WO2012056077A1 - Granulación por aglomeración de composiciones cerámicas molturadas en fase seca - Google Patents

Granulación por aglomeración de composiciones cerámicas molturadas en fase seca Download PDF

Info

Publication number
WO2012056077A1
WO2012056077A1 PCT/ES2011/070738 ES2011070738W WO2012056077A1 WO 2012056077 A1 WO2012056077 A1 WO 2012056077A1 ES 2011070738 W ES2011070738 W ES 2011070738W WO 2012056077 A1 WO2012056077 A1 WO 2012056077A1
Authority
WO
WIPO (PCT)
Prior art keywords
granulation
agglomeration
dry
water
ceramic
Prior art date
Application number
PCT/ES2011/070738
Other languages
English (en)
French (fr)
Inventor
Antonio Arnau Villanova
Original Assignee
Antonio Arnau Villanova
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Arnau Villanova filed Critical Antonio Arnau Villanova
Priority to EP11835673.2A priority Critical patent/EP2633903B1/en
Priority to ES11835673T priority patent/ES2871048T3/es
Priority to RU2013120987/05A priority patent/RU2566405C2/ru
Priority to MX2013004698A priority patent/MX356277B/es
Priority to BR112013010071-0A priority patent/BR112013010071B1/pt
Priority to US13/881,549 priority patent/US9387480B2/en
Priority to CN201180062794.9A priority patent/CN103269784B/zh
Priority to PL11835673T priority patent/PL2633903T3/pl
Publication of WO2012056077A1 publication Critical patent/WO2012056077A1/es

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/10Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic in stationary drums or troughs, provided with kneading or mixing appliances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3472Alkali metal alumino-silicates other than clay, e.g. spodumene, alkali feldspars such as albite or orthoclase, micas such as muscovite, zeolites such as natrolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/725Metal content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/726Sulfur content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/727Phosphorus or phosphorus compound content

