WO2016027861A1 - Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same - Google Patents

Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same Download PDF

Info

Publication number
WO2016027861A1
WO2016027861A1 PCT/JP2015/073394 JP2015073394W WO2016027861A1 WO 2016027861 A1 WO2016027861 A1 WO 2016027861A1 JP 2015073394 W JP2015073394 W JP 2015073394W WO 2016027861 A1 WO2016027861 A1 WO 2016027861A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum oxide
coating
solution
composition
Prior art date
Application number
PCT/JP2015/073394
Other languages
French (fr)
Japanese (ja)
Inventor
豊田 浩司
孝一郎 稲葉
静夫 富安
俊雄 中
健一 羽賀
晋介 宮島
Original Assignee
東ソー・ファインケム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014168549A external-priority patent/JP6440409B2/en
Priority claimed from JP2014168541A external-priority patent/JP6440408B2/en
Priority claimed from JP2015031567A external-priority patent/JP6487709B2/en
Priority claimed from JP2015046592A external-priority patent/JP6498967B2/en
Application filed by 東ソー・ファインケム株式会社 filed Critical 東ソー・ファインケム株式会社
Priority to KR1020227041096A priority Critical patent/KR102619467B1/en
Priority to KR1020227041095A priority patent/KR20220160126A/en
Priority to CN201580044877.3A priority patent/CN106573790B/en
Priority to KR1020177006408A priority patent/KR102472173B1/en
Publication of WO2016027861A1 publication Critical patent/WO2016027861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0466Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being a non-reacting gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the first aspect of the present invention (hereinafter sometimes referred to as the present invention 1) relates to an alkylaluminum solution and an alkylaluminum hydrolyzed composition having high chemical stability to air.
  • the alkylaluminum solution of the present invention 1 is a solution and composition that can be used as a stable alkylating agent and reactant that do not chemically change even when handled in air. If the alkylaluminum partial hydrolyzate-containing solution of the present invention 1 is used, an aluminum oxide thin film can be formed even in the air.
  • the second aspect of the present invention (hereinafter sometimes referred to as the present invention 2) is a composition for forming an aluminum oxide film, a method for producing an article having an aluminum oxide film, and an article having an aluminum oxide film.
  • the composition for forming an aluminum oxide film according to the present invention 2 is a composition capable of forming an aluminum oxide film having excellent adhesion to a substrate.
  • a third aspect of the present invention (hereinafter sometimes referred to as the present invention 3) is a composition for forming an aluminum oxide film coating, a method for producing an article having an aluminum oxide film, and an article having an aluminum oxide film.
  • the composition for applying and forming an aluminum oxide film of the present invention 3 is a composition capable of forming an aluminum oxide film having excellent adhesion to a substrate.
  • the fourth aspect of the present invention (hereinafter sometimes referred to as the present invention 4) relates to a simple method for producing an aluminum oxide thin film. If the manufacturing method of this invention 4 is used, an aluminum oxide thin film can be formed easily.
  • the fifth aspect of the present invention (hereinafter sometimes referred to as the present invention 5) relates to a method for producing a passivation film, a passivation film, and a solar cell element using the same. If the manufacturing method of this invention 5 is used, a passivation film having a long carrier lifetime can be formed.
  • Alkyl aluminum has high reactivity, so it is a polymerization catalyst, higher ⁇ -olefins, higher alcohol synthesis raw materials, organometallic compound synthesis raw materials, ceramic synthesis raw materials, compound semiconductor raw materials, reactants in the organic synthesis field, etc. Widely used in various applications (Non-patent Document 1-1).
  • alkylaluminums such as trimethylaluminum, triethylaluminum and triisobutylaluminum ignite spontaneously when exposed to air, producing white alumina. Therefore, it cannot be easily handled in the air.
  • an alkylaluminum solution diluted with an organic solvent such as hexane, heptane, or toluene is often used.
  • an organic solvent such as hexane, heptane, or toluene
  • the pyrophoricity still remains when the concentration exceeds 12 mass%, triethylaluminum exceeds 12 mass%, and triisobutylaluminum exceeds 26 mass%. Therefore, in order to handle it safely, it was necessary to use an alkylaluminum solution diluted to a lower concentration (Non-patent Document 1-2).
  • a relatively low concentration alkylaluminum solution diluted with an organic solvent has a large bulk volume, and movement such as transportation is economically disadvantageous.
  • alkyl aluminum solutions diluted until they are no longer ignitable remain reactive to air, and when in contact with air, they react with oxygen in the air to precipitate white solids and block injection needles, piping, etc.
  • alkyl aluminum solutions diluted until they are no longer ignitable remain reactive to air, and when in contact with air, they react with oxygen in the air to precipitate white solids and block injection needles, piping, etc.
  • Patent Document 1 a method of forming an aluminum oxide film using an alkylaluminum solution or an alkylaluminum hydrolysis composition solution obtained by reacting an alkylaluminum solution with water is known (Patent Document 1-1).
  • Patent Document 1-1 WO2012 / 053433A1
  • Non-Patent Document 1-1 “Alkyl Aluminum” Synthetic Organic Chemistry Vol. 43 No. 5 (1985) p475
  • Non-Patent Document 1-2 “Pyrophoricity of Metal Alkyls” AkzoNobel Technical Bulletin August (2008) p1
  • the alkylaluminum solution and the aluminum aluminum hydrolyzed composition solution described in Patent Document 1-1 are reactive with water, and therefore form an aluminum oxide film in an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • the operation in the inert gas requires an inert gas holding facility such as an inert gas, an inert gas supply facility, and a glove box, and there is a problem that the cost for forming the aluminum oxide thin film increases.
  • the purpose of the present invention 1 is a comparison that is highly stable to air, substantially free of pyrophoric properties, can be handled in air, has a relatively small bulk volume, and is economically advantageous for movement such as transportation. It is to provide an alkylaluminum solution that can have a high concentration, and to provide a solution containing an alkylaluminum partial hydrolyzate that can form an aluminum oxide thin film in air. In addition, the present invention 1 provides a method for producing an aluminum oxide thin film in air.
  • Aluminum oxide is widely used in various industrial products because it has excellent properties such as strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, insulation, and denseness.
  • Aluminum oxide is used for polishing materials, refractory materials, heat-resistant materials, insulators, and heat-dissipating materials as having shapes such as nanoparticles, powders, fillers, plates, and rods. Furthermore, it is also used as a film having the above-mentioned properties, and it is used for the production of alumina sheets for electronic materials, aluminum oxide films, catalyst carriers, heat resistance, air and moisture barrier properties, antireflection effects, and antistatic properties. It is used for applications such as imparting effects, imparting antifogging effects, imparting abrasion resistance, and binders for ceramic production.
  • protective films for machine parts and cutting tools semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high
  • hardness films, optical members, and the like are applications for hardness films, optical members, and the like.
  • Various methods are known for producing aluminum oxide. For example, a so-called buyer method using bauxite as a starting material and a production method through hydrolysis of aluminum alkoxide are known.
  • a general method for producing an aluminum oxide film for example, a sputtering method, a chemical vapor deposition (MOCVD) method, or a physical vapor deposition (PVD) method such as vapor deposition, which is a film forming method using a vacuum apparatus, is used. well known.
  • Non-Patent Document 2-1 uses a solution of an aluminum acetylacetonate complex as a raw material, which is applied as a mist and simultaneously dried with a solvent, and then the substrate temperature is heated to 300 ° C. or higher. This is a method for obtaining an aluminum oxide film coating.
  • compositions for forming an aluminum oxide film by a coating method For example, Patent Documents 2-4 to 2-6 describe an aluminum oxide film forming composition using a complex of an amine compound and an aluminum hydride compound. Patent Documents 2-5 to 2-7 describe using an organic solvent solution of alkylaluminum as the organoaluminum compound.
  • These amine compound and aluminum hydride compound complexes and alkylaluminum organic solvent solutions are usually used for coating film formation by spin coating and dip coating.
  • the aluminum oxide can be formed by drying the solvent after spin coating or dip coating and then treating it with contact with moisture as an oxygen source.
  • Patent Documents 2-1, 2-2, 2-5, 2-6 It is also known to use a partial hydrolyzate of an organoaluminum compound as a composition for forming an aluminum oxide film.
  • An organic aluminum compound partial hydrolyzate is also usually used for coating film formation by spin coating and dip coating.
  • an aluminum oxide film can be obtained by drying the solvent after spin coating or dip coating and then heating the substrate temperature to 450 ° C. or higher (Patent Documents 2-1 and 2-2).
  • Patent Document 2-1 Japanese Patent Application Laid-Open No. 58-95611
  • Patent Document 2-2 Japanese Patent Application Laid-Open No. 58-91030
  • Patent Document 2-3 Japanese Patent Application Laid-Open No. 2007-270335
  • Patent Document 2-4 Japanese Patent Laid-Open No. 2007-287821
  • Patent Document 2-5 WO2012 / 053433A1
  • Patent Document 2-6 WO2012 / 053436A1
  • Patent Document 2-7 Japanese Patent Laid-Open No.
  • Non-Patent Document 2-1 “Growth and electrical properties of AlOx grown by mist chemical vapor deposition” Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol. .3 (2013) 032135.
  • An aluminum oxide film may be formed by spin coating or dip coating using an organic aluminum compound, in particular, a complex of an amine compound and an aluminum hydride compound or an organic solvent solution of alkyl aluminum.
  • an organic aluminum compound in particular, a complex of an amine compound and an aluminum hydride compound described in Patent Document 2-4
  • an atmospheric pressure using an oxygen / nitrogen mixture is used to form a thin (about 150 nm) aluminum oxide film.
  • an aluminum oxide film is formed by treatment in a gas atmosphere.
  • Patent Documents 2-5 and 2-6 in order to obtain a thick aluminum oxide film (about 200 nm or more), after drying the solvent after spin coating or dip coating, oxygen It is necessary to perform the treatment at 140 ° C.
  • Patent Documents 2-5 even when an organic solvent solution of tridodecylalkylaluminum having an alkyl group having 12 carbon atoms is used as the organoaluminum compound, an atmospheric pressure gas atmosphere using an oxygen / nitrogen mixture or the like is used. It is described that metal aluminum is formed in the treatment in (1).
  • the film formation of the aluminum oxide film on the resin base material is usually performed by a vapor deposition method using a vacuum.
  • adhesion to a substrate is a problem.
  • the resin surface is subjected to undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination and the like.
  • composition having the above performances 1) to 3) has not been known for coating an aluminum oxide film using a composition for coating and forming an aluminum oxide film.
  • Patent Document 2-1 discloses coating of an aluminum oxide film performed at 450 ° C. using an organoaluminum compound having an isopropoxy group as a substituent bonded to Al.
  • an additive such as butyl isocyanate having a large molecular weight is not added, the thin film cracks.
  • Patent Document 2-2 discloses the coating film formation of an aluminum oxide film using an organoaluminum compound having an ethoxy group or an isopropoxy group as a substituent bonded to Al.
  • the film formation at 500 ° C. has problems such as cracking and the aluminum oxide film not sticking to the substrate.
  • the object of the present invention 2 is to form a coating film using a composition containing a partial hydrolyzate of an organoaluminum compound having an alkyl group having 1 to 4 carbon atoms as a substituent, such as triethylaluminum. It solves the problem of coating film formation by directly applying a coating solution to the film, and has excellent adhesion to a substrate including a resinous substrate in film formation at a relatively low temperature, and forms an oxide (for example, oxide Provision of a composition for coating and forming an aluminum oxide film having good transparency and homogeneity of the film, a method for forming an aluminum oxide film using the composition, and a method for producing an article having an aluminum oxide film Is to provide.
  • the present invention 2 is an aluminum oxide film produced using the production method of the present invention 2 and having a good oxide formation state (for example, transparency and homogeneity of the oxide film), and a substrate.
  • An object of the present invention is to provide an article having this aluminum oxide film with good adhesion.
  • Aluminum oxide is widely used in various industrial products because it has excellent properties such as strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, insulation, and denseness.
  • compositions have been proposed as a composition for forming an aluminum oxide film that can be used in forming an aluminum oxide film by film formation by a coating method.
  • a method of forming an alumina film that is an aluminum oxide it is described that a complex of an amine compound and an aluminum hydride compound is used as the composition for forming an aluminum oxide film (Patent Documents 3-8 to 3-10) and the use of an organic solvent solution of alkylaluminum as the organoaluminum compound (Patent Documents 3-9 to 3-11).
  • Patent Literature 3-1 Japanese Patent Laid-Open No. 58-95611
  • Patent Literature 3-2 Japanese Patent Laid-Open No. 58-91030
  • Patent Literature 3-3 Japanese Patent Laid-Open No. 2006-161157
  • Patent Literature 3-4 Japanese Patent Laid-Open No.
  • Patent Document 3-5 Japanese Patent Application Publication No. 2007-238393
  • Patent Document 3-6 Japanese Patent Application Publication No. 2009-120873
  • Patent Document 3-7 Japanese Patent Application Publication No. 2010-209363
  • Patent Document 3-8 Japan JP 2007-287821
  • Patent Document 3-10 WO2012 / 053436A1
  • Patent Document 3-11 Japanese Patent Laid-Open No.
  • Non-Patent Document 3-1 “Growth and electrical properties of AlOx grown by mist chemical vapor deposition” Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol. 3 (2013) 032135.
  • oxide film formation on a resin substrate such as a film has been demanded. 1) Lowering the film formation temperature, 2) Adhesion to the substrate, and 3) Oxide formation state are important factors. Therefore, the film formation of the aluminum oxide film on the resin substrate is usually performed by a vapor deposition method using a vacuum or the like.
  • inorganic salts such as aluminum chloride, organoaluminum complexes of aluminum acetate, aluminum isopropoxide, aluminum trisacetylacetonate, etc. are used as the aluminum source. Yes.
  • the film forming temperature is usually as high as 500 ° C. or higher, and organoaluminum complexes such as aluminum trisacetylacetonate have low solubility in organic solvents, and the concentration of the aluminum source can be increased.
  • the concentration of the aluminum source can be increased.
  • an aluminum oxide film is formed at a temperature of 250 ° C. or lower, which can be formed on a resin substrate. It was difficult.
  • alkylaluminum As an aluminum oxide film forming composition that can be used as an aluminum source in coating film formation, there is an organic solvent solution of alkylaluminum as an organoaluminum compound, but alkylaluminum is ignitable in the atmosphere and stored. It is a compound that must be very careful when used. For this reason, it is extremely difficult to perform spray pyrolysis by spraying alkyl aluminum.
  • alkyl aluminum has higher reactivity with oxygen and water as the number of carbon atoms is smaller. Therefore, in Patent Documents 3-9 and 3-10, in examples relating to spin coating film formation using alkylaluminum, diisobutylaluminum hydride (alkyl group having 4 carbon atoms) or trioctylaluminum (alkyl group having 8 carbon atoms). Alkyl aluminum having 4 or more carbon atoms is used. Further, spin coating film formation is used as these film formation methods, but film formation by spray pyrolysis is not performed, and it is still unclear.
  • hydrides such as diisobutylaluminum hydride may react with hydride and ether solvent when an ether solvent such as anisole used as a solvent is used. There is a risk of decomposition due to the reaction.
  • the purpose of the present invention 3 is to form an aluminum oxide film by spray-coating a composition obtained by dissolving alkylaluminum or a partial hydrolyzate of alkylaluminum in an organic solvent on a base material, and thermally decomposing it.
  • An object of the present invention is to provide a method for producing an aluminum oxide film and a film-forming composition that can be used in this method, which are capable of obtaining an excellent aluminum oxide film.
  • an object of the present invention 3 is to provide an aluminum oxide film produced by using the above production method, and further to an aluminum oxide functional film including the aluminum oxide film and a substrate having these films and functional films. It is to provide an article.
  • Aluminum oxide is widely used in various applications because it has excellent properties such as high strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, and insulation.
  • aluminum oxide thin film aluminum oxide sheet for electronic materials, aluminum oxide film, catalyst carrier, heat resistance, barrier property against air and moisture, antireflection effect, antistatic effect, antifogging effect
  • Such aluminum oxide thin films are required to have high purity (Non-Patent Document 4-1). Specifically, it can be applied to protective films for cutting tools, insulating films for semiconductors, magnetic materials, solar cells, surface devices, magnetic heads, infrared sensors, food, medicine, medical equipment packaging materials, optical members, etc. Can be mentioned.
  • the aluminum oxide thin film is produced by a method such as a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer deposition (ALD) method, or the like.
  • the sputtering method, the CVD method, the ALD method, and the like have problems such as the need for using a large sealed container, which increases the manufacturing cost of the aluminum oxide thin film and decreases the material usage efficiency.
  • Patent Documents 4-1 to 4-2 As a coating method, various studies have been made on the formation of an aluminum oxide thin film, particularly using a spray pyrolysis method or a film forming method such as spray coating (Patent Documents 4-1 to 4-2).
  • Patent Document 4-1 Japanese Patent Application Laid-Open No. 2007-238393
  • Patent Document 4-2 Japanese Patent Application Laid-Open No. 2010-209363
  • Non-Patent Document 4-1 Yasaka JETI. , 10 (2005) p134-140
  • Trialkylaluminum compounds such as triethylaluminum are ignitable in the atmosphere and must be taken with great care during storage and use. Therefore, it is practically difficult to use it in a spray coating method or the like, which is usually performed in an atmosphere where water is present, without diluting the trialkylaluminum compound.
  • Trialkyl compounds can reduce the risk of ignition and the like when diluted in an organic solvent, but there is no example of examining spray coating of a trialkyl compound diluted in an organic solvent.
  • the coating operation in the inert gas requires an inert gas holding facility such as an inert gas, an inert gas supply facility, a glove box, etc., and the production cost of aluminum oxide is increased correspondingly, and further simplification is achieved. There was a problem of being required.
  • the purpose of the present invention 4 is to provide a simple method for producing an aluminum oxide thin film. If the manufacturing method of this invention 4 is used, the transparent aluminum oxide thin film with few residual organic substances can be formed easily.
  • a passivation film may be provided on the back surface of the silicon substrate.
  • Patent Document 5-1 a technique using silicon oxide, silicon nitride, aluminum oxide, zinc oxide or the like has been proposed.
  • silicon nitride having a positive fixed charge is not appropriate because leakage current easily occurs, and aluminum oxide having a negative fixed charge is preferable (Patent Document 5). -2).
  • the aluminum oxide thin film as the passivation film As a manufacturing method of the aluminum oxide thin film as the passivation film, it is formed by a method such as a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer deposition (ALD) method or the like.
  • a method such as a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer deposition (ALD) method or the like.
  • the sputtering method, the CVD method, the ALD method, and the like have problems such as the need for using a large sealed container, which increases the manufacturing cost of the aluminum oxide thin film and decreases the material usage efficiency.
  • Non-patent Document 5-1 a spin coating method
  • Patent Document 5-3 a screen printing method
  • Patent Document 5-1 Japanese Patent Application Laid-Open No. 2009-164544
  • Patent Document 5-2 Japanese Patent No. 4767110
  • Patent Document 5-3 Japanese Patent Application Laid-Open No. 2014-166791
  • Non-Patent Document 5-1 Thin Solid Films 517 (2009), 6327-6330
  • Non-Patent Document 5-1 and Patent Document 5-3 when a passivation film is produced by heat treatment (firing), residual organic components such as a binder resin and a ligand are fired. Therefore, there is a problem that a long time is required for baking or a heat treatment at a high temperature of 650 to 1000 ° C. is necessary.
  • the carrier lifetime of the passivation film manufactured by the method described in Non-Patent Document 5-1 and Patent Document 5-3 is 100 to 500 ⁇ s when the substrate wafer thickness is about 700 ⁇ m, and the passivation film manufactured by the ALD method is used. There is a need for further improvement in carrier lifetime, which is shorter than the film.
  • An object of the present invention 5 is to provide a simple method for producing a passivation film, a passivation film, and a solar cell element using the same. If the manufacturing method of this invention 5 is used, a passivation film having a long carrier lifetime can be formed.
  • the present invention 1 is as follows. [1-1] An alkylaluminum compound-containing solution comprising an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum, or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent.
  • the solvent is an organic compound having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound). Containing the cyclic amide compound in an amount exceeding 2.6 by molar ratio to the alkylaluminum compound; Said solution.
  • the cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution according to [1-1], which is a mixture of [1-3] The solution according to any one of [1-1] and [1-2], wherein the content of the alkylaluminum compound is 15% by mass or more. [1-4] The solution according to any one of [1-1] to [1-3], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2): .
  • R 1 represents a methyl group or an ethyl group
  • R 2 represents a halogen, a methyl group, or an ethyl group.
  • R 3 represents an isobutyl group
  • R 4 represents a halogen or an isobutyl group.
  • [1-7] The solution according to [1-6], containing 30% by mass or more of the alkylaluminum compound represented by the general formula (2). [1-8] The solution according to any one of [1-1] to [1-7], further comprising a solvent other than the cyclic amide compound. [1-9] An alkylaluminum moiety comprising a partial hydrolyzate of a dialkylaluminum, a trialkylaluminum or an alkylaluminum compound comprising a mixture thereof (wherein the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent; A hydrolyzate-containing solution comprising: The solvent is an organic compound having a boiling point of 160 ° C.
  • an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound).
  • the partial hydrolyzate is a product of hydrolysis with water having a molar ratio of 0.5 to 1.3 with respect to aluminum in the alkylaluminum compound.
  • Said solution. [1-10] The solution according to [1-9], which contains 1 or more of the cyclic amide compound in a molar ratio with respect to aluminum in the alkylaluminum compound.
  • the cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution according to [1-9] or [1-10], which is a mixture of [1-12] The solution according to any one of [1-9] to [1-11], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2): .
  • R 1 represents a methyl group or an ethyl group
  • R 2 represents hydrogen, a halogen, a methyl group, or an ethyl group.
  • R 3 represents an isobutyl group
  • R 4 represents hydrogen, halogen, or isobutyl group.
  • R 5 represents a methyl group, an ethyl group, or an isobutyl group.
  • [1-15] [1-9] A method for producing an aluminum oxide thin film, comprising applying an alkylaluminum partial hydrolyzate-containing solution according to any one of [1-9] to [1-14] to a substrate to obtain an aluminum oxide thin film.
  • the present invention 2 is as follows. [2-1] (A) A step of partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound, wherein Partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound. (B) applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate under an inert gas atmosphere to form a coating film; (C) The manufacturing method of the articles
  • R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.
  • [2-2] The production method according to [2-1], wherein the inert gas atmosphere used in the steps (B) and (C) does not substantially contain moisture.
  • [2-3] The production method according to [2-1] or [2-2], wherein the application of the partial hydrolyzate-containing composition in the step (B) is performed at a temperature in the range of 20 to 350 ° C.
  • a composition containing a partial hydrolyzate of the organoaluminum compound obtained by partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent (A) The partial hydrolysis is performed using water in a molar ratio with respect to the organoaluminum compound in the range of 0.4 to 1.3, and (b) the composition is formed of an inert gas.
  • the said composition which is a thing for using for formation of the aluminum oxide film performed in atmosphere.
  • the film coating formation performed in the inert gas atmosphere includes the step (b1) of forming the coating film by applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate in the inert gas atmosphere. And (b2) heating the substrate on which the coating film is formed at a temperature of 400 ° C.
  • the article is a composite in which an aluminum oxide film is attached to a base material, or a composite in which a composite film having an aluminum oxide film and a layer other than the aluminum oxide film is attached to the base material.
  • Article having an aluminum oxide film is a composite in which an aluminum oxide film is attached to a base material, or a composite in which a composite film having an aluminum oxide film and a layer other than the aluminum oxide film is attached to the base material.
  • Invention 3 is as follows. [3-1] (A) forming a coating film by spray-coating an organic solvent solution of an organoaluminum compound represented by the following general formula (6) or a partial hydrolyzate thereof on at least a part of the surface of the substrate; However, the partial hydrolyzate is a product obtained by partially hydrolyzing the organoaluminum compound in an organic solvent using water having a molar ratio of 0.7 or less with respect to the organoaluminum compound. And the spray coating is performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water. (B) The base material on which the coating film has been formed is heated at a temperature of 400 ° C.
  • a method for producing an article having an aluminum oxide film containing (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.) [3-2] In the step (A), an organic solvent solution of an organoaluminum compound is used, In the general formula (6), R 1 is a linear or branched alkyl group having 1 to 3 carbon atoms, R 2 and R 3 are independently a linear or branched alkyl group having 1 to 3 carbon atoms, 1 carbon atom The production method according to [3-1], which represents a linear or branched alkoxyl group, an organoaluminum compound.
  • the organic solvent contains an electron-donating organic solvent, and the concentration of the organoaluminum compound in the solution is 0.1 to 35% by weight;
  • [3-4] [3] The production method according to [3-3], wherein the number of moles of molecules constituting the electron-donating organic solvent is equal to or greater than the number of moles of the organoaluminum compound.
  • [3-5] The production method according to any one of [3-2] to [3-4], wherein the temperature of the substrate surface is 20 to 300 ° C. in the spray application in the step (A).
  • step (A) using an organic solvent solution of a partial hydrolyzate of an organoaluminum compound,
  • the concentration of the partial hydrolyzate in the organic solvent solution is in the range of 0.1 to 35% by mass.
  • the step (A) is performed under heating at a temperature of 400 ° C. or lower, and the heating in the step (B) is performed simultaneously with or subsequent to the step (A) [3-6] or [3-7] Production method.
  • a film-forming composition comprising an organic solvent solution of an organoaluminum compound represented by the following general formula (6), The composition is a composition for use in forming an aluminum oxide film in which film formation is performed in an inert gas atmosphere containing 0.5 to 30 mol% of water.
  • R 1 is hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms
  • R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.
  • [3-12] The composition for film formation containing the partial hydrolyzate of the said organoaluminum compound obtained by partially hydrolyzing the organoaluminum compound represented by following General formula (6) in an organic solvent, (A) The partial hydrolysis is performed using water having a molar ratio to the organoaluminum compound of 0.7 or less, and (b) the composition is formed by coating from 0.5 mol% to 30 mol.
  • the said composition which is a thing for using for formation of the aluminum oxide film
  • R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.
  • Invention 4 is as follows. [4-1] An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property An alkylaluminum compound-containing solution containing an organic solvent containing no active hydrogen atoms and having a mean particle size of 1 to 100 ⁇ m in the air as a droplet to form a coating film; And the manufacturing method of the aluminum oxide thin film characterized by heating the formed coating film after drying an organic solvent, or in parallel with drying of an organic solvent, and making it aluminum oxide.
  • [4-2] The method according to [4-1], wherein the droplets have an average particle diameter in the range of 3 to 30 ⁇ m.
  • [4-3] The production method according to [4-1] or [4-2], wherein the application to the substrate is performed on a substrate heated to a temperature of 300 ° C. or lower.
  • [4-4] The production method according to any one of [4-1] to [4-3], wherein the atmospheric temperature in the air is 50 ° C. or lower and the relative humidity converted to 25 ° C. is 20 to 90%.
  • [4-5] The production method according to any one of [4-1] to [4-4], wherein the coating is performed by spray coating, mist CVD, or an inkjet method.
