) * 2015-12-30 2016-06-08 中铁三局集团华东建设有限公司 一种单洞双线隧道超欠挖测定方法
CN106767402A (zh) * 2016-11-30 2017-05-31 华中科技大学 一种盾构法隧道表观质量检测方法及系统
JP2017227611A (ja) * 2016-06-24 2017-12-28 株式会社キーエンス 三次元測定装置
CN107796363A (zh) * 2017-10-13 2018-03-13 北京工业大学 一种基于陆基LiDAR弧度隧道断面提取的方法
CN108731640A (zh) * 2017-04-25 2018-11-02 北京威远图易数字科技有限公司 基于点云数据的地铁限界检测方法及检测系统
CN109191521A (zh) * 2018-12-05 2019-01-11 中国铁建重工集团有限公司 一种隧道点云数据分析方法及系统
CN109359591A (zh) * 2018-10-16 2019-02-19 上海勘察设计研究院(集团)有限公司 基于点云数据自动识别大直径盾构隧道中隔墙的方法
CN109798830A (zh) * 2017-11-17 2019-05-24 上海岩土工程勘察设计研究院有限公司 隧道附属物几何特征测量方法
CN110411361A (zh) * 2019-05-15 2019-11-05 首都师范大学 一种移动隧道激光检测数据处理方法
CN110660094A (zh) * 2019-09-23 2020-01-07 上海市建筑科学研究院 一种基于图像识别的地铁隧道移动扫描点云精细划分方法
CN111143936A (zh) * 2019-12-28 2020-05-12 长安大学 一种高速公路螺旋隧道圆曲线半径推荐值的计算方法
CN111336990A (zh) * 2020-03-27 2020-06-26 南京航空航天大学 一种隧道断面收敛快速分析方法和装置
CN111914338A (zh) * 2020-08-14 2020-11-10 中国十七冶集团有限公司 一种参数化隧道明洞衬砌结构bim模型建立方法
CN112379397A (zh) * 2020-11-24 2021-02-19 湖北省水利水电规划勘测设计院 减小隧洞地面控制网的方位角中误差的测量方法
JP2021025230A (ja) * 2019-07-31 2021-02-22 清水建設株式会社 トンネル掘削管理方法および掘削管理装置
CN112528386A (zh) * 2020-12-31 2021-03-19 中铁建电气化局集团第三工程有限公司 地铁隧内接触网悬挂点位置无轨化精测方法
CN112665639A (zh) * 2020-11-27 2021-04-16 合肥泽众城市智能科技有限公司 一种检查井爆炸影响范围分析方法及装置
CN112733247A (zh) * 2021-01-28 2021-04-30 中铁十八局集团有限公司 一种大型项目上场策划的方法
CN113062769A (zh) * 2021-03-27 2021-07-02 中电建十一局工程有限公司 一种新编测量施工程序在马蹄形隧洞中的使用方法
CN114440831A (zh) * 2021-12-20 2022-05-06 中国华冶科工集团有限公司 基于全站仪点投影的矿山断面检查方法
WO2022121177A1 (fr) * 2020-12-07 2022-06-16 速度时空信息科技股份有限公司 Procédé d'extraction de nuage de points routiers basé sur des lignes de balayage
CN114970122A (zh) * 2022-05-10 2022-08-30 苏州大学 计算盾构隧道掘进面失稳最优支护力的方法及系统
CN116678377A (zh) * 2023-08-03 2023-09-01 中国水利水电第七工程局有限公司 一种基于自动全站仪的隧道净空自动检测方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109918851B (zh) * 2019-04-03 2022-10-11 长安大学 一种深埋隧道岩爆灾害规模的现场快速估算方法
CN112257143B (zh) * 2020-09-28 2024-02-02 北京科技大学 一种符合多振速要求的坐标点阵化隧道爆破药量计算方法
CN113222562A (zh) * 2021-06-02 2021-08-06 深圳市深水工程造价咨询有限公司 一种工程项目造价数据管理系统及方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237384A (en) * 1990-07-05 1993-08-17 Sato Kogyo Co., Ltd. Laser positioner and marking method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237384A (en) * 1990-07-05 1993-08-17 Sato Kogyo Co., Ltd. Laser positioner and marking method using the same

