WO2012053452A1 - レーザ切断方法 - Google Patents

レーザ切断方法 Download PDF

Info

Publication number
WO2012053452A1
WO2012053452A1 PCT/JP2011/073712 JP2011073712W WO2012053452A1 WO 2012053452 A1 WO2012053452 A1 WO 2012053452A1 JP 2011073712 W JP2011073712 W JP 2011073712W WO 2012053452 A1 WO2012053452 A1 WO 2012053452A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
plate
electrode tab
pair
melting point
Prior art date
Application number
PCT/JP2011/073712
Other languages
English (en)
French (fr)
Inventor
祐司 濱口
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to KR1020137004239A priority Critical patent/KR101390064B1/ko
Priority to US13/818,228 priority patent/US9168611B2/en
Priority to EP11834292.2A priority patent/EP2631030B1/en
Priority to JP2012539704A priority patent/JP5435146B2/ja
Priority to CN201180043735.7A priority patent/CN103097073B/zh
Publication of WO2012053452A1 publication Critical patent/WO2012053452A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • B23K26/1464Supply to, or discharge from, nozzles of media, e.g. gas, powder, wire
    • B23K26/1476Features inside the nozzle for feeding the fluid stream through the nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/351Working by laser beam, e.g. welding, cutting or boring for trimming or tuning of electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a laser cutting method for cutting a workpiece by a laser.
  • JP2001-176501A discloses a method of laser cutting an electrode of a stacked battery.
  • a workpiece is a current collector that forms an electrode by applying an active material to the surface.
  • the generation of burrs caused by the wear of the press die can be suppressed as compared with the case of cutting with a press.
  • the present invention has been made paying attention to such problems, and a laser cutting method capable of suppressing the burr height at the time of cutting and reducing the processing time of a pair of plate materials having different thicknesses.
  • the purpose is to provide.
  • a laser cutting method in which a pair of plate materials having different thicknesses and melting points are irradiated with a laser to cut, the lower melting point of the pair of plate materials
  • a pair of plate materials are arranged side by side so that the opposite surface of the laser irradiation surface of the plate material protrudes from the opposite surface of the laser irradiation surface of the plate material having a higher melting point, and the focal point of the laser has the higher melting point of the pair of plate materials
  • a pair of plate materials are cut by a series of operations while maintaining the focal position of the laser with respect to the pair of plate materials by irradiating a laser in accordance with the back surface opposite to the laser irradiation surface of the other plate material.
  • FIG. 1 is a configuration diagram showing a laser cutting device used in a laser cutting method according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view around the machining head in the laser cutting apparatus of FIG.
  • FIG. 3A is a diagram for explaining a plate material arranging step of the laser cutting method according to the embodiment of the present invention.
  • FIG. 3B is a diagram illustrating a focus adjustment step of the laser cutting method according to an embodiment of the present invention.
  • FIG. 3C is a diagram illustrating a plate cutting process of the laser cutting method according to the embodiment of the present invention.
  • FIG. 3D is a diagram illustrating a gas spraying process of the laser cutting method according to an embodiment of the present invention.
  • FIG. 1 is a configuration diagram showing a laser cutting device used in a laser cutting method according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view around the machining head in the laser cutting apparatus of FIG.
  • FIG. 3A is a diagram for explaining a plate material arranging step
  • FIG. 4 is a graph showing the influence of the change in the laser focus position on the burr height.
  • FIG. 5A is a graph showing the influence of the change in the laser focus position on the kerf width.
  • FIG. 5B is a diagram illustrating the kerf width.
  • FIG. 6 is a graph showing the influence of the change in the gas pressure of the assist gas on the maximum burr height.
  • a stacked battery 10 having a positive electrode tab 11a and a negative electrode tab 12a, which are workpieces, will be described with reference to FIGS.
  • the laminated battery 10 is formed by laminating a positive electrode 11 and a negative electrode 12 via a separator (not shown) that is a porous film, and is housed in a laminate pack 15 together with an electrolyte.
  • the laminated battery 10 is a laminated cell such as a lithium ion secondary battery.
  • the positive electrode 11 includes a positive electrode current collector foil (not shown) coated with a positive electrode active material (not shown), and a positive electrode tab 11a joined to the positive electrode current collector foil.
  • the positive electrode active material is formed of, for example, a lithium transition metal oxide such as lithium cobalt oxide or lithium manganate.
  • the positive electrode current collector foil is formed of a metal such as aluminum, for example.
  • the positive electrode tab 11a is a plate material having a laser irradiation surface 11b irradiated with a laser and a surface 11c opposite to the laser irradiation surface 11b.
  • the positive electrode tab 11a is formed of 0.4 [mm] thick aluminum compared with the positive electrode current collector foil.
  • the negative electrode 12 includes a negative electrode current collector foil (not shown) coated with a negative electrode active material (not shown), and a negative electrode tab 12a joined to the negative electrode current collector foil.
  • the negative electrode active material is formed of a carbon-based material such as hard carbon or graphite, for example.
  • the negative electrode current collector foil is formed of a metal such as copper, for example.
  • the negative electrode tab 12a is also a plate material having a laser irradiation surface 12b irradiated with a laser and a surface 12c opposite to the laser irradiation surface 12b.
  • the negative electrode tab 12a is formed of copper having a thickness of 0.2 [mm] which is thicker than that of the negative electrode current collector foil.
  • the positive electrode tab 11a and the negative electrode tab 12a have different thicknesses and melting points. Specifically, the negative electrode tab 12a is formed thinner than the positive electrode tab 11a. In addition, the negative electrode tab 12a formed of copper or the like has a higher melting point than the positive electrode tab 11a formed of aluminum.
  • the positive electrode tab 11a and the negative electrode tab 12a are provided in parallel so that the laser irradiation surface 11b and the laser irradiation surface 12b are flush with each other.
  • the opposite surface 11c of the positive electrode tab 11a having a relatively low melting point is in the drawing than the opposite surface 12c of the negative electrode tab 12a having a relatively high melting point. It is provided in parallel with protruding downward.
  • the positive electrode tab 11a and the negative electrode tab 12a correspond to a pair of plate materials.
  • the laser cutting device 100 irradiates the condensed laser to the positive electrode tab 11a and the negative electrode tab 12a, melts them, and cuts them.