  • [4-8] The production method according to [4-7], wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
  • [4-9] The manufacturing method according to any one of [4-1] to [4-8], wherein the aluminum oxide thin film has a vertical transmittance of 80% or more at 550 nm of visible light.
  • the present invention 5 is as follows.
  • An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property
  • a passivation film forming agent comprising an alkylaluminum compound-containing solution containing an organic solvent having no active hydrogen atoms.
  • the passivation film forming agent according to [5-1] wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (8) or (9).
  • R 1 represents a methyl group or an ethyl group.
  • R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.
  • [5-3] The passivation film forming agent according to [5-2], wherein the alkylaluminum compound represented by the general formula (8) is triethylaluminum.
  • [5-4] The passivation film forming agent according to [5-3], wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
  • [5-5] Applying the passivation film forming agent described in [5-1] to [5-4] as droplets having an average particle diameter of 1 to 100 ⁇ m to at least a part of the back surface of the silicon substrate to form a coating film And forming the passivation film by heating the formed coating film after drying the organic solvent or in parallel with the drying of the organic solvent to form aluminum oxide, and a silicon substrate having a passivation film Manufacturing method.
  • [5-6] [5-5] The production method according to [5-5], wherein the droplets have an average particle diameter in the range of 3 to 30 ⁇ m.
  • [5-7] The production method according to [5-5] or [5-6], wherein the coating is performed by a spray coating method.
  • [5-8] The production method according to [5-7], wherein the substrate temperature during spray coating is in the range of 300 to 550 ° C, and / or the temperature in heating after spray coating is in the range of 300 to 550 ° C.
  • [5-9] A silicon substrate having a passivation film manufactured by the method according to any one of [5-5] to [5-8].
  • [5-10] A solar cell element using a silicon substrate having the passivation film according to [5-9].
  • the first aspect of the present invention it is possible to provide a high-concentration alkylaluminum solution that is not pyrophoric, stable in air and easy to handle, has a small bulk volume, and is economically advantageous for movement such as transportation. Furthermore, according to the present invention 1, it is possible to provide an alkylaluminum partial hydrolyzate-containing solution that is stable in air and therefore easy to handle and can form an aluminum oxide thin film in air.
  • the present invention 2 in film formation at a relatively low temperature, it has excellent adhesion to a substrate including a resin substrate, and an oxide is formed (for example, transparency and homogeneity of an oxide film). It is possible to provide a composition for forming an aluminum oxide film that can provide a good aluminum oxide film by coating. By using this composition, the coating liquid which is the composition of the present invention 2 is directly applied to the surface of the base material, and adhesion to a base material including a resin base material even in a coating film which is heated at a relatively low temperature. It is possible to directly form an aluminum oxide film that is excellent in oxide formation state (for example, transparency and homogeneity of the oxide film) on the substrate surface. Furthermore, according to the present invention 2, there can be provided a method for forming an aluminum oxide film using the composition of the present invention 2 and a method for producing an article comprising a substrate having an aluminum oxide film on the surface.
  • the adhesion to the substrate is excellent and the oxide formation state is good even if the film formation temperature is low simply by applying and heating.
  • An aluminum oxide film can be formed.
  • an organoaluminum compound having an alkyl group having 1 to 3 carbon atoms as a substituent such as triethylaluminum (carbon number 2), or a partial hydrolyzate thereof is provided with an electron donor.
  • a coating solution dissolved in an organic solvent including a reactive organic solvent it is easy to handle reactive compounds such as alkylaluminum in film formation operations, and it is easy to control reactions in spray film formation As a result, even at a low temperature of 400 ° C. or lower, an aluminum oxide film having excellent adhesion to the base material and good oxide formation state can be formed simply by coating and heating.
  • the aluminum oxide film manufactured by the method of the present invention 3 has excellent adhesion to a substrate and a good oxide formation state, an alumina sheet for electronic materials, preparation of an aluminum oxide film, catalyst It is used for the production of carriers, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, imparting wear resistance, etc., and binders for ceramic production.
  • protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals , Barrier films against air and moisture in packaging materials such as medical devices, various powders, films, coating films on substrates such as films and molded products made of glass and plastic, and the like Refractory material and high hardness films, can be applied as the aluminum oxide functional film such as an optical member, an aluminum oxide film to be used for applications such as ceramic manufacturing binder.
  • these aluminum oxide films and base materials having aluminum oxide functional films are made of heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, and anti-reflective films such as anti-reflection films and glass. It can be used as a material, high hardness film or material.
  • an aluminum oxide thin film can be easily produced at a low temperature, and a transparent aluminum oxide thin film with little residual organic matter can be easily formed.
  • an aluminum oxide thin film with little residual organic matter can be easily produced at a low temperature, and a passivation film having a long carrier lifetime can be formed.
  • 1H-NMR spectrum of triethylaluminum hydrolysis composition NMP solution The IR spectrum by the transmission method of what dried triethylaluminum hydrolysis composition NMP solution. Appearance photograph of aluminum oxide thin film. IR spectrum of aluminum oxide thin film by ATR method. IR spectrum by ATR method of glass substrate (Corning, EagleXG). It is a figure which shows a spray film-forming apparatus.
  • 1 H-NMR spectrum of composition A obtained in Example 2-1 after vacuum drying ATR-IR spectrum of the aluminum oxide film obtained on the glass substrate by heating at 130 ° C. in Example 2-1.
  • Example 2-1 1 H-NMR spectrum after vacuum drying of composition B obtained in Example 2-3 1 H-NMR spectrum of composition C obtained in Example 2-5 after vacuum drying 1 H-NMR spectrum after vacuum drying of composition K obtained in Example 2-15 27 Al-NMR spectrum after vacuum drying of composition K obtained in Example 2-15 1 H-NMR spectrum after vacuum drying of composition N obtained in Example 2-20 1 H-NMR spectrum after vacuum drying of composition O obtained in Example 2-21 27 Al-NMR spectrum after vacuum drying of composition O obtained in Example 2-21 ATR-IR spectrum of aluminum oxide film obtained on porous polypropylene (PP) film by film formation by heating at 50 ° C. in nitrogen atmosphere in Example 2-23 ATR-IR spectrum of the aluminum oxide film obtained on the porous polypropylene (PP) film by heating at 50 ° C.
  • PP porous polypropylene
  • Example 2-23 ATR-IR spectrum of porous polypropylene (PP) film used in Example 2-23 for film formation by heating at 50 ° C. in air or nitrogen atmosphere
  • Scanning electron micrograph (thin film surface) of the aluminum oxide film obtained on the glass substrate by heating at 50 ° C. in a nitrogen atmosphere in Example 2-24 ATR-IR spectrum of an aluminum oxide film obtained on a polypropylene (PP) film by heating at 100 ° C.
  • Example 3-2-1 Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained on the glass substrate by film formation by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-1
  • Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained on the glass substrate by film formation by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-2 IR spectrum of alkali-free glass as a base material by ATR method.
  • IR spectrum of aluminum oxide thin film by ATR method IR spectrum of aluminum oxide thin film by ATR method.
  • IR spectrum of aluminum oxide thin film by ATR method IR spectrum of aluminum oxide thin film by ATR method.
  • the spray film forming apparatus is shown. An example of embodiment of the solar cell element of this invention 5 is shown.
  • the first aspect of the first embodiment of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different). And an alkylaluminum-containing solution containing a solvent.
  • the solvent is an organic compound (cyclic amide compound) having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure.
  • the alkylaluminum compound-containing solution of the present invention can chemically stabilize an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing the cyclic amide compound as a solvent.
  • the reason why the cyclic amide compound is preferable as the solvent is not clear, but it is difficult to volatilize at a high boiling point.
  • a compound having an amide structure reacts with an alkylaluminum compound.
  • the ratio of the alkylaluminum compound to the cyclic amide compound in the solution of the present invention is such that the molar ratio of the cyclic amide compound is 1 or more with respect to the alkylaluminum compound. It is preferable to contain. By containing the cyclic amide compound in an amount exceeding 2.6 in molar ratio to the alkylaluminum compound, chemical changes such as spontaneous ignition of the solution can be suppressed.
  • Cyclic amide compounds are, for example, N-methyl-2-pyrrolidone, or 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or N-methyl-2-pyrrolidone is particularly preferred because it can be a mixture thereof and can be obtained at low cost.
  • dialkylaluminum and / or trialkylaluminum can be, for example, an alkylaluminum compound represented by the following general formula (1) or (2).
  • R 1 represents a methyl group or an ethyl group
  • R 2 represents a halogen, a methyl group, or an ethyl group.
  • R 3 represents an isobutyl group
  • R 4 represents a halogen or an isobutyl group.
  • Examples of the compound represented by the general formula (1) include trimethylaluminum, dimethylaluminum chloride, triethylaluminum, diethylaluminum chloride and the like.
  • the alkylaluminum compound represented by the general formula (1) can in particular be triethylaluminum or trimethylaluminum.
  • Examples of the compound represented by the general formula (2) include triisobutylaluminum and diisobutylaluminum chloride.
  • the alkylaluminum compound represented by the general formula (2) can be triisobutylaluminum.
  • the content of the alkylaluminum compound in the alkylaluminum-containing solution of the present invention is not particularly limited, but the higher the content of the alkylaluminum compound in the alkylaluminum-containing solution, the higher the transport efficiency. From a viewpoint, it can be 15 mass% or more, for example. However, it is not intended to be limited to 15% by mass or more as long as it is a mixture with a predetermined amount of a cyclic amide compound and maintains a chemically stable state.
  • the concentration of the alkylaluminum compound is preferably 15% by mass or more from the viewpoint of providing a high-concentration solution when R 1 in the general formula (1) is an ethyl group, and considering the stability to air It is preferable that it is 21 mass% or less.
  • R 1 is a methyl group, it is preferably 15% by mass or more from the viewpoint of providing a high-concentration solution, and is preferably 21% by mass or less in consideration of stability to air.
  • the concentration of the alkylaluminum compound represented by the general formula (2) is preferably 30% by mass or more from the viewpoint of transport efficiency (providing a high concentration solution). On the other hand, considering the stability to air, it is preferably 40% by mass or less.
  • the alkylaluminum-containing solution of the present invention can further contain a solvent other than the cyclic amide compound.
  • a solvent other than the cyclic amide compound By adding a solvent other than the cyclic amide compound, the polarity, viscosity, boiling point, economy and the like can be adjusted.
  • the solvent other than the cyclic amide compound examples include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene, Aromatic hydrocarbons such as xylene, cumene, etc .; hydrocarbon solvents such as mineral spirit, solvent naphtha, kerosene, petroleum ether, etc .; diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, di-n-butyl ether, dialkylethylene glycol, dialkyldiethylene glycol And ethers such as dialkyl triethylene glycol, glyme, diglyme, triglyme solvents, and the like.
  • aliphatic hydrocarbons such as
  • the addition amount of the solvent other than the cyclic amide compound is not limited as long as it does not interfere with the effect of the cyclic amide compound, and can be, for example, 100 parts by mass or less with respect to 100 parts by mass of the cyclic amide compound.
  • the range that can be added varies depending on the type of alkylaluminum compound, the cyclic amide compound, and the type of solvent other than the cyclic amide compound.
  • the mixing of the cyclic amide compound and, if desired, a solvent other than the cyclic amide compound and the alkylaluminum compound can be carried out in a reaction vessel under an inert gas atmosphere, and can be introduced according to any conventional method.
  • the alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent other than the cyclic amide compound.
  • alkyl aluminum compound cyclic amide compound, and optionally a solvent other than cyclic amide compound, or cyclic amide compound and optionally solvent other than cyclic amide compound, alkyl aluminum, Or they can all be introduced at the same time.
  • the introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours.
  • the temperature at the time of introduction any temperature between ⁇ 15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of ⁇ 15 to 80 ° C.
  • the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
  • the alkylaluminum-containing solution of the present invention is useful, for example, as a material that can be used in air in the following applications.
  • Alkylating agents such as methylation and ethylation in organic synthesis, ⁇ Special polymer catalysts, promoters, ⁇ Reducing agent using diisobutylaluminum hydride in organic synthesis
  • the second aspect of the first embodiment of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different).
  • the solvent is an organic compound (cyclic amide compound) having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure.
  • the partial hydrolyzate is obtained by hydrolyzing with water having a molar ratio of 0.5 to 1.3 with respect to aluminum in the alkylaluminum compound.
  • the cyclic amide compound is the same as the compound described in the first aspect of the first embodiment of the present invention, and includes N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl. It can be -3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or a mixture thereof.
  • the dialkylaluminum and / or the trialkylaluminum can be an alkylaluminum compound represented by the general formula (1) or (2).
  • the alkylaluminum compound represented by the general formula (1) or (2) is the same as the compound described in the first aspect of the first embodiment of the present invention.
  • the trialkylaluminum is preferably an alkylaluminum compound represented by the following general formula (3).
  • R 5 represents a methyl group, an ethyl group, or an isobutyl group.
  • Examples of the compound represented by the general formula (3) include trimethylaluminum, triethylaluminum, triisobutylaluminum and the like. Triethylaluminum is preferred from the viewpoint that the price for unit mass of aluminum is low.
  • the cyclic amide compound is preferably 1 or more in terms of a molar ratio to aluminum in the alkylaluminum compound from the viewpoint of obtaining a chemically stable partial hydrolyzate-containing solution.
  • the chemical stability with respect to air improves by making an alkyl aluminum compound into a partial hydrolyzate, since it still lacks stability, from the viewpoint of obtaining a chemically stable partial hydrolyzate-containing solution. It is preferable to use a mixture with a predetermined amount of the cyclic amide compound.
  • the partial hydrolyzate-containing solution of the present invention can further contain a solvent other than the cyclic amide compound.
  • the kind and addition amount of the solvent other than the cyclic amide compound are the same as those described in the first aspect of the first embodiment of the present invention.
  • the partial hydrolysis of the alkylaluminum compound is carried out using water or a solution containing water in a molar ratio of 0.5 to 1.3 with respect to the alkylaluminum compound. If the molar ratio of water to the alkylaluminum compound is less than 0.5, it is difficult to form a uniform aluminum oxide film that tends to be liquid after solvent drying. From the viewpoint of forming a uniform aluminum oxide film, the molar ratio of water to the alkylaluminum compound is more preferably 0.8 or more. On the other hand, when the molar ratio of water to the alkylaluminum compound exceeds 1.3, a gel or solid insoluble in the solvent is deposited, and it becomes difficult to form a uniform aluminum oxide film from the gel and solid. The precipitated gel or solid can be removed by filtration, but this is not preferable because it leads to loss of aluminum content.
  • water or a solution containing water is added to a solution obtained by dissolving the alkylaluminum compound in the cyclic amide compound and, optionally, a solvent other than the cyclic amide compound in an inert gas atmosphere. Do it. Although water itself may be added, it is preferable to add a solution containing water from the viewpoint of heat generation control during the reaction between the alkylaluminum compound and water.
  • the concentration of the alkylaluminum compound in the alkylaluminum compound solution to which water or a solution containing water is added can be 0.1 to 50% by mass, and is in the range of 0.1 to 30% by mass. Is preferred.
  • the addition of water or a solution containing water to the alkylaluminum compound solution can be set as appropriate depending on the type and volume of the raw material to be mixed, and can be, for example, in the range of 1 minute to 10 hours.
  • the temperature at the time of addition can be arbitrarily selected from -15 to 150 ° C. However, in consideration of safety and the like, it is preferably in the range of ⁇ 15 to 80 ° C.
  • an aging reaction can be performed for 0.1 to 50 hours in order to further promote the partial hydrolysis reaction of the alkylaluminum compound and water.
  • the aging reaction temperature can be selected from -15 to 150 ° C. However, considering the shortening of the ripening reaction time, etc., it is preferably in the range of 25 to 150 ° C.
  • the cyclic amide compound and, if desired, a solvent other than the cyclic amide compound, an alkylaluminum compound, water, or a solution containing water can be introduced into the reaction vessel according to any conventional method.
  • the pressure in the reaction vessel is not limited.
  • the hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is preferable.
  • the alkyl aluminum partial hydrolyzate-containing solution is obtained by the partial hydrolysis reaction.
  • the alkylaluminum compound is trimethylaluminum, triethylaluminum, or triisobutylaluminum
  • analysis of the partially hydrolyzed composition has been conducted for a long time, but the composition result of the product differs depending on the report, and the composition of the product is clear Not specified.
  • the composition of the product also varies depending on the solvent, concentration, molar ratio of water added, addition temperature, reaction temperature, reaction time, and the like.
  • the alkyl aluminum partial hydrolyzate in the method of the present invention is presumed to be a mixture of compounds containing a structural unit represented by the following general formula (5).
  • R 5 is the same as R 5 in the general formula (3), m is an integer of 1 to 80.
  • the solid or the like can be removed by purification by a method such as filtration or chromatography.
  • the solid content concentration of the alkyl aluminum partial hydrolyzate-containing solution can be adjusted by concentration (solvent removal). Moreover, the solvent used for the reaction and a solvent different from that used for the reaction can be added to adjust the solid content concentration, polarity, viscosity, boiling point, economy, etc. as appropriate.
  • Solvents different from those used in the reaction include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene Aromatic hydrocarbons such as xylene, cumene, etc .; hydrocarbon solvents such as mineral spirit, solvent naphtha, kerosene, petroleum ether, etc .; diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, di-n-butyl ether, dialkylethylene glycol, dialkyl Examples include ethers such as diethylene glycol and dialkyl triethylene glycol, glyme, diglyme, and triglyme solvents.
  • aliphatic hydrocarbons such as n-hexan
  • the content of the alkylaluminum partial hydrolyzate in the alkylaluminum partial hydrolyzate-containing solution of the present invention can be appropriately determined according to the application.
  • the content can be adjusted by adjusting the amount of the cyclic amide compound and / or the amount of the solvent other than the cyclic amide compound.
  • the content of the alkylaluminum partial hydrolyzate can be appropriately adjusted, for example, in the range of 0.1 to 50% by mass. However, it is not intended to be limited to this range.
  • the method for producing an aluminum oxide thin film of the present invention is a method for obtaining an aluminum oxide thin film by applying the alkyl aluminum partial hydrolyzate-containing solution of the present invention to a substrate.
  • Application to the substrate is performed by spin coating, dip coating, screen printing, bar coating, slit coating, die coating, gravure coating, roll coating, curtain coating, spray pyrolysis, electrostatic
  • a conventional method such as a spray pyrolysis method, an ink jet method, or a mist CVD method can be used.
  • Application to the substrate can be performed in an inert atmosphere or an air atmosphere, but from the viewpoint of economy, it is preferable to perform it in an air atmosphere because the apparatus is simple.
  • Application to the substrate can be carried out under pressure or reduced pressure, but it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
  • the substrate is made of lead glass, soda glass, borosilicate glass, alkali-free glass, etc .; oxides such as silica, alumina, titania, zirconia, complex oxides; polyethylene (PE), polypropylene (PP), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyphenylene sulfide (PPS), polystyrene (PS), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyvinylidene chloride, cyclic polyolefin (COP), ethylene-vinyl acetate copolymer (EVA), polyimide, polyamide, polyethersulfone (PES), polyurethane, triacetate, triacetylcellulose (TAC), cellopha , Polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene
  • Examples of the shape of the base material include powder, a film, a plate, or a three-dimensional structure having a three-dimensional shape.
  • the substrate After applying the alkylaluminum partial hydrolyzate-containing solution, the substrate is brought to a predetermined temperature, and the solvent is dried or baked at the same temperature as the drying to form an aluminum oxide thin film.
  • the substrate when coating is performed by spray pyrolysis, electrostatic spray pyrolysis, ink jet, or mist CVD, the substrate can be heated to a predetermined temperature before coating. It can be fired simultaneously.
  • the predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C.
  • the solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
  • the predetermined temperature for firing for forming the aluminum oxide can be selected from 50 to 550 ° C., for example. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged.
  • the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously.
  • the solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
  • the film thickness of the aluminum oxide thin film obtained as described above can be, for example, 0.005 to 3 ⁇ m.
  • the film thickness of the aluminum oxide thin film can be increased by repeating the coating, drying, and baking steps a plurality of times as necessary.
  • the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • the crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.
  • the method for producing an article having an aluminum oxide film of the present invention includes the following steps (A), (B) and (C).
  • C A step of heating the base material on which the coating film is formed at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film.
  • R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.
  • the organoaluminum compound represented by the general formula (6) is partially hydrolyzed in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound.
  • linear or branched alkyl group having 1 to 4 carbon atoms represented as R 1 in the organoaluminum compound represented by the general formula (6) include a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples thereof include n-butyl group, isobutyl group, sec-butyl group and tert-butyl group.
  • R 1 is preferably a compound having 1, 2, 3 or 4 carbon atoms.
  • the compound represented by the general formula (6) is particularly preferably an ethyl group in which R 1 has 2 carbon atoms.
  • the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 2 and R 3 is the same as R 1 described above.
  • linear or branched alkoxyl group having 1 to 7 carbon atoms represented by R 2 and R 3 in the organoaluminum compound represented by the general formula (6) include a methoxy group, an ethoxy group, and an isopropoxy group. N-butoxy group, sec-butoxy group, t-butoxy group, phenoxy group, methoxyethoxy group, and the like.
  • Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, and an isobutyryloxy group.
  • the compound represented by the general formula (6) is preferably trimethylaluminum, triethylaluminum, diethylaluminum ethoxide, triisobutylaluminum, or tri-n-butylaluminum because it is inexpensive and easily available.
  • Trimethylaluminum, triethylaluminum, diethylaluminum ethoxide, and triisobutylaluminum are preferred because of their large use as a polymerization promoter and easy to obtain. Triethylaluminum, which is easily available, is preferred.
  • triethylaluminum suitable for the present invention contains an n-butyl group, hydrogen, etc. in addition to the ethyl group which is the majority of the alkyl groups in R 1 , R 2 and R 3 . Can use these without problems.
  • the partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound.
  • the coating step (B) and the heating step (C) performed under an inert gas atmosphere substantially containing no oxygen source such as moisture or oxygen are favorable. It is difficult to form and coat an aluminum oxide film with quality (transparent and good adhesion to a substrate).
  • the molar ratio of water to the organoaluminum compound exceeds 1.3, a gel-like substance that is insoluble in the organic solvent is precipitated, which hinders the formation of a homogeneous aluminum oxide film.
  • the molar ratio of water to the organoaluminum compound is preferably in the range of 0.4 to 1.25.
  • the composition for forming and coating an aluminum oxide film obtained by hydrolyzing an organoaluminum compound within the range of the amount of water added is excellent in quality (transparent and transparent) by coating and heating in an inert gas atmosphere.
  • An aluminum oxide film having good adhesion to the substrate can be formed.
  • the inert gas atmosphere is an atmosphere made of an inert gas that does not substantially contain an oxygen source such as moisture and oxygen.
  • the atmosphere of moisture and oxygen is 1000 ppm or less, preferably 400 ppm or less. means.
  • the amount of water in the inert gas atmosphere can be controlled by the dew point temperature.
  • inert gas For example, helium, argon, nitrogen etc. can be mentioned. Among these, nitrogen is particularly preferable in terms of cost.
  • the organic solvent used for the preparation of the partial hydrolyzate is not particularly limited as long as it has solubility in the organoaluminum compound represented by the general formula (6), and examples thereof include an electron donating organic solvent and a hydrocarbon compound. be able to.
  • the organic solvent those having solubility in water can be used, and organic solvents having solubility in water and those having low solubility in water can be used in combination.
  • the organic solvent can be an electron donating organic solvent, a hydrocarbon compound, or a mixture thereof.
  • Examples of electron donating organic solvents include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme And ether solvents such as triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine.
  • 1,2-diethoxyethane, tetrahydrofuran, and dioxane are preferable.
  • the hydrocarbon compound is a straight chain, branched hydrocarbon compound or cyclic hydrocarbon compound having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. And aromatic hydrocarbon compounds and mixtures thereof.
  • hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, and hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, and petroleum ether can be used.
  • R 1 , R 2 and R 3 remaining in the composition after partial hydrolysis with water are hydrogen, a linear chain having 1 to 4 carbon atoms
  • alcohols such as methanol, ethanol, n-propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, and diethylene glycol can be used as solvents that can coexist in the composition. It is.
  • the concentration of the compound represented by the general formula (6) in the solution is appropriately determined in consideration of the solubility in an organic solvent and the concentration of the partial hydrolyzate in the obtained partial hydrolyzate composition.
  • a range of 0.1 to 50% by mass is appropriate, and a range of 0.1 to 35% by mass is preferable.
  • the addition or mixing of water can be performed without mixing water with another solvent or after mixing water with another solvent. Depending on the scale of the reaction, water can be added or mixed, for example, over a period of 60 seconds to 10 hours. From the viewpoint that the yield of the partial hydrolyzate is good, it is preferable to add it by dropping water into the organoaluminum compound of the general formula (6) as a raw material.
  • the addition of water can be carried out, for example, without stirring (while standing) or stirring the solution of the compound represented by the general formula (6) and the electron donating organic solvent.
  • any temperature between ⁇ 90 to 150 ° C. can be selected. A temperature of ⁇ 15 to 30 ° C. is preferable from the viewpoint of the reactivity between water and the organoaluminum compound.
  • the hydrolysis reaction between water and the compound represented by the general formula (6) After the addition of water, in order to further proceed the hydrolysis reaction between water and the compound represented by the general formula (6), for example, it is left without stirring (still standing) for 1 minute to 48 hours, Or it can be stirred.
  • the reaction temperature the reaction can be carried out at any temperature between -90 to 150 ° C. A temperature of ⁇ 15 to 80 ° C. is preferable from the viewpoint of obtaining a partial hydrolyzate in a high yield.
  • the pressure in the hydrolysis reaction is not limited. Usually, it can be carried out at normal pressure (atmospheric pressure).
  • the progress of the hydrolysis reaction between water and the compound represented by the general formula (6) is monitored by sampling the reaction mixture, analyzing the sample by NMR or IR, or sampling the generated gas, if necessary. can do.
  • the organic solvent, the organoaluminum compound of the general formula (6) as a raw material, and water can be introduced into the reaction vessel according to any conventional method, and the organoaluminum compound and water can each be mixed with an organic solvent. Can be introduced.
  • the hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is desirable.
  • the organoaluminum compound of the general formula (6) is partially hydrolyzed with water to obtain a product containing a partially hydrolyzed product.
  • the organoaluminum compound of the general formula (6) is trimethylaluminum, triethylaluminum or the like
  • the analysis of the hydrolyzate has been performed for a long time.
  • the results vary depending on the report, and the composition of the product is not clearly specified. Further, the composition of the product can be changed depending on the molar ratio of water, the reaction time, and the like.
  • the main component of the product in the method of the present invention is a partial hydrolyzate, and the partial hydrolyzate is presumed to be a mixture of compounds containing a structural unit represented by the following general formula (7).
  • Q is the same as any of R 1 , R 2 and R 3 in the general formula (6), and m is an integer of 1 to 200.
  • a part or all of the product can be recovered and / or purified by a general method such as filtration, concentration, extraction, column chromatography or the like.
  • a general method such as filtration, concentration, extraction, column chromatography or the like.
  • insoluble matter may be generated.
  • filtration is performed using a filter having a pore size of 3 ⁇ m or less. It is preferable to obtain a partial hydrolyzate-containing composition that is substantially free of insolubles.
