WO2012050058A1 - Method for formation of aluminum film - Google Patents

Method for formation of aluminum film Download PDF

Info

Publication number
WO2012050058A1
WO2012050058A1 PCT/JP2011/073209 JP2011073209W WO2012050058A1 WO 2012050058 A1 WO2012050058 A1 WO 2012050058A1 JP 2011073209 W JP2011073209 W JP 2011073209W WO 2012050058 A1 WO2012050058 A1 WO 2012050058A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum film
group
forming
aluminum
titanium
Prior art date
Application number
PCT/JP2011/073209
Other languages
French (fr)
Japanese (ja)
Inventor
雅浩 山本
秀樹 西村
英行 青木
酒井 達也
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2012538665A priority Critical patent/JPWO2012050058A1/en
Publication of WO2012050058A1 publication Critical patent/WO2012050058A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • C23C18/10Deposition of aluminium only

Definitions

  • the present invention relates to an aluminum film forming method.
  • the metal aluminum material is widely used for the application of the electrode wiring of the semiconductor device represented by DRAM, the application of the reflection film of the optical device, etc. because of its high conductivity and high optical characteristics.
  • sputtering methods, vapor deposition methods, and chemical vapor deposition methods have been the mainstream methods for forming aluminum films (Patent Document 1).
  • these methods require an expensive apparatus such as a vacuum chamber and a high-voltage current apparatus, are expensive, and have a problem to be solved for industrialization that they are difficult to apply to a large-diameter substrate.
  • these conventional methods also have the problem of generating defects in the film and reducing step coverage.
  • the film formation method by coating does not require an expensive apparatus, the film formation cost is relatively low, and good film formation on a narrow trench substrate is also expected using the penetration force of the liquid material. it can. So far, an aluminum film forming method using a coating type composition using an aluminum hydride compound has been reported (Patent Document 2). This document describes as an advantage of this film forming method that an aluminum film having a uniform thickness can be formed inside a trench having a small opening width and a large aspect ratio.
  • the conventional aluminum film forming method is to form an aluminum film on the surface of the base film after forming the base film by a process with many steps using a liquid composition containing a titanium compound or the like. There is a problem that the number of processes is large. In the case where the base film is not formed, there is a problem that a homogeneous aluminum film may not be obtained.
  • an object of the present invention is to provide a method for forming a homogeneous and dense aluminum film on a substrate more easily than a conventional method.
  • the present inventors apply an aluminum film-forming composition containing a complex of an amine compound and aluminum hydride and an organic solvent on the surface of a metal layer made of a specific metal such as copper, and form a coating film.
  • a metal layer made of a specific metal such as copper
  • After forming if an aluminum film is formed by performing a treatment such as heat treatment on the coating film, a metal made of copper or the like that is easy to form without requiring many steps for forming a base film as in the prior art It has been found that by simply forming a layer (undercoat film), a uniform and dense aluminum film can be easily formed on the substrate while ensuring high adhesion (adhesion), and the present invention has been completed. .
  • a material for forming an aluminum film containing a complex of an amine compound and aluminum hydride is formed on the surface of a metal layer made of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold.
  • the aluminum film formation method according to [1], wherein the aluminum film formation material further contains a second amine compound.
  • an aluminum film of the present invention According to the method for forming an aluminum film of the present invention, a uniform and dense aluminum film can be obtained on the substrate simply and with a smaller number of steps than the conventional method while ensuring high adhesion (adhesion). .
  • the aluminum film formed by the method of the present invention can be used for a structural part including an electrode wiring of a semiconductor device, a reflection film of an optical device, or the like.
  • an aluminum film forming material containing a complex of an amine compound and aluminum hydride is at least one selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold.
  • step (a) a metal layer formed of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold is used as the aluminum film forming material containing a complex of an amine compound and aluminum hydride. It is the process of apply
  • the metal layer is a metal layer made of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold, and may be a metal layer made of a kind of metal (pure metal), copper, It may be a metal layer made of an alloy containing two or more selected from cobalt, molybdenum, tungsten, aluminum, nickel and gold.
  • the metal layer itself may be a substrate, or may be formed on a substrate different from the metal layer.
  • the shape of the surface of the metal layer may be a flat surface or a non-planar surface having a step, and is not particularly limited.
  • the material constituting the substrate
  • the material is preferably one that can withstand the heat treatment of the next step.
  • the material of the base material in this case include glass, plastic, ceramics, a silicon substrate, and the like.
  • the glass include quartz glass, borosilicate glass, soda glass, and lead glass.
  • the plastic include polyimide and polyethersulfone.
  • examples of the shape of the substrate in this case include a bulk shape, a plate shape, and a film shape, and are not particularly limited.
  • the metal layer is formed on a substrate different from the metal layer, the metal layer is formed on the substrate by chemical vapor deposition (CVD), physical vapor deposition (Known methods such as the PVD method).
  • CVD chemical vapor deposition
  • PVD method physical vapor deposition
  • Examples of the chemical vapor deposition method (CVD method) include a thermal CVD method, a photo CVD method, a plasma CVD method, and a metal organic chemical vapor deposition method.
  • physical vapor deposition include vacuum deposition, molecular beam epitaxy, sputtering, ion plating, and laser deposition.
  • the aluminum film forming composition to be described later on the surface of the metal layer for example, spin coating, roll coating, curtain coating, dip coating, spraying, droplet discharge, etc.
  • This method can be used.
  • coating conditions are adopted such that the composition for forming an aluminum film extends to every corner of the surface of the metal layer depending on the shape and size of the metal layer to be coated.
  • the rotation speed of the spinner can be preferably 300 to 2,500 rpm, more preferably 500 to 2,000 rpm.
  • composition for forming an aluminum film used in the present invention contains a complex of the above (A) amine compound and an aluminum hydride compound as an essential component, and in addition, (B) an organic solvent, (C ) A second amine compound other than the amine compound contained in the complex, and (D) a titanium compound may also be contained. (Called often conventionally "Alan".)
  • (A) above aluminum hydride contained in the complex of an amine compound and aluminum hydride is a compound consisting of aluminum and hydrogen atoms, it is generally in the AlH 3 expressed.
  • the complex of (A) an amine compound and aluminum hydride contained in the composition for forming an aluminum film used in the present invention is, for example, “JK Ruff et al., J. Amer. Chem. Soc., 82”. Vol., 2141, 1960 ",” GW Fraser et al., J. Chem. Soc., 3742, 1963 “, and” JL Atwood et al., J. Amer. Chem. Soc., 113 ". Volume, page 8133, 1991 “etc. and can be synthesized.
  • the complex of (A) an amine compound and aluminum hydride contained in the aluminum film forming composition used in the present invention is, for example, a hydrochloride of an amine compound in a diethyl ether suspension of lithium aluminum hydride.
  • the amine compound used in the present invention can be a monoamine compound or a polyamine compound.
  • a polyamine compound a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
  • Examples of the monoamine compound include the following formula (1): R 1 R 2 R 3 N (1) (Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group.) And other monoamine compounds.
  • the alkyl group, alkenyl group or alkynyl group as R 1 , R 2 and R 3 in the formula (1) may be linear, cyclic or branched.
  • alkyl group examples include alkyl groups having 1 to 12 carbon atoms. Specific examples thereof include, for example, methyl group, ethyl group, propyl group, cyclopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, cyclohexyl group, Examples thereof include 2-methylbutyl group and 2-ethylhexyl group.
  • alkenyl group the alkenyl group which has an unsaturated group can be mentioned, for example.
  • Examples of the alkynyl group include a phenylethynyl group.
  • Examples of the aryl group include a phenyl group.
  • Examples of the aralkyl group include a benzyl group.
  • the compound represented by the formula (1) include, for example, ammonia, trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tri-n-propylamine, tri-isopropylamine, tricyclopropylamine, tri-n-butylamine, Triisobutylamine, tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenyl Amine, diethylphenylamine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine, isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propyl Min, diisopropylamine, dicyclopropylamine, di-
  • diamine compound examples include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-.
  • Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ′′ — And trimethyl-1,3,5-triazacyclohexane.
  • Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine. These amine compounds can be used alone or in admixture of two or more compounds.
  • trimethylamine triethylamine, tri-isopropylamine, triisobutylamine or tri-t-butylamine.
  • These amine compounds can be used alone or in admixture of two or more.
  • the organic solvent (B) contained in the composition for forming an aluminum film used in the present invention dissolves the above-described complex of an amine compound and an aluminum hydride compound, and components to be optionally added as described later, And if it does not react with these, it will not specifically limit.
  • a hydrocarbon solvent, an ether solvent, other polar solvents, etc. can be used.
  • hydrocarbon solvent examples include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane, dicyclopentadiene hydride, benzene, toluene, Xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane and the like can be mentioned.
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, and bis.
  • (2-methoxyethyl) ether p-dioxane, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, fentol, 2-methylfentol, 3-methylfentol, 4-methylfentol,
  • examples include veratrol, 2-ethoxyanisole, and 1,4-dimethoxybenzene.
  • examples of the other polar solvent include methylene chloride and chloroform. These organic solvents can be used alone or in admixture of two or more.
  • hydrocarbon solvent for example, n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, benzene, toluene or xylene is preferable.
  • ether solvent examples include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, phen Tolu, veratrol, 2-ethoxyanisole and 1,4-dimethoxybenzene are preferred.
  • Examples of the second amine compound other than the amine compound contained in the complex include a monoamine compound and a polyamine compound.
  • a polyamine compound a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
  • Examples of the monoamine compound include the following formula (2): R 4 R 5 R 6 N (2) (Here, R 4 , R 5 and R 6 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group.) And other monoamine compounds.
  • the alkyl group, alkenyl group or alkynyl group as R 4 , R 5 and R 6 in the formula (2) may be linear, cyclic or branched.
  • alkyl group examples include alkyl groups having 1 to 12 carbon atoms. Specific examples thereof include, for example, methyl group, ethyl group, propyl group, cyclopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, cyclohexyl group, Examples thereof include 2-methylbutyl group and 2-ethylhexyl group.
  • alkenyl group examples include an alkenyl group having an unsaturated group.
  • Examples of the alkynyl group include a phenylethynyl group.
  • Examples of the aryl group include a phenyl group.
  • Examples of the aralkyl group include a benzyl group.
  • the compound represented by the formula (2) include, for example, ammonia, trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tri-n-propylamine, tri-isopropylamine, tricyclopropylamine, tri-n-butylamine, Triisobutylamine, tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenyl Amine, diethylphenylamine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine, isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propyl Min, diisopropylamine, dicyclopropylamine, di-
  • diamine compound examples include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-.
  • Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ′′ — And trimethyl-1,3,5-triazacyclohexane.
  • Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine. These amine compounds can be used alone or in admixture of two or more compounds.
  • amine compounds trimethylamine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine, diisopropylamine, di-t-butylamine, methylethylamine, methylamine, ethylamine, ethylenediamine, and diethylenetriamine are more preferable.
  • trimethylamine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine, and ethylenediamine are more preferable.
  • These amine compounds can be used alone or in admixture of two or more compounds. By adding these amine compounds, the storage stability of the aluminum film-forming composition and the material stability at high temperatures are improved.
  • Examples of the (D) titanium compound include compounds represented by the following formulas (3) to (7).
  • R 7 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, a halogenated alkyl group or a halogenated phenyl group.
  • the definition of R 8 is the same as R 7 in the above formula (3), and L is the formula
  • R 9 and R 10 are the same or different and are an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group, a halogenated alkyl group, or a halogenated phenyl group, and x is an integer of 0 to 3. .
  • R 11 is an alkyl group or a phenyl group
  • X is a halogen atom
  • y is an integer of 0 to 3.
  • R 12 is an alkyl group or a phenyl group.
  • Cp is a group having a cyclopentadienyl skeleton
  • Y is a halogen atom or an alkyl group
  • n is an integer of 1 to 4.
  • R 7 and R 8 are preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, methoxy, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, hexyl group, cyclohexyl group, phenoxy group, methylphenoxy group, trifluoromethyl group, more preferably methyl group, ethyl group N-propyl group, i-propyl group, n-butyl group, t-butyl group, hexyl group, cyclohexyl group and phenyl group.
  • R 9 and R 10 in L are preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, methoxy, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, phenoxy group, methylphenoxy group, trifluoromethyl group, particularly preferably methyl group, ethyl group, i-propyl group, a t-butyl group, a methoxy group, an ethoxy group, an i-propoxy group, a t-butoxy group, and a trifluoromethyl group.
  • titanium compound represented by the above formula (3) examples include, for example, titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-n-nonyl oxide, titanium stearyl oxide, titanium isopropoxide, and titanium.
  • titanium methoxide titanium ethoxide
  • titanium-n-propoxide titanium-n-nonyl oxide
  • titanium stearyl oxide titanium isopropoxide
  • titanium titanium isopropoxide
  • titanium titanium isobutoxide
  • titanium compound represented by the above formula (4) examples include, for example, tetrakis (penta-2,4-diketo) titanium, tetrakis (2,2,6,6-tetramethylhepta-3,5-diketo).
  • titanium compound represented by the above formula (5) examples include, for example, trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, tri-i-propoxytitanium chloride, tri-n-butoxytitanium.
  • titanium compound represented by the above formula (6) examples include, for example, tetrakis (dimethylamino) titanium, tetrakis (diethylamino) titanium, tetrakis (di-t-butoxyamino) titanium, tetrakis (di-i-propoxyamino). ) Titanium, tetrakis (diphenylamino) titanium.
  • titanium compound represented by the above formula (7) examples include, for example, dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium dibromide, cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tribromide.
  • the concentration of the (C) amine compound contained in the composition for forming an aluminum film used in the present invention is based on the total of (A) a complex of an amine compound and an aluminum hydride compound and (C) the amine compound. 70% by mass or less, more preferably 50% by mass or less, and further preferably 3 to 50% by mass.
  • the concentration of (D) the titanium compound is (A) a complex of an amine compound and an aluminum hydride compound, and (D ) It is preferably 1 mol% or less, more preferably 0.00001 to 1 mol%, still more preferably 0.00005 to 0.01 mol%, based on the total of the titanium compounds.
  • nonvolatile component content The ratio of the mass excluding (B) solvent and (C) amine compound in the composition for forming an aluminum film in the total mass of the composition (hereinafter referred to as “nonvolatile component content”) is film formation. It is desirable to vary according to the film thickness of the aluminum film to be. For example, when the film thickness of the aluminum film is less than 200 nm, the non-volatile component content of the composition for forming an aluminum film is preferably less than 50% by mass, more preferably 30% by mass or less. When the film thickness of the aluminum film is 200 nm or more, the non-volatile component content of the composition for forming an aluminum film is preferably 50% by mass or more, more preferably 70% by mass or more.
  • the method for producing the aluminum film forming composition used in the present invention is not particularly limited.
  • a solution obtained by synthesizing a complex of an amine compound and an aluminum hydride compound as described above in the presence of a solvent and then removing insolubles such as by-products with a filter or the like can be used as it is as a composition for forming an aluminum film. it can.
  • the solvent used for the reaction for example, diethyl ether, may be removed under reduced pressure to obtain an aluminum film forming composition.
  • the composition for forming an aluminum film used in the present invention contains a titanium compound
  • a solution containing a complex of an amine compound and an aluminum hydride compound produced as described above a predetermined amount of a solution of a titanium-containing compound can be added while stirring.
  • the temperature at the time of addition is preferably 0 to 150 ° C., more preferably 5 to 100 ° C.
  • the stirring time is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes.
  • heat treatment may be performed in order to remove low-boiling components such as a solvent contained in the applied composition for forming an aluminum film (coating film).
  • the heating temperature and time vary depending on the type of solvent used and the boiling point (vapor pressure), but can be, for example, 100 to 350 ° C. and 1 to 90 minutes.
  • the solvent can be removed at a lower temperature by reducing the pressure of the entire system. Preferably, it is 2 to 60 minutes at 100 to 250 ° C.
  • step (b) the coating film (usually a liquid material) obtained in the step (a) is subjected to at least one treatment selected from a heat treatment and a light irradiation treatment to form an aluminum film (usually a cured product). It is a process of forming.
  • the temperature of the heat treatment is preferably 60 ° C. or higher, more preferably 70 ° C. to 600 ° C., and further preferably 200 ° C. to 500 ° C.
  • the heating time is preferably 30 seconds to 120 minutes, more preferably 1 to 90 minutes, still more preferably 2 to 60 minutes.
  • the light source used for the light irradiation treatment include a mercury lamp, deuterium lamp, rare gas discharge light, YAG laser, argon laser, carbon dioxide gas laser, and rare gas halogen excimer laser.
  • the mercury lamp include a low-pressure mercury lamp and a high-pressure mercury lamp.
  • the rare gas used for the discharge light of the rare gas include argon, krypton, and xenon.
  • the rare gas halogen used in the rare gas halogen excimer laser include XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, and the like.
  • the output of these light sources is preferably 10 to 5,000 W, more preferably 100 to 1,000 W.
  • the wavelength of these light sources is not particularly limited, but is preferably 170 nm to 600 nm.
  • the use of laser light is particularly preferable from the viewpoint of the film quality of the formed aluminum film.
  • plasma oxidation can be performed in an oxidizing gas atmosphere for the purpose of forming a better aluminum film.
  • the oxidizing conditions for the plasma oxidation at this time are, for example, RF power of 20 to 100 W, oxygen gas of 90 to 100% and the remainder (10% or less) of argon gas as the introduced gas, and the introduction pressure of the introduced gas is 0. 0.05 to 0.2 Pa, and the plasma oxidation time can be 10 to 240 seconds.
  • the atmosphere for carrying out the application of the composition for forming an aluminum film, the optional removal of the solvent, and the heat treatment and / or the light irradiation treatment is an oxidizing condition from the viewpoint of promoting the formation of the aluminum film.
  • the oxidizing gas that realizes the oxidizing conditions include water vapor, oxygen, ozone, carbon monoxide, peroxides having 1 to 3 carbon atoms, alcohol, and aldehyde. Of these, water vapor, oxygen, and ozone are preferable.
  • the inert gas include nitrogen, helium, and argon.
  • the ratio of the oxidizing gas to the total of the inert gas and the oxidizing gas is preferably 1 to 70 mol%, more preferably 3 to 40 mol%.
  • Only one or both of the heat treatment and the light irradiation treatment may be performed.
  • the heat treatment and the light treatment may be performed at the same time regardless of the order. Of these, it is preferable to perform only heat treatment or perform both heat treatment and light treatment.
  • plasma oxidation may be performed separately from the heat treatment and / or light irradiation treatment step.
  • an uncured aluminum film is formed in an inert gas atmosphere containing no oxidizing gas by the above coating method, and then anodized to form a cured aluminum film. It can also be formed.
  • the filtrate was received in a 300 mL eggplant-shaped flask, and after completion of filtration, a magnetic stirrer was placed and a three-way suction cock was attached.
  • the suction stopper three-way cock was connected to a vacuum pump via a trap, and the solvent was removed under reduced pressure while stirring with a magnetic stirrer at a rotational speed of 300 rpm.
  • the residue was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 ⁇ m, whereby 10.25 g of a complex of triethylamine and aluminum hydride was colorless and transparent. Obtained as a liquid (yield 55%).
  • composition for forming aluminum film 1-2 To 0.50 mL of a solution containing 50% by mass of the complex of triethylamine and aluminum hydride prepared in the above 1-3. A composition for forming an aluminum film was prepared by adding 27 ⁇ L of a solution containing 20 ⁇ mol / g of cyclopentadienyltitanium trichloride prepared in step 1 at room temperature and then continuing stirring for 1 minute.
  • Example 1 A metal copper layer was formed on the silicon substrate by sputtering. The thickness of the metallic copper layer was 100 nm. Next, the silicon substrate on which the metallic copper layer is formed is mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) is dropped on the surface of the metallic copper layer, and the rotational speed is 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
  • Example 2 A metal aluminum layer was formed on the silicon substrate by sputtering. The thickness of the metal aluminum layer was 200 nm. Next, the silicon substrate on which the metal aluminum layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metal aluminum layer, and the rotation speed was 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
  • Example 3 A metallic cobalt layer was formed on the silicon substrate by sputtering. The thickness of the metallic cobalt layer was 100 nm. Next, the silicon substrate on which the metallic cobalt layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metallic cobalt layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
  • Example 4 A metal molybdenum layer was formed on the silicon substrate by sputtering. The thickness of the metal molybdenum layer was 80 nm. Next, the silicon substrate on which the metal molybdenum layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metal molybdenum layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
  • Example 5 A metal tungsten layer was formed on the silicon substrate by sputtering. The thickness of the metal tungsten layer was 100 nm. Next, the silicon substrate on which the metal tungsten layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped onto the surface of the metal tungsten layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemically Coating (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Provided is a method by which a homogeneous and dense aluminum film can be formed on a substrate more simply and more easily in comparison to a conventional method. A method for the formation of an aluminum film, which includes: an application step of applying a material which is for the formation of an aluminum film and which contains a complex composed of both an amine compound and aluminum hydride to the surface of a metal layer to form a coating, said metal layer consisting of at least one metal selected from among copper, cobalt, molybdenum, tungsten, aluminum, nickel and gold; and a curing step of subjecting the coating to heat treatment and/or photo-irradiation to form an aluminum film.

