WO2012055753A2 - Installation et procédé de gazéification de combustibles contenant du carbone - Google Patents

Installation et procédé de gazéification de combustibles contenant du carbone Download PDF

Info

Publication number
WO2012055753A2
WO2012055753A2 PCT/EP2011/068327 EP2011068327W WO2012055753A2 WO 2012055753 A2 WO2012055753 A2 WO 2012055753A2 EP 2011068327 W EP2011068327 W EP 2011068327W WO 2012055753 A2 WO2012055753 A2 WO 2012055753A2
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
flame
operating parameters
evaluated
spectral
Prior art date
Application number
PCT/EP2011/068327
Other languages
German (de)
English (en)
Other versions
WO2012055753A3 (fr
Inventor
Maximilian Fleischer
Thomas Fleischer
Tino Just
Kerstin Wiesner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to CN2011800517741A priority Critical patent/CN103180722A/zh
Priority to US13/879,464 priority patent/US20130298464A1/en
Publication of WO2012055753A2 publication Critical patent/WO2012055753A2/fr
Publication of WO2012055753A3 publication Critical patent/WO2012055753A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners

Definitions

  • coal gasification is an increasingly important technology with which coal can be extracted from raw materials for chemical synthesis as well as fuel gas for gas turbines.
  • this step represents a core process of the effective use of coal in IGCC power plants.
  • IGCC Integrated Gasification Combined Cycle
  • a possible gasification processes which can be the combined cycle process pre ⁇ on, the Siemens Fuel Gasification method (SFG) method.
  • This method is suitable for the use of even ash-rich solid, liquid and gaseous starting materials.
  • the feed is converted by means of free acid ⁇ material containing gasification agent in a flame reaction under pressures up to 10 MPa and at temperatures up to 1900 ° C to produce CO and H2 (synthesis gas main components).
  • the flame temperature can be calculated thermodynamically so far only indirectly based on the material and heat flows.
  • Fluctuations in the feedstock composition are only indirectly and temporally detected by changes in the heat output of the system.
  • Flammenpyrometern with the strength of the flame emission is measured in a certain wavelength range and ge included ⁇ by assuming a certain emissivity on the temperature. This method is sensitive to contamination of the optical windows (since here the absolute radiation density is used as the measured value). On the other hand, the reliability of the measured values obtained is questionable, since the flame is not a gray emitter (as assumed for this evaluation) whose emissivity coefficient is at the same time unknown. Metal ⁇ le contained in the flame caused by their flame lights superimposed peaks, or can also cause by their reabsorption local slumps in the spectral radiance. Both lead over potential corruption of the power density in the out ⁇ evaluated spectral window to incorrect measurements. And these are not even systematically wrong (and thus calibratable) because, for example, the power of a peak created in the window by a particular metal changes unpredictably with the change in the concentration of the metal in the fuel.
  • pyrometers can (where the wall constitutes the emitter) only in brick-lined reactors, and only in Gasbe ⁇ drive in which a sufficiently transparent gas flame upstream is to be used.
  • the coal flame is not sufficiently transparent due to the carbon particles it contains for the radiation of the wall behind it.
  • the emission spectrum of the flame ⁇ is recorded. This is done appropriately by allowing access to the flame spectrum through an optical window in the gasification reactor.
  • the Flammenspekt ⁇ rum is fed to a spectrometer for spectral analysis, the spectrum obtained electronically forwarded to an evaluation unit and continu ously ⁇ evaluated with a multivariate method with a previously stored evaluation model, in particular in real time.
  • the invention provides a method that evaluates the emission ⁇ spectrum of the flame in a novel and advantageous manner, to monitor the desired parameters such as flame temperature continuously.
  • a direct measurement of the parameters by introduced into the gasification flame probes is hardly possible because of the high tempera ⁇ reindeer, the reactive gases, as well as a strong tendency to form deposits.
  • the spectral analysis can comprise the range of the electromagnetic spectrum from the UV to the middle IR range.
  • the emission spectrum is recorded in the range from 300 to 2000 nm, in particular in the range from 300 to 800 nm.
  • the Emissionsli ⁇ nien the ash components are preferably evaluated from the emission spectrum, for example, the emission line of alkali.
  • spectra are recorded to form the evaluation model with known operating parameters and stored together with the operating parameters in a memory.
  • the spectra with the operating parameters with the methods of multivariate statistics such as principal component analysis, partial least squares regression, partial least squares discriminant analysis PLSDA, Cluster Analysis and Artificial neural networks classified in particular ⁇ sified and so an evaluation model created that one be ⁇ -determined range assigns to certain operating parameters.