  • the partial hydrolyzate (solid content) separated and recovered from the organic solvent by the above method can be dissolved in an organic solvent for film coating formation, which is different from the organic solvent used for the reaction, to obtain a coating composition.
  • the partial hydrolyzate-containing composition that is the reaction product mixture can be used as it is or without any separation from the organic solvent, or the concentration can be adjusted appropriately to obtain a coating composition.
  • hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, petroleum ether, etc. can be raised.
  • ether solvents such as cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme, triglyme, anisole and methoxytoluene
  • amine solvents such as trimethylamine, triethylamine and triphenylamine.
  • organic organics can be used not only alone but also in a mixture of two or more kinds.
  • the composition for forming an aluminum oxide film when R 1 , R 2 , and R 3 remaining in the composition after hydrolysis are alkoxide groups, the composition can be used as a solvent that can coexist in the composition.
  • Alcohols such as methanol, ethanol, n-propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, and diethylene glycol can also be used as the organic solvent for film coating formation.
  • the solid content concentration of the partial hydrolyzate of the partial hydrolyzate-containing composition obtained in the step (A) can be, for example, in the range of 0.1 to 30% by mass.
  • the content can be 1 to 25% by mass, more preferably 0.1 to 15% by mass.
  • the partial hydrolyzate-containing composition obtained in the above step (A) corresponds to the composition for forming an aluminum oxide film of the present invention.
  • the composition for forming an aluminum oxide film of the present invention is based on an aluminum oxide film of good quality (transparent and good adhesion to a substrate) by performing film coating under an inert gas atmosphere. It can be formed on a material.
  • This manufacturing method includes steps (B) and (C). Steps (B) and (C) will be described below.
  • Process (B) The partial hydrolyzate-containing composition obtained in the step (A) is applied to at least a part of the surface of the substrate in an inert gas atmosphere to form a coating film.
  • the coating method on the substrate surface is not particularly limited.
  • spray coating method dip coating method, spin coating method, slit coating method, slot coating method, bar coating method, roll coating method, curtain coating method, spray heat
  • Conventional methods such as a decomposition method, an electrostatic coating method, an ink jet method, and a screen printing method can be employed.
  • the spray pyrolysis method and the electrostatic coating method are methods in which coating and film formation can be performed simultaneously while heating the substrate. Therefore, the solvent can be dried in parallel with the application, and heating for solvent drying may not be necessary depending on the conditions. Further, depending on the conditions, in addition to drying, the reaction of the partially hydrolyzed product with the aluminum oxide may proceed at least partially. Therefore, the aluminum oxide film may be formed more easily by heating in the subsequent step (C).
  • the heating temperature of the substrate at the time of application and film formation in the spray pyrolysis method can be, for example, in the range of 20 to 400 ° C., preferably 50 to 400 ° C. In particular, when a low heat resistant substrate such as a resin is used as the substrate, it can be carried out in the range of 20 to 350 ° C., and even lower heat resistant in the range of 20 to 250 ° C.
  • the partial hydrolyzate-containing composition is applied in an inert gas atmosphere so that 1) the film formation temperature is lowered, 2) the adhesion to the substrate, and 3) the oxide formation state (for example, it becomes possible to form an aluminum oxide film that satisfies all of the transparency and homogeneity of the oxide film.
  • the inert gas atmosphere is an atmosphere made of an inert gas that substantially does not contain an oxygen source such as moisture and oxygen.
  • moisture and oxygen each mean an atmosphere of 1000 ppm or less, preferably 400 ppm or less.
  • the amount of water in the inert gas atmosphere can be controlled by the dew point temperature.
  • the Al-Q site may remain unreacted and remain in the film. The coexistence of moisture and oxygen within a range where desired physical properties such as film homogeneity are not impaired is allowed.
  • the moisture and oxygen in the inert gas atmosphere can each be 1000 ppm or less, preferably 400 ppm or less.
  • water or oxygen in the inert gas atmosphere is larger than the above-mentioned values, particularly in the situation where the solvent remains during this coating or subsequent solvent drying, the reaction between the partial hydrolyzate and water and oxygen Is excessively progressing, and deposits are pulverized before film formation, and the transparency of the film is impaired, resulting in poor homogeneity and adhesion of the obtained aluminum oxide film.
  • the inert gas is not particularly limited, and examples thereof include helium, argon, nitrogen, and the like. Among these, nitrogen is particularly preferable in terms of cost.
  • the pressure at the time of application can be carried out under atmospheric pressure, under pressure, or under reduced pressure. However, it is usually preferable to carry out under atmospheric pressure because the apparatus is simple and inexpensive.
  • FIG. 2-1 shows a spray film forming apparatus as an example of a film forming apparatus by spray coating that can be used in the present invention.
  • 1 is a spray bottle filled with a coating solution
  • 2 is a substrate holder
  • 3 is a spray nozzle
  • 4 is a compressor
  • 5 is a substrate.
  • the base material is placed on the base material holder 2 and heated to a predetermined temperature using a heater if necessary, and then compressed in a inert gas atmosphere from a spray nozzle 3 disposed above the base material.
  • the active gas and the coating solution are simultaneously supplied, the coating solution is atomized and sprayed, and the partially hydrolyzate-containing composition of the present invention is applied onto the substrate (step (B)).
  • the spray coating of the coating liquid is preferably performed by discharging the coating liquid from the spray nozzle so that the size of the liquid droplets is in a range of 30 ⁇ m or less in consideration of adhesion to the substrate, easiness of evaporation of the solvent, and the like. .
  • the distance between the spray nozzle and the substrate should be within 50 cm. It is preferable from the viewpoint that a coating film of the product-containing composition can be formed.
  • the substrate can be supplied by simultaneously supplying the compressed inert gas and the coating liquid from the spray nozzle 3 ⁇ disposed above the substrate, and atomizing and spraying the coating liquid.
  • a coating film of the partially hydrolyzate-containing composition can be formed thereon.
  • coating in the method of this invention can be implemented under pressurization or pressure reduction, it is preferable not to carry out at an atmospheric pressure but simple on an apparatus and it does not cost.
  • the base material for forming the aluminum oxide film in the above production method is not limited in material, shape, dimensions, and the like.
  • the material include inorganic substances such as glass, metal, and ceramics, resinous base materials such as plastic, organic substances such as paper and wood, and composites thereof.
  • These substrates are not particularly limited as long as they do not interfere with the formation of the aluminum oxide film.
  • glass such as quartz glass, borosilicate glass, soda glass, alkali-free, lead glass, or sapphire An oxide etc.
  • the metal include stainless steel such as SUS304 and SUS316, aluminum, iron, copper, titanium, silicon, nickel, gold, silver, and alloys containing these.
  • Ceramics include oxides such as alumina, silica, zirconia and titania, nitrides such as nitrogen boride, aluminum nitride, silicon nitride, titanium nitride and gallium nitride, carbon compounds such as silicon carbide, and composites containing these. Can be mentioned.
  • polymers that form plastics include polyesters (eg, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly (meth) acrylic (eg, polymethyl methacrylate (PMMA)), polycarbonate (PC), and polyphenylene.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA polymethyl methacrylate
  • PC polycarbonate
  • polyphenylene polyphenylene
  • PPS polystyrene
  • PVA polyvinyl alcohol
  • PVC polyvinyl chloride
  • PVC polyvinylidene chloride
  • PE polyethylene
  • PP polypropylene
  • COP cyclic polyolefin
  • EVA ethylene-vinyl acetate copolymer
  • Polyimide Polyamide, polyaramid, polyethersulfone (PES), polyurethane, triacetate, triacetylcellulose (TAC), cellophane fluororesin (for example, polytetrafluoroethylene) Rene (PTFE), Polychlorotrifluoroethylene (PCTFE), Polyvinylidene fluoride (PVDF), Polyvinyl fluoride (PVF), Perfluoroalkoxy fluororesin (PFA), Tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Ethylene / tetrafluoroethylene copolymer (ETFE
  • these base materials for example, a three-dimensional structure having a film shape, a plate shape, a three-dimensional arbitrary shape, or a composite thereof can be used.
  • these equipments may be transparent, translucent, or opaque.
  • a film-like material can be exemplified by inorganic materials such as thin glass and organic materials such as plastic films as the polymer substrate.
  • the substrate When the substrate is a plastic film, it may be an unstretched film or a stretched film depending on the type of polymer.
  • a polyester film such as a PET film is usually a biaxially stretched film, and a PC film, a triacetate film, a cellophane film and the like are usually unstretched films.
  • polymer substrates such as metals, metal oxides, nitrides, carbon compound wafers and sheets, and polyimide, polyamide, aramid, carbon fiber, PP, PE, PET sheets and non-woven fabrics. I can do it.
  • Application film formation is also possible for functional materials such as electronic device films.
  • step (C) the base material on which the coating film has been formed is heated at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film.
  • the coating liquid is applied to the substrate surface, the substrate is brought to a predetermined temperature, and after drying the solvent or simultaneously with drying, the aluminum oxide film is formed by heating at a predetermined temperature.
  • the drying of the solvent has already substantially progressed partially in the step (B). In particular, when the application in the step (B) is performed at a relatively high temperature, the drying of the solvent in the step (B) may be almost completed.
  • the conditions for drying the solvent can be set as appropriate according to the type and boiling point (vapor pressure) of the coexisting organic solvent.
  • the temperature for drying the solvent can be, for example, in the range of 20 to 350 ° C., when the boiling point of the solvent is 200 ° C. or less, 20 to 250 ° C., and when the boiling point of the solvent is 150 ° C. or less, Alternatively, the drying time can be 20 to 200 ° C., and the drying time can be usually 0.2 to 300 minutes, preferably 0.5 to 120 minutes.
  • These conditions can also be considered when the solvent is at least partially dried in step (B).
  • the solvent drying temperature and the heating temperature for the subsequent aluminum oxide film formation can be made the same, and the solvent drying and the aluminum oxide film formation can be performed at the same time.
  • the heating temperature is normally set.
  • the heating temperature for forming the aluminum oxide film after drying the solvent is, for example, in the range of 20 to 400 ° C., more preferably in the range of 20 to 350 ° C.
  • the treatment at this temperature is performed at least once. be able to.
  • the heating time at this heating temperature is usually 0.2 to 300 minutes, preferably 0.5 to 120 minutes.
  • the heating time can be appropriately determined in consideration of the formation state of the aluminum oxide film by heating.
  • a heat treatment at a low temperature of 350 ° C. or lower can be used in the drying of the solvent and the subsequent heat treatment.
  • Electrode and semiconductor formed by film formation in the case of using a substrate having a low density organic substances such as metals, oxides, nitrides, carbon compounds, etc., organic substances such as low molecules and polymers, and composites of the aforementioned inorganic substances and organic substances.
  • This step (C) is also performed in an inert gas atmosphere.
  • the inert gas atmosphere is an atmosphere made of an inert gas that substantially does not contain an oxygen source such as moisture and oxygen.
  • moisture and oxygen each mean an atmosphere of 1000 ppm or less, preferably 400 ppm or less.
  • the amount of water in the inert gas atmosphere can be controlled by the dew point temperature.
  • step (C) when there is no moisture or oxygen, the Al-Q site becomes unreacted in the structure of the partial hydrolyzate represented by general formula (7).
  • the moisture and oxygen in the inert gas atmosphere can each be 1000 ppm or less, preferably 400 ppm or less.
  • the reaction between the partial hydrolyzate and the moisture and oxygen it is not preferable because it progresses excessively and the homogeneity and adhesiveness of the obtained aluminum oxide film are deteriorated such that the deposit is pulverized before film formation or the transparency of the film is impaired.
  • the aluminum oxide film adhered on the substrate surface is formed by heating at 400 ° C. or lower in the step (C).
  • the thickness of the aluminum oxide film is not particularly limited, but can be practically 0.001 to 5 ⁇ m, usually 0.01 to 5 ⁇ m.
  • a film having a film thickness in the above range can be appropriately produced by repeating the application (drying) heating once or more.
  • a film having a thickness of 5 ⁇ m or more can be formed by repeating the number of times of application and / or lengthening the application time.
  • the solvent drying and heating in any of the methods that can be used in the present invention can be carried out under pressure or under reduced pressure, but it is preferable to carry out at atmospheric pressure because the apparatus is simple and inexpensive.
  • the “aluminum oxide” obtained by the production method of the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more. In addition to aluminum and oxygen, hydrogen and carbon may be contained.
  • the “aluminum oxide film” produced by heating at a temperature of 400 ° C. or lower in the step (C) of the present invention is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
  • the amorphous aluminum oxide film formed in the step (C) can be improved in crystallinity by being separately or subsequently heated to a temperature exceeding 400 ° C.
  • crystallization can also be performed by heat treatment at a heating temperature / treatment atmosphere in which a generally known aluminum oxide at 1000 ° C. or higher is crystallized into crystalline alumina or the like.
  • the aluminum oxide film obtained in the step (C) may further include hydrogen, argon, oxygen, or the like under an oxidizing gas atmosphere such as moisture, oxygen, or ozone, or a reducing gas atmosphere such as hydrogen, if necessary. It is also possible to improve crystallinity in a plasma atmosphere.
  • the partial hydrolyzate-containing composition obtained in the step (A) of the production method of the present invention comprises (a) partial hydrolysis with water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound.
  • This composition can be used for forming an aluminum oxide film in which film formation is performed in an inert gas atmosphere. If film formation (corresponding to step (B) and step (C)) by application and heating in an inert gas atmosphere is performed, even if the film formation temperature is low by simply applying and heating, adhesion to the substrate It is possible to form an aluminum oxide film that is excellent in properties and has a good oxide formation state.
  • Adhesion to the substrate is also high in the aluminum oxide film itself obtained using the composition for forming an aluminum oxide film of the present invention, and is usually good even in a substrate in which direct oxide film formation is difficult. Adhesiveness can be obtained. However, if necessary, a method such as undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination, etc. is used to increase the adhesion of the oxide formed on a generally known substrate. It is also possible to form a coating film.
  • Al oxide film By using the composition for forming an aluminum oxide film according to the present invention, it is excellent in adhesion to a substrate even when the film forming temperature is low by simply applying and heating in the above-mentioned inert gas atmosphere. An aluminum oxide film having a good formation state can be formed.
  • the “aluminum oxide” in the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more.
  • the “aluminum oxide film” produced at 400 ° C. or lower is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
  • These aluminum oxide films can be crystallized by a method such as heating at a high temperature of 1000 ° C. or higher, which is generally known by post-treatment after film formation, if the heat-resistant temperature of the substrate or the like is allowed. Is possible.
  • the above heating is further performed in an oxidizing gas atmosphere such as oxygen or in a plasma atmosphere such as argon or oxygen to promote the formation of aluminum oxide.
  • an oxidizing gas atmosphere such as oxygen or in a plasma atmosphere such as argon or oxygen to promote the formation of aluminum oxide.
  • crystallinity can be improved.
  • light irradiation such as ultraviolet rays and microwaves generally used for the purpose of removing carbon components such as residual organic substances in the aluminum oxide film obtained in the present invention and improving the film quality of the aluminum oxide film, etc. Etc. may be performed.
  • the aluminum oxide film is water added to obtain a partial hydrolyzate from the organic aluminum compound in the partial hydrolyzate of the organic alkylaluminum compound contained in the composition for producing an aluminum oxide film.
  • the properties differ depending on the molar ratio, the concentration of the partial hydrolyzate or the coexisting organic solvent, the film forming conditions and methods, etc. Transparent and opaque materials can be obtained, and the thickness of the aluminum oxide film is not particularly limited, but practically 0.001 to 10 ⁇ m, usually 0.01 to 5 ⁇ m can be obtained. It is possible to obtain a film having high adhesion to a base material or resin.
  • the step (B) of applying the composition to the surface of the substrate and the step (C) of heating the obtained coating product are performed once or twice or more in an inert gas atmosphere.
  • the coating and heating operation of the obtained coated product can be appropriately performed as many times as necessary to obtain desired physical properties such as insulation and heat resistance, but preferably 1 to 50 times, more preferably 1 time. It can be appropriately carried out in the range of 30 times, more preferably 1-10 times.
  • the manufactured aluminum oxide film is excellent in adhesion to the base material and has a good oxide formation state. Therefore, a composite (article) in which an aluminum oxide film is attached to a base material, or a composite film (article) in which a composite film having an aluminum oxide film and a layer other than an aluminum oxide film is attached to the base material is used. Can do.
  • the composite film can be used as a functional film containing aluminum oxide.
  • alumina sheet for electronic materials production of aluminum oxide film, production of catalyst carrier, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, abrasion resistance Etc., and can be used for applications such as ceramic production binders.
  • protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high Apply as a part or all of a functional film capable of imparting various functionalities to a substrate, such as an aluminum oxide film used in applications such as a hardness film, an optical member, and a ceramic manufacturing binder. Can do.
  • these aluminum oxide films and base materials having functional films containing aluminum oxide include heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, antireflection films, and glass. It can be used as an antireflection material, a high hardness film or a material.
  • the method for producing an article having an aluminum oxide film of the present invention includes the following steps (A) and (B).
  • Step (A) A step of spray-coating an organic solvent solution of an organoaluminum compound represented by the following general formula (6) or a partial hydrolyzate thereof onto at least a part of the surface of the substrate to form a coating film, (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  • (B) The base material on which the coating film has been formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form an aluminum oxide film from the coating film. Forming.
  • step (A) an organic solvent solution of the organoaluminum compound represented by the general formula (6) is spray-coated on at least a part of the surface of the substrate to form a coating film (hereinafter referred to as step (A1) and Or an organic solvent solution of a partial hydrolyzate of the organoaluminum compound represented by the general formula (6) by spray coating on at least a part of the surface of the substrate (hereinafter referred to as the step ( A2)).
  • the organoaluminum compound represented by the general formula (6) is the same as the organoaluminum compound represented by the general formula (6) in the second embodiment of the present invention, and the description in the second embodiment of the present invention is referred to. That.
  • alkyl aluminum such as triisobutylaluminum, tri-n-butylaluminum, trihexylaluminum, and trioctylaluminum, aluminum sec-butoxide, alkoxide such as aluminum tert-butoxide,
  • An aluminum compound such as a ⁇ -diketonato complex such as aluminum acetylacetonate or an inorganic salt such as aluminum acetate or aluminum hydroxide may coexist in the solution used in the present invention.
  • the solution for spray coating used in step (A1) is a solution in which an organoaluminum compound represented by formula (6) is dissolved in an organic solvent. Since the organoaluminum compound represented by the general formula (6) is used without being hydrolyzed in the step (A1), R 1 is preferably a linear or branched alkyl group having 1 to 3 carbon atoms. It is.
  • the organic solvent is suitably an organic solvent having an electron donating property from the viewpoint of solubility in the organoaluminum compound represented by the general formula (6).
  • the organic solvent which has an electron donating property should just be solubility with respect to the organoaluminum compound represented by General formula (6).
  • Examples of electron donating organic solvents include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n -propyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme And ether solvents such as triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine.
  • 1,2-diethoxyethane, tetrahydrofuran, and dioxane are preferable.
  • a hydrocarbon compound can be exemplified as a solvent that can coexist in the electron donating organic solvent.
  • a mixture of the electron donating organic solvent and the hydrocarbon compound is also used as the organic solvent. it can.
  • the hydrocarbon compound is a straight chain, branched hydrocarbon compound or cyclic hydrocarbon compound having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. And aromatic hydrocarbon compounds and mixtures thereof.
  • hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, and octadecane.
  • Aliphatic hydrocarbons such as eicosan, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, trimethyl
  • aromatic hydrocarbons such as benzene
  • hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, and petroleum ether.
  • the concentration of the organoaluminum compound represented by the general formula (6) in the spray coating solution used in the step (A1) is in the range of 0.1 to 35% by mass from the viewpoint of easy control of reactivity. It is appropriate to do.
  • the solution for spray coating used in step (A2) is an organic solvent solution of a partially hydrolyzed organoaluminum compound represented by general formula (6).
  • the organoaluminum compound represented by the general formula (6) is as described above.
  • the organic solvent any organic solvent such as a hydrocarbon compound, an electron-donating organic solvent, and a mixture thereof can be used.
  • the hydrocarbon compound and the electron donating organic solvent are the same as those described in the step (A1).
  • the partial hydrolyzate was obtained by partially hydrolyzing the organoaluminum compound in an organic solvent using water having a molar ratio of 0.7 or less with respect to the organoaluminum compound represented by the general formula (6). It is a thing. If it is a partial hydrolyzate using water having a molar ratio of 0.7 or less, it is spray-coated in the same manner as the spray coating solution (organoaluminum compound not partially hydrolyzed) used in step (A1). By undergoing B), a desired aluminum oxide film can be manufactured. In the partial hydrolysis, water is added to a solution obtained by dissolving the compound represented by the general formula (6) in an organic solvent, or the organic solvent solution of the compound represented by the general formula (6) is mixed with water.
  • the amount of water added is such that the molar ratio with respect to the organoaluminum compound is in the range of 0.6 or less, as with the spray coating solution (organoaluminum compound not partially hydrolyzed) used in step (A1). It is preferable because it can be sprayed.
  • the amount of water to be added since a partial hydrolysis step is added, the addition of a small amount of water only complicates the operation. For example, 0.05 or more, preferably 0.1 or more. can do.
  • the concentration of the compound represented by the general formula (6) in the solution is appropriately determined in consideration of the solubility in an organic solvent and the concentration of the partial hydrolyzate in the resulting partial hydrolyzate, For example, a range of 0.1 to 50% by mass is appropriate, and a range of 0.1 to 35% by mass is preferable.
  • the addition or mixing of water can be performed without mixing water with another solvent or after mixing water with another solvent. Depending on the scale of the reaction, water can be added or mixed, for example, over a period of 60 seconds to 10 hours. From the viewpoint that the yield of the partial hydrolyzate is good, it is preferable to add it by dropping water into the organoaluminum compound of the general formula (6) as a raw material.
  • the addition of water is carried out, for example, without stirring (in a standing state) or stirring the solution of the compound represented by the general formula (6) and an organic solvent, for example, an electron-donating organic solvent. Can do.
  • any temperature between ⁇ 90 to 150 ° C. can be selected.
  • a temperature of ⁇ 15 to 30 ° C. is preferable from the viewpoint of the reactivity between water and the organoaluminum compound.
  • the hydrolysis reaction between water and the compound represented by the general formula (6) After the addition of water, in order to further proceed the hydrolysis reaction between water and the compound represented by the general formula (6), for example, it is left without stirring (still standing) for 1 minute to 48 hours, Or it can be stirred.
  • the reaction temperature the reaction can be carried out at any temperature between -90 to 150 ° C. A temperature of ⁇ 15 to 80 ° C. is preferable from the viewpoint of obtaining a partial hydrolyzate in a high yield.
  • the pressure in the hydrolysis reaction is not limited. Usually, it can be carried out at normal pressure (atmospheric pressure).
  • the progress of the hydrolysis reaction between water and the compound represented by the general formula (6) is monitored by sampling the reaction mixture and analyzing the sample by NMR or IR, or sampling the generated gas, if necessary. can do.
  • the organic solvent, the organic aluminum compound of the general formula (6) as a raw material, and water can be introduced into the reaction vessel according to any conventional method, and the organic aluminum compound and water are also introduced as a mixture with the organic solvent. be able to.
  • the hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is desirable.
  • the organoaluminum compound of the general formula (6) is partially hydrolyzed with water to obtain a product containing a partially hydrolyzed product.
  • the organoaluminum compound of the general formula (6) is trimethylaluminum, triethylaluminum or the like
  • the analysis of the hydrolyzate has been performed for a long time.
  • the results vary depending on the report, and the composition of the product is not clearly specified. Further, the composition of the product can be changed depending on the molar ratio of water, the reaction time, and the like.
  • the main component of the product in the method of the present invention is a partial hydrolyzate, and the partial hydrolyzate is a compound containing a structural unit represented by the following general formula (7), as in the second embodiment of the present invention.
  • a part or all of the product can be recovered and / or purified by a general method such as filtration, concentration, extraction, column chromatography or the like.
  • a general method such as filtration, concentration, extraction, column chromatography or the like.
  • insoluble matter may be generated.
  • filtration is performed using a filter having a pore size of 3 ⁇ m or less. It is preferable to obtain a partial hydrolyzate-containing composition that is substantially free of insolubles.
  • the partial hydrolyzate (solid content) separated and recovered from the organic solvent by the above method can be dissolved in an organic solvent for spray application different from the organic solvent used for the reaction to form a composition for spray application.
  • the partial hydrolyzate-containing product which is a reaction product mixture, can be used as a spray coating solution as it is or without adjustment from the organic solvent.
  • hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, petroleum ether, etc. can be raised.
  • organic solvents such as methyl ether, tetrahydrofuran, dioxane, glyme, diglyme, triglyme, anisole and methoxytoluene
  • amine solvents such as trimethylamine, triethylamine and triphenylamine.
  • organic solvents can be used not only alone but also in a mixture of two or more.
  • R 1 , R 2 , R 3 remaining in the solution after hydrolysis are alkoxide groups
  • methanol, ethanol, n Alcohols such as propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, diethylene glycol and the like can also be used as the organic solvent for spray coating.
  • the solid content concentration of the partial hydrolyzate of the partial hydrolyzate-containing composition used in step (A2) can be, for example, in the range of 0.1 to 30% by mass.
  • the content can be 1 to 25% by mass, more preferably 0.1 to 15% by mass.
  • the partial hydrolyzate-containing spray coating solution used in the above step (A2) corresponds to the aluminum oxide film coating forming composition of the present invention.
  • Spray coating is common to the step (A1) and the step (A2).
  • the spray coating uses a spray coating solution, and spray coating is performed on at least a part of the surface of the substrate.
  • spray coating can be carried out at room temperature (room temperature), but can also be carried out under heating as described later. Further, spray coating is performed in an inert gas atmosphere containing 0.5 to 30 mol% of water.
  • the coating and spraying cloth is performed in an inert gas atmosphere because the organoaluminum compound and / or the partial hydrolyzate contained in the spray coating solution reacts with moisture in the atmosphere and gradually decomposes, or an aluminum oxide film This is because the spray coating solution handles the viewpoint of facilitating the control of film formation under the condition where water coexists, and a flammable solvent.
  • the inert gas is not particularly limited, and examples thereof include helium, argon, and nitrogen. Among these, nitrogen is particularly preferable in terms of cost.
  • the pressure at the time of application can be carried out under atmospheric pressure, under pressure, or under reduced pressure. However, it is usually preferable to carry out under atmospheric pressure because the apparatus is simple and inexpensive.
  • an inert gas atmosphere containing 0.5 to 30 mol% of water is used as the inert gas atmosphere.
  • spray coating, spray pyrolysis, electrostatic coating, ink jet, and other oxygen sources such as water that coexist in the space until the spray coating solution reaches the substrate by spraying.
  • a spray coating technique is used in which aluminum oxide can be easily formed by the reaction with NO.
  • the water content in the inert gas atmosphere is preferably 1 mol% to 25 mol%.
  • this inert gas containing water include, for example, an inert gas containing 0.5 mol% of water, an inert gas having a dew point of ⁇ 2 ° C. and a relative humidity at 21 ° C. of 21%.