  • the laser cutting device 100 includes a table 20 on which the stacked battery 10 is placed, a laser supply device 30 that supplies a laser, a processing head 40 that irradiates a laser, and an XY stage 50 that moves the processing head 40 in two directions. With.
  • the table 20 has an upper surface 21 on which the stacked battery 10 is placed.
  • the table 20 is formed in such a size as to hold only the laminate pack 15 when the stacked battery 10 is placed and the positive electrode tab 11a and the negative electrode tab 12a protrude outside.
  • the laser supply device 30 includes a laser oscillator 31 that oscillates a laser and an optical fiber 32 that transmits the laser.
  • the laser oscillator 31 outputs a fiber laser oscillated by the fiber itself.
  • the laser oscillated from the laser oscillator 31 is a high energy density single mode fiber laser in which the energy distribution of the laser beam is a single mode.
  • a single mode fiber laser is suitable for fine processing because of its high beam quality and excellent light condensing performance.
  • the optical fiber 32 connects the laser oscillator 31 and the processing head 40.
  • the laser oscillated by the laser oscillator 31 passes through the optical fiber 32 and is transmitted to the processing head 40.
  • the processing head 40 includes a collimator lens 42 and a condensing lens 43 that are coaxially arranged inside a main body 41.
  • the laser transmitted by the optical fiber 32 becomes a parallel light beam when passing through the collimator lens 42, and is condensed toward the focal point after passing through the condenser lens 43.
  • a nozzle 44 is formed at the tip of the processing head 40, and the laser is irradiated from the nozzle 44 to the outside.
  • the machining head 40 is held on an XY stage 50.
  • the XY stage 50 has an X axis 51 that moves the machining head 40 in the width direction of the positive electrode tab 11a and the negative electrode tab 12a, and Y that moves the machining head 40 in the length direction of the positive electrode tab 11a and the negative electrode tab 12a.
  • a shaft 52 A shaft 52.
  • the machining head 40 when the machining head 40 is provided so as to be movable in the height direction, a movement error in the height direction of the machining head 40 may affect the focal position of the laser. Therefore, the machining head 40 is fixed so that it cannot move in the height direction. Thereby, the processing head 40 becomes a fixed optical system, and the focal position of the laser can be prevented from being shifted due to an error in movement of the processing head 40 in the height direction. Moreover, since it is not necessary to provide a mechanism for moving the machining head 40 in the height direction, the equipment can be simplified and the cost can be reduced.
  • the laser cutting device 100 includes a gas supply device 60 that supplies assist gas sprayed coaxially with the laser to the positive electrode tab 11a and the negative electrode tab 12a.
  • the gas supply device 60 includes a gas tank 61 that stores compressed high-pressure gas, and a pipe 62 that connects the gas tank 61 and the processing head 40.
  • the gas tank 61 is filled with assist gas that assists laser cutting.
  • the gas tank 61 is connected to the processing head 40 by a pipe 62 and supplies assist gas to the processing head 40.
  • Assist gas here is compressed air.
  • the assist gas is blown to the part to be laser-cut, and the melted and evaporated gas is blown off and removed. Thereby, it can suppress that a molten material adheres to a to-be-processed part.
  • the assist gas is properly used depending on the material to be cut.
  • oxygen, nitrogen, argon, or the like may be used.
  • the stacked battery 10 is placed on the upper surface 21 of the table 20, and the laser irradiation surface 11b of the positive electrode tab 11a and the laser irradiation surface 12b of the negative electrode tab 12a are arranged side by side in parallel. (Plate material arrangement process # 101).
  • the stacked battery 10 is formed so that the laser irradiation surface 11 b and the laser irradiation surface 12 b are flush with each other, the placement is completed only by placing the stacked battery 10 on the upper surface 21 of the table 20.
  • the focus position of the laser irradiated from the processing head 40 is adjusted so as to coincide with the back surface 12c of the negative electrode tab 12a. That is, the focal position of the laser is adjusted to the back surface 12c opposite to the laser irradiation surface 12b in the thinner one of the positive electrode tab 11a and the negative electrode tab 12a (focus adjustment step # 102).
  • the focal position of the laser can be adjusted by adjusting the fixed position of the processing head 40 in the optical axis direction (vertical direction in FIG. 2) or adjusting the fixed position of the condenser lens 43 in the optical axis direction.
  • the processing head 40 is a fixed optical system. When the stacked battery 10 is placed on the upper surface 21 of the table 20, the focal position of the laser is aligned with the back surface 12c of the negative electrode tab 12a.
  • the XY stage 50 is driven to move the processing head 40 in parallel. Specifically, the machining head 40 is moved while maintaining the focal position of the laser with respect to the positive electrode tab 11a and the negative electrode tab 12a.
  • the output of the laser is set to 300 [W (Watt)].
  • the machining head 40 moves in the direction of the X axis 51 to continuously laser-cut the positive electrode tab 11a and the negative electrode tab 12a (plate material cutting step # 103). Thereby, the positive electrode tab 11a and the negative electrode tab 12a are cut into a desired length.
  • the assist gas is blown from the gas supply device 60 to the positive electrode tab 11a and the negative electrode tab 12a together with the laser irradiated from the processing head 40 (gas blowing step # 104).
  • the positive electrode tab 11a and the negative electrode tab 12a are continuously laser-cut while keeping the supply conditions of the assist gas constant.
  • the assist gas is supplied at a pressure of 1.5 [MPa].
  • the melted metal (cutting product) melted by the irradiation of the laser on the positive electrode tab 11a and the negative electrode tab 12a is blown off by the assist gas. Therefore, it is suppressed that molten metal adheres to a cutting part.
  • continuous laser cutting means that the positive electrode tab 11a and the negative electrode tab 12a are cut in a series of operations in which the laser output and the assist gas supply conditions are kept constant. It means that.
  • the horizontal axis is the focal position [mm] of the laser when the laser irradiation surface 11b and the laser irradiation surface 12b are zero, and the vertical axis is the height [ ⁇ m] of the burr generated by laser cutting. is there.
  • a one-dot chain line in FIG. 4 indicates a case where the focal position of the laser is ⁇ 0.2 [mm].
  • the positive electrode tab 11a is formed thicker than the positive current collector foil, and the negative electrode tab 12a is formed thicker than the negative current collector foil. Therefore, when laser cutting the positive electrode tab 11a and the negative electrode tab 12a, burrs are more likely to occur than when laser cutting the positive electrode current collector foil and the negative electrode current collector foil.