Definitions

  • the present invention relates to the manufacture of fine ceramics such as coatings, stoneware, porcelain, sanitary ware and earthenware health, in which a composition of raw materials is used that is composed of clays and other minerals.
  • the invention relates to the granulation by agglomeration of compositions constituting the materials ceramic bonuses obtained via dry milling.
  • Agglomeration is a general term that defines the increase in grain size by mechanical forces, in other words, covers the processes of agglomeration and union of highly dispersed particles in larger aggregates.
  • agglomeration is the opposite technological to disintegrate or fragment.
  • pill, extrudates, granules, pellets, tablets, etc. which is a particular denomination that results from the method technology used to obtain particle agglomerates; a classification by the way that distinguishes between agglomeration of mini particles proper, pressure agglomeration, spray and drying, and conformation without pressure.
  • Cohesive forces are required for formation of stable aggregates of larger size from the particles Primary The nature of these forces are chemical and physical. These forces they can be contributed by the particles themselves or by adjuvants, such as binders or adhesives.
  • a primary point is the selection among raw materials available that should be part of the composition, which are mainly clays and feldspars, sands, carbonates and kaolins. Different clays predominate in the raw material, and the other minerals, such as feldspar, silicon sands, calcium carbonate, etc., according to compositions planned to produce. Representing clays the field of soft materials, and other hard materials.
  • raw materials are used, usually, as extracted from the mine, or after subjecting them to a minimum treatment, such as washing. Its natural origin demands, as rule, a prior homogenization that ensures the uniformity of their characteristics, which can be guaranteed by the mining company itself or by the producer of ceramic materials.
  • the mixing is performed of the different components of the ceramic paste, it is subsequently subjected to a grinding process that can generally be in the wet phase, or in the phase dry as is the object of the present invention. In the latter, optionally the mixing can be done during grinding, or even during granulation proper.
  • the composition has a very small particle size (less than 120 micrometers) and its behavior is excessively fluid, similar to a liquid; Such a fine powder makes its proper handling impossible. Subsequently, the fluidity necessary for filling press molds of any kind must also necessarily be inferior.
  • the composition final mix is very variable depending on the final ceramic product at manufacture.
  • the material resulting from the grinding has very different characteristics if that is done in dry phase or wet phase.
  • the procedure currently used in the Manufacturing of floor and wall tiles is that of the wet track.
  • the raw materials are milled in one phase liquid in the ball mill, which causes the suspension of materials finely suspended in water. Consequently, it becomes necessary to eliminate this water from the resulting suspension (called slip) until it reaches the moisture content necessary for further processing.
  • the most method Used in the manufacture of ceramic products for this drying is the spray drying.
  • the spray drying Prior to the atomization process, the mixing of the whole composition milled wet, within mills of balls, continuous or discontinuous, where they are ground and mixed together minerals that make up the composition. This composition is milled with a humidity percentage from 30% to 40%, that is, using excess water.
  • Be thus generates a composition with a density between 1.30 to 1.40 Kg / l that then it is screened to unload in large rafts and with the help of stirrers and additives keep the composition moving avoiding its sedimentation.
  • Each raft of these can contain more than 100,000 liters, for which is necessary to mix several millings.
  • the atomization process is a process by which the suspension is sprayed in the form of droplets, which come into contact with air hot, and as a product you get a solid with a moisture content low.
  • jets of the Composition in the form of a shower upstream, and countercurrent downwards the hot air is introduced at about 650oC.
  • the granules of the composition fall in solid form with a humidity of 5 or 6 %.
  • the atomizer is a stainless steel metal cone shaped device of large dimensions, according to the desired production generally of about 15 m of height by about 6 m in diameter. Its production is measured by liters of water evaporated and by solid product at its output in tons per hour.
  • the fuel for the generation of hot air it is usually natural gas by providing Hot fumes with less pollution.
  • the granules produced in the atomizers are uniform in terms of their spherical shape and a particle size average that oscillates within the appropriate values to feed the ceramic composition at the stage of manufacturing compressed products in the presses
  • WANG JIAZHU document CN101011843 refers to the combined use of various materials, including talc, clays, for artificial walls with imitation stone.
  • the mineral components are crumble, dry mix, dye is added, shape and calcine to high temperatures. Additionally they use the atomization process for conformation of the compositions.
  • HAIRONG LIN patent CN101234888 refers also to the use of clays for imitation of natural stone in tiles and tiles. They use 10-15% low temperature porcelain stone dust, 10-20% medium temperature porcelain stone powder, 10-15% sand sodium stone, 5-10% high-grade porcelain sand, 10-20% sodium porcelain sand, 5-18% clay after mill balls, condensation agent and pigment. The method has the following stages:
  • the GB1315553 patent is of interest claims, among others, to obtain a catalyst with a high content of clays mixed with amorphous and crystalline alumosilicates.
  • Granulation is primarily based on spray drying, and without going into details makes a brief mention of the granulate in a mixer conventional.
  • the atomizer uses 30% - 40% water on the mass to work, which entails an additional energy cost for evaporation of excess water. Additives are necessary to achieve a agglomeration with such mechanical resistance according to the physical efforts of particle handling during the successive stages of production of the finished ceramic product.
  • the atomizer also drags the air different binders, additives, deflocculants; plus
  • the response time to pass from the manufacture of a composition to that corresponding to another ceramic product is very high (a high inertia of the system); so in the atomizer or they are built more rafts and mills, or this response is very slow, days.
  • the road little used at present for the granulation is the agglomeration of the milled composition in the dry phase and granule formation by adding small amounts of just water to maintain the plastic and cohesion properties inherent in many clays, prior to compression in the molds to confer the product shape wanted.
  • the Starting material includes a particulate mineral such as nepheline, sienite and a binder, where many propose bentonite in amounts of only between 1-5% of the composition;
  • the feed composition for the granulation process after wet phase grinding consists of a content of illicit, kaolinitic and / or refractory clays type in an order of 60%.
  • Other minerals are of the flux type, different types of feldspar:
  • the mixture of the components of the composition for Each ceramic product in question can be made in several ways:
  • the components are mixed in each case depending on the type of raw material, the state in which it comes from deposit, and even the type of ceramic composition desired.
  • the stage of preparation of the materials consists of the Dry milling of the elements that will form the ceramic composition.
  • the elements of the composition can be ground separately, or the final composition with all its components already added. After performing the mixture of the selected components of the composition, this passes the milling process in dry phase.
  • the mills used are of the type existing in the state of the art such as hammer mills or pendulums During grinding, the particles of the materials are fragmented and the particle size is brought to less than 120 micrometers.
  • the composition in the form of fine powder passes to a mixing-granulating apparatus by agglomeration where an hour-amount -1 corresponding to the formula of the desired ceramic product is fed, and with an amount of water added determined for said specific composition, which corresponds only to saturation absorption.
  • a granulate at the exit of the powder entering the apparatus, which has the morphology and mechanical resistance of particles suitable for transport and subsequent manipulation in the filling of molds.
  • the continuous granulation apparatus is an apparatus cylindrical rotary horizontal arrangement, provided with bars with paddle-shaped limbs, usually contact form rectangular, which as the rotation of the device are moving to along its entire length the mass of the mixture of milled minerals with the water from a first side end to the second opposite side end.
  • the mixture of minerals and water are dosed by the upper part of said first lateral end, and the already granulated material it is extracted by the bottom of said second opposite side end.
  • These bars with vane-shaped ends are mounted on certain angles, approximately 90o, and help the granulation of the composition playing an important role in this one.
  • the device has experienced certain modifications for the granulation of this type of compositions fundamentally in the coating of its internal chassis and its parts internal with a harder and more wear resistant material, reinforcing everything which will be in contact with the composition to be granulated.
  • Coating inside the device and its internal tools is generally a Tungsten coating, powder applied by welding.
  • the process takes place without external heating and only takes place the logical variations of temperature as a result of the hydration of the clays and friction with the coating of the internal parts of the apparatus of granulation.
  • the granulation takes place at temperatures between 40-80 ° C.
  • the Moisture inlet of the composition to the granulation apparatus is of the order of 0.5 to 2.5%.
  • the entire product is micronized and with more moisture He would lose his binding property and he would cake.
  • the granulate has the output a humidity of the order of 10 to 14% and its size varies between the fine (under 0.100) and 1.0 mm granules. It works in this range, introducing the least possible amount of water to granulate.
  • the speed of rotation of the device is in the interval of 500 - 3000 rpm.
  • the speed is dependent on the mass feeding / hour of material to be processed and consequently to size of the device.
  • the speed should be adjusted to the composition and quantity to process, it will be larger if the device is smaller.
  • the dry solids granulation technique very fine heterogeneous, with average particle sizes below 200 micrometers, it is not easy without the use of additives, deflocculants, etc.
  • organic type binders such as resins is usual, starches or derivatives of carboxymethyl cellulose, or binders of the type inorganic such as silica gel, silicates, carbonates, and others.
  • a process has been developed innovative for horizontal mixing type devices equipped with bars with paddle-shaped limbs, in which the influence of the different factors that can lead to effective granulation, that is, to the formation of granules that after drying have the properties sufficient mechanics for subsequent operations to obtain ceramic products
  • the variables studied are the content of water to achieve granulation, the desired types of compositions of minerals, residence times in the rotary cylindrical apparatus. So, it has determined the optimal addition of water for each particular type of composition desired and, not least, the optimum speed of rotation, and of feeding of the mixture (equivalent to their residence times), also dependent on the type of ceramic composition.
  • it is possible to achieve without use of binders, additives, deflocculants, etc., granules of the size adequate of the intended compositions, with sufficient mechanical strength for subsequent manipulations and with the lowest moisture content before of the drying operation.
  • the clays are chemically hydrated alumina silicates, whose formula is: Al 2 O 3 ⁇ 2 SiO 2 ⁇ H 2 O.
  • the clays have structures similar to micas and form flat hexagonal sheets.
  • Clay minerals are characterized by two-dimensional corner sheets sharing tetrahedra of SiO 4 and AlO 4 . Tetrahedral sheets are always attached to octahedral sheets formed by small cations, such as aluminum or magnesium, coordinated by six oxygen atoms.
  • the non-shared vertex of the tetrahedral sheet is also part of one side of the octahedral sheet but an additional oxygen atom is located above in the tetrahedral sheet at the center of the sixth tetrahedron. That oxygen atom binds to the hydrogen atom forming an OH group in the clayey structure.
  • the layer will have or not residual electrical charge, or negative net charge. If the layers are loaded, that load is balanced by the cations located between the layers, such as Na + or K + .
  • Clays have the ability to strongly absorb water molecules over specific sites of positive or negative charge (crystallization water) and an additional water corresponding to water molecules that are placed inside the pores existing in their granules (absorbed water physically). Clays are characterized by acquiring plasticity when mixed with an optimal amount of water. There are even expansive clays that are likely to produce large changes in volume, directly related to changes in the content of water absorbed within their layers.
  • this arrangement of sheets or clays of clays capable of absorbing water molecules and entering into coordination with the hydrogens and hydroxyls of the water molecules, together with the interaction between sheets of different microgranes, must explain the binding capacity of many clays
  • the present invention makes use of this physical-chemical property of the clays to achieve their agglomeration with the sole addition of a certain amount of water corresponding to the composition to be formulated according to the type of ceramic product desired.
  • Other issues to be defined certainly lie in the speed of rotation and translation (the residence time), appropriate to the type of decomposition to be formulated in order to achieve the desired granule distribution.
  • the granulated product is passed through a sieve where it is achieved Unify the size of the granules, usually for most of the ceramic products between 0.10 - 1.00 mm.
  • the percentage of material granulate obtained at the exit is high, between 90-95%, the amount of dust ⁇ 0,100mm is between 6.0-8.0% and the amount of material recirculated for its Recovery is relatively low, at most 10%.
  • the granulated material can then be used to storage for later shipment to compression.
  • the material can be sent directly to compression according to the products desired ceramics such as rustic pavement, ceramic cladding, Gresified pavement or porcelain stoneware.
  • the quality of the granulate is good, its Mechanical resistance is adequate and effectively supports the operation and subsequent handling.
  • the mixing of the components of the composition can be done at the same time as its granulation after Dry milling.
  • the plasticity of the milled clay composition by wet way it is lost according to type of clays when diluted excessively in water and necessarily granular at high temperatures (approx. 650oC), while that by the granulation process of the present invention the plasticity is keeps adding only a small amount of water and not being affected by The drying temperature of about 60 ° C. Consequently, in the pressing of granules produced according to the present invention less energy is spent, since apply a force approx. 10% lower
  • the atomizer evaporates the water at temperatures of 650 oC next to the additives and fine particles of the minerals, partially decomposed or transformed.
  • the response time of the granulation process of the invention necessary to move from the manufacture of a particular ceramic composition to a different one is very low (approx. One hour ).
  • large investments in rafts and mills are necessary for the change to new compositions, and the change is costly in time and cleanings.
  • the atomizers that produce compositions of red tones do not manufacture atomized white tones generally.
  • the present granulation process of the invention after milling in the dry phase, it constitutes a new technology of Zero pollution, because water pollution is zero and its water consumption It is much inferior to granulation by the atomizing process. Like final production the investment in an installation is much cheaper the dry phase route than the aqueous route.
  • Figure 1 shows a process flow chart of granulation by agglomeration after the dry milling of the Invention
  • Figure 2 presents a schematic side view of a granulator mixer used in the agglomeration granulation process after dry milling of the invention.
  • Figure 3 presents a schematic front view of the granulator mixer and the bars with limbs in the form of vanes boosters of the granulator mixer of Figure 2.
  • Figure 4 shows a granulometric distribution of an example of the product according to the invention expressed in% mass vs. micrometers
  • Figure 5 (5.1 and 5.2) presents two photomicrographs of the shape of the granules of Figure 4.
  • Figure 6 (6.1 and 6.2) presents two photomicrographs of the shape of the granules of Figure 4.
  • a mineral with 62% of illicit clays is mixed with another mineral with a content of 30% silica sands and the rest of potassium feldspars.
  • the components were mixed before grinding
  • the composition of the ceramic mixture at the end of the milling It had a particle size smaller than 120 micrometers.
  • Table 1 presents the chemical analysis of the resulting composition.
  • a high content of Al 2 O 3 is observed in the composition which should indirectly indicate a higher content of clays and greater ease of granulation.
  • the higher content of K 2 O is observed with respect to the other cations, which should indirectly indicate a higher content of feldspars (we do not take into account Fe 2 O 3 whose heavy cation itself is probably in the form of impurities of iron oxides).
  • Figure 2 shows a schematic side view of the agglomeration mixing-granulation apparatus 1 with horizontal arrangement, and provided with bars 2.
  • Said bars 2 consist of limbs in the form of vanes 2a , are mounted by cylindrical welding on axis 2b , and arranged at an angle of 90o. They have a contact form with the mixture near the rectangular.
  • the inlet 3 to said apparatus 1 of the powders of the ceramic composition and of the water is made by the tubes 3a located inside the lid (see Figure 2) of the body of said apparatus 1 at a first lateral end of the apparatus 1; the water inlet is through a tube with known flow.
  • the tubes 3a located inside the lid (see Figure 2) of the body of said apparatus 1 at a first lateral end of the apparatus 1; the water inlet is through a tube with known flow.
  • they can also serve the water feeds by sprinkling inlet and other as the water inlet through the shaft leaving the water through the tips of the blades to make contact with the solid composition, these two less common.
  • the water comes into contact with the solid composition inside the granular machine, the two elements entering separately.
  • the finer and more uniform the sprinkling of water the more homogeneous the distribution of particle sizes will be, that is, the closer the particle diameters will be to the average particle diameter.
  • the ceramic composition is driven with the help of the bars 2 and their ends in the form of vanes 2a , which as the mass of the apparatus 1 moves along the length of said apparatus 1 the mass of the milled ore and the water dosed from the first end of its inlets to a second opposite side end of the apparatus 1.
  • the exit through said second opposite side end of the granulated material is effected by gravity through the outlet nozzle 4 , located at the bottom of the apparatus .
  • the powder feeding form of any type of ceramic composition is carried out by means of a tape, worm screw or any other solids feeding system towards the tubes 3a located inside the lid (see Figure 2), and of feeding of the water that is introduced in the tubes and allow to know with exactitude the quantities of tons / hour that are introduced of both materials,
  • a rotation speed of 1500 rpm was used and 20 ton were granulated / hour of the ceramic composition.
  • the inlet moisture of the composition to said granulation apparatus 1 was 0.6%.
  • an amount of water equivalent to 9% moisture was added continuously in the fed dough, determined as the optimum amount to add to said ceramic coating composition during granulation.
  • Said granulation was maintained at temperatures between 20-50 ° C.
  • the granulate at the outlet showed a fluctuating humidity between 10.5-11.0% and the temperature at the outlet (5) was of the order of 45-50 ° C.
  • the representative sample of the ceramic composition granulated presented the distribution of particle sizes shown at continued in Table 1. It should be noted that even for preparations of smaller volume, made preliminary in a smaller granulator with the same rotation speed of 1500 r.p.m. and a capacity of only 400 kg / h-1, the granulometry of the product was very similar, which speaks of the influence of rotation speed and addition of the optimum amount of water on the final granulometry of the product.
  • Figure 4 shows differentially this particle size distribution, that is, is reflected as the quantity relative of the fraction, in percent by weight, that remains retained in the sieves of each mesh opening (in mm).
  • the analysis of this dependence It has a two-dimensional character because there are two maximum diameters of grain. One is in the environment of 0.6 mm and the other in the region of 0.4-0.1 mm.
  • This two-dimensional distribution of grain sizes can speak to us of a phenomenon of primary formation of coarse grains when water is added. Probably, then a secondary formation of the grains occurs small, which should be formed afterwards at the cost of fragmentation of the coarse ones during the transfer of the mass, and nucleation on them of grains secondary from dust not bound at the beginning.
  • FIG. 5 An illustrative information of the morphology of prepared granules are provided by Figures 5 (5.1 and 5.2) and 6 (6.1 and 6.2). that present microphotographs obtained in a microscope with an x25 magnification times. Granules of different shapes and sizes are appreciated, where the shape is roughly approximates a spheroid shape and the size differences are consistent with the results of major, minor and fine grains obtained by granulometry using sieves.
  • Pressing humidity of the granulated product 6%. Pressure to the sample: 280 kg / cm 2 (determined by hydraulic press). Mechanical dry strength: 40 Kg / cm 2 . Mechanical resistance of the pieces after cooking: 620 Kg / cm 2 .
  • the mechanical resistance of the particles granules of the present embodiment have proved to be very satisfactory and During handling in the transport, handling and filling of molds behaved identically to that of the commercial products obtained by the spray drying process.
  • the practical importance of this Invention is that the granulate does not alter its morphology in terms of size or grain shape during the whole process of packing, bulk transport, normal handling and mold filling.
  • the product of the present granulation in almost its entirety has diameters of grains that are between 1.0 and 0.1 mm, which correspond adequately with the industrial requirements imposed for the handling of the ceramic composition because the amount of powders (less than 0.1 mm) is less that 7%, while the requirements currently accepted for handling of ceramic granules allow a fine content up to 14%.
  • the granulate is not differentiated by its characteristics, to those of the granulated product currently marketed and produced by the atomization of the wet milled composition, being thus obtained even better Than some of such products.
  • the response time for the Invention for change of the manufacture of a certain type of composition to another type of ceramic composition is very low, one hour, while the atomized It is very high, of days.
  • the investment in the granulation installation according to the process of the Invention for milling obtained by dry route is much cheaper than by granulation by atomization of the millings obtained by aqueous route.
  • the present process of granulation of the invention it constitutes a new zero pollution environmental technology, because the water and gas pollution is null and its water consumption is very lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Food Science & Technology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glanulating (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