  • operating parameters to be considered individually or in combination with one another include: discriminating whether operation of the device with gas, for example pressure maintenance or the gasification operation with feedstock flame is present based on the difference ⁇ union fuel which ⁇ puts forward different spectra ago, gas, for example, contains very few metals that produce spectral lines,
  • the evaluating unit when the precisely measured ⁇ ne flame spectrum ⁇ be supplied before it is normalized spectral analysis in the evaluation unit, in particular a peak height, the integral spectra or signal level at a determinable wavelength.
  • a spectrometer which performs a simultaneous measurement of the Spekt ⁇ rums, in particular a spectrometer which performs Wel ⁇ lenindispersion and the result then maps to ei ⁇ NEN parallel measuring line detector, in which then each pixel a measures certain wavelength interval. Since ⁇ is achieved that the measurement of the spectrum takes place at a time. A sequential measurement of various wave lengths ⁇ can perform flickering of the flame to falsification of the result.
  • a measurement time may be selected which is long compared to the flicker frequency.
  • several short measurements can be taken at a time interval comparable to the time constant of the flame flare and averaged before being fed into the evaluation unit. It is furthermore advantageous if the evaluation unit determines whether the supplied spectrum lies in the measuring range of the spectrometer in the sense of overexposure or underexposure and if this is not the case, the spectrometer parameters are readjusted, in particular the measuring time or the number of times multiple measurements.
  • the invention also provides a correspondingly configured device for the gasification of carbonaceous fuels, comprising:
  • FIG. 1 shows a spectrum of a coal flame in the visible spectral range
  • FIG. 2 shows a spectrum of a gas flame in the visible spectral range
  • FIG. 3 shows a method for evaluating the flame spectrum
  • FIG. 4 shows a structure for evaluating the flame spectrum
  • FIG. 1 shows a typical spectrum 10 of a carbon flame, measured in the UV / VIS range between approximately 400 nm and 1000 nm.
  • FIG. 2 shows an analogous second spectrum 20 of a gas flame.
  • An exemplary embodiment of a method for evaluating the flame spectrum is shown in FIG. It is done in two steps:
  • the mathematical preprocessing 32 includes ⁇ example, a smoothing and / or derivative, normalization, a selection of the spectral range which is to be considered, and the warpage of apparently erroneous measurements.
  • Feedstock flame is present: due to the different fuel, these spectra can be assigned to the two classes, since gas contains only very few metals which shine. the total content of inorganic material producing slag.
  • the slag content is a very important parameter for maintenance: The influence of luminous / absorbing metals on the spectrum represents a quantitative signal and the slag content can be quantitatively determined from the spectra.
  • the measured flame spectrum is normalized in the evaluation unit, before it supplied ⁇ performs the recognition.
  • the standardization can be done, for example, on the peak height, the spectral intergral or the signal height at a fixed characteristic wavelength.
  • the flame in the gasification process is not constant with respect to time ⁇ the spectrometer measurement stationary process (of a second), it enters the typical statistical ⁇ flame flicker with spectral and absolute intensity variations.
  • the flame flare leads to a distortion of the recorded spectrum. It is therefore advantageous to provide a spectrometer which performs a parallel measurement of the spectrum.
  • the spectrometer is designed to perform a wavelength dispersion and then the result on a parallel measuring To image a line detector in which each pixel measures a specific wavelength interval.
  • flame flicker effects are eliminated by either selecting a measurement time that is long compared to the flicker frequency or by taking several short measurements at a time interval comparable to the time constant of the flame flare and averaging before feeding into the evaluation unit.
  • the evaluation unit can evaluate whether the supplied spectrum is within the good measuring range of the spectrometer, i. whether there is no under- or over-steering. If there is under- or over-steering, the spectrometer parameters are readjusted by commands of the evaluation unit to the spectrometer, z.
  • the measurement time i. the integration time used to capture a spectrum, or the number of multiple measurements adjusted.
  • the abso ⁇ lute intensity is not taken into account in the evaluation, but saldes sen the waveform of the flame spectrum. This further reduces the influence of deposits on the optical window on the measurement.
  • the ⁇ se test includes an assessment of whether the measured intensity in the expected range is whether be clustered outliers and whether increased noise measurement data exists.
  • Figure 4 shows a schematic measuring set-up 40.
  • the measurement assembly 40 includes a flame detector 41 and an adapter 42. decoupled light is transmitted through a fiber optic cable 43 to ei ⁇ nem cabinet 44 in which an evaluation unit is housed 45th