  • the two curves in the graph of FIG. 4 indicate the burr height [ ⁇ m] corresponding to the focal positions of the lasers of the positive electrode tab 11a and the negative electrode tab 12a, respectively.
  • the positive electrode tab 11a has a minimum burr height and is minimized when the focal position of the laser is about 0 [mm] to ⁇ 0.5 [mm].
  • the burr height of the negative electrode tab 12a is minimized when the focal position of the laser is about ⁇ 0.2 [mm].
  • the focal point is at a position of -0.2 [mm], which is separated from the laser irradiation surface 12b by the thickness of the negative electrode tab 12a. . It can be seen from the graph of FIG. 4 that the burr height when the focal position of the laser is ⁇ 0.2 [mm] is suppressed to the minimum in both the positive electrode tab 11a and the negative electrode tab 12a.
  • the burr height can be minimized with both the positive electrode tab 11a and the negative electrode tab 12a. Therefore, the positive electrode tab 11a and the negative electrode tab 12a having different thicknesses can be continuously laser-cut while keeping the focal position of the laser constant. Therefore, there is no need to change the laser cutting conditions during laser cutting, and the processing time of the positive electrode tab 11a and the negative electrode tab 12a having different thicknesses can be shortened.
  • the positive electrode tab 11a suppresses the burr height within an allowable range when the focal position of the laser is in the range of ⁇ 0.6 [mm] to 0.4 [mm]. If the range is exceeded, the burr height increases rapidly and cannot be kept within the allowable range. If the burr height is not suppressed within an allowable range, the positive electrode tab 11a may not be cut. From this result, the tolerance of the focal position of the laser when the plate thickness of the positive electrode tab 11a is 0.4 [mm] (hereinafter referred to as “focal tolerance”) is ⁇ 0.6 [mm]. To 0.4 [mm], and the width of the focus latitude is 1.0 [mm].
  • the negative electrode tab 12a suppresses the burr height within an allowable range when the focal position of the laser is in the range of ⁇ 0.4 [mm] to 0.2 [mm]. If the range is exceeded, the burr height increases rapidly and cannot be kept within the allowable range. If the burr height is not suppressed within an allowable range, the negative electrode tab 12a may not be cut. From this result, the focus tolerance when the thickness of the negative electrode tab 12a is 0.2 [mm] can be considered to be in the range of ⁇ 0.4 [mm] to 0.2 [mm]. The width of the focus latitude is 0.6 [mm].
  • the width of the focus tolerance varies depending on the melting point and the plate thickness of the electrode tab. Specifically, the higher the melting point of the electrode tab and the thicker the plate thickness, the harder it is to cut, so the range of focus latitude becomes narrower.
  • the width of the focal margin of the positive electrode tab 11a is wider than the width of the focal margin of the negative electrode tab 12a. Therefore, when laser cutting is performed within the range of the focus latitude of the negative electrode tab 12a, the plate thickness of the positive electrode tab 11a can be made thicker than the current 0.4 [mm].
  • the width of the focal margin and the plate thickness are proportional, when the width of the focal margin of the positive electrode tab 11a is changed from 1.0 [mm] to 0.6 [mm]
  • the thickness of the plate material having the lower melting point depends on the focus tolerance width of the plate material having the higher melting point.
  • the maximum value can be set.
  • the horizontal axis is the laser focal position [mm] when the laser irradiation surface 11b and the laser irradiation surface 12b are zero, and the vertical axis is the kerf width [ ⁇ m corresponding to the change of the laser focal position. ].
  • the kerf width is the width of the portion cut by laser cutting, as shown in FIG. 5B.
  • the plot in the graph of FIG. 5A shows the kerf width [mm] of the negative electrode tab 12a with respect to the focal position of the laser.
  • the state where the focal position of the laser is 0 [mm] is a state where the focal position of the laser is aligned with the laser irradiation surface 12b of the negative electrode tab 12a.
  • the kerf width is about 45 [ ⁇ m], which is relatively large.
  • the kerf width is increased, it is considered that the scattered laser melts the negative electrode tab 12a more than necessary, and the cut surface becomes rough, so that the burr height increases.
  • the focal position of the laser is ⁇ 0.2 [mm]
  • the kerf width in the negative electrode tab 12a is minimized. This coincides with the case where the laser is focused on the opposite surface 12c of the negative electrode tab 12a. Therefore, the kerf width of the negative electrode tab 12a can be minimized by adjusting the focal position of the laser to the surface 12c opposite to the laser irradiation surface 12b of the negative electrode tab 12a.
  • the horizontal axis represents the gas pressure [MPa] of the assist gas supplied by the gas supply device 60
  • the vertical axis represents the maximum burr height [ ⁇ m] corresponding to the change in the gas pressure.
  • an inert gas is more suitable for laser cutting of aluminum than oxygen gas, and oxygen gas is suitable for laser cutting of copper. Therefore, when continuously processing the positive electrode tab 11a made of aluminum and the negative electrode tab 12a made of copper, it is desirable to change the conditions such as the type and pressure of the assist gas in the middle.
  • air compressed to a high pressure of at least 1.5 [MPa] or more is used as a single assist gas.
  • the plot in the graph of FIG. 6 shows the maximum burr height [ ⁇ m] when the gas pressure is changed from 1.5 [MPa] to 2.0 [MPa].
  • the white plot in the graph of FIG. 6 shows the maximum burr height of the positive electrode tab 11a made of aluminum, and the black plot shows the maximum burr height of the negative electrode tab 12a made of copper.
  • the gas pressure is set to at least 1.5 [MPa] or more, the maximum burr height is suppressed in both the positive electrode tab 11a made of aluminum and the negative electrode tab 12a made of copper. I understand that. Therefore, even when compressed air is used as the assist gas, the generation of burrs in the negative electrode tab 12a, which is copper, can be suppressed.
  • the positive electrode tab 11a and the negative electrode tab 12a can be continuously processed under the same conditions without changing the conditions of the assist gas.
  • the processing time can be shortened and the equipment can be simplified.
  • the running cost can be suppressed as compared with the case where noble gases are used.
  • the laser focus is formed on the upper surfaces of the positive electrode tab 11a and the negative electrode tab 12a. Compared with the case where the positions are matched, laser scattering between the plate thicknesses of the positive electrode tab 11a and the negative electrode tab 12a is suppressed.
  • the machining head 40 is moved by driving the XY stage 50.
  • the machining head 40 may be fixed and the table 20 may be translated relative to the machining head 40. .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 互いに厚さ及び融点が相違する一対の板材にレーザを照射して切断するレーザ切断方法が、前記一対の板材のうち融点が低い方の板材のレーザ照射面の反対面が、融点が高い方の板材のレーザ照射面の反対面よりも突出するように、一対の板材を並べて配置する板材配置工程と、レーザの焦点位置を、前記一対の板材のうち融点が高い方の板材のレーザ照射面の反対の裏面に合わせる焦点調整工程と、レーザを照射し、前記一対の板材に対するレーザの焦点位置を維持しながら前記一対の板材を一連の動作で切断する板材切断工程と、を備える。