Se propone una alternativa al proceso de molturación en fase líquida y secado por atomización. El proceso consta de una molturación en fase seca y preparación de composiciones cerámicas arcillosas sin aglutinantes, aditivos, o defloculantes a partir de minerales arcillosos (aprox. 60%) en mezcla con materiales inorgánicos, tamaños de grano inferior a 120 micrómetros, en un aparato cilíndrico rotatorio horizontal con paletas deflectoras, la entrada de dichos minerales, materiales pulverulentos y agua se realiza en un extremo de dicho aparato; y por la rotación de dicho aparato se forman gránulos que se trasladan por dichas paletas deflectoras. La salida del material granulado se encuentra en el extremo opuesto de dicho aparato. Ventajas : un ahorro de energía del 80 %; ahorro en el consumo de agua en la granulación de 75 - 80 % y un 10 - 20 % de ahorro adicional en la presión de prensado de los gránulos. El tiempo necesario para el cambio de una composición cerámica a otra es de una hora, y por el proceso actual de atomizado es de días. El proceso de granulación constituye una tecnología medioambiental nueva de contaminación atmosférica y acuífera nula, y su consumo de agua es muy inferior.

Description

GRANULACIÓN POR AGLOMERACIÓN DE COMPOSICIONES CERÁMICAS MOLTURADAS EN FASE SECA ANTECEDENTES DE LA INVENCIÓN
La presente invención se refiere a la fabricación de cerámicas finas como los revestimientos, gres, porcelanas, sanitarias y loza sanitaria, en la que se emplea una composición de materias primas que está compuesta de arcillas y otros minerales. En particular la invención se refiere a la granulación por aglomeración de composiciones que constituyen las materias primas cerámicas obtenidas vía molturación en fase seca.
OBJETO DE LA INVENCIÓN
Proponer un proceso de mezcla - granulación de materiales molturados en fase seca en sustitución del proceso actualmente empleado de molturación en fase líquida y posterior secado por atomización, en donde el proceso en fase seca evita los inconvenientes tecnológicos originados por la vía húmeda.
ESTADO DE LA TÉCNICA
La aglomeración es un término general que define el aumento del tamaño de los granos por fuerzas mecánicas, en otras palabras, abarca los procesos de aglomeración y unión de partículas altamente dispersas en agregados de mayor tamaño. En realidad el término aglomeración es el opuesto tecnológico a disgregar o fragmentar. En tecnología como agregados se pueden distinguir, entre otros, las pastillas, extrudados, granulados, pellets, tabletas, etc., la cual es una denominación particular que resulta del método tecnológico empleado en la obtención de los aglomerados de las partículas; una clasificación por el modo que distingue entre aglomeración de mini partículas propiamente dichas, aglomeración por presión, por atomizado y secado, y conformación sin uso de presión. Se requieren fuerzas cohesivas para la formación de unos agregados estables de mayor tamaño a partir de las partículas primarias. La naturaleza de estas fuerzas son químicas y físicas. Estas fuerzas pueden ser aportadas por las partículas por sí mismas o por coadyuvantes, como los aglutinantes o adhesivos.
En el proceso de producción se pueden señalar dos vías alternativas de la granulación de la composición cerámica, que son consecuencia de la molturación de partida escogida:
a) la vía húmeda actualmente empleada con diferentes inconvenientes tecnológicos, y
b) la vía seca de uso poco extendido actualmente.
Para un proceso de producción de materiales cerámicos un punto primordial lo constituye la selección entre las materias primas disponibles que deben formar parte de la composición, las que son fundamentalmente las arcillas y los feldespatos, arenas, carbonatos y caolines. En la materia prima predominan diferentes arcillas, y los otros minerales, como feldespatos, arenas siliciosas, carbonato cálcico, etc., según las composiciones previstas a producir. Representando las arcillas el campo de los materiales blandos, y los demás los materiales duros.
Por razones económicas las materias primas se utilizan, por lo general, tal y como se extraen de la mina, o después de someterlas a un mínimo tratamiento, como es el lavado. Su procedencia natural demanda, como regla, una homogeneización previa que asegure la uniformización de sus características, la cual se puede garantizar por la propia empresa minera o por el productor de los materiales cerámicos.
Frecuentemente, como primera etapa se realiza la mezcla de los distintos componentes de la pasta cerámica, posteriormente se somete a un proceso de molturación que generalmente puede ser en fase húmeda, o en fase seca como es el objeto de la presente invención. En esta última, opcionalmente la mezcla se puede realizar durante la molturación, o incluso durante la granulación propiamente dicha.
En la molturación por separado es necesario posteriormente mezclar los diferentes componentes para configurar la fórmula cerámica dada. La composición presenta un tamaño de partículas muy pequeño (menor de 120 micrómetros) y su comportamiento es excesivamente fluido, semejante a un liquido; un polvo tan fino hace imposible su adecuado manejo. Posteriormente, la fluidez necesaria para el llenado de los moldes para prensas de cualquier tipo también debe ser necesariamente inferior. La composición final de la mezcla es muy variable dependiendo del producto cerámico final a fabricar.
Es necesario subrayar que el material resultante de la molturación presenta características bien distintas si aquella se efectúa en fase seca o en fase húmeda. En el primer caso se produce una fragmentación, manteniéndose tanto los agregados como los aglomerados de partículas, siendo el tamaño de partículas resultante superior (algunas mayores de 300 micrómetros) al obtenido en fase húmeda (todas menores de 200 micrómetros)
El procedimiento actualmente empleado en la fabricación de pavimentos y revestimientos cerámicos es el de la vía húmeda . En el proceso en fase húmeda, las materias primas se molturan en una fase líquida en el molino de bolas, lo que provoca la suspensión de materiales finamente suspendidos en agua. En consecuencia, se hace necesario eliminar esta agua de la suspensión resultante (denominada barbotina) hasta alcanzar el contenido de humedad necesario para el proceso ulterior . El método más utilizado en la fabricación de productos cerámicos para este secado es el secado por atomización. Previo al proceso de atomización, se ha realizado el mezclado de toda la composición molturada vía húmeda, dentro de molinos de bolas, continuos o discontinuos, donde se molturan y se mezclan a la vez los minerales que conforman la composición. Esta composición se moltura con un porcentaje de humedad del 30 % al 40 %, es decir, empleando agua en exceso. Se genera así una composición con una densidad entre 1,30 a 1,40 Kg/l que seguidamente se tamiza para descargar en grandes balsas y con ayuda de agitadores y aditivos se mantiene la composición en movimiento evitando su sedimentación. Cada balsa de estas puede contener más de 100.000 litros, para la que resulta necesario mezclar varias molturaciones.
El proceso de atomización es un proceso por el cual la suspensión se pulveriza en forma de gotitas, que entran en contacto con aire caliente, y como producto se obtiene un sólido con un contenido de humedad bajo. Para la eliminación del agua se introducen a presión chorros de la composición en forma de una ducha de salida hacia arriba, y a contracorriente hacia abajo se introduce el aire caliente a unos 650ºC. Al fondo del atomizador caen los gránulos de la composición en forma sólida con una humedad del 5 ó 6 %. El atomizador es un aparato en forma de cono metálico de acero inoxidable de grandes dimensiones, según la producción deseada generalmente de unos 15 m de altura por unos 6 m de diámetro. Su producción se mide por litros de agua evaporada y por producto sólido a su salida en toneladas hora. El combustible para la generación de aire caliente generalmente es gas natural al proporcionar humos calientes de menor contaminación. Los gránulos producidos en el atomizador son uniformes en cuanto a su forma esferoidal y una granulometría promedio que oscila dentro de los valores adecuados para alimentar la composición cerámica a la etapa de fabricación de productos comprimidos en las prensas.
Entre los numerosos documentos que mencionan el uso de la atomización para la granulación a presión normal se pueden mencionar:
El documento CN101011843 de WANG JIAZHU se refiere al empleo combinado de diversos materiales, que incluyen talco, arcillas, para paredes artificiales con imitación a piedra. Los componentes minerales se desmenuzan, mezclan en seco, se añade el colorante , conforman y calcinan a altas temperaturas. Adicionalmente emplean el proceso de atomización para la conformación de las composiciones.
La patente CN101234888 de HAIRONG LIN se refiere igualmente al empleo de arcillas para la imitación a piedra natural en azulejos y baldosas. Emplean 10-15% de polvo de piedra de porcelana de baja temperatura, 10-20% de polvo de piedra de porcelana de temperatura media, 10-15% de arena de piedra sódica, 5-10% de arena de porcelana de alto contenido de aluminio, 10-20% de arena de porcelana sódica, 5-18% de arcilla después del molino de bolas, agente de condensación y pigmento. El método tiene las siguientes etapas:
pesado a proporciones, paso por molino de bolas, coloración, granulación y secado por atomización.
Tiene algún interés la patente GB1315553 que reivindica, entre otros, la obtención de un catalizador con contenido alto de arcillas en mezcla con alumosilicatos amorfos y cristalinos. Aunque el método de granulación está fundamentalmente basado en el secado por atomizado, y sin entrar en detalles hace una breve mención al granulado en un mezclador convencional.
Sin embargo, el proceso de aglomeración por atomizador tiene conocidas desventajas:
El atomizador emplea un 30 % - 40 % de agua sobre la masa a trabajar, lo cual conlleva un coste energético adicional para la evaporación del agua en exceso. Son necesarios aditivos para lograr una aglomeración con una resistencia mecánica tal acorde a los esfuerzos físicos de manipulación de las partículas durante las sucesivas etapas de la producción del producto cerámico acabado.
La afectación al medio ambiente por estas aguas contaminadas es significativa pues ocurren:
a) la contaminación de los acuíferos;