Description

アルミニウム膜形成方法Aluminum film forming method
 本発明は、アルミニウム膜形成方法に関する。 The present invention relates to an aluminum film forming method.
 金属アルミニウム材料は、その高い導電性と高い光学特性から、DRAMに代表される半導体デバイスの電極配線の用途や光学装置の反射膜の用途等に幅広く用いられている。一般的にアルミニウム膜形成方法は、スパッタ法、蒸着法、化学気相成長方法がこれまで主流であった(特許文献1)。しかし、これらの方法には、真空チャンバーや高圧電流装置など高価な装置を必要とし高コストであり、また、大口径の基体への適用が困難であるという、工業化への解決すべき課題がある。さらには昨今の半導体デバイスの微細化、ならびに光学装置の形状の複雑化が進む中で、これら従来の手法では、膜中の欠陥の発生やステップカバレージ性の低下が生じるという問題もある。
 これに対し、塗布による成膜方法は、高価な装置を必要とせず、成膜コストが比較的安価であり、液体材料の浸透力を利用して狭トレンチ基体上への良好な成膜も期待できる。これまでに、水素化アルミニウム化合物を用いた塗布型組成物によるアルミニウム膜成膜法が報告されている(特許文献2)。この文献には、この成膜法の利点として、開口幅が小さく、アスペクト比の大きいトレンチの内部等に、厚さの均一なアルミニウム膜を形成できることが記載されている。
The metal aluminum material is widely used for the application of the electrode wiring of the semiconductor device represented by DRAM, the application of the reflection film of the optical device, etc. because of its high conductivity and high optical characteristics. In general, sputtering methods, vapor deposition methods, and chemical vapor deposition methods have been the mainstream methods for forming aluminum films (Patent Document 1). However, these methods require an expensive apparatus such as a vacuum chamber and a high-voltage current apparatus, are expensive, and have a problem to be solved for industrialization that they are difficult to apply to a large-diameter substrate. . Furthermore, with the recent miniaturization of semiconductor devices and the complication of the shape of optical devices, these conventional methods also have the problem of generating defects in the film and reducing step coverage.
On the other hand, the film formation method by coating does not require an expensive apparatus, the film formation cost is relatively low, and good film formation on a narrow trench substrate is also expected using the penetration force of the liquid material. it can. So far, an aluminum film forming method using a coating type composition using an aluminum hydride compound has been reported (Patent Document 2). This document describes as an advantage of this film forming method that an aluminum film having a uniform thickness can be formed inside a trench having a small opening width and a large aspect ratio.
特開2000-86673号公報JP 2000-86673 A 特開2006-237392号公報JP 2006-237392 A
 しかしながら、従来の上記アルミニウム膜形成方法は、チタン化合物などを含む液状の組成物を用いて、工程数の多い処理によって下地膜を形成した後に、該下地膜の表面上にアルミニウム膜を形成するものであり、全体の工程数が多いという問題があった。
 なお、下地膜を形成しない場合には、均質なアルミニウム膜が得られないことがあるという問題があった。
 本発明の目的は、上記の問題点に鑑みて、基体上に、従来方法に比べてより簡便に、均質かつ緻密なアルミニウム膜を形成する方法を提供することにある。
However, the conventional aluminum film forming method is to form an aluminum film on the surface of the base film after forming the base film by a process with many steps using a liquid composition containing a titanium compound or the like. There is a problem that the number of processes is large.
In the case where the base film is not formed, there is a problem that a homogeneous aluminum film may not be obtained.
In view of the above problems, an object of the present invention is to provide a method for forming a homogeneous and dense aluminum film on a substrate more easily than a conventional method.
 本発明者らは、銅などの特定の金属からなる金属層の表面上に、アミン化合物と水素化アルミニウムとの錯体および有機溶媒を含有するアルミニウム膜形成用組成物を塗布して、塗布膜を形成した後に、該塗布膜に加熱処理等の処理を行なってアルミニウム膜を形成すれば、従来のように下地膜の形成に多くの工程を必要とせずに、形成の容易な銅などからなる金属層(下地膜)を形成するだけで、基体上に、高い密着性(付着性)を確保しつつ、簡便に、均質かつ緻密なアルミニウム膜を形成できることを見出し、本発明を完成するに至った。 The present inventors apply an aluminum film-forming composition containing a complex of an amine compound and aluminum hydride and an organic solvent on the surface of a metal layer made of a specific metal such as copper, and form a coating film. After forming, if an aluminum film is formed by performing a treatment such as heat treatment on the coating film, a metal made of copper or the like that is easy to form without requiring many steps for forming a base film as in the prior art It has been found that by simply forming a layer (undercoat film), a uniform and dense aluminum film can be easily formed on the substrate while ensuring high adhesion (adhesion), and the present invention has been completed. .
 すなわち、本発明は、以下の[1]~[6]を提供するものである。
[1] アミン化合物と水素化アルミニウムとの錯体を含有するアルミニウム膜形成用材料を、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケル、および金から選ばれる少なくとも一種の金属からなる金属層の表面に塗布して、塗布膜を形成する塗布工程と、前記塗布膜に対して、加熱処理および光照射処理から選ばれる少なくとも一種の処理を行い、アルミニウム膜を形成するアルミニウム膜形成工程を含むことを特徴とする、アルミニウム膜形成方法。
[2] 前記アルミニウム膜形成用材料が、第二のアミン化合物をさらに含有する、前記[1]に記載のアルミニウム膜形成方法。
[3] 前記第二のアミン化合物の濃度が、前記錯体および第二のアミン化合物の合計に対して、3~70質量%である、前記[2]に記載のアルミニウム膜形成方法。
[4] 前記アルミニウム膜形成用材料が、チタン化合物をさらに含有する、前記[1]~[3]のいずれかに記載のアルミニウム膜形成方法。
[5] 前記チタン化合物の濃度が、前記錯体およびチタン化合物の合計に対して、0.00001~1モル%である、前記[4]に記載のアルミニウム膜形成方法。
[6] 前記塗布工程の前に、基材上に前記金属層を形成する金属層形成工程を含む、前記[1]~[5]のいずれかに記載のアルミニウム膜形成方法。
That is, the present invention provides the following [1] to [6].
[1] A material for forming an aluminum film containing a complex of an amine compound and aluminum hydride is formed on the surface of a metal layer made of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold. A coating step of coating and forming a coating film; and an aluminum film forming step of forming an aluminum film by performing at least one treatment selected from heat treatment and light irradiation treatment on the coating film. An aluminum film forming method.
[2] The aluminum film formation method according to [1], wherein the aluminum film formation material further contains a second amine compound.
[3] The aluminum film forming method according to [2], wherein the concentration of the second amine compound is 3 to 70% by mass with respect to the total of the complex and the second amine compound.
[4] The aluminum film forming method according to any one of [1] to [3], wherein the aluminum film forming material further contains a titanium compound.
[5] The method for forming an aluminum film according to [4], wherein the concentration of the titanium compound is 0.00001 to 1 mol% with respect to the total of the complex and the titanium compound.
[6] The aluminum film forming method according to any one of [1] to [5], further including a metal layer forming step of forming the metal layer on a substrate before the coating step.
 本発明のアルミニウム膜形成方法によれば、基体上に、高い密着性(付着性)を確保しつつ、従来方法に比べて少ない工程数で簡便に、均質かつ緻密なアルミニウム膜を得ることができる。
 本発明の方法によって形成されるアルミニウム膜は、半導体デバイスの電極配線を含む構造部分や、光学装置の反射膜の用途等に用いることができる。
According to the method for forming an aluminum film of the present invention, a uniform and dense aluminum film can be obtained on the substrate simply and with a smaller number of steps than the conventional method while ensuring high adhesion (adhesion). .
The aluminum film formed by the method of the present invention can be used for a structural part including an electrode wiring of a semiconductor device, a reflection film of an optical device, or the like.
 本発明のアルミニウム膜形成方法は、(a)アミン化合物と水素化アルミニウムとの錯体を含有するアルミニウム膜形成用材料を、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケル、および金から選ばれる少なくとも一種の金属からなる金属層の表面に塗布して、塗布膜を形成する塗布工程と、(b)前記塗布膜に対して、加熱処理および光照射処理から選ばれる少なくとも一種の処理を行い、アルミニウム膜を形成するアルミニウム膜形成工程、を含むことを特徴とする。 In the aluminum film forming method of the present invention, (a) an aluminum film forming material containing a complex of an amine compound and aluminum hydride is at least one selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold. A coating step of coating the surface of the metal layer made of the metal to form a coating film, and (b) performing at least one treatment selected from a heat treatment and a light irradiation treatment on the coating film, to form an aluminum film And an aluminum film forming step for forming the film.
 まず、工程(a)について説明する。工程(a)は、アミン化合物と水素化アルミニウムとの錯体を含有するアルミニウム膜形成用材料を、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケル、および金から選ばれる少なくとも一種の金属からなる金属層の表面に塗布して、塗布膜を形成する工程である。
 上記金属層は、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケル、および金から選ばれる少なくとも一種の金属からなる金属層であり、一種の金属(純金属)からなる金属層でもよいし、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケルおよび金から選ばれる2種以上を含む合金からなる金属層であってもよい。
 上記金属層は、金属層そのものが基体であってもよく、あるいは、当該金属層とは異なる基体上に形成されていてもよい。
 金属層の表面の形態は、平面でもよいし、段差のある非平面でもよく、特に限定されるものではない。
First, the step (a) will be described. In the step (a), a metal layer formed of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold is used as the aluminum film forming material containing a complex of an amine compound and aluminum hydride. It is the process of apply | coating to the surface of and forming a coating film.
The metal layer is a metal layer made of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold, and may be a metal layer made of a kind of metal (pure metal), copper, It may be a metal layer made of an alloy containing two or more selected from cobalt, molybdenum, tungsten, aluminum, nickel and gold.
The metal layer itself may be a substrate, or may be formed on a substrate different from the metal layer.
The shape of the surface of the metal layer may be a flat surface or a non-planar surface having a step, and is not particularly limited.
 金属層が基体上に形成されている場合、基体を構成する材料(基材)の材質、形状等に特に制限はないが、材質は次工程の熱処理に耐えられるものが好ましい。この場合の基材の材質の具体例としては、ガラス、プラスチック、セラミックス、シリコン基板などを挙げることができる。ガラスとしては、例えば石英ガラス、ホウ珪酸ガラス、ソーダガラス、鉛ガラス等を挙げることができる。プラスチックとしては、例えばポリイミド、ポリエーテルスルホン等を挙げることができる。また、この場合の基体の形状としては、バルク形状、板状、フィルム形状等を挙げることができ、特に制限されるものではない。 When the metal layer is formed on the substrate, there is no particular limitation on the material, shape, etc. of the material (base material) constituting the substrate, but the material is preferably one that can withstand the heat treatment of the next step. Specific examples of the material of the base material in this case include glass, plastic, ceramics, a silicon substrate, and the like. Examples of the glass include quartz glass, borosilicate glass, soda glass, and lead glass. Examples of the plastic include polyimide and polyethersulfone. Moreover, examples of the shape of the substrate in this case include a bulk shape, a plate shape, and a film shape, and are not particularly limited.
 上記金属層が、当該金属層とは異なる基体上に形成されている場合における、基体上への上記金属層の形成方法としては、化学気相成長法(CVD法)、物理気相成長法(PVD法)等の公知の方法が挙げられる。化学気相成長法(CVD法)としては、熱CVD法、光CVD法、プラズマCVD法、有機金属化学気相成長法などが挙げられる。物理気相成長法としては、真空蒸着法、分子線エピタキシー法、スパッタリング法、イオンプレーティング法、レーザー堆積法等が挙げられる。 When the metal layer is formed on a substrate different from the metal layer, the metal layer is formed on the substrate by chemical vapor deposition (CVD), physical vapor deposition ( Known methods such as the PVD method). Examples of the chemical vapor deposition method (CVD method) include a thermal CVD method, a photo CVD method, a plasma CVD method, and a metal organic chemical vapor deposition method. Examples of physical vapor deposition include vacuum deposition, molecular beam epitaxy, sputtering, ion plating, and laser deposition.
 上記の金属層の表面上に、後述するアルミニウム膜形成用組成物を塗布するに際しては、例えばスピンコート法、ロールコート法、カーテンコート法、ディップコート法、スプレー法、液滴吐出法等の適宜の方法を用いることができる。塗布工程では、塗布の対象となる金属層の形状、大きさ等により、金属層の表面の隅々にまでアルミニウム膜形成用組成物が行き亘るような塗布条件が採用される。例えば塗布法としてスピンコート法を採用する場合において、スピナーの回転数を、好ましくは300~2,500rpm、更に好ましくは500~2,000rpmとすることができる。 When applying the aluminum film forming composition to be described later on the surface of the metal layer, for example, spin coating, roll coating, curtain coating, dip coating, spraying, droplet discharge, etc. This method can be used. In the coating process, coating conditions are adopted such that the composition for forming an aluminum film extends to every corner of the surface of the metal layer depending on the shape and size of the metal layer to be coated. For example, when the spin coating method is adopted as the coating method, the rotation speed of the spinner can be preferably 300 to 2,500 rpm, more preferably 500 to 2,000 rpm.
 本発明で使用されるアルミニウム膜形成用組成物は、上記の(A)アミン化合物と水素化アルミニウム化合物との錯体を必須成分として含有し、その他に必要に応じて(B)有機溶媒、(C)前記錯体に含まれるアミン化合物以外の第二のアミン化合物、及び(D)チタン化合物を含有することもできる。
 上記(A)アミン化合物と水素化アルミニウムとの錯体に含まれる水素化アルミニウム(しばしば慣用的に「アラン」と呼ばれる。)は、アルミニウムと水素原子からなる化合物であり、一般的にはAlHで表される。