Description

レーザ切断方法
 本発明は、レーザによって被加工物を切断するレーザ切断方法に関するものである。
 従来から、集光したレーザを被加工物に照射し、溶融させて切断するレーザ切断方法が知られている。JP2001-176501Aには、積層型電池の電極をレーザ切断する方法が開示されている。JP2001-176501Aでは、被加工物は、表面に活物質が塗布されて電極を構成する集電体である。レーザ切断では、プレスによって切断する場合と比較すると、プレス型の磨耗などに起因するバリの発生を抑制できる。
 ところで、一般に、厚さが相違する一対の板材をレーザ切断によって切断する場合には、板材の厚さに合わせて切断条件を変更し、各々に適した切断条件でレーザ切断を行う必要がある。そのため、厚さが相違する一対の板材を連続して切断するためには、切断条件を変更するための時間が余計にかかるおそれがある。
 本発明はこのような問題点に着目してなされたものであり、切断時のバリ高さを抑制可能であると共に、厚さが相違する一対の板材の加工時間を短縮可能なレーザ切断方法を提供することを目的とする。
 上記目的を達成するため、本発明のある態様によれば、互いに厚さ及び融点が相違する一対の板材にレーザを照射して切断するレーザ切断方法が、一対の板材のうち融点が低い方の板材のレーザ照射面の反対面が融点が高い方の板材のレーザ照射面の反対面よりも突出するように一対の板材を並べて配置し、レーザの焦点位置を前記一対の板材のうち融点が高い方の板材のレーザ照射面の反対の裏面に合わせ、レーザを照射して一対の板材に対するレーザの焦点位置を維持しながら一対の板材を一連の動作で切断する。
 本発明の実施形態、本発明の利点については、添付された図面を参照しながら以下に詳細に説明する。
図1は、本発明の一実施形態によるレーザ切断方法に用いられるレーザ切断装置を示す構成図である。 図2は、図1のレーザ切断装置における加工ヘッド周辺の拡大図である。 図3Aは、本発明の一実施形態によるレーザ切断方法の板材配置工程について説明する図である。 図3Bは、本発明の一実施形態によるレーザ切断方法の焦点調整工程について説明する図である。 図3Cは、本発明の一実施形態によるレーザ切断方法の板材切断工程について説明する図である。 図3Dは、本発明の一実施形態によるレーザ切断方法のガス吹付工程について説明する図である。 図4は、レーザ焦点位置の変化のバリ高さへの影響を示すグラフ図である。 図5Aは、レーザ焦点位置の変化のカーフ幅への影響を示すグラフ図である。 図5Bは、カーフ幅について説明する図である。 図6は、アシストガスのガス圧の変化の最大バリ高さへの影響を示すグラフ図である。
 まず、図1及び図2を参照して、被加工物である正極電極タブ11a及び負極電極タブ12aを有する積層型電池10について説明する。
 積層型電池10は、正極電極11と負極電極12とが、多孔質フィルムであるセパレータ(図示省略)を介して積層され、電解質とともにラミネートパック15の内部に収容されて形成される。積層型電池10は、リチウムイオン二次電池などのラミネート型のセルである。
 正極電極11は、正極活物質(図示省略)が塗布された正極集電箔(図示省略)と、正極集電箔に接合された正極電極タブ11aとを備える。正極活物質は、例えば、コバルト酸リチウムやマンガン酸リチウムなどのリチウム遷移金属酸化物によって形成される。正極集電箔は、例えば、アルミニウムなどの金属によって形成される。
 図2に示すように、正極電極タブ11aは、レーザが照射されるレーザ照射面11bと、レーザ照射面11bの反対面11cとを有する板材である。ここでは、正極電極タブ11aは、正極集電箔と比較して厚い0.4[mm]のアルミニウムで形成される。
 負極電極12は、負極活物質(図示省略)が塗布された負極集電箔(図示省略)と、負極集電箔に接合された負極電極タブ12aとを備える。負極活物質は、例えば、ハードカーボンやグラファイトなどの炭素系材料によって形成される。負極集電箔は、例えば、銅などの金属によって形成される。
 図2に示すように、負極電極タブ12aも同様に、レーザが照射されるレーザ照射面12bと、レーザ照射面12bの反対面12cとを有する板材である。ここでは、負極電極タブ12aは、負極集電箔と比較して厚い0.2[mm]の銅で形成される。
 正極電極タブ11aと負極電極タブ12aとは、互いに厚さ及び融点が相違する。具体的には、負極電極タブ12aは、正極電極タブ11aと比較して薄く形成される。また、アルミニウムで形成される正極電極タブ11aと比較して、銅などで形成される負極電極タブ12aのほうが融点は高い。
 正極電極タブ11aと負極電極タブ12aとは、レーザ照射面11bとレーザ照射面12bとが面一になるように平行に設けられる。換言すれば、正極電極タブ11aと負極電極タブ12aとは、相対的に融点が低い正極電極タブ11aの反対面11cが、相対的に融点が高い負極電極タブ12aの反対面12cよりも図中下方に突出した状態で平行に設けられる。これらの正極電極タブ11aと負極電極タブ12aとが、一対の板材に該当する。
 次に、図1及び図2を参照して、本発明の実施の形態に係るレーザ切断方法に用いられるレーザ切断装置100について説明する。
 レーザ切断装置100は、集光したレーザを正極電極タブ11aと負極電極タブ12aとに照射し、溶融させて切断するものである。レーザ切断装置100は、積層型電池10が載置されるテーブル20と、レーザを供給するレーザ供給装置30と、レーザを照射する加工ヘッド40と、加工ヘッド40を二方向に移動させるXYステージ50とを備える。
 テーブル20は、積層型電池10が載置される上面21を有する。テーブル20は、積層型電池10が載置されたときに、ラミネートパック15のみを保持し、正極電極タブ11a及び負極電極タブ12aが外部にはみ出るような大きさに形成される。
 レーザ供給装置30は、レーザを発振するレーザ発振器31と、レーザを伝送する光ファイバ32とを備える。
 レーザ発振器31は、ファイバー自体によって発振されるファイバーレーザを出力する。レーザ発振器31から発振されるレーザは、レーザ光のエネルギ分布が単一モードである高エネルギ密度のシングルモードファイバーレーザである。シングルモードファイバーレーザは、ビーム品質が高く集光性に優れているため、微細な加工に適している。
 光ファイバ32は、レーザ発振器31と加工ヘッド40とを接続する。レーザ発振器31で発振されたレーザは、光ファイバ32の中を通って加工ヘッド40に伝送される。
 図2に示すように、加工ヘッド40は、本体41の内部に同軸に並べられたコリメータレンズ42及び集光レンズ43を備える。光ファイバ32によって伝送されたレーザは、コリメータレンズ42を通過すると平行光線になり、集光レンズ43を通過すると焦点に向けて集光される。加工ヘッド40の先端には、ノズル44が形成され、レーザはノズル44から外部に照射される。
 図1に示すように、加工ヘッド40は、XYステージ50に保持される。XYステージ50は、正極電極タブ11a及び負極電極タブ12aの幅方向に加工ヘッド40を移動させるX軸51と、正極電極タブ11a及び負極電極タブ12aの長さ方向に加工ヘッド40を移動させるY軸52とを備える。これにより、加工ヘッド40は、正極電極タブ11a及び負極電極タブ12aに対するレーザの焦点位置を維持しながら平行移動が可能である。