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651251B (zh) * 2015-12-30 2018-09-07 中铁三局集团华东建设有限公司 一种单洞双线隧道超欠挖测定方法
CN105651251A (zh) * 2015-12-30 2016-06-08 中铁三局集团华东建设有限公司 一种单洞双线隧道超欠挖测定方法
JP2017227611A (ja) * 2016-06-24 2017-12-28 株式会社キーエンス 三次元測定装置
CN106767402A (zh) * 2016-11-30 2017-05-31 华中科技大学 一种盾构法隧道表观质量检测方法及系统
CN108731640A (zh) * 2017-04-25 2018-11-02 北京威远图易数字科技有限公司 基于点云数据的地铁限界检测方法及检测系统
CN107796363A (zh) * 2017-10-13 2018-03-13 北京工业大学 一种基于陆基LiDAR弧度隧道断面提取的方法
CN109798830B (zh) * 2017-11-17 2020-09-08 上海勘察设计研究院(集团)有限公司 隧道附属物几何特征测量方法
CN109798830A (zh) * 2017-11-17 2019-05-24 上海岩土工程勘察设计研究院有限公司 隧道附属物几何特征测量方法
CN109359591A (zh) * 2018-10-16 2019-02-19 上海勘察设计研究院(集团)有限公司 基于点云数据自动识别大直径盾构隧道中隔墙的方法
CN109359591B (zh) * 2018-10-16 2020-09-08 上海勘察设计研究院(集团)有限公司 基于点云数据自动识别大直径盾构隧道中隔墙的方法
CN109191521A (zh) * 2018-12-05 2019-01-11 中国铁建重工集团有限公司 一种隧道点云数据分析方法及系统
CN110411361A (zh) * 2019-05-15 2019-11-05 首都师范大学 一种移动隧道激光检测数据处理方法
JP2021025230A (ja) * 2019-07-31 2021-02-22 清水建設株式会社 トンネル掘削管理方法および掘削管理装置
JP7316870B2 (ja) 2019-07-31 2023-07-28 清水建設株式会社 トンネル掘削管理方法および掘削管理装置
CN110660094A (zh) * 2019-09-23 2020-01-07 上海市建筑科学研究院 一种基于图像识别的地铁隧道移动扫描点云精细划分方法
CN111143936A (zh) * 2019-12-28 2020-05-12 长安大学 一种高速公路螺旋隧道圆曲线半径推荐值的计算方法
CN111143936B (zh) * 2019-12-28 2024-02-06 长安大学 一种高速公路螺旋隧道圆曲线半径推荐值的计算方法
CN111336990A (zh) * 2020-03-27 2020-06-26 南京航空航天大学 一种隧道断面收敛快速分析方法和装置
CN111914338A (zh) * 2020-08-14 2020-11-10 中国十七冶集团有限公司 一种参数化隧道明洞衬砌结构bim模型建立方法
CN111914338B (zh) * 2020-08-14 2024-01-19 中国十七冶集团有限公司 一种参数化隧道明洞衬砌结构bim模型建立方法
CN112379397A (zh) * 2020-11-24 2021-02-19 湖北省水利水电规划勘测设计院 减小隧洞地面控制网的方位角中误差的测量方法
CN112379397B (zh) * 2020-11-24 2024-04-16 湖北省水利水电规划勘测设计院 减小隧洞地面控制网的方位角中误差的测量方法
CN112665639A (zh) * 2020-11-27 2021-04-16 合肥泽众城市智能科技有限公司 一种检查井爆炸影响范围分析方法及装置
CN112665639B (zh) * 2020-11-27 2021-12-10 合肥泽众城市智能科技有限公司 一种检查井爆炸影响范围分析方法及装置
WO2022121177A1 (fr) * 2020-12-07 2022-06-16 速度时空信息科技股份有限公司 Procédé d'extraction de nuage de points routiers basé sur des lignes de balayage
CN112528386A (zh) * 2020-12-31 2021-03-19 中铁建电气化局集团第三工程有限公司 地铁隧内接触网悬挂点位置无轨化精测方法
CN112528386B (zh) * 2020-12-31 2022-05-06 中铁建电气化局集团第三工程有限公司 地铁隧内接触网悬挂点位置无轨化精测方法
CN112733247A (zh) * 2021-01-28 2021-04-30 中铁十八局集团有限公司 一种大型项目上场策划的方法
CN113062769B (zh) * 2021-03-27 2022-08-23 中电建十一局工程有限公司 一种新编测量施工程序在马蹄形隧洞中的使用方法
CN113062769A (zh) * 2021-03-27 2021-07-02 中电建十一局工程有限公司 一种新编测量施工程序在马蹄形隧洞中的使用方法
CN114440831B (zh) * 2021-12-20 2023-11-03 中国华冶科工集团有限公司 基于全站仪点投影的矿山断面检查方法
CN114440831A (zh) * 2021-12-20 2022-05-06 中国华冶科工集团有限公司 基于全站仪点投影的矿山断面检查方法
CN114970122A (zh) * 2022-05-10 2022-08-30 苏州大学 计算盾构隧道掘进面失稳最优支护力的方法及系统
CN114970122B (zh) * 2022-05-10 2023-07-11 苏州大学 计算盾构隧道掘进面失稳最优支护力的方法及系统
CN116678377A (zh) * 2023-08-03 2023-09-01 中国水利水电第七工程局有限公司 一种基于自动全站仪的隧道净空自动检测方法
CN116678377B (zh) * 2023-08-03 2023-11-03 中国水利水电第七工程局有限公司 一种基于自动全站仪的隧道净空自动检测方法