The composition for forming an aluminum film used in the present invention contains a complex of the above (A) amine compound and an aluminum hydride compound as an essential component, and in addition, (B) an organic solvent, (C ) A second amine compound other than the amine compound contained in the complex, and (D) a titanium compound may also be contained.
(Called often conventionally "Alan".) (A) above aluminum hydride contained in the complex of an amine compound and aluminum hydride is a compound consisting of aluminum and hydrogen atoms, it is generally in the AlH 3 expressed.
 本発明で使用されるアルミニウム膜形成用組成物に含有される(A)アミン化合物と水素化アルミニウムとの錯体は、例えば、「J.K.Ruffら、J.Amer.Chem.Soc.、82巻,2141ページ,1960年」、「G.W.Fraserら、J.Chem.Soc.、3742ページ,1963年」、および「J.L.Atwoodら、J.Amer.Chem.Soc.、113巻,8133ページ,1991年」等に記載された方法に準じて合成することができる。
 本発明で使用されるアルミニウム膜形成用組成物に含有される(A)アミン化合物と水素化アルミニウムとの錯体は、例えば、水素化リチウムアルミニウムのジエチルエーテル懸濁液にアミン化合物の塩化水素酸塩を添加し、例えばNガス中にて室温で撹拌しながら反応させて合成することができる。反応温度、反応溶媒等は、所望するアミン化合物と水素化アルミニウムとの錯体の種類に応じて、適宜に選択されるべきである。
The complex of (A) an amine compound and aluminum hydride contained in the composition for forming an aluminum film used in the present invention is, for example, “JK Ruff et al., J. Amer. Chem. Soc., 82”. Vol., 2141, 1960 "," GW Fraser et al., J. Chem. Soc., 3742, 1963 ", and" JL Atwood et al., J. Amer. Chem. Soc., 113 ". Volume, page 8133, 1991 "etc. and can be synthesized.
The complex of (A) an amine compound and aluminum hydride contained in the aluminum film forming composition used in the present invention is, for example, a hydrochloride of an amine compound in a diethyl ether suspension of lithium aluminum hydride. Can be synthesized by, for example, reacting in N 2 gas with stirring at room temperature. The reaction temperature, reaction solvent, and the like should be appropriately selected depending on the type of the complex of the desired amine compound and aluminum hydride.
 本発明で用いられるアミン化合物は、モノアミン化合物又はポリアミン化合物であることができる。上記ポリアミン化合物としては、例えばジアミン化合物、トリアミン化合物、テトラアミン化合物等を挙げることができる。 The amine compound used in the present invention can be a monoamine compound or a polyamine compound. As said polyamine compound, a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
 上記モノアミン化合物としては、例えば下記式(1)
   RN   ・・・(1)
(ここで、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはアラルキル基である。)
で表されるモノアミン化合物、および、それ以外のモノアミン化合物を挙げることができる。式(1)中のR、RおよびRとしてのアルキル基、アルケニル基又はアルキニル基は、直鎖状であっても環状であってもよく、また分岐していてもよい。
Examples of the monoamine compound include the following formula (1):
R 1 R 2 R 3 N (1)
(Here, R 1 , R 2 and R 3 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group.)
And other monoamine compounds. The alkyl group, alkenyl group or alkynyl group as R 1 , R 2 and R 3 in the formula (1) may be linear, cyclic or branched.
 上記アルキル基としては、例えば炭素数1~12のアルキル基を挙げることができる。その具体例としては、例えばメチル基、エチル基、プロピル基、シクロプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、シクロヘキシル基、2-メチルブチル基、2-エチルヘキシル基等を挙げることができる。
 上記アルケニル基としては、例えば、不飽和基を有するアルケニル基を挙げることができる。その具体例としては、例えばビニル基、アリル基、クロチル基、エチニル基等を挙げることができる。
 上記アルキニル基としては、例えばフェニルエチニル基等を挙げることができる。
 上記アリール基としては、例えばフェニル基等を挙げることができる。
 上記アラルキル基としては、例えばベンジル基等を挙げることができる。
Examples of the alkyl group include alkyl groups having 1 to 12 carbon atoms. Specific examples thereof include, for example, methyl group, ethyl group, propyl group, cyclopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, cyclohexyl group, Examples thereof include 2-methylbutyl group and 2-ethylhexyl group.
As said alkenyl group, the alkenyl group which has an unsaturated group can be mentioned, for example. Specific examples thereof include vinyl group, allyl group, crotyl group, ethynyl group and the like.
Examples of the alkynyl group include a phenylethynyl group.
Examples of the aryl group include a phenyl group.
Examples of the aralkyl group include a benzyl group.
 式(1)で示される化合物の具体例としては、例えばアンモニア、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリ-n-プロピルアミン、トリ-イソプロピルアミン、トリシクロプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-t-ブチルアミン、トリ-2-メチルブチルアミン、トリ-n-ヘキシルアミン、トリシクロヘキシルアミン、トリ(2-エチルヘキシル)アミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジイソブチルフェニルアミン、メチルジフェニルアミン、エチルジフェニルアミン、イソブチルジフェニルアミン、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジシクロプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルブチルアミン、ジ-n-ヘキシルアミン、ジシクロヘキシルアミン、ジ(2-エチルヘキシル)アミン、ジオクチルアミン、ジフェニルアミン、ジベンジルアミン、メチルフェニルアミン、エチルフェニルアミン、イソブチルフェニルアミン、メチルアリルアミン、メチルビニルアミン、メチル(フェニルエチニル)アミン、フェニル(フェニルエチニル)アミン、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、t-ブチルアミン、2-メチルブチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、2-エチルヘキシルアミン、オクチルアミン、フェニルアミン、ベンジルアミン等を挙げることができる。 Specific examples of the compound represented by the formula (1) include, for example, ammonia, trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tri-n-propylamine, tri-isopropylamine, tricyclopropylamine, tri-n-butylamine, Triisobutylamine, tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenyl Amine, diethylphenylamine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine, isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propyl Min, diisopropylamine, dicyclopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, methylethylamine, methylbutylamine, di-n-hexylamine, dicyclohexylamine, di (2-ethylhexyl) amine, dioctyl Amine, diphenylamine, dibenzylamine, methylphenylamine, ethylphenylamine, isobutylphenylamine, methylallylamine, methylvinylamine, methyl (phenylethynyl) amine, phenyl (phenylethynyl) amine, methylamine, ethylamine, n-propylamine , Isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, t-butylamine, 2-methylbutylamine, n-hexylamine, cyclo Hexylamine, 2-ethylhexylamine, octylamine, phenylamine, and benzyl amine.
 上記ジアミン化合物としては、例えばエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジ-t-ブチルエチレンジアミン、N,N’-ジフェニルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、フェニレンジアミン等を挙げることができる。
 上記トリアミン化合物としては、例えばジエチレントリアミン、1,7-ジメチル-1,4,7-トリアザヘプタン、1,7-ジエチル-1,4,7-トリアザヘプタン、N,N’,N’’-トリメチル-1,3,5-トリアザシクロヘキサン等を挙げることができる。
 上記テトラアミン化合物としては、例えばトリメチレンテトラアミン、トリエチレンテトラアミン等を挙げることができる。これらのアミン化合物は、単独でも、あるいは2種以上の化合物を混合して使用することもできる。
Examples of the diamine compound include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-. Examples thereof include diphenylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, and phenylenediamine.
Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ″ — And trimethyl-1,3,5-triazacyclohexane.
Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine. These amine compounds can be used alone or in admixture of two or more compounds.
 これらアミン化合物のうち、式(1)で表されるモノアミン化合物を使用することが好ましい。トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリイソブチルアミン、トリ-t-ブチルアミン、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジイソブチルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルブチルアミン、メチルフェニルアミン、エチルフェニルアミン、イソブチルフェニルアミン、メチルアミン、エチルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、t-ブチルアミン、2-メチルブチルアミン、n-ヘキシルアミン又はフェニルアミンを使用することがより好ましい。中でも、トリメチルアミン、トリエチルアミン、トリ-イソプロピルアミン、トリイソブチルアミン又はトリ-t-ブチルアミンを使用することが更に好ましい。
 これらのアミン化合物は、単独でも、あるいは2種以上を混合して使用することもできる。
Of these amine compounds, it is preferable to use a monoamine compound represented by the formula (1). Trimethylamine, triethylamine, triisopropylamine, triisobutylamine, tri-t-butylamine, dimethylamine, diethylamine, diisopropylamine, diisobutylamine, di-t-butylamine, methylethylamine, methylbutylamine, methylphenylamine, ethylphenylamine, isobutyl More preferably, phenylamine, methylamine, ethylamine, isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, t-butylamine, 2-methylbutylamine, n-hexylamine or phenylamine are used. Among them, it is more preferable to use trimethylamine, triethylamine, tri-isopropylamine, triisobutylamine or tri-t-butylamine.
These amine compounds can be used alone or in admixture of two or more.
 本発明で使用されるアルミニウム膜形成用組成物に含有される(B)有機溶媒は、上記のアミン化合物と水素化アルミニウム化合物との錯体、及び、後述する任意に添加される成分を溶解し、かつこれらと反応しないものであれば特に限定されない。例えば、炭化水素溶媒、エーテル溶媒、その他の極性溶媒等を用いることができる。 The organic solvent (B) contained in the composition for forming an aluminum film used in the present invention dissolves the above-described complex of an amine compound and an aluminum hydride compound, and components to be optionally added as described later, And if it does not react with these, it will not specifically limit. For example, a hydrocarbon solvent, an ether solvent, other polar solvents, etc. can be used.
 上記炭化水素溶媒としては、例えばn-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、シクロヘプタン、n-オクタン、シクロオクタン、デカン、シクロデカン、ジシクロペンタジエンの水素化物、ベンゼン、トルエン、キシレン、デュレン、インデン、テトラヒドロナフタレン、デカヒドロナフタレン、スクワラン等を挙げることができる。 Examples of the hydrocarbon solvent include n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, cyclooctane, decane, cyclodecane, dicyclopentadiene hydride, benzene, toluene, Xylene, durene, indene, tetrahydronaphthalene, decahydronaphthalene, squalane and the like can be mentioned.
 上記エーテル溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ビス(2-メトキシエチル)エーテル、p-ジオキサン、アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、フェントール、2-メチルフェントール、3-メチルフェントール、4-メチルフェントール、ベラトロール、2-エトキシアニソール、1,4-ジメトキシベンゼン等を挙げることができる。
 上記その他の極性溶媒としては、例えば塩化メチレン、クロロホルム等を挙げることができる。
 上記有機溶媒は単独であるいは2種以上混合して用いることができる。
Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, and bis. (2-methoxyethyl) ether, p-dioxane, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, fentol, 2-methylfentol, 3-methylfentol, 4-methylfentol, Examples include veratrol, 2-ethoxyanisole, and 1,4-dimethoxybenzene.
Examples of the other polar solvent include methylene chloride and chloroform.
These organic solvents can be used alone or in admixture of two or more.
 これらのうち、溶解性、および、形成される溶液の安定性の点で、炭化水素溶媒、又は、炭化水素溶媒とエーテル溶媒との混合溶媒を用いるのが好ましい。
 炭化水素溶媒としては、例えばn-ペンタン、シクロペンタン、n-ヘキサン、シクロヘキサン、n-ヘプタン、シクロヘプタン、n-オクタン、ベンゼン、トルエン又はキシレンが好ましい。
 エーテル溶媒としては、例えばジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールメチルエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、アニソール、2-メチルアニソール、3-メチルアニソール、4-メチルアニソール、フェントール、ベラトロール、2-エトキシアニソール、1,4-ジメトキシベンゼンが好ましい。
Among these, it is preferable to use a hydrocarbon solvent or a mixed solvent of a hydrocarbon solvent and an ether solvent in view of solubility and stability of the solution to be formed.
As the hydrocarbon solvent, for example, n-pentane, cyclopentane, n-hexane, cyclohexane, n-heptane, cycloheptane, n-octane, benzene, toluene or xylene is preferable.
Examples of the ether solvent include diethyl ether, dipropyl ether, dibutyl ether, ethylene glycol diethyl ether, ethylene glycol methyl ethyl ether, tetrahydrofuran, tetrahydropyran, anisole, 2-methylanisole, 3-methylanisole, 4-methylanisole, phen Tolu, veratrol, 2-ethoxyanisole and 1,4-dimethoxybenzene are preferred.
 (C)前記錯体に含まれるアミン化合物以外の第二のアミン化合物としては、モノアミン化合物およびポリアミン化合物が挙げられる。
 上記ポリアミン化合物としては、例えばジアミン化合物、トリアミン化合物、テトラアミン化合物等を挙げることができる。
(C) Examples of the second amine compound other than the amine compound contained in the complex include a monoamine compound and a polyamine compound.
As said polyamine compound, a diamine compound, a triamine compound, a tetraamine compound etc. can be mentioned, for example.
 上記モノアミン化合物としては、例えば下記式(2)
   RN   ・・・(2)
(ここで、R、R及びRは、それぞれ独立に、水素原子、アルキル基、アルケニル基、アルキニル基、アリール基またはアラルキル基である。)
で表されるモノアミン化合物、および、それ以外のモノアミン化合物を挙げることができる。式(2)中のR、R及びRとしてのアルキル基、アルケニル基又はアルキニル基は直鎖状であっても環状であってもよく、また分岐していてもよい。
Examples of the monoamine compound include the following formula (2):
R 4 R 5 R 6 N (2)
(Here, R 4 , R 5 and R 6 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group.)
And other monoamine compounds. The alkyl group, alkenyl group or alkynyl group as R 4 , R 5 and R 6 in the formula (2) may be linear, cyclic or branched.
 上記アルキル基としては、例えば炭素数1~12のアルキル基を挙げることができる。その具体例としては、例えばメチル基、エチル基、プロピル基、シクロプロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、シクロヘキシル基、2-メチルブチル基、2-エチルヘキシル基等を挙げることができる。
 上記アルケニル基としては、例えば不飽和基を有するアルケニル基を挙げることができる。その具体例としては、例えばビニル基、アリル基、クロチル基、エチニル基等を挙げることができる。