 ここで、加工ヘッド40を高さ方向に移動可能に設けた場合には、加工ヘッド40の高さ方向の移動誤差が、レーザの焦点位置に影響を及ぼすおそれがある。そこで、加工ヘッド40は、高さ方向に移動できないように固定される。これにより、加工ヘッド40は固定光学系となり、加工ヘッド40の高さ方向への移動誤差に起因してレーザの焦点位置がずれることを防止できる。また、加工ヘッド40を高さ方向に移動させるための機構を設けないでよいため、設備が簡素化されてコストダウンが図れる。
 また、レーザ切断装置100は、正極電極タブ11a及び負極電極タブ12aにレーザと同軸に吹き付けられるアシストガスを供給するガス供給装置60を備える。
 ガス供給装置60は、圧縮された高圧の気体を溜めるガスタンク61と、ガスタンク61と加工ヘッド40とを連結する配管62とを備える。
 ガスタンク61には、レーザ切断を補助するアシストガスが充填される。ガスタンク61は、配管62によって加工ヘッド40と連結され、加工ヘッド40にアシストガスを供給する。
 アシストガスは、ここでは、圧縮空気である。アシストガスは、レーザ切断される部分に吹き付けられ、溶融し蒸発したガスを吹き飛ばして除去する。これにより、被加工部に溶融物が付着することを抑制できる。アシストガスは、切断される材料によって使い分けられるものである。アシストガスとして、酸素,窒素,又はアルゴンなどを用いてもよい。
 次に、主に図3Aから図3Dを参照して、レーザ切断装置100におけるレーザ切断方法について説明する。
 まず、テーブル20の上面21に積層型電池10を載置し、正極電極タブ11aのレーザ照射面11bと、負極電極タブ12aのレーザ照射面12bとが面一になるように平行に並べて配置する(板材配置工程#101)。ここでは、積層型電池10は、レーザ照射面11bとレーザ照射面12bとが面一になるように形成されているため、テーブル20の上面21に載置するだけで配置が完了する。
 次に、加工ヘッド40から照射されるレーザの焦点位置が、負極電極タブ12aの裏面12cと一致するように調整する。即ち、レーザの焦点位置を、正極電極タブ11aと負極電極タブ12aとのうち厚さが薄い方におけるレーザ照射面12bの反対の裏面12cに合わせる(焦点調整工程#102)。レーザの焦点位置は、加工ヘッド40の固定位置を光軸方向(図2では上下方向)に調整すること、又は集光レンズ43の固定位置を光軸方向に調整することによって調整可能である。ここでは、加工ヘッド40は固定光学系であり、テーブル20の上面21に積層型電池10を載置すれば、レーザの焦点位置が負極電極タブ12aの裏面12cに合うようになっている。
 次に、加工ヘッド40からレーザを照射した状態で、XYステージ50を駆動し、加工ヘッド40を平行移動する。具体的には、正極電極タブ11a及び負極電極タブ12aに対するレーザの焦点位置を維持しながら加工ヘッド40を移動する。ここでは、レーザの出力は、300[W(ワット)]に設定される。
 加工ヘッド40は、図1を参照すると、X軸51の方向に移動して、正極電極タブ11aと負極電極タブ12aとを、連続的にレーザ切断する(板材切断工程#103)。これにより、正極電極タブ11aと負極電極タブ12aとは、所望の長さに切断される。
 このとき、正極電極タブ11a及び負極電極タブ12aには、加工ヘッド40から照射されるレーザと共に、ガス供給装置60からアシストガスが吹きつけられる(ガス吹付工程#104)。正極電極タブ11a及び負極電極タブ12aとは、アシストガスの供給条件を一定に保ったまま連続的にレーザ切断される。アシストガスは、1.5[MPa]の圧力で供給される。
 正極電極タブ11a及び負極電極タブ12aにおけるレーザが照射されて溶融した部分の溶金(切断生成物)は、アシストガスによって吹き飛ばされる。よって、切断部に溶金が付着することが抑制される。
 なお、本実施形態において連続的にレーザ切断するというのは、レーザの出力及びアシストガスの供給条件を一定に保った一連の動作の中で、正極電極タブ11aと負極電極タブ12aとを切断するという意味である。
 以下、図4から図6を参照して、本発明の実施の形態に係るレーザ切断方法の作用について説明する。
 図4において、横軸は、レーザ照射面11b及びレーザ照射面12bを零としたときのレーザの焦点位置[mm]であり、縦軸は、レーザ切断によって発生したバリの高さ[μm]である。図4における一点鎖線は、レーザの焦点位置が-0.2[mm]であるときを示す。
 正極電極タブ11aは、正極集電箔より厚く形成され、負極電極タブ12aは、負極集電箔より厚く形成される。そのため、正極電極タブ11a及び負極電極タブ12aをレーザ切断する場合には、正極集電箔及び負極集電箔をレーザ切断する場合と比較してバリが発生しやすい。
 図4のグラフにおける二本の曲線は、それぞれ正極電極タブ11aと負極電極タブ12aとのレーザの焦点位置に対応するバリ高さ[μm]を示すものである。図4に示すように、正極電極タブ11aは、レーザの焦点位置が0[mm]から-0.5[mm]程度のときに、バリ高さが零になり、最小になる。一方、負極電極タブ12aは、レーザの焦点位置が-0.2[mm]程度のときに、バリ高さが最小になる。
 ここでは、負極電極タブ12aの裏面12cに焦点位置を合わせているため、レーザ照射面12bから負極電極タブ12aの厚さ分だけ離れた-0.2[mm]の位置に焦点が合っている。図4のグラフから、レーザの焦点位置が-0.2[mm]のときのバリ高さは、正極電極タブ11aと負極電極タブ12aとの双方で、最小に抑えられていることがわかる。
 これは、レーザの焦点位置を、負極電極タブ12aの裏面12cに合わせたことによって、正極電極タブ11a及び負極電極タブ12aの上面にレーザ焦点位置を合わせた場合と比較して、正極電極タブ11a及び負極電極タブ12aの板厚間でのレーザ散乱が抑えられるためである。
 よって、散乱したレーザが必要以上に正極電極タブ11a及び負極電極タブ12aを溶かして切断面が荒れることを抑制できる。したがって、正極電極タブ11a及び負極電極タブ12aの切断時に発生するバリの高さを抑制できる。
 以上より、レーザの焦点位置を負極電極タブ12aの裏面12cに合わせた場合には、正極電極タブ11a及び負極電極タブ12aの両方で、バリ高さを最少に抑えることができる。よって、互いに厚さの異なる正極電極タブ11a及び負極電極タブ12aを、レーザの焦点位置を一定に保ったまま連続的にレーザ切断することが可能である。したがって、レーザ切断の途中でレーザの切断条件を変更する必要はなく、厚さが相違する正極電極タブ11a及び負極電極タブ12aの加工時間を短縮できる。
 また、図4に点線で示したように、正極電極タブ11aは、レーザの焦点位置が-0.6[mm]から0.4[mm]の範囲でバリ高さを許容範囲内に抑えることができ、その範囲を超えるとバリ高さが急激に大きくなって許容範囲内に抑えることができなくなる。バリ高さを許容範囲内に抑えないと、正極電極タブ11aを切断できないおそれがある。この結果から、正極電極タブ11aの板厚の厚さが0.4[mm]のときのレーザの焦点位置の裕度(以下「焦点裕度」という。)は、-0.6[mm]から0.4[mm]の範囲と考えることができ、焦点裕度の幅は1.0[mm]となる。