Also Published As

Publication number Publication date
GR1007395B (el) 2011-09-13

Similar Documents

Publication Publication Date Title
WO2012056255A1 (fr) Procédé de cartographie et de contrôle de surfaces de tunnels pendant le projet de construction
CN110030972A (zh) 基于ExcelVBA的隧道超欠挖检测方法
CN111191307B (zh) 一种基于bim+gis技术的土方工程虚拟施工方法
CN111429575B (zh) 一种三维可视化监测方法、系统、设备和存储介质
CN108204819B (zh) 一种地图数据自动检测方法和装置、及混合导航系统
CN108871266A (zh) 一种基于中间法三角高程方法的自动化沉降监测方法
CN103837113A (zh) 一种相对坐标测量方法
CN103591944A (zh) 一种弧形建筑测量施工方法
CN108880669A (zh) 光缆故障点地面直线距离定位方法与装置
CN111274683A (zh) 一种油气管线数据对齐管理方法
CN110057344A (zh) 沉降检测方法及平台
CN114997003B (zh) 多模型融合的隧道施工风险预测方法、系统、装置及介质
JP5217462B2 (ja) 道路情報管理装置
CN109307504A (zh) 一种超高架体稳定性原位监测方法
CN114859374A (zh) 基于无人机激光点云和影像融合的新建铁路交叉测量方法
KR102168117B1 (ko) Gnss와 증강현실을 활용한 매설 배관 위치 안내 시스템
CN107957241A (zh) 地铁隧道截面圆心确定装置及方法
CN111550604A (zh) 一种定向导向仪管道探测方法
Koc et al. The application effects of continuous satellite measurements of railway lines
Mustafin et al. Earth surface monitoring on undermined territories
JP2006133171A (ja) 測量シミュレーション装置及び測量シミュレーションプログラム
KR20160075889A (ko) 지반 및 연관구조물 안전 감시 시스템에서 그래픽 사용자 인터페이스를 제공하는 방법
KR102420648B1 (ko) 수치지형도 성과검사 및 보정방법
JP4460123B2 (ja) 法面形成用の位置誘導装置
JP3440278B2 (ja) 土木工事測量・施工支援システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11764846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11764846

Country of ref document: EP

Kind code of ref document: A1