Abstract

L'invention concerne un procédé pour faire fonctionner une installation de gazéification de combustibles contenant du carbone et une installation correspondante, la gazéification provoquant une flamme et le spectre d'émission de la flamme étant enregistré et évalué en temps réel, notamment en continu, au moyen d'un modèle d'évaluation préalablement mémorisé et selon un procédé à plusieurs variables.
PCT/EP2011/068327 2010-10-27 2011-10-20 Installation et procédé de gazéification de combustibles contenant du carbone WO2012055753A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2011800517741A CN103180722A (zh) 2010-10-27 2011-10-20 用于使含碳燃料气化的设备和方法
US13/879,464 US20130298464A1 (en) 2010-10-27 2011-10-20 Device and method for gasifying carbon-containing fuels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010049491.7 2010-10-27
DE102010049491 2010-10-27

Publications (2)

Publication Number Publication Date
WO2012055753A2 true WO2012055753A2 (fr) 2012-05-03
WO2012055753A3 WO2012055753A3 (fr) 2012-06-21

Family

ID=45688084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/068327 WO2012055753A2 (fr) 2010-10-27 2011-10-20 Installation et procédé de gazéification de combustibles contenant du carbone

Country Status (3)

Country Link
US (1) US20130298464A1 (fr)
CN (1) CN103180722A (fr)
WO (1) WO2012055753A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726202A1 (fr) * 2019-04-15 2020-10-21 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Procédé de commande en ligne d'un processus de gazéification formant des mâchefers et installation pour un processus de gazéification

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10718511B2 (en) 2010-07-02 2020-07-21 Harry R. Taplin, JR. System for combustion of fuel to provide high efficiency, low pollution energy
US8852300B2 (en) * 2010-07-02 2014-10-07 Harry R. Taplin, JR. Lithium conditioned engine with reduced carbon oxide emissions
CN104597210B (zh) * 2015-01-21 2016-08-17 中国计量学院 一种粉体灭火剂分散装置
CN111257306B (zh) * 2020-01-16 2021-02-09 华北电力大学 生物质燃料的碱金属元素含量在线动态预测方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3182913B2 (ja) * 1992-04-23 2001-07-03 株式会社日立製作所 燃焼ガス中の金属成分計測方法及び装置
DE4305645C2 (de) * 1993-02-24 1996-10-02 Rwe Entsorgung Ag Verfahren zur Ermittlung charakteristischer Eigenschaften von Radikale bildenden Prozessen, Verwendung des Verfahrens und Vorrichtung zur Durchführung des Verfahrens
US5437179A (en) * 1993-07-07 1995-08-01 Union Carbide Chemicals & Plastics Technology Corporation Fast gas chromatography method, apparatus and applications
DE19509412C2 (de) * 1995-03-15 1997-01-30 Siemens Ag Verfahren und Vorrichtung zur Feuerungsregelung einer Dampferzeugeranlage
US6045353A (en) * 1996-05-29 2000-04-04 American Air Liquide, Inc. Method and apparatus for optical flame control of combustion burners
DE19632174C2 (de) * 1996-08-09 2002-02-07 Abb Research Ltd Temperaturmessverfahren
WO2005045379A1 (fr) * 2003-11-05 2005-05-19 Yamatake Corporation Procede de detection d'incendie et dispositif de detection d'incendie
CN101210873A (zh) * 2006-12-31 2008-07-02 清华大学 一种利用太赫兹时域光谱快速检测植物油纯度的方法及设备
CN101458214A (zh) * 2008-12-15 2009-06-17 浙江大学 有机聚合物溶液浓度的检测方法
CN101706307B (zh) * 2009-11-13 2011-11-30 暨南大学 基于透射光谱的输油管道油品界面的检测方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3726202A1 (fr) * 2019-04-15 2020-10-21 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Procédé de commande en ligne d'un processus de gazéification formant des mâchefers et installation pour un processus de gazéification
US11499105B2 (en) 2019-04-15 2022-11-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method of online control of a slag forming gasification process and plant for a gasification process

Also Published As

Publication number Publication date
WO2012055753A3 (fr) 2012-06-21
US20130298464A1 (en) 2013-11-14
CN103180722A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
EP0612961B1 (fr) Procédé de détermination de propriétés caractéristiques de processus formant des radicaux
WO2012055753A2 (fr) Installation et procédé de gazéification de combustibles contenant du carbone
EP2132543B1 (fr) Procédé de détection, assisté par caméra, de l'intensité de rayonnement d'un produit de réaction chimique gazeux, applications du procédé et dispositif correspondant
DE102011119700A1 (de) Verfahren zum Analysieren und Regeln eines Verbrennungsvorgangs in einer Gasturbine und Vorrichtung zum Ausführen des Verfahrens
DE19632174C2 (de) Temperaturmessverfahren
DE10302487A1 (de) Verfahren zur Echtzeit-Bestimmung einer Brenngas-Zusammensetzung
WO1998040673A1 (fr) Procede et dispositif pour l'analyse de la combustion et la surveillance d'une flamme dans une chambre de combustion
DE102006036563A1 (de) Überwachung von Verbrennungsvorgängen an einem Ort durch schnellen Sauerstoffsensor
DE102008037470A1 (de) System und Verfahren zur Erfassung der Brennstoffbefeuchtung
DE112017006425T5 (de) Analysegerät, analysesystem, analyseverfahren und programm
DE2836895A1 (de) Gasfackel-ueberwachungsvorrichtung
DE102009009314A1 (de) Verfahren und Vorrichtung zur Regelung oder Überwachung von Feuerungsanlagen sowie zur Überwachung von Gebäuden mit Gasbrennern
CN105527255A (zh) 一种入炉煤煤质特性在线监测系统
DE3515209A1 (de) Verfahren und vorrichtung zur ueberwachung eines verbrennungszustands
DE102005009582A1 (de) Verfahren zur Bestimmung der Art, Größe und/oder Konzentration von Bestandteilen in Fluidströmen
DE4025909A1 (de) Vorrichtung zur optischen ueberwachung von hochtemperaturreaktoren
Gall et al. Alkali monitoring of industrial process gas by surface ionization─ Calibration, assessment, and comparison to in situ laser diagnostics
DE102008056675A1 (de) Verfahren und Vorrichtung zum Überwachen der Verbrennung von Brennmaterial in einem Kraftwerk
CN205538678U (zh) 一种入炉煤煤质特性在线监测系统
DE60018208T2 (de) Bestimmung der kappa-nummer in chemischem zellstoff durch ramanspektroskopie
DE102005036146A1 (de) Anordnung zur optischen Flammenprüfung
DE19841877A1 (de) Verfahren und Vorrichtung zur Ermittlung der Rußbeladung eines Verbrennungsraums
DE4025808A1 (de) Verfahren zur ueberwachung von reaktoren zur partialoxidation
DE19605287C2 (de) Verfahren und Einrichtung zur Steuerung der Reisezeit eines Kessels
Jiang et al. Optimizing the quantitative analysis of solid biomass fuel properties using laser induced breakdown spectroscopy (LIBS) coupled with a kernel partial least squares (KPLS) model

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11771163

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13879464

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11771163

Country of ref document: EP

Kind code of ref document: A2