 一方、図4に破線で示したように、負極電極タブ12aは、レーザの焦点位置が-0.4[mm]から0.2[mm]の範囲でバリ高さを許容範囲内に抑えることができ、その範囲を超えるとバリ高さが急激に大きくなって許容範囲内に抑えることができなくなる。バリ高さを許容範囲内に抑えないと、負極電極タブ12aを切断できないおそれがある。この結果から、負極電極タブ12aの板厚の厚さが0.2[mm]のときの焦点裕度は、-0.4[mm]から0.2[mm]の範囲と考えることができ、焦点裕度の幅は0.6[mm]となる。
 ここで、焦点裕度の幅は、電極タブの融点及び板厚によって変化する。具体的には、電極タブの融点が高いほど、また、板厚が厚くなるほど切断しにくくなるので、焦点裕度の幅は狭くなる。
 本実施形態の場合、正極電極タブ11aの焦点裕度の幅は、負極電極タブ12aの焦点裕度の幅よりも広くなっている。したがって、負極電極タブ12aの焦点裕度の範囲でレーザ切断をする場合は、正極電極タブ11aの板厚を現在の0.4[mm]よりも厚くすることができる。
 具体的には、焦点裕度の幅と板厚とは比例関係にあるため、正極電極タブ11aの焦点裕度の幅を1.0[mm]から0.6[mm]にしたときは、正極電極タブ11aの板厚を1.67(=1.0/0.6)倍まで厚くすることができる。すなわち、正極電極タブ11aの板厚を0.67[mm](=0.4[mm]×1.67)まで厚くすることができる。
 したがって、正極電極タブ11aがアルミニウムで形成されていて、負極電極タブ12aが銅で形成されている場合に、負極電極タブ12aの焦点裕度の範囲でレーザ切断をするときは、正極負極タブ11aの板厚の厚さを、負極電極タブ12aの板厚の厚さの3.3(=0.67[mm]/0.2[mm])倍まで厚くしても、バリ高さを抑制しつつ正極電極タブ11aを切断することができる。
 このように、融点の異なる2種類の板材を一連の動作でレーザ切断する場合には、融点が高いほうの板材の焦点裕度の幅に応じて、融点が低いほうの板材の板厚の厚さの最大値を設定することができる。
 図5Aにおいて、横軸は、レーザ照射面11b及びレーザ照射面12bを零としたときのレーザの焦点位置[mm]であり、縦軸は、レーザの焦点位置の変化に対応するカーフ幅[μm]である。
 カーフ幅は、図5Bに示すように、レーザ切断で切断された部分の幅である。カーフ幅が小さいほど、レーザ切断を行うときの溶金の生成量が少なく、精度の高い加工が可能である。
 図5Aのグラフにおけるプロットは、レーザの焦点位置に対する負極電極タブ12aのカーフ幅[mm]を示すものである。レーザの焦点位置が0[mm]である状態は、負極電極タブ12aのレーザ照射面12bにレーザの焦点位置を合わせた状態である。図5Aに示すように、レーザの焦点位置が0[mm]のときには、カーフ幅が約45[μm]であり、比較的大きくなる。カーフ幅が大きくなると、散乱したレーザが必要以上に負極電極タブ12aを溶融させ、切断面が荒れるためにバリ高さが高くなると考えられる。
 これに対して、レーザの焦点位置が-0.2[mm]のときに、負極電極タブ12aにおけるカーフ幅は最小になる。これは、負極電極タブ12aの反対面12cにレーザの焦点を合わせたときと一致する。よって、レーザの焦点位置を、負極電極タブ12aにおけるレーザ照射面12bの反対面12cに合わせると、負極電極タブ12aのカーフ幅を最小にすることができる。
 図6において、横軸は、ガス供給装置60によって供給されるアシストガスのガス圧[MPa]であり、縦軸は、ガス圧の変化に対応する最大バリ高さ[μm]である。
 一般に、アルミニウムのレーザ切断には、酸素ガスと比較して不活性ガスの方が適しており、銅のレーザ切断には、酸素ガスが適している。よって、アルミニウムである正極電極タブ11aと銅である負極電極タブ12aとを連続して加工するときには、アシストガスの種類や圧力等の条件を途中で変更することが望ましい。
 これに対して、本実施の形態に係るレーザ切断方法では、単一のアシストガスとして、少なくとも1.5[MPa]以上の高圧に圧縮された空気が用いられる。図6のグラフにおけるプロットは、ガス圧を1.5[MPa]から2.0[MPa]まで変化させたときの最大バリ高さ[μm]を示す。図6のグラフにおける白塗りのプロットは、アルミニウムである正極電極タブ11aの最大バリ高さを示し、黒塗りのプロットは、銅である負極電極タブ12aの最大バリ高さを示す。
 図6のグラフから、少なくとも1.5[MPa]以上にガス圧を設定すれば、アルミニウムである正極電極タブ11aと銅である負極電極タブ12aとの両方において、最大バリ高さが抑制されることがわかる。よって、アシストガスとして圧縮空気を用いたときにも、銅である負極電極タブ12aにおけるバリの発生を抑制できる。
 これは、圧縮空気を高圧にすることで、供給される酸素の絶対量が増加するためであると考えられる。また、空気の約80%は不活性ガスである窒素であるため、アルミニウムである正極電極タブ11aにおけるバリの発生を抑制できる。更に、圧縮空気は1.5[MPa]以上の高圧であるため、圧縮空気を吹き付けることでアルミニウム又は銅の溶金を吹き飛ばすことができ、レーザ切断におけるバリの発生を抑制できる。
 以上より、正極電極タブ11aと負極電極タブ12aとを、アシストガスの条件を変更することなく、同一の条件で連続して加工することができる。単一のアシストガスを用いることで、加工時間の短縮が可能であるとともに、設備の簡素化が可能である。また、圧縮空気を用いることで、希ガス類を用いる場合などと比較してランニングコストを抑制できる。
 以上の実施の形態によれば、以下に示す効果を奏する。
 レーザの焦点位置を、正極電極タブ11aと比較して板厚が薄く、融点の高い負極電極タブ12aの反対面12cに合わせたことによって、正極電極タブ11a及び負極電極タブ12aの上面にレーザ焦点位置を合わせた場合と比較して、正極電極タブ11a及び負極電極タブ12aの板厚間でのレーザ散乱が抑えられる。
 よって、散乱したレーザが必要以上に正極電極タブ11a及び負極電極タブ12aを溶かして切断面が荒れることを抑制できると共に、互いに厚さの異なる正極電極タブ11a及び負極電極タブ12aを連続してレーザ切断することが可能である。したがって、切断時のバリ高さを抑制できると共に、厚さが相違する正極電極タブ11a及び負極電極タブ12aの加工時間を短縮できる。
 以上、この発明を特定の実施形態を通じて説明してきたが、この発明は上記実施形態に限定されるものではない。当業者にとっては、本発明の技術的範囲で上記実施形態にさまざまな修正あるいは変更を加えることが可能である。
 例えば、上述した本発明の実施の形態では、XYステージ50の駆動によって加工ヘッド40を移動しているが、加工ヘッド40を固定し、加工ヘッド40に対してテーブル20を平行移動してもよい。
 以上の説明に関して2010年10月19日を出願日とする日本国における特願2010-234722号の内容をここに引用により組み込む。