 上記アルキニル基としては、例えばフェニルエチニル基等を挙げることができる。
 上記アリール基としては、例えばフェニル基等を挙げることができる。
 上記アラルキル基としては、例えばベンジル基等を挙げることができる。
Examples of the alkyl group include alkyl groups having 1 to 12 carbon atoms. Specific examples thereof include, for example, methyl group, ethyl group, propyl group, cyclopropyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, cyclohexyl group, Examples thereof include 2-methylbutyl group and 2-ethylhexyl group.
Examples of the alkenyl group include an alkenyl group having an unsaturated group. Specific examples thereof include vinyl group, allyl group, crotyl group, ethynyl group and the like.
Examples of the alkynyl group include a phenylethynyl group.
Examples of the aryl group include a phenyl group.
Examples of the aralkyl group include a benzyl group.
 式(2)で示される化合物の具体例としては、例えばアンモニア、トリメチルアミン、トリエチルアミン、ジメチルエチルアミン、メチルジエチルアミン、トリ-n-プロピルアミン、トリ-イソプロピルアミン、トリシクロプロピルアミン、トリ-n-ブチルアミン、トリイソブチルアミン、トリ-t-ブチルアミン、トリ-2-メチルブチルアミン、トリ-n-ヘキシルアミン、トリシクロヘキシルアミン、トリ(2-エチルヘキシル)アミン、トリオクチルアミン、トリフェニルアミン、トリベンジルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジイソブチルフェニルアミン、メチルジフェニルアミン、エチルジフェニルアミン、イソブチルジフェニルアミン、ジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジシクロプロピルアミン、ジ-n-ブチルアミン、ジイソブチルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルブチルアミン、ジ-n-ヘキシルアミン、ジシクロヘキシルアミン、ジ(2-エチルヘキシル)アミン、ジオクチルアミン、ジフェニルアミン、ジベンジルアミン、メチルフェニルアミン、エチルフェニルアミン、イソブチルフェニルアミン、メチルアリルアミン、メチルビニルアミン、メチル(フェニルエチニル)アミン、フェニル(フェニルエチニル)アミン、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、シクロプロピルアミン、n-ブチルアミン、イソブチルアミン、t-ブチルアミン、2-メチルブチルアミン、n-ヘキシルアミン、シクロヘキシルアミン、2-エチルヘキシルアミン、オクチルアミン、フェニルアミン、ベンジルアミン等を挙げることができる。 Specific examples of the compound represented by the formula (2) include, for example, ammonia, trimethylamine, triethylamine, dimethylethylamine, methyldiethylamine, tri-n-propylamine, tri-isopropylamine, tricyclopropylamine, tri-n-butylamine, Triisobutylamine, tri-t-butylamine, tri-2-methylbutylamine, tri-n-hexylamine, tricyclohexylamine, tri (2-ethylhexyl) amine, trioctylamine, triphenylamine, tribenzylamine, dimethylphenyl Amine, diethylphenylamine, diisobutylphenylamine, methyldiphenylamine, ethyldiphenylamine, isobutyldiphenylamine, dimethylamine, diethylamine, di-n-propyl Min, diisopropylamine, dicyclopropylamine, di-n-butylamine, diisobutylamine, di-t-butylamine, methylethylamine, methylbutylamine, di-n-hexylamine, dicyclohexylamine, di (2-ethylhexyl) amine, dioctyl Amine, diphenylamine, dibenzylamine, methylphenylamine, ethylphenylamine, isobutylphenylamine, methylallylamine, methylvinylamine, methyl (phenylethynyl) amine, phenyl (phenylethynyl) amine, methylamine, ethylamine, n-propylamine , Isopropylamine, cyclopropylamine, n-butylamine, isobutylamine, t-butylamine, 2-methylbutylamine, n-hexylamine, cyclo Hexylamine, 2-ethylhexylamine, octylamine, phenylamine, and benzyl amine.
 上記ジアミン化合物としては、例えばエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジイソプロピルエチレンジアミン、N,N’-ジ-t-ブチルエチレンジアミン、N,N’-ジフェニルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、フェニレンジアミン等を挙げることができる。
 上記トリアミン化合物としては、例えばジエチレントリアミン、1,7-ジメチル-1,4,7-トリアザヘプタン、1,7-ジエチル-1,4,7-トリアザヘプタン、N,N’,N’’-トリメチル-1,3,5-トリアザシクロヘキサン等を挙げることができる。
 上記テトラアミン化合物としては、例えばトリメチレンテトラアミン、トリエチレンテトラアミン等を挙げることができる。これらのアミン化合物は、単独でも、あるいは2種以上の化合物を混合して使用することもできる。
Examples of the diamine compound include ethylenediamine, N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-diisopropylethylenediamine, N, N′-di-t-butylethylenediamine, and N, N′-. Examples thereof include diphenylethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetraethylethylenediamine, and phenylenediamine.
Examples of the triamine compound include diethylenetriamine, 1,7-dimethyl-1,4,7-triazaheptane, 1,7-diethyl-1,4,7-triazaheptane, N, N ′, N ″ — And trimethyl-1,3,5-triazacyclohexane.
Examples of the tetraamine compound include trimethylenetetraamine and triethylenetetraamine. These amine compounds can be used alone or in admixture of two or more compounds.
 これらアミン化合物のうち、トリメチルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエチルアミン、ジメチルアミン、ジエチルアミン、ジイソプロピルアミン、ジ-t-ブチルアミン、メチルエチルアミン、メチルアミン、エチルアミン、エチレンジアミン、ジエチレントリアミンを使用することがより好ましい。なかでも、トリメチルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエチルアミン、ジメチルアミン、ジエチルアミン、エチレンジアミンがさらに好ましい。
 これらのアミン化合物は、単独でも、あるいは2種以上の化合物を混合して使用することもできる。これらアミン化合物を加えることにより、アルミニウム膜形成用組成物の保存安定性および高温下での材料安定性が向上する。
Of these amine compounds, trimethylamine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine, diisopropylamine, di-t-butylamine, methylethylamine, methylamine, ethylamine, ethylenediamine, and diethylenetriamine are more preferable. Of these, trimethylamine, triethylamine, methyldiethylamine, dimethylethylamine, dimethylamine, diethylamine, and ethylenediamine are more preferable.
These amine compounds can be used alone or in admixture of two or more compounds. By adding these amine compounds, the storage stability of the aluminum film-forming composition and the material stability at high temperatures are improved.
 (D)チタン化合物としては、例えば下記式(3)~(7)のそれぞれで表される化合物を挙げることができる。
   Ti(OR     ・・・(3)
 ここで、Rは、炭素数1~10のアルキル基、フェニル基、ハロゲン化アルキル基またはハロゲン化フェニル基である。
   Ti(OR4-x   ・・・(4)
 ここで、Rの定義は上記式(3)のRに同じであり、Lは式
Examples of the (D) titanium compound include compounds represented by the following formulas (3) to (7).
Ti (OR 7 ) 4 (3)
Here, R 7 is an alkyl group having 1 to 10 carbon atoms, a phenyl group, a halogenated alkyl group or a halogenated phenyl group.
Ti (OR 8 ) x L 4-x (4)
Here, the definition of R 8 is the same as R 7 in the above formula (3), and L is the formula
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で表わされる基である。ここで、RおよびR10は同一もしくは異なり、炭素数1~10のアルキル基、フェニル基、アルコキシ基、ハロゲン化アルキル基、またはハロゲン化フェニル基であり、xは0~3の整数である。 It is group represented by these. Here, R 9 and R 10 are the same or different and are an alkyl group having 1 to 10 carbon atoms, a phenyl group, an alkoxy group, a halogenated alkyl group, or a halogenated phenyl group, and x is an integer of 0 to 3. .
   Ti(OR11(X)4-y   ・・・(5)
 ここで、R11はアルキル基又はフェニル基であり、Xはハロゲン原子であり、yは0~3の整数である。
   Ti(NR12        ・・・(6)
 ここで、R12はアルキル基又はフェニル基である。
   Ti(Cp)(Y)4-n   ・・・(7)
 ここで、Cpはシクロペンタジエニル骨格を有する基であり、Yはハロゲン原子又はアルキル基であり、nは1~4の整数である。
Ti (OR 11 ) y (X) 4-y (5)
Here, R 11 is an alkyl group or a phenyl group, X is a halogen atom, and y is an integer of 0 to 3.
Ti (NR 12 ) 4 (6)
Here, R 12 is an alkyl group or a phenyl group.
Ti (Cp) n (Y) 4-n (7)
Here, Cp is a group having a cyclopentadienyl skeleton, Y is a halogen atom or an alkyl group, and n is an integer of 1 to 4.
 上記式(3)、(4)中、RおよびRは、好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、ヘキシル基、シクロヘキシル基、フェノキシ基、メチルフェノキシ基、トリフルオロメチル基であり、更に好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、ヘキシル基、シクロヘキシル基、フェニル基である。また、上記式(4)中、LのRおよびR10は、好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、t-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、t-ブトキシ基、フェノキシ基、メチルフェノキシ基、トルフルオロメチル基であり、特に好ましくはメチル基、エチル基、i-プロピル基、t-ブチル基、メトキシ基、エトキシ基、i-プロポキシ基、t-ブトキシ基、トルフルオロメチル基である。 In the above formulas (3) and (4), R 7 and R 8 are preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, methoxy, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, hexyl group, cyclohexyl group, phenoxy group, methylphenoxy group, trifluoromethyl group, more preferably methyl group, ethyl group N-propyl group, i-propyl group, n-butyl group, t-butyl group, hexyl group, cyclohexyl group and phenyl group. In the above formula (4), R 9 and R 10 in L are preferably methyl, ethyl, n-propyl, i-propyl, n-butyl, t-butyl, methoxy, ethoxy Group, n-propoxy group, i-propoxy group, n-butoxy group, t-butoxy group, phenoxy group, methylphenoxy group, trifluoromethyl group, particularly preferably methyl group, ethyl group, i-propyl group, a t-butyl group, a methoxy group, an ethoxy group, an i-propoxy group, a t-butoxy group, and a trifluoromethyl group.
 上記式(3)で表されるチタン化合物の具体例としては、例えばチタニウムメトキシド、チタニウムエトキシド、チタニウム-n-プロポキシド、チタニウム-n-ノニルオキシド、チタニウムステアリルオキシド、チタニウムイソプロポキシド、チタニウム-n-ブトキシド、チタニウムイソブトキシド、チタニウム-t-ブトキシド、チタニウムトリメチルシロキシド、チタニウム-2-エチルヘキソオキシド、チタニウムメトキシプロポキシド、チタニウムフェノキシド、チタニウムメチルフェノキシド、チタニウムフルオロメトキシドおよびチタニウムクロロフェノキシド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (3) include, for example, titanium methoxide, titanium ethoxide, titanium-n-propoxide, titanium-n-nonyl oxide, titanium stearyl oxide, titanium isopropoxide, and titanium. -N-butoxide, titanium isobutoxide, titanium-t-butoxide, titanium trimethylsiloxide, titanium-2-ethylhexoxide, titanium methoxypropoxide, titanium phenoxide, titanium methylphenoxide, titanium fluoromethoxide, titanium chlorophenoxide, etc. Can be mentioned.
 上記式(4)で表されるチタン化合物の具体例としては、例えばテトラキス(ペンタ-2,4-ジケト)チタニウム、テトラキス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウム、テトラキス(1-エトキシブタン-1,3-ジケト)チタニウム、テトラキス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウム、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウム、ビス(ペンタ-2,4-ジケト)チタニウムジメトキシド、ビス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウムジメトキシド、ビス(1-エトキシブタン-1,3-ジケト)チタニウムジメトキシド、ビス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウムジメトキシド、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウムジメトキシド、ビス(ペンタ-2,4-ジケト)チタニウムジi-プロポキシド、ビス(2,2,6,6-テトラメチルヘプタ-3,5-ジケト)チタニウムジi-プロポキシド、ビス(1-エトキシブタン-1,3-ジケト)チタニウムジi-プロポキシド、ビス(1,1,1,5,5,5-ヘキサフルオロペンタ-2,4-ジケト)チタニウムジi-プロポキシド、(2,2-ジメチルヘキサ-3,5-ジケト)チタニウムジi-プロポキシド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (4) include, for example, tetrakis (penta-2,4-diketo) titanium, tetrakis (2,2,6,6-tetramethylhepta-3,5-diketo). Titanium, tetrakis (1-ethoxybutane-1,3-diketo) titanium, tetrakis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titanium, (2,2-dimethylhexa) -3,5-diketo) titanium, bis (penta-2,4-diketo) titanium dimethoxide, bis (2,2,6,6-tetramethylhepta-3,5-diketo) titanium dimethoxide, bis (1 -Ethoxybutane-1,3-diketo) titanium dimethoxide, bis (1,1,1,5,5,5-hexafluoropenta-2,4-diketo) titanium di Toxide, (2,2-dimethylhexa-3,5-diketo) titanium dimethoxide, bis (penta-2,4-diketo) titanium di-propoxide, bis (2,2,6,6-tetramethylhepta -3,5-diketo) titanium di i-propoxide, bis (1-ethoxybutane-1,3-diketo) titanium di i-propoxide, bis (1,1,1,5,5,5-hexafluoro Examples include penta-2,4-diketo) titanium dii-propoxide, (2,2-dimethylhexa-3,5-diketo) titanium dii-propoxide, and the like.
 上記式(5)で表されるチタン化合物の具体例としては、例えばトリメトキシチタニウムクロライド、トリエトキシチタニウムクロライド、トリ-n-プロポキシチタニウムクロライド、トリ-i-プロポキシチタニウムクロライド、トリ-n-ブトキシチタニウムクロライド、トリ-t-ブトキシチタニウムクロライド、トリイソステアロイルチタニウムクロライド、ジメトキシチタニウムジクロライド、ジエトキシチタニウムジクロライド、ジ-n-プロポキシチタニウムジクロライド、ジ-i-プロポキシチタニウムジクロライド、ジ-n-ブトキシチタニウムジクロライド、ジ-t-ブトキシチタニウムジクロライド、ジイソステアロイルチタニウムジクロライド、メトキシチタニウムトリクロライド、エトキシチタニウムトリクロライド、n-プロポキシチタニウムトリクロライド、i-プロポキシチタニウムトリクロライド、n-ブトキシチタニウムトリクロライド、t-ブトキシチタニウムトリクロライド、イソステアロイルチタニウムトリクロライド、チタニウムテトラクロライド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (5) include, for example, trimethoxytitanium chloride, triethoxytitanium chloride, tri-n-propoxytitanium chloride, tri-i-propoxytitanium chloride, tri-n-butoxytitanium. Chloride, tri-t-butoxytitanium chloride, triisostearoyl titanium chloride, dimethoxytitanium dichloride, diethoxytitanium dichloride, di-n-propoxytitanium dichloride, di-i-propoxytitanium dichloride, di-n-butoxytitanium dichloride, di -T-butoxy titanium dichloride, diisostearoyl titanium dichloride, methoxy titanium trichloride, ethoxy titanium trichloride Ride, n- propoxytitanium trichloride, i- propoxytitanium trichloride, n- butoxytitanium trichloride, t-butoxy titanium trichloride, isostearoyl trichloride, can be mentioned titanium tetrachloride and the like.
 上記式(6)で表されるチタン化合物の具体例としては、例えばテトラキス(ジメチルアミノ)チタニウム、テトラキス(ジエチルアミノ)チタニウム、テトラキス(ジ-t-ブトキシアミノ)チタニウム、テトラキス(ジ-i-プロポキシアミノ)チタニウム、テトラキス(ジフェニルアミノ)チタニウムを挙げることができる。 Specific examples of the titanium compound represented by the above formula (6) include, for example, tetrakis (dimethylamino) titanium, tetrakis (diethylamino) titanium, tetrakis (di-t-butoxyamino) titanium, tetrakis (di-i-propoxyamino). ) Titanium, tetrakis (diphenylamino) titanium.