b) el atomizador, también arrastra con el aire los diferentes aglutinantes, aditivos, defloculantes; y además
c) la contaminación del aire por las partículas finas arrastradas de minerales, incluso de sus transformados pues se alcanzan temperaturas elevadas del orden de 650 ºC suficientes para la transformación de fases cristalinas.
El tiempo de respuesta para pasar de la fabricación de una composición a la correspondiente a otro producto cerámico es muy alto (una inercia alta del sistema); por lo cual en el atomizador o bien se construyen más balsas y molinos, o esta respuesta es muy lenta, días.
La inversión en la instalación de los aparatos es significativamente alta.
La importante propiedad de plasticidad que contiene la composición se pierde mucho en el atomizador pues se diluye en una cantidad excesiva de agua, así al momento del prensado del producto cerámico se necesita una mayor fuerza que en el caso de las composiciones obtenidas por la vía seca.
La vía poco utilizada en la actualidad para la granulación es la aglomeración de la composición molturada en fase seca y formación de los gránulos por adición de pequeñas cantidades de agua justa para mantener las propiedades plásticas y de cohesión inherentes a muchas arcillas, previa a la compresión en los moldes para conferir la forma del producto deseado.
Revisten especial interés por su enfoque a la producción de materiales cerámicos, aunque con una composición que no basada en arcillas, las patentes de Gibb; James L. US 4,944,905 y 4,680,230, que se refiere a un método de obtención de gránulos de cerámica para agente de sostén con una región rica en aluminio cerca de su superficie, con los siguientes pasos:
a) mezcla y peletizado con ayuda de agua, en donde el material de partida incluye un mineral particulado como nefelina, sienita y un aglutinante, donde entre muchos proponen la bentonita en cantidades de solamente entre 1-5% de la composición;
b) secado;
c) mezclado con alúmina;
d) finalmente calcinación.
Señalan el uso diferentes tipos de mezcladores como los convencionales de la industria minera, los aglomeradores de esferas tipo de disco; entre otros, como los más eficientes los aparatos descritos en la patente US 3,690,622 que comprenden básicamente un recipiente cilíndrico rotatorio, cuyo eje central está en un ángulo con la horizontal, provisto de una o más placas y al menos un impulsor de impacto, localizado bajo el ápice del trayecto de rotación del recipiente rotatorio. No obstante, las características de los materiales preparados se encuentran lejos de la composición utilizada en la industria de la cerámica fina.
Así, se hace necesario un proceso que elimine las desventajas del proceso de atomización y esté orientado a la granulación para su posterior prensado en las etapas de obtención de diferentes productos de cerámica fina, en el que:
- Se utilice la cantidad estrictamente necesaria de agua para la aglomeración de las partículas e inferior sensiblemente a la empleada en el proceso de atomización.
- Se realice la aglomeración sin empleo de aglutinantes, aditivos, defloculantes, etc.
- Se eviten las pérdidas por la volatilización de finos al granular los polvos.
- Que sea un proceso de nueva tecnología de nula contaminación acuífera y atmosférica, con una reducción muy considerable de consumo de energía y de agua.
DESCRIPCIÓN DE LA INVENCIÓN
Se propone una alternativa al proceso de molturación en fase líquida y posterior secado por atomización. El proceso de granulación por aglomeración luego de la molturación en fase seca de la presente Invención consta de las siguientes etapas:
Acopio de materias primas.
Mezcla de materiales para la obtención de la composición cerámica.
Molturación en fase seca.
Granulación - obtención de la morfología adecuada de partículas.
Ajuste de humedad de los granos por un secado a baja temperatura
Clasificación de gránulos por tamizado.
Almacenaje o procesado ulterior
Acopio de materias primas.
Generalmente la composición de alimentación para el proceso de granulación luego de la molturación en fase húmeda consta de un contenido de arcillas tipo illiticas, caoliniticas y/o arcillas refractarias en un orden del 60 %. Otros minerales son del tipo fundentes, distintos tipos de feldespatos:
feldespatos sódicos, feldespatos potásicos, feldespatos de litio, y los carbonatos , carbonato de calcio, carbonato de magnesio. Adicionalmente están presentes las arenas de sílice, pegmatita, magnetita, y otros en un contenido total no mayor de 40%. Estos elementos provienen de las minas en la mayoría de los casos, o son el producto de un tratamiento previo como el lavado, por ejemplo, en el caso de las arenas.
Mezcla de materiales para la obtención de la composición cerámica.
La mezcla de los componentes de la composición para cada producto cerámico en cuestión se puede realizar de varias maneras:
Mezcla de los componentes antes de la molturación.
Mezcla de los componentes durante la molturación
Mezcla de los componentes durante la granulación.
La mezcla de los componentes se realiza en cada caso dependiendo del tipo de materia prima, el estado en que proviene del yacimiento, e incluso del tipo de composición cerámica deseada.
Molturación en fase seca.
La etapa de preparación de los materiales consta de la molturación en fase seca de los elementos que formarán la composición cerámica. Para esto, los elementos de la composición se pueden molturar por separado, o la composición final con todos sus componentes ya agregados. Luego de realizar la mezcla de los componentes seleccionados de la composición, ésta pasa el proceso de molturación en fase seca. Los molinos empleados son del tipo existentes en el estado de la técnica como los molinos de martillos o de péndulos. Durante la molturación se fragmentan las partículas de los materiales y se lleva el tamaño de partículas a menor de 120 micrómetros.
En caso de molturar por separado posteriormente se mezclan configurando la fórmula. Dicha composición finalmente tendrá un tamaño de partículas muy fino, igualmente menor de 120 micrómetros. El comportamiento de dichos polvos es semejante al de los fluidos, alguna parte de la masa está constituido por un polvo tan fino que es capaz al manipularlo de parcialmente flotar y expandirse en el aire, lo que aumenta la contaminación de los locales. En consecuencia, por esta elevada fluidez la parte fundamental de la masa hace impracticable su adecuada manipulación y llenado de moldes para prensas de cualquier tipo.
Granulación por aglomeración de las partículas.
Ha sido un resultado sorprendente la posibilidad de aglomerar las partículas molturadas en fase seca, obteniendo la granulometría adecuada para el procesado posterior de la composición cerámica gracias a un adecuado ajuste de la humedad mínima necesaria, y a la configuración del aparato empleado
Luego de molturada en fase seca, la composición en forma de polvo fino pasa a un aparato de mezclado-granulado por aglomeración a donde se alimenta una cantidad-hora -1 correspondiente a la fórmula del producto cerámico deseado, y con una cantidad de agua añadida determinada para dicha composición específica, la que corresponde sólo a la absorción por saturación. Así, se consigue formar del polvo que entra al aparato un granulado a la salida, el cual tiene la morfología y resistencia mecánica de partículas adecuada para su transporte y manipulación posterior en el llenado de moldes.
El aparato de granulación continua es un aparato cilíndrico rotatorio de disposición horizontal, provisto de barras con extremidades en forma de paletas, de forma de contacto generalmente rectangular, las que a medida de la rotación del aparato van trasladando a lo largo de toda su longitud la masa de la mezcla de minerales molturados con el agua desde un primer extremo lateral hasta el segundo extremo lateral opuesto. A dicho aparato cilíndrico la mezcla de minerales y el agua son dosificadas por la parte superior de dicho primer extremo lateral, y el material ya granulado es extraído por la parte inferior de dicho segundo extremo lateral opuesto. Dichas barras con extremidades en forma de paletas están montadas en unos ángulos determinados, aproximadamente 90º, y ayudan a la granulación de la composición jugando un papel importante en ésta.
El aparato ha experimentado determinadas modificaciones para la granulación de este tipo de composiciones fundamentalmente en el recubrimiento de su chasis interno y de sus partes internas con un material más duro y más resistente al desgaste, reforzando todo lo que estará en contacto con la composición a granular. El recubrimiento interior del aparato y el de sus herramientas internas es generalmente un recubrimiento de tungsteno, aplicado en polvo por soldadura.
El material entra al aparato a la temperatura ambiente. El proceso tiene lugar sin calentamiento externo y sólo tienen lugar las lógicas variaciones de temperatura a consecuencia de la hidratación de las arcillas y la fricción con el recubrimiento de las partes internas del aparato de granulación. La granulación tiene lugar a temperaturas entre 40-80ºC. La humedad de entrada de la composición al aparato de granulación es del orden del 0,5 al 2,5 %. La totalidad del producto está micronizado y con más humedad perdería su propiedad aglutinante y se apelmazaría. El granulado tiene a la salida una humedad del orden del 10 al 14 % y su tamaño varía entre los finos (bajo de 0,100) y gránulos de 1,0 mm. Se trabaja en este rango, introduciendo la menor cantidad posible de agua para granular. La temperatura en la salida del orden de 40-50ºC. Hay que tener en cuenta que siguiendo el proceso, la humedad del granulado se debe bajar del 12-14 % al 6 % de agua y con un gasto de energía mínimo.
La velocidad de rotación del aparato se encuentra en el intervalo de 500 - 3000 rpm. La velocidad está en dependencia de la alimentación en masa/hora de material a procesar y consecuentemente al tamaño del aparato. La velocidad deberá ajustarse a la composición y la cantidad a procesar, será mayor si el aparato es más pequeño.
La técnica de granulación en fase seca de sólidos heterogéneos muy finos, con tamaños promedio de partículas inferiores a 200 micrómetros, no resulta sencilla sin el empleo de aditivos, defloculantes, etc. Es usual el empleo de aglutinantes del tipo orgánico tales como resinas, almidones o derivados de la carboxilmetilcelulosa, o aglutinantes del tipo inorgánico tales como gel de sílice, silicatos, carbonatos, y otros.