Claims (7)

  1.  互いに厚さ及び融点が相違する一対の板材(11a,12a)にレーザを照射して切断するレーザ切断方法であって、
     前記一対の板材(11a,12a)のうち融点が低い方の板材(11a)のレーザ照射面(11b)の反対面(11c)が、融点が高い方の板材(12a)のレーザ照射面(12b)の反対面(12c)よりも突出するように、前記一対の板材(11a,12a)を並べて配置する板材配置工程と、
     レーザの焦点位置を、前記一対の板材(11a,12a)のうち融点が高い方の板材(12a)のレーザ照射面(12b)の反対面(12c)に合わせる焦点調整工程(#102)と、
     レーザを照射し、前記一対の板材(11a,12a)に対するレーザの焦点位置を維持しながら前記一対の板材(11a,12a)を一連の動作で切断する板材切断工程(#103)と、
    を備えるレーザ切断方法。
  2.  前記一対の板材(11a,12a)のうち融点が低い方の板材(11a)の板厚の最大値は、融点が高い方の板材(12a)の焦点裕度に応じて設定され、融点が高い方の板材(12a)の焦点裕度の幅が狭くなるほど、融点が低い方の板材(11a)の板厚の最大値は小さくなる請求項1に記載のレーザ切断方法。
  3.  前記一対の板材(11a,12a)のうち融点が低い方の板材(11a)はアルミニウム板であり、融点が高い方の板材(12a)は銅板であり、
     融点が低い方の板材(11a)の板厚の最大値は、融点が高い方の板材(12a)の板厚の3.3倍に設定される請求項2に記載のレーザ切断方法。
  4.  前記焦点調整工程の前に、前記一対の板材(11a,12a)のそれぞれの前記レーザ照射面(11b,12b)を、面一になるように並べて配置する板材配置工程(#101)をさらに備える請求項1から請求項3までのいずれか1つに記載のレーザ切断方法。
  5.  レーザによる切断を補助するために、レーザの照射と共にアシストガスを前記一対の板材(11a,12a)に吹き付けるガス吹付工程(#104)を更に備え、
     前記一対の板材(11a,12a)は、前記アシストガスを供給した状態で、連続的に切断される請求項1から請求項4までのいずれか1つに記載のレーザ切断方法。
  6.  前記一対の板材(11a,12a)は、前記アシストガスの供給条件を一定に保ったまま連続的に切断される請求項5に記載のレーザ切断方法。
  7.  前記一対の板材(11a,12a)のうち融点が低い方の板材(11a)は、積層型電池(10)の正極電極タブ(11a)であり、融点が高い方の板材(12a)は前記積層型電池(10)の負極電極タブ(12a)であり、
     前記正極電極タブ(11a)及び前記負極電極タブ(12a)は、前記積層型電池(10)の電極を形成する集電箔よりも厚く形成される請求項1から請求項6までのいずれか1つに記載のレーザ切断方法。
PCT/JP2011/073712 2010-10-19 2011-10-14 レーザ切断方法 WO2012053452A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137004239A KR101390064B1 (ko) 2010-10-19 2011-10-14 레이저 절단 방법
US13/818,228 US9168611B2 (en) 2010-10-19 2011-10-14 Laser cutting method
EP11834292.2A EP2631030B1 (en) 2010-10-19 2011-10-14 Laser cutting method
JP2012539704A JP5435146B2 (ja) 2010-10-19 2011-10-14 レーザ切断方法
CN201180043735.7A CN103097073B (zh) 2010-10-19 2011-10-14 激光切断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010234722 2010-10-19
JP2010-234722 2010-10-19

Publications (1)

Publication Number Publication Date
WO2012053452A1 true WO2012053452A1 (ja) 2012-04-26

Family

ID=45975165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073712 WO2012053452A1 (ja) 2010-10-19 2011-10-14 レーザ切断方法

Country Status (6)