 上記式(7)で表されるチタン化合物の具体例としては、例えばジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムジブロマイド、シクロペンタジエニルチタニウムトリクロライド、シクロペンタジエニルチタニウムトリブロマイド、ジシクロペンタジエニルジメチルチタニウム、ジシクロペンタジエニルジエチルチタニウム、ジシクロペンタジエニルジ-t-ブチルチタニウム、ジシクロペンタジエニルフェニルチタニウムクロライド、ジシクロペンタジエニルメチルチタニウムクロライド、ビス(ペンタメチルシクロペンタジエニル)チタニウムジクロライド、ビス(ペンタメチルシクロペンタジエニル)チタニウムジブロマイド、ペンタメチルシクロペンタジエニルチタニウムトリクロライド、ペンタメチルシクロペンタジエニルチタニウムトリブロマイド、ビス(ペンタメチルシクロペンタジエニル)ジメチルチタニウム、ビス(ペンタメチルシクロペンタジエニル)ジエチルチタニウム、ビス(ペンタメチルシクロペンタジエニル)ジ-t-ブチルチタニウム、ビス(ペンタメチルシクロペンタジエニル)フェニルチタニウムクロライド、ビス(ペンタメチルシクロペンタジエニル)メチルチタニウムクロライド等を挙げることができる。 Specific examples of the titanium compound represented by the above formula (7) include, for example, dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium dibromide, cyclopentadienyl titanium trichloride, cyclopentadienyl titanium tribromide. Dicyclopentadienyldimethyltitanium, dicyclopentadienyldiethyltitanium, dicyclopentadienyldi-t-butyltitanium, dicyclopentadienylphenyltitanium chloride, dicyclopentadienylmethyltitanium chloride, bis (penta Methylcyclopentadienyl) titanium dichloride, bis (pentamethylcyclopentadienyl) titanium dibromide, pentamethylcyclopentadienyltitanium trichloride, Tamethylcyclopentadienyltitanium tribromide, bis (pentamethylcyclopentadienyl) dimethyltitanium, bis (pentamethylcyclopentadienyl) diethyltitanium, bis (pentamethylcyclopentadienyl) di-t-butyltitanium, Examples thereof include bis (pentamethylcyclopentadienyl) phenyl titanium chloride and bis (pentamethylcyclopentadienyl) methyl titanium chloride.
 本発明で使用されるアルミニウム膜形成用組成物に含有される(C)アミン化合物の濃度は、(A)アミン化合物と水素化アルミニウム化合物との錯体と(C)アミン化合物との合計に対して、70質量%以下であり、より好ましくは50質量%以下であり、更に好ましくは3~50質量%である。 The concentration of the (C) amine compound contained in the composition for forming an aluminum film used in the present invention is based on the total of (A) a complex of an amine compound and an aluminum hydride compound and (C) the amine compound. 70% by mass or less, more preferably 50% by mass or less, and further preferably 3 to 50% by mass.
 本発明で使用されるアルミニウム膜形成用組成物が(D)チタン化合物を含有する場合、(D)チタン化合物の濃度は、(A)アミン化合物と水素化アルミニウム化合物との錯体、および、(D)チタン化合物の合計に対して、好ましくは1モル%以下であり、より好ましくは0.00001~1モル%であり、更に好ましくは0.00005~0.01モル%である。チタン化合物の濃度をこの範囲内とすることにより、良好な埋め込み性と、組成物の安定性を両立することができる。 When the composition for forming an aluminum film used in the present invention contains (D) a titanium compound, the concentration of (D) the titanium compound is (A) a complex of an amine compound and an aluminum hydride compound, and (D ) It is preferably 1 mol% or less, more preferably 0.00001 to 1 mol%, still more preferably 0.00005 to 0.01 mol%, based on the total of the titanium compounds. By setting the concentration of the titanium compound within this range, both good embedding property and stability of the composition can be achieved.
 アルミニウム膜形成用組成物中の(B)溶媒と(C)アミン化合物とを除いた質量が組成物の全質量中に占める割合(以下、「非揮発成分含有率」という。)は、成膜すべきアルミニウム膜の膜厚に応じて変動させるのが望ましい。例えば、アルミニウム膜の膜厚が200nm未満の場合、アルミニウム膜形成用組成物の非揮発成分含有率は、好ましくは50質量%未満であり、より好ましくは30質量%以下である。また、アルミニウム膜の膜厚が200nm以上である場合、アルミニウム膜形成用組成物の非揮発成分含有率は、好ましくは50質量%以上であり、より好ましくは70質量%以上である。 The ratio of the mass excluding (B) solvent and (C) amine compound in the composition for forming an aluminum film in the total mass of the composition (hereinafter referred to as “nonvolatile component content”) is film formation. It is desirable to vary according to the film thickness of the aluminum film to be. For example, when the film thickness of the aluminum film is less than 200 nm, the non-volatile component content of the composition for forming an aluminum film is preferably less than 50% by mass, more preferably 30% by mass or less. When the film thickness of the aluminum film is 200 nm or more, the non-volatile component content of the composition for forming an aluminum film is preferably 50% by mass or more, more preferably 70% by mass or more.
 本発明で使用されるアルミニウム膜形成用組成物の製造方法は、特に限定されるものではない。例えば、上記の如くアミン化合物と水素化アルミニウム化合物との錯体を溶媒の存在下で合成した後、副生物等の不溶物をフィルター等で除去した溶液をそのままアルミニウム膜形成用組成物として用いることができる。あるいはまた、この溶液に所望の溶媒を添加した後、反応に用いた溶媒、例えばジエチルエーテルを減圧下で除去することによって、アルミニウム膜形成用組成物としてもよい。 The method for producing the aluminum film forming composition used in the present invention is not particularly limited. For example, a solution obtained by synthesizing a complex of an amine compound and an aluminum hydride compound as described above in the presence of a solvent and then removing insolubles such as by-products with a filter or the like can be used as it is as a composition for forming an aluminum film. it can. Alternatively, after adding a desired solvent to this solution, the solvent used for the reaction, for example, diethyl ether, may be removed under reduced pressure to obtain an aluminum film forming composition.
 本発明で使用されるアルミニウム膜形成用組成物がチタン化合物を含有するものである場合、その製造にあたっては、例えば上記のようにして製造したアミン化合物と水素化アルミニウム化合物との錯体を含有する溶液に、攪拌しながら所定量のチタン含有化合物の溶液を添加して調製することができる。添加するときの温度は、好ましくは0~150℃、より好ましくは5~100℃である。攪拌する時間は、好ましくは0.1~120分間、より好ましくは0.2~60分間である。このような条件で混合することにより、安定な組成物を得ることができる。 When the composition for forming an aluminum film used in the present invention contains a titanium compound, in the production thereof, for example, a solution containing a complex of an amine compound and an aluminum hydride compound produced as described above. In addition, a predetermined amount of a solution of a titanium-containing compound can be added while stirring. The temperature at the time of addition is preferably 0 to 150 ° C., more preferably 5 to 100 ° C. The stirring time is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes. By mixing under such conditions, a stable composition can be obtained.
 上記工程(a)の後、塗布したアルミニウム膜形成用組成物(塗布膜)中に含有される溶媒等の低沸点成分を除去するために、加熱処理を行ってもよい。加熱する温度及び時間は、使用する溶媒の種類、沸点(蒸気圧)により異なるが、例えば100~350℃で、1~90分間とすることができる。このとき、系全体を減圧にすることで、溶媒の除去をより低温で行うこともできる。好ましくは100~250℃において、2~60分間である。 After the step (a), heat treatment may be performed in order to remove low-boiling components such as a solvent contained in the applied composition for forming an aluminum film (coating film). The heating temperature and time vary depending on the type of solvent used and the boiling point (vapor pressure), but can be, for example, 100 to 350 ° C. and 1 to 90 minutes. At this time, the solvent can be removed at a lower temperature by reducing the pressure of the entire system. Preferably, it is 2 to 60 minutes at 100 to 250 ° C.
 次に、工程(b)について説明する。工程(b)は、前記工程(a)において得られた塗布膜(通常、液状物)に対して熱処理および光照射処理から選ばれる少なくとも一種の処理を行い、アルミニウム膜(通常、硬化物)を形成する工程である。 Next, step (b) will be described. In the step (b), the coating film (usually a liquid material) obtained in the step (a) is subjected to at least one treatment selected from a heat treatment and a light irradiation treatment to form an aluminum film (usually a cured product). It is a process of forming.
 上記熱処理の温度は、好ましくは60℃以上、より好ましくは70℃~600℃、さらに好ましくは200℃~500℃である。加熱時間は、好ましくは30秒~120分間、より好ましくは1~90分間、更に好ましくは2~60分間である。
 上記光照射処理に用いる光源としては、例えば水銀ランプ、重水素ランプ、希ガスの放電光、YAGレーザー、アルゴンレーザー、炭酸ガスレーザー、希ガスハロゲンエキシマレーザー等を挙げることができる。上記水銀ランプとしては、例えば低圧水銀ランプ又は高圧水銀ランプを挙げることができる。上記希ガスの放電光に用いる希ガスとしては、例えばアルゴン、クリプトン、キセノン等を挙げることができる。上記希ガスハロゲンエキシマレーザーに使用する希ガスハロゲンとしては、例えばXeF、XeCl、XeBr、KrF、KrCl、ArF、ArCl等を挙げることができる。
The temperature of the heat treatment is preferably 60 ° C. or higher, more preferably 70 ° C. to 600 ° C., and further preferably 200 ° C. to 500 ° C. The heating time is preferably 30 seconds to 120 minutes, more preferably 1 to 90 minutes, still more preferably 2 to 60 minutes.
Examples of the light source used for the light irradiation treatment include a mercury lamp, deuterium lamp, rare gas discharge light, YAG laser, argon laser, carbon dioxide gas laser, and rare gas halogen excimer laser. Examples of the mercury lamp include a low-pressure mercury lamp and a high-pressure mercury lamp. Examples of the rare gas used for the discharge light of the rare gas include argon, krypton, and xenon. Examples of the rare gas halogen used in the rare gas halogen excimer laser include XeF, XeCl, XeBr, KrF, KrCl, ArF, ArCl, and the like.
 これらの光源の出力としては、好ましくは10~5,000W、より好ましくは100~1,000Wである。これらの光源の波長は特に限定されないが、好ましくは170nm~600nmである。また、形成されるアルミニウム膜の膜質の点で、レーザー光の使用が特に好ましい。また、より良好なアルミニウム膜を形成する目的で、酸化性ガス雰囲気下でプラズマ酸化させることもできる。このときのプラズマ酸化の酸化条件としては、例えばRF電力を20~100Wとし、導入ガスとして、酸素ガスを90~100%、残り(10%以下)をアルゴンガスとし、導入ガスの導入圧を0.05~0.2Paとし、プラズマ酸化時間を10~240秒とすることができる。 The output of these light sources is preferably 10 to 5,000 W, more preferably 100 to 1,000 W. The wavelength of these light sources is not particularly limited, but is preferably 170 nm to 600 nm. In addition, the use of laser light is particularly preferable from the viewpoint of the film quality of the formed aluminum film. In addition, plasma oxidation can be performed in an oxidizing gas atmosphere for the purpose of forming a better aluminum film. The oxidizing conditions for the plasma oxidation at this time are, for example, RF power of 20 to 100 W, oxygen gas of 90 to 100% and the remainder (10% or less) of argon gas as the introduced gas, and the introduction pressure of the introduced gas is 0. 0.05 to 0.2 Pa, and the plasma oxidation time can be 10 to 240 seconds.
 アルミニウム膜形成用組成物の塗布、任意に実施される溶媒の除去、および、熱処理及び/又は光照射処理を実施する際の雰囲気としては、アルミニウム膜の形成の促進の観点から、酸化条件であることが好ましい。酸化条件を実現する酸化性ガスとして、例えば水蒸気、酸素、オゾン、一酸化炭素、炭素数が1~3の過酸化物、アルコール、アルデヒドなどが挙げられる。なかでも水蒸気、酸素、オゾンが好ましい。また、上記酸化性ガスと不活性ガスとを混合することも、酸化条件のコントロールの観点から好ましい。上記不活性ガスとしては、例えば窒素、ヘリウム、アルゴン等が挙げられる。不活性ガスと酸化性ガスの合計に占める酸化性ガスの割合は、好ましくは1~70モル%、より好ましくは3~40モル%である。 The atmosphere for carrying out the application of the composition for forming an aluminum film, the optional removal of the solvent, and the heat treatment and / or the light irradiation treatment is an oxidizing condition from the viewpoint of promoting the formation of the aluminum film. It is preferable. Examples of the oxidizing gas that realizes the oxidizing conditions include water vapor, oxygen, ozone, carbon monoxide, peroxides having 1 to 3 carbon atoms, alcohol, and aldehyde. Of these, water vapor, oxygen, and ozone are preferable. It is also preferable to mix the oxidizing gas and the inert gas from the viewpoint of controlling the oxidizing conditions. Examples of the inert gas include nitrogen, helium, and argon. The ratio of the oxidizing gas to the total of the inert gas and the oxidizing gas is preferably 1 to 70 mol%, more preferably 3 to 40 mol%.
 上記熱処理及び光照射処理は、どちらか一方のみを行ってもよく、双方を行ってもよい。熱処理と光照射処理の双方を行う場合には、その順番の前後は問わず、熱処理と光処理を同時に行ってもよい。これらのうち、熱処理のみを行うか、熱処理と光処理の双方を行うことが好ましい。また、より良好なアルミニウム膜を形成する目的で、上記熱処理及び/又は光照射処理工程とは別に、プラズマ酸化を実施してもよい。
 また、アルミニウム膜を形成する手法として、上記塗布法にて、酸化性ガスを含まない不活性ガス雰囲気下で未硬化のアルミニウム膜を形成し、次いで、陽極酸化することで、硬化したアルミニウム膜を形成することもできる。
Only one or both of the heat treatment and the light irradiation treatment may be performed. When both heat treatment and light irradiation treatment are performed, the heat treatment and the light treatment may be performed at the same time regardless of the order. Of these, it is preferable to perform only heat treatment or perform both heat treatment and light treatment. Further, for the purpose of forming a better aluminum film, plasma oxidation may be performed separately from the heat treatment and / or light irradiation treatment step.
Further, as a method of forming an aluminum film, an uncured aluminum film is formed in an inert gas atmosphere containing no oxidizing gas by the above coating method, and then anodized to form a cured aluminum film. It can also be formed.
 以下、本発明を実施例により具体的に説明する。なお、以下の操作は、特に記した場合を除く他、すべて乾燥窒素雰囲気下で実施した。また、用いた溶媒は、すべて事前にモレキュラーシーブス4A(ユニオン昭和(株)製)で脱水し、かつ窒素ガスをバブリングすることにより脱気した。また、比抵抗は、ナプソン社製の探針抵抗率測定器(形式:RT-80/RG-80)により測定した。膜厚及び膜密度は、フィリップス社製の斜入射X線分析装置(形式:X’Pert MRD)により測定した。ESCAスペクトルは、日本電子(株)製の装置(形式:JPS80)にて測定した。反射率は、(株)日立ハイテクノロジーズ製の分光光度計(型式:U-4100)にて測定した。 Hereinafter, the present invention will be specifically described with reference to examples. The following operations were all performed in a dry nitrogen atmosphere except where otherwise noted. All the solvents used were dehydrated in advance with Molecular Sieves 4A (Union Showa Co., Ltd.) and degassed by bubbling nitrogen gas. The specific resistance was measured with a probe resistivity meter (model: RT-80 / RG-80) manufactured by Napson. The film thickness and film density were measured with an oblique incidence X-ray analyzer (type: X'Pert MRD) manufactured by Philips. The ESCA spectrum was measured with a device manufactured by JEOL Ltd. (type: JPS80). The reflectance was measured with a spectrophotometer (model: U-4100) manufactured by Hitachi High-Technologies Corporation.
(合成例1)アルミニウム膜形成用組成物の調製
1-1.アミン化合物と水素化アルミニウムとの錯体の合成
 磁気攪拌子を入れた200mLの三口フラスコ中に水素化リチウムアルミニウム3.80gを仕込んだ。三口フラスコの3つの接続口にはそれぞれ100mLの粉体添加用漏斗、窒素気流に接続した吸引栓三方コック及びガラス栓を接続した。トリエチルアミンの塩化水素酸塩17.80gを粉体添加用漏斗に仕込んだ後に、三口フラスコを吸引栓三方コックを介して窒素シール下においた。
 上記の三口フラスコにガラス製シリンジを用いてヘキサン100mLを加えた。マグネチックスターラにより回転数1,000rpmで攪拌しながら、トリエチルアミンの塩化水素酸塩を10分間かけて三口フラスコ中に徐々に落とした後、更に2時間攪拌を継続した。
 その後、ポリテトラフロロエチレン製のチューブの先端に脱脂綿(日本薬局方脱脂綿)を詰めたものを用いて、反応混合物を圧送により別容器に取り出し、次いでポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)により濾過した。濾液は300mLのなす型フラスコで受け、濾過終了後に磁気攪拌子を入れ、吸引栓三方コックを装着した。
 この吸引栓三方コックを、トラップを介して真空ポンプに接続し、マグネチックスターラによって回転数300rpmで攪拌しながら減圧にて溶媒を除去した。溶媒除去後、残存物をポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、トリエチルアミンと水素化アルミニウムとの錯体10.25gを、無色透明の液体として得た(収率55%)。
(Synthesis Example 1) Preparation of composition for forming aluminum film 1-1. Synthesis of complex of amine compound and aluminum hydride 3.80 g of lithium aluminum hydride was charged into a 200 mL three-necked flask containing a magnetic stirrer. The three connection ports of the three-neck flask were each connected with a 100 mL powder addition funnel, a suction stopper three-way cock connected to a nitrogen stream, and a glass stopper. After charging triethylamine hydrochloride hydrochloride (17.80 g) into a powder addition funnel, the three-necked flask was placed under a nitrogen seal through a suction stopper three-way cock.
100 mL of hexane was added to the three-necked flask using a glass syringe. While stirring with a magnetic stirrer at a rotational speed of 1,000 rpm, triethylamine hydrochloride was gradually dropped into the three-necked flask over 10 minutes, and stirring was further continued for 2 hours.
Then, using a polytetrafluoroethylene tube filled with absorbent cotton (Japanese Pharmacopoeia absorbent cotton), the reaction mixture was taken out into a separate container by feeding, and then a polytetrafluoroethylene membrane having a pore diameter of 0.1 μm. It filtered with the filter (made by Whatman Inc.). The filtrate was received in a 300 mL eggplant-shaped flask, and after completion of filtration, a magnetic stirrer was placed and a three-way suction cock was attached.
The suction stopper three-way cock was connected to a vacuum pump via a trap, and the solvent was removed under reduced pressure while stirring with a magnetic stirrer at a rotational speed of 300 rpm. After removing the solvent, the residue was filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 μm, whereby 10.25 g of a complex of triethylamine and aluminum hydride was colorless and transparent. Obtained as a liquid (yield 55%).
1-2.アミン化合物と水素化アルミニウムとの錯体と、アミン化合物と、溶媒との混合液の調製
 上記1-1で得られたトリエチルアミンと水素化アルミニウムとの錯体4.00gにトリエチルアミン1.01gを加えた後、4-メチルアニソールを加えて全量を8.00gとすることにより、トリエチルアミンと水素化アルミニウムとの錯体を50質量%含有する溶液を調製した。
1-2. Preparation of mixture of amine compound and aluminum hydride, amine compound and solvent After adding 1.01 g of triethylamine to 4.00 g of the complex of triethylamine and aluminum hydride obtained in 1-1 above. 4-methylanisole was added to a total amount of 8.00 g to prepare a solution containing 50% by mass of a complex of triethylamine and aluminum hydride.
1-3.チタン化合物を含有する溶液の調製
 シクロペンタジエニルチタニウムトリクロリド0.11gを30mLのガラス容器に仕込み、ここへ4-メチルアニソールを加えて全量を25.00gとした。十分に攪拌した後、室温で4時間静置し、次いでこれをポリテトラフロロエチレン製の孔径0.1μmのメンブランフィルタ(Whatman Inc.製)を用いて濾過することにより、シクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液を得た。
1-3. Preparation of a solution containing a titanium compound 0.11 g of cyclopentadienyl titanium trichloride was charged into a 30 mL glass container, and 4-methylanisole was added thereto to make a total amount of 25.00 g. After sufficiently stirring, the mixture is allowed to stand at room temperature for 4 hours, and then filtered using a membrane filter (manufactured by Whatman Inc.) made of polytetrafluoroethylene having a pore size of 0.1 μm, thereby obtaining cyclopentadienyl titanium trichloride. A solution containing 20 μmol / g of chloride was obtained.
1-4.アルミニウム膜形成用組成物の調製
 上記1-2.で調製したトリエチルアミンと水素化アルミニウムとの錯体を50質量%含有する溶液0.50mLに、上記1-3.で調製したシクロペンタジエニルチタニウムトリクロリドを20μmol/g含有する溶液27μLを、室温にて攪拌下に加え、次いで1分間攪拌を継続することにより、アルミニウム膜形成用組成物を調製した。
1-4. Preparation of composition for forming aluminum film 1-2. To 0.50 mL of a solution containing 50% by mass of the complex of triethylamine and aluminum hydride prepared in the above 1-3. A composition for forming an aluminum film was prepared by adding 27 μL of a solution containing 20 μmol / g of cyclopentadienyltitanium trichloride prepared in step 1 at room temperature and then continuing stirring for 1 minute.
(実施例1)
 シリコン基板上にスパッタ法により金属銅層を形成させた。金属銅層の厚さは100nmであった。
 次いで金属銅層が形成されたシリコン基板をスピンコーターに再び装着し、上記(合成例1)で調製したアルミニウム膜形成用組成物4mLを金属銅層の表面に滴下し、回転数600rpmで10秒間スピンさせた。この基板を150℃のホットプレートで10分間加熱した。その後、更に350℃で30分間加熱したところ、基板の表面は、金属光沢を有する膜で覆われた。
 この膜のESCAスペクトルを観察したところ、73.5eVにAl2pに帰属されるピークが観察され、この膜がアルミニウム膜であることが分かった。膜厚=200nm、比抵抗値=3.6μΩ・cm、700nm波長での反射率=78%であった。
 また、密着性について、JIS K-5600-5-6に準拠して碁盤目テープ法により評価したところ、金属銅層とアルミニウム膜との剥離が全く見られなかった。
Example 1
A metal copper layer was formed on the silicon substrate by sputtering. The thickness of the metallic copper layer was 100 nm.
Next, the silicon substrate on which the metallic copper layer is formed is mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) is dropped on the surface of the metallic copper layer, and the rotational speed is 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
When the ESCA spectrum of this film was observed, a peak attributed to Al 2p was observed at 73.5 eV, and it was found that this film was an aluminum film. The film thickness was 200 nm, the specific resistance value was 3.6 μΩ · cm, and the reflectance at a wavelength of 700 nm was 78%.
Further, when the adhesion was evaluated by a cross-cut tape method according to JIS K-5600-5-6, no peeling between the metal copper layer and the aluminum film was observed.
(実施例2)
 シリコン基板上にスパッタ法により金属アルミニウム層を形成させた。金属アルミニウム層の厚さは200nmであった。
 次いで金属アルミニウム層が形成されたシリコン基板をスピンコーターに再び装着し、上記(合成例1)で調製したアルミニウム膜形成用組成物4mLを金属アルミニウム層の表面に滴下し、回転数600rpmで10秒間スピンさせた。この基板を150℃のホットプレートで10分間加熱した。その後、更に350℃で30分間加熱したところ、基板の表面は、金属光沢を有する膜で覆われた。
 この膜のESCAスペクトルを観察したところ、73.5eVにAl2pに帰属されるピークが観察され、この膜がアルミニウム膜であることが分かった。膜厚=200nm、比抵抗値=4.0μΩ・cm、700nm波長での反射率=64%であった。
 また、密着性について、JIS K-5600-5-6に準拠して碁盤目テープ法により評価したところ、金属アルミニウム層とアルミニウム膜との剥離が全く見られなかった。
(Example 2)
A metal aluminum layer was formed on the silicon substrate by sputtering. The thickness of the metal aluminum layer was 200 nm.
Next, the silicon substrate on which the metal aluminum layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metal aluminum layer, and the rotation speed was 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
When the ESCA spectrum of this film was observed, a peak attributed to Al 2p was observed at 73.5 eV, and it was found that this film was an aluminum film. The film thickness was 200 nm, the specific resistance value was 4.0 μΩ · cm, and the reflectance at a wavelength of 700 nm was 64%.
The adhesion was evaluated by a cross-cut tape method in accordance with JIS K-5600-5-6, and no peeling between the metal aluminum layer and the aluminum film was observed.
(実施例3)
 シリコン基板上にスパッタ法により金属コバルト層を形成させた。金属コバルト層の厚さは100nmであった。
 次いで金属コバルト層が形成されたシリコン基板をスピンコーターに再び装着し、上記(合成例1)で調製したアルミニウム膜形成用組成物4mLを金属コバルト層の表面に滴下し、回転数600rpmで10秒間スピンさせた。この基板を150℃のホットプレートで10分間加熱した。その後、更に350℃で30分間加熱したところ、基板の表面は、金属光沢を有する膜で覆われた。
 この膜のESCAスペクトルを観察したところ、73.5eVにAl2pに帰属されるピークが観察され、この膜がアルミニウム膜であることが分かった。膜厚=100nm、比抵抗値=6.2μΩ・cm、700nm波長での反射率=52%であった。
 また、密着性について、JIS K-5600-5-6に準拠して碁盤目テープ法により評価したところ、金属コバルト層とアルミニウム膜との剥離が全く見られなかった。
(Example 3)
A metallic cobalt layer was formed on the silicon substrate by sputtering. The thickness of the metallic cobalt layer was 100 nm.
Next, the silicon substrate on which the metallic cobalt layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metallic cobalt layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
When the ESCA spectrum of this film was observed, a peak attributed to Al 2p was observed at 73.5 eV, and it was found that this film was an aluminum film. The film thickness was 100 nm, the specific resistance value was 6.2 μΩ · cm, and the reflectance at a wavelength of 700 nm was 52%.
The adhesion was evaluated by a cross-cut tape method in accordance with JIS K-5600-5-6. As a result, no peeling between the metal cobalt layer and the aluminum film was observed.
(実施例4)
 シリコン基板上にスパッタ法により金属モリブデン層を形成させた。金属モリブデン層の厚さは80nmであった。
 次いで金属モリブデン層が形成されたシリコン基板をスピンコーターに再び装着し、上記(合成例1)で調製したアルミニウム膜形成用組成物4mLを金属モリブデン層の表面に滴下し、回転数600rpmで10秒間スピンさせた。この基板を150℃のホットプレートで10分間加熱した。その後、更に350℃で30分間加熱したところ、基板の表面は、金属光沢を有する膜で覆われた。
 この膜のESCAスペクトルを観察したところ、73.5eVにAl2pに帰属されるピークが観察され、この膜がアルミニウム膜であることが分かった。膜厚=100nm、比抵抗値=6.8μΩ・cm、700nm波長での反射率=46%であった。
 また、密着性について、JIS K-5600-5-6に準拠して碁盤目テープ法により評価したところ、金属モリブデン層とアルミニウム膜との剥離が全く見られなかった。
Example 4
A metal molybdenum layer was formed on the silicon substrate by sputtering. The thickness of the metal molybdenum layer was 80 nm.
Next, the silicon substrate on which the metal molybdenum layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped on the surface of the metal molybdenum layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
When the ESCA spectrum of this film was observed, a peak attributed to Al 2p was observed at 73.5 eV, and it was found that this film was an aluminum film. The film thickness was 100 nm, the specific resistance was 6.8 μΩ · cm, and the reflectance at a wavelength of 700 nm was 46%.
Further, when the adhesion was evaluated by a cross-cut tape method according to JIS K-5600-5-6, no peeling between the metal molybdenum layer and the aluminum film was observed.
(実施例5)
 シリコン基板上にスパッタ法により金属タングステン層を形成させた。金属タングステン層の厚さは100nmであった。
 次いで金属タングステン層が形成されたシリコン基板をスピンコーターに再び装着し、上記(合成例1)で調製したアルミニウム膜形成用組成物4mLを金属タングステン層の表面に滴下し、回転数600rpmで10秒間スピンさせた。この基板を150℃のホットプレートで10分間加熱した。その後、更に350℃で30分間加熱したところ、基板の表面は、金属光沢を有する膜で覆われた。
 この膜のESCAスペクトルを観察したところ、73.5eVにAl2pに帰属されるピークが観察され、この膜がアルミニウム膜であることが分かった。膜厚=100nm、比抵抗値=5.8μΩ・cm、700nm波長での反射率=52%であった。
 また、密着性について、JIS K-5600-5-6に準拠して碁盤目テープ法により評価したところ、金属タングステン層とアルミニウム膜との剥離が全く見られなかった。
(Example 5)
A metal tungsten layer was formed on the silicon substrate by sputtering. The thickness of the metal tungsten layer was 100 nm.
Next, the silicon substrate on which the metal tungsten layer was formed was mounted again on the spin coater, and 4 mL of the aluminum film forming composition prepared in the above (Synthesis Example 1) was dropped onto the surface of the metal tungsten layer, and the rotation was performed at 600 rpm for 10 seconds. Spinned. This substrate was heated on a hot plate at 150 ° C. for 10 minutes. Thereafter, when the substrate was further heated at 350 ° C. for 30 minutes, the surface of the substrate was covered with a film having a metallic luster.
When the ESCA spectrum of this film was observed, a peak attributed to Al 2p was observed at 73.5 eV, and it was found that this film was an aluminum film. The film thickness was 100 nm, the specific resistance value was 5.8 μΩ · cm, and the reflectance at a wavelength of 700 nm was 52%.
Further, when the adhesion was evaluated by a cross-cut tape method according to JIS K-5600-5-6, no peeling between the metal tungsten layer and the aluminum film was observed.

Claims (6)

  1.  アミン化合物と水素化アルミニウムとの錯体を含有するアルミニウム膜形成用材料を、銅、コバルト、モリブデン、タングステン、アルミニウム、ニッケル、および金から選ばれる少なくとも一種の金属からなる金属層の表面に塗布して、塗布膜を形成する塗布工程と、
     前記塗布膜に対して、加熱処理および光照射処理から選ばれる少なくとも一種の処理を行い、アルミニウム膜を形成するアルミニウム膜形成工程
    を含むことを特徴とする、アルミニウム膜形成方法。
    An aluminum film-forming material containing a complex of an amine compound and aluminum hydride is applied to the surface of a metal layer made of at least one metal selected from copper, cobalt, molybdenum, tungsten, aluminum, nickel, and gold. A coating process for forming a coating film;
    An aluminum film forming method, comprising: an aluminum film forming step of forming an aluminum film by performing at least one treatment selected from heat treatment and light irradiation treatment on the coating film.
  2.  前記アルミニウム膜形成用材料が、第二のアミン化合物をさらに含有する、請求項1に記載のアルミニウム膜形成方法。 The method for forming an aluminum film according to claim 1, wherein the material for forming an aluminum film further contains a second amine compound.
  3.  前記第二のアミン化合物の濃度が、前記錯体および第二のアミン化合物の合計に対して、3~70質量%である、請求項2に記載のアルミニウム膜形成方法。 The method for forming an aluminum film according to claim 2, wherein the concentration of the second amine compound is 3 to 70 mass% with respect to the total of the complex and the second amine compound.
  4.  前記アルミニウム膜形成用材料が、チタン化合物をさらに含有する請求項1~3のいずれかに記載のアルミニウム膜形成方法。 The method for forming an aluminum film according to any one of claims 1 to 3, wherein the material for forming an aluminum film further contains a titanium compound.
  5.  前記チタン化合物の濃度が、前記錯体およびチタン化合物の合計に対して、0.00001~1モル%である、請求項4に記載のアルミニウム膜形成方法。 The method for forming an aluminum film according to claim 4, wherein the concentration of the titanium compound is 0.00001 to 1 mol% with respect to the total of the complex and the titanium compound.
  6.  前記塗布工程の前に、基材上に前記金属層を形成する金属層形成工程を含む、請求項1~5のいずれかに記載のアルミニウム膜形成方法。 The aluminum film forming method according to any one of claims 1 to 5, further comprising a metal layer forming step of forming the metal layer on a substrate before the coating step.
PCT/JP2011/073209 2010-10-15 2011-10-07 Method for formation of aluminum film WO2012050058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012538665A JPWO2012050058A1 (en) 2010-10-15 2011-10-07 Aluminum film forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010232541 2010-10-15
JP2010-232541 2010-10-15

Publications (1)

Publication Number Publication Date
WO2012050058A1 true WO2012050058A1 (en) 2012-04-19

Family

ID=45938287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073209 WO2012050058A1 (en) 2010-10-15 2011-10-07 Method for formation of aluminum film

Country Status (3)

Country Link
JP (1) JPWO2012050058A1 (en)
TW (1) TW201224200A (en)
WO (1) WO2012050058A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105557A1 (en) * 2007-02-28 2008-09-04 Jsr Corporation Composition for forming aluminum film and method for forming aluminum film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105557A1 (en) * 2007-02-28 2008-09-04 Jsr Corporation Composition for forming aluminum film and method for forming aluminum film

Also Published As

Publication number Publication date
JPWO2012050058A1 (en) 2014-02-24
TW201224200A (en) 2012-06-16

Similar Documents

Publication Publication Date Title
JP4706544B2 (en) Alumina film forming method
WO2012053433A1 (en) Method for forming alumina film
JP5071668B2 (en) Aluminum film forming composition and aluminum film forming method
JPWO2020071175A1 (en) Raw materials for thin film formation for atomic layer deposition, raw materials for thin film formation, thin film manufacturing methods and compounds
JP4892839B2 (en) Method for forming an aluminum film
TWI650309B (en) Copper compound, raw material for film formation, and method for producing film
WO2012053436A1 (en) Composition for forming alumina film and method for forming alumina film
JP5093448B2 (en) Trench filling method
JP2007254593A (en) Germanium polymer, process for producing the same and method for forming germanium film
WO2012050058A1 (en) Method for formation of aluminum film
WO2008105557A1 (en) Composition for forming aluminum film and method for forming aluminum film
JP2013044002A (en) Aluminum film forming method
WO2013011974A1 (en) Method for producing substrate with metal body
JP4154729B2 (en) Conductive laminated film and method for forming the same
TWI444357B (en) A method for forming an aluminum film, and a method for forming an aluminum film
JP5817593B2 (en) Aluminum body forming composition and aluminum body forming method
JP4930681B2 (en) Method for forming aluminum film on the inner surface of the tube
JP5158313B2 (en) Copper thin film forming material and copper thin film forming method
JP2013124374A (en) Method of manufacturing laminate of substrate and aluminum body
TW202111145A (en) Raw material for chemical vapor deposition including organomanganese compound and chemical vapor deposition method using the raw material for chemical vapor deposition
JP2013125766A (en) Method for manufacturing substrate having recessed part embedded with aluminum material
JP2013021068A (en) Manufacturing method of substrate including aluminum body
JP2010077468A (en) Composition for forming ruthenium film, and method for forming ruthenium film
JP2005298897A (en) Aluminum pattern forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832493

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012538665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832493

Country of ref document: EP

Kind code of ref document: A1