En la presente invención se ha desarrollado un proceso innovador para aparatos del tipo de mezclado horizontal provistos de barras con extremidades en forma de paletas, en los que se ha estudiado la influencia de los distintos factores que pueden conducir a una granulación eficaz, es decir, a la formación de gránulos que después de su secado presenten las propiedades mecánicas suficientes para las operaciones subsiguientes de obtención de productos cerámicos. Entre las variables estudiadas se encuentran el contenido de agua para lograr la granulación, los tipos de composiciones deseadas de minerales, tiempos de residencia en el aparato cilíndrico rotatorio. Así, se ha determinado la adición óptima de agua para cada tipo determinado de composición deseada y, lo que es no menos importante, la velocidad óptima de rotación, y de alimentación de la mezcla (equivalente a sus tiempos de residencia), igualmente dependientes del tipo de composición cerámica. Así, es posible lograr sin empleo de aglutinantes, aditivos, defloculantes, etc., gránulos del tamaño adecuado de las composiciones previstas, con suficiente resistencia mecánica para las manipulaciones posteriores y con el menor contenido de humedad antes de la operación de secado.
La explicación a este efecto novedoso de lograr la aglomeración de las composiciones tan finas de mezcla de minerales con alto contenido de arcillas, sin necesidad de aglutinantes, aditivos, defloculantes, etc., debe buscarse en las propiedades cristaloquímicas de éstas. Las arcillas químicamente son silicatos hidratados de alúmina, cuya fórmula es: Al2O3 · 2SiO2 · H2O. Las arcillas tienen estructuras similares a las micas y forman láminas planas hexagonales. Los minerales arcillosos se caracterizan por hojas bidimensionales de esquinas compartiendo tetraedros de SiO4 y AlO4. Las hojas tetraédricas están siempre unidas a hojas octaédricas formadas por cationes pequeños, como aluminio o magnesio, coordinados por seis átomos de oxígeno. El vértice no compartido de la hoja tetraédrica también forma parte de un lado de la hoja octaédrica pero se localiza un átomo adicional de oxígeno arriba en la hoja tetraédrica al centro del sexto tetraedro. Ese átomo de oxígeno se une al átomo de hidrógeno formando un grupo OH en la estructura arcillosa. Dependiendo de la composición de las hojas tetra y octaédricas, la capa tendrá o no carga eléctrica residual, o carga neta negativa. Si las capas están cargadas, esa carga se balancea por los cationes situados entre las capas, tales como Na+ ó K+. Estas estructuras tienen la capacidad de absorber fuertemente las moléculas de agua sobre los sitios puntuales de carga positiva o negativa (agua de cristalización) y un agua adicional que corresponde a moléculas de agua que se colocan dentro de los poros existentes en sus gránulos (agua absorbida físicamente). Las arcillas se caracterizan por adquirir plasticidad al ser mezclada con una cantidad óptima de agua. Incluso hay arcillas expansivas que son susceptibles de producir grandes cambios de volumen, en relación directa con los cambios en el contenido de agua absorbida dentro de sus capas.
Así, esta disposición de hojas o láminas de arcillas, susceptibles de absorber moléculas de agua y entrar en coordinación con los hidrógenos e hidroxilos de las moléculas de agua, unida a la interacción entre láminas de diferentes microgranos, debe explicar la capacidad aglutinante que tienen muchas arcillas. La presente invención hace uso de esta propiedad físico-química de las arcillas para lograr su aglomeración con la sola adicción de una cantidad determinada de agua correspondiente a la composición a formular según el tipo de producto cerámico deseado. Otras cuestiones a definir residen ciertamente en la velocidad de rotación y de traslación (el tiempo de residencia), adecuadas al tipo decomposición a formular a fin de lograr la distribución de gránulos deseada.
Podemos señalar que en el proceso de la presente invención hay cuatro etapas básicas en la formación de los gránulos:
Dosificación de los polvos de la composición, o eventualmente de sus componentes, junto a la dosificación del agua necesaria en forma de gotitas, ambas dosificaciones de forma continua a la entrada del aparato.
Mezcla de los polvos y de las gotitas del agua a medida de la traslación horizontal durante la cual ocurre la nucleación de diminutos gránulos esferoidales de material que se adhieren paulatinamente.
Crecimiento de los gránulos esferoidales al tener lugar la aglomeración del mineral sobre los diminutos granos formados
Aproximación a la forma esférica a medida que van aproximándose a la salida del aparato. Esta etapa en cierta forma es análoga al de un recipiente rotatorio de granulación por aglomeración.
Ajuste de humedad y secado
A continuación se procede a un secado en línea de los granulados con una humedad de salida del 10 al 14 % sobre tapete continuo con aplicación de una corriente de aire caliente con una temperatura entre 60 - 80 ºC, para eliminar la humedad en exceso hasta finalmente un 6% de humedad. A continuación, el producto granulado se pasa por un tamiz donde se consigue unificar la medida de los gránulos, generalmente para la mayor parte de los productos cerámicos entre las 0,10 - 1,00 milímetros. El porcentaje de material granulado obtenido a la salida es alto, entre 90-95 %, la cantidad de polvo <0,100mm está entre 6,0-8,0% y la cantidad de material recirculado para su recuperación es relativamente bajo, como mucho un 10 %.
Etapas de Almacenaje o Compresión directa.
A continuación el material granulado puede destinarse a su almacenamiento para posterior envío a la compresión. En forma alternativa el material puede ser enviado directamente a la compresión según los productos cerámicos deseados tales como pavimento rústico, revestimiento cerámico, pavimento gresificado o gres porcelánico. La calidad del granulado es buena, su resistencia mecánica es adecuada y soporta eficazmente la operación y manipulación posteriores.
De esta forma, las ventajas del proceso de granulación de la presente invención en comparación con el de la atomización empleado actualmente se pueden resumir como:
En la presente invención la mezcla de los componentes de la composición se puede realizar al mismo tiempo que su granulación luego de la molturación en fase seca.
La plasticidad de la composición arcillosa molturada por vía húmeda se pierde según tipo de arcillas al diluirla excesivamente en agua y obligatoriamente granular a altas temperaturas (aprox. 650ºC), mientras que por el proceso de granulación de la presente invención la plasticidad se mantiene al adicionar sólo una pequeña cantidad de agua y no ser afectada por la temperatura de secado de unos 60 ºC. En consecuencia, en el prensado de los gránulos producidos según la presente Invención se gasta menos energía, pues se aplica una fuerza aprox. 10% menor.
Según la presente Invención se obtiene una reducción del consumo de agua en un 75 - 80 %, ya que en la atomización se emplea un 30-40 % sobre cantidad de masa sólida, mientras que en la presente invención se emplea sólo un 11 - 13 % de agua sobre la misma masa seca a granular (la humedad final de los gránulos en ambos sistemas es la misma del orden de 5-6 %).
Se elimina el consumo elevado de energía para la evaporación del agua en exceso al sustituir el proceso de atomizado por la granulación según la presente invención.
Bajo consumo de combustible en kilocalorías por litro de agua evaporada ya que la cantidad de agua a evaporar es del orden del 80 % menor. El proceso puede emplear gas, electricidad u otro, según el más económico o disponible en la zona donde se ubique.
Limpieza total del agua evaporada luego de la granulación según la presente invención, sin polvos finos, ni aglutinantes, aditivos, defloculantes etc. El atomizador evapora el agua a temperaturas de 650 ºC junto a los aditivos y partículas finas de los minerales, parcialmente descompuestos o transformados.
Por dos razones disminuye el impacto ambiental del proceso de granulación según la presente invención:
a) utiliza para granular sólo el agua estrictamente necesaria, y
b) no emplea aglutinantes, ni aditivos, defloculantes etc.
El tiempo de respuesta del proceso de granulación de la Invención necesario para pasar de la fabricación de una composición cerámica determinada a otra diferente es muy bajo (aprox. una hora). En el proceso de atomizado son necesarias grandes inversiones en balsas y molinos para el cambio a nuevas composiciones, y el cambio resulta costoso en tiempo y limpiezas. Como aproximadamente un día o más si no se tienen instalaciones dobladas. Como ejemplo diremos que los atomizadores que producen composiciones de tonos rojos no fabrican atomizado de tonos blancos generalmente.
El presente proceso de granulación de la invención, luego de la molturación en fase seca, constituye una tecnología nueva de contaminación cero, pues la contaminación acuífera es nula y su consumo de agua es muy inferior a la granulación por el proceso de atomizado. A igual producción final la inversión en una instalación es con mucho más económica por la vía fase seca que por la vía acuosa.
Ahora pasaremos a describir el objeto de la Invención a partir de una realización preferente en calidad de ejemplo, pero sin tener carácter limitativo alguno, en la que la Invención brindará una mayor comprensión en base a las siguientes figuras acompañantes
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra un diagrama de flujo del proceso de granulación por aglomeración luego de la molturación vía seca de la Invención
La Figura 2 presenta una vista esquemática lateral de un mezclador granulador empleado en el proceso de granulación por aglomeración luego de la molturación en fase seca de la Invención.
La Figura 3 presenta una vista frontal esquemática del mezclador granulador y de las barras con extremidades en forma de paletas impulsoras del mezclador granulador de la Figura 2.
La Figura 4 muestra una distribución granulométrica de un ejemplo del producto según la Invención expresada en % masa vs. micrómetros.
La Figura 5 (5.1 y 5.2) presenta dos microfotografías de la forma de los granulados de la Figura 4.
La Figura 6 (6.1 y 6.2) presenta dos microfotografías de la forma de los granulados de la Figura 4.
DESCRIPCIÓN DE LA REALIZACIÓN PREFERENTE DE LA INVENCIÓN