Country Link
US (1) US9168611B2 (ja)
EP (1) EP2631030B1 (ja)
JP (1) JP5435146B2 (ja)
KR (1) KR101390064B1 (ja)
CN (1) CN103097073B (ja)
WO (1) WO2012053452A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010962A (ja) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd レーザ切断方法、製品の製造装置、および製品の製造方法
KR101517602B1 (ko) * 2013-05-08 2015-05-06 한국기계연구원 레이저 가공용 광학 헤드
JP2018043253A (ja) * 2016-09-13 2018-03-22 パナソニックIpマネジメント株式会社 レーザ切断装置およびレーザ切断方法
CN113798708A (zh) * 2021-09-28 2021-12-17 广东利元亨智能装备股份有限公司 一种激光切割治具及激光切割设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6025917B1 (ja) * 2015-06-10 2016-11-16 株式会社アマダホールディングス レーザ切断方法
JP6238185B2 (ja) * 2016-05-18 2017-11-29 株式会社アマダホールディングス めっき鋼板のレーザ切断加工方法、レーザ切断加工品、熱切断加工方法、熱切断加工製品、表面処理鋼板及びレーザ切断方法並びにレーザ加工ヘッド
DE102016219928A1 (de) * 2016-10-13 2018-04-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zur Bestimmung und zur Regelung einer Fokusposition eines Bearbeitungsstrahls
KR102655101B1 (ko) * 2018-11-23 2024-04-08 주식회사 엘지에너지솔루션 배터리 셀의 전극리드 절단장치
KR102343369B1 (ko) * 2020-04-03 2021-12-24 한국기계연구원 배터리용 유연 기판의 절단 장치
CN114939738B (zh) * 2022-06-20 2024-02-06 大族激光科技产业集团股份有限公司 一种激光切割方法和切割控制系统
KR102506881B1 (ko) 2022-10-24 2023-03-07 주식회사 조호레이저 레이저 절단방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199790A (ja) * 1987-10-12 1989-04-18 Mitsubishi Electric Corp ドロスが付着しやすい材料のレーザ切断法
JP2001176501A (ja) 1999-12-16 2001-06-29 Sony Corp 非水電解質電池の製造方法
JP2005118818A (ja) * 2003-10-16 2005-05-12 Koike Sanso Kogyo Co Ltd レーザ切断ノズル
JP2007014993A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp レーザを用いたワーク切断方法とレーザ加工装置
JP2010234722A (ja) 2009-03-31 2010-10-21 Mitsubishi Paper Mills Ltd インクジェット記録材料及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549733A (en) * 1968-12-04 1970-12-22 Du Pont Method of producing polymeric printing plates
US4503313A (en) * 1981-04-07 1985-03-05 Amada Engineering & Service Co., Inc. Relatively adjustable laser and optic system for laser processing
JPH01273682A (ja) * 1988-04-25 1989-11-01 Shin Meiwa Ind Co Ltd 切断ロボットの切断出力条件設定方法
JPH0919780A (ja) * 1995-07-04 1997-01-21 Bridgestone Corp 重ね合わせた被加工物をレーザー加工機により切断する加工方法
US5635086A (en) * 1995-10-10 1997-06-03 The Esab Group, Inc. Laser-plasma arc metal cutting apparatus
JPH10128569A (ja) * 1996-10-22 1998-05-19 Toshiba Electron Eng Corp レーザ加工装置
US5902697A (en) * 1998-05-15 1999-05-11 Valence Technology, Inc. Bi-cell separation for improved safety
US20020007552A1 (en) * 1999-05-25 2002-01-24 Singleton Robert W. Apparatus and method of manufacturing a battery cell
IT1320220B1 (it) * 2000-06-30 2003-11-26 Prima Ind Spa Procedimento per la produzione di lamiere multispessore e/omultimateriale.
US7662265B2 (en) * 2000-10-20 2010-02-16 Massachusetts Institute Of Technology Electrophoretic assembly of electrochemical devices
JP3597488B2 (ja) * 2001-04-20 2004-12-08 ヤマザキマザック株式会社 レーザ焼入れ装置
JP2004343008A (ja) * 2003-05-19 2004-12-02 Disco Abrasive Syst Ltd レーザ光線を利用した被加工物分割方法
FR2880568B1 (fr) * 2005-01-12 2007-03-30 Air Liquide Coupage laser avec lentille a double focale de pieces metalliques de forte epaisseur
DE102006012984A1 (de) * 2006-03-21 2007-10-11 Linde Ag Vorrichtung und ein Verfahren zum Laserschneiden
JP5117133B2 (ja) * 2007-07-26 2013-01-09 日立ビークルエナジー株式会社 非水電解質二次電池およびその製造方法
DE102007063627B4 (de) * 2007-10-02 2010-08-12 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Bestimmung der Lage eines Laserstrahls relativ zu einer Öffnung, sowie Laserbearbeitungsmaschine
CN201122624Y (zh) * 2007-11-30 2008-09-24 比亚迪股份有限公司 一种电极引出结构及包含该电极引出结构的电池
WO2010137475A1 (ja) * 2009-05-25 2010-12-02 三菱電機株式会社 レーザ加工装置およびレーザ加工方法
CN101797666A (zh) * 2010-03-26 2010-08-11 中国科学院上海光学精密机械研究所 延长焦深的激光切割头
CN102205469A (zh) * 2010-03-31 2011-10-05 深圳市先阳软件技术有限公司 一种对电池极片进行激光切割的控制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199790A (ja) * 1987-10-12 1989-04-18 Mitsubishi Electric Corp ドロスが付着しやすい材料のレーザ切断法
JP2001176501A (ja) 1999-12-16 2001-06-29 Sony Corp 非水電解質電池の製造方法
JP2005118818A (ja) * 2003-10-16 2005-05-12 Koike Sanso Kogyo Co Ltd レーザ切断ノズル
JP2007014993A (ja) * 2005-07-08 2007-01-25 Toyota Motor Corp レーザを用いたワーク切断方法とレーザ加工装置
JP2010234722A (ja) 2009-03-31 2010-10-21 Mitsubishi Paper Mills Ltd インクジェット記録材料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631030A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014010962A (ja) * 2012-06-28 2014-01-20 Nissan Motor Co Ltd レーザ切断方法、製品の製造装置、および製品の製造方法
KR101536048B1 (ko) * 2012-06-28 2015-07-10 닛산 지도우샤 가부시키가이샤 레이저 절단 방법, 제품의 제조 장치 및 제품의 제조 방법
KR101517602B1 (ko) * 2013-05-08 2015-05-06 한국기계연구원 레이저 가공용 광학 헤드
JP2018043253A (ja) * 2016-09-13 2018-03-22 パナソニックIpマネジメント株式会社 レーザ切断装置およびレーザ切断方法
CN113798708A (zh) * 2021-09-28 2021-12-17 广东利元亨智能装备股份有限公司 一种激光切割治具及激光切割设备
CN113798708B (zh) * 2021-09-28 2023-10-20 广东利元亨智能装备股份有限公司 一种激光切割治具及激光切割设备

Also Published As

Publication number Publication date
EP2631030B1 (en) 2018-07-25
US20130146573A1 (en) 2013-06-13
JPWO2012053452A1 (ja) 2014-02-24
KR20130055648A (ko) 2013-05-28
JP5435146B2 (ja) 2014-03-05
US9168611B2 (en) 2015-10-27
KR101390064B1 (ko) 2014-04-30
EP2631030A4 (en) 2017-08-16
CN103097073A (zh) 2013-05-08
CN103097073B (zh) 2015-01-14
EP2631030A1 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5435146B2 (ja) レーザ切断方法
JP5479024B2 (ja) 接合方法および接合装置
US7977620B2 (en) Laser-welding method for stacked workpieces
US20120031883A1 (en) Laser machining device and laser machining method
JP2014226706A (ja) レーザ切断装置およびレーザ切断方法
JP2016030280A (ja) 金属箔のレーザ溶接方法及び装置
US20090266801A1 (en) Method of laser welding metal plated plates
JP2014073526A (ja) 光学系及びレーザ加工装置
JP2018089667A (ja) レーザ切断装置
US20100072182A1 (en) Fiber Laser Cutting Process with Multiple Foci
US11117216B2 (en) Laser joining method for galvanized steel sheets
JP2007014993A (ja) レーザを用いたワーク切断方法とレーザ加工装置
US20240189948A1 (en) Electrode sheet manufacturing apparatus and power storage device manufacturing method
JP3767369B2 (ja) 薄鋼板の重ね溶接方法及び溶接結合薄鋼板
KR20120051163A (ko) 이차전지 전극의 용접 장치 및 방법
JP2002144064A (ja) 金属部材の溶接方法及び装置
KR101278044B1 (ko) 레이저를 이용한 이차전지용 전극 절단방법
JP5188364B2 (ja) レーザ加工方法
KR102386895B1 (ko) 레이저 가공 장치 및 방법
JP2012228716A (ja) レーザ溶接装置およびレーザ溶接方法
Patwa et al. Investigation of different laser cutting strategies for sizing of Li-Ion battery electrodes
CN114083150A (zh) 一种激光复合切割管体的方法及切割系统
JP2002178176A (ja) 突合わせ溶接方法及び溶接結合薄鋼板
JP2012228717A (ja) レーザ溶接装置およびレーザ溶接方法
JP2021133399A (ja) レーザ加工装置、レーザ加工方法、およびレーザ加工装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043735.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539704

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137004239

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13818228

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011834292

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE