WO2012053433A1 - Method for forming alumina film - Google Patents

Method for forming alumina film Download PDF

Info

Publication number
WO2012053433A1
WO2012053433A1 PCT/JP2011/073622 JP2011073622W WO2012053433A1 WO 2012053433 A1 WO2012053433 A1 WO 2012053433A1 JP 2011073622 W JP2011073622 W JP 2011073622W WO 2012053433 A1 WO2012053433 A1 WO 2012053433A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
alumina film
compound
forming
Prior art date
Application number
PCT/JP2011/073622
Other languages
French (fr)
Japanese (ja)
Inventor
康巨 鄭
雅浩 山本
酒井 達也
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012539698A priority Critical patent/JPWO2012053433A1/en
Publication of WO2012053433A1 publication Critical patent/WO2012053433A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1225Deposition of multilayers of inorganic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1291Process of deposition of the inorganic material by heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light

Definitions

  • the present invention relates to an alumina film forming method.
  • alumina In semiconductor devices typified by DRAM (dynamic random access memory), alumina is often used as a protective film or insulating film because of its high insulating properties and denseness.
  • sputtering methods RF magnetron sputtering method using alumina as a target, reactive sputtering method using aluminum as a target and oxygen gas coexisting
  • chemical vapor deposition method aluminum chloride or organoaluminum compound and A method using water as a raw material gas
  • Patent Document 1 describes using a complex of an amine compound and an aluminum hydride compound as a method for forming an alumina film.
  • the present inventors have conducted intensive research, and after removing an organic solvent from a coating film containing an aluminum compound and an organic solvent coated on a substrate, at least one selected from water and alcohol
  • the inventors have found that the above object can be achieved by performing at least one kind of treatment selected from heat treatment and light irradiation treatment, and completed the present invention. That is, the present invention provides the following [1] to [5].
  • An alumina film forming method comprising the following steps (a) to (c): (A) A step of applying an alumina film-forming composition containing an aluminum compound and an organic solvent on a substrate to form a coating film (b) A step of removing the organic solvent from the coating film formed in step (a) (C) A step of forming an alumina film by subjecting the coating film obtained in step (b) to at least one treatment selected from heat treatment and light irradiation treatment in the presence of at least one selected from water and alcohol [ 2] The alumina film according to [1], wherein the step (c) is performed in the presence of at least one selected from a basic compound and an acidic compound in addition to at least one selected from the water and alcohol. Forming method.
  • the aluminum compound is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), a formula (1-4)
  • each R 1 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms
  • L represents a ligand
  • n represents 0 to Indicates an integer of 2.
  • each R 2 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms
  • each R 3 independently represents 1 to 1 carbon atoms.
  • each R 4 independently represents a monovalent organic group having 1 to 12 carbon atoms
  • Z 1 represents a hydrogen atom or a halogen atom.
  • R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms.
  • each R 7 independently represents a monovalent organic group having 1 to 12 carbon atoms.
  • the composition for forming an alumina film is applied in the step (a) so that the alumina film has a thickness of 200 nm or more.
  • an alumina film that is sufficiently oxidized up to the inside of the film can be formed even when the film thickness is large. Moreover, since the alumina film forming method of the present invention comprises simple steps such as coating, it can be easily carried out. In addition, the alumina film forming method of the present invention can be easily applied to a large substrate, and the cost can be reduced. Furthermore, good film formation on a narrow trench substrate can be expected by utilizing the penetrating power of the liquid material.
  • the alumina film forming method of the present invention includes the following steps (a) to (c).
  • the composition for forming an alumina film used in the method for forming an alumina film of the present invention contains an aluminum compound and an organic solvent.
  • the aluminum compound is not particularly limited, but a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), Examples thereof include compounds containing a structural unit represented by (1-4) and compounds containing a structural unit represented by the following formula (1-5), and particularly compounds represented by the following formula (1-1): It is preferable.
  • each R 1 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms
  • L represents a ligand
  • n represents 0 to Indicates an integer of 2.
  • each R 2 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms
  • each R 3 independently represents one to 1 carbon atom.
  • each R 4 independently represents a monovalent organic group having 1 to 12 carbon atoms
  • Z 1 represents a hydrogen atom or a halogen atom.
  • R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms.
  • each R 7 independently represents a monovalent organic group having 1 to 12 carbon atoms.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the monovalent organic group having 1 to 12 carbon atoms include a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms, and a carbon number of 1 containing an oxygen atom. And -12 monovalent hydrocarbon groups and monovalent halogenated hydrocarbon groups having 1 to 12 carbon atoms and containing an oxygen atom.
  • Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include linear or branched hydrocarbon groups having 1 to 12 carbon atoms, alicyclic hydrocarbon groups having 3 to 12 carbon atoms, and 6 to 12 carbon atoms.
  • An aromatic hydrocarbon group etc. are mentioned.
  • the linear or branched hydrocarbon group having 1 to 12 carbon atoms is preferably a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and is a linear or branched hydrocarbon group having 1 to 5 carbon atoms. Groups are more preferred.
  • Preferable specific examples of the linear or branched hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. , N-hexyl group, n-heptyl group and the like.
  • the alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferably an alicyclic hydrocarbon group having 3 to 8 carbon atoms, and more preferably an alicyclic hydrocarbon group having 3 or 4 carbon atoms.
  • Preferred examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group; cyclobutenyl group, cyclopentenyl group and cyclohexenyl group. And the like.
  • the binding site of the alicyclic hydrocarbon group may be any carbon atom on the alicyclic ring.
  • Examples of the aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenyl group, a biphenyl group, and a naphthyl group.
  • the bonding site of the aromatic hydrocarbon group may be any carbon atom on the aromatic ring.
  • Examples of the monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms include groups in which at least one hydrogen atom of the hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • Examples of the C 1-12 monovalent hydrocarbon group containing an oxygen atom include C 1-12 hydrocarbon groups having an ether bond, a carbonyl group and an ester group.
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms having an ether bond include an alkoxy group having 1 to 12 carbon atoms, an alkenyloxy group having 2 to 12 carbon atoms, an alkynyloxy group having 2 to 12 carbon atoms, and 6 to 12 carbon atoms. And an aryloxy group and an alkoxyalkyl group having 1 to 12 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, a cyclohexyloxy group, and a methoxymethyl group.
  • Examples of the hydrocarbon group having 1 to 12 carbon atoms having a carbonyl group include acyl groups having 2 to 12 carbon atoms. Specific examples include an acetyl group, a propionyl group, an isopropionyl group, and a benzoyl group. Examples of the hydrocarbon group having 1 to 12 carbon atoms having an ester group include an acyloxy group having 2 to 12 carbon atoms. Specific examples include an acetyloxy group, a propionyloxy group, an isopropionyloxy group, and a benzoyloxy group.
  • the monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms containing an oxygen atom at least one of the hydrogen atoms of the monovalent hydrocarbon group having 1 to 12 carbon atoms containing the oxygen atom is substituted with a halogen atom Group.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • Examples of the ligand represented by L include amine compounds, pyridine compounds, nitrogen heterocyclic compounds, amide compounds, nitrile compounds, phosphine compounds, sulfide compounds, alcohol compounds, ether compounds, ester compounds, sulfone compounds, and the like. Can do.
  • the aluminum compound contained in the composition for forming an alumina film used in the present invention is aluminum hydride (a compound in which all R 1 are hydrogen atoms in the above formula (1-1)), From this point of view, it is preferable to use a complex with an amine compound (a compound in which L is an amine compound and n is 1 or 2 in the above formula (1-1)).
  • the complex of an aluminum hydride and an amine compound is prepared, for example, by adding a hydrochloride of an amine compound to a diethyl ether suspension of an aluminum compound and lithium aluminum hydride or sodium aluminum hydride, and stirring at room temperature in N 2 gas, for example. It is possible to synthesize it while reacting.
  • the reaction ratio between the amine compound and aluminum hydride is usually 0.5 to 4 (mass ratio of amine compound / aluminum hydride), and the reaction temperature, reaction solvent, etc. are the same as the desired amine compound and aluminum hydride. It is appropriately selected according to the type of complex.
  • the amine compound used in the present invention is a monoamine compound or a polyamine compound.
  • a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
  • the monoamine compound include a monoamine compound represented by the following formula (2) and other monoamine compounds.
  • R 11 R 12 R 13 N (2) (Here, R 11 , R 12 and R 13 are each independently a hydrogen atom or a monovalent organic group having 1 to 12 carbon atoms.)
  • Examples of the monovalent organic group having 1 to 12 carbon atoms of R 11 , R 12 and R 13 in the above formula (2) include the same groups as R 1 in the above formula (1-1). .
  • the monoamine compound represented by the formula (2) include, for example, ammonia, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tricyclopropylamine, tri-n-butylamine, triisobutylamine, Tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenylamine, diethylphenyl Amine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine, Isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, dicyclopropylamine, di-n-butylamine, diisobutylamine, tri
  • monoamine compounds other than the monoamine compound represented by the above formula (2) include, for example, 1-aza-bicyclo [2.2.1] heptane, 1-aza-bicyclo [2.2.2] octane ( Quinuclidine), 1-aza-cyclohexane, 1-aza-cyclohexane-3-ene, N-methyl-1-aza-cyclohexane-3-ene, and the like.
  • diamine compound examples include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-.
  • Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ′′ — And trimethyl-1,3,5-triazacyclohexane.
  • Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine.
  • amine compounds it is preferable to use a monoamine compound represented by the formula (2).
  • Examples of the aluminum compound other than the complex of the aluminum hydride compound and the amine compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tricyclopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri- t-butylaluminum, tri-2-methylbutylaluminum, tri-n-hexylaluminum, tricyclohexylaluminum, tri (2-ethylhexyl) aluminum, trioctylaluminum, tridodecylaluminum, triphenylaluminum, tribenzylaluminum, dimethylphenyl Aluminum, diethylphenylaluminum, diisobutylphenylaluminum, methyldiphenylaluminum, ethyl Phenylaluminum, isobutyldiphenylaluminum, trimethoxyaluminum, trie
  • the aluminum compound represented by the formula (1-2) include Al 2 ( ⁇ -CH 3 ) 2 (CH 3 ) 4 , Al 2 ( ⁇ -C 2 H 5 ) 2 (C 2 H 5 ) 4 , Al 2 ( ⁇ -C 3 H 7 ) 2 (C 3 H 7 ) 4 , Al 2 ( ⁇ -C 4 H 9 ) 2 (C 4 H 9 ) 4 , Al 2 ( ⁇ -OCH 3 ) 2 (CH 3 ) 4 , Al 2 ( ⁇ -OC 2 H 5 ) 2 (C 2 H 5 ) 4 , Al 2 ( ⁇ -OC 3 H 7 ) 2 (C 3 H 7 ) 4 , Al 2 ( ⁇ -OC 4 H 9 ) 2 (C 4 H 9 ) 4 , Al 2 ( ⁇ -OCH 3 ) 2 (OCH 3 ) 4 , Al 2 ( ⁇ -OC 2 H 5 ) 2 (OC 2 H 5 ) 4 , Al 2 ( It is given ⁇ -OC 3 H 7) 2 (OC 3 H 7) 4, Al 2 ( ⁇ -OC 4 H
  • the aluminum compound represented by the formula (1-3) include Al 2 ( ⁇ -H) 2 (CH 3 ) 4 , Al 2 ( ⁇ -H) 2 (C 2 H 5 ) 4 , Al 2 ( ⁇ -H) 2 (C 3 H 7 ) 4 , Al 2 ( ⁇ -H) 2 (C 4 H 9 ) 4 , Al 2 ( ⁇ -F) 2 (CH 3 ) 4 , Al 2 ( ⁇ - F) 2 (C 2 H 5 ) 4 , Al 2 ( ⁇ -F) 2 (C 3 H 7 ) 4 , Al 2 ( ⁇ -F) 2 (C 4 H 9 ) 4 , Al 2 ( ⁇ -Cl) 2 (CH 3 ) 4 , Al 2 ( ⁇ -Cl) 2 (C 2 H 5 ) 4 , Al 2 ( ⁇ -Cl) 2 (C 3 H 7 ) 4 , Al 2 ( ⁇ -Cl) 2 (C 4 H 9 ) 4 and the like.
  • the aluminum compound having the structural unit represented by the formula (1-4) include Al 3 ( ⁇ -OCH 3 ) 3 (CH 3 ) 6 , Al 3 ( ⁇ -OC 2 H 5 ) 3 ( C 2 H 5 ) 6 , Al 3 ( ⁇ -OC 3 H 7 ) 3 (C 3 H 7 ) 6 , Al 3 ( ⁇ -OC 4 H 9 ) 3 (C 4 H 9 ) 6 , Al 3 ( ⁇ - OCH 3 ) 3 (OCH 3 ) 6 , Al 3 ( ⁇ -OC 2 H 5 ) 3 (OC 2 H 5 ) 6 , Al 3 ( ⁇ -OC 3 H 7 ) 3 (OC 3 H 7 ) 6 , Al 3 ( ⁇ -OC 4 H 9 ) 3 (OC 4 H 9 ) 6 and the like.
  • the aluminum compound having the structural unit represented by the formula (1-5) include trimethylcyclotrialuminoxane, triethylcyclotrialuminoxane, tripropylcyclotrialuminoxane, tributylcyclotrialuminoxane, methylaluminoxane, ethylaluminoxane, Examples thereof include propylaluminoxane and butylaluminoxane.
  • the organic solvent contained in the composition for forming an alumina film is not particularly limited.
  • a hydrocarbon solvent, an ether solvent, a polar solvent, and the like can be used.
  • the hydrocarbon solvent include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane, dicyclopentadiene hydride, benzene, toluene, Examples include xylene, tert-butylbenzene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane and the like.
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, and bis.
  • (2-methoxyethyl) ether 2,2-methoxyethyl) ether, p-dioxane, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, fentol, 2-methylfentol, 3-methylfentol, 4-methylfentol,
  • Examples include veratrol, 2-ethoxyanisole, and 1,4-dimethoxybenzene.
  • the polar solvent examples include methylene chloride and chloroform. These organic solvents can be used alone or in admixture of two or more. Among these, it is preferable to use a hydrocarbon solvent or a mixed solvent of a hydrocarbon solvent and an ether solvent in view of solubility and stability of the solution to be formed.
  • a hydrocarbon solvent or a mixed solvent of a hydrocarbon solvent and an ether solvent in view of solubility and stability of the solution to be formed.
  • n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, benzene, toluene, xylene, or tert-butylbenzene is used as the hydrocarbon solvent.
  • ether solvent for example, diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3-methylanisole, 4-methyl
  • anisole, fentol, veratrol, 2-ethoxyanisole, 1,4-dimethoxybenzene for example, diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3-methylanisole, 4-methyl
  • anisole, fentol, veratrol, 2-ethoxyanisole, 1,4-dimethoxybenzene for example, diethyl ether, dipropyl ether, dibutyl ether
  • the composition for forming an alumina film used in the present invention contains an aluminum compound and an organic solvent as essential components, and may further contain a titanium compound as necessary.
  • a titanium compound include a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (6), a compound represented by the following formula (7), and the following formula:
  • the compound represented by (8) can be mentioned.
  • R 14 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, a halogenated alkyl group or a halogenated phenyl group.
  • R 15 is the same as R 14 in the above formula (3)
  • Z is a group represented by the following formula (5)
  • R 9 and R 10 are the same or different, and 1-10 alkyl group, phenyl group, alkoxy group, halogenated alkyl group, or halogenated phenyl group, and x is an integer of 0-3.
  • R 17 is an alkyl group or a phenyl group.
  • Cp is a cyclopentadienyl group
  • Y is a halogen atom or an alkyl group
  • n is an integer of 1 to 4.
  • R 14 and R 15 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group N-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, hexyl group, cyclohexyl group, phenoxy group, methylphenoxy group, trifluoromethyl group, more preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, hexyl group, cyclohexyl group and phenyl group.
  • R 9 to R 10 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group, n -Propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, phenoxy group, methylphenoxy group, trifluoromethyl group.
  • Particularly preferred are methyl group, ethyl group, i-propyl group, t-butyl group, methoxy group, ethoxy group, i-propoxy group, t-butoxy group and trifluoromethyl group.
  • titanium compound represented by the above formula (3) examples include, for example, titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-n-nonyl oxide, titanium stearyl oxide, titanium isopropoxide, and titanium.
  • titanium methoxide titanium ethoxide
  • titanium-n-propoxide titanium-n-nonyl oxide
  • titanium stearyl oxide titanium isopropoxide
  • titanium titanium isopropoxide
  • titanium titanium isobutoxide
  • titanium compound represented by the above formula (4) examples include, for example, tetrakis (penta-2,4-diketo) titanium, tetrakis (2,2,6,6-tetramethylhepta-3,5-diketo).
  • titanium compound represented by the above formula (6) examples include, for example, trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, tri-i-propoxytitanium chloride, tri-n-butoxytitanium.
  • titanium compound represented by the formula (7) examples include tetrakis (dimethylamino) titanium, tetrakis (diethylamino) titanium, tetrakis (di-t-butoxyamino) titanium, tetrakis (di-i-propoxyamino). ) Titanium, tetrakis (diphenylamino) titanium.
  • titanium compound represented by the above formula (8) include, for example, dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium dibromide, cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tribromide.
  • the mass ratio of the aluminum compound in the composition for forming an alumina film can be appropriately set according to the thickness of the alumina to be formed, but is preferably 5 to 90 mass%, more preferably 10 to 85 mass%. More preferably, it is 20 to 80% by mass, particularly preferably 30 to 70% by mass.
  • the concentration of the titanium compound is preferably 1 mol% or less, more preferably 0.00001 to 1 mol%, more preferably the total of the aluminum compound and the titanium compound. Preferably, it is 0.00005 to 0.01 mol%. When the concentration is within this range, both good embedding property and stability of the composition can be achieved.
  • the method for producing the composition for forming an alumina film is not particularly limited.
  • a solution obtained by synthesizing the above aluminum compound in the presence of a solvent and then removing insolubles such as by-products with a filter or the like can be used as it is as the composition for forming an alumina film.
  • the composition for forming an alumina film may be obtained by adding a desired solvent to the solution and then removing the solvent used in the reaction, for example, diethyl ether under reduced pressure.
  • the composition for forming an alumina film contains a titanium compound
  • a predetermined amount of a solution of the titanium-containing compound is added to the solution containing the aluminum compound produced as described above while stirring.
  • the temperature at the time of addition is preferably 0 to 150 ° C., more preferably 5 to 100 ° C.
  • the stirring time is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes.
  • the material constituting the main body of the substrate used in the method of the present invention is not particularly limited, but is preferably one that can withstand the heat treatment of the next step.
  • the shape of the main body of the base body is not particularly limited.
  • Specific examples of the material of the main body of the substrate include glass, metal, plastic, and ceramics.
  • Examples of the glass include quartz glass, borosilicate glass, soda glass, and lead glass.
  • Examples of the metal include gold, silver, copper, nickel, silicon, aluminum, iron, and stainless steel.
  • the plastic include polyimide and polyethersulfone.
  • Specific examples of the shape of the main body of the substrate include a bulk shape, a plate shape, and a film shape.
  • the base used in the method of the present invention is, for example, a base film formed on the surface of the main body of the base.
  • a substrate has, for example, a base film containing at least one metal atom selected from aluminum, titanium, copper, cobalt, ruthenium, molybdenum, tungsten, aluminum, nickel, palladium, and gold on the surface of the substrate. It has to.
  • the base film By this base film, the film formability of the alumina film becomes better.
  • the method for forming the base film on the substrate body is not particularly limited.
  • a spin coating method for example, a roll coating method, a curtain coating method, a dip coating method, a spray method, a coating method such as a droplet discharge method, Various film formation methods such as CVD, PVD, and sputtering can be used.
  • the material of the base body include glass, plastic, ceramics, and silicon substrate.
  • glass for example, quartz glass, borosilicate glass, soda glass, and lead glass can be used.
  • the plastic include polyimide and polyethersulfone. Further, these material shapes are not particularly limited by bulk shape, plate shape, film shape and the like.
  • an organometallic compound containing at least one metal atom selected from aluminum, titanium, copper, cobalt, ruthenium, molybdenum, tungsten, aluminum, nickel, palladium, and gold is used. It can be obtained by applying a solution containing the solution (also referred to as “underlying film forming composition” in this specification) as an underlayer forming material and then heat-treating it.
  • a solution containing the solution also referred to as “underlying film forming composition” in this specification
  • the organometallic compound containing a titanium atom include a titanium alkoxide, a titanium compound having an amino group, a titanium compound with a ⁇ -diketone, a titanium compound having a cyclopentadienyl group, and a titanium compound having a halogen group. Can do.
  • organometallic compound containing a palladium atom examples include a palladium complex having a halogen atom, a palladium acetate compound, a palladium ⁇ -diketone complex, a complex of palladium and a compound having a conjugated carbonyl group, and a phosphine-based palladium complex. be able to.
  • an organometallic compound for example, the same titanium compound as exemplified as the titanium compound that can be contained in the above-described composition for forming an alumina film can be given as an organometallic compound containing a titanium atom. .
  • palladium complexes having a halogen atom include, for example, allyl palladium chloride, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium and the like;
  • palladium acetate compounds such as palladium acetate;
  • the ⁇ -diketone complex of palladium include, for example, pentane-2,4-dionatopalladium, hexafluoropentanedionatopalladium and the like;
  • phosphine-based palladium complexes include bis [1,2-bis (diphenylphosphino) ethane] palladium, bis (triphenylphosphine) palladium chloride, bis (tripheny
  • titanium isopropoxide, bis (ethoxybutane-1,3-diketo) titanium diisopropoxide, tetra (pentane-2,4-diketo) titanium, pentane-2,4-diketopalladium, hexafluoro Pentane-2,4-diketopalladium is preferably used.
  • the solvent used in the solution of the organometallic compound containing at least one metal atom selected from titanium and palladium any solvent can be used as long as the organometallic compound can be dissolved. Examples of these solvents include ethers, esters having an ether group, hydrocarbons, alcohols, aprotic polar solvents and the like, and mixed solvents thereof.
  • Examples of the ethers include tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and the like;
  • Examples of the esters having an ether group include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-acetoxy-1-methoxypropane and the like;
  • Examples of the hydrocarbons include toluene, xylene, hexane, cyclohexane, octane, decalin, tetralin, durene and the like;
  • Examples of the alcohols include methanol, ethanol, propanol and the like;
  • Examples of the aprotic polar solvent include N-methylpyrrolidone, N
  • the base film forming composition to the main body of the substrate can be performed by an appropriate method such as spin coating, roll coating, curtain coating, dip coating, spraying, or droplet discharge.
  • the substrate Is placed under reduced pressure for a while, the organometallic compound can be applied more uniformly inside the trench.
  • the base film thus formed is further heated.
  • the heating temperature is preferably 30 to 350 ° C, more preferably 40 to 300 ° C.
  • the heating time is preferably 5 to 90 minutes, more preferably 10 to 60 minutes.
  • the atmosphere from application of the composition for forming a base film to heating is preferably an inert gas atmosphere such as nitrogen, helium, or argon. Further, an atmosphere in which a reducing gas such as hydrogen is mixed as required is preferable. Further, it is desirable to use a solvent or additive from which water or oxygen has been removed.
  • the thickness of the base film is preferably 0.001 to 5 ⁇ m, more preferably 0.005 to 0.5 ⁇ m, after removal of the solvent.
  • the above-described composition for forming an alumina film is applied onto a substrate by using an appropriate method such as a spin coating method, a roll coating method, a curtain coating method, a dip coating method, a spray method, or a droplet discharge method.
  • an appropriate method such as a spin coating method, a roll coating method, a curtain coating method, a dip coating method, a spray method, or a droplet discharge method.
  • an application condition is adopted in which the composition for forming an alumina extends to every corner of the substrate depending on the shape and size of the substrate.
  • the spinner rotation speed can be set to 300 to 2,500 rpm, and further to 500 to 2,000 rpm.
  • the thickness of the coating film is usually 1 nm or more as the thickness in the dried state (the state after removing the organic solvent in the next step).
  • the thickness is preferably 100 nm or more, more preferably 200 nm or more in consideration of the effect of the present invention that even if the thickness of the alumina film is large, the entire film can be formed with the target alumina. Especially preferably, it is 300 nm or more.
  • the atmosphere during the application of the composition for forming an alumina film is preferably an atmosphere containing 99.9 mol% or more, preferably 99.95 mol% or more of an inert gas such as nitrogen, helium, or argon. Further, if necessary, it may be carried out in an atmosphere in which a reducing gas such as hydrogen or an oxidizing gas such as oxygen is mixed.
  • the organic solvent is removed from the coating film formed in step (a).
  • a heat treatment can also be performed.
  • the heating temperature and time vary depending on the type of solvent used and the boiling point (vapor pressure), but can be, for example, 100 to 350 ° C. and 5 to 90 minutes.
  • the solvent can be removed at a lower temperature by reducing the pressure of the entire system. Preferably, it is 10 to 60 minutes at 100 to 250 ° C.
  • the concentration of an oxidizing gas such as water vapor, oxygen, ozone, carbon monoxide, a peroxide having 1 to 3 carbon atoms, alcohol, aldehyde, etc.
  • the gas other than the oxidizing gas in the atmosphere is an inert gas such as nitrogen, helium, or argon.
  • the coating film obtained in the step (b) is subjected to at least one treatment selected from heat treatment and light irradiation treatment in the presence of at least one selected from water and alcohol, whereby an alumina film is formed on the substrate. Is formed.
  • the alcohol used in step (c) is preferably an alcohol having 1 to 5 carbon atoms, and examples thereof include methanol, ethanol, 1-propanol, 1-butanol, 2-butanol, and 1-pentanol.
  • the temperature of the substrate is preferably 100 ° C. or higher, and more preferably 100 ° C. to 600 ° C. More preferably, it is 150 ° C to 400 ° C.
  • the heating time is preferably 30 seconds to 300 minutes, more preferably 1 to 240 minutes, and still more preferably 10 to 180 minutes.
  • the light source used for the light irradiation treatment include a mercury lamp, a deuterium lamp, a rare gas discharge light, a YAG laser, an argon laser, a carbon dioxide gas laser, and a rare gas halogen excimer laser.
  • the mercury lamp include a low-pressure mercury lamp and a high-pressure mercury lamp.
  • the rare gas used for the discharge light of the rare gas include argon, krypton, and xenon.
  • Examples of the rare gas halogen used in the rare gas halogen excimer laser include XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, and the like.
  • the output of these light sources is preferably 10 to 5,000 W, more preferably 100 to 1,000 W.
  • the wavelength of these light sources is not particularly limited, but is preferably 170 nm to 600 nm. Further, the use of laser light is particularly preferable in terms of the film quality of the formed alumina.
  • step (c) in addition to at least one selected from water and alcohol, at least one selected from a basic compound and an acidic compound can be present.
  • any of an inorganic basic compound and an organic basic compound can be used as the basic compound.
  • the inorganic basic compound include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like.
  • the organic basic compound include primary to tertiary amines, alkoxyamines, alcohol amines, diamines, compounds having a heterocycle having a nitrogen atom as a ring member, and quaternary ammonium salts.
  • Secondary amines include, for example, N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N-dibutylamine and the like;
  • tertiary amine for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like;
  • alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, butoxymethyl Amine, butoxyethylamine, butoxypropylamine, butoxybutylamine and the
  • alcohol amines include methanol amine, ethanol amine, propanol amine, butanol amine, N-methyl methanol amine, N-ethyl methanol amine, N-propyl methanol amine, N-butyl methanol amine, N-methyl ethanol amine, N- Ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanol Amine, N-propylbutanolamine, N-butylbutanolamine, N, N-dimethylmethanolamine, N, N-diethylmethanolamine, N, N-dipropylmethanol Amine, N, N-dibutylmethanolamine, N, N-dimethylethanolamine, N
  • diamine examples include tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine, methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropyl Amine, ethylaminobutylamine, propylaminomethylamine, propylaminoethylamine, propylaminopropylamine, propylaminobutylamine, butylaminomethylamine, butylaminoethylamine, butylaminopropylamine, butylaminobutylamine and the like;
  • the compound having a heterocycle having a nitrogen atom as a ring member examples include pyridine, pyrrole, piperazine
  • quaternary ammonium salts include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-iso-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetrahydroxide -Iso-butylammonium hydroxide, tetra-tert-butylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraheptylammonium hydroxide, tetraoctylammonium hydroxide, tetranonylammonium hydroxide, tetradecylammonium hydroxide , Tetraundecylammonium hydroxide, tetradodecylammonium hydroxide, tetra
  • tetramethylammonium hydroxide tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetramethylammonium bromide, tetramethylammonium chloride, tetraethyl bromide are particularly preferred.
  • examples thereof include ammonium, tetraethylammonium chloride, tetra-n-propylammonium bromide, and tetra-n-propylammonium chloride.
  • both an organic acid and an inorganic acid can be used.
  • organic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, gallic acid Acid, butyric acid, meritic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Acid, monochloroacetic acid, dichloroacetic acid, trichlor
  • At least one partial pressure selected from water and alcohol is preferably 0.1 to 5 MPa, more preferably 0.1 to 2 MPa, and particularly preferably 0.2 to 1.5 MPa. is there.
  • At least one partial pressure selected from a basic compound and an acidic compound is preferably 0.1 to 5 MPa, and more preferably 0.2 to 3 MPa.
  • the pressure of the whole gas is preferably 0.1 to 10 MPa, more preferably 0.2 to 5 MPa, still more preferably 0.3 to 3 MPa, and A pressure of 5 to 2.0 MPa is particularly preferable.
  • only one of the heat treatment and the light irradiation treatment may be performed, or both the heat treatment and the light irradiation treatment may be performed.
  • the heat treatment and light irradiation treatment may be performed at the same time regardless of the order. Of these, it is preferable to perform only heat treatment or perform both heat treatment and light irradiation treatment. In addition to the heat treatment and the light irradiation treatment, plasma oxidation may be performed for the purpose of forming a better alumina film.
  • the thickness of the alumina film formed by the method of the present invention is usually 1 nm or more. Further, the thickness is preferably 100 nm or more, more preferably 200 nm or more in consideration of the effect of the present invention that even if the thickness of the alumina film is large, the entire film can be formed with the target alumina. Especially preferably, it is 300 nm or more. The upper limit of the thickness is not particularly limited, but is usually 1 ⁇ m.
  • Synthesis Example 1-1 Preparation of Solution Containing Titanium Compound 0.11 g of cyclopentadienyl titanium trichloride was charged into a 30 mL glass container, and 4-methylanisole was added thereto to make a total amount of 25.00 g. After sufficiently stirring, the mixture is allowed to stand at room temperature for 4 hours, and then filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 ⁇ m, thereby obtaining cyclopentadienyl titanium trichloride. A solution containing 20 ⁇ mol / g of chloride was obtained.
  • the filtrate was received in a 300 mL eggplant-shaped flask, and after completion of the filtration, a magnetic stirrer was inserted and a suction stopper three-way cock was attached.
  • the suction stopper three-way cock was connected to a vacuum pump via a trap, and the solvent was removed under reduced pressure while stirring with a magnetic stirrer at a rotational speed of 300 rpm.
  • the residue was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 ⁇ m, whereby 10.25 g of a complex of triethylamine and aluminum hydride was colorless and transparent. Obtained as a liquid (yield 55%).
  • Synthesis Example 7 Preparation of Alumina Film Forming Composition After adding 7.00 g of trisec-butoxyaluminum, propylene glycol monomethyl ether acetate is added to make the total amount to 10.00 g. A composition for forming an alumina film containing 70% by mass was prepared.
  • Example 1 A silicon substrate was mounted on a spin coater, and 1 mL of the underlayer-forming composition prepared in (Synthesis Example B-1) was dropped in a nitrogen gas atmosphere, and was spun at 3,000 rpm for 10 seconds. This substrate was placed on a hot plate set at 150 ° C. and heated for 25 minutes. The thickness of the base film was 5 nm. (A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the entire amount of the composition for forming an alumina film prepared in (Synthesis Example 1-3) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds. (B) The substrate was heated on a hot plate at 150 ° C. for 5 minutes to remove the solvent.
  • the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours.
  • ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 320 nm.
  • Example 2 The same procedure as in Example 1 was performed except that the alumina film forming composition prepared in (Synthesis Example 2) was used as the alumina film forming composition. As a result, the substrate surface was covered with a light yellow transparent film. . ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 510 nm.
  • Example 3 As the alumina film forming composition, the alumina film forming composition prepared in (Synthesis Example 3) was used.
  • step (c) the substrate was placed in a sealed pressure vessel containing 100 g of pure water, and the atmosphere was 200 ° C. Was carried out in the same manner as in Example 1 except that the steam was exposed under pressure (steam partial pressure: 0.48 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours. The substrate surface was covered with a light yellow transparent film. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 530 nm.
  • Example 4 When the same procedure as in Example 1 was performed except that the alumina film forming composition prepared in (Synthesis Example 4) was used as the alumina film forming composition, the substrate surface was covered with a light yellow transparent film. . ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 340 nm.
  • Example 5 Metallic copper film was formed on the silicon substrate by sputtering. The thickness was 5 nm.
  • A Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the whole amount of the composition for forming an alumina film prepared in (Synthesis Example 5) was dropped, and the substrate was spun at 600 rpm for 10 seconds.
  • B The substrate was heated on a hot plate at 150 ° C. for 5 minutes.
  • the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours.
  • ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 620 nm.
  • Example 6 A silicon substrate was mounted on a spin coater, and under a nitrogen gas atmosphere, 1 mL of the base film-forming composition prepared in (Synthesis Example B-2) was added dropwise and spun for 10 seconds at a rotation speed of 3,000 rpm. This substrate was placed on a hot plate set at 200 ° C. and heated for 10 minutes. The thickness of the base film was 5 nm. (A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the whole amount of the composition for forming an alumina film prepared in (Synthesis Example 6) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds. (B) The substrate was heated on a hot plate at 150 ° C.
  • the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours.
  • ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 500 nm.
  • Example 7 When the same procedure as in Example 6 was performed except that the base film was not formed and the alumina forming composition prepared in (Synthesis Example 7) was used as the alumina film forming composition, the substrate surface was light yellow and transparent. Covered with a thick film. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 420 nm.
  • Example 8 A silicon substrate was mounted on a spin coater, and 1 mL of the underlayer-forming composition prepared in (Synthesis Example B-1) was dropped in a nitrogen gas atmosphere, and was spun at 3,000 rpm for 10 seconds. This substrate was placed on a hot plate set at 150 ° C. and heated for 25 minutes. The thickness of the base film was 5 nm. (A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the entire amount of the composition for forming an alumina film prepared in (Synthesis Example 1-3) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds. (B) The substrate was heated on a hot plate at 150 ° C.
  • the substrate is placed in a sealed pressure vessel containing 100 g of a 10% NH 3 methanol solution and introduced into a furnace having an atmosphere of 140 ° C., so that ammonia vapor and methanol vapor generated in the vessel are pressurized.
  • Partial pressure of ammonia vapor: 0.28 MPa, partial pressure of methanol vapor: 1.1 MPa, partial pressure of nitrogen gas: 80 kPa for 3 hours.
  • ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 330 nm.
  • the substrate surface was covered with a light yellow transparent film.
  • this film was subjected to ESCA analysis, it was found that this film had a thickness of 250 nm, the upper layer portion 160 nm was an alumina film, and the lower layer 90 nmg was a film in which metallic aluminum and alumina were mixed.
  • the surface of the substrate was covered with a light yellow transparent film.
  • An ESCA analysis of this film revealed that this film had a thickness of 550 nm, the upper layer portion 190 nm was an alumina film, and the lower layer 360 nm was a film in which metallic aluminum and alumina were mixed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Provided is a method for forming an alumina film, wherein sufficient oxidation of aluminum can be carried out even in cases where the film is thick. The method for forming an alumina film comprises: (a) a step wherein a composition for alumina film formation, which contains an aluminum compound and an organic solvent, is applied over a base so that a coating film is formed thereon; (b) a step wherein the organic solvent is removed from the coating film that is formed in step (a); and (c) a step wherein the coating film that is obtained in step (b) is subjected to a heat treatment and/or light irradiation in the presence of at least one substance selected from among water and alcohols.

Description

アルミナ膜形成方法Alumina film forming method
 本発明は、アルミナ膜形成方法に関する。 The present invention relates to an alumina film forming method.
 DRAM(ダイナミックランダムアクセスメモリー)に代表される半導体デバイスにおいて、アルミナはその高い絶縁性と緻密性から、保護膜または絶縁膜として多く用いられている。アルミナの形成方法としては、スパッタ法(アルミナをターゲットに用いたRFマグネトロンスパッタ法や、アルミニウムをターゲットとして用い、酸素ガスを共存させる反応性スパッタ法)、化学蒸着法(塩化アルミニウムないし有機アルミニウム化合物と水とを原料ガスに用いる手法)がこれまでに幅広く用いられている。
 しかしながら、これらスパッタ法や化学蒸着法によるアルミナ薄膜形成方法は、真空チャンバーや高圧電流装置などの高価な装置を必要としコストがかかること、また、大口径の基体への適用が困難であるという問題がある。さらに、昨今の半導体デバイスの微細化に対して、狭トレンチ基体上へのアルミナ成膜に際し、膜中の欠陥の発生やステップカバレージ性の低下などの問題が生じている。
 一方、特許文献1には、アルミナ膜を形成する方法として、アミン化合物と水素化アルミニウム化合物との錯体を用いることが記載されている。
In semiconductor devices typified by DRAM (dynamic random access memory), alumina is often used as a protective film or insulating film because of its high insulating properties and denseness. As a method of forming alumina, sputtering methods (RF magnetron sputtering method using alumina as a target, reactive sputtering method using aluminum as a target and oxygen gas coexisting), chemical vapor deposition method (aluminum chloride or organoaluminum compound and A method using water as a raw material gas) has been widely used so far.
However, these sputtering methods and chemical vapor deposition methods for forming an alumina thin film require expensive devices such as a vacuum chamber and a high-voltage current device, and are expensive, and are difficult to apply to a large-diameter substrate. There is. Furthermore, with the recent miniaturization of semiconductor devices, problems such as generation of defects in the film and a decrease in step coverage have arisen when forming an alumina film on a narrow trench substrate.
On the other hand, Patent Document 1 describes using a complex of an amine compound and an aluminum hydride compound as a method for forming an alumina film.
特開2007-287821号公報JP 2007-287821 A
 しかしながら、特許文献1に記載された方法では、膜厚が小さい場合(例えば、膜厚が150nm程度の場合)には問題ないものの、膜厚が大きい場合(例えば、膜厚が200nm以上の場合)には、膜の内部まで十分にアルミニウムの酸化が行われず、膜全体を目的とするアルミナで構成させることが困難という問題がある。
 本発明は上記事情を鑑みてなされたものであり、その目的は、膜厚が大きい場合であっても、アルミニウムの酸化を十分に行うことができるアルミナ膜形成方法を提供することにある。
However, in the method described in Patent Document 1, there is no problem when the film thickness is small (for example, when the film thickness is about 150 nm), but when the film thickness is large (for example, when the film thickness is 200 nm or more). However, there is a problem that aluminum is not sufficiently oxidized up to the inside of the film, and it is difficult to make the entire film with the intended alumina.
The present invention has been made in view of the above circumstances, and an object thereof is to provide an alumina film forming method capable of sufficiently oxidizing aluminum even when the film thickness is large.
 上記目的を達成するため、本発明者らは鋭意研究を行い、基体上に塗布してなるアルミニウム化合物及び有機溶媒を含む塗膜から、有機溶媒を除去した後、水及びアルコールから選ばれる少なくとも一種の存在下で、熱処理及び光照射処理から選ばれる少なくとも一種の処理を施すことによって、前記の目的を達成しうることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[5]を提供するものである。
[1] 下記の工程(a)~(c)を含むことを特徴とするアルミナ膜形成方法。
(a)基体上に、アルミニウム化合物及び有機溶媒を含有するアルミナ膜形成用組成物を塗布し、塗膜を形成する工程
(b)工程(a)で形成した塗膜から有機溶媒を除去する工程
(c)工程(b)で得られた塗膜に、水及びアルコールから選ばれる少なくとも一種の存在下で、熱処理および光照射処理から選ばれる少なくとも一種の処理を施し、アルミナ膜を形成する工程
[2] 前記工程(c)が、前記の水及びアルコールから選ばれる少なくとも一種に加えて、塩基性化合物及び酸性化合物から選ばれる少なくとも一種の存在下で行なわれる、前記[1]に記載のアルミナ膜形成方法。
[3] 前記アルミニウム化合物が、下記式(1-1)で表わされる化合物、下記式(1-2)で表わされる化合物、下記式(1-3)で表わされる化合物、下記式(1-4)で表わされる構造単位を含む化合物、及び下記式(1-5)で表わされる構造単位を含む化合物から選ばれる少なくとも一種である、前記[1]または[2]に記載のアルミナ膜形成方法。
 AlR    (1-1)
(上記式(1-1)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Lは配位子を示し、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000005
(上記式(1-2)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000006
(上記式(1-3)中、Rは、各々独立に、炭素数1~12の1価の有機基を示し、Zは水素原子またはハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000007
(上記式(1-4)中、RおよびRは、各々独立に、炭素数1~12の1価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000008
(上記式(1-5)中、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
[4] 前記アルミナ膜形成用組成物が、チタン化合物を含む、前記[1]~[3]のいずれかに記載のアルミナ膜形成方法。
[5] 前記工程(c)で、前記アルミナ膜が200nm以上の膜厚を有するように、前記工程(a)で、アルミナ膜形成用組成物を塗布する、前記[1]~[4]のいずれかに記載のアルミナ膜形成方法。
In order to achieve the above object, the present inventors have conducted intensive research, and after removing an organic solvent from a coating film containing an aluminum compound and an organic solvent coated on a substrate, at least one selected from water and alcohol In the presence of the above, the inventors have found that the above object can be achieved by performing at least one kind of treatment selected from heat treatment and light irradiation treatment, and completed the present invention.
That is, the present invention provides the following [1] to [5].
[1] An alumina film forming method comprising the following steps (a) to (c):
(A) A step of applying an alumina film-forming composition containing an aluminum compound and an organic solvent on a substrate to form a coating film (b) A step of removing the organic solvent from the coating film formed in step (a) (C) A step of forming an alumina film by subjecting the coating film obtained in step (b) to at least one treatment selected from heat treatment and light irradiation treatment in the presence of at least one selected from water and alcohol [ 2] The alumina film according to [1], wherein the step (c) is performed in the presence of at least one selected from a basic compound and an acidic compound in addition to at least one selected from the water and alcohol. Forming method.
[3] The aluminum compound is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), a formula (1-4) The method for forming an alumina film according to the above [1] or [2], which is at least one selected from a compound containing a structural unit represented by formula (1) and a compound containing a structural unit represented by the following formula (1-5).
AlR 1 3 L n (1-1)
(In the above formula (1-1), each R 1 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, L represents a ligand, and n represents 0 to Indicates an integer of 2.)
Figure JPOXMLDOC01-appb-C000005
(In the above formula (1-2), each R 2 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, and each R 3 independently represents 1 to 1 carbon atoms. 12 represents a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000006
(In the above formula (1-3), each R 4 independently represents a monovalent organic group having 1 to 12 carbon atoms, and Z 1 represents a hydrogen atom or a halogen atom.)
Figure JPOXMLDOC01-appb-C000007
(In the above formula (1-4), R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
(In the above formula (1-5), each R 7 independently represents a monovalent organic group having 1 to 12 carbon atoms.)
[4] The method for forming an alumina film according to any one of [1] to [3], wherein the composition for forming an alumina film contains a titanium compound.
[5] In the step (c), the composition for forming an alumina film is applied in the step (a) so that the alumina film has a thickness of 200 nm or more. The method for forming an alumina film according to any one of the above.
 本発明のアルミナ膜形成方法によれば、膜厚が大きい場合であっても、膜の内部まで十分に酸化されたアルミナ膜を形成することができる。
 また、本発明のアルミナ膜形成方法は、塗布等の簡便な工程からなるため、容易に実施することができる。
 また、本発明のアルミナ膜形成方法は、大きな基体への適用も容易であり、また、コストの低廉化を図ることができる。
 さらに、液体原料の浸透力を利用することによって、狭トレンチ基体上への良好な成膜も期待することができる。
According to the alumina film forming method of the present invention, an alumina film that is sufficiently oxidized up to the inside of the film can be formed even when the film thickness is large.
Moreover, since the alumina film forming method of the present invention comprises simple steps such as coating, it can be easily carried out.
In addition, the alumina film forming method of the present invention can be easily applied to a large substrate, and the cost can be reduced.
Furthermore, good film formation on a narrow trench substrate can be expected by utilizing the penetrating power of the liquid material.
 本発明のアルミナ膜形成方法は、下記の工程(a)~(c)を含む。
(a)基体上に、アルミニウム化合物及び有機溶媒を含有するアルミナ膜形成用組成物を塗布し、塗膜を形成する工程
(b)工程(a)で形成した塗膜から有機溶媒を除去する工程
(c)水及びアルコールから選ばれる少なくとも一種の存在下で、工程(b)で得た塗膜に、熱処理及び光照射処理から選ばれる少なくとも一種の処理を施す工程
 以下、各工程について説明する。
The alumina film forming method of the present invention includes the following steps (a) to (c).
(A) A step of applying an alumina film-forming composition containing an aluminum compound and an organic solvent on a substrate to form a coating film (b) A step of removing the organic solvent from the coating film formed in step (a) (C) A step of applying at least one treatment selected from heat treatment and light irradiation treatment to the coating film obtained in step (b) in the presence of at least one selected from water and alcohol. Each step will be described below.
<工程(a)>
 本発明のアルミナ膜形成方法に使用されるアルミナ膜形成用組成物は、アルミニウム化合物及び有機溶媒を含有する。
 アルミニウム化合物は特に限定されるものではないが、下記式(1-1)で表わされる化合物、下記式(1-2)で表わされる化合物、下記式(1-3)で表わされる化合物、下記式(1-4)で表わされる構造単位を含む化合物、及び下記式(1-5)で表わされる構造単位を含む化合物を挙げることができ、特に下記式(1-1)で表わされる化合物であることが好ましい。
 AlR    (1-1)
(上記式(1-1)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Lは配位子を示し、nは0~2の整数を示す。)
Figure JPOXMLDOC01-appb-C000009
(上記式(1-2)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000010
(上記式(1-3)中、Rは、各々独立に、炭素数1~12の1価の有機基を示し、Zは水素原子またはハロゲン原子を示す。)
Figure JPOXMLDOC01-appb-C000011
(上記式(1-4)中、RおよびRは、各々独立に、炭素数1~12の1価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000012
(上記式(1-5)中、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
<Process (a)>
The composition for forming an alumina film used in the method for forming an alumina film of the present invention contains an aluminum compound and an organic solvent.
The aluminum compound is not particularly limited, but a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), Examples thereof include compounds containing a structural unit represented by (1-4) and compounds containing a structural unit represented by the following formula (1-5), and particularly compounds represented by the following formula (1-1): It is preferable.
AlR 1 3 L n (1-1)
(In the above formula (1-1), each R 1 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, L represents a ligand, and n represents 0 to Indicates an integer of 2.)
Figure JPOXMLDOC01-appb-C000009
(In the above formula (1-2), each R 2 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, and each R 3 independently represents one to 1 carbon atom. 12 represents a monovalent organic group.)
Figure JPOXMLDOC01-appb-C000010
(In the above formula (1-3), each R 4 independently represents a monovalent organic group having 1 to 12 carbon atoms, and Z 1 represents a hydrogen atom or a halogen atom.)
Figure JPOXMLDOC01-appb-C000011
(In the above formula (1-4), R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
(In the above formula (1-5), each R 7 independently represents a monovalent organic group having 1 to 12 carbon atoms.)
 前記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などを挙げることができる。
 前記炭素数1~12の1価の有機基としては、炭素数1~12の1価の炭化水素基、炭素数1~12の1価のハロゲン化炭化水素基、酸素原子を含む炭素数1~12の1価の炭化水素基、ならびに酸素原子を含む炭素数1~12の1価のハロゲン化炭化水素基等を挙げることができる。
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
Examples of the monovalent organic group having 1 to 12 carbon atoms include a monovalent hydrocarbon group having 1 to 12 carbon atoms, a monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms, and a carbon number of 1 containing an oxygen atom. And -12 monovalent hydrocarbon groups and monovalent halogenated hydrocarbon groups having 1 to 12 carbon atoms and containing an oxygen atom.
 炭素数1~12の1価の炭化水素基としては、炭素数1~12の直鎖または分岐鎖の炭化水素基、炭素数3~12の脂環式炭化水素基および炭素数6~12の芳香族炭化水素基等が挙げられる。 Examples of the monovalent hydrocarbon group having 1 to 12 carbon atoms include linear or branched hydrocarbon groups having 1 to 12 carbon atoms, alicyclic hydrocarbon groups having 3 to 12 carbon atoms, and 6 to 12 carbon atoms. An aromatic hydrocarbon group etc. are mentioned.
 炭素数1~12の直鎖または分岐鎖の炭化水素基としては、炭素数1~8の直鎖または分岐鎖の炭化水素基が好ましく、炭素数1~5の直鎖または分岐鎖の炭化水素基がより好ましい。
 直鎖または分岐鎖の炭化水素基の好適な具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基およびn-ヘプチル基等が挙げられる。
The linear or branched hydrocarbon group having 1 to 12 carbon atoms is preferably a linear or branched hydrocarbon group having 1 to 8 carbon atoms, and is a linear or branched hydrocarbon group having 1 to 5 carbon atoms. Groups are more preferred.
Preferable specific examples of the linear or branched hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, and an n-pentyl group. , N-hexyl group, n-heptyl group and the like.
 炭素数3~12の脂環式炭化水素基としては、炭素数3~8の脂環式炭化水素基が好ましく、炭素数3または4の脂環式炭化水素基がより好ましい。
 炭素数3~12の脂環式炭化水素基の好適な具体例としては、シクロプロピル基、シクロブチル基、シクロペンチル基およびシクロへキシル基等のシクロアルキル基;シクロブテニル基、シクロペンテニル基およびシクロヘキセニル基等のシクロアルケニル基が挙げられる。当該脂環式炭化水素基の結合部位は、脂環上のいずれの炭素原子でもよい。
The alicyclic hydrocarbon group having 3 to 12 carbon atoms is preferably an alicyclic hydrocarbon group having 3 to 8 carbon atoms, and more preferably an alicyclic hydrocarbon group having 3 or 4 carbon atoms.
Preferred examples of the alicyclic hydrocarbon group having 3 to 12 carbon atoms include cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group and cyclohexyl group; cyclobutenyl group, cyclopentenyl group and cyclohexenyl group. And the like. The binding site of the alicyclic hydrocarbon group may be any carbon atom on the alicyclic ring.
 炭素数6~12の芳香族炭化水素基としては、フェニル基、ビフェニル基およびナフチル基等が挙げられる。当該芳香族炭化水素基の結合部位は、芳香族環上のいずれの炭素原子でもよい。 Examples of the aromatic hydrocarbon group having 6 to 12 carbon atoms include a phenyl group, a biphenyl group, and a naphthyl group. The bonding site of the aromatic hydrocarbon group may be any carbon atom on the aromatic ring.
 炭素数1~12の1価のハロゲン化炭化水素基としては、上記の炭素数1~12の炭化水素基の水素原子の少なくとも一つがハロゲン原子で置換された基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、フッ素原子、塩素原子であることが好ましい。 Examples of the monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms include groups in which at least one hydrogen atom of the hydrocarbon group having 1 to 12 carbon atoms is substituted with a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
 酸素原子を含む炭素数1~12の1価の炭化水素基としては、エーテル結合、カルボニル基およびエステル基を有する炭素数1~12の炭化水素基等を挙げることができる。 Examples of the C 1-12 monovalent hydrocarbon group containing an oxygen atom include C 1-12 hydrocarbon groups having an ether bond, a carbonyl group and an ester group.
 エーテル結合を有する炭素数1~12の炭化水素基としては、炭素数1~12のアルコキシ基、炭素数2~12のアルケニルオキシ基、炭素数2~12のアルキニルオキシ基、炭素数6~12のアリールオキシ基および炭素数1~12のアルコキシアルキル基などを挙げることができる。具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、フェノキシ基、プロペニルオキシ基、シクロヘキシルオキシ基およびメトキシメチル基等が挙げられる。 Examples of the hydrocarbon group having 1 to 12 carbon atoms having an ether bond include an alkoxy group having 1 to 12 carbon atoms, an alkenyloxy group having 2 to 12 carbon atoms, an alkynyloxy group having 2 to 12 carbon atoms, and 6 to 12 carbon atoms. And an aryloxy group and an alkoxyalkyl group having 1 to 12 carbon atoms. Specific examples include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, a phenoxy group, a propenyloxy group, a cyclohexyloxy group, and a methoxymethyl group.
 カルボニル基を有する炭素数1~12の炭化水素基としては、炭素数2~12のアシル基等を挙げることができる。具体的には、アセチル基、プロピオニル基、イソプロピオニル基およびベンゾイル基等が挙げられる。
 エステル基を有する炭素数1~12の炭化水素基としては、炭素数2~12のアシルオキシ基等が挙げられる。具体的には、アセチルオキシ基、プロピオニルオキシ基、イソプロピオニルオキシ基およびベンゾイルオキシ基等が挙げられる。
Examples of the hydrocarbon group having 1 to 12 carbon atoms having a carbonyl group include acyl groups having 2 to 12 carbon atoms. Specific examples include an acetyl group, a propionyl group, an isopropionyl group, and a benzoyl group.
Examples of the hydrocarbon group having 1 to 12 carbon atoms having an ester group include an acyloxy group having 2 to 12 carbon atoms. Specific examples include an acetyloxy group, a propionyloxy group, an isopropionyloxy group, and a benzoyloxy group.
 酸素原子を含む炭素数1~12の1価のハロゲン化炭化水素基としては、上記の酸素原子を含む炭素数1~12の1価の炭化水素基の水素原子の少なくとも一つがハロゲン原子で置換された基が挙げられる。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられるが、フッ素原子、塩素原子であることが好ましい。 As the monovalent halogenated hydrocarbon group having 1 to 12 carbon atoms containing an oxygen atom, at least one of the hydrogen atoms of the monovalent hydrocarbon group having 1 to 12 carbon atoms containing the oxygen atom is substituted with a halogen atom Group. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
 Lで表わされる配位子としては、例えば、アミン化合物、ピリジン化合物、窒素複素環化合物、アミド化合物、ニトリル化合物、ホスフィン化合物、スルフィド化合物、アルコール化合物、エーテル化合物、エステル化合物、スルホン化合物等を挙げることができる。 Examples of the ligand represented by L include amine compounds, pyridine compounds, nitrogen heterocyclic compounds, amide compounds, nitrile compounds, phosphine compounds, sulfide compounds, alcohol compounds, ether compounds, ester compounds, sulfone compounds, and the like. Can do.
 本発明で使用されるアルミナ膜形成用組成物に含有されるアルミニウム化合物が水素化アルミニウム(上記式(1-1)において全てのRが水素原子である化合物)である場合には、安定性の観点から、アミン化合物との錯体(上記式(1-1)においてLがアミン化合物であり、nが1または2である化合物)を用いることが好ましい。 When the aluminum compound contained in the composition for forming an alumina film used in the present invention is aluminum hydride (a compound in which all R 1 are hydrogen atoms in the above formula (1-1)), From this point of view, it is preferable to use a complex with an amine compound (a compound in which L is an amine compound and n is 1 or 2 in the above formula (1-1)).
 水素化アルミニウムとアミン化合物との錯体は、例えばアルミニウム化合物と水素化リチウムアルミニウムや水素化ナトリウムアルミニウムのジエチルエーテル懸濁液にアミン化合物の塩化水素酸塩を添加し、例えばNガス中室温で撹拌しながら反応させて合成することができる。
 アミン化合物と水素化アルミニウムとの反応割合は、通常0.5~4(アミン化合物/水素化アルミニウムの質量比)であり、反応温度、反応溶媒等は、所望するアミン化合物と水素化アルミニウムとの錯体の種類に応じて適宜に選択される。
The complex of an aluminum hydride and an amine compound is prepared, for example, by adding a hydrochloride of an amine compound to a diethyl ether suspension of an aluminum compound and lithium aluminum hydride or sodium aluminum hydride, and stirring at room temperature in N 2 gas, for example. It is possible to synthesize it while reacting.
The reaction ratio between the amine compound and aluminum hydride is usually 0.5 to 4 (mass ratio of amine compound / aluminum hydride), and the reaction temperature, reaction solvent, etc. are the same as the desired amine compound and aluminum hydride. It is appropriately selected according to the type of complex.
 本発明において用いられるアミン化合物は、モノアミン化合物又はポリアミン化合物である。上記ポリアミン化合物としては、例えばジアミン化合物、トリアミン化合物、テトラアミン化合物等を挙げることができる。
 上記モノアミン化合物としては、例えば下記式(2)で表されるモノアミン化合物、及び、それ以外のモノアミン化合物を挙げることができる。
 R111213N   (2)
(ここで、R11、R12及びR13は、それぞれ独立に、水素原子または炭素数1~12の1価の有機基である。)
 上記式(2)中のR11、R12及びR13の炭素数1~12の1価の有機基としては、上記式(1-1)中のRと同様の基を挙げることができる。
The amine compound used in the present invention is a monoamine compound or a polyamine compound. As said polyamine compound, a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
Examples of the monoamine compound include a monoamine compound represented by the following formula (2) and other monoamine compounds.
R 11 R 12 R 13 N (2)
(Here, R 11 , R 12 and R 13 are each independently a hydrogen atom or a monovalent organic group having 1 to 12 carbon atoms.)
Examples of the monovalent organic group having 1 to 12 carbon atoms of R 11 , R 12 and R 13 in the above formula (2) include the same groups as R 1 in the above formula (1-1). .
 上記式(2)で示されるモノアミン化合物の具体例としては、例えば、アンモニア、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリシクロプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-t-ブチルアミン、トリ-2-メチルブチルアミン、トリ-n-ヘキシルアミン、トリシクロヘキシルアミン、トリ(2-エチルヘキシル)アミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジイソブチルフェニルアミン、メチルジフェニルアミン、エチルジフェニルアミン、
イソブチルジフェニルアミン、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジシクロプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルブチルアミン、ジ-n-ヘキシルアミン、ジシクロヘキシルアミン、ジ(2-エチルヘキシル)アミン、ジオクチルアミン、ジフェニルアミン、ジベンジルアミン、メチルフェニルアミン、エチルフェニルアミン、イソブチルフェニルアミン、メチルアリルアミン、メチルビニルアミン、メチル(フェニルエチニル)アミン、フェニル(フェニルエチニル)アミン、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、t-ブチルアミン、2-メチルブチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、2-エチルヘキシルアミン、オクチルアミン、フェニルアミン、ベンジルアミン等を挙げることができる。
Specific examples of the monoamine compound represented by the formula (2) include, for example, ammonia, trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tricyclopropylamine, tri-n-butylamine, triisobutylamine, Tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenylamine, diethylphenyl Amine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine,
Isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, dicyclopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, methylethylamine, methylbutylamine, di-n-hexylamine , Dicyclohexylamine, di (2-ethylhexyl) amine, dioctylamine, diphenylamine, dibenzylamine, methylphenylamine, ethylphenylamine, isobutylphenylamine, methylallylamine, methylvinylamine, methyl (phenylethynyl) amine, phenyl (phenyl) Ethynyl) amine, methylamine, ethylamine, n-propylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutyl Min, t-butylamine, 2-methylbutylamine, n- hexylamine, cyclohexylamine, 2-ethylhexylamine, octylamine, phenylamine, and benzyl amine.
 上記式(2)で表されるモノアミン化合物以外のモノアミン化合物の具体例としては、例えば1-アザ-ビシクロ[2.2.1]ヘプタン、1-アザ-ビシクロ[2.2.2]オクタン(キヌクリジン)、1-アザ-シクロヘキサン、1-アザ-シクロヘキサン-3-エン、N-メチル-1-アザ-シクロヘキサン-3-エン等を挙げることができる。 Specific examples of monoamine compounds other than the monoamine compound represented by the above formula (2) include, for example, 1-aza-bicyclo [2.2.1] heptane, 1-aza-bicyclo [2.2.2] octane ( Quinuclidine), 1-aza-cyclohexane, 1-aza-cyclohexane-3-ene, N-methyl-1-aza-cyclohexane-3-ene, and the like.
 上記ジアミン化合物としては、例えばエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジ-t-ブチルエチレンジアミン、N,N’-ジフェニルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、フェニレンジアミン等を挙げることができる。 Examples of the diamine compound include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-. Examples thereof include diphenylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, and phenylenediamine.
 上記トリアミン化合物としては、例えばジエチレントリアミン、1,7-ジメチル-1,4,7-トリアザヘプタン、1,7-ジエチル-1,4,7-トリアザヘプタン、N,N’,N’’-トリメチル-1,3,5-トリアザシクロヘキサン等を挙げることができる。
 上記テトラアミン化合物としては、例えばトリメチレンテトラアミン、トリエチレンテトラアミン等を挙げることができる。
Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ″ — And trimethyl-1,3,5-triazacyclohexane.
Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine.
 これらアミン化合物のうち、式(2)で表されるモノアミン化合物を使用することが好ましい。中でもトリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリイソブチルアミン、トリ-t-ブチルアミン、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルブチルアミン、メチルフェニルアミン、エチルフェニルアミン、イソブチルフェニルアミン、メチルアミン、エチルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、t-ブチルアミン、2-メチルブチルアミン、n-ヘ
キシルアミン又はフェニルアミンを使用することがより好ましく、トリメチルアミン、トリエチルアミン、トリ-イソプロピルアミン、トリイソブチルアミン又はトリ-t-ブチルアミンを使用することが特に好ましい。
 以上のアミン化合物は、単独でも、あるいは2種以上の化合物を混合して使用することもできる。
Among these amine compounds, it is preferable to use a monoamine compound represented by the formula (2). Among them, trimethylamine, triethylamine, triisopropylamine, triisobutylamine, tri-t-butylamine, dimethylamine, diethylamine, diisopropylamine, diisobutylamine, di-t-butylamine, methylethylamine, methylbutylamine, methylphenylamine, ethylphenylamine, It is more preferable to use isobutylphenylamine, methylamine, ethylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, t-butylamine, 2-methylbutylamine, n-hexylamine or phenylamine, and trimethylamine, triethylamine It is particularly preferred to use tri-isopropylamine, triisobutylamine or tri-t-butylamine .
These amine compounds can be used alone or in admixture of two or more.
 上記水素化アルミニウム化合物とアミン化合物との錯体以外のアルミニウム化合物としては、例えばトリメチルアルミニウム、トリエチルアルミニウム、トリ-n-プロピルアルミニウム、トリシクロプロピルアルミニウム、トリ-n-ブチルアルミニウム、トリイソブチルアルミニウム、トリ-t-ブチルアルミニウム、トリ-2-メチルブチルアルミニウム、トリ-n-ヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリ(2-エチルヘキシル)アルミニウム、トリオクチルアルミニウム、トリドデシルアルミニウム、トリフェニルアルミニウム、トリベンジルアルミニウム、ジメチルフェニルアルミニウム、ジエチルフェニルアルミニウム、ジイソブチルフェニルアルミニウム、メチルジフェニルアルミニウム、エチルジフェニルアルミニウム、イソブチルジフェニルアルミニウム、トリメトキシアルミニウム、トリエトキシアルミニウム、トリn-プロポキシアルミニウム、トリイソプロポキシアルミニウム、トリn-ブトキシアルミニウム、トリsec-ブトキシアルミニウム、トリtert-ブトキシアルミニウム、ジエチルアルミニウムヒドリド、ジイソブチルアルミニウムヒドリド、ジフェニルアルミニウムヒドリド、ジメチルメタクリルアルミニウム、ジメチル(フェニルエチニル)アルミニウム、ジフェニル(フェニルエチニル)アルミニウム、ジメチルアミン・ジメチルアルミニウムヒドリド、ジエチルアミン・ジエチルアルミニウムヒドリド、ジメチルアミン・ジエチルアルミニウムヒドリド、ジエチルアミン・ジメチルアルミニウムヒドリド、ジフェニルアミン・ジメチルアルミニウムヒドリド、ジフェニルアミン・ジエチルアルミニウムヒドリド、ジエチルアルミニウムフルオリド、ジイソブチルアルミニウムフルオリド、ジフェニルアルミニウムフルオリド、ジメチルアルミニウムフルオリド、ジエチルアミン・ジエチルアルミニウムフルオリド、ジメチルアミン・ジエチルアルミニウムフルオリド、ジエチルアミン・ジメチルアルミニウムフルオリド、ジフェニルアミン・ジメチルアルミニウムフルオリド、ジフェニルアミン・ジエチルアルミニウムフルオリド、ジエチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド、ジフェニルアルミニウムクロリド、ジメチルアルミニウムクロリド、ジエチルアミン・ジエチルアルミニウムクロリド、ジメチルアミン・ジエチルアルミニウムクロリド、ジエチルアミン・ジメチルアルミニウムクロリド、ジフェニルアミン・ジメチルアルミニウムクロリド、ジフェニルアミン・ジエチルアルミニウムクロリド等を挙げることができる。 Examples of the aluminum compound other than the complex of the aluminum hydride compound and the amine compound include trimethylaluminum, triethylaluminum, tri-n-propylaluminum, tricyclopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri- t-butylaluminum, tri-2-methylbutylaluminum, tri-n-hexylaluminum, tricyclohexylaluminum, tri (2-ethylhexyl) aluminum, trioctylaluminum, tridodecylaluminum, triphenylaluminum, tribenzylaluminum, dimethylphenyl Aluminum, diethylphenylaluminum, diisobutylphenylaluminum, methyldiphenylaluminum, ethyl Phenylaluminum, isobutyldiphenylaluminum, trimethoxyaluminum, triethoxyaluminum, tri-n-propoxyaluminum, triisopropoxyaluminum, tri-n-butoxyaluminum, trisec-butoxyaluminum, tritert-butoxyaluminum, diethylaluminum hydride, diisobutylaluminum Hydride, diphenylaluminum hydride, dimethylmethacrylaluminum, dimethyl (phenylethynyl) aluminum, diphenyl (phenylethynyl) aluminum, dimethylamine / dimethylaluminum hydride, diethylamine / diethylaluminum hydride, dimethylamine / diethylaluminum hydride, diethylamine / dimethylaluminum hydride , Diphenylamine / dimethylaluminum hydride, diphenylamine / diethylaluminum hydride, diethylaluminum fluoride, diisobutylaluminum fluoride, diphenylaluminum fluoride, dimethylaluminum fluoride, diethylamine / diethylaluminum fluoride, dimethylamine / diethylaluminum fluoride, diethylamine・ Dimethylaluminum fluoride, diphenylamine ・ dimethylaluminum fluoride, diphenylamine ・ diethylaluminum fluoride, diethylaluminum chloride, diisobutylaluminum chloride, diphenylaluminum chloride, dimethylaluminum chloride, diethylamine ・ diethylaluminum chloride, dimethylamine ・Examples thereof include diethylaluminum chloride, diethylamine / dimethylaluminum chloride, diphenylamine / dimethylaluminum chloride, and diphenylamine / diethylaluminum chloride.
 また、式(1-2)で示されるアルミニウム化合物の具体例としては、Al(μ-CH(CH、Al(μ-C(C、Al(μ-C(C、Al(μ-C(C、Al(μ-OCH(CH、Al(μ-OC(C、Al(μ-OC(C、Al(μ-OC(C、Al(μ-OCH(OCH、Al(μ-OC(OC、Al(μ-OC(OC、Al(μ-OC(OC等を挙げることができる。 Specific examples of the aluminum compound represented by the formula (1-2) include Al 2 (μ-CH 3 ) 2 (CH 3 ) 4 , Al 2 (μ-C 2 H 5 ) 2 (C 2 H 5 ) 4 , Al 2 (μ-C 3 H 7 ) 2 (C 3 H 7 ) 4 , Al 2 (μ-C 4 H 9 ) 2 (C 4 H 9 ) 4 , Al 2 (μ-OCH 3 ) 2 (CH 3 ) 4 , Al 2 (μ-OC 2 H 5 ) 2 (C 2 H 5 ) 4 , Al 2 (μ-OC 3 H 7 ) 2 (C 3 H 7 ) 4 , Al 2 (μ-OC 4 H 9 ) 2 (C 4 H 9 ) 4 , Al 2 (μ-OCH 3 ) 2 (OCH 3 ) 4 , Al 2 (μ-OC 2 H 5 ) 2 (OC 2 H 5 ) 4 , Al 2 ( It is given μ-OC 3 H 7) 2 (OC 3 H 7) 4, Al 2 (μ-OC 4 H 9) 2 (OC 4 H 9) 4 , etc. Kill.
 また、式(1-3)で示されるアルミニウム化合物の具体例としては、Al(μ-H)(CH、Al(μ-H)(C、Al(μ-H)(C、Al(μ-H)(C、Al(μ-F)(CH、Al(μ-F)(C、Al(μ-F)(C、Al(μ-F)(C、Al(μ-Cl)(CH、Al(μ-Cl)(C、Al(μ-Cl)(C、Al(μ-Cl)(C等を挙げることができる。 Specific examples of the aluminum compound represented by the formula (1-3) include Al 2 (μ-H) 2 (CH 3 ) 4 , Al 2 (μ-H) 2 (C 2 H 5 ) 4 , Al 2 (μ-H) 2 (C 3 H 7 ) 4 , Al 2 (μ-H) 2 (C 4 H 9 ) 4 , Al 2 (μ-F) 2 (CH 3 ) 4 , Al 2 (μ- F) 2 (C 2 H 5 ) 4 , Al 2 (μ-F) 2 (C 3 H 7 ) 4 , Al 2 (μ-F) 2 (C 4 H 9 ) 4 , Al 2 (μ-Cl) 2 (CH 3 ) 4 , Al 2 (μ-Cl) 2 (C 2 H 5 ) 4 , Al 2 (μ-Cl) 2 (C 3 H 7 ) 4 , Al 2 (μ-Cl) 2 (C 4 H 9 ) 4 and the like.
 また、式(1-4)で示される構造単位を有するアルミニウム化合物の具体例としては、Al(μ-OCH(CH、Al(μ-OC(C、Al(μ-OC(C、Al(μ-OC(C、Al(μ-OCH(OCH、Al(μ-OC(OC、Al(μ-OC(OC、Al(μ-OC(OC等を挙げることができる。 Specific examples of the aluminum compound having the structural unit represented by the formula (1-4) include Al 3 (μ-OCH 3 ) 3 (CH 3 ) 6 , Al 3 (μ-OC 2 H 5 ) 3 ( C 2 H 5 ) 6 , Al 3 (μ-OC 3 H 7 ) 3 (C 3 H 7 ) 6 , Al 3 (μ-OC 4 H 9 ) 3 (C 4 H 9 ) 6 , Al 3 (μ- OCH 3 ) 3 (OCH 3 ) 6 , Al 3 (μ-OC 2 H 5 ) 3 (OC 2 H 5 ) 6 , Al 3 (μ-OC 3 H 7 ) 3 (OC 3 H 7 ) 6 , Al 3 (Μ-OC 4 H 9 ) 3 (OC 4 H 9 ) 6 and the like.
 また、式(1-5)で示される構造単位を有するアルミニウム化合物の具体例としては、トリメチルシクロトリアルミノキサン、トリエチルシクロトリアルミノキサン、トリプロピルシクロトリアルミノキサン、トリブチルシクロトリアルミノキサン、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン等を挙げることができる。 Specific examples of the aluminum compound having the structural unit represented by the formula (1-5) include trimethylcyclotrialuminoxane, triethylcyclotrialuminoxane, tripropylcyclotrialuminoxane, tributylcyclotrialuminoxane, methylaluminoxane, ethylaluminoxane, Examples thereof include propylaluminoxane and butylaluminoxane.
 本発明において、アルミナ膜形成用組成物に含有される有機溶媒は、特に限定されるものではないが、例えば、炭化水素溶媒、エーテル溶媒、極性溶媒等を用いることができる。
 上記炭化水素溶媒としては、例えばn-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、シクロヘプタン、n-オクタン、シクロオクタン、デカン、シクロデカン、ジシクロペンタジエンの水素化物、ベンゼン、トルエン、キシレン、tert-ブチルベンゼン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワラン等を挙げることができる。
 上記エーテル溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ビス(2-メトキシエチル)エーテル、p-ジオキサン、アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、フェントール、2-メチルフェントール、3-メチルフェントール、4-メチルフェントール、ベラトロール、2-エトキシアニソール、1,4-ジメトキシベンゼン等を挙げることができる。
In the present invention, the organic solvent contained in the composition for forming an alumina film is not particularly limited. For example, a hydrocarbon solvent, an ether solvent, a polar solvent, and the like can be used.
Examples of the hydrocarbon solvent include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane, dicyclopentadiene hydride, benzene, toluene, Examples include xylene, tert-butylbenzene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane and the like.
Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, and bis. (2-methoxyethyl) ether, p-dioxane, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, fentol, 2-methylfentol, 3-methylfentol, 4-methylfentol, Examples include veratrol, 2-ethoxyanisole, and 1,4-dimethoxybenzene.
 上記極性溶媒としては、例えば塩化メチレン、クロロホルム等を挙げることができる。
 以上の有機溶媒は、単独であるいは2種以上混合して用いることができる。
 これらのうち、溶解性、及び、形成される溶液の安定性の点で、炭化水素溶媒もしくは炭化水素溶媒とエーテル溶媒との混合溶媒を用いるのが好ましい。その際、炭化水素溶媒としては、例えばn-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、シクロヘプタン、n-オクタン、ベンゼン、トルエン、キシレン、又はtert-ブチルベンゼン、を使用することが好ましく、エーテル溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、フェントール、ベラトロール、2-エトキシアニソール、1,4-ジメトキシベンゼンを使用することが好ましい。
Examples of the polar solvent include methylene chloride and chloroform.
These organic solvents can be used alone or in admixture of two or more.
Among these, it is preferable to use a hydrocarbon solvent or a mixed solvent of a hydrocarbon solvent and an ether solvent in view of solubility and stability of the solution to be formed. In this case, for example, n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, benzene, toluene, xylene, or tert-butylbenzene is used as the hydrocarbon solvent. As the ether solvent, for example, diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3-methylanisole, 4-methyl Preference is given to using anisole, fentol, veratrol, 2-ethoxyanisole, 1,4-dimethoxybenzene.
 本発明で用いられるアルミナ膜形成用組成物は、アルミニウム化合物及び有機溶媒を必須成分として含有し、その他に必要に応じてチタン化合物を含有することもできる。
 上記チタン化合物としては、例えば下記式(3)で表わされる化合物、下記式(4)で表わされる化合物、下記式(6)で表わされる化合物、下記式(7)で表わされる化合物、及び下記式(8)で表わされる化合物を挙げることができる。
The composition for forming an alumina film used in the present invention contains an aluminum compound and an organic solvent as essential components, and may further contain a titanium compound as necessary.
Examples of the titanium compound include a compound represented by the following formula (3), a compound represented by the following formula (4), a compound represented by the following formula (6), a compound represented by the following formula (7), and the following formula: The compound represented by (8) can be mentioned.
 Ti(OR14   (3)
(上記式(3)中、R14は、炭素数1~10のアルキル基、フェニル基、ハロゲン化アルキル基またはハロゲン化フェニル基である。)
Ti (OR 14 ) 4 (3)
(In the above formula (3), R 14 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, a halogenated alkyl group or a halogenated phenyl group.)
 Ti(OR154-x   (4)
(上記式(4)中、R15は上記式(3)のR14と同じであり、Zは下記式(5)で表わされる基であり、RおよびR10は同一もしくは異なり、炭素数1~10のアルキル基、フェニル基、アルコキシ基、ハロゲン化アルキル基、またはハロゲン化フェニル基であり、xは0~3の整数である。)
Ti (OR 15 ) x Z 4-x (4)
(In the above formula (4), R 15 is the same as R 14 in the above formula (3), Z is a group represented by the following formula (5), R 9 and R 10 are the same or different, and 1-10 alkyl group, phenyl group, alkoxy group, halogenated alkyl group, or halogenated phenyl group, and x is an integer of 0-3.)
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 Ti(OR16(X)4-y   (6)
(上記式(6)中、R16はアルキル基又はフェニル基であり、Xはハロゲン原子であり、yは0~3の整数である。)
Ti (OR 16 ) y (X) 4-y (6)
(In the above formula (6), R 16 is an alkyl group or a phenyl group, X is a halogen atom, and y is an integer of 0 to 3.)
 Ti(NR17   (7)
(上記式(7)中、R17はアルキル基又はフェニル基である。)
Ti (NR 17 ) 4 (7)
(In the above formula (7), R 17 is an alkyl group or a phenyl group.)
 Ti(Cp)(Y)4-n   (8)
(上記式(8)中、Cpはシクロペンタジエニル基であり、Yはハロゲン原子又はアルキル基であり、nは1~4の整数である。)
Ti (Cp) n (Y) 4-n (8)
(In the above formula (8), Cp is a cyclopentadienyl group, Y is a halogen atom or an alkyl group, and n is an integer of 1 to 4.)
 上記式(3)、(4)中、R14及びR15は好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、ヘキシル基、シクロヘキシル基、フェノキシ基、メチルフェノキシ基、トリフルオロメチル基であり、更に好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、ヘキシル基、シクロヘキシル基、フェニル基である。また、上記式(5)中、RないしR10は好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、フェノキシ基、メチルフェノキシ基、トルフルオロメチル基である。特に好ましくは、メチル基、エチル基、i-プロピル基、t-ブチル基、メトキシ基、エトキシ基、i-プロポキシ基、t-ブトキシ基、トルフルオロメチル基である。
 上記式(3)で表されるチタン化合物の具体例としては、例えばチタニウムメトキシド、チタニウムエトキシド、チタニウム-n-プロポキシド、チタニウム-n-ノニルオキシド、チタニウムステアリルオキシド、チタニウムイソプロポキシド、チタニウム-n-ブトキシド、チタニウムイソブトキシド、チタニウム-t-ブトキシド、チタニウムトリメチルシロキシド、チタニウム-2-エチルヘキソオキシド、チタニウムメトキシプロポキシド、チタニウムフェノキシド、チタニウムメチルフェノキシド、チタニウムフルオロメトキシドおよびチタニウムクロロフェノキシド等を挙げることができる。
In the above formulas (3) and (4), R 14 and R 15 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group N-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, hexyl group, cyclohexyl group, phenoxy group, methylphenoxy group, trifluoromethyl group, more preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, hexyl group, cyclohexyl group and phenyl group. In the above formula (5), R 9 to R 10 are preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, t-butyl group, methoxy group, ethoxy group, n -Propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, phenoxy group, methylphenoxy group, trifluoromethyl group. Particularly preferred are methyl group, ethyl group, i-propyl group, t-butyl group, methoxy group, ethoxy group, i-propoxy group, t-butoxy group and trifluoromethyl group.
Specific examples of the titanium compound represented by the above formula (3) include, for example, titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-n-nonyl oxide, titanium stearyl oxide, titanium isopropoxide, and titanium. -N-butoxide, titanium isobutoxide, titanium-t-butoxide, titanium trimethylsiloxide, titanium-2-ethylhexoxide, titanium methoxypropoxide, titanium phenoxide, titanium methylphenoxide, titanium fluoromethoxide, titanium chlorophenoxide, etc. Can be mentioned.
 上記式(4)で表されるチタン化合物の具体例としては、例えばテトラキス(ペンタ-2,4-ジケト)チタニウム、テトラキス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウム、テトラキス(1-エトキシブタン-1,3-ジケト)チタニウム、テトラキス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウム、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウム、ビス(ペンタ-2,4-ジケト)チタニウムジメトキシド、ビス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウムジメトキシド、ビス(1-エトキシブタン-1,3-ジケト)チタニウムジメトキシド、ビス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウムジメトキシド、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウムジメトキシド、ビス(ペンタ-2,4-ジケト)チタニウムジi-プロポキシド、ビス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウムジi-プロポキシド、ビス(1-エトキシブタン-1,3-ジケト)チタニウムジi-プロポキシド、ビス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウムジi-プロポキシド、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウムジi-プロポキシド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (4) include, for example, tetrakis (penta-2,4-diketo) titanium, tetrakis (2,2,6,6-tetramethylhepta-3,5-diketo). Titanium, tetrakis (1-ethoxybutane-1,3-diketo) titanium, tetrakis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titanium, (2,2-dimethylhexa) -3,5-diketo) titanium, bis (penta-2,4-diketo) titanium dimethoxide, bis (2,2,6,6-tetramethylhepta-3,5-diketo) titanium dimethoxide, bis (1 -Ethoxybutane-1,3-diketo) titanium dimethoxide, bis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titanium di Toxide, (2,2-dimethylhexa-3,5-diketo) titanium dimethoxide, bis (penta-2,4-diketo) titanium di-propoxide, bis (2,2,6,6-tetramethylhepta -3,5-diketo) titanium di i-propoxide, bis (1-ethoxybutane-1,3-diketo) titanium di i-propoxide, bis (1,1,1,5,5,5-hexafluoro Examples include penta-2,4-diketo) titanium dii-propoxide, (2,2-dimethylhexa-3,5-diketo) titanium dii-propoxide, and the like.
 上記式(6)で表されるチタン化合物の具体例としては、例えばトリメトキシチタニウムクロライド、トリエトキシチタニウムクロライド、トリ-n-プロポキシチタニウムクロライド、トリ-i-プロポキシチタニウムクロライド、トリ-n-ブトキシチタニウムクロライド、トリ-t-ブトキシチタニウムクロライド、トリイソステアロイルチタニウムクロライド、ジメトキシチタニウムジクロライド、ジエトキシチタニウムジクロライド、ジ-n-プロポキシチタニウムジクロライド、ジ-i-プロポキシチタニウムジクロライド、ジ-n-ブトキシチタニウムジクロライド、ジ-t-ブトキシチタニウムジクロライド、ジイソステアロイルチタニウムジクロライド、メトキシチタニウムトリクロライド、エトキシチタニウムトリクロライド、n-プロポキシチタニウムトリクロライド、i-プロポキシチタニウムトリクロライド、n-ブトキシチタニウムトリクロライド、t-ブトキシチタニウムトリクロライド、イソステアロイルチタニウムトリクロライド、チタニウムテトラクロライド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (6) include, for example, trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, tri-i-propoxytitanium chloride, tri-n-butoxytitanium. Chloride, tri-t-butoxytitanium chloride, triisostearoyl titanium chloride, dimethoxytitanium dichloride, diethoxytitanium dichloride, di-n-propoxytitanium dichloride, di-i-propoxytitanium dichloride, di-n-butoxytitanium dichloride, di -T-butoxy titanium dichloride, diisostearoyl titanium dichloride, methoxy titanium trichloride, ethoxy titanium trichloride Ride, n- propoxytitanium trichloride, i- propoxytitanium trichloride, n- butoxytitanium trichloride, t-butoxy titanium trichloride, isostearoyl trichloride, can be mentioned titanium tetrachloride and the like.
 上記式(7)で表されるチタン化合物の具体例としては、例えばテトラキス(ジメチルアミノ)チタニウム、テトラキス(ジエチルアミノ)チタニウム、テトラキス(ジ-t-ブトキシアミノ)チタニウム、テトラキス(ジ-i-プロポキシアミノ)チタニウム、テトラキス(ジフェニルアミノ)チタニウムを挙げることができる。
 上記式(8)で表されるチタン化合物の具体例としては、例えばジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムジブロマイド、シクロペンタジエニルチタニウムトリクロライド、シクロペンタジエニルチタニウムトリブロマイド、ジシクロペンタジエニルジメチルチタニウム、ジシクロペンタジエニルジエチルチタニウム、ジシクロペンタジエニルジ-t-ブチルチタニウム、ジシクロペンタジエニルフェニルチタニウムクロライド、ジシクロペンタジエニルメチルチタニウムクロライド等を挙げることができる。
Specific examples of the titanium compound represented by the formula (7) include tetrakis (dimethylamino) titanium, tetrakis (diethylamino) titanium, tetrakis (di-t-butoxyamino) titanium, tetrakis (di-i-propoxyamino). ) Titanium, tetrakis (diphenylamino) titanium.
Specific examples of the titanium compound represented by the above formula (8) include, for example, dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium dibromide, cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tribromide. Dicyclopentadienyldimethyltitanium, dicyclopentadienyldiethyltitanium, dicyclopentadienyldi-t-butyltitanium, dicyclopentadienylphenyltitanium chloride, dicyclopentadienylmethyltitanium chloride, etc. Can do.
 アルミナ膜形成用組成物中のアルミニウム化合物の質量割合は、成膜すべきアルミナの膜厚に応じて適宜設定することができるが、好ましくは5~90質量%、より好ましくは10~85質量%、さらに好ましくは20~80質量%、特に好ましくは30~70質量%である。 The mass ratio of the aluminum compound in the composition for forming an alumina film can be appropriately set according to the thickness of the alumina to be formed, but is preferably 5 to 90 mass%, more preferably 10 to 85 mass%. More preferably, it is 20 to 80% by mass, particularly preferably 30 to 70% by mass.
 アルミナ膜形成用組成物がチタン化合物を含有する場合、チタン化合物の濃度は、アルミニウム化合物及びチタン化合物の合計に対して、好ましくは1モル%以下、より好ましくは0.00001~1モル%、更に好ましくは0.00005~0.01モル%である。該濃度をこの範囲内とすれば、良好な埋め込み性と、組成物の安定性を両立することができる。 When the composition for forming an alumina film contains a titanium compound, the concentration of the titanium compound is preferably 1 mol% or less, more preferably 0.00001 to 1 mol%, more preferably the total of the aluminum compound and the titanium compound. Preferably, it is 0.00005 to 0.01 mol%. When the concentration is within this range, both good embedding property and stability of the composition can be achieved.
 アルミナ膜形成用組成物の製造方法は、特に限定されるものではない。例えば、上記のアルミニウム化合物を溶媒の存在下で合成した後、副生物等の不溶物をフィルター等で除去した溶液をそのままアルミナ膜形成用組成物として用いることができる。あるいはまた、この溶液に所望の溶媒を添加した後、反応に用いた溶媒、例えばジエチルエーテルを減圧下で除去することによって、アルミナ膜形成用組成物としてもよい。 The method for producing the composition for forming an alumina film is not particularly limited. For example, a solution obtained by synthesizing the above aluminum compound in the presence of a solvent and then removing insolubles such as by-products with a filter or the like can be used as it is as the composition for forming an alumina film. Alternatively, the composition for forming an alumina film may be obtained by adding a desired solvent to the solution and then removing the solvent used in the reaction, for example, diethyl ether under reduced pressure.
 アルミナ膜形成用組成物がチタン化合物を含有する場合、その製造にあたっては、例えば上記のようにして製造したアルミニウム化合物を含有する溶液に、攪拌しながら所定量のチタン含有化合物の溶液を添加して調製することができる。添加するときの温度は、好ましくは0~150℃、より好ましくは5~100℃である。攪拌する時間は、好ましくは0.1~120分、より好ましくは0.2~60分である。このような条件で混合することにより、安定なアルミナ膜形成組成物を得ることができる。 When the composition for forming an alumina film contains a titanium compound, for example, a predetermined amount of a solution of the titanium-containing compound is added to the solution containing the aluminum compound produced as described above while stirring. Can be prepared. The temperature at the time of addition is preferably 0 to 150 ° C., more preferably 5 to 100 ° C. The stirring time is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes. By mixing under such conditions, a stable alumina film-forming composition can be obtained.
 本発明の方法に使用される基体の本体を構成する材質は、特に制限はないが、次工程の熱処理に耐えられるものが好ましい。また、基体の本体の形状は、特に制限はなく、例えば、上面が平面でも段差のある非平面でもよい。
 基体の本体の材質の具体例としては、ガラス、金属、プラスチック、セラミックスなどを挙げることができる。ガラスとしては、石英ガラス、ホウ珪酸ガラス、ソーダガラス、鉛ガラスなどを挙げることができる。金属としては、金、銀、銅、ニッケル、シリコン、アルミニウム、鉄、ステンレス鋼などを挙げることができる。プラスチックとしては、ポリイミド、ポリエーテルスルホンなどを挙げることができる。
 基体の本体の形状の具体例としては、バルク形状、板状、フィルム形状などを挙げることができる。
The material constituting the main body of the substrate used in the method of the present invention is not particularly limited, but is preferably one that can withstand the heat treatment of the next step. Further, the shape of the main body of the base body is not particularly limited.
Specific examples of the material of the main body of the substrate include glass, metal, plastic, and ceramics. Examples of the glass include quartz glass, borosilicate glass, soda glass, and lead glass. Examples of the metal include gold, silver, copper, nickel, silicon, aluminum, iron, and stainless steel. Examples of the plastic include polyimide and polyethersulfone.
Specific examples of the shape of the main body of the substrate include a bulk shape, a plate shape, and a film shape.
 本発明の方法に使用される基体は、例えば、基体の本体の表面に下地膜を形成させてなるものである。このような基体は、例えば、基体の本体に、アルミニウム、チタン、銅、コバルト、ルテニウム、モリブデン、タングステン、アルミニウム、ニッケル、パラジウム、及び金から選ばれる少なくとも一種の金属原子を含有する下地膜を表面に有してなる。この下地膜によって、アルミナ膜の成膜性がより良好になる。
 基体本体への下地膜の形成方法としては特に限定されるものではないが、例えば、スピンコート法、ロールコート法、カーテンコート法、ディップコート法、スプレー法、液滴吐出法等の塗布法、CVD法、PVD法、スパッタ法等の各種成膜方法を用いることができる。
 なお、基体本体の材質の具体例としては、ガラス、プラスチック、セラミックス、シリコン基板などを挙げることができる。ガラスとしては、例えば石英ガラス、ホウ珪酸ガラス、ソーダガラス、鉛ガラスが使用できる。プラスチックとしては、例えばポリイミド、ポリエーテルスルホン等を挙げることができる。さらにこれらの材質形状はバルク形状、板状、フィルム形状などで特に制限されるものではない。
 塗布法により下地膜を形成する場合、例えば、アルミニウム、チタン、銅、コバルト、ルテニウム、モリブデン、タングステン、アルミニウム、ニッケル、パラジウム、及び金から選択される少なくとも一種の金属原子を含有する有機金属化合物を含む溶液(本明細書中において、「下地膜形成用組成物」ともいう。)を下地膜形成用材料として塗布し、次いで熱処理することによって得ることができる。
 上記チタン原子を含む有機金属化合物としては、例えばチタニウムアルコキシド、アミノ基を有するチタニウム化合物、β-ジケトンとのチタニウム化合物、シクロペンタジエニル基を有するチタニウム化合物、ハロゲン基を有するチタニウム化合物等を挙げることができる。
The base used in the method of the present invention is, for example, a base film formed on the surface of the main body of the base. Such a substrate has, for example, a base film containing at least one metal atom selected from aluminum, titanium, copper, cobalt, ruthenium, molybdenum, tungsten, aluminum, nickel, palladium, and gold on the surface of the substrate. It has to. By this base film, the film formability of the alumina film becomes better.
The method for forming the base film on the substrate body is not particularly limited. For example, a spin coating method, a roll coating method, a curtain coating method, a dip coating method, a spray method, a coating method such as a droplet discharge method, Various film formation methods such as CVD, PVD, and sputtering can be used.
Specific examples of the material of the base body include glass, plastic, ceramics, and silicon substrate. As glass, for example, quartz glass, borosilicate glass, soda glass, and lead glass can be used. Examples of the plastic include polyimide and polyethersulfone. Further, these material shapes are not particularly limited by bulk shape, plate shape, film shape and the like.
When the base film is formed by a coating method, for example, an organometallic compound containing at least one metal atom selected from aluminum, titanium, copper, cobalt, ruthenium, molybdenum, tungsten, aluminum, nickel, palladium, and gold is used. It can be obtained by applying a solution containing the solution (also referred to as “underlying film forming composition” in this specification) as an underlayer forming material and then heat-treating it.
Examples of the organometallic compound containing a titanium atom include a titanium alkoxide, a titanium compound having an amino group, a titanium compound with a β-diketone, a titanium compound having a cyclopentadienyl group, and a titanium compound having a halogen group. Can do.
 上記パラジウム原子を含む有機金属化合物としては、例えばハロゲン原子を有するパラジウム錯体、パラジウムのアセテート化合物、パラジウムのβ-ジケトン錯体、パラジウムと共役カルボニル基を有する化合物との錯体、ホスフィン系パラジウム錯体等を挙げることができる。 Examples of the organometallic compound containing a palladium atom include a palladium complex having a halogen atom, a palladium acetate compound, a palladium β-diketone complex, a complex of palladium and a compound having a conjugated carbonyl group, and a phosphine-based palladium complex. be able to.
 かかる有機金属化合物の具体例としては、チタン原子を含む有機金属化合物として、例えば、前述したアルミナ膜形成用組成物が含有することができるチタン化合物として例示したものと同じチタン化合物を挙げることができる。 As a specific example of such an organometallic compound, for example, the same titanium compound as exemplified as the titanium compound that can be contained in the above-described composition for forming an alumina film can be given as an organometallic compound containing a titanium atom. .
 パラジウム原子を含む有機金属化合物のうち、ハロゲン原子を有するパラジウム錯体として、例えばアリルパラジウムクロライド、ジクロロビス(アセトニトリル)パラジウム、ジクロロビス(ベンゾニトリル)パラジウム等;
 パラジウムのアセテート化合物として、例えばパラジウムアセテート等;
 パラジウムのβ-ジケトン錯体として、例えばペンタン-2,4-ジオナトパラジウム、ヘキサフルオロペンタンジオナトパラジウム等;
 パラジウムと共役カルボニル基を有する化合物との錯体として、例えばビス(ジベンジリデンアセトン)パラジウム等;
 ホスフィン系パラジウム錯体として、例えばビス[1,2-ビス(ジフェニルホスフィノ)エタン]パラジウム、ビス(トリフェニルホスフィン)パラジウムクロライド、ビス(トリフェニルホスフィン)パラジウムアセテート、ジアセテートビス(トリフェニルホスフィン)パラジウム、ジクロロ[1,2-ビス(ジフェニルホスフィン)エタン]パラジウム、トランス-ジクロロビス(トリシクロヘキシルホスフィン)パラジウム、トランス-ジクロロビス(トリフェニルホスフィン)パラジウム、トランス-ジクロロビス(トリ-o-トリルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム等を挙げることができる。
Among organometallic compounds containing a palladium atom, palladium complexes having a halogen atom include, for example, allyl palladium chloride, dichlorobis (acetonitrile) palladium, dichlorobis (benzonitrile) palladium and the like;
Examples of palladium acetate compounds such as palladium acetate;
Examples of the β-diketone complex of palladium include, for example, pentane-2,4-dionatopalladium, hexafluoropentanedionatopalladium and the like;
As a complex of palladium and a compound having a conjugated carbonyl group, for example, bis (dibenzylideneacetone) palladium and the like;
Examples of phosphine-based palladium complexes include bis [1,2-bis (diphenylphosphino) ethane] palladium, bis (triphenylphosphine) palladium chloride, bis (triphenylphosphine) palladium acetate, and diacetate bis (triphenylphosphine) palladium. Dichloro [1,2-bis (diphenylphosphine) ethane] palladium, trans-dichlorobis (tricyclohexylphosphine) palladium, trans-dichlorobis (triphenylphosphine) palladium, trans-dichlorobis (tri-o-tolylphosphine) palladium, tetrakis (Triphenylphosphine) palladium etc. can be mentioned.
 これらのうち、チタニウムイソプロポキシド、ビス(エトキシブタン-1,3-ジケト)チタニウムジイソプロポキシド、テトラ(ペンタン-2,4-ジケト)チタニウム、ペンタン-2,4-ジケトパラジウム、ヘキサフルオロペンタン-2,4-ジケトパラジウムを用いるのが好ましい。
 これらチタン及びパラジウムから選択される少なくとも一種の金属原子を含む有機金属化合物の溶液に用いる溶媒としては、該有機金属化合物を溶解できればいずれの溶媒も使用することができる。これら溶媒としては、例えばエーテル類、エーテル基を有するエステル類、炭化水素類、アルコール類、非プロトン性極性溶媒等及びこれらの混合溶媒を挙げることができる。
Of these, titanium isopropoxide, bis (ethoxybutane-1,3-diketo) titanium diisopropoxide, tetra (pentane-2,4-diketo) titanium, pentane-2,4-diketopalladium, hexafluoro Pentane-2,4-diketopalladium is preferably used.
As the solvent used in the solution of the organometallic compound containing at least one metal atom selected from titanium and palladium, any solvent can be used as long as the organometallic compound can be dissolved. Examples of these solvents include ethers, esters having an ether group, hydrocarbons, alcohols, aprotic polar solvents and the like, and mixed solvents thereof.
 上記エーテル類として、例えばテトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等;
 上記エーテル基を有するエステル類として、例えばエチレングリコルモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、2-アセトキシ-1-メトキシプロパン等;
 上記炭化水素類として、例えばトルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、デカリン、テトラリン、デュレン等;
 上記アルコール類として、例えばメタノール、エタノール、プロパノール等;
 上記非プロトン性極性溶媒として、例えばN-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ヘキサメチルホスホアミド、γ-ブチロラクトン等を、それぞれ挙げることができる。
 有機金属化合物の溶液中の有機金属化合物の含有量は、好ましくは0.1~10質量%であり、より好ましくは0.1~5質量%である。
Examples of the ethers include tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether and the like;
Examples of the esters having an ether group include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, 2-acetoxy-1-methoxypropane and the like;
Examples of the hydrocarbons include toluene, xylene, hexane, cyclohexane, octane, decalin, tetralin, durene and the like;
Examples of the alcohols include methanol, ethanol, propanol and the like;
Examples of the aprotic polar solvent include N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoamide, and γ-butyrolactone.
The content of the organometallic compound in the organometallic compound solution is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass.
 基体の本体への下地膜形成用組成物の塗布は、例えばスピンコート法、ロールコート法、カーテンコート法、ディップコート法、スプレー法、液滴吐出法等の適宜の方法により行うことができる。また、基体の本体がトレンチ構造を有する場合、その開口幅が300nm以下であり、かつトレンチのアスペクト比が5以上の場合には、下地膜形成用組成物を基体の本体へ塗布した後に、基体をしばらくの間、減圧下に置くことによって、トレンチ内部により均一に有機金属化合物を塗布することができる。
 こうして形成された下地膜は、さらに加熱される。加熱温度は好ましくは30~350℃であり、より好ましくは40~300℃である。加熱時間は、好ましくは5~90分であり、より好ましくは10~60分である。
 下地膜形成用組成物の塗布から加熱までの雰囲気は、窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気であるのが好ましい。さらに必要に応じて水素などの還元性ガスを混入した雰囲気が好ましい。また、溶媒や添加物として、水や酸素を取り除いたものを用いることが望ましい。
 本発明において、下地膜の厚さは、溶媒除去後の膜厚として0.001~5μmであることが好ましく、0.005~0.5μmであることがより好ましい。
Application of the base film forming composition to the main body of the substrate can be performed by an appropriate method such as spin coating, roll coating, curtain coating, dip coating, spraying, or droplet discharge. In the case where the main body of the substrate has a trench structure, when the opening width is 300 nm or less and the aspect ratio of the trench is 5 or more, after the base film forming composition is applied to the main body of the substrate, the substrate Is placed under reduced pressure for a while, the organometallic compound can be applied more uniformly inside the trench.
The base film thus formed is further heated. The heating temperature is preferably 30 to 350 ° C, more preferably 40 to 300 ° C. The heating time is preferably 5 to 90 minutes, more preferably 10 to 60 minutes.
The atmosphere from application of the composition for forming a base film to heating is preferably an inert gas atmosphere such as nitrogen, helium, or argon. Further, an atmosphere in which a reducing gas such as hydrogen is mixed as required is preferable. Further, it is desirable to use a solvent or additive from which water or oxygen has been removed.
In the present invention, the thickness of the base film is preferably 0.001 to 5 μm, more preferably 0.005 to 0.5 μm, after removal of the solvent.
 本発明では、基体上に、上述のアルミナ膜形成用組成物を、例えばスピンコート法、ロールコート法、カーテンコート法、ディップコート法、スプレー法、液滴吐出法等の適宜の方法を用いて塗布する。
 この塗布においては、基体の形状、大きさ等により、基体の隅々にまでアルミナ形成用組成物が行き亘るような塗布条件が採用される。例えば塗布法としてスピンコート法を採用する場合において、スピナーの回転数を、300~2,500rpm、更に500~2,000rpmとすることができる。
 塗膜の厚さは、乾燥した状態(次工程で有機溶媒を除去した後の状態)の厚さとして、通常、1nm以上である。また、該厚さは、アルミナ膜の膜厚が大きくても、膜全体を目的とするアルミナで形成させることができるという本発明の効果を考慮すると、好ましくは100nm以上、より好ましくは200nm以上、特に好ましくは300nm以上である。
 このアルミナ膜形成用組成物の塗布時の雰囲気は、窒素、ヘリウム、アルゴンなどの不活性ガスが99.9モル%以上、好ましくは99.95モル%以上である雰囲気であることが好ましい。さらに必要に応じて、水素などの還元性ガスや、酸素などの酸化性ガスを混入した雰囲気で実施してもよい。
In the present invention, the above-described composition for forming an alumina film is applied onto a substrate by using an appropriate method such as a spin coating method, a roll coating method, a curtain coating method, a dip coating method, a spray method, or a droplet discharge method. Apply.
In this application, an application condition is adopted in which the composition for forming an alumina extends to every corner of the substrate depending on the shape and size of the substrate. For example, when the spin coating method is adopted as the coating method, the spinner rotation speed can be set to 300 to 2,500 rpm, and further to 500 to 2,000 rpm.
The thickness of the coating film is usually 1 nm or more as the thickness in the dried state (the state after removing the organic solvent in the next step). Further, the thickness is preferably 100 nm or more, more preferably 200 nm or more in consideration of the effect of the present invention that even if the thickness of the alumina film is large, the entire film can be formed with the target alumina. Especially preferably, it is 300 nm or more.
The atmosphere during the application of the composition for forming an alumina film is preferably an atmosphere containing 99.9 mol% or more, preferably 99.95 mol% or more of an inert gas such as nitrogen, helium, or argon. Further, if necessary, it may be carried out in an atmosphere in which a reducing gas such as hydrogen or an oxidizing gas such as oxygen is mixed.
<工程(b)>
 次に、工程(a)で形成した塗膜から有機溶媒を除去する。塗膜中に含有される有機溶媒を除去するために、加熱処理を行うこともできる。加熱する温度及び時間は、使用する溶媒の種類、及び沸点(蒸気圧)により異なるが、例えば100~350℃において、5~90分間とすることができる。このとき、系全体を減圧にすることで、溶媒の除去をより低温で行うこともできる。好ましくは100~250℃において、10~60分間である。
 工程(b)は、酸化性ガス、例えば水蒸気、酸素、オゾン、一酸化炭素、炭素数が1~3までの過酸化物、アルコール、アルデヒドなど(好ましくは水蒸気、酸素、オゾン)の濃度が0.05~5モル%、好ましくは0.1~1モル%の雰囲気下で行われる。
 通常、雰囲気中の酸化性ガス以外のガスは、窒素、ヘリウム、アルゴンなどの不活性ガスである。
<Step (b)>
Next, the organic solvent is removed from the coating film formed in step (a). In order to remove the organic solvent contained in the coating film, a heat treatment can also be performed. The heating temperature and time vary depending on the type of solvent used and the boiling point (vapor pressure), but can be, for example, 100 to 350 ° C. and 5 to 90 minutes. At this time, the solvent can be removed at a lower temperature by reducing the pressure of the entire system. Preferably, it is 10 to 60 minutes at 100 to 250 ° C.
In step (b), the concentration of an oxidizing gas such as water vapor, oxygen, ozone, carbon monoxide, a peroxide having 1 to 3 carbon atoms, alcohol, aldehyde, etc. (preferably water vapor, oxygen, ozone) is 0. .05 to 5 mol%, preferably 0.1 to 1 mol% of the atmosphere.
Usually, the gas other than the oxidizing gas in the atmosphere is an inert gas such as nitrogen, helium, or argon.
<工程(c)>
 次に、工程(b)で得られた塗膜に、水及びアルコールから選ばれる少なくとも一種の存在下で、熱処理及び光照射処理から選ばれる少なくとも一種の処理を施すことによって、基体上にアルミナ膜が形成される。
 工程(c)において使用されるアルコールとしては、炭素数1~5のアルコールが好ましく、例えば、メタノール、エタノール、1-プロパノール、1-ブタノール、2-ブタノール、1-ペンタノールなどが挙げられる。
 熱処理を施す場合には、基板の温度を100℃以上とするのが好ましく、100℃~600℃とするのがより好ましい。さらに好ましくは150℃~400℃である。加熱時間は、好ましくは30秒~300分であり、より好ましくは1~240分、更に好ましくは10~180分である。
 また、光照射処理を施す場合に用いられる光源としては、例えば水銀ランプ、重水素ランプ、希ガスの放電光、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、希ガスハロゲンエキシマレーザー等を挙げることができる。上記水銀ランプとしては、例えば低圧水銀ランプ又は高圧水銀ランプを挙げることができる。上記希ガスの放電光に用いる希ガスとしては、例えばアルゴン、クリプトン、キセノン等を挙げることができる。上記希ガスハロゲンエキシマレーザーに使用する希ガスハロゲンとしては、例えばXeF、XeCl、XeBr、KrF、KrCl、ArF、ArCl等を挙げることができる。これらの光源の出力としては、好ましくは10~5,000Wであり、より好ましくは100~1,000Wである。これらの光源の波長は特に限定されないが、好ましくは170nm~600nmである。また、形成されるアルミナの膜質の点で、レーザー光の使用が特に好ましい。
<Step (c)>
Next, the coating film obtained in the step (b) is subjected to at least one treatment selected from heat treatment and light irradiation treatment in the presence of at least one selected from water and alcohol, whereby an alumina film is formed on the substrate. Is formed.
The alcohol used in step (c) is preferably an alcohol having 1 to 5 carbon atoms, and examples thereof include methanol, ethanol, 1-propanol, 1-butanol, 2-butanol, and 1-pentanol.
When heat treatment is performed, the temperature of the substrate is preferably 100 ° C. or higher, and more preferably 100 ° C. to 600 ° C. More preferably, it is 150 ° C to 400 ° C. The heating time is preferably 30 seconds to 300 minutes, more preferably 1 to 240 minutes, and still more preferably 10 to 180 minutes.
Examples of the light source used for the light irradiation treatment include a mercury lamp, a deuterium lamp, a rare gas discharge light, a YAG laser, an argon laser, a carbon dioxide gas laser, and a rare gas halogen excimer laser. . Examples of the mercury lamp include a low-pressure mercury lamp and a high-pressure mercury lamp. Examples of the rare gas used for the discharge light of the rare gas include argon, krypton, and xenon. Examples of the rare gas halogen used in the rare gas halogen excimer laser include XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, and the like. The output of these light sources is preferably 10 to 5,000 W, more preferably 100 to 1,000 W. The wavelength of these light sources is not particularly limited, but is preferably 170 nm to 600 nm. Further, the use of laser light is particularly preferable in terms of the film quality of the formed alumina.
 また、工程(c)において、水及びアルコールから選ばれる少なくとも一種に加えて、塩基性化合物及び酸性化合物から選ばれる少なくとも一種を存在させることができる。 Further, in the step (c), in addition to at least one selected from water and alcohol, at least one selected from a basic compound and an acidic compound can be present.
 工程(c)において、塩基性化合物として、無機塩基性化合物と有機塩基性化合物のいずれも使用することができる。無機塩基性化合物としては、例えばアンモニア、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等を挙げることができる。有機塩基性化合物としては、1~3級の各アミン、アルコキシアミン、アルコールアミン、ジアミン、窒素原子を環の構成員とするヘテロ環を有する化合物、第4級アンモニウム塩等を挙げることができる。
 これらの具体例としては、1級アミンとして、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン等;
 2級アミンとして、例えば、N,N-ジメチルアミン、N,N-ジエチルアミン、N,N-ジプロピルアミン、N,N-ジブチルアミン等;
 3級アミンとして、例えば、トリメチルアミン、トリエチルアミン、トリロピルアミン、トリブチルアミン等;
 アルコキシアミンとして、例えば、メトキシメチルアミン、メトキシエチルアミン、メトキシプロピルアミン、メトキシブチルアミン、エトキシメチルアミン、エトキシエチルアミン、エトキシプロピルアミン、エトキシブチルアミン、プロポキシメチルアミン、プロポキシエチルアミン、プロポキシプロピルアミン、プロポキシブチルアミン、ブトキシメチルアミン、ブトキシエチルアミン、ブトキシプロピルアミン、ブトキシブチルアミン等;
In the step (c), any of an inorganic basic compound and an organic basic compound can be used as the basic compound. Examples of the inorganic basic compound include ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, calcium hydroxide and the like. Examples of the organic basic compound include primary to tertiary amines, alkoxyamines, alcohol amines, diamines, compounds having a heterocycle having a nitrogen atom as a ring member, and quaternary ammonium salts.
Specific examples thereof include primary amines such as methylamine, ethylamine, propylamine, and butylamine;
Secondary amines include, for example, N, N-dimethylamine, N, N-diethylamine, N, N-dipropylamine, N, N-dibutylamine and the like;
As the tertiary amine, for example, trimethylamine, triethylamine, tripropylamine, tributylamine and the like;
Examples of alkoxyamines include methoxymethylamine, methoxyethylamine, methoxypropylamine, methoxybutylamine, ethoxymethylamine, ethoxyethylamine, ethoxypropylamine, ethoxybutylamine, propoxymethylamine, propoxyethylamine, propoxypropylamine, propoxybutylamine, butoxymethyl Amine, butoxyethylamine, butoxypropylamine, butoxybutylamine and the like;
 アルコールアミンとして、例えば、メタノールアミン、エタノールアミン、プロパノールアミン、ブタノールアミン、N-メチルメタノールアミン、N-エチルメタノールアミン、N-プロピルメタノールアミン、N-ブチルメタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、N-プロピルエタノールアミン、N-ブチルエタノールアミン、N-メチルプロパノールアミン、N-エチルプロパノールアミン、N-プロピルプロパノールアミン、N-ブチルプロパノールアミン、N-メチルブタノールアミン、N-エチルブタノールアミン、N-プロピルブタノールアミン、N-ブチルブタノールアミン、N,N-ジメチルメタノールアミン、N,N-ジエチルメタノールアミン、N,N-ジプロピルメタノールアミン、N,N-ジブチルメタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジプロピルエタノールアミン、N,N-ジブチルエタノールアミン、N,N-ジメチルプロパノールアミン、N,N-ジエチルプロパノールアミン、N,N-ジプロピルプロパノールアミン、N,N-ジブチルプロパノールアミン、N,N-ジメチルブタノールアミン、N,N-ジエチルブタノールアミン、N,N-ジプロピルブタノールアミン、N,N-ジブチルブタノールアミン、N-メチルジメタノールアミン、N-エチルジメタノールアミン、N-プロピルジメタノールアミン、N-ブチルジメタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、N-プロピルジエタノールアミン、N-ブチルジエタノールアミン、N-メチルジプロパノールアミン、N-エチルジプロパノールアミン、N-プロピルジプロパノールアミン、N-ブチルジプロパノールアミン、N-メチルジブタノールアミン、N-エチルジブタノールアミン、N-プロピルジブタノールアミン、N-ブチルジブタノールアミン、N-(アミノメチル)メタノールアミン、N-(アミノメチル)エタノールアミン、N-(アミノメチル)プロパノールアミン、N-(アミノメチル)ブタノールアミン、N-(アミノエチル)メタノールアミン、N-(アミノエチル)エタノールアミン、N-(アミノエチル)プロパノールアミン、N-(アミノエチル)ブタノールアミン、N-(アミノプロピル)メタノールアミン、N-(アミノプロピル)エタノールアミン、N-(アミノプロピル)プロパノールアミン、N-(アミノプロピル)ブタノールアミン、N-(アミノブチル)メタノールアミン、N-(アミノブチル)エタノールアミン、N-(アミノブチル)プロパノールアミン、N-(アミノブチル)ブタノールアミン等; Examples of alcohol amines include methanol amine, ethanol amine, propanol amine, butanol amine, N-methyl methanol amine, N-ethyl methanol amine, N-propyl methanol amine, N-butyl methanol amine, N-methyl ethanol amine, N- Ethylethanolamine, N-propylethanolamine, N-butylethanolamine, N-methylpropanolamine, N-ethylpropanolamine, N-propylpropanolamine, N-butylpropanolamine, N-methylbutanolamine, N-ethylbutanol Amine, N-propylbutanolamine, N-butylbutanolamine, N, N-dimethylmethanolamine, N, N-diethylmethanolamine, N, N-dipropylmethanol Amine, N, N-dibutylmethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dipropylethanolamine, N, N-dibutylethanolamine, N, N-dimethylpropanolamine N, N-diethylpropanolamine, N, N-dipropylpropanolamine, N, N-dibutylpropanolamine, N, N-dimethylbutanolamine, N, N-diethylbutanolamine, N, N-dipropylbutanolamine N, N-dibutylbutanolamine, N-methyldimethanolamine, N-ethyldimethanolamine, N-propyldimethanolamine, N-butyldimethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N-propyldiethanol Amine, N-butyldiethanolamine, N-methyldipropanolamine, N-ethyldipropanolamine, N-propyldipropanolamine, N-butyldipropanolamine, N-methyldibutanolamine, N-ethyldibutanolamine, N -Propyldibutanolamine, N-butyldibutanolamine, N- (aminomethyl) methanolamine, N- (aminomethyl) ethanolamine, N- (aminomethyl) propanolamine, N- (aminomethyl) butanolamine, N -(Aminoethyl) methanolamine, N- (aminoethyl) ethanolamine, N- (aminoethyl) propanolamine, N- (aminoethyl) butanolamine, N- (aminopropyl) methanolamine, N- (aminopropyl) D Tanolamine, N- (aminopropyl) propanolamine, N- (aminopropyl) butanolamine, N- (aminobutyl) methanolamine, N- (aminobutyl) ethanolamine, N- (aminobutyl) propanolamine, N- (Aminobutyl) butanolamine and the like;
 ジアミンとして、例えば、テトラメチルエチレンジアミン、テトラエチルエチレンジアミン、テトラプロピルエチレンジアミン、テトラブチルエチレンジアミン、メチルアミノメチルアミン、メチルアミノエチルアミン、メチルアミノプロピルアミン、メチルアミノブチルアミン、エチルアミノメチルアミン、エチルアミノエチルアミン、エチルアミノプロピルアミン、エチルアミノブチルアミン、プロピルアミノメチルアミン、プロピルアミノエチルアミン、プロピルアミノプロピルアミン、プロピルアミノブチルアミン、ブチルアミノメチルアミン、ブチルアミノエチルアミン、ブチルアミノプロピルアミン、ブチルアミノブチルアミン等;
 窒素原子を環の構成員とするヘテロ環を有する化合物として、例えば、ピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、モルホリン、メチルモルホリン、ジアザビシクロオクラン、ジアザビシクロノナン、ジアザビシクロウンデセン等;
Examples of the diamine include tetramethylethylenediamine, tetraethylethylenediamine, tetrapropylethylenediamine, tetrabutylethylenediamine, methylaminomethylamine, methylaminoethylamine, methylaminopropylamine, methylaminobutylamine, ethylaminomethylamine, ethylaminoethylamine, ethylaminopropyl Amine, ethylaminobutylamine, propylaminomethylamine, propylaminoethylamine, propylaminopropylamine, propylaminobutylamine, butylaminomethylamine, butylaminoethylamine, butylaminopropylamine, butylaminobutylamine and the like;
Examples of the compound having a heterocycle having a nitrogen atom as a ring member include pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, morpholine, methylmorpholine, diazabicyclookrane, diazabicyclononane, diazabicycloun Decene, etc .;
 第4級アンモニウム塩として、例えば、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ-n-プロピルアンモニウム、水酸化テトラ-iso-プロピルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、水酸化テトラ-iso-ブチルアンモニウム、水酸化テトラ-tert-ブチルアンモニウム、水酸化テトラペンチルアンモニウム、水酸化テトラヘキシルアンモニウム、水酸化テトラヘプチルアンモニウム、水酸化テトラオクチルアンモニウム、水酸化テトラノニルアンモニウム、水酸化テトラデシルアンモニウム、水酸化テトラウンデシルアンモニウム、水酸化テトラドデシルアンモニウム、臭化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラ-n-プロピルアンモニウム、塩化テトラ-n-プロピルアンモニウム、臭化テトラ-n-ブチルアンモニウム、塩化テトラ-n-ブチルアンモニウム、水酸化ヘキサデシルトリメチルアンモニウム、臭化-n-ヘキサデシルトリメチルアンモニウム、水酸化-n-オクタデシルトリメチルアンモニウム、臭化-n-オクタデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、塩化ベンジルトリメチルアンモニウム、塩化ジデシルジメチルアンモニウム、塩化ジステアリルジメチルアンモニウム、塩化トリデシルメチルアンモニウム、テトラブチルアンモニウムハイドロジェンサルフェート、臭化トリブチルメチルアンモニウム、塩化トリオクチルメチルアンモニウム、塩化トリラウリルメチルアンモニウム、水酸化ベンジルトリメチルアンモニウム、臭化ベンジルトリエチルアンモニウム、臭化ベンジルトリブチルアンモニウム、臭化フェニルトリメチルアンモニウム、コリン等を好ましい例として挙げることができる。これらのうち特に好ましくは、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラ-n-プロピルアンモニウム、水酸化テトラ-n-ブチルアンモニウム、臭化テトラメチルアンモニウム、塩化テトラメチルアンモニウム、臭化テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラ-n-プロピルアンモニウム、塩化テトラ-n-プロピルアンモニウム等を、それぞれ挙げることができる。 Examples of quaternary ammonium salts include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-iso-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetrahydroxide -Iso-butylammonium hydroxide, tetra-tert-butylammonium hydroxide, tetrapentylammonium hydroxide, tetrahexylammonium hydroxide, tetraheptylammonium hydroxide, tetraoctylammonium hydroxide, tetranonylammonium hydroxide, tetradecylammonium hydroxide , Tetraundecylammonium hydroxide, tetradodecylammonium hydroxide, tetramethylammonium bromide, tetramethylammonium chloride, tetraethylammonium bromide , Tetraethylammonium chloride, tetra-n-propylammonium bromide, tetra-n-propylammonium chloride, tetra-n-butylammonium bromide, tetra-n-butylammonium chloride, hexadecyltrimethylammonium hydroxide, bromide-n -Hexadecyltrimethylammonium, hydroxide-n-octadecyltrimethylammonium bromide-n-octadecyltrimethylammonium bromide, cetyltrimethylammonium chloride, stearyltrimethylammonium chloride, benzyltrimethylammonium chloride, didecyldimethylammonium chloride, distearyldimethylammonium chloride , Tridecylmethylammonium chloride, tetrabutylammonium hydrogen sulfate, tributylmethylammonium bromide, salt Trioctylmethylammonium, trilauryl methyl ammonium chloride, benzyl trimethyl ammonium hydroxide, benzyl bromide triethylammonium, and the like are preferable benzyl bromide tributylammonium bromide phenyl trimethyl ammonium, choline and the like. Of these, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetra-n-propylammonium hydroxide, tetra-n-butylammonium hydroxide, tetramethylammonium bromide, tetramethylammonium chloride, tetraethyl bromide are particularly preferred. Examples thereof include ammonium, tetraethylammonium chloride, tetra-n-propylammonium bromide, and tetra-n-propylammonium chloride.
 また、工程(c)に用いることができる酸性化合物としては、有機酸と無機酸のいずれも使用することができる。
 有機酸としては、例えば、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、シュウ酸、マレイン酸、メチルマロン酸、アジピン酸、セバシン酸、没食子酸、酪酸、メリット酸、アラキドン酸、シキミ酸、2-エチルヘキサン酸、オレイン酸、ステアリン酸、リノール酸、リノレイン酸、サリチル酸、安息香酸、p-アミノ安息香酸、p-トルエンスルホン酸、ベンゼンスルホン酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロ酢酸、ギ酸、マロン酸、スルホン酸、フタル酸、フマル酸、クエン酸、酒石酸、無水マレイン酸、フマル酸、イタコン酸、コハク酸、メサコン酸、シトラコン酸、リンゴ酸、マロン酸、グルタル酸の加水分解物、無水マレイン酸の加水分解物、無水フタル酸の加水分解物等を挙げることができる。
 無機酸としては、例えば、塩酸、硝酸、硫酸、フッ酸、リン酸等を挙げることができる。
 これら塩基性化合物及び酸性化合物は、1種のみを使用してもよく、あるいは2種以上を同時に使用してもよい。
Moreover, as an acidic compound which can be used for a process (c), both an organic acid and an inorganic acid can be used.
Examples of organic acids include acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, oxalic acid, maleic acid, methylmalonic acid, adipic acid, sebacic acid, gallic acid Acid, butyric acid, meritic acid, arachidonic acid, shikimic acid, 2-ethylhexanoic acid, oleic acid, stearic acid, linoleic acid, linolenic acid, salicylic acid, benzoic acid, p-aminobenzoic acid, p-toluenesulfonic acid, benzenesulfone Acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoroacetic acid, formic acid, malonic acid, sulfonic acid, phthalic acid, fumaric acid, citric acid, tartaric acid, maleic anhydride, fumaric acid, itaconic acid, succinic acid, mesaconic acid, Citraconic acid, malic acid, malonic acid, hydrolyzed glutaric acid, hydrolyzed maleic anhydride Object can include hydrolysis products of phthalic anhydride.
Examples of inorganic acids include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, and phosphoric acid.
These basic compounds and acidic compounds may be used alone or in combination of two or more.
 工程(c)において、水及びアルコールから選ばれる少なくとも1種の分圧は、好ましくは0.1~5MPaであり、より好ましくは0.1~2MPa、特に好ましくは0.2~1.5MPaである。
 塩基性化合物及び酸性化合物から選ばれる少なくとも一種の分圧は、好ましくは0.1~5MPaであり、より好ましくは0.2~3MPaである。
 工程(c)において、気体全体の圧力としては、0.1~10MPaであることが好ましく、0.2~5MPaであることがより好ましく、0.3~3MPaであることがさらに好ましく、0.5~2.0MPaであることが特に好ましい。
 工程(c)においては、熱処理及び光照射処理は、どちらか一方のみを行ってもよく、熱処理と光照射処理の双方を行ってもよい。熱処理と光照射処理の双方を行う場合には、その順番の前後は問わず、熱処理と光照射処理を同時に行ってもよい。これらのうち、熱処理のみを行うか、熱処理と光照射処理の双方を行うことが好ましい。また、より良好なアルミナ膜を形成する目的で、熱処理及び光照射処理に加えて、プラズマ酸化を実施しても良い。
 本発明の方法により形成されるアルミナ膜の厚さは、通常、1nm以上である。また、該厚さは、アルミナ膜の膜厚が大きくても、膜全体を目的とするアルミナで形成させることができるという本発明の効果を考慮すると、好ましくは100nm以上、より好ましくは200nm以上、特に好ましくは300nm以上である。該厚さの上限値は、特に限定されないが、通常、1μmである。
In the step (c), at least one partial pressure selected from water and alcohol is preferably 0.1 to 5 MPa, more preferably 0.1 to 2 MPa, and particularly preferably 0.2 to 1.5 MPa. is there.
At least one partial pressure selected from a basic compound and an acidic compound is preferably 0.1 to 5 MPa, and more preferably 0.2 to 3 MPa.
In the step (c), the pressure of the whole gas is preferably 0.1 to 10 MPa, more preferably 0.2 to 5 MPa, still more preferably 0.3 to 3 MPa, and A pressure of 5 to 2.0 MPa is particularly preferable.
In the step (c), only one of the heat treatment and the light irradiation treatment may be performed, or both the heat treatment and the light irradiation treatment may be performed. When both heat treatment and light irradiation treatment are performed, the heat treatment and light irradiation treatment may be performed at the same time regardless of the order. Of these, it is preferable to perform only heat treatment or perform both heat treatment and light irradiation treatment. In addition to the heat treatment and the light irradiation treatment, plasma oxidation may be performed for the purpose of forming a better alumina film.
The thickness of the alumina film formed by the method of the present invention is usually 1 nm or more. Further, the thickness is preferably 100 nm or more, more preferably 200 nm or more in consideration of the effect of the present invention that even if the thickness of the alumina film is large, the entire film can be formed with the target alumina. Especially preferably, it is 300 nm or more. The upper limit of the thickness is not particularly limited, but is usually 1 μm.
 以下、本発明を実施例により具体的に説明する。なお、以下の操作は、特に記した場合を除き、すべて乾燥窒素雰囲気下で実施した。また、用いた溶媒は、すべて事前にモレキュラーシーブス4A(ユニオン昭和(株)製)で脱水し、かつ窒素ガスをバブリングすることにより脱気した。 Hereinafter, the present invention will be specifically described with reference to examples. The following operations were all performed in a dry nitrogen atmosphere unless otherwise specified. All the solvents used were dehydrated in advance with Molecular Sieves 4A (Union Showa Co., Ltd.) and degassed by bubbling nitrogen gas.
(合成例1-1) チタン化合物を含有する溶液の調製
 シクロペンタジエニルチタニウムトリクロリド0.11gを30mLガラス容器に仕込み、ここへ4-メチルアニソールを加えて全量を25.00gとした。十分に攪拌した後、室温で4時間静置し、次いでこれをポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、シクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液を得た。
Synthesis Example 1-1 Preparation of Solution Containing Titanium Compound 0.11 g of cyclopentadienyl titanium trichloride was charged into a 30 mL glass container, and 4-methylanisole was added thereto to make a total amount of 25.00 g. After sufficiently stirring, the mixture is allowed to stand at room temperature for 4 hours, and then filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 μm, thereby obtaining cyclopentadienyl titanium trichloride. A solution containing 20 μmol / g of chloride was obtained.
(合成例1-2) トリエチルアミンと水素化アルミニウムとの錯体の調製
 磁気攪拌子を入れた200mLの三口フラスコ中に水素化リチウムアルミニウム3.80gを仕込んだ。三口フラスコの3つの接続口にはそれぞれ100mLの粉体添加用漏斗、窒素気流に接続した吸引栓三方コック及びガラス栓を接続した。トリエチルアミンの塩化水素酸塩17.80gを粉体添加用漏斗に仕込んだ後に、三口フラスコを吸引栓三方コックを介して窒素シール下においた。
 上記の三口フラスコにガラス製シリンジを用いてヘキサン100mLを加えた。マグネチックスターラにより回転数1,000rpmで攪拌しながら、トリエチルアミンの塩化水素酸塩を10分間かけて三口フラスコ中に徐々に落とした後、更に2時間攪拌を継続した。
 その後、ポリテトラフロロエチレン製のチューブの先端に脱脂綿(日本薬局方脱脂綿)を詰めたものを用いて、反応混合物を圧送により別容器に取り出し、次いでポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)により濾過した。濾液は300mLなす型フラスコで受け、濾過終了後に磁気攪拌子を入れ、吸引栓三方コックを装着した。
 この吸引栓三方コックを、トラップを介して真空ポンプに接続し、マグネチックスターラによって回転数300rpmで攪拌しながら減圧にて溶媒を除去した。溶媒除去後、残存物をポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、トリエチルアミンと水素化アルミニウムとの錯体10.25gを、無色透明の液体として得た(収率55%)。
(Synthesis example 1-2) Preparation of complex of triethylamine and aluminum hydride 3.80 g of lithium aluminum hydride was charged into a 200 mL three-necked flask containing a magnetic stirring bar. The three connection ports of the three-neck flask were each connected with a 100 mL powder addition funnel, a suction stopper three-way cock connected to a nitrogen stream, and a glass stopper. After charging triethylamine hydrochloride hydrochloride (17.80 g) into a powder addition funnel, the three-necked flask was placed under a nitrogen seal through a suction stopper three-way cock.
100 mL of hexane was added to the three-necked flask using a glass syringe. While stirring with a magnetic stirrer at a rotational speed of 1,000 rpm, triethylamine hydrochloride was gradually dropped into the three-necked flask over 10 minutes, and stirring was further continued for 2 hours.
Then, using a polytetrafluoroethylene tube filled with absorbent cotton (Japanese Pharmacopoeia absorbent cotton), the reaction mixture was taken out into a separate container by feeding, and then a polytetrafluoroethylene membrane having a pore diameter of 0.1 μm. It filtered with the filter (made by Whatman Inc.). The filtrate was received in a 300 mL eggplant-shaped flask, and after completion of the filtration, a magnetic stirrer was inserted and a suction stopper three-way cock was attached.
The suction stopper three-way cock was connected to a vacuum pump via a trap, and the solvent was removed under reduced pressure while stirring with a magnetic stirrer at a rotational speed of 300 rpm. After removing the solvent, the residue was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 μm, whereby 10.25 g of a complex of triethylamine and aluminum hydride was colorless and transparent. Obtained as a liquid (yield 55%).
(合成例1-3) アルミナ膜形成用組成物の調製
 このトリエチルアミンと水素化アルミニウムとの錯体6.00gに4-メチルアニソールを加えて全量を10.00gとすることにより、トリエチルアミンと水素化アルミニウムとの錯体を60質量%含有する溶液を調製した。さらに上記溶液0.50mLに、(合成例1-1)で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ形成用組成物を調製した。
(Synthesis Example 1-3) Preparation of Alumina Film Forming Composition Triethylamine and aluminum hydride were prepared by adding 4-methylanisole to 6.00 g of this complex of triethylamine and aluminum hydride to make the total amount 10.00 g. A solution containing 60% by mass of the complex was prepared. Further, 16 μL of a solution containing 20 μmol / g of cyclopentadienyl titanium trichloride prepared in (Synthesis Example 1-1) was added to 0.50 mL of the above solution with stirring at room temperature, and then stirring was continued for 1 minute. Thus, an alumina forming composition was prepared.
(合成例2) アルミナ膜形成用組成物の調製
 (合成例1-2)において合成したトリエチルアミンと水素化アルミニウムとの錯体4.80gにジイソブチルアルミニウムヒドリド1.20gを加えた後、4-メチルアニソールを加えて全量を10.00gとすることにより、トリエチルアミンと水素化アルミニウムとの錯体とジイソブチルアルミニウムヒドリドの混合物を60質量%含有する溶液を調製した。さらに上記溶液0.50mLに、(合成例1-1)で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ膜形成用組成物を調製した。
(Synthesis Example 2) Preparation of Alumina Film Forming Composition After adding 1.20 g of diisobutylaluminum hydride to 4.80 g of the complex of triethylamine and aluminum hydride synthesized in Synthesis Example 1-2, 4-methylanisole was added. Was added to a total amount of 10.00 g to prepare a solution containing 60% by mass of a mixture of a complex of triethylamine and aluminum hydride and diisobutylaluminum hydride. Further, 16 μL of a solution containing 20 μmol / g of cyclopentadienyl titanium trichloride prepared in (Synthesis Example 1-1) was added to 0.50 mL of the above solution with stirring at room temperature, and then stirring was continued for 1 minute. Thus, an alumina film forming composition was prepared.
(合成例3) アルミナ膜形成用組成物の調製
 (合成例1-2)において合成したトリエチルアミンと水素化アルミニウムとの錯体3.20gにトリドデシルアルミニウム((C1225Al)0.80gを加えた後、4-メチルアニソールを加えて全量を10.00gとすることにより、トリエチルアミンと水素化アルミニウムとの錯体とトリドデシルアルミニウムの混合物を40質量%含有する溶液を調製した。さらに上記溶液0.50mLに、(合成例1-1)で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ膜形成用組成物を調製した。
(Synthesis Example 3) Preparation of Composition for Forming Alumina Film Tridodecyl aluminum ((C 12 H 25 ) 3 Al) was added to 3.20 g of the complex of triethylamine and aluminum hydride synthesized in Synthesis Example 1-2. After adding 80 g, 4-methylanisole was added to make the total amount 10.00 g to prepare a solution containing 40% by mass of a mixture of triethylamine / aluminum hydride complex and tridodecylaluminum. Further, 16 μL of a solution containing 20 μmol / g of cyclopentadienyl titanium trichloride prepared in (Synthesis Example 1-1) was added to 0.50 mL of the above solution with stirring at room temperature, and then stirring was continued for 1 minute. Thus, an alumina film forming composition was prepared.
(合成例4) アルミナ膜形成用組成物の調製
 ジイソブチルアルミニウムヒドリド6.00gを加えた後、4-メチルアニソールを加えて全量を10.00gとすることにより、ジイソブチルアルミニウムヒドリドを60質量%含有する溶液を調製した。さらに上記溶液0.50mLに、(合成例1-1)で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ膜形成用組成物を調製した。
(Synthesis Example 4) Preparation of Alumina Film Forming Composition After adding 6.00 g of diisobutylaluminum hydride, 4-methylanisole is added to make the total amount 10.00 g, thereby containing 60% by mass of diisobutylaluminum hydride. A solution was prepared. Further, 16 μL of a solution containing 20 μmol / g of cyclopentadienyl titanium trichloride prepared in (Synthesis Example 1-1) was added to 0.50 mL of the above solution with stirring at room temperature, and then stirring was continued for 1 minute. Thus, an alumina film forming composition was prepared.
(合成例5)アルミナ膜形成用組成物の調製
トリオクチルアルミニウム((C17Al)6.00gを加えた後、tert-ブチルベンゼンを加えて全量を10.00gとすることにより、トリオクチルアルミニウムを60質量%含有する溶液を調製した。さらに上記溶液0.50mLに、(合成例1-1)で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ形成用組成物を調製した。
(Synthesis Example 5) Preparation of Alumina Film Forming Composition After adding 6.00 g of trioctylaluminum ((C 8 H 17 ) 3 Al), tert-butylbenzene was added to make the total amount 10.00 g. A solution containing 60% by mass of trioctylaluminum was prepared. Further, 16 μL of a solution containing 20 μmol / g of cyclopentadienyl titanium trichloride prepared in (Synthesis Example 1-1) was added to 0.50 mL of the above solution with stirring at room temperature, and then stirring was continued for 1 minute. Thus, an alumina forming composition was prepared.
(合成例6)アルミナ膜形成用組成物の調製
 トリドデシルアルミニウム((C1225Al)4.00gを加えた後、プロピレングリコールモノメチルエーテルアセテートを加えて全量を10.00gとすることにより、トリドデシルアルミニウムを40質量%含有する溶液を調製した。さらに上記溶液0.50mLに、上記1で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液16μL、および、CANSUS16μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミナ膜形成用組成物を調製した。
(Synthesis Example 6) Preparation of Alumina Film Forming Composition After 4.00 g of tridodecyl aluminum ((C 12 H 25 ) 3 Al) is added, propylene glycol monomethyl ether acetate is added to make the total amount 10.00 g. Thus, a solution containing 40% by mass of tridodecyl aluminum was prepared. Furthermore, 16 μL of a solution containing 20 μmol / g of cyclopentadienyltitanium trichloride prepared in 1 above and 16 μL of CANSUS are added to 0.50 mL of the above solution at room temperature with stirring, and then stirring is continued for 1 minute. Thus, an alumina film forming composition was prepared.
(合成例7)アルミナ膜形成用組成物の調製
 トリsec-ブトキシアルミニウム7.00gを加えた後、プロピレングリコールモノメチルエーテルアセテートを加えて全量を10.00gとすることにより、トリsec-ブトキシアルミニウムを70質量%含有するアルミナ膜形成用組成物を調製した。
Synthesis Example 7 Preparation of Alumina Film Forming Composition After adding 7.00 g of trisec-butoxyaluminum, propylene glycol monomethyl ether acetate is added to make the total amount to 10.00 g. A composition for forming an alumina film containing 70% by mass was prepared.
(合成例B-1) 下地膜形成用組成物の調製
 ビス(ペンタ-2,4-ジケト)チタニウム(IV)ジイソプロポキシド0.30g及びテトラキス(ジメチルアミノ)チタニウム64μLを20mLガラス容器にとり、ここへプロピレングリコールモノメチルエーテルアセテート加えて全量を18.00gとした。混合物を充分に攪拌した後、室温で2時間静置した。次いでこれをポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、下地膜形成用組成物を得た。
(Synthesis Example B-1) Preparation of Composition for Forming Undercoat Film 0.30 g of bis (penta-2,4-diketo) titanium (IV) diisopropoxide and 64 μL of tetrakis (dimethylamino) titanium are placed in a 20 mL glass container, Propylene glycol monomethyl ether acetate was added thereto to make the total amount 18.00 g. The mixture was sufficiently stirred and then allowed to stand at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene and having a pore diameter of 0.1 μm to obtain a composition for forming a base film.
(合成例B-2) 下地膜形成用組成物の調製
 ポリジブチルチタネート0.50gにプロピレングリコールモノメチルエーテルを加えて全量を100.00gとした。混合物を充分に攪拌した後、室温で2時間静置した。次いでこれをポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、下地膜形成用組成物を得た。
(Synthesis Example B-2) Preparation of Composition for Forming Undercoat Film Propylene glycol monomethyl ether was added to 0.50 g of polydibutyl titanate to make a total amount of 100.00 g. The mixture was sufficiently stirred and then allowed to stand at room temperature for 2 hours. Subsequently, this was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene and having a pore diameter of 0.1 μm to obtain a composition for forming a base film.
(実施例1)
 シリコン基板をスピンコーターに装着し、窒素ガス雰囲気下にて、(合成例B-1)で調製した下地膜形成用組成物1mLを滴下して、回転数3,000rpmで10秒間スピンさせた。この基板を150℃に設定したホットプレートに乗せ、25分間加熱した。下地膜の厚さは5nmであった。
(a)次いでこの基板を窒素雰囲気下でスピンコーターに再び装着し、(合成例1-3)で調製したアルミナ膜形成用組成物の全量を滴下し、回転数600rpmで10秒間スピンさせた。
(b)この基板を150℃のホットプレートで5分間加熱し、溶媒を除去した。
(c)その後、基板を10%NH水溶液100gが入った密閉耐圧容器内に入れ、170℃の雰囲気を有する炉へ導入することにより、容器内に発生したアンモニア蒸気および水蒸気を加圧下(アンモニア蒸気の分圧:0.48MPa、水蒸気の分圧:0.22MPa、窒素ガスの分圧:80kPa)で3時間にわたってさらした。得られた膜のESCA分析によりこの膜が膜厚320nmのアルミナ膜であることがわかった。
Example 1
A silicon substrate was mounted on a spin coater, and 1 mL of the underlayer-forming composition prepared in (Synthesis Example B-1) was dropped in a nitrogen gas atmosphere, and was spun at 3,000 rpm for 10 seconds. This substrate was placed on a hot plate set at 150 ° C. and heated for 25 minutes. The thickness of the base film was 5 nm.
(A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the entire amount of the composition for forming an alumina film prepared in (Synthesis Example 1-3) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds.
(B) The substrate was heated on a hot plate at 150 ° C. for 5 minutes to remove the solvent.
(C) Thereafter, the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 320 nm.
(実施例2)
 アルミナ膜形成用組成物として、(合成例2)において調製したアルミナ膜形成用組成物を用いた以外は、実施例1と同様に行ったところ、基板表面は淡黄色透明な膜で覆われた。得られた膜のESCA分析によりこの膜が膜厚510nmのアルミナ膜であることがわかった。
(Example 2)
The same procedure as in Example 1 was performed except that the alumina film forming composition prepared in (Synthesis Example 2) was used as the alumina film forming composition. As a result, the substrate surface was covered with a light yellow transparent film. . ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 510 nm.
(実施例3)
 アルミナ膜形成用組成物として、(合成例3)において調製したアルミナ膜形成用組成物を用い、工程(c)において、基板を純水100gが入った密閉耐圧容器内に入れ、200℃の雰囲気を有する炉へ導入することにより、水蒸気を加圧下(水蒸気の分圧:0.48MPa、窒素ガスの分圧:80kPa)で3時間にわたってさらした以外は、実施例1と同様に行ったところ、基板表面は淡黄色透明な膜で覆われた。得られた膜のESCA分析によりこの膜が膜厚530nmのアルミナ膜であることがわかった。
(Example 3)
As the alumina film forming composition, the alumina film forming composition prepared in (Synthesis Example 3) was used. In step (c), the substrate was placed in a sealed pressure vessel containing 100 g of pure water, and the atmosphere was 200 ° C. Was carried out in the same manner as in Example 1 except that the steam was exposed under pressure (steam partial pressure: 0.48 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours. The substrate surface was covered with a light yellow transparent film. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 530 nm.
(実施例4)
 アルミナ膜形成用組成物として、(合成例4)において調製したアルミナ膜形成用組成物を用いた以外は、実施例1と同様に行ったところ、基板表面は淡黄色透明な膜で覆われた。得られた膜のESCA分析によりこの膜が膜厚340nmのアルミナ膜であることがわかった。
Example 4
When the same procedure as in Example 1 was performed except that the alumina film forming composition prepared in (Synthesis Example 4) was used as the alumina film forming composition, the substrate surface was covered with a light yellow transparent film. . ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 340 nm.
(実施例5)
 シリコン基板にスパッタ法により金属銅を成膜した。厚さは5nmであった。
(a)次いでこの基板を窒素雰囲気下でスピンコーターに再び装着し、(合成例5)で調製したアルミナ膜形成用組成物の全量を滴下し、回転数600rpmで10秒間スピンさせた。
(b)この基板を150℃のホットプレートで5分間加熱した。
(c)その後、基板を10%NH水溶液100gが入った密閉耐圧容器内に入れ、170℃の雰囲気を有する炉へ導入することにより、容器内に発生したアンモニア蒸気および水蒸気を加圧下(アンモニア蒸気の分圧:0.48MPa、水蒸気の分圧:0.22MPa、窒素ガスの分圧:80kPa)で3時間にわたってさらした。
 得られた膜のESCA分析によりこの膜が膜厚620nmのアルミナ膜であることがわかった。
(Example 5)
Metallic copper film was formed on the silicon substrate by sputtering. The thickness was 5 nm.
(A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the whole amount of the composition for forming an alumina film prepared in (Synthesis Example 5) was dropped, and the substrate was spun at 600 rpm for 10 seconds.
(B) The substrate was heated on a hot plate at 150 ° C. for 5 minutes.
(C) Thereafter, the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours.
ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 620 nm.
(実施例6)
 シリコン基板をスピンコーターに装着し、窒素ガス雰囲気下にて、(合成例B-2)で調製した下地膜形成用組成物1mLを滴下して、回転数3,000rpmで10秒間スピンさせた。この基板を200℃に設定したホットプレートに乗せ、10分間加熱した。下地膜の厚さは5nmであった。
(a)次いでこの基板を窒素雰囲気下でスピンコーターに再び装着し、(合成例6)で調製したアルミナ膜形成用組成物の全量を滴下し、回転数600rpmで10秒間スピンさせた。
(b)この基板を150℃のホットプレートで5分間加熱した。
(c)その後、基板を10%NH水溶液100gが入った密閉耐圧容器内に入れ、170℃の雰囲気を有する炉へ導入することにより、容器内に発生したアンモニア蒸気および水蒸気を加圧下(アンモニア蒸気の分圧:0.48MPa、水蒸気の分圧:0.22MPa、窒素ガスの分圧:80kPa)で3時間にわたってさらした。得られた膜のESCA分析によりこの膜が膜厚500nmのアルミナ膜であることがわかった。
(Example 6)
A silicon substrate was mounted on a spin coater, and under a nitrogen gas atmosphere, 1 mL of the base film-forming composition prepared in (Synthesis Example B-2) was added dropwise and spun for 10 seconds at a rotation speed of 3,000 rpm. This substrate was placed on a hot plate set at 200 ° C. and heated for 10 minutes. The thickness of the base film was 5 nm.
(A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the whole amount of the composition for forming an alumina film prepared in (Synthesis Example 6) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds.
(B) The substrate was heated on a hot plate at 150 ° C. for 5 minutes.
(C) Thereafter, the substrate is placed in a sealed pressure-resistant vessel containing 100 g of 10% NH 3 aqueous solution and introduced into a furnace having an atmosphere of 170 ° C., whereby ammonia vapor and water vapor generated in the vessel are pressurized (ammonia Steam partial pressure: 0.48 MPa, steam partial pressure: 0.22 MPa, nitrogen gas partial pressure: 80 kPa) for 3 hours. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 500 nm.
(実施例7)
 下地膜を形成しなかった点とアルミナ膜形成用組成物として(合成例7)で調製したアルミナ形成用組成物を用いた以外は実施例6と同様に行ったところ、基板表面は淡黄色透明な膜で覆われた。得られた膜のESCA分析によりこの膜が膜厚420nmのアルミナ膜であることがわかった。
(Example 7)
When the same procedure as in Example 6 was performed except that the base film was not formed and the alumina forming composition prepared in (Synthesis Example 7) was used as the alumina film forming composition, the substrate surface was light yellow and transparent. Covered with a thick film. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 420 nm.
(実施例8)
 シリコン基板をスピンコーターに装着し、窒素ガス雰囲気下にて、(合成例B-1)で調製した下地膜形成用組成物1mLを滴下して、回転数3,000rpmで10秒間スピンさせた。この基板を150℃に設定したホットプレートに乗せ、25分間加熱した。下地膜の厚さは5nmであった。
(a)次いでこの基板を窒素雰囲気下でスピンコーターに再び装着し、(合成例1-3)で調製したアルミナ膜形成用組成物の全量を滴下し、回転数600rpmで10秒間スピンさせた。
(b)この基板を150℃のホットプレートで5分間加熱し、溶媒を除去した。
(c)その後、基板を10%NHメタノール溶液100gが入った密閉耐圧容器内に入れ、140℃の雰囲気を有する炉へ導入することにより、容器内に発生したアンモニア蒸気およびメタノール蒸気を加圧下(アンモニア蒸気の分圧:0.28MPa、メタノール蒸気の分圧:1.1MPa、窒素ガスの分圧:80kPa)で3時間にわたってさらした。得られた膜のESCA分析によりこの膜が膜厚330nmのアルミナ膜であることがわかった。
(Example 8)
A silicon substrate was mounted on a spin coater, and 1 mL of the underlayer-forming composition prepared in (Synthesis Example B-1) was dropped in a nitrogen gas atmosphere, and was spun at 3,000 rpm for 10 seconds. This substrate was placed on a hot plate set at 150 ° C. and heated for 25 minutes. The thickness of the base film was 5 nm.
(A) Next, this substrate was mounted again on a spin coater under a nitrogen atmosphere, and the entire amount of the composition for forming an alumina film prepared in (Synthesis Example 1-3) was dropped, and the substrate was spun at a rotation speed of 600 rpm for 10 seconds.
(B) The substrate was heated on a hot plate at 150 ° C. for 5 minutes to remove the solvent.
(C) Thereafter, the substrate is placed in a sealed pressure vessel containing 100 g of a 10% NH 3 methanol solution and introduced into a furnace having an atmosphere of 140 ° C., so that ammonia vapor and methanol vapor generated in the vessel are pressurized. (Partial pressure of ammonia vapor: 0.28 MPa, partial pressure of methanol vapor: 1.1 MPa, partial pressure of nitrogen gas: 80 kPa) for 3 hours. ESCA analysis of the obtained film revealed that this film was an alumina film having a thickness of 330 nm.
(比較例1)
 工程(c)において、基板を酸素ガス/窒素ガスの分圧比=90/10に調整された大気圧ガス雰囲気下に移送し、更に250℃で30分間加熱した以外は、実施例1と同様に行ったところ、基板表面は淡黄色透明な膜で覆われた。この膜のESCA分析を実施したところ、この膜が膜厚250nmであり、上層部160nmがアルミナ膜で、下層90nmgが金属アルミニウムとアルミナが混在した膜であることが分かった。
(Comparative Example 1)
In the step (c), the substrate was transferred to an atmospheric pressure gas atmosphere adjusted to an oxygen gas / nitrogen gas partial pressure ratio = 90/10, and further heated at 250 ° C. for 30 minutes, as in Example 1. As a result, the substrate surface was covered with a light yellow transparent film. When this film was subjected to ESCA analysis, it was found that this film had a thickness of 250 nm, the upper layer portion 160 nm was an alumina film, and the lower layer 90 nmg was a film in which metallic aluminum and alumina were mixed.
(比較例2)
 工程(c)において、基板を酸素ガス/窒素ガスの分圧比=90/10に調整された大気圧ガス雰囲気下に移送し、更に250℃で30分間加熱した以外は、実施例6と同様に行ったところ、基板の表面は淡黄色透明な膜で覆われた。この膜のESCA分析を実施したところ、この膜が膜厚550nmであり、上層部190nmがアルミナ膜で、下層360nmが金属アルミニウムとアルミナが混在した膜であることが分かった。
(Comparative Example 2)
In the step (c), the substrate was transferred to an atmospheric pressure gas atmosphere adjusted to an oxygen gas / nitrogen gas partial pressure ratio = 90/10, and further heated at 250 ° C. for 30 minutes, as in Example 6. As a result, the surface of the substrate was covered with a light yellow transparent film. An ESCA analysis of this film revealed that this film had a thickness of 550 nm, the upper layer portion 190 nm was an alumina film, and the lower layer 360 nm was a film in which metallic aluminum and alumina were mixed.

Claims (5)

  1.  下記の工程(a)~(c)を含むことを特徴とするアルミナ膜形成方法。
    (a)基体上に、アルミニウム化合物及び有機溶媒を含有するアルミナ膜形成用組成物を塗布し、塗膜を形成する工程
    (b)工程(a)で形成した塗膜から有機溶媒を除去する工程
    (c)工程(b)で得られた塗膜に、水及びアルコールから選ばれる少なくとも一種の存在下で、熱処理および光照射処理から選ばれる少なくとも一種の処理を施し、アルミナ膜を形成する工程
    An alumina film forming method comprising the following steps (a) to (c):
    (A) A step of applying an alumina film-forming composition containing an aluminum compound and an organic solvent on a substrate to form a coating film (b) A step of removing the organic solvent from the coating film formed in step (a) (C) A step of forming an alumina film by subjecting the coating film obtained in step (b) to at least one treatment selected from heat treatment and light irradiation treatment in the presence of at least one selected from water and alcohol.
  2.  前記工程(c)が、前記の水及びアルコールから選ばれる少なくとも一種に加えて、塩基性化合物及び酸性化合物から選ばれる少なくとも一種の存在下で行なわれる、請求項1に記載のアルミナ膜形成方法。 The method for forming an alumina film according to claim 1, wherein the step (c) is performed in the presence of at least one selected from a basic compound and an acidic compound in addition to at least one selected from the water and alcohol.
  3.  前記アルミニウム化合物が、下記式(1-1)で表わされる化合物、下記式(1-2)で表わされる化合物、下記式(1-3)で表わされる化合物、下記式(1-4)で表わされる構造単位を含む化合物、及び下記式(1-5)で表わされる構造単位を含む化合物から選ばれる少なくとも一種である、請求項1または2に記載のアルミナ膜形成方法。
     AlR    (1-1)
    (上記式(1-1)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Lは配位子を示し、nは0~2の整数を示す。)
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1-2)中、Rは、各々独立に、水素原子、ハロゲン原子または炭素数1~12の1価の有機基を示し、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(1-3)中、Rは、各々独立に、炭素数1~12の1価の有機基を示し、Zは水素原子またはハロゲン原子を示す。)
    Figure JPOXMLDOC01-appb-C000003
    (上記式(1-4)中、RおよびRは、各々独立に、炭素数1~12の1価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (上記式(1-5)中、Rは、各々独立に、炭素数1~12の1価の有機基を示す。)
    The aluminum compound is represented by the following formula (1-1), the following formula (1-2), the following formula (1-3), the following formula (1-4). The method for forming an alumina film according to claim 1 or 2, which is at least one selected from a compound containing a structural unit and a compound containing a structural unit represented by the following formula (1-5).
    AlR 1 3 L n (1-1)
    (In the above formula (1-1), each R 1 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, L represents a ligand, and n represents 0 to Indicates an integer of 2.)
    Figure JPOXMLDOC01-appb-C000001
    (In the above formula (1-2), each R 2 independently represents a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 12 carbon atoms, and each R 3 independently represents one to 1 carbon atom. 12 represents a monovalent organic group.)
    Figure JPOXMLDOC01-appb-C000002
    (In the above formula (1-3), each R 4 independently represents a monovalent organic group having 1 to 12 carbon atoms, and Z 1 represents a hydrogen atom or a halogen atom.)
    Figure JPOXMLDOC01-appb-C000003
    (In the above formula (1-4), R 5 and R 6 each independently represents a monovalent organic group having 1 to 12 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000004
    (In the above formula (1-5), each R 7 independently represents a monovalent organic group having 1 to 12 carbon atoms.)
  4.  前記アルミナ膜形成用組成物が、チタン化合物を含む、請求項1~3のいずれか1項に記載のアルミナ膜形成方法。 The method for forming an alumina film according to any one of claims 1 to 3, wherein the composition for forming an alumina film contains a titanium compound.
  5.  前記工程(c)で、前記アルミナ膜が200nm以上の膜厚を有するように、前記工程(a)で、アルミナ膜形成用組成物を塗布する、請求項1~4のいずれか1項に記載のアルミナ膜形成方法。 The alumina film forming composition is applied in the step (a) so that the alumina film has a thickness of 200 nm or more in the step (c). Of forming an alumina film.
PCT/JP2011/073622 2010-10-22 2011-10-14 Method for forming alumina film WO2012053433A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012539698A JPWO2012053433A1 (en) 2010-10-22 2011-10-14 Alumina film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010237952 2010-10-22
JP2010-237952 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053433A1 true WO2012053433A1 (en) 2012-04-26

Family

ID=45975148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073622 WO2012053433A1 (en) 2010-10-22 2011-10-14 Method for forming alumina film

Country Status (2)

Country Link
JP (1) JPWO2012053433A1 (en)
WO (1) WO2012053433A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027861A1 (en) * 2014-08-21 2016-02-25 東ソー・ファインケム株式会社 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
JP2016043298A (en) * 2014-08-21 2016-04-04 東ソー・ファインケム株式会社 Composition for forming aluminum oxide film coating, production method of article having aluminum oxide film and article having aluminum oxide film
JP2016043299A (en) * 2014-08-21 2016-04-04 東ソー・ファインケム株式会社 Composition for forming aluminum oxide film coating, production method of article having aluminum oxide film and article having aluminum oxide film
JP2016153349A (en) * 2015-02-20 2016-08-25 東ソー・ファインケム株式会社 Simple method for producing aluminum oxide thin film
JP2016167524A (en) * 2015-03-10 2016-09-15 東ソー・ファインケム株式会社 Method of producing passivation film, passivation film, and solar cell element using the same
WO2017199870A1 (en) * 2016-05-16 2017-11-23 東ソー・ファインケム株式会社 Aluminum-oxide-forming composition and method of producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
WO2018174114A1 (en) * 2017-03-22 2018-09-27 東ソー・ファインケム株式会社 Aluminum oxide article
JP2021064787A (en) * 2019-10-10 2021-04-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for thin film deposition, method for manufacturing thin film by use thereof, thin film manufactured from the composition for thin film deposition, and semiconductor device including the thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303783A (en) * 2003-03-28 2004-10-28 Jsr Corp Method for forming wiring and electrode
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film
JP2008532932A (en) * 2005-02-14 2008-08-21 プラクスエア・テクノロジー・インコーポレイテッド Organoaluminum precursor compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303783A (en) * 2003-03-28 2004-10-28 Jsr Corp Method for forming wiring and electrode
JP2008532932A (en) * 2005-02-14 2008-08-21 プラクスエア・テクノロジー・インコーポレイテッド Organoaluminum precursor compound
JP2007287821A (en) * 2006-04-14 2007-11-01 Jsr Corp Method of forming alumina film

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI693228B (en) * 2014-08-21 2020-05-11 日商東曹精細化學股份有限公司 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysis composition solution, aluminum oxide film coating forming composition, article with aluminum oxide film, manufacturing method thereof, aluminum oxide film manufacturing method, passivation film manufacturing method , Passivation film, solar cell components using the same
KR102619467B1 (en) 2014-08-21 2023-12-29 토소 화인켐 가부시키가이샤 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
WO2016027861A1 (en) * 2014-08-21 2016-02-25 東ソー・ファインケム株式会社 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
KR20170044128A (en) * 2014-08-21 2017-04-24 토소 화인켐 가부시키가이샤 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
JP2016043298A (en) * 2014-08-21 2016-04-04 東ソー・ファインケム株式会社 Composition for forming aluminum oxide film coating, production method of article having aluminum oxide film and article having aluminum oxide film
KR20220160127A (en) * 2014-08-21 2022-12-05 토소 화인켐 가부시키가이샤 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
KR102472173B1 (en) * 2014-08-21 2022-11-29 토소 화인켐 가부시키가이샤 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
JP2016043299A (en) * 2014-08-21 2016-04-04 東ソー・ファインケム株式会社 Composition for forming aluminum oxide film coating, production method of article having aluminum oxide film and article having aluminum oxide film
JP2016153349A (en) * 2015-02-20 2016-08-25 東ソー・ファインケム株式会社 Simple method for producing aluminum oxide thin film
JP2016167524A (en) * 2015-03-10 2016-09-15 東ソー・ファインケム株式会社 Method of producing passivation film, passivation film, and solar cell element using the same
WO2017199870A1 (en) * 2016-05-16 2017-11-23 東ソー・ファインケム株式会社 Aluminum-oxide-forming composition and method of producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
JPWO2017199870A1 (en) * 2016-05-16 2019-03-22 東ソー・ファインケム株式会社 Composition for forming aluminum oxide and method for producing the same, and polyolefin polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method for producing the same
KR20190008266A (en) 2016-05-16 2019-01-23 토소 화인켐 가부시키가이샤 COMPOSITION FOR FORMING ALUMINUM OXIDE AND METHOD FOR PRODUCING THE SAME, AND POLYOLEFINIC POLYMER NANO-COMPOSITE COMPOUND COMPRISING ZINC OXIDE PARTICLES OR ALUMINUM OXIDE PARTICLES
US11267940B2 (en) 2016-05-16 2022-03-08 Tosoh Finechem Corporation Aluminum-oxide-forming composition and method for producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
KR102324241B1 (en) 2016-05-16 2021-11-09 토소 화인켐 가부시키가이샤 Composition for forming aluminum oxide, method for preparing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles, and method for preparing same
US11795277B2 (en) 2016-05-16 2023-10-24 Tosoh Finechem Corporation Polyolefin-based polymer nanocomposite containing zinc oxide particles and method of producing same
US11820871B2 (en) 2016-05-16 2023-11-21 Tosoh Finechem Corporation Aluminum oxide-forming composition and method for producing same
US11482709B2 (en) 2017-03-22 2022-10-25 Tosoh Finechem Corporation Aluminum oxide article
WO2018174114A1 (en) * 2017-03-22 2018-09-27 東ソー・ファインケム株式会社 Aluminum oxide article
US11482593B2 (en) 2019-10-10 2022-10-25 Samsung Sdi Co., Ltd. Composition for depositing thin film, manufacturing method for thin film using the composition, thin film manufactured from the composition, and semiconductor device including the thin film
JP7168624B2 (en) 2019-10-10 2022-11-09 三星エスディアイ株式会社 Composition for thin film deposition, method for producing thin film using composition for thin film deposition, thin film produced from composition for thin film deposition, and semiconductor device containing thin film
JP2021064787A (en) * 2019-10-10 2021-04-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. Composition for thin film deposition, method for manufacturing thin film by use thereof, thin film manufactured from the composition for thin film deposition, and semiconductor device including the thin film

Also Published As

Publication number Publication date
JPWO2012053433A1 (en) 2014-02-24

Similar Documents

Publication Publication Date Title
WO2012053433A1 (en) Method for forming alumina film
JP4706544B2 (en) Alumina film forming method
JP2004303783A (en) Method for forming wiring and electrode
JP4892839B2 (en) Method for forming an aluminum film
JP2009227864A (en) Composition for forming aluminum film, and method for forming aluminum film
WO2012053436A1 (en) Composition for forming alumina film and method for forming alumina film
JP5093448B2 (en) Trench filling method
US9150962B2 (en) Method for producing substrate with metal body
JP4154729B2 (en) Conductive laminated film and method for forming the same
JP4930681B2 (en) Method for forming aluminum film on the inner surface of the tube
JP5817593B2 (en) Aluminum body forming composition and aluminum body forming method
WO2004065659A1 (en) Composition for forming silicon·aluminum film, silicon·aluminum film and method for forming the same
JP2013181119A (en) Composition for forming aluminum-containing film, and method for forming aluminum-containing film
WO2008105557A1 (en) Composition for forming aluminum film and method for forming aluminum film
TWI444357B (en) A method for forming an aluminum film, and a method for forming an aluminum film
WO2012050058A1 (en) Method for formation of aluminum film
JP2013044002A (en) Aluminum film forming method
JP2013021068A (en) Manufacturing method of substrate including aluminum body
JP2013125766A (en) Method for manufacturing substrate having recessed part embedded with aluminum material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539698

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11834273

Country of ref document: EP

Kind code of ref document: A1