La realización preferente se realizó según el esquema de la Figura 1 por las etapas consecutivas, en el que se incluye adicionalmente una etapa de compresión directa de la composición cerámica granulada:
Acopio de materias primas
Mezcla de materiales => Composición
Molturación en fase seca
Granulación
Ajuste de humedad
Tamizado
Almacenaje
Compresión
Observación : para la realización preferente la mezcla de los componentes se efectuó antes de la granulación.
Un mineral con un 62% de arcillas tipo illiticas se mezcló con otro mineral con un contenido de 30% de arenas de sílice y el resto de feldespatos potásicos. La mezcla de los componentes se efectuó antes de la molturación. La composición de la mezcla cerámica al final de la molturación tuvo un tamaño de partículas menor de 120 micrómetros. A continuación en la Tabla 1 se presenta el análisis químico de la composición resultante.
ELEMENTO / Composición Granulada
SiO2 / 50,29
Al2O3 / 25,37
Fe2O3 / 2,51
Na2O / 0,14
K2O / 2,40
CaO / 0,39
TiO2 / 0,96
MgO / 0,39
ZrO2 / 0,03
P2O5 / 0,05
BaO / 0,045
SO3 / 0,36
Se observa en la composición un contenido elevado de Al2O3 lo que debiera indicar indirectamente un mayor contenido de arcillas y superior facilidad de granulación. De los cationes presentes se observa el contenido superior de K2O respecto a los otros cationes lo que debiera indicar indirectamente un mayor contenido de feldespatos (no tomamos en cuenta el Fe2O3 cuyo catión pesado por sí probablemente se encuentra en forma de impurezas de óxidos de hierro).
En la Figura 2 se presenta una vista esquemática lateral del aparato 1 de mezclado-granulado por aglomeración con disposición horizontal, y provisto de las barras 2. Dichas barras 2 (véase la figura 3) constan de extremidades en forma de paletas 2a, están montadas por soldadura cilíndrica sobre el eje 2b, y dispuestas en un ángulo de 90º. Tienen una forma de contacto con la mezcla cercana a la rectangular .
La entrada3 a dicho aparato 1 de los polvos de la composición cerámica y del agua se efectúa por los tubos 3a situados dentro de la tapa (véase la figura 2) del cuerpo de dicho aparato 1 en un primer extremo lateral del aparato 1; la entrada de agua es por medio de tubo con caudal conocido. Aunque pueden servir también las alimentaciones de agua por entrada de aspersión y otra como la entrada de agua por el interior del eje saliendo el agua por la punta de las palas para hacer contacto con la composición sólida, estas dos menos habituales. Así, el agua entra en contacto con la composición sólida dentro de la máquina de granular, entrando los dos elementos por separado. Es de resaltar que mientras más fina y uniforme sea la aspersión del agua, más homogénea será la distribución de tamaños de partículas , esto es, más cercanos serán los diámetros de partículas al diámetro promedio de partículas. La composición cerámica se impulsa con ayuda de las barras 2 y de sus extremidades en forma de paletas 2a, las que a medida de la rotación del aparato van trasladando a lo largo de toda la longitud de dicho aparato 1 la masa del mineral molturado y el agua dosificada desde el primer extremo de sus entradas hasta un segundo extremo lateral opuesto del aparato 1. La salida por dicho segundo extremo lateral opuesto del material granulado se efectúa por gravedad a través de la boca de salida 4, situados en la parte inferior del aparato. Así, la forma de alimentación del polvo de cualquier tipo de composición cerámica es realizada por medio de una cinta, tornillo sin fin o cualquier otro sistema de alimentación de sólidos hacia los tubos 3a situados dentro de la tapa (véase la figura 2 ), y de alimentación del agua que se introduce en los tubos y permiten conocer con exactitud las cantidades de toneladas/hora que se van introduciendo de ambos materiales, En particular, en la realización preferente se empleaba una velocidad de rotación de 1500 r.p.m. y se granulaban 20 ton/hora de la composición cerámica.
La humedad de entrada de la composición a dicho aparato 1 de granulación era de 0,6 %. Para la aglomeración se añadió en forma continua una cantidad de agua equivalente a un 9% de humedad en la masa alimentada, determinada ésta como la cantidad óptima para adicionar a dicha composición de revestimiento cerámico durante la granulación. Dicha granulación se mantenía a temperaturas entre 20-50ºC. El granulado a la salida presentó una humedad fluctuante entre 10,5-11,0% y la temperatura en la salida (5) fue del orden de 45-50ºC.
La muestra representativa de la composición cerámica granulada presentó la distribución de tamaños de partículas mostradas a continuación en la Tabla 1. Es de señalar que incluso para preparaciones de menor volumen, realizadas preliminarmente en un aparato granulador más pequeño con la misma velocidad de rotación de 1500 r.p.m. y una capacidad de sólo 400 kg/h-1, la granulometría del producto resultó muy semejante, lo que habla de la influencia de la velocidad de rotación y adición de la cantidad óptima de agua sobre la granulometría final del producto.
Tabla 1
Tamiz (mm) % diferencial, peso % de acumulado por debajo, peso % de acumulado por encima, peso
1 6,00 94,00 6,00
0,6 18,50 75,50 24,50
0,5 8,50 67,00 33,00
0,4 10,70 56,30 43,70
0,3 13,70 42,60 57,40
0,2 16,80 25,80 74,20
0,1 19,00 6,80 93,20
0 6,80 0,00 100,00
Total 100,00
En la Figura 4 se muestra en forma diferencial esta distribución de tamaños de partículas, es decir, es reflejada como la cantidad relativa de la fracción, en por ciento en peso, que permanece retenida en los tamices de cada abertura de malla (en mm). El análisis de esta dependencia tiene un carácter bidisperso pues se observan dos máximos de diámetros de granos. Uno se encuentra en el entorno de 0,6 mm y el otro en la región de 0,4-0,1 mm. Esta distribución bidispersa de tamaños de granos puede hablarnos de un fenómeno de formación primaria de granos gruesos al adicionarse el agua. Probablemente, a continuación ocurre una formación secundaria de los granos pequeños, que deberían su formación a posteriori a costa de la fragmentación de los gruesos durante el traslado de la masa, y nucleación sobre ellos de granos secundarios a partir del polvo no enlazado al principio.
Una información ilustrativa de la morfología de los gránulos preparados la brindan las Figuras 5 (5.1 y 5.2) y 6 (6.1 y 6.2) las que presentan microfotografías obtenidas en un microscopio con un aumento x25 veces. Se aprecian gránulos de diferentes formas y tamaño, donde la forma se aproxima más o menos a una forma esferoidal y las diferencias de tamaño son coherentes con los resultados de granos mayores, menores y finos obtenidos por la granulometría empleando tamices.
La resistencia mecánica en seco de las muestras han dado los siguientes resultados:
Humedad de prensado del producto granulado: 6 %. Presión ejercida a la muestra: 280 Kg/cm2 (determinada por prensa hidráulica). Resistencia mecánica en seco: 40 Kg/cm2. Resistencia mecánica de las piezas luego de su cocción: 620 Kg/cm2.
Así, la resistencia mecánica de las partículas granuladas de la presente realización ha resultado ser muy satisfactoria y durante su manejo en el transporte, manipulación y llenado de moldes se han comportado en forma idéntica a la de los productos comerciales obtenidos por el proceso de secado por atomización. La importancia práctica de la presente Invención es que el granulado no altera su morfología en cuanto a tamaño ni forma del grano durante todo el proceso de embasado, transporte a granel, manipulación normal y llenado de moldes.
En suma, la conclusión tecnológica primordial es que el producto de la presente granulación en casi su totalidad presenta diámetros de granos que se encuentran entre 1,0 y 0,1 mm, los que se corresponden adecuadamente con las exigencias industriales impuestas para la manipulación de la composición cerámica pues la cantidad de polvos (menor de 0,1 mm) es menor que 7%, mientras que los requisitos aceptados actualmente para la manipulación de granulados cerámicos permiten un contenido de finos hasta un 14 %. Así es de resaltar que el granulado no se diferencia por sus características, a las del producto granulado comercializado actualmente y producido por la atomización de la composición molturada por vía húmeda, siendo por lo obtenido incluso mejor que algunos de tales productos. Adicionalmente desde el punto de vista de rentabilidad los granos gruesos, los que son mayores de 1 mm, se obtienen sólo un 6 %. Es de notar que los granos gruesos (mayores que 1 mm ) son reciclados en el proceso y se vuelven a molturar. No se sirve a los clientes granulados comerciales con gránulos mayores de 1 mm. Este porcentaje es también muy satisfactorio ya que nos presenta un proceso de granulación con una rentabilidad del 94 % del producto alimentado al aparato.
En consecuencia, se ha desarrollado un proceso para la granulación luego de la molturación en fase seca con granulados equivalentes en sus propiedades a los granulados obtenidos en la industria de materiales cerámicos por el proceso de molturación vía húmeda y el posterior atomizado de la suspensión.
Las ventajas obtenidas por el proceso de granulación de la presente Invención en comparación con el proceso de granulación por atomizado empleado actualmente en la industria de materiales cerámicos se pueden resumir como:
Elevado ahorro de energía del 80 %, por la reducción del consumo de agua en un 75 - 80 % en la granulación y de un 10 - 20 % en el prensado posterior de los gránulos producidos según la Invención.
El tiempo de respuesta por la Invención para el cambio de la fabricación de un tipo de composición determinada a otro tipo de composición cerámica es muy bajo, de una hora, mientras que por el atomizado resulta muy alto, de días.
A igual producción final, la inversión en la instalación de granulación según el proceso de la Invención para molturados obtenidos por vía seca es mucho más económica que por el de granulación por atomización de los molturados obtenidos por vía acuosa.
El presente proceso de granulación de la Invención constituye una tecnología medioambiental nueva de contaminación cero, pues la contaminación acuífera y gaseosa es nula y su consumo de agua es muy inferior.
Una vez descrita suficientemente la invención, así como una realización preferente de la misma, como ejemplo y sin carácter limitativo, sólo debe añadirse que es posible realizar modificaciones en su constitución y materiales empleados sin apartarse del alcance de la misma, definido en las siguientes reivindicaciones.

Claims (1)

1.- Un proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase seca caracterizado porque minerales pulverulentos con contenido de arcillas hasta 60% u otras composiciones realizadas sólo con arcillas, en mezcla con materiales inorgánicos pulverulentos, todos dichos minerales y materiales pulverulentos luego de su molturación en fase seca, con tamaños de grano inferior a 120 micrómetros, se someten a la granulación en un aparato cilíndrico rotatorio (1) de disposición horizontal provisto de barras (2) con extremidades en forma de paletas (2a), en donde la entrada (3) de dichos materiales pulverulentos y la aspersión de agua se realizan por la parte superior de un primer extremo lateral de dicho aparato; en donde a medida de la rotación seleccionada entre 500 - 3.000 rpm de dicho aparato cilíndrico (1) se van formando gránulos que se trasladan por acción de dichas barras (2) con dichas extremidades en forma de paletas (2a) por toda la longitud de dicho aparato cilíndrico rotatorio (1), en el que la salida (4) del material granulado se encuentra en la parte inferior del segundo extremo lateral opuesto de dicho aparato cilíndrico rotatorio (1) de disposición horizontal.
2.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase seca de la reivindicación Nº1 caracterizado porque la mezcla de los diferentes componentes de cada tipo de composición cerámica, dichos minerales y materiales, se puede realizar antes de molturar, o durante la molturación; después de la molturación o se puede realizar durante la granulación en dicho aparato cilíndrico rotatorio (1) de disposición horizontal.
3.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase seca de la reivindicación Nº1 caracterizado porque para cada tipo de composición cerámica los minerales con alto contenido de arcillas hasta 60% se seleccionan entre las arcillas tipo illiticas, caoliniticas y/o arcillas refractarias, o mezclas de éstas; y los materiales inorgánicos se seleccionan entre arenas de sílice, arenas feldespáticas, feldespatos sódicos, feldespatos potásicos, feldespatos de litio, pegmatita, magnetita, carbonato de calcio, carbonato de magnesio, o mezclas de éstos.
4.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase seca de la reivindicación Nº1 caracterizado porque la humedad promedio de dichos minerales y materiales pulverulentos en la entrada (3) de dicho aparato cilíndrico rotatorio (1) es del orden del 0,5 al 2,5%; y en donde, a la salida (4), el material granulado tiene una humedad del orden del 8 al 15 % en dependencia de cada tipo de composición cerámica granulada.
5.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase secade la reivindicación Nº1 caracterizado porque para cada tipo de composición cerámica se determina la cantidad de agua, suministrada a la entrada (3), y la velocidad de rotación aplicada, seleccionada entre el intervalo de 500 - 3.000 rpm, las que proporcionan la granulación óptima para cada tipo de composición cerámica; y en donde dichas cantidad de agua y velocidad de rotación determinadas previamente se mantienen constante durante la granulación de dichos minerales y materiales pulverulentos.
6.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase secade la reivindicación Nº1 caracterizado porque dicha granulación se realiza a temperaturas entre 20-50ºC de forma que la temperatura del granulado en la salida (4) de dicho aparato cilíndrico rotatorio (1) de disposición horizontal sea del orden de 30-50ºC y la humedad de 10-15% según cada tipo de composición cerámica preparada, y a continuación se reduce la humedad de dicho granulado a 6-7% por medio de un secado en línea continua sobre soporte plano o inclinado con aplicación de aire a una temperatura entre 40 a 90 ºC, en donde se determina la temperatura adecuada en dependencia de la cantidad de agua a secar, del tiempo y el espacio disponible.
7.- El proceso de granulación por aglomeración sin aglutinantes ni aditivos de composiciones cerámicas arcillosas molturadas en fase seca de la reivindicación Nº1 caracterizado porque dicho aparato cilíndrico rotatorio (1) de disposición horizontal se diseña para el procesado de dichos minerales y materiales pulverulentos con un recubrimiento del chasis, partes internas, eje y de dichas barras (2) con extremidades en forma de paletas (2a) con un material duro y resistente al desgaste como el tungsteno o similar, aplicado en polvo por soldadura u otros métodos de recubrimiento.
PCT/ES2011/070738 2010-10-26 2011-10-25 Granulación por aglomeración de composiciones cerámicas molturadas en fase seca WO2012056077A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11835673.2A EP2633903B1 (en) 2010-10-26 2011-10-25 Granulation by agglomeration of ceramic compositions ground in dry phase
ES11835673T ES2871048T3 (es) 2010-10-26 2011-10-25 Granulación por aglomeración de composiciones cerámicas molturadas en fase seca
RU2013120987/05A RU2566405C2 (ru) 2010-10-26 2011-10-25 Способ и устройство для гранулирования путем агломерации керамических композиций, размолотых в сухой фазе
MX2013004698A MX356277B (es) 2010-10-26 2011-10-25 Granulación por aglomeración de composiciones cerámicas molturadas en fase seca.
BR112013010071-0A BR112013010071B1 (pt) 2010-10-26 2011-10-25 Método de granulação por aglomeração de composições de cerâmica argilosa aterradas na fase seca e dispositivos cilíndrico para granulação por aglomeração de composições de cerâmica
US13/881,549 US9387480B2 (en) 2010-10-26 2011-10-25 Granulation by agglomeration of ceramic compositions ground in dry phase
CN201180062794.9A CN103269784B (zh) 2010-10-26 2011-10-25 通过干相研磨的陶瓷合成物的结块造粒
PL11835673T PL2633903T3 (pl) 2010-10-26 2011-10-25 Granulacja przez aglomerację kompozycji ceramicznych mielonych w fazie suchej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201001374 2010-10-26
ES201001374A ES2425017B1 (es) 2010-10-26 2010-10-26 Granulacion por aglomeracion de composiciones ceramicas molturadas en fase seca

Publications (1)

Publication Number Publication Date
WO2012056077A1 true WO2012056077A1 (es) 2012-05-03

Family

ID=45993209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070738 WO2012056077A1 (es) 2010-10-26 2011-10-25 Granulación por aglomeración de composiciones cerámicas molturadas en fase seca

Country Status (10)

Country Link
US (1) US9387480B2 (es)
EP (1) EP2633903B1 (es)
CN (1) CN103269784B (es)
BR (1) BR112013010071B1 (es)
ES (2) ES2425017B1 (es)
MX (1) MX356277B (es)
PL (1) PL2633903T3 (es)
PT (1) PT2633903T (es)
RU (1) RU2566405C2 (es)
WO (1) WO2012056077A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861520A (zh) * 2012-12-18 2014-06-18 南通华兴磁性材料有限公司 一种节能喷雾造粒塔
RU2522113C1 (ru) * 2013-06-14 2014-07-10 Юлия Алексеевна Щепочкина Сырьевая смесь для изготовления керамзита
RU2609781C1 (ru) * 2015-12-07 2017-02-03 Юлия Алексеевна Щепочкина Сырьевая смесь для производства керамзита

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272468B1 (en) * 2008-04-03 2016-03-01 Purdue Research Foundation Apparatus and method for producing biobased carriers from byproducts of biomass processing
ES2442465B1 (es) * 2012-07-11 2014-08-11 Cosentino Research And Development, S.L. Procedimiento para la fabricación de superficies sólidas para construcción
MX2016002001A (es) * 2013-11-28 2016-07-21 Cales De La Plana S A Procedimiento de obtencion de granulos para la fabricacion de baldosas ceramicas.
IT201600096358A1 (it) * 2016-09-26 2018-03-26 L B Off Mec S P A Metodo per produrre materiale ceramico scorrevole in forma di polvere per la fabbricazione di piastrelle ceramiche
CN106477617B (zh) * 2016-11-29 2019-05-07 安徽工业大学 一种烟气脱硫副产物低温氧化装置
CN108097161A (zh) * 2018-01-10 2018-06-01 王翠萍 固体颗粒制剂的高孔隙率成粒方法及设备及固体颗粒制剂
EP3640227B1 (en) * 2018-10-15 2021-12-22 Vecor IP Holdings Limited Process for making a ceramic particulate mixture
CN113171848B (zh) * 2020-09-29 2023-11-17 中国南方电网有限责任公司电网技术研究中心 一种用于天然二维黏土材料剥离的球磨装置及其剥离方法
BR102021022287A2 (pt) * 2021-11-05 2022-01-11 Miranda Salgueiro Alexandre Processo de produção de aditivo redutor de temperatura de sinterização de massas cerâmicas,composição e produto resultante
CN116272645B (zh) * 2023-05-11 2023-08-04 中建环能科技股份有限公司 一种污水脱氮载体制备系统及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690622A (en) 1969-02-28 1972-09-12 Pia Beatrice Brunner Rohrer Processing and mixing machine
GB1315553A (en) 1969-07-28 1973-05-02 Grace W R & Co Hydrocarbon conversion catalysts and their production
US4108932A (en) * 1976-03-03 1978-08-22 J. M. Huber Corporation Method of agglomerating powders
US4680230A (en) 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4944905A (en) 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
JPH04290533A (ja) * 1991-03-16 1992-10-15 Tdk Corp 混合造粒装置
US5185204A (en) * 1988-12-19 1993-02-09 Kawatetsu Minig Co., Ltd. Agglomerate of whiskers or short fibers
EP0699640A1 (en) * 1994-08-05 1996-03-06 Manfredini E Schianchi S.R.L Method for producing granules from ceramic powders, said granules and apparatus for their production
WO2000064573A1 (en) * 1998-01-09 2000-11-02 Otkrytoe Aktsionernoe Obschestvo 'borovichsky Kombinat Ogneuporov' Method of making pellets from aluminosilicate raw materials
CN101011843A (zh) 2007-02-02 2007-08-08 王家助 利用花岗岩石板材加工尾料生产的大颗粒干拌通体仿石外墙砖及其生产方法
CN101234888A (zh) 2007-01-29 2008-08-06 林海荣 一种仿天然石材瓷砖及其制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2024966C (en) * 1989-10-25 1995-07-18 Gunther Schimmel Process for producing sodium silicates
US5094604A (en) * 1990-12-19 1992-03-10 Oil-Dri Corporation Of America Apparatus for making granular absorbent from fibrous materials

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690622A (en) 1969-02-28 1972-09-12 Pia Beatrice Brunner Rohrer Processing and mixing machine
GB1315553A (en) 1969-07-28 1973-05-02 Grace W R & Co Hydrocarbon conversion catalysts and their production
US4108932A (en) * 1976-03-03 1978-08-22 J. M. Huber Corporation Method of agglomerating powders
US4680230A (en) 1984-01-18 1987-07-14 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US4944905A (en) 1984-01-18 1990-07-31 Minnesota Mining And Manufacturing Company Particulate ceramic useful as a proppant
US5185204A (en) * 1988-12-19 1993-02-09 Kawatetsu Minig Co., Ltd. Agglomerate of whiskers or short fibers
JPH04290533A (ja) * 1991-03-16 1992-10-15 Tdk Corp 混合造粒装置
EP0699640A1 (en) * 1994-08-05 1996-03-06 Manfredini E Schianchi S.R.L Method for producing granules from ceramic powders, said granules and apparatus for their production
WO2000064573A1 (en) * 1998-01-09 2000-11-02 Otkrytoe Aktsionernoe Obschestvo 'borovichsky Kombinat Ogneuporov' Method of making pellets from aluminosilicate raw materials
CN101234888A (zh) 2007-01-29 2008-08-06 林海荣 一种仿天然石材瓷砖及其制造方法
CN101011843A (zh) 2007-02-02 2007-08-08 王家助 利用花岗岩石板材加工尾料生产的大颗粒干拌通体仿石外墙砖及其生产方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2633903A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103861520A (zh) * 2012-12-18 2014-06-18 南通华兴磁性材料有限公司 一种节能喷雾造粒塔
RU2522113C1 (ru) * 2013-06-14 2014-07-10 Юлия Алексеевна Щепочкина Сырьевая смесь для изготовления керамзита
RU2609781C1 (ru) * 2015-12-07 2017-02-03 Юлия Алексеевна Щепочкина Сырьевая смесь для производства керамзита

Also Published As

Publication number Publication date
US20130248625A1 (en) 2013-09-26
RU2013120987A (ru) 2014-12-10
ES2871048T3 (es) 2021-10-28
MX2013004698A (es) 2013-08-29
PL2633903T3 (pl) 2021-10-25
ES2425017B1 (es) 2014-09-30
BR112013010071B1 (pt) 2024-03-05
US9387480B2 (en) 2016-07-12
CN103269784B (zh) 2016-08-10
BR112013010071A2 (pt) 2017-10-24
CN103269784A (zh) 2013-08-28
EP2633903A1 (en) 2013-09-04
EP2633903A4 (en) 2017-01-04
ES2425017A1 (es) 2013-10-10
EP2633903B1 (en) 2021-04-28
PT2633903T (pt) 2021-06-01
MX356277B (es) 2018-05-22
RU2566405C2 (ru) 2015-10-27

Similar Documents

Publication Publication Date Title
WO2012056077A1 (es) Granulación por aglomeración de composiciones cerámicas molturadas en fase seca
HRP20201095T1 (hr) Postupak usitnjavanja
EP0595543B1 (en) Porous ceramic granules
ES2323747T3 (es) Composiciones basadas en cemento mejoradas.
RU2191169C1 (ru) Шихта и способ получения гранулированного шамота, используемого в качестве расклинивающего агента
CN101353248A (zh) 利用建筑卫生陶瓷冷加工废渣生产多孔砖的方法
CN106082963A (zh) 制革污泥陶瓷骨料及其制造方法
RU2005702C1 (ru) Способ изготовления керамических изделий
RU2151122C1 (ru) Способ изготовления стеновых керамических изделий
Koçak et al. Differences between dry and wet route tile production
JPH10291849A (ja) NOx浄化機能を有するセメント系水硬性組成物
Mufteeva et al. The effect of enrichment on quartz sand properties
JPH03187959A (ja) 舗装道路用スリツプ止め着色骨材の製造方法
Snegirev et al. Manufacturing process and properties of spherical granules in the MgO—Al2O3—SiO2 system
Nassetti et al. Granulation of powders for whitebody ceramic tiles
ES2317252T3 (es) Silicatos minerales de capa con contenido en illita como componente principal en forma de nanopolvo y procedimiento para su acondicionamiento mecanico.
RU2641533C1 (ru) Способ получений сырьевой смеси для декоративной стеновой керамики
KR102721947B1 (ko) 점토벽돌 조성물 및 그 제조방법
RU97121124A (ru) Кондиционер почвы
CN109569254A (zh) 湿法脱硫用碳酸钙石粉及湿法脱硫用碳酸钙石粉制备方法
CZ2006793A3 (cs) Zpusob výroby prumyslového silikátového granulátu, zejména kaolinového, jílového, betonitového a páleného
CN201760286U (zh) 硅藻土矿制备除藻净水剂的连续生产设备
JP2909335B2 (ja) 道路舗装用焼結人工骨材及びその製造方法
JP2010228979A (ja) シリカ質微粉末の改質方法、改質シリカ質微粉末およびセメント組成物
CZ297479B6 (cs) Zpusob výroby pálených materiálu, zejména páleného kaolinu

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835673

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004698

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011835673

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013120987

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13881549

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013010071

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112013010071

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013010071

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130425