  • an inert gas containing 1 mol% of water an inert gas having a dew point of 8 ° C. and a relative humidity at 21 ° C. of 43% can be exemplified, and an inert gas containing 25 mol% of water
  • the gas include those containing 65 ° C. saturated water vapor.
  • the inert gas is not particularly limited, and examples thereof include helium, argon, and nitrogen. Among these, nitrogen is particularly preferable in terms of cost.
  • Spray coating on the substrate surface can be carried out under pressure or under reduced pressure, but it is preferred to carry out at atmospheric pressure because the apparatus is simple and preferable.
  • the spray coating method for example, spray coating, spray pyrolysis method, electrostatic coating method, ink jet method or the like can be used.
  • the spray pyrolysis method and electrostatic coating method are methods in which coating and film formation can be performed simultaneously while heating the substrate. Therefore, the solvent can be dried in parallel with the coating. In some cases, heating is not necessary.
  • the reaction of the partial hydrolyzate of the organoaluminum compound with aluminum oxide may proceed at least partially. Therefore, an aluminum oxide film can be formed more easily by heating at a predetermined temperature, which is a subsequent process.
  • step (B) the base material on which the coating film is formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to remove aluminum from the coating film. An oxide film is formed.
  • the inert gas atmosphere containing 0.5 to 30 mol% of water is the same as that described in the step (A).
  • the heating temperature can be appropriately selected according to the composition of the coating solution, the spray coating method, and the type of the substrate. However, it is performed at a temperature of 400 ° C. or lower. Depending on the type of substrate, an aluminum oxide film can be formed by heating at a temperature exceeding 400 ° C., but in the present invention, sufficiently good physical properties are obtained by heating at a temperature of 400 ° C. or lower. An aluminum oxide film can be formed.
  • the atmosphere and / or the substrate can be heated also during the coating in the step (A).
  • the application and heating temperatures are the same because the operation is simple.
  • the atmosphere at the time of application and film formation in spray application and / or the heating temperature of the substrate can be, for example, in the range of 50 to 400 ° C., preferably 100 to 400 ° C.
  • film formation when using a low heat-resistant substrate such as a resin as the substrate, inorganic materials such as metals, oxides, nitrides, and carbon compounds, organic materials such as low molecules, polymers, and the like described above It is possible to form a film when there is a problem in the process of applying heat or high energy to functional materials such as electronic device films such as electrodes, semiconductors, and insulators, which are formed from composites of inorganic and organic materials.
  • the temperature is preferably in the range of 50 to 350 ° C, more preferably in the range of 100 to 300 ° C.
  • FIG. 3A shows a spray film forming apparatus as an example of a film forming apparatus by spray coating that can be used in the present invention.
  • 1 is a spray bottle filled with a coating liquid
  • 2 is a substrate holder
  • 4 is a compressor
  • 5 is a substrate
  • Spray coating is performed by placing the base material on the base material holder 2 and heating it to a predetermined temperature using a heater if necessary, and then placing the spray in an inert gas atmosphere (under atmospheric pressure) above the base material.
  • the compressed inert gas and the coating liquid are simultaneously supplied from the nozzle 3, the coating liquid is atomized and sprayed, and water is introduced from the water vapor introducing tube 6 to coexist in the film forming atmosphere, so that aluminum is formed on the substrate.
  • An oxide film thin film can be formed.
  • spray coating is performed under heating, an aluminum oxide film can be formed without additional heating.
  • the spray coating of the coating liquid is preferably performed by discharging the coating liquid from the spray nozzle so that the size of the liquid droplets is in a range of 30 ⁇ m or less in consideration of adhesion to the substrate, easiness of evaporation of the solvent, and the like. . Also, considering that the organic solvent evaporates somewhat from the spray nozzle to the substrate and the size of the droplets decreases, the distance between the spray nozzle and the substrate should be within 50 cm. It is preferable from a viewpoint that a physical film can be manufactured.
  • the film formation method by spray application such as spray pyrolysis method or electrostatic application method is a method in which application and film formation can be performed at the same time while heating the substrate. Therefore, the organic solvent can be dried in parallel with the application. Depending on the conditions, heating for solvent drying may not be necessary. Furthermore, depending on conditions, in addition to drying, the reaction of the partial hydrolyzate of the organoaluminum compound with aluminum oxide may proceed at least partially. Therefore, an aluminum oxide film can be formed more easily by heating at a predetermined temperature, which is a subsequent process.
  • the heating temperature of the substrate at the time of application and film formation in the spray pyrolysis method can be, for example, in the range of 50 to 400 ° C., preferably 100 to 400 ° C. In particular, when a low heat resistant base material such as a resin is used as the base material, it can be carried out in the range of 50 to 350 ° C., preferably in the range of 50 to 350 ° C.
  • the substrate is brought to a predetermined temperature if necessary, the solvent is dried, and then heated at the predetermined temperature in the step (B).
  • An aluminum oxide film can also be formed.
  • the drying temperature of the organic solvent in the step (A) can be, for example, in the range of 20 to 200 ° C., and can be set as appropriate according to the type of the organic solvent that coexists.
  • the heating temperature for forming the aluminum oxide film after drying the solvent is as described above.
  • the solvent drying temperature and the heating temperature for the subsequent aluminum oxide film formation can be made the same, and the solvent drying and the aluminum oxide film formation can be performed simultaneously. Is set to the heating temperature in the above-described range in the step (B).
  • the spray coating and heating in the present invention can be carried out under pressure or reduced pressure, but it is preferable to carry out at atmospheric pressure because the apparatus is simple and does not cost.
  • Examples of materials used as a base material for forming an aluminum oxide film in the manufacturing method include inorganic materials such as glass, metal and ceramics, polymer base materials such as plastic, organic materials such as paper and wood, and composites thereof. is there.
  • the solution for producing an aluminum oxide film of the present invention and performing film formation by spray application even when the film formation temperature is low simply by applying and heating, the adhesion to the substrate is excellent, and the state of oxide formation is A good aluminum oxide film can be formed.
  • the aluminum oxide film obtained by using the aluminum oxide production solution of the present invention itself is high in adhesion to equipment, and usually has good adhesion even on a substrate on which direct film formation of oxide is difficult.
  • a method for enhancing the adhesion of the oxide formed on a generally known substrate such as undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination, etc. It is also possible to apply and form a film.
  • Al oxide and aluminum oxide film Using the solution for producing an aluminum oxide film of the present invention and performing film formation by spray application, even when the film formation temperature is low simply by applying and heating, the adhesion to the substrate is excellent, and the state of oxide formation is A good aluminum oxide film can be formed.
  • the “aluminum oxide” in the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more. Say. In addition to aluminum and oxygen, hydrogen and carbon may be contained. Further, in the present invention, the “aluminum oxide film” produced at 500 ° C. or lower is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
  • These aluminum oxide films can be crystallized by a method such as heating at a high temperature of 1000 ° C. or higher, which is generally known by post-treatment after film formation, if the heat-resistant temperature of the substrate or the like is allowed. Is possible. That is, if necessary, after the aluminum oxide film is formed in the step (B), the aluminum oxide film is further heated in an oxidizing gas atmosphere such as oxygen or in a plasma atmosphere such as argon or oxygen. It is also possible to promote the formation of an object or improve the crystallinity. Furthermore, light irradiation such as ultraviolet rays and microwaves generally used for the purpose of removing carbon components such as residual organic substances in the aluminum oxide film obtained in the present invention and improving the film quality of the aluminum oxide film, etc. Etc.
  • the thickness of the aluminum oxide film is not particularly limited, but can be, for example, in the range of 0.005 to 5 ⁇ m, and more practically in the range of 0.001 to 5 ⁇ m.
  • a film having a film thickness in the above range can be appropriately produced by repeating the application (drying) heating once or more.
  • a film having a thickness of 5 ⁇ m or more can be formed by repeating the number of times of application or extending the application time.
  • the step (A) of applying the spray coating solution to the substrate surface and the step (B) of heating the obtained coated product are performed once or twice or more in an inert gas atmosphere. Including that.
  • the coating and heating operation of the obtained coated product can be appropriately performed as many times as necessary to obtain desired physical properties such as insulation and heat resistance, but preferably 1 to 50 times, more preferably 1 time. It can be appropriately carried out in the range of 30 times, more preferably 1-10 times.
  • the spray coating method used in the present invention it is possible to obtain a translucent and opaque one from a transparent one having a high transmittance. A film having high adhesion to a substrate such as glass or resin can be obtained.
  • the manufactured aluminum oxide film is excellent in adhesion to the base material and has a good oxide formation state. Therefore, a composite (article) in which an aluminum oxide film is attached to a base material, or a composite film (article) in which a composite film having an aluminum oxide film and a layer other than an aluminum oxide film is attached to the base material is used. Can do.
  • the composite film can be used as a functional film containing aluminum oxide.
  • alumina sheet for electronic materials production of aluminum oxide film, production of catalyst carrier, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, abrasion resistance Etc., and can be used for applications such as ceramic production binders.
  • protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high Apply as a part or all of a functional film capable of imparting various functionalities to a substrate, such as an aluminum oxide film used in applications such as a hardness film, an optical member, and a ceramic manufacturing binder. Can do.
  • these aluminum oxide films and base materials having functional films containing aluminum oxide include heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, antireflection films, and glass. It can be used as an antireflection material, a high hardness film or a material.
  • composition for producing aluminum oxide film includes a composition for forming an aluminum oxide film.
  • a first aspect of this composition is a film-forming composition comprising an organic solvent solution of an organoaluminum compound represented by the general formula (6), wherein the composition has a film coating formation of 0.5.
  • the composition as described above, which is used for forming an aluminum oxide film which is carried out in an inert gas atmosphere containing mol% to 30 mol% of water.
  • a second embodiment of the composition includes a partial hydrolyzate of the organoaluminum compound obtained by partially hydrolyzing the organoaluminum compound represented by the general formula (6) in an organic solvent.
  • a film-forming composition comprising: (A) The partial hydrolysis is performed using water having a molar ratio to the organoaluminum compound of 0.7 or less, and (b) the composition is formed by coating from 0.5 mol% to 30 mol. It is the said composition which is a thing used for formation of the aluminum oxide film performed in the inert gas atmosphere containing a water
  • composition of the first embodiment is the one described as a spray coating solution in the step (A1).
  • composition of a 2nd aspect is demonstrated as a solution for spray application in a process (A2).
  • the film coating formation performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water, (C1) a step of spray-coating the composition on at least a part of the surface of the substrate in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form a coating film; and (c2) ) Heating the base material on which the coating film is formed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water at a temperature of 400 ° C. or lower to form an aluminum oxide film; Including.
  • the composition of this invention is a composition used in order to form the transparent aluminum oxide film closely_contact
  • a first aspect of the fourth aspect of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms) And an alkylaluminum compound-containing solution containing an organic solvent that has an electron-donating property and does not contain an active hydrogen atom is made into droplets having an average particle diameter of 3 to 30 ⁇ m in the atmosphere.
  • the coating film is formed by applying to the base material, and the formed coating film is heated to an aluminum oxide after drying the organic solvent or in parallel with the drying of the organic solvent. It is a manufacturing method of an aluminum thin film.
  • the alkylaluminum compound-containing solution of the present invention contains an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom as an organic solvent. Can be chemically stabilized.
  • an organic solvent having an electron donating property and not containing an active hydrogen atom is preferable is not clear, but it is presumed that the reactivity to water is made appropriate by the coordination bond of the lone pair of oxygen in the structure to aluminum. Is done.
  • the ratio of the alkylaluminum compound in the solution of the present invention to the organic solvent having an electron-donating property and not containing an active hydrogen atom is on the other hand, it is preferable to contain an organic solvent which has an electron donating property of 1 or more in molar ratio and does not contain an active hydrogen atom.
  • an organic solvent that has an electron donating ratio of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom it suppresses chemical changes such as spontaneous ignition of the solution, and reactivity to water Can be made appropriate.
  • the active hydrogen atom means a highly reactive hydrogen atom bonded to an atom of an element other than a carbon atom such as a nitrogen atom, an oxygen atom, or a sulfur atom among intramolecular hydrogen atoms of an organic compound.
  • Examples of the organic solvent having an electron donating property and containing no active hydrogen atom include diethyl ether, tetrahydrofuran, t-butyl methyl ether, di-n-propyl ether, diisopropyl ether, 1,4-dioxane, 1,3- Ether compounds such as dioxalane, dibutyl ether, cyclopentyl methyl ether, anisole; ethylene glycol dialkyl ether compounds such as 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane; diethylene glycol dimethyl ether, diethylene glycol diethyl Diethylene glycol dialkyl ether compounds such as ether and diethylene glycol dibutyl ether; triethylene glycol dimethyl ether, triethylene glycol diethyl ether, etc.
  • Triethylene glycol dialkyl ether compounds such as propylene glycol dimethyl ether; dipropylene glycol dialkyl compounds such as dipropylene glycol dimethyl; tripropylene glycol dialkyl compounds such as tripropylene glycol dimethyl; methyl acetate, ethyl acetate, propyl acetate, acetic acid Ester compounds such as isopropyl, butyl acetate, sec-butyl acetate, pentyl acetate, methoxybutyl acetate, amyl acetate, cellosolve acetate; amide compounds such as N, N-dimethylformamide; N-methyl-2-pyrrolidone, or 1,3 -Cyclic amide compounds such as dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone; ethylene carbonate DOO, propylene carbonate, dimethyl carbonate
  • Alcohol solvents such as ethanol, isopropanol and butanol, and carboxylic acid solvents such as formic acid, acetic acid and propionic acid both have an active hydrogen atom. Therefore, in an organic solvent having the electron donating property and containing no active hydrogen atom, Absent.
  • a conjugated diketone such as acetylacetone is not an organic solvent having the above-described electron donating property and containing no active hydrogen atom because it becomes an enolate compound and generates an active hydrogen atom.
  • the alkyl group of the dialkylaluminum and trialkylaluminum has 1 to 6 carbon atoms, and the plurality of alkyl groups of one dialkylaluminum or one trialkylaluminum is May be the same or different.
  • the dialkylaluminum means that two of the ligands are alkyl groups and one is a trivalent aluminum compound other than the alkyl group, and the trialkylaluminum means that all three ligands are alkyl groups. It is a valent aluminum compound.
  • dialkylaluminum and / or trialkylaluminum can be, for example, an alkylaluminum compound represented by the following general formula (8) or (9).
  • R 1 represents a methyl group or an ethyl group.
  • R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.
  • Examples of the compound represented by the general formula (8) include trimethylaluminum and triethylaluminum.
  • Examples of the compound represented by the general formula (9) include triisobutylaluminum, diisobutylaluminum hydride and the like.
  • the dialkylaluminum and / or trialkylaluminum is preferably triethylaluminum or triisobutylaluminum from the viewpoint that the price for unit mass of aluminum is low.
  • the concentration of the alkylaluminum compound in the alkylaluminum-containing solution used in the production method of the present invention can be, for example, 1% by mass or more and 20% by mass or less.
  • 1% by mass or more and 10% by mass or less 1% by mass or more. 20 mass% or less is preferable. If it is less than 1% by mass, the productivity of the film is lowered, so that it is preferably 1% by mass or more.
  • the concentration of the alkylaluminum compound in the alkylaluminum-containing solution has an influence on the risk of ignition, etc., particularly during the production of aluminum oxide by applying it in the air. Therefore, there is an advantage that the aluminum oxide thin film can be manufactured safely.
  • the alkylaluminum-containing solution used in the production method of the present invention is an organic solvent other than an organic solvent having an electron donating property and not containing an active hydrogen atom.
  • a solvent may further be included.
  • the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom By adding an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, the polarity, viscosity, boiling point, economy, and the like can be adjusted.
  • Examples of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc.
  • the amount of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is not limited as long as it does not interfere with the effect of the organic solvent that has an electron donating property and does not contain an active hydrogen atom.
  • the amount can be 100 parts by mass or less with respect to 100 parts by mass of the organic solvent that has an electron donating property and does not contain an active hydrogen atom.
  • the range that can be added depending on the type of the alkylaluminum compound, the organic solvent that has an electron donating property and does not contain an active hydrogen atom, and the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom. Will change.
  • the alkylaluminum compound-containing solution contains an organic solvent that has an electron donating property of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom
  • the alkylaluminum in the alkylaluminum compound-containing solution The compound can be chemically stabilized. Therefore, when an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is used in combination, it is preferable to determine the combined amount in consideration of this point.
  • the reaction can be carried out in the lower reaction vessel, each introduced according to any conventional method.
  • the alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom.
  • the order of introduction into the mixing vessel is as follows: an alkylaluminum compound, an organic solvent that has an electron-donating property and does not contain an active hydrogen atom, and an organic compound that does not have an electron-donating property and does not contain an active hydrogen atom if desired. Introduced in order, or an organic solvent that has an electron donating property and does not contain an active hydrogen atom, and optionally, an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, an alkylaluminum, in that order, or all at the same time Any of them can be used.
  • the introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours.
  • the temperature at the time of introduction any temperature between ⁇ 15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of ⁇ 15 to 80 ° C.
  • the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
  • the alkyl aluminum compound-containing solution is applied to a substrate to form a coating film, and the formed coating film is dried with an organic solvent, or dried with an organic solvent.
  • the aluminum oxide thin film is obtained by heating to aluminum oxide.
  • Application of the alkylaluminum compound-containing solution to the substrate is preferably performed by a spray coating method, an electrostatic spray coating method, an ink jet method, a mist CVD method, or the like, and spray coating is performed because the apparatus is simpler. The method is more preferred.
  • the application of the alkylaluminum compound-containing solution to the substrate is performed in an air atmosphere from the viewpoint of economy. Performing in an air atmosphere is preferable because the apparatus is simple.
  • the application of the alkylaluminum compound-containing solution to the substrate can be carried out under pressure or under reduced pressure. However, it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
  • alkylaluminum compound-containing solution to the substrate is carried out by applying the alkylaluminum-containing solution to the substrate in the form of droplets having an average particle size of 1 to 100 ⁇ m.
  • the use efficiency of the material decreases, and when droplets having an average particle size of more than 100 ⁇ m are used, Since the properties (particularly denseness) of the formed film are lowered, the average particle size of the alkylaluminum-containing solution is limited to the above range.
  • Alkyl aluminum-containing solutions can be applied to a substrate in the form of droplets having an average particle size of 3 to 30 ⁇ m, and the use efficiency of the material (adhesion efficiency to the substrate) is high, and the characteristics of the film formed by coating It is preferable from the viewpoint of good (especially denseness).
  • a precision application spray nozzle by passing an alkylaluminum-containing solution through a precision application spray nozzle, droplets of 1 to 100 ⁇ m can be formed.
  • the spray nozzle is preferably a two-fluid nozzle, and the droplets are preferably 3 to 30 ⁇ m. When it is 3 ⁇ m or more, the adhesion efficiency of the droplets to the substrate is improved, and when it is 30 ⁇ m or less, the film properties (transparency, in-plane uniformity, denseness) are further improved.
  • the distance between the spray nozzle and the base material is 50 cm or less, more preferably 20 cm or less.
  • the solvent in the droplet dries before the droplet reaches the substrate, the size of the droplet decreases, and the adhesion efficiency of the droplet to the substrate decreases.
  • the atmospheric temperature when applying is preferably 50 ° C. or less.
  • the humidity of the air can be, for example, an air atmosphere containing 20 to 90% of relative humidity converted to 25 ° C.
  • the relative humidity converted to 25 ° C. is more preferably 30 to 70% from the viewpoint of smooth formation of the aluminum oxide thin film.
  • the base material is not particularly limited as long as it is desired to form an aluminum oxide thin film.
  • Specific examples of the substrate are the same as those described in the first aspect of the present invention.
  • Examples of the shape of the base material include powder, a film, a plate, or a three-dimensional structure having a three-dimensional shape. However, it is not intended to be limited to these.
  • the film thickness of the coating film formed by applying the alkylaluminum compound-containing solution can be appropriately determined in consideration of the desired film of the aluminum oxide thin film.
  • the substrate can be heated to a predetermined temperature before coating, and by applying to the substrate heated to a predetermined temperature, the solvent can be dried at the same time as coating, or baked at the same time as drying. it can.
  • the predetermined temperature is, for example, 300 ° C. or less. Heating at a temperature of 300 ° C. or lower can be applied to a non-heat-resistant substrate such as plastic.
  • the predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C.
  • the solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
  • the predetermined temperature for firing for forming the aluminum oxide can be selected from 50 to 600 ° C., for example. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged. It is preferable that it is 300 degrees C or less from a viewpoint applicable to a base material without heat resistance, such as a plastics.
  • the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously.
  • the solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
  • the film thickness of the aluminum oxide thin film obtained as described above can be in the range of 0.005 ⁇ m to 3 ⁇ m, for example. However, it is not intended to be limited to this range, and the film thickness can be appropriately determined according to the intention of forming the aluminum oxide thin film.
  • the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • the crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.
  • a substrate with an aluminum oxide thin film having an aluminum oxide thin film having a vertical transmittance of 80% or more at 550 nm of visible light on the substrate can be obtained.
  • the vertical transmittance at 550 nm of visible light of the aluminum oxide thin film is higher from the viewpoint of higher transparency in the visible light region. For example, it is preferably 90% or more, more preferably 95% or more. . ⁇ Fifth aspect of the present invention>
  • the present invention relates to a passivation film forming agent.
  • the passivation film means “a film that is provided on at least a part of the back surface of the silicon substrate and suppresses recombination of the back surface of the carrier in the silicon substrate”.
  • the silicon substrate on which the passivation film is provided There is no particular limitation on the silicon substrate on which the passivation film is provided.
  • a silicon substrate such as crystalline silicon can be used from the viewpoint that it is highly necessary to suppress the backside recombination of carriers in the silicon substrate.
  • the passivation film forming agent of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group possessed by the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and is the same or different. And an alkylaluminum compound-containing solution containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom.
  • the alkylaluminum compound-containing solution of the present invention contains an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom as an organic solvent. Can be chemically stabilized.
  • an organic solvent having an electron donating property and not containing an active hydrogen atom is preferable is not clear, but it is presumed that the reactivity to water is made appropriate by the coordination bond of the lone pair of oxygen in the structure to aluminum. Is done.
  • the ratio of the alkylaluminum compound in the solution of the present invention to the organic solvent having an electron-donating property and not containing an active hydrogen atom is on the other hand, it is preferable to contain an organic compound which has an electron donating property of 1 or more in molar ratio and does not contain an active hydrogen atom.
  • an organic solvent that has an electron donating ratio of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom it suppresses chemical changes such as spontaneous ignition of the solution, and reactivity to water Can be made appropriate.
  • the active hydrogen atom means a highly reactive hydrogen atom bonded to an atom of an element other than a carbon atom such as a nitrogen atom, an oxygen atom, or a sulfur atom among intramolecular hydrogen atoms of an organic compound.
  • Examples of the organic solvent having an electron donating property and containing no active hydrogen atom are the same as those of the organic solvent having an electron donating property and containing no active hydrogen atom in the fourth embodiment of the present invention.
  • Alcohol solvents such as ethanol, isopropanol and butanol, and carboxylic acid solvents such as formic acid, acetic acid and propionic acid both have an active hydrogen atom. Therefore, in an organic solvent having the electron donating property and containing no active hydrogen atom, Absent.
  • a conjugated diketone such as acetylacetone is not an organic solvent having the above-described electron donating property and containing no active hydrogen atom because it becomes an enolate compound and generates an active hydrogen atom.
  • the alkyl group of the dialkylaluminum and trialkylaluminum has 1 to 6 carbon atoms, and the plurality of alkyl groups of one dialkylaluminum or one trialkylaluminum is May be the same or different.
  • the dialkylaluminum means that two of the ligands are alkyl groups and one is a trivalent aluminum compound other than the alkyl group, and the trialkylaluminum means that all three ligands are alkyl groups. It is a valent aluminum compound.
  • the dialkylaluminum and / or trialkylaluminum can be, for example, the alkylaluminum compound represented by the general formula (8) or (9), and the description in the fourth aspect of the present invention can be referred to.
  • the dialkylaluminum and / or trialkylaluminum is preferably triethylaluminum or triisobutylaluminum from the viewpoint that the price for unit mass of aluminum is low.
  • the concentration of the alkylaluminum compound in the alkylaluminum-containing solution of the present invention can be, for example, 1% by mass or more and 20% by mass or less.
  • 1% by mass to 10% by mass and in the case of the alkylaluminum compound represented by the general formula (9), 1% by mass to 20% by mass. % Or less is preferable. Since the productivity of a passivation film falls that it is less than 1 mass%, it is preferable that it is 1 mass% or more.
  • the concentration of the alkylaluminum compound in the alkylaluminum-containing solution has an influence on the risk of ignition, etc., particularly during the production of aluminum oxide by applying it in the air. In addition, there is an advantage that a passivation film made of aluminum oxide can be manufactured safely.
  • the alkylaluminum-containing solution of the present invention further includes an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom as an organic solvent other than an organic solvent that has an electron donating property and does not contain an active hydrogen. Can do. By adding an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, the polarity, viscosity, boiling point, economy, and the like can be adjusted.
  • Examples of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene and cumene; hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene and petroleum ether.
  • the amount of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is not limited as long as it does not interfere with the effect of the organic solvent that has an electron donating property and does not contain an active hydrogen atom.
  • the amount can be 100 parts by mass or less with respect to 100 parts by mass of the cyclic amide compound. However, it can be added depending on the type of alkylaluminum compound, the organic solvent having electron donating properties and not containing active hydrogen atoms, and the organic solvent not having electron donating properties and containing no active hydrogen atoms. Range varies.
  • the alkylaluminum compound-containing solution contains an organic solvent that has an electron donating property of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom
  • the alkylaluminum in the alkylaluminum compound-containing solution The compound can be chemically stabilized. Therefore, when an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is used in combination, it is preferable to determine the combined amount in consideration of this point.
  • the reaction can be carried out in the lower reaction vessel, each introduced according to any conventional method.
  • the alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom.
  • the order of introduction into the mixing vessel is as follows: an alkylaluminum compound, an organic solvent that has an electron-donating property and does not contain an active hydrogen atom, and an organic solvent that does not have an electron-donating property and does not contain an active hydrogen atom if desired.
  • the introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours.
  • the temperature at the time of introduction any temperature between ⁇ 15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of ⁇ 15 to 80 ° C.
  • the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
  • a coating film is formed by applying the alkylaluminum compound-containing solution described as the passivation film forming agent of the present invention to at least a part of the back surface of the silicon substrate.
  • a passivation film made of aluminum oxide including forming the passivation film by heating the formed coating film after drying the organic solvent or in parallel with drying of the organic solvent to aluminum oxide. This is a method for obtaining a silicon substrate.
  • Application to the silicon substrate is preferably performed by a spray coating method, an electrostatic spray coating method, an ink jet method, a mist CVD method, or the like, and a spray coating method is more preferable because the apparatus is simpler.
  • Application to the substrate can be performed in an inert atmosphere or an air atmosphere.
  • an inert atmosphere it can be carried out using a set of apparatuses as shown in FIG.
  • Application to the substrate can be carried out under pressure or reduced pressure, but it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
  • Application to the substrate is carried out by applying an alkylaluminum-containing solution as droplets having an average particle diameter of 1 to 100 ⁇ m to the silicon substrate.
  • an alkylaluminum-containing solution as droplets having an average particle diameter of 1 to 100 ⁇ m to the silicon substrate.
  • the use efficiency of the material decreases, and when droplets having an average particle size of more than 100 ⁇ m are used, Since the properties (particularly denseness) of the formed film are lowered, the average particle size of the alkylaluminum-containing solution is limited to the above range.
  • Alkyl aluminum-containing solutions can be applied to a substrate in the form of droplets having an average particle size of 3 to 30 ⁇ m, and the use efficiency of the material (adhesion efficiency to the substrate) is high, and the characteristics of the film formed by coating It is preferable from the viewpoint of good (especially denseness).
  • a precision application spray nozzle by passing an alkylaluminum-containing solution through a precision application spray nozzle, droplets of 1 to 100 ⁇ m can be formed.
  • the spray nozzle is preferably a two-fluid nozzle, and the droplets are preferably 3 to 30 ⁇ m. When it is 3 ⁇ m or more, the adhesion efficiency of the droplets to the substrate is improved, and when it is 30 ⁇ m or less, the film properties (transparency, in-plane uniformity, denseness) are further improved.
  • the distance between the spray nozzle and the base material is 50 cm or less, more preferably 20 cm or less.
  • the solvent in the droplet dries before the droplet reaches the substrate, the size of the droplet decreases, and the adhesion efficiency of the droplet to the substrate decreases.
  • the atmospheric temperature when applying is preferably 50 ° C. or less.
  • the air in the case of spray application in the air, for example, it can be an air atmosphere containing 20 to 90% of relative humidity converted to 25 ° C.
  • the relative humidity converted to 25 ° C. is more preferably 30 to 70% from the viewpoint of smooth formation of the aluminum oxide thin film.
  • the atmosphere in the vicinity of the substrate is changed from 0.5 mol% to 30 mol by introducing water in the form of water vapor or the like from the water introduction port 6 in the apparatus shown in FIG. It is carried out under an inert gas atmosphere containing% moisture.
  • Examples of the silicon substrate include amorphous silicon, crystalline silicon; single crystal silicon, polycrystalline silicon, and the like.
  • the shape of the silicon substrate may be a film, a plate, or a three-dimensional structure having a three-dimensional shape, for example, a spherical shape.
  • the silicon base material is preferably a crystalline silicon substrate from the viewpoint that the passivation effect is effective.
  • the alkylaluminum compound-containing solution By applying the alkylaluminum compound-containing solution to form a coating film, and then heating the formed coating film at a predetermined temperature after drying the organic solvent or simultaneously with the drying, with the substrate as a predetermined temperature, Baking to form an aluminum oxide thin film.
  • the film thickness of the coating film formed by applying the alkylaluminum compound-containing solution can be appropriately determined in consideration of the characteristics required as a passivation film.
  • the substrate can be heated to a predetermined temperature before coating, and by applying to the substrate heated to a predetermined temperature, the solvent can be dried at the same time as coating, or baked at the same time as drying. it can.
  • the predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C.
  • the solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
  • the predetermined temperature for firing for forming the aluminum oxide for example, an arbitrary temperature between 300 ° C. and 600 ° C. can be selected. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged.
  • the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously.
  • the solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
  • the thickness of the passivation film made of aluminum oxide obtained as described above can be, for example, in the range of 0.005 ⁇ m to 3 ⁇ m, and preferably in the range of 0.01 ⁇ m to 0.3 ⁇ m.
  • the thickness By setting the thickness to 0.01 ⁇ m or more, the continuity of the film can be improved, and the possibility that a portion without film adhesion can be reduced can be reduced. There is an advantage that the possibility of causing peeling due to blistering is sometimes reduced.
  • the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc.
  • the crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.
  • the effective lifetime is, for example, in the range of 150 to 2000 ⁇ s
  • the recombination speed is, for example, in the range of 7 to 100 cm / s when using a silicon substrate having a thickness of 300 ⁇ m.
  • a passivation film can be formed on the silicon substrate.
  • the aluminum oxide film formed by heating and firing can be further processed in a forming gas atmosphere to increase the effective lifetime and increase the recombination rate.
  • forming gas include non-oxidizing gas (hydrogen-containing gas, nitrogen-containing gas, etc.).
  • the present invention includes a solar cell element using a silicon substrate having the passivation film of the present invention.
  • FIG. 5-2 shows an example of the embodiment of the solar cell element of the present invention.
  • the p-type solar cell element 100 is composed of a p-type silicon semiconductor substrate 11 having a thickness of 180 to 300 ⁇ m. 11 on the light receiving surface side, an n + layer 12 which is an n-type impurity layer having a thickness of 0.3 to 1.0 ⁇ m, an antireflection / passivation thin film 13 made of a silicon nitride thin film, and silver.
  • Each of the grid electrodes 15 is formed by a screen printing method using a paste composition containing silver powder, such as a plasma CVD method using SiH 3 and NH 3 .
  • a passivation thin film 14 made of an aluminum oxide thin film of the present invention is formed on the back surface opposite to the light receiving surface side of the silicon semiconductor substrate 11, and an aluminum electrode 16 conforming to a predetermined pattern shape is formed so as to penetrate the 14.
  • the aluminum electrode 16 is usually formed by applying and drying a paste composition containing aluminum powder by screen printing or the like, followed by baking for a short time of 1 to 10 seconds at a temperature higher than 660 ° C., which is the melting point of aluminum. It is formed. During the firing (fire-through), aluminum diffuses into the silicon semiconductor substrate 11 to form an Al—Si alloy layer 17 between the aluminum electrode 16 and the silicon semiconductor substrate 11, and at the same time, aluminum atoms A p + layer (Back Surface Field (BSF) layer) 18 is formed as an impurity layer by diffusion.
  • BSF Back Surface Field
  • the solvent of the alkylaluminum partial hydrolyzate-containing solution of the present invention was dried by an evaporator, and IR measurement was performed by a transmission method using an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). .
  • the aluminum oxide thin film prepared by the production method of the present invention is obtained by an ATR (Attenuated Total Reflection) method using a ZnSe prism with an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). Relative IR measurements were performed without ATR correction.
  • ATR Attenuated Total Reflection
  • the refractive index of the aluminum oxide thin film according to the present invention was estimated to be 1.7 or less.
  • the aluminum oxide thin film prepared by the production method of the present invention was partly cut with a knife, and the film thickness was measured using a stylus type surface shape measuring device (DektakXT-S manufactured by Bruker Nano).
  • Example 1-1 To 210.0 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP), 5.31 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 21 mass% triethylaluminum NMP solution. The NMR spectrum was remeasured 24 hours later, and the same spectrum as the spectrum obtained first was obtained.
  • NMP N-methyl-2-pyrrolidone
  • triethylaluminum manufactured by Tosoh Finechem
  • the 21 mass% triethylaluminum NMP solution thus obtained was subjected to a spontaneous ignition test, and was classified as “no danger”.
  • Example 1-2 By adding 1.32 g of trimethylaluminum (manufactured by Tosoh Finechem) to 5.00 g of NMP at 25 ° C. and sufficiently stirring, a 21 mass% trimethylaluminum NMP solution was obtained. When the 21 mass% trimethylaluminum NMP solution obtained in this way was subjected to a pyrophoric test, it was classified as “no danger”.
  • Example 1-3 To NMP 5.00 g, 3.48 g of triisobutylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 41 mass% triisobutylaluminum NMP solution. The 41 mass% triisobutylaluminum NMP solution obtained in this manner was subjected to a spontaneous ignition test, and was classified as “no danger”.
  • Example 1-4 To 9.01 g of NMP, 0.90 g of mixed xylene and 2.10 g of triethylaluminum were added at 25 ° C. and sufficiently stirred to obtain a 19 mass% triethylaluminum NMP xylene mixed solution. The 19 mass% triethylaluminum NMP xylene mixed solution thus obtained was subjected to a spontaneous ignition test, and was classified as “no danger”.
  • Example 1-5 To NMP 8.01 g, 0.90 g of mixed xylene and 2.11 g of trimethylaluminum (manufactured by Tosoh Finechem) were added at 25 ° C. and sufficiently stirred to obtain a 19 mass% trimethylaluminum NMP xylene mixed solution. When the 19 mass% trimethylaluminum NMP xylene mixed solution thus obtained was subjected to a pyrophoric test, it was classified as “no danger”.
  • Example 1-8 50 ⁇ l of the triethylaluminum hydrolyzed composition NMP solution obtained in Example 1-6 was dropped on an 18 mm square glass substrate (Corning Inc., EagleXG) in an air atmosphere and spun at 2000 rpm for 20 seconds with a spin coater. And applied. After drying at 25 ° C. for 1 minute, a thin film was formed by heating at 90 ° C. for 5 minutes.
  • a transparent thin film as shown in FIG. 1-3 was obtained, and when IR measurement was performed by the ATR method, a spectrum as shown in FIG. 1-4 was obtained.
  • a broad Al—O—Al vibration peak in the vicinity of 550 to 1500 cm ⁇ 1 and a broad Al—OH vibration peak in the vicinity of 2500 to 4000 cm ⁇ 1 were confirmed, indicating the formation of Al—O—Al and Al—OH bonds. It could be confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm ⁇ 1, it was confirmed that there was no residual organic substance.
  • the IR spectrum of the glass substrate itself by the ATR method is as shown in FIG. The film thickness was 638 nm.
  • ⁇ Second embodiment of the present invention Preparation of a solution containing all organoaluminum compounds and film formation using the solution were performed in a nitrogen gas atmosphere, and all solvents were used after dehydration and deaeration.
  • Water at the time of film formation on the aluminum oxide film was supplied to the film forming atmosphere as water in which nitrogen was saturated by bubbling nitrogen into heated water as necessary.
  • ATR-IR Attenuated ⁇ total reflection
  • EPMA Electro Probe
  • Micro-Analyzer electro beam microanalyzer
  • XRD X-ray diffraction: X-ray diffraction
  • -The transmittance of visible light etc. was measured using a spectrophotometer.
  • the thickness of the aluminum oxide film was measured by a stylus type surface profile measuring device or SEM measurement of a thin film cross section.
  • -Adhesion of the aluminum oxide film to the substrate is determined according to JIS K 5600-5-6 "General test method for coating materials-Part 5: Mechanical properties of coating film-Section 6: Adhesion (cross Cut method) "or Scotch tape (R) (manufactured by 3M), and a peeling test by applying and peeling the tape on an aluminum oxide film formed on a substrate using an adhesive tape such as cellophane tape.
  • Example 2-1 Triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) (11.35 g) was added to 73.2 g of tetrahydrofuran (THF) at room temperature.
  • THF tetrahydrofuran
  • 36.6 g of a THF solution containing 1.08 g of water was removed in a molar ratio of water to TEAL (water / TEAL) was added dropwise with stirring so as to be 0.6. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution.
  • composition A a composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition A a composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • a 1 H-NMR (THF-d 8 ppm ) Measurement was performed to obtain the spectrum of FIG.
  • composition A 18mm square (thickness 0.7 mm) glass substrate by spin coating the composition A was applied to (Corning, EagleXG (R)) on the surface.
  • R Core, EagleXG
  • 50 ⁇ l of the solution is dropped onto the glass substrate, the substrate is rotated for 20 seconds at a rotation speed of 1000 rpm, the solution is applied to the entire glass substrate, dried at room temperature, and then the substrate is heated to a predetermined temperature.
  • the film was formed at the same time as drying the solvent by heating for 2 minutes.
  • the substrate with this film is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR.
  • the solvent or triethylaluminum contained in the composition A It was confirmed that no peak derived from an organic substance such as an ethyl group contained in the partial hydrolyzate was formed, and the formation of an aluminum oxide film was confirmed.
  • FIG. 2-3 shows the film obtained by heating at 130 ° C.
  • FIG. 2-4 shows the results of ATR-IR analysis of only the glass substrate. All of the obtained films were transparent with high transmittance, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature was the value shown in Table 2-1.
  • Example 2-2 In Example 2-1, the coating film forming operation was repeated three times, and a film was similarly obtained at 300 ° C.
  • the vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 94%.
  • Example 2-3 27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added to 74.18 g of tetrahydrofuran (THF) at room temperature.
  • TEAL triethylaluminum
  • THF tetrahydrofuran
  • 38.04 g of a THF solution containing 4.41 g of water was removed in a molar ratio of water to TEAL (water) while removing heat generated by the reaction so as to reach about 20 ° C. / TEAL) was added dropwise with stirring so as to be 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • the product after the reaction was a colorless and transparent solution.
  • a small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered.
  • a filter pores: 3 ⁇ m or less
  • a colorless transparent solution was recovered.
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • composition B a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • a 1 H-NMR (THF-d 8 , ppm) of the residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum after removing a part of the composition B by vacuum drying was used.
  • Measurement was performed to obtain the spectrum of FIG. 2-5.
  • Example 2-1 Using this composition B, a coating film was formed on a glass substrate in the same manner as in Example 2-1. The heating after coating and drying of the solvent was performed for 2 minutes at each temperature of 50, 100, 130, 200, 250, 300, 350, and 400 ° C. The substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR, and is contained in the solvent and triethylaluminum partial hydrolyzate contained in the composition B. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films had high transmittance and were transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-2.
  • Example 2-1 the vertical transmittance at 550 nm of the aluminum oxide film obtained by performing the heating temperature after coating at 450 ° C. or 500 ° C. was 79 and 78%, respectively. It has been found that the heating temperature of the coating film is preferably 400 ° C. or lower.
  • Example 2-4 In Example 2-3, the coating film forming operation was repeated three times, and a film was similarly obtained at 350 ° C.
  • the vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 350 ° C. was 84%.
  • a base material for forming an aluminum oxide film As a base material for forming an aluminum oxide film, a polypropylene (PP) film (30 mm square (thickness: 0.2 mm)) is used, and a TEAL / THF solution (composition 1) is used. The same coating operation as in Example 2-1 was performed at 200 ⁇ l and a rotation speed of 500 rpm. After drying, this film was heated at 130 ° C. for 2 minutes to form an aluminum oxide film by spin coating. went. The same analysis of the film formed on the substrate was performed, but there was almost no adhesion of the oxide to the substrate, and the film forming method using this solution made aluminum on the polypropylene (PP) film at a low temperature of 130 ° C. Formation of the oxide film could not be confirmed. Furthermore, the same operation was performed by replacing the base material from a polypropylene (PP) film with an 18 mm square (thickness 0.7 mm) glass substrate (Corning, EagleXG (R)). Formation was not confirmed.
  • the polypropylene (PP) film (15 mm square (thickness 30 ⁇ m) is immersed in composition X for 1 second in a nitrogen atmosphere, the film is pulled up, and the liquid accumulated in the film is cut off. After the solvent was dried at room temperature, it was further allowed to stand at room temperature for 10 minutes or heated at 50 ° C. for 10 minutes to form a film on a polypropylene (PP) film, and the same analysis was performed on the film formed on the substrate. The oxide hardly adhered to the substrate, and the formation of the aluminum oxide film on the polypropylene (PP) film at a low temperature of 50 ° C. could not be confirmed by the film forming method using this solution.
  • Example 2-3 a TEAL / THF solution (composition 2) in which TEAL was not partially hydrolyzed was obtained in the same manner as in Example 2-3, except that 4.41 g of water was not added.
  • composition 2 a TEAL / THF solution in which TEAL was not partially hydrolyzed was obtained in the same manner as in Example 2-3, except that 4.41 g of water was not added.
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed visually, the filter paper was scorched, and the TEAL / THF solution not subjected to partial hydrolysis is difficult to handle a solution with a high Al concentration. It has been found.
  • Example 2-2 70.0 g of tetrahydrofuran (THF) was used, 32.9 g of aluminum triisopropoxide instead of 27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and water 4. Instead of 38.04 g of THF solution containing 41 g, 11.6 g of THF solution containing 2.9 g of water was adjusted so that the molar ratio (water / Al) of water to Al contained in aluminum triisopropoxide was 1. Except for dripping in the solution, an attempt was made to obtain a solution obtained by partially hydrolyzing aluminum triisopropoxide using the same method as in Example 2-2. A coating solution containing a sufficient Al concentration could not be obtained.
  • THF tetrahydrofuran
  • Example 2-5 In Example 2-2, 70.0 g of toluene instead of 74.18 g of tetrahydrofuran (THF), 32.3 g of aluminum triisopropoxide instead of 27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), water 11.4 g of a THF solution containing 2.84 g of water instead of 38.04 g of a THF solution containing 4.41 g was added dropwise so that the molar ratio of water to aluminum triisopropoxide was 1. An attempt was made to obtain a solution in which aluminum triisopropoxide was partially hydrolyzed using the same method as in Example 2-2. From the obtained reaction product, a large amount of white insoluble matter was precipitated, and a product containing a sufficient Al concentration as a uniform coating solution could not be obtained.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • THF tetrahydrofuran
  • the solution was added dropwise with stirring so that (water / TEAL) was 1.17. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • the product after the reaction was a colorless and transparent solution.
  • a small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered.
  • a filter pores: 3 ⁇ m or less
  • a colorless transparent solution was recovered.
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • composition C a composition for producing an aluminum oxide film (composition C) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • a 1 H-NMR (THF-d 8 ) was used for a residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum obtained by removing a solvent or the like by vacuum drying a part of the composition C. , Ppm) was measured, and the spectrum of Fig. 2-6 was obtained.
  • Example 2-1 Using this composition C, a coating film was formed on a glass substrate in the same manner as in Example 2-1, and the substrate with the film obtained at each temperature was taken out into the atmosphere. Analysis was performed by ATR-IR, and it was confirmed that no peak derived from an organic substance such as an ethyl group contained in a solvent contained in the composition C or a partial hydrolyzate of triethylaluminum was confirmed and the formation of an aluminum oxide film.
  • Each of the obtained films had high transmittance and was transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-3.
  • Example 2-6 In Example 2-5, the coating film forming operation was repeated three times, and a film was similarly obtained at 300 ° C.
  • the vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 98%.
  • Example 2-7 To 166.7 g of toluene, 23.5 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. In a TEAL / THF solution obtained by thorough stirring, 19.54 g of a THF solution containing 3.92 g of water was controlled at a molar ratio of water to TEAL (water / water) while controlling the exotherm at 16 to 27 ° C. by removing heat. It was added dropwise with stirring so that (TEAL) was 1.06. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • TEAL triethylaluminum
  • the product after the reaction was a colorless and transparent solution.
  • a small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered.
  • a filter pores: 3 ⁇ m or less
  • a colorless transparent solution was recovered.
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • composition D an aluminum oxide film composition containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition D was applied to a polypropylene (PP) plate (50 mm square (thickness 3 mm)) by a dip coating method. Under a nitrogen atmosphere, a polypropylene plate was immersed in the composition D for 1 second, the film was pulled up, and then the liquid accumulated in the film was cut off. The solvent was dried at room temperature and then heated at 50 or 100 ° C. for 10 minutes to form a film on a polypropylene (PP) plate.
  • PP polypropylene
  • the substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR. It is contained in the solvent and the partial hydrolyzate of triethylaluminum contained in the composition D. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films were transparent.
  • the adhesiveness is based on JIS K 5600-5-6 “General test method for coating materials—Part 5: Mechanical properties of coating film—Section 6: Adhesiveness (cross-cut method)”
  • a test was conducted. When the scotch tape (R) 2364 (manufactured by 3M ) attached to the film was peeled off, it was visually confirmed that “Category 1: Small peeling of the coating film at the intersection of cuts. It is clearly not less than 5% ", and it was confirmed that the film has good adhesion to the substrate. Further, when the state of the film was confirmed by ATR-IR and SEM measurement, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
  • Example 2-8 In Example 2-7, an acrylic plate was used instead of the polypropylene (PP) film plate, and the heating temperature was 50 ° C., and a film was formed on the acrylic plate in the same manner as in Example 2-3.
  • the obtained film was analyzed by ATR-IR, and a peak derived from an organic substance such as an ethyl group contained in a solvent or a partial hydrolyzate of triethylaluminum contained in the composition D was not confirmed. Formation was confirmed.
  • the adhesion of the obtained film was confirmed by the same test as in Example 2-7. As a result, it was “Category 1” from the test by the cross-cut method, and no strong film peeling was confirmed. It was confirmed that the adhesion of the formed film was high.
  • Example 2-9 In Example 2-1, a THF solution containing 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and 1.08 g of water 36. Similar to Example 2-1, except that 48.8 g of a THF solution containing 0.95 g of water instead of 6 g was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.4. The reaction was carried out using the method described above to obtain a colorless transparent solution. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • composition E composition for producing an aluminum oxide film (composition E) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-10 In Example 2-9, except that water was changed to 1.44 g instead of 0.95 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.6, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition F) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition F aluminum oxide film
  • Example 2-9 In Example 2-9, except that water was changed to 1.91 g instead of 0.95 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.8, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition G) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition G composition for producing an aluminum oxide film (composition G) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-9 In Example 2-9, except that 0.95 g of water was replaced with 2.79 g of water, and dropwise addition was performed so that the molar ratio of water to TEAL (water / TEAL) was 1.17, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition H) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition H composition for producing an aluminum oxide film
  • Example 2-9 In Example 2-9, except that 0.98 g of water was replaced with 2.98 g of water, and dropwise addition was performed so that the molar ratio of water to TEAL (water / TEAL) was 1.25, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition I) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition I composition for producing an aluminum oxide film (composition I) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Table 2-4 shows the water / TEAL molar ratio, reaction product appearance, gel generation status, composition reactivity, etc. of each composition prepared in Examples 2-9, 10, 11, 12, and 13, respectively. Show.
  • THF tetrahydrofuran
  • composition J composition for producing an aluminum oxide film (composition J) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-15 24.07 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added to 67.5 g of tetrahydrofuran (THF) at room temperature. To a TEAL / THF solution obtained by sufficiently stirring, 12.67 g of isopropanol was added dropwise with stirring while removing heat generated by the reaction at 20 to 27 ° C. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours.
  • TEAL triethylaluminum
  • THF tetrahydrofuran
  • the reaction mixture was cooled to 18 ° C., and 30.05 g of a THF solution containing 3.8 g of water was removed in a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction so that the temperature was about 20 ° C. was added dropwise with stirring so as to be 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours.
  • the product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered.
  • composition K As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In addition, 1 H-NMR (FIG. 2-7) and 27 Al-NMR (FIG. 2-8) (both Benzen- d 6 , ppm), and it was confirmed that an isopropoxy group was present in the structure of the product. In this way, a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure was obtained.
  • composition K a coating film was formed on a glass substrate in the same manner as in Example 2-1. Heating after coating and drying of the solvent was performed for 2 minutes at each temperature of 250, 300, 350, and 400 ° C. The substrate with the film obtained at each temperature was taken out into the atmosphere, the obtained film was analyzed by ATR-IR, and the solvent contained in composition B and triethyl having an isopropoxy group in the structure It was confirmed that peaks derived from organic substances such as ethyl group and isopropoxy group contained in the partial hydrolyzate of aluminum were not confirmed and the formation of the aluminum oxide film. Each of the obtained films had high transmittance and was transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-5.
  • composition K a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group was taken, and 5 g of isopropanol was added and mixed well, but a homogeneous solution It remained.
  • the composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure may contain an alcohol such as isopropanol as a solvent. it can.
  • Example 2-17 2.14 g of a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure obtained in Example 2-15 From this, THF was removed and the solution was concentrated to 0.943 g. The resulting concentrate was a transparent gel-like solid. When 0.25 g toluene was added to this concentrate and mixed, the solid matter dissolved and became a homogeneous solution.
  • a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group contained in the composition for producing an aluminum oxide film (composition K) is an aluminum oxide insoluble in an organic solvent or hydroxylated. Does not contain inorganic substances such as food.
  • Example 2-18 5 g of a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-2 was taken and stirred at room temperature (20 ° C.). ), 5 g of isopropanol was added, and the reaction was continued until ethane produced by the reaction was not generated.
  • the obtained solution was homogeneous, and 1 H-NMR (Benzene-d 6 , ppm) after removing a solvent or the like by vacuum drying a part of the obtained solution was analyzed. It was confirmed that an isopropoxy group was present.
  • composition L a composition for producing an aluminum oxide film having a structure having an isopropoxy group in its structure, which is a product obtained by reacting a product obtained by partially hydrolyzing triethylaluminum with isopropanol (composition L)
  • composition L a product obtained by reacting a product obtained by partially hydrolyzing triethylaluminum with isopropanol
  • the solution (composition L) for producing an aluminum oxide film having an isopropoxy group in a structure obtained through a product obtained by partially hydrolyzing triethylaluminum uses an alcohol such as isopropanol as a solvent. be able to.
  • Example 2-19 To 74.1 g of 1,2-diethoxyethane, 27.91 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature. To the TEAL / THF solution obtained by thorough stirring, 38 g of THF solution containing 4.41 g of water was removed in a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction so as to reach about 20 ° C. ) was added dropwise with stirring to 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a pale yellow clear solution.
  • TEAL triethylaluminum
  • composition M an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-20 To 74.1 g of tetrahydrofuran (THF), 27.91 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature. To a TEAL / THF solution obtained by sufficiently stirring, 38 g of THF solution containing 4.41 g of water was removed at a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction at 20 to 27 ° C. The solution was added dropwise with stirring to 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • the reaction mixture was cooled to 18 ° C., and 14.69 g of isopropanol was added dropwise with stirring while removing heat generated by the reaction at 18 to 20 ° C. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours.
  • the product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered.
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • composition N a composition for producing an aluminum oxide film (composition N) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure was obtained. Further, 1 H-NMR (Benzene-d 6 , ppm) measurement was performed on the residue after removing a part of the composition N by vacuum drying to obtain the spectrum of FIG. 2-9.
  • This composition N gives almost the same peak pattern as the composition K which is a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure. Like the composition K, it can be used for coating and forming an aluminum oxide film.
  • Example 2-21 To 10.0 g of toluene, 1.31 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 1.03 g of a THF solution containing 0.21 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution.
  • TEAL triethylaluminum
  • composition O was used to apply a polypropylene (PP) film (15 mm square (thickness 30 ⁇ m) by dip coating.
  • Polypropylene (PP) film (15 mm square (thickness 30 ⁇ m) at room temperature in a nitrogen atmosphere) was soaked in Composition O for 1 second, the film was pulled up, and the liquid accumulated in the film was cut off.After drying at room temperature, the solvent was further allowed to stand at room temperature for 10 minutes or heated at 50 ° C. for 10 minutes to obtain polypropylene (PP). A film was formed on the film.
  • the substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR, and is contained in the solvent and the partial hydrolyzate of triethylaluminum contained in the composition O. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films were transparent.
  • the adhesion of the obtained film was confirmed by a peeling test using a cellophane tape having a width of 12 mm.
  • Cellophane tape was pressed against the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
  • Example 2-22 In Example 2-21, a film was formed on a polypropylene (PP) film in the same manner as in Example 2-22, except that the atmosphere heated at 50 ° C. for 10 minutes was changed from a nitrogen atmosphere to air. The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. The obtained film was transparent. When the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
  • PP polypropylene
  • Example 2-23 In Example 2-21, instead of polypropylene (PP) film (instead of 15 mm square (thickness 30 ⁇ m), porous polypropylene (PP) film (for secondary battery separator: 15 mm square (thickness 20 ⁇ m)), A film was formed on a porous polypropylene (PP) film in the same manner as in Examples 2-21 and 2-22. The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. 2-12 shows a film obtained by heating at 50 ° C. in a nitrogen atmosphere, FIG.
  • FIG. 2-13 shows a film obtained by heating at 50 ° C. in an air atmosphere
  • FIG. 2-14 shows no film formed.
  • the results of ATR-IR analysis of only the porous polypropylene (PP) film are shown.
  • the surface was analyzed by EPMA, the presence of Al and O (oxygen) was confirmed.
  • the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
  • Example 2-24 In Example 2-21, instead of a polypropylene (PP) film (instead of a 15 mm square (thickness 30 ⁇ m), a 18 mm square (thickness 0.7 mm) glass substrate (manufactured by Corning, EagleXG® ) , A film was formed on a glass substrate in the same manner as in Examples 2-21 and 2-22, and the heating temperature after coating was room temperature (no heating), 50, 100, 200, 300, 400, 500 ° C. Performed at temperature.
  • PP polypropylene
  • the obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. Further, when the film heated at 50 ° C. in a nitrogen atmosphere was taken out into the air and the film thickness was measured by SEM analysis, FIG. 2-15 was obtained, and the film thickness calculated from this was 470 nm. In addition, SEM analysis was performed on the surface of the film, and the results shown in FIG. 2-16 were obtained. When the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
  • Example 2-25 polypropylene (PP) film (polyethylene terephthalate (PET) film (15 mm square (thickness 25 ⁇ m) and 30 mm square (188 ⁇ m)) was used instead of 15 mm square (thickness 30 ⁇ m))
  • PP polypropylene
  • PET polyethylene terephthalate
  • a film was formed on a PET film in the same manner as in Examples 2-21 and 2-22, and heating after coating and drying was performed at room temperature (no heating), 50, 100, and 130 ° C. for 2 minutes each. went.
  • the obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed.
  • Example 2-26 3.43 g of the composition O prepared in Example 2-21 was weighed under a nitrogen atmosphere, and 2.29 g of toluene was added and stirred to obtain a uniform solution. This homogeneous solution was used as a composition for producing an aluminum oxide film (composition P) containing a product obtained by partially hydrolyzing triethylaluminum.
  • composition P aluminum oxide film
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • Example 2-27 To 10.0 g of toluene, 3.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature (25 ° C.). 2.46 g of THF solution containing 0.49 g of water is added to the TEAL / THF solution obtained by thorough stirring, and the molar ratio of water to TEAL (water / TEAL) is 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution.
  • TEAL triethylaluminum
  • composition Q an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-28 To 10.0 g of toluene, 5.83 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 4.55 g of a THF solution containing 0.91 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material.
  • TEAL triethylaluminum
  • composition R an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-29 To 10.0 g of toluene, 12.3 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature (25 ° C.). In a TEAL / THF solution obtained by sufficiently stirring, 8.13 g of a THF solution containing 1.63 g of water and a molar ratio of water to TEAL (water / TEAL) is 1.0 while paying attention to heat generation. was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material.
  • TEAL triethylaluminum
  • composition S composition for producing an aluminum oxide film (composition S) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-30 To 10.0 g of tetrahydrofuran (THF), 1.31 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 1.03 g of a THF solution containing 0.21 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • composition T composition for producing an aluminum oxide film (composition T) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-31 To 10.0 g of tetrahydrofuran (THF), 5.83 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To the TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 4.58 g of THF solution containing 0.92 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • composition U composition for producing an aluminum oxide film (composition U) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • Example 2-32 To 20.0 g of tetrahydrofuran (THF), 2.22 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.).
  • the TEAL / THF solution obtained by thorough stirring is prepared by adding 3.50 g of THF solution containing 0.42 g of water to a molar ratio of water to TEAL (water / TEAL) of 1.2 while paying attention to heat generation. was added dropwise with stirring. Then, it heated up at 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • composition V composition for producing an aluminum oxide film (composition V) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition V was applied on the surface of a 18 mm square (0.7 mm thick) glass substrate (Corning Corp., EagleXG®) by spin coating.
  • Example 2-33 In Example 2-32, the operation of coating film formation was repeated 3 times, and a film was similarly obtained at 300 ° C.
  • the vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 85%.
  • Example 2-34 To 20.0 g of tetrahydrofuran (THF), 1.05 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). The TEAL / THF solution obtained by thorough stirring was mixed with 1.66 g of a THF solution containing 0.20 g of water, while paying attention to heat generation, and the molar ratio of water to TEAL (water / TEAL) was 1.2. Was added dropwise with stirring. Then, it heated up at 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • composition W an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained. Using this composition W, coating was performed on a glass substrate in the same manner as in Example 2-33, and the results shown in Table 2-7 were obtained. Moreover, it was 146 nm when the film thickness of the film
  • Example 2-35 In Example 2-34, the coating film forming operation was repeated 3 times, and a film was similarly obtained at 300 ° C.
  • the vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 92%.
  • Example 2-36 For producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-7 so that the molar ratio of water to TEAL (water / TEAL) is 1.06
  • a polypropylene (PP) film (30 mm square (thickness 0.2 mm)) is used as a base material on which an aluminum oxide film is formed using the composition (composition D), and the solution at room temperature in a nitrogen atmosphere. 200 ⁇ l is dropped onto the film, the substrate is rotated at 500 rpm for 20 seconds to apply the solution to the entire film, and after drying the solvent, the substrate is heated at each temperature of 50, 100, and 130 ° C. for 2 minutes. The film was formed simultaneously with drying the solvent.
  • PP polypropylene
  • the substrate with these films is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR.
  • the adhesion of the film obtained by heating at each temperature was confirmed by a peeling test using a 12 mm wide cellophane tape.
  • Cellophane tape was pressed against the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and peeled off at an angle of 45 °. After peeling, it was confirmed by visual observation, ATR-IR and SEM measurement. As a result, no strong peeling of the film was confirmed. Even in heat treatment at a low temperature of 130.degree. It was confirmed that the property is high. Among these, the film adhesion at a temperature of 130 ° C. was particularly good.
  • Example 2-37 Composition O obtained in Example 2-21, Composition P obtained in Example 2-26, Composition Q obtained in Example 2-27, Composition obtained in Example 2-28 R, composition T obtained in Example 2-30, composition U obtained in Example 2-31 (compositions O, P, Q, R, T and U are all in moles relative to TEAL of water. Spinning was performed in the same manner as in Example 2-36, using a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing each triethylaluminum having a ratio (water / TEAL) of 1.0) A film is applied by coating, and after drying the solvent, the film is heated on each temperature of 50, 100, and 130 ° C.
  • Example 2-38 Composition D obtained in Example 2-7 (molar ratio of water to TEAL (water / TEAL) is 1.06), Composition E obtained in Example 2-9 (the same (water / TEAL) is 0.4), composition F obtained in Example 2-10 (same (water / TEAL) was 0.6), and composition G obtained in Example 2-11 (same (water / TEAL) was 0.8), composition H obtained in Example 2-12 (the same (water / TEAL) was 1.17), and composition I obtained in Example 2-13 (the same (water / TEAL) was Using the composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing each triethylaluminum in 1.25), a film was applied by spin coating in the same manner as in Example 2-36. After drying the solvent, heat it at 50, 100, and 130 ° C for 2 minutes to obtain polypropylene (PP) film. A film was formed on a film (30 mm square (thickness 0.2 mm)).
  • Polypropylene (PP) films with these films are taken out into the atmosphere, and the obtained films are analyzed by ATR-IR and contained in the solvent and triethylaluminum partial hydrolyzate contained in each composition. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All the films obtained at each temperature were transparent.
  • the adhesion of the obtained film was confirmed by a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used in the crosscut test of Example 2-7.
  • R Scotch Tape
  • a tape was pressed on the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and was peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
  • composition D (molar ratio of water to TEAL (water / TEAL) is 1.06), composition G (same (water / TEAL) is 0.8), composition H (same (water / TEAL) is 1.17), composition I (the same (water / TEAL) is 1.25), and the film obtained by heating at 100 ° C. or higher is applied to a polypropylene (PP) film. Adhesion was good.
  • PP polypropylene
  • Example 2-1 a THF solution containing 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and 1.08 g of water 36.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • Example 2-1 a THF solution containing 48.8 g of THF solution containing 0.48 g of water instead of 6 g was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.2.
  • the reaction was carried out using the method described above to obtain a colorless transparent solution.
  • composition 3 As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition 3 A composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum so that the molar ratio of water to TEAL (water / TEAL) is 0.2.
  • a polypropylene (PP) film (30 mm square (thickness: 0.2 mm)
  • PP polypropylene
  • the substrate with the film obtained by heating at each of these temperatures was taken out into the atmosphere, and the obtained film was analyzed by ATR-IR to obtain the spectrum of FIG. 2-19.
  • the peak derived from the PP substrate is larger than the peak of the aluminum oxide compared to FIG. 2-17 of Example 2-38, and the molar ratio of water to TEAL (water / TEAL) is 0.2, and aluminum oxide obtained by film formation using a composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum It was confirmed that the film was thinner than the film obtained by film formation using the composition of the present invention.
  • FIG. 2-20 shows an ATR-IR spectrum of the aluminum oxide film after the peeling test was conducted on the aluminum oxide film formed on the PP film at 100 ° C. using the composition 3.
  • the peak of aluminum oxide was reduced, it was confirmed that not only the oxide adhered during film formation but also the film was easily peeled off.
  • Example 2-38 the product obtained by partially hydrolyzing triethylaluminum so that the molar ratio of water to TEAL used in this comparative example (water / TEAL) was 0.2 was used in Example 2-38. It was confirmed that the film formability and adhesiveness of the film were inferior compared to the composition obtained in a molar ratio of water to TEAL (water / TEAL) of 0.4 to 1.25.
  • a polypropylene (PP) film (30 mm square (thickness 0.2 mm)) was used as a base material for forming an aluminum oxide film, and the same operation as in Example 2-1 was performed using the composition 4.
  • An aluminum oxide film was formed by spin coating. At this time, after application of the composition 4 and drying of the solvent, the film was heated at 130 ° C. for 2 minutes. Composition 4 hardly remained on the film surface, and no film could be formed. Dip coating was also attempted in the same manner, but no film could be formed as with spin coating. Further, the composition 4 was spread on a polypropylene (PP) film as much as possible, and then heated at 60 ° C. to try to form an aluminum oxide film. However, although a transparent film-like substance was formed in pieces, Everything has come off the film.
  • Table 2-8 and Table 2 show the evaluation of adhesion of films obtained by spin-coating a PP film using the compositions obtained in Example 2-38 and Comparative Examples 2-2 and 2-6. The results are shown in 2-9.
  • Example 2-39 In Example 2-13, when an additional water / THF solution was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 1.27 or 1.29, white insoluble matter was generated (in the solution 10% or less by volume of solids in the When the appearance of the composition after observing the solution at room temperature (20 to 25 ° C.) for 3 days was observed, there was almost no increase in white insoluble matter generated when an additional water / THF solution was added.
  • Aluminum As for the composition for producing an aluminum oxide film containing a partially hydrolyzed product the appearance of the composition was visually observed after standing for 3 days at room temperature (20 to 25 ° C.). Was not seen.
  • Example 2-9 In Example 2-13, when a water / THF solution was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 1.31, 1.33, or 1.35, white insoluble matter was obtained. A large amount was generated (15% or more by volume in the solution). When the appearance of the composition after observing the solution for 3 days was observed, the whole solution was gelled, there was almost no uniform solution portion, and the fluidity of the solution was almost lost. Thus, when there is much molar ratio (water / TEAL) with respect to TEAL of water, it became impossible to obtain a composition as a uniform solution, and the use as a coating agent became difficult.
  • Example 2-40 For producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-7 so that the molar ratio of water to TEAL (water / TEAL) is 1.06 Using the composition (Composition D), coating was performed by dip coating using paper (medicine wrapping paper: 20 mm square (thickness 31 ⁇ m)) as a base material on which an aluminum oxide film was formed. Then, the paper was dipped in the composition D for 1 second and the paper was pulled up, and then the liquid accumulated on the paper was cut off.
  • paper medicine wrapping paper: 20 mm square (thickness 31 ⁇ m)
  • the obtained film-attached paper is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from the organic matter was observed and the formation of the aluminum oxide film.
  • FIG. 2-21 was obtained, and it was confirmed that the surface of the paper fiber was coated with aluminum oxide.
  • Example 2-41 In Example 2-40, instead of paper (medicine wrapping paper: (20 mm square (thickness 31 ⁇ m)) as a base material for forming an aluminum oxide film, an 18 mm square (thickness 0.7 mm) glass substrate (Corning) ( EagleXG (R) ) was applied by the dip coating method, and the glass substrate was immersed in the composition D for 1 second in a nitrogen atmosphere, the glass substrate was pulled up, and then the liquid accumulated on the substrate was cut off. After the solvent was dried at room temperature, the solvent was heated at 130 ° C. for 2 minutes to form a film on the substrate.In the nitrogen gas atmosphere during this series of coating, solvent drying and heating film formation operations, the moisture content was 246 to It was 304 ppm (dew point temperature -32 to 34 ° C.).
  • the substrate with the obtained film is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from the organic matter was observed and the formation of the aluminum oxide film. The appearance of the obtained aluminum oxide film was transparent and homogeneous.
  • Example 42-1 the moisture content was 9312 mol ppm to 9778 ppm (about 1%) (dew point temperature ⁇ 6 to ⁇ 7 ° C.) in a nitrogen gas atmosphere during a series of coating, solvent drying and heating film forming operations.
  • a film was formed on a glass substrate in the same manner as in Example 2-41 except for the above.
  • the substrate with the obtained film is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. Although no organic-derived peak was confirmed and the formation of the aluminum oxide film was confirmed, a part of the obtained aluminum oxide film became powdery and could not be obtained as a homogeneous film.
  • Example 2-42 Any of the aluminum oxide films obtained in Examples 2-1, 2-2, 2-3, 2-4, 2-5, 2-15, 2-32, 2-33, 2-34
  • the substrate also has a high vertical transmittance at 550 nm of 80% or more, and can be used as an optical material. Further, the aluminum oxide film formed on the glass substrate does not change in quality even when heated at 500 ° C. after the film formation, and can be used as a heat resistant material. When the surface resistance values of these films were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials.
  • the substrate with the aluminum oxide film of Example 2-24 was confirmed to have minute irregularities on the film surface obtained by the film formation, and can be used as an antireflection effect and as a catalyst carrier.
  • the aluminum oxide film formed with the composition of the present invention is a substrate such as glass, resin, and paper. Because of its high adhesion to the substrate, it is possible to use a protective film for various base materials, an undercoat film, an undercoat film, a film for electronic devices that can be laminated on the base material, and the like. Thus, the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
  • Example 2-43 A glass substrate having an aluminum oxide film described in Examples 2-1, 2, 3, 4, 5, 6, 15, 24, 32, 33, 34, 35, and 39; and Examples 2-7, 8,
  • the resin plate such as polypropylene (PP), polyethylene terephthalate (PET), and acrylic having the aluminum oxide film obtained in 21, 22, 23, 25, 36, 37, 38, 39, and 40, film, and paper Also, it can be used as a base material having an aluminum oxide functional film having the function described in Example 42.
  • the formation of aluminum oxide and its film on the substrate in each film formation in the examples and comparative examples is performed by ATR-IR (infrared spectroscopy by the attenuated total reflection (ATR) method), EPMA (Electron Probe). This was confirmed by analysis by Micro Analyzer (electron beam microanalyzer) and XRD (X-ray diffraction). The transmittance of visible light or the like was measured using a spectrophotometer. The film thickness of the aluminum oxide film was measured by a stylus type surface shape measuring instrument or SEM measurement of a thin film cross section. The adhesion of the formed aluminum oxide film to the substrate was confirmed by a peeling test by applying and peeling the tape on the aluminum oxide film coated and formed on the substrate using an adhesive tape. As for the reactivity of the chemical solution, the chemical solution was dropped on the filter paper in a windless atmosphere with a constant temperature (20 ° C.) and humidity (50%), and the reactivity on the filter paper was visually confirmed.
  • ATR-IR inf
  • Example 3-1-1 To 74.8 g of tetrahydrofuran (THF), 8.3 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. After sufficiently stirring, the solution was filtered to obtain an aluminum oxide film production solution (solution A) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. An aluminum oxide film was formed by spray film formation using the obtained aluminum oxide film production solution (solution A).
  • an 18 mm square (thickness 0.7 mm) glass substrate (Corning Corp., EagleXG (R) ) was used.
  • the solution A is applied at 2 ml / min from the spray nozzle to the substrate heated by the heater. Sprayed for 8 minutes.
  • the size of droplets discharged from the spray nozzle was in the range of 3 to 20 ⁇ m, and the distance between the spray nozzle and the substrate was 20 cm. After spraying, the film-formed substrate was continuously heated for 5 minutes.
  • the film formed on the glass substrate was allowed to cool and then taken out into the atmosphere and analyzed by SEM and EPMA to confirm that the film adhered and the elements constituting the film were oxygen and aluminum elements.
  • IR analysis an increase in a peak overlapping with a peak derived from a glass substrate in the vicinity of 550 to 1000 cm ⁇ 1 , and an organoaluminum compound or solvent that is observed between 2800 and 3100 cm ⁇ 1 in the structure It was confirmed that no peak attributed to —H was observed. From the above analysis, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD.
  • the thickness of the aluminum oxide film was 329 nm as measured by a stylus type surface shape measuring instrument.
  • permeability in visible light (550 nm) was 97.9%, and the transparent aluminum oxide film
  • the solution having the same composition as the solution for producing an aluminum oxide film containing triethylaluminum of Example 3-1-1 Solution A
  • the above-described film formation described in Example 3-1-1 was performed once again.
  • the film thickness of the aluminum oxide film was 332 nm. This film was analyzed by SEM, and it was confirmed that the surface structure of the film was as shown in FIG. 3-2 and the cross-sectional structure of the film was as shown in FIG. 3-3.
  • Example 3-1-2 In Example 3-1-1, 76.5 g of tetrahydrofuran (THF) and 4.0 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) were used in the same manner as in Example 3-1-1 for spray coating. An aluminum oxide film production solution (solution B) containing triethylaluminum for use was obtained. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. Using the obtained aluminum oxide film production solution (solution B), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • THF tetrahydrofuran
  • solution B triethylaluminum
  • Example 3-1-3 In Example 3-1-1, 79.2 g of 1,2-diethoxyethane was used in place of tetrahydrofuran (THF), and 8.8 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. -1 was performed to obtain an aluminum oxide film production solution (solution C) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. Using the obtained aluminum oxide film production solution (solution C), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • solution C aluminum oxide film production solution
  • the film formed on the substrate By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 358 nm. Further, the transmittance with visible light (550 nm) was 95.3%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
  • Example 3-1-4 In Example 3-1-1, 82.7 g of diisopropyl ether was used instead of tetrahydrofuran (THF), and 9.2 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. The operation was performed to obtain an aluminum oxide film production solution (solution D) containing triethylaluminum for use in spray coating. Using the obtained aluminum oxide film production solution (solution D), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 307 nm. The transmittance with visible light (550 nm) was 97.6%, and a transparent aluminum oxide film with a transmittance of 80% or more was obtained.
  • THF tetrahydr
  • Example 3-1-5 In Example 3-1-1, instead of tetrahydrofuran (THF), a mixed solvent of tetrahydrofuran (THF) 41.3 g and hexane 41.3 g was used, and triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was changed to 9.2 g. Then, the same operation as in Example 3-1-1 was performed to obtain an aluminum oxide film production solution (solution E) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • solution E aluminum oxide film production solution
  • solution E aluminum oxide film production solution
  • solution E the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 211 nm.
  • the transmittance with visible light (550 nm) was 97.6%, and a transparent aluminum oxide film with a transmittance of 80% or more was obtained.
  • Example 3-1-6 In Example 3-1-1, a mixed solvent of 21.9 g of tetrahydrofuran (THF) and 51.0 g of toluene was used in place of tetrahydrofuran (THF), and 8.1 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. Then, the same operation as in Example 3-1-1 was performed to obtain an aluminum oxide film production solution (solution F) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • solution F aluminum oxide film production solution
  • solution F aluminum oxide film production solution
  • the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 271 nm.
  • permeability in visible light (550 nm) is 95.5%, and the transparent aluminum oxide film
  • Example 3-1-7 In Example 3-1-4, instead of diisopropyl ether, a mixed solvent of 41.2 g of diisopropyl ether and 41.2 g of mixed xylene was used, and triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was changed to 9.1 g. The same operation as in 3-1-4 was performed to obtain an aluminum oxide film production solution (solution G) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • solution G the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 330 nm.
  • permeability in visible light (550 nm) was 93.9%, and the transparent aluminum oxide film
  • Example 3-1-8 In Example 3-1-3, instead of 1,2-diethoxyethane, a mixed solvent of 62.3 g of 1,2-diethoxyethane and 15.6 g of mixed xylene was used, and triethylaluminum (Tosoh Finechem Corporation) was used. The product was prepared in the same manner as in Example 3-1-3, to obtain a solution for producing an aluminum oxide film (solution H) containing triethylaluminum for use in spray coating. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • solution H aluminum oxide film
  • solution H aluminum oxide film production solution
  • the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation.
  • formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 281 nm.
  • the transmittance with visible light (550 nm) was 94.4%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
  • Example 3-1-9 In Example 3-1-8, instead of the mixed solvent of 1,2-diethoxyethane and mixed xylene, a mixed solvent of 39.5 g of 1,2-diethoxyethane and 39.5 g of toluene was used. The same procedure as in Example 3-1-8 was carried out using 8.9 g (manufactured by Tosoh Finechem Co., Ltd.), and a solution for producing an aluminum oxide film containing triethylaluminum for use in spray coating (solution I) Got. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • Example 3-1-1 Using the obtained aluminum oxide film production solution (solution I), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution.
  • the film thickness of the aluminum oxide film formed on the glass substrate was 310 nm.
  • permeability in visible light (550 nm) was 94.3%, and the transparent aluminum oxide film
  • Example 3-1-10 polyethylene terephthalate (PET) was used as a base material for forming an aluminum oxide film instead of an 18 mm square (0.7 mm thick) glass substrate (Corning, EagleXG® ). ) Using a film (60 mm square (thickness 75 ⁇ m)) and changing the heating temperature of the substrate from 200 ° C. to 130 ° C., the same operation as in Example 3-1-1 was carried out to produce an aluminum oxide film An aluminum oxide film was formed on a polyethylene terephthalate (PET) film heated to 130 ° C. by spray film formation using a solution having the same composition as the solution for solution (solution A).
  • PET polyethylene terephthalate
  • Example 3-1-11 In Example 3-1-10, instead of polyethylene terephthalate (PET) film (60 mm square (thickness 25 ⁇ m)), a porous polypropylene (PP) film (secondary battery) was used as a base material for forming an aluminum oxide film. For separators: 60 mm square (thickness 20 ⁇ m)), this film was heated to 130 ° C., and a solution having the same composition as the aluminum oxide film production solution (solution A) was used. The same operation as in No. 10 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on a polypropylene (PP) porous film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
  • PTT polyethylene terephthalate
  • PP porous polypropylene
  • Example 3-1-10 As a base material for forming an aluminum oxide film, an aramid nonwoven fabric (secondary battery separator specification: 60 mm square) instead of polyethylene terephthalate (PET) film (60 mm square (thickness 75 ⁇ m)) (Thickness 57 ⁇ m)), and this film was heated to 130 ° C., and the same operation as in Example 3-1-10 was performed using a solution having the same composition as the solution for aluminum oxide film production (solution A). Then, an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on the aramid porous film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
  • aramid nonwoven fabric secondary battery separator specification: 60 mm square
  • PET polyethylene terephthalate
  • Example 3-1-13 To 150.0 g of tetrahydrofuran (THF), 15.0 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. After sufficiently stirring, the solution was filtered with a filter (pore: 3 ⁇ m or less) to obtain an aluminum oxide film production solution (solution J) containing triethylaluminum for use in spray coating.
  • solution J aluminum oxide film production solution
  • the reactivity of the chemical solution when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • a polypropylene (PP) film (30 mm square (thickness 0.2 mm)) was used as a base material for forming an aluminum oxide film, and this film was heated to 130 ° C. to prepare an aluminum oxide film production solution (solution J).
  • the aluminum oxide film was formed by spray film formation in the same manner as in Example 3-1-1.
  • formation of an aluminum oxide film on a polypropylene (PP) film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
  • Example 3-1-14 Aluminum oxide film production solution (solution K) consisting of 69.7 g of tetrahydrofuran (THF) and 2.16 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) and triethylaluminum with reduced triethylaluminum content
  • solution L for producing an aluminum oxide film consisting of 69.7 g of tetrahydrofuran (THF) and 0.70 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) in the same manner as in Example 3-1-1
  • the glass substrate was prepared by the method, and the glass substrate was heated at 200 ° C.
  • Example 3-1-1 Under the conditions described in Example 3-1-1. As a result, formation of an aluminum oxide film at 200 ° C. was confirmed. In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD.
  • the visible light transmittance (550 nm) and the film thickness of the aluminum oxide film obtained by spray film formation using each of the solutions K and L were 99% and 75 nm (solution K, respectively). ), 99%, 30 nm (solution L).
  • Example 3-1-15 In Example 3-1-1 and Example 3-1-2, the aluminum oxide film production solutions obtained in the respective examples (Solution A: Example 3-1-1, Solution B: Example 3- 1-2), changing the heating temperature of the glass substrate to 300 ° C., performing the same operation, and by the same analysis, forming the aluminum oxide film at 300 ° C. by the film forming method using this solution. confirmed. In the aluminum oxide film obtained in this example, no peak was confirmed by XRD, and it was confirmed that the aluminum oxide film was in an amorphous state.
  • Example 3-1-16 The adhesion of the films obtained in Examples 3-1-1 to 10 was confirmed by a peeling test using Scotch Tape (R) 2364 (manufactured by 3M). A tape was pressed on the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and was peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
  • Scotch Tape (R) 2364 manufactured by 3M.
  • a tape was pressed on the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and was peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
  • Example 3-1-17 As the base material for forming the aluminum oxide film, paper (medicine wrapping paper (20 mm square (thickness 31 ⁇ m)) was used. This paper was heated to 142 ° C., and the aluminum oxide film prepared in Example 3-1-4 Using the production solution (Solution D), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation, similar to the film formed on paper. The analysis confirmed the formation of an aluminum oxide film on paper at a low temperature of 142 ° C. by a film forming method using this solution. When the obtained film was subjected to SEM analysis, FIGS. 3-5 were obtained, and it was confirmed that the surface of the paper fiber was coated with particulate aluminum oxide.
  • any of the substrates with the aluminum oxide films obtained in Examples 3-1-1 to 10 and 14 has a high vertical transmittance of 80% or more at 550 nm and can be used as an optical material.
  • the aluminum oxide film formed on the glass substrate does not change even when heated at 500 ° C., and can be used as a heat-resistant material.
  • the surface resistance values of the films obtained in Examples 3-1-1 to 15 and 17 were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials.
  • the substrates with the aluminum oxide films of Examples 3-1-1, 10 and 17 were confirmed to have minute irregularities on the film surface obtained by the film formation, antireflection effect, use as a catalyst carrier Is possible.
  • Examples 3-1-1 to 10 and 17 since the aluminum oxide film formed with the composition of the present invention has high adhesion to a substrate such as glass or resin, it is possible to use an undercoat film, a film for an electronic device that can be laminated on a base material, etc., such as coating or a base of a laminated film.
  • the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
  • Example 3-1-19 Glass substrates having the aluminum oxide films described in Examples 3-1-1 to 9, 14, and 15, polypropylene (PP) and polyethylene terephthalate (PET) having the aluminum oxide films obtained in Examples 10 to 13 A resin plate and film such as acrylic, and a paper having an aluminum oxide film obtained in Example 3-1-17 all have an aluminum oxide functional film having the function described in Example 3-1-18. It can be used as a base material.
  • PP polypropylene
  • PET polyethylene terephthalate
  • Example 3-1-1 In Example 3-1-2, hexane was used in place of tetrahydrofuran (THF), and the same operation as in Example 3-1-2 was performed, and an aluminum oxide film containing triethylaluminum for use in spray coating A production solution (solution X) was obtained. Using this solution containing no electron-donating solvent (solution K), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. This material only adhered to the substrate. Moreover, there was almost no adhering powdery substance, it peeled off from the base material, and the aluminum oxide film was not formed.
  • Example 3-1-1 the moisture in the inert gas at atmospheric pressure was 0.003 mol% (relative humidity 0.1% @ 21 ° C.), and under a nitrogen atmosphere substantially free of moisture, The solution A was sprayed at 2 ml / min for 8 minutes from the spray nozzle onto the substrate heated by the heater. The same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. However, there was almost no deposit on the base material, and after the film formation, Although heating was performed at 200 ° C. in a nitrogen atmosphere containing water having a relative humidity of 90%, since there was almost no substance adhering to the base material, formation of an aluminum oxide film could not be confirmed.
  • Example 3-1-3 To 86.41 g of toluene, 4.32 g of aluminum trisacetylacetonate (Al (acac) 3 ) was added at room temperature. After sufficiently stirring, the solution is filtered through a filter (pore: 3 ⁇ m or less), so that an aluminum oxide film production solution containing aluminum trisacetylacetonate (Al (acac) 3 ) for use in spray coating ( Solution L) was obtained. The same operation as in Example 3-1-1 was carried out using a solution (solution Y) containing an organoaluminum compound which does not contain a linear or branched alkyl group having 1 to 3 carbon atoms in the structure of the organoaluminum compound.
  • solution Y solution Y
  • Example 3-1-1 Using the solution containing the organoaluminum compound that does not contain the linear or branched alkyl group having 1 to 3 carbon atoms in the structure of the organoaluminum compound (solution M), the same operation as in Example 3-1-1 The film was formed by spray film formation at a substrate heating temperature of 200 ° C., but there was almost no deposit on the substrate, and no aluminum oxide film was formed.
  • Example 3-2-1 To 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. To a TEAL / THF solution obtained by thorough stirring, 48.8 g of a THF solution containing 0.48 g of water was removed in a molar ratio of water to TEAL (water) while removing heat generated by the reaction so that the temperature was about 20 ° C. / TEAL) was added dropwise with stirring so as to be 0.2. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling.
  • THF tetrahydrofuran
  • TEAL triethylaluminum
  • composition A a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • an aluminum oxide film was formed by spray pyrolysis.
  • an 18 mm square (0.7 mm thick) glass substrate (Corning Corp., EagleXG (R) ) was used.
  • the solution A is 2 ml / min from the spray nozzle to the substrate heated by the heater. For 8 minutes.
  • the size of droplets discharged from the spray nozzle was in the range of 3 to 20 ⁇ m, and the distance between the spray nozzle and the substrate was 20 cm. After spraying, the film-formed substrate was continuously heated for 5 minutes.
  • FIG. 3-7 shows the surface of the film obtained in this example
  • FIG. 3-8 shows the result of SEM analysis of the cross section of the film. Further analysis by ATR-IR revealed that an increase in the peak overlapping with the peak derived from the glass substrate in the vicinity of 550 to 1000 cm ⁇ 1 and an organoaluminum compound or solvent found between 2800 to 3100 cm ⁇ 1 in the structure. It was confirmed that no peak attributed to C—H derived from was observed. From the above analysis, formation of an aluminum oxide film at a low temperature of 200 ° C.
  • the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD.
  • the thickness of the aluminum oxide film was 146 nm as measured by a stylus type surface shape measuring instrument.
  • permeability in visible light (550 nm) was 91.0%, and the transparent aluminum oxide film
  • the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M Co.), and the result was confirmed visually and by ATR-IR and SEM measurement.
  • Example 3-2-2 In Example 3-2-1, except that water was changed to 0.95 g instead of 0.48 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.4, Example 3 A colorless and transparent solution was obtained using the same method as for -2-1. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition B composition for producing an aluminum oxide film
  • Example 3-2-1 an aluminum oxide film was formed by spray pyrolysis in the same manner as in Example 3-2-1.
  • formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using the composition B.
  • the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD.
  • the thickness of the aluminum oxide film was 119 nm as measured by a stylus type surface shape measuring instrument.
  • permeability in visible light (550 nm) was 84.3%, and the transparent aluminum oxide film
  • Example 3-2-1 the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor. When confirmed by SEM measurement, it was confirmed that there was no peeling of the film.
  • FIG. 3-9 shows the surface of the film obtained in this example
  • FIG. 3-10 shows the result of SEM analysis of the cross section of the film.
  • Example 3-2-3 In Example 3-2-1, except that water was replaced with 1.44 g instead of 0.48 g of water and added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.6. A colorless and transparent solution was obtained using the same method as for -2-1.
  • composition C composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition C an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1.
  • Example 3-2-1 formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using the composition C.
  • the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD.
  • the thickness of the aluminum oxide film was 76 nm as measured by a stylus type surface shape measuring instrument.
  • permeability in visible light (550 nm) was 83.3%, and the transparent aluminum oxide film
  • the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor. When confirmed by SEM measurement, it was confirmed that there was no peeling of the film.
  • Example 3-2-1 In Example 3-2-1, except that water was changed to 1.91 g instead of 0.48 g and water was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.8, Example 3 A colorless and transparent solution was obtained using the same method as for -2-1. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 ⁇ m or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
  • composition D a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • composition D an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1, but there was almost no deposit on the substrate. A film could not be formed.
  • Comparative Example 3-2-2 In Example 3-2-1, except that the amount of water added at the time of hydrolysis was changed and the amount of water was adjusted so that the molar ratio of water to TEAL (water / TEAL) was 1.0.
  • composition E A composition for producing an aluminum oxide film (composition E) containing a product obtained by partially hydrolyzing triethylaluminum was prepared in the same manner as the preparation method of composition A in 3-2-1. Using this composition E, an aluminum oxide film was formed at 200 ° C. by a spray pyrolysis method in the same manner as in Example 3-2-1. A film adhered to the surface and having good adhesion could not be obtained. As in Example 3-2-1, the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor.
  • R Scotch Tape
  • Table 3-1 shows the results of spray film formation using the respective compositions prepared in Examples 3-2-1, 2, 3, 4 and Comparative Example 3-2-1.
  • TEAL Triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) (11.35 g) was added to 73.2 g of tetrahydrofuran (THF) at room temperature.
  • composition F a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
  • a residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum after removing the solvent and the like by vacuum drying was analyzed by 1 H-NMR (THF-d 8 , ppm ) Measurement was performed to obtain the spectrum of Fig. 3-6.
  • an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1.
  • Example 3-2-5 Using the composition A prepared in Example 3-2-1, as a substrate for forming an aluminum oxide film, a polypropylene (PP) film (30 mm square (thickness 0.2 mm)) and polyethylene terephthalate (PET) ) Using a film (60 mm square (thickness 75 ⁇ m)) and heating the substrate at 130 ° C., the aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1. For each substrate. By the same analysis as in Example 3-2-1, formation of an aluminum oxide film at a low temperature of 130 ° C. was confirmed by a film forming method using the composition F.
  • PP polypropylene
  • PET polyethylene terephthalate
  • Example 3-2-1 using the composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum, the water content in the inert gas was 0.25 mol. % (Relative humidity 1% @ 21 ° C.) and a nitrogen atmosphere in which water is present, the aluminum oxide film is formed by the spray pyrolysis method in the same manner as in Example 3-2-1. Went. In this film formation, there was almost no deposit on the glass substrate, and an aluminum oxide film could not be obtained.
  • Example 3-2-6 Any of the substrates with the aluminum oxide films obtained in Examples 3-2-1, 2, and 3 has a high vertical transmittance of 80% or more at 550 nm and can be used as an optical material. Further, the aluminum oxide film formed on the glass substrate does not change in quality even when heated at 500 ° C. after the film formation, and can be used as a heat resistant material. When the surface resistance values of these films were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials.
  • the aluminum oxide film formed with the composition of the present invention has high adhesion to substrates such as glass and resin, undercoat films such as protective films for various substrates and bases for coating and laminated films Further, it is possible to use a film for electronic devices that can be laminated on a substrate. It is confirmed that the base material with these aluminum oxide films has minute irregularities on the film surface obtained by film formation, and can be used as an antireflection effect and as a catalyst carrier. Thus, the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
  • Example 3-2-8 A glass substrate having the aluminum oxide film described in Examples 3-2-1, 2, 3 and 4, and polypropylene (PP) and polyethylene terephthalate having the aluminum oxide film obtained in Example 3-2-6 Any resin film such as (PET) can be used as a base material having an aluminum oxide functional film having the function described in Example 3-2-7.
  • PET polypropylene
  • the alkylaluminum compound-containing solution of the present invention was prepared in a nitrogen gas atmosphere, and all solvents were dehydrated and degassed before use.
  • the average particle size (50% volume diameter) of the droplets formed using the spray nozzle of the present invention is determined by a laser light scattering type particle size distribution measuring device (“Spray particle size distribution measuring device CT Aerotrac LDSA-3500A manufactured by Nikkiso Co., Ltd.). )) was used to measure droplets at a distance of 20 cm from the spray nozzle.
  • the aluminum oxide thin film prepared by the production method of the present invention is obtained by an ATR (Attenuated Total Reflection) method using a ZnSe prism with an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). Relative IR measurements were performed without ATR correction.
  • ATR Attenuated Total Reflection
  • the refractive index of the aluminum oxide thin film according to the present invention was estimated to be 1.7 or less.
  • the aluminum oxide thin film prepared by the production method of the present invention was partly cut with a knife, and the film thickness was measured using a stylus type surface shape measuring device (DektakXT-S manufactured by Bruker Nano).
  • the aluminum oxide thin film prepared by the production method of the present invention has a visible light vertical transmittance using a light source (Ocean Photonics, DH-2000-BAL) and a spectroscope (Ocean Photonics, USB-4000). It was measured.
  • a light source Ocean Photonics, DH-2000-BAL
  • a spectroscope Ocean Photonics, USB-4000
  • Example 4-1 To 18.0 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum THF solution (hereinafter referred to as Solution A).
  • THF tetrahydrofuran
  • Solution A 10 mass% triethylaluminum THF solution
  • the resulting solution A was used for spray coating. Performed in air at room temperature of 25 ° C and relative humidity of 43% using a two-fluid spray nozzle (ultra-compact overflow precision spray nozzle, manufactured by Atmax, AM4S-OSV-0.4, nozzle diameter 0.4 mm) It was. The distance between the spray nozzle and the substrate (non-alkali glass, Corning, Eagle XG, 18 mm ⁇ 18 mm ⁇ 0.7 mmt) was set to 20 cm. 3 to 30 ⁇ m droplets were formed by mixing 2 ml / min of solution A and 8 NL / min of nitrogen gas with a spray nozzle. It was 8.5 micrometers when the average particle diameter (50% volume diameter) of the formed droplet was measured with the laser light scattering type particle size distribution measuring apparatus. The formed droplets were sprayed on a substrate heated to 200 ° C. for 8 minutes.
  • FIG. 4-2 When a thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-2 was obtained. A broad Al—O—Al vibration peak was observed in the vicinity of 550 to 1500 cm ⁇ 1, confirming the formation of an Al—O—Al bond. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm ⁇ 1, it was confirmed that there was no residual organic substance.
  • FIG. 4-1 The IR spectrum of the alkali-free glass itself by the ATR method is shown in FIG. 4-1, which is clearly different from FIG. 4-2.
  • the vertical transmittance of visible light at 550 nm was 97.5%, and the film thickness was 293 nm according to the stylus type surface shape measuring apparatus.
  • Example 4-2 To 18.01 g of diisopropyl ether, 2.00 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum diisopropyl ether solution (hereinafter referred to as Solution B).
  • Solution B Tosoh Finechem
  • Example 4-1 Except that the solution B was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1.
  • the average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 ⁇ m.
  • Example 4-3 When the thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-3 was obtained. As in Example 4-1, formation of an Al—O—Al bond was confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm ⁇ 1, it was confirmed that there was no residual organic substance.
  • the visible light 550 nm had a vertical transmittance of 98.0% and was transparent, and the film thickness was 277 nm according to the stylus type surface shape measuring apparatus.
  • Example 4-3 To 10.00 g of THF, 10.01 g of hexane and 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) were added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum diisopropyl ether solution (hereinafter, solution C).
  • Example 4-1 Except that the solution C was used, the same method and conditions as in Example 4-1 were used for spray coating on the same substrate as in Example 4-1.
  • the average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring device and found to be 7.5 ⁇ m.
  • Example 4-4 To 17.9 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triisobutylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triisobutylaluminum THF solution (hereinafter referred to as Solution D). .
  • THF tetrahydrofuran
  • Example 4-1 Except that the solution D was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1.
  • the average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 ⁇ m.
  • Example 4-4 When the thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-4 was obtained. As in Example 4-1, formation of an Al—O—Al bond was confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm ⁇ 1, it was confirmed that there was no residual organic substance.
  • the vertical transmittance of visible light 550 nm was as transparent as 99.3%, and the film thickness was 130 nm according to the stylus type surface shape measuring apparatus.
  • Example 4-1 Except that the solution E was used, the same method and conditions as in Example 4-1, were applied to the same base material as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached.
  • Example 4-1 Except that the solution F was used, the same method and conditions as in Example 4-1, were applied to the same base material as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached.
  • Example 4-1 Except that the solution G was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached. ⁇ Fifth aspect of the present invention>
  • the alkylaluminum compound-containing solution of the present invention was prepared in a nitrogen gas atmosphere, and all solvents were dehydrated and degassed before use.
  • the average particle size (50% volume diameter) of the droplets formed using the spray nozzle of the present invention is determined by a laser light scattering type particle size distribution measuring device (“Spray particle size distribution measuring device CT Aerotrac LDSA-3500A manufactured by Nikkiso Co., Ltd.). )) was used to measure droplets at a distance of 20 cm from the spray nozzle.
  • the film thickness and refractive index of the aluminum oxide thin film prepared by the production method of the present invention were measured using a high-speed spectroscopic ellipsometer (manufactured by JA Woollam Japan Co., Ltd., M-2000).
  • the effective carrier lifetime was measured by a quasi-steady state photoconductive method (QSSPC method) using a lime time measuring device (SCT, WCT-120).
  • the effective carrier lifetime in the example is a value at an excess carrier density of 10 15 cm ⁇ 3 .
  • the surface recombination velocity S was determined based on the following equation (1).
  • W is the wafer thickness
  • ⁇ eff is the effective lifetime
  • ⁇ bulk is the bulk lifetime. W was calculated as 300 ⁇ m
  • ⁇ bulk as ⁇ .
  • Example 5-1 To 18.1 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum THF solution (hereinafter referred to as Solution A).
  • THF tetrahydrofuran
  • Solution A 10 mass% triethylaluminum THF solution
  • the resulting solution A was used for spray coating.
  • a two-fluid spray nozzle (ultra-compact overflow type precision spray nozzle, manufactured by Atmax, AM4S-OSV-0.4, nozzle diameter: 0.4 mm) was used.
  • Spray nozzle and base material p-type silicon substrate, manufactured by Topsil, PV-FZ (wafer thickness 255 to 305 ⁇ m, orientation ⁇ 100>, volume resistance 1 to 5 ⁇ cm), 4 inch circular plate equally divided into 4 parts, 5 wt. (Used after washing with% hydrofluoric acid) at a distance of 20 cm.
  • Droplets having an average particle diameter of 3 to 30 ⁇ m were formed by mixing 2 ml / min of solution A and 8 NL / min of nitrogen gas with a spray nozzle. It was 8.5 micrometers when the average particle diameter (50% volume diameter) of the formed droplet was measured with the laser light scattering type particle size distribution measuring apparatus.
  • nitrogen gas containing moisture formed by introducing nitrogen gas at 10 NL / min into water heated to 65 ° C. was introduced near the substrate.
  • the formed droplets were sprayed onto a substrate heated to 200 ° C. for 2 minutes in the presence of the water.
  • After making a base material into a perfect nitrogen gas atmosphere it baked at 400 degreeC for 5 minutes. A similar treatment was applied to the back side.
  • the film thickness and refractive index of the thin film formed on the substrate were measured using a high-speed spectroscopic ellipsometer, they were 69 nm and 1.50.
  • the effective lifetime was 606 ⁇ s, and the recombination rate was 24.8 cm / s.
  • Example 5-2 The film obtained in Example 5-1 was further calcined at 400 ° C. for 5 minutes in a forming gas atmosphere composed of 5 vol% hydrogen and 95 vol% nitrogen. The effective lifetime of the resulting film increased to 698 ⁇ s and the recombination rate was 21.5 cm / s.
  • Example 5-3 To 18.1 g of diisopropyl ether, 2.00 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10% by mass triethylaluminum diisopropyl ether solution (hereinafter referred to as Solution B).
  • Solution B Tosoh Finechem
  • Example 5-1 The same base material as in Example 5-1 was spray coated and fired in the same manner and conditions as in Example 5-1, except that Solution B was used.
  • the average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 ⁇ m.
  • the effective lifetime of the thin film formed on the substrate was 506 ⁇ s, and the recombination speed was 29.6 cm / s.
  • Example 5-4 The film obtained in Example 5-3 was further baked at 400 ° C. for 5 minutes in a forming gas atmosphere composed of 5 vol% hydrogen and 95 vol% nitrogen. The effective lifetime of the resulting film increased to 821 ⁇ s and the recombination rate was 18.3 cm / s.
  • the present inventions 1 to 5 are useful in the field of manufacturing an aluminum oxide film.
  • the present invention 1 is useful in the field of alkylating agents and reagents such as organic synthesis, and the field of manufacturing aluminum oxide thin films.
  • the aluminum oxide thin film can be used for imparting heat dissipation, imparting heat resistance, imparting barrier properties against air and moisture, imparting an antireflection effect, imparting an antistatic effect, imparting an antifogging effect, imparting wear resistance, and the like.
  • the aluminum oxide thin film of the present invention 4 is used for imparting heat radiation, imparting heat resistance, imparting barrier properties against air and moisture, imparting an antireflection effect, imparting an antistatic effect, imparting an antifogging effect, imparting abrasion resistance, a passivation film, and the like. be able to.
  • the aluminum oxide thin film of the present invention 5 can be used for a passivation film, a solar cell element using the passivation film, and the like.
  • Figures 2-1 and 3-1 1 ... spray bottle, 2 ... Base material holder (with heater), 3 ... spray nozzle, 4 ... Compressor, 5 ... base material, 6 ... Steam introduction tube
  • FIGS 5-1 and 5-2 1 Spray bottle 2 Base material holder (with heater) 3 Spray nozzle 4 High-pressure nitrogen cylinder 5 Base material 6 Water introduction port 7 Inert gas introduction port 8 Exhaust port 9 Enclosure 11 Silicon semiconductor substrate 12 n + layer 13 Antireflection / passivation thin film 14 Passivation thin film 15 Grid electrode 16 Aluminum electrode 17 Al -Si alloy layer 18 P + layer 100 solar cell element

Abstract

Disclosed is a method for producing an aluminum oxide thin-film. (1) A solution containing an alkyl aluminum compound or a partial hydrolysate thereof and a cyclic amide compound represented by general formula (4). (2) A method for coating the surface of a substrate with a composition containing the partial hydrolysate of an organic aluminum compound represented by general formula (6) while in an inert gas atmosphere, and heating the same. (3) A method for forming an aluminum oxide film by forming and heating a coated film obtained by spraying and coating an organic solvent solution of the organic aluminum compound represented by general formula (6) or the partial hydrolysate thereof. (4) A method for obtaining an aluminum oxide thin-film by heating a coated film formed by coating a substrate with a solution containing an alkyl aluminum compound and an organic solvent having electron-donating properties and not containing active hydrogen atoms. (5) A passivation film-forming agent comprising the solution, and a method for producing a silicon substrate having a passivation film using the same. A silicon substrate and a solar cell element having the passivation film.

Description

化学的に安定なアルキルアルミニウム溶液、アルキルアルミニウム加水分解組成物溶液、アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品、その製造方法、酸化アルミニウム薄膜の製造方法、パッシベーション膜の製造方法、パッシベーション膜、それを用いた太陽電池素子Chemically stable alkylaluminum solution, alkylaluminum hydrolyzed composition solution, composition for coating aluminum oxide film, article having aluminum oxide film, method for producing the same, method for producing aluminum oxide thin film, and production of passivation film Method, passivation film, and solar cell element using the same
 本発明の第一の態様(以下、本発明1と呼ぶことがある)は、空気に対する化学的安定性が高いアルキルアルミニウム溶液及びアルキルアルミニウム加水分解組成物に関する。本発明1のアルキルアルミニウム溶液は、空気中で扱っても化学的に変化しない安定なアルキル化剤、反応剤として利用可能な溶液及び組成物である。本発明1のアルキルアルミニウム部分加水分解物含有溶液を用いれば、空気中でも酸化アルミニウム薄膜を形成することができる。 The first aspect of the present invention (hereinafter sometimes referred to as the present invention 1) relates to an alkylaluminum solution and an alkylaluminum hydrolyzed composition having high chemical stability to air. The alkylaluminum solution of the present invention 1 is a solution and composition that can be used as a stable alkylating agent and reactant that do not chemically change even when handled in air. If the alkylaluminum partial hydrolyzate-containing solution of the present invention 1 is used, an aluminum oxide thin film can be formed even in the air.
 本発明の第二の態様(以下、本発明2と呼ぶことがある)は、アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品の製造方法、及びアルミニウム酸化物膜を有する物品に関する。本発明2のアルミニウム酸化物膜塗布形成用組成物は、基材への密着性が優れたアルミニウム酸化物膜を形成することができる組成物である。 The second aspect of the present invention (hereinafter sometimes referred to as the present invention 2) is a composition for forming an aluminum oxide film, a method for producing an article having an aluminum oxide film, and an article having an aluminum oxide film. About. The composition for forming an aluminum oxide film according to the present invention 2 is a composition capable of forming an aluminum oxide film having excellent adhesion to a substrate.
 本発明の第三の態様(以下、本発明3と呼ぶことがある)は、アルミニウム酸化物膜塗布形成用組成物、アルミニウム酸化物膜を有する物品の製造方法、及びアルミニウム酸化物膜を有する物品に関する。本発明3のアルミニウム酸化物膜塗布形成用組成物は、基材への密着性が優れたアルミニウム酸化物膜を形成することができる組成物である。 A third aspect of the present invention (hereinafter sometimes referred to as the present invention 3) is a composition for forming an aluminum oxide film coating, a method for producing an article having an aluminum oxide film, and an article having an aluminum oxide film. About. The composition for applying and forming an aluminum oxide film of the present invention 3 is a composition capable of forming an aluminum oxide film having excellent adhesion to a substrate.
 本発明の第四の態様(以下、本発明4と呼ぶことがある)は、簡便な酸化アルミニウム薄膜の製造方法に関する。本発明4の製造方法を用いれば、簡便に酸化アルミニウム薄膜を形成することができる。 The fourth aspect of the present invention (hereinafter sometimes referred to as the present invention 4) relates to a simple method for producing an aluminum oxide thin film. If the manufacturing method of this invention 4 is used, an aluminum oxide thin film can be formed easily.
 本発明の第五の態様(以下、本発明5と呼ぶことがある)は、パッシベーション膜の製造方法、パッシベーション膜、それを用いた太陽電池素子に関する。本発明5の製造方法を用いれば、キャリアライフタイムが長いパッシベーション膜を形成することができる。 The fifth aspect of the present invention (hereinafter sometimes referred to as the present invention 5) relates to a method for producing a passivation film, a passivation film, and a solar cell element using the same. If the manufacturing method of this invention 5 is used, a passivation film having a long carrier lifetime can be formed.
関連出願の相互参照
 本出願は、2014年8月21日出願の日本特願2014-168541号、2014年8月21日出願の日本特願2014-168549号、2014年11月26日出願の日本特願2014-238778号、および2015年2月20日出願の日本特願2015-031567号、2015年3月10日出願の日本特願2015-046592号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
Cross-reference of related applications This application is filed in Japanese Patent Application No. 2014-168541 filed on August 21, 2014, Japanese Patent Application No. 2014-168549 filed on August 21, 2014, and Japan filed on November 26, 2014. Claims priority of Japanese Patent Application No. 2014-238778, Japanese Patent Application No. 2015-031567 filed on February 20, 2015, and Japanese Patent Application No. 2015-046592 filed on March 10, 2015, all of which are described Are specifically incorporated herein by reference.
<本発明の第一の態様>
 アルキルアルミニウムは、その高い反応性から、重合用触媒、高級α-オレフィン、高級アルコールの合成原料、有機金属化合物の合成原料、セラミックスの合成原料、化合物半導体の原料、有機合成分野での反応剤等、各種用途に幅広く使用されている(非特許文献1-1)。
<First embodiment of the present invention>
Alkyl aluminum has high reactivity, so it is a polymerization catalyst, higher α-olefins, higher alcohol synthesis raw materials, organometallic compound synthesis raw materials, ceramic synthesis raw materials, compound semiconductor raw materials, reactants in the organic synthesis field, etc. Widely used in various applications (Non-patent Document 1-1).
 トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等の多くのアルキルアルミニウムは空気に触れると自然発火し、白色のアルミナを生じる。そのため、空気中で容易に取扱いができない。 Many alkylaluminums such as trimethylaluminum, triethylaluminum and triisobutylaluminum ignite spontaneously when exposed to air, producing white alumina. Therefore, it cannot be easily handled in the air.
 そこで、ヘキサン、ヘプタン、トルエン等の有機溶媒で希釈したアルキルアルミニウム溶液が使用される場合が多い。しかし、例えばトリメチルアルミニウムをトルエンで希釈した場合は12質量%、トリエチルアルミニウムの場合は12質量%、トリイソブチルアルミニウムの場合は26質量%を超えた濃度になると、それぞれ依然として自然発火性が残存する。そのため、安全に取り扱う為には、それ以下の濃度に希釈したアルキルアルミニウム溶液を使用する必要があった(非特許文献1-2)。しかし有機溶媒で希釈した比較的低い濃度のアルキルアルミニウム溶液は、嵩体積が大きく、輸送等の移動が経済的に不利である。 Therefore, an alkylaluminum solution diluted with an organic solvent such as hexane, heptane, or toluene is often used. However, for example, when trimethylaluminum is diluted with toluene, the pyrophoricity still remains when the concentration exceeds 12 mass%, triethylaluminum exceeds 12 mass%, and triisobutylaluminum exceeds 26 mass%. Therefore, in order to handle it safely, it was necessary to use an alkylaluminum solution diluted to a lower concentration (Non-patent Document 1-2). However, a relatively low concentration alkylaluminum solution diluted with an organic solvent has a large bulk volume, and movement such as transportation is economically disadvantageous.
 また、自然発火性が無くなるまで希釈したアルキルアルミニウム溶液でも空気に対する反応性は残存しており、空気と接触すると、空気中の酸素と反応し白色固体を析出させ、注射針、配管等を閉塞させることもある。 In addition, alkyl aluminum solutions diluted until they are no longer ignitable remain reactive to air, and when in contact with air, they react with oxygen in the air to precipitate white solids and block injection needles, piping, etc. Sometimes.
 一方、アルキルアルミニウム溶液、又はアルキルアルミニウム溶液と水を反応させたアルキルアルミニウム加水分解組成物溶液を用いて酸化アルミニウム膜を形成する方法が知られている(特許文献1-1)。 On the other hand, a method of forming an aluminum oxide film using an alkylaluminum solution or an alkylaluminum hydrolysis composition solution obtained by reacting an alkylaluminum solution with water is known (Patent Document 1-1).
特許文献1-1:WO2012/053433A1
非特許文献1-1:“アルキルアルミニウム“ 有機合成化学 第43巻 第5号(1985)p475
非特許文献1-2:“Pyrophoricity of Metal Alkyls“ AkzoNobel Technical Bulletin August (2008) p1
Patent Document 1-1: WO2012 / 053433A1
Non-Patent Document 1-1: “Alkyl Aluminum” Synthetic Organic Chemistry Vol. 43 No. 5 (1985) p475
Non-Patent Document 1-2: “Pyrophoricity of Metal Alkyls” AkzoNobel Technical Bulletin August (2008) p1
 しかし、特許文献1-1に記載のアルキルアルミニウム溶液、及びアルミアルミニウム加水分解組成物溶液は、水との反応性があり、そのため、窒素、アルゴン等の不活性ガス中で酸化アルミニウム膜を形成する必要がある。不活性ガス中での操作には、不活性ガス、不活性ガス供給設備、グローブボックス等の不活性ガス保持設備を必要とし、酸化アルミニウム薄膜の形成コストが高くなるという課題があった。 However, the alkylaluminum solution and the aluminum aluminum hydrolyzed composition solution described in Patent Document 1-1 are reactive with water, and therefore form an aluminum oxide film in an inert gas such as nitrogen or argon. There is a need. The operation in the inert gas requires an inert gas holding facility such as an inert gas, an inert gas supply facility, and a glove box, and there is a problem that the cost for forming the aluminum oxide thin film increases.
 本発明1の目的は、空気に対する安定性が高く、自然発火性が実質的に無い、空気中での取扱いが可能であり、嵩体積が比較的小さく輸送等の移動が経済的に有利な比較的高濃度とすることも可能なアルキルアルミニウム溶液を提供すること、さらには、空気中で酸化アルミニウム薄膜を形成することが可能なアルキルアルミニウム部分加水分解物含有溶液を提供することである。加えて本発明1は、空気中での酸化アルミニウム薄膜の製造方法を提供する。 The purpose of the present invention 1 is a comparison that is highly stable to air, substantially free of pyrophoric properties, can be handled in air, has a relatively small bulk volume, and is economically advantageous for movement such as transportation. It is to provide an alkylaluminum solution that can have a high concentration, and to provide a solution containing an alkylaluminum partial hydrolyzate that can form an aluminum oxide thin film in air. In addition, the present invention 1 provides a method for producing an aluminum oxide thin film in air.
<本発明の第二の態様>
 アルミニウム酸化物は、強度、高耐熱性、高熱伝導度、低熱膨張率、絶縁性、緻密性などにおいて優れた特性を有することから、工業製品の各種用途に幅広く使用されている。
<Second embodiment of the present invention>
Aluminum oxide is widely used in various industrial products because it has excellent properties such as strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, insulation, and denseness.
 アルミニウム酸化物は、ナノ粒子、粉体、フィラー、板状、棒状等の形状を有するものとして、研磨材料、耐火材料、耐熱材料、絶縁物、放熱材料に供されている。さらに、前述の特性を持つ膜としても利用され、電子材料用アルミナシート、アルミニウム酸化物膜の作製、触媒担体の作成、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、耐摩耗性等の付与、セラミック製造用バインダー等の用途に供されておいる。具体的には、機械部品や切削工具の保護膜、半導体、磁性体、太陽電池等の絶縁膜、誘電体膜、反射防止膜、表面デバイス、磁気ヘッド、赤外線等のセンサー素子、食品、薬品、医療器材等の包装材料における空気・水分等へのバリア膜、各種粉体、フィルム、ガラスやプラスチックを素材としたフィルムや成形体等の基材へのコーティング膜およびこれらを用いた耐熱材料や高硬度フィルム、光学部材等への応用がある。 Aluminum oxide is used for polishing materials, refractory materials, heat-resistant materials, insulators, and heat-dissipating materials as having shapes such as nanoparticles, powders, fillers, plates, and rods. Furthermore, it is also used as a film having the above-mentioned properties, and it is used for the production of alumina sheets for electronic materials, aluminum oxide films, catalyst carriers, heat resistance, air and moisture barrier properties, antireflection effects, and antistatic properties. It is used for applications such as imparting effects, imparting antifogging effects, imparting abrasion resistance, and binders for ceramic production. Specifically, protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high There are applications for hardness films, optical members, and the like.
 アルミニウム酸化物の製造方法としては、種々の方法が知られている。例えば、ボーキサイトを出発原料にした、いわゆるバイヤー法や、アルミニウムアルコキシドの加水分解を経た製造方法が知られている。また、一般的なアルミニウム酸化物膜の製造方法として、例えば、真空装置を用いる成膜手法である、スパッタリング法、化学気相成長(MOCVD)法、蒸着などの物理気相成長(PVD)法がよく知られている。 Various methods are known for producing aluminum oxide. For example, a so-called buyer method using bauxite as a starting material and a production method through hydrolysis of aluminum alkoxide are known. In addition, as a general method for producing an aluminum oxide film, for example, a sputtering method, a chemical vapor deposition (MOCVD) method, or a physical vapor deposition (PVD) method such as vapor deposition, which is a film forming method using a vacuum apparatus, is used. well known.
 アルミニウム酸化物膜の形成においては、塗布法での成膜が知られている。この塗布法は、装置が簡便で膜形成速度が速いため生産性が高く製造コストが低い、真空装置を用いる必要がなく真空容器による制約がないため、大きな酸化物膜の作成も可能である等の利点がある。アルミニウム酸化物膜形成のための塗布法として、ディップコート法(特許文献2-1,2-2)、スプレー熱分解法(特許文献2-3)、ミストCVD法(非特許文献2-1)、スピンコート法(特許文献2-4~2-6)等が知られている。 In the formation of an aluminum oxide film, film formation by a coating method is known. This coating method is simple and the film formation speed is high, so that the productivity is high and the manufacturing cost is low. Since there is no need to use a vacuum apparatus and there is no restriction by a vacuum container, a large oxide film can be formed. There are advantages. As a coating method for forming an aluminum oxide film, a dip coating method (Patent Documents 2-1 and 2-2), a spray pyrolysis method (Patent Document 2-3), and a mist CVD method (Non-Patent Document 2-1) The spin coating method (Patent Documents 2-4 to 2-6) is known.
 特許文献2-3に記載のスプレー熱分解法は、原料としてアルミニウムアセチルアセトナト錯体の溶液を用いてスプレー塗布と同時に溶媒乾燥し、次いで基材温度を500℃ 以上に加熱することでアルミニウム酸化物膜塗膜を得る方法である。 In the spray pyrolysis method described in Patent Document 2-3, a solution of aluminum acetylacetonate complex is used as a raw material, and solvent drying is performed simultaneously with spray coating, and then the substrate temperature is heated to 500 ° C. or higher to obtain an aluminum oxide. This is a method for obtaining a film coating.
 非特許文献2-1に記載のミストCVD法は、原料としてアルミニウムアセチルアセトナト錯体の溶液を用いて、これをミスト状として塗布すると同時に溶媒乾燥し、次いで基材温度を300℃以上に加熱することでアルミニウム酸化物膜塗膜を得る方法である。 The mist CVD method described in Non-Patent Document 2-1 uses a solution of an aluminum acetylacetonate complex as a raw material, which is applied as a mist and simultaneously dried with a solvent, and then the substrate temperature is heated to 300 ° C. or higher. This is a method for obtaining an aluminum oxide film coating.
 種々の組成物が、塗布法によるアルミニウム酸化物膜形成用組成物として提案されている。例えば、特許文献2-4~2-6には、アミン化合物と水素化アルミニウム化合物との錯体を用いるアルミニウム酸化物膜形成用組成物が記載されている。特許文献2-5~2-7には、有機アルミニウム化合物としてアルキルアルミニウムの有機溶媒溶液を用いることが記載されている。 Various compositions have been proposed as compositions for forming an aluminum oxide film by a coating method. For example, Patent Documents 2-4 to 2-6 describe an aluminum oxide film forming composition using a complex of an amine compound and an aluminum hydride compound. Patent Documents 2-5 to 2-7 describe using an organic solvent solution of alkylaluminum as the organoaluminum compound.
 これらアミン化合物と水素化アルミニウム化合物との錯体やアルキルアルミニウムの有機溶媒溶液は、通常、スピンコート法およびディップコート法による塗布成膜に用いられる。スピンコートまたはディップコート後に溶媒を乾燥し、次いで、酸素源である水分と接触させながら処理することによりアルミニウム酸化物を形成することができる。 These amine compound and aluminum hydride compound complexes and alkylaluminum organic solvent solutions are usually used for coating film formation by spin coating and dip coating. The aluminum oxide can be formed by drying the solvent after spin coating or dip coating and then treating it with contact with moisture as an oxygen source.
 また、アルミニウム酸化物膜形成用組成物として、有機アルミニウム化合物の部分加水分解物を用いることも知られている(特許文献2-1、2-2、2-5,2-6)。 It is also known to use a partial hydrolyzate of an organoaluminum compound as a composition for forming an aluminum oxide film (Patent Documents 2-1, 2-2, 2-5, 2-6).
 有機アルミニウム化合物の部分加水分解物も、通常、スピンコート法およびディップコート法による塗布成膜に用いられる。一般的な処方としては、スピンコートまたはディップコート後に溶媒を乾燥し、次いで基材温度を450℃以上に加熱することでアルミニウム酸化物膜が得られる(特許文献2-1、2-2)。 An organic aluminum compound partial hydrolyzate is also usually used for coating film formation by spin coating and dip coating. As a general prescription, an aluminum oxide film can be obtained by drying the solvent after spin coating or dip coating and then heating the substrate temperature to 450 ° C. or higher (Patent Documents 2-1 and 2-2).
特許文献2-1:日本特開昭58-95611号公報
特許文献2-2:日本特開昭58-91030号公報
特許文献2-3:日本特開2007-270335号公報
特許文献2-4:日本特開2007-287821号公報
特許文献2-5:WO2012/053433A1
特許文献2-6:WO2012/053436A1
特許文献2-7:日本特開平4-139005号公報
非特許文献2-1:"Growth and electrical properties of AlOx grown by mist chemical vapor deposition" Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol.3 (2013) 032135.
Patent Document 2-1: Japanese Patent Application Laid-Open No. 58-95611 Patent Document 2-2: Japanese Patent Application Laid-Open No. 58-91030 Patent Document 2-3: Japanese Patent Application Laid-Open No. 2007-270335 Patent Document 2-4: Japanese Patent Laid-Open No. 2007-287821 Patent Document 2-5: WO2012 / 053433A1
Patent Document 2-6: WO2012 / 053436A1
Patent Document 2-7: Japanese Patent Laid-Open No. 4-139005 Non-Patent Document 2-1: “Growth and electrical properties of AlOx grown by mist chemical vapor deposition” Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol. .3 (2013) 032135.
 有機アルミニウム化合物、特に、アミン化合物と水素化アルミニウム化合物との錯体やアルキルアルミニウムの有機溶媒溶液を用いてスピンコート法およびディップコート法等によるアルミニウム酸化物膜の塗布成膜を行う場合がある。例えば、特許文献2-4記載のアミン化合物と水素化アルミニウム化合物との錯体を用いる場合、膜厚が薄い(150nm程度)アルミニウム酸化物膜の成膜においては酸素/窒素の混合物を用いた大気圧ガス雰囲気下での処理でアルミニウム酸化物膜を形成することが記載されている。一方、特許文献2-5,2-6記載の実施例によると、膜厚が厚い(200nm程度以上)アルミニウム酸化物膜を得るためには、スピンコートまたはディップコート後に溶媒を乾燥した後に、酸素源である水分と5MPa以上での加圧下で接触させながら、140℃で3時間処理する必要がある。この方法では、長時間の加圧下での加熱処理が必要であり、酸素/窒素の混合物を用いた大気圧ガス雰囲気下での250℃での処理では、金属アルミニウムが形成してしまうことが記載されている。 An aluminum oxide film may be formed by spin coating or dip coating using an organic aluminum compound, in particular, a complex of an amine compound and an aluminum hydride compound or an organic solvent solution of alkyl aluminum. For example, when a complex of an amine compound and an aluminum hydride compound described in Patent Document 2-4 is used, an atmospheric pressure using an oxygen / nitrogen mixture is used to form a thin (about 150 nm) aluminum oxide film. It is described that an aluminum oxide film is formed by treatment in a gas atmosphere. On the other hand, according to the examples described in Patent Documents 2-5 and 2-6, in order to obtain a thick aluminum oxide film (about 200 nm or more), after drying the solvent after spin coating or dip coating, oxygen It is necessary to perform the treatment at 140 ° C. for 3 hours while contacting with the source moisture under a pressure of 5 MPa or more. This method requires heat treatment under pressure for a long time, and it is described that metal aluminum is formed by treatment at 250 ° C. in an atmospheric pressure gas atmosphere using an oxygen / nitrogen mixture. Has been.
 さらに、特許文献2-5において、有機アルミニウム化合物として炭素数12のアルキル基を有するトリドデシルアルキルアルミニウムの有機溶媒溶液を用いた場合においても、酸素/窒素の混合物等を用いた大気圧ガス雰囲気下での処理では、金属アルミニウムが形成してしまうことが記載されている。 Further, in Patent Documents 2-5, even when an organic solvent solution of tridodecylalkylaluminum having an alkyl group having 12 carbon atoms is used as the organoaluminum compound, an atmospheric pressure gas atmosphere using an oxygen / nitrogen mixture or the like is used. It is described that metal aluminum is formed in the treatment in (1).
 このように、有機アルミニウム化合物として、アミン化合物と水素化アルミニウム化合物との錯体やアルキルアルミニウムの有機溶媒溶液を用いたアルミニウム酸化物膜形成用組成物を用いる場合、250℃以下における大気圧下では、アルミニウム酸化物膜を得ることができないという問題がある。 Thus, when an aluminum oxide film forming composition using an organic aluminum aluminum compound and a complex of an amine compound and an aluminum hydride compound or an organic solvent solution of an alkylaluminum is used as the organoaluminum compound, There is a problem that an aluminum oxide film cannot be obtained.
 ところで、近年、フィルム等の樹脂製基材への酸化物の成膜技術が求められている。その際、1)成膜温度の低温化、2)基材への密着性、3)酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)が重要な要素となっている。そのため、樹脂製基材へのアルミニウム酸化物膜の成膜も、通常は、真空を用いた蒸着法等により成膜が行われている。 Incidentally, in recent years, a technique for forming an oxide on a resin base material such as a film has been demanded. At that time, 1) lowering of the film formation temperature, 2) adhesion to the base material, and 3) oxide formation state (for example, transparency and homogeneity of the oxide film) are important factors. . Therefore, the film formation of the aluminum oxide film on the resin base material is usually performed by a vapor deposition method using a vacuum.
 特に、ポリエチレン、ポリプロピレンといった表面エネルギーの小さい樹脂への成膜においては、2)基材への密着性が課題である。酸化物膜の基材への密着性を向上させる目的で、樹脂表面に対してアンダーコート処理、プライマー処理、コロナ処理、UV照射、塩素化等が行われている。 In particular, in film formation on a resin having a low surface energy such as polyethylene and polypropylene, 2) adhesion to a substrate is a problem. For the purpose of improving the adhesion of the oxide film to the substrate, the resin surface is subjected to undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination and the like.
 これまで、アルミニウム酸化物膜塗布形成用組成物を用いるアルミニウム酸化物膜の塗布成膜においては、上記1)~3)の性能を兼ね備えた組成物は知られていない。 So far, a composition having the above performances 1) to 3) has not been known for coating an aluminum oxide film using a composition for coating and forming an aluminum oxide film.
 一方、アルキルアルミニウムなどの有機アルミニウム化合物を部分的に加水分解して得られたアルミニウム酸化物膜形成用組成物を用いたアルミニウム酸化物膜の塗布成膜については、検討がほとんどなされておらず、検討されている内容については課題が多い。例えば、特許文献2-1には、Alに結合している置換基としてイソプロポキシ基を有する有機アルミニウム化合物を用い、450℃で行うアルミニウム酸化物膜の塗布成膜が開示されている。しかし、この成膜においては、分子量の大きいイソシアン酸ブチルのような添加物を添加しないと薄膜に亀裂が入ることが記載されている。また、特許文献2-2において、Alに結合している置換基としてエトキシ基やイソプロポキシ基を有する有機アルミニウム化合物を用いたアルミニウム酸化物膜の塗布成膜の開示がある。しかし、500℃の成膜においてはひび割れが生じたり、アルミニウム酸化物膜が基材に密着しないなどの課題があった。 On the other hand, almost no investigation has been made on coating formation of an aluminum oxide film using a composition for forming an aluminum oxide film obtained by partially hydrolyzing an organoaluminum compound such as alkylaluminum, There are many issues about the content being considered. For example, Patent Document 2-1 discloses coating of an aluminum oxide film performed at 450 ° C. using an organoaluminum compound having an isopropoxy group as a substituent bonded to Al. However, in this film formation, it is described that if an additive such as butyl isocyanate having a large molecular weight is not added, the thin film cracks. Further, Patent Document 2-2 discloses the coating film formation of an aluminum oxide film using an organoaluminum compound having an ethoxy group or an isopropoxy group as a substituent bonded to Al. However, the film formation at 500 ° C. has problems such as cracking and the aluminum oxide film not sticking to the substrate.
 このように、スピンコート法やディップコート法などの塗布法を用い、基材表面に塗布液を直接塗布するアルミニウム酸化物膜の塗布成膜においては、アルミニウム酸化物膜の基材への密着性不良や成膜時にアルミニウム酸化物の膜が形成されない(膜状にならない)など、アルミニウム酸化物膜の形成が困難であるという課題がある。 In this way, in the coating formation of an aluminum oxide film in which a coating solution is directly applied to the substrate surface using a coating method such as a spin coating method or a dip coating method, the adhesion of the aluminum oxide film to the substrate There is a problem that it is difficult to form an aluminum oxide film, for example, a defect or an aluminum oxide film is not formed at the time of film formation.
 そこで本発明2の目的は、トリエチルアルミニウムのような炭素数1~4のアルキル基を置換基に有す有機アルミニウム化合物の部分加水分解物を含む組成物を用いる塗布成膜、特に、基材表面に塗布液を直接塗布する塗布成膜における課題を解決し、比較的低温での成膜において、樹脂製基材を含む基材への密着性に優れ、酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)が良好なアルミニウム酸化物膜塗布形成用組成物の提供、並びにこの組成物を用いたアルミニウム酸化物膜の形成方法、及びアルミニウム酸化物膜を有する物品の製造方法を提供することである。 Accordingly, the object of the present invention 2 is to form a coating film using a composition containing a partial hydrolyzate of an organoaluminum compound having an alkyl group having 1 to 4 carbon atoms as a substituent, such as triethylaluminum. It solves the problem of coating film formation by directly applying a coating solution to the film, and has excellent adhesion to a substrate including a resinous substrate in film formation at a relatively low temperature, and forms an oxide (for example, oxide Provision of a composition for coating and forming an aluminum oxide film having good transparency and homogeneity of the film, a method for forming an aluminum oxide film using the composition, and a method for producing an article having an aluminum oxide film Is to provide.
 さらに本発明2は、本発明2の製造方法を用いて作製した、酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)が良好なアルミニウム酸化物膜、及び基材上にこのアルミニウム酸化物膜を密着性良好な状態で有する物品を提供することである。 Further, the present invention 2 is an aluminum oxide film produced using the production method of the present invention 2 and having a good oxide formation state (for example, transparency and homogeneity of the oxide film), and a substrate. An object of the present invention is to provide an article having this aluminum oxide film with good adhesion.
<本発明の第三の態様>
 アルミニウム酸化物は、強度、高耐熱性、高熱伝導度、低熱膨張率、絶縁性、緻密性などにおいて優れた特性を有することから、工業製品の各種用途に幅広く使用されている。
<Third Aspect of the Present Invention>
Aluminum oxide is widely used in various industrial products because it has excellent properties such as strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, insulation, and denseness.
 アルミニウム酸化物およびその
製造方法の背景技術は、前記本発明の第二の態様の背景技術で説明した。
The background art of the aluminum oxide and the manufacturing method thereof has been described in the background art of the second aspect of the present invention.
 アルミニウム酸化物膜の形成においては、塗布法での成膜が知られている。この塗布法は、装置が簡便で膜形成速度が速いため生産性が高く製造コストが低い、真空装置を用いる必要がなく真空容器による制約がないため、大きな酸化物膜の作成も可能である等の利点がある。アルミニウム酸化物膜形成のための塗布法として、ディップコート法(特許文献3-1,3-2)、スプレー熱分解法(特許文献3-3~3-7)、ミストCVD法(非特許文献3-1)、スピンコート法(特許文献3-8~3-10)等が知られている。この中でも、特にスプレー熱分解法のような噴霧塗布による成膜方法を用いて、アルミニウム酸化物薄膜の形成について種々の検討がなされている(特許文献3-3~3-7)。 In the formation of an aluminum oxide film, film formation by a coating method is known. This coating method is simple and the film formation speed is high, so that the productivity is high and the manufacturing cost is low. Since there is no need to use a vacuum apparatus and there is no restriction by a vacuum container, a large oxide film can be formed. There are advantages. As a coating method for forming an aluminum oxide film, a dip coating method (Patent Documents 3-1 and 3-2), a spray pyrolysis method (Patent Documents 3-3 to 3-7), and a mist CVD method (Non-Patent Documents) 3-1), spin coating method (Patent Documents 3-8 to 3-10) and the like are known. Of these, various studies have been made on the formation of an aluminum oxide thin film using a film forming method by spray coating such as spray pyrolysis (Patent Documents 3-3 to 3-7).
 また、塗布法での成膜によるアルミニウム酸化物膜形成において用いることが出来るアルミニウム酸化物膜形成用組成物として、種々の組成物が提案されている。例えば、アルミニウム酸化物であるアルミナ膜を形成する方法において、アルミニウム酸化物膜形成用組成物として、アミン化合物と水素化アルミニウム化合物との錯体を用いることが記載されている(特許文献3-8~3-10)、さらに有機アルミニウム化合物としてアルキルアルミニウムの有機溶媒溶液を用いることが記載されている(特許文献3-9~3-11)。 Further, various compositions have been proposed as a composition for forming an aluminum oxide film that can be used in forming an aluminum oxide film by film formation by a coating method. For example, in a method of forming an alumina film that is an aluminum oxide, it is described that a complex of an amine compound and an aluminum hydride compound is used as the composition for forming an aluminum oxide film (Patent Documents 3-8 to 3-10) and the use of an organic solvent solution of alkylaluminum as the organoaluminum compound (Patent Documents 3-9 to 3-11).
特許文献3-1:日本特開昭58-95611公報
特許文献3-2:日本特開昭58-91030公報
特許文献3-3:日本特開2006-161157公報
特許文献3-4:日本特開2007-270335公報
特許文献3-5:日本特開2007-238393公報
特許文献3-6:日本特開2009-120873公報
特許文献3-7:日本特開2010-209363公報
特許文献3-8:日本特開2007-287821公報
特許文献3-9:WO2012/053433A1
特許文献3-10:WO2012/053436A1
特許文献3-11:日本特開平4-139005公報
非特許文献3-1:"Growth and electrical properties of AlOx grown by mist chemical vapor deposition" Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol.3 (2013) 032135.
Patent Literature 3-1: Japanese Patent Laid-Open No. 58-95611 Patent Literature 3-2: Japanese Patent Laid-Open No. 58-91030 Patent Literature 3-3: Japanese Patent Laid-Open No. 2006-161157 Patent Literature 3-4: Japanese Patent Laid-Open No. Patent Document 3-5: Japanese Patent Application Publication No. 2007-238393 Patent Document 3-6: Japanese Patent Application Publication No. 2009-120873 Patent Document 3-7: Japanese Patent Application Publication No. 2010-209363 Patent Document 3-8: Japan JP 2007-287821 A Patent Document 3-9: WO2012 / 053433A1
Patent Document 3-10: WO2012 / 053436A1
Patent Document 3-11: Japanese Patent Laid-Open No. 4-139005 Non-Patent Document 3-1: “Growth and electrical properties of AlOx grown by mist chemical vapor deposition” Toshiyuki Kawaharamura, Takayuki Uchida, Masaru Sanada, Mamoru Furuta AIP Advances, Vol. 3 (2013) 032135.
 近年、フィルム等、樹脂基材への酸化物成膜が求められており、1)成膜温度の低温化、2)基材への密着性、3)酸化物の形成状態が重要な要素となっているため、樹脂基材へのアルミニウム酸化物膜の成膜も通常、真空を用いた蒸着法等により成膜が行われている。 In recent years, oxide film formation on a resin substrate such as a film has been demanded. 1) Lowering the film formation temperature, 2) Adhesion to the substrate, and 3) Oxide formation state are important factors. Therefore, the film formation of the aluminum oxide film on the resin substrate is usually performed by a vapor deposition method using a vacuum or the like.
 これまで知られている、スプレー塗布法による検討においては、そのアルミニウム源として、塩化アルミニウム等の無機塩や、酢酸アルミニウムやアルミニウムイソプロポキシドやアルミニウムトリスアセチルアセトナトの有機アルミニウム錯体等が用いられている。しかし、それらを用いた場合の成膜温度は、通常500℃以上と高温であり、また、アルミニウムトリスアセチルアセトナト等の有機アルミニウム錯体は有機溶媒への溶解度が低く、アルミニウム源の高濃度化が困難であり、これらを用いたスプレー成膜においては、アルミニウム酸化物膜の生産性を上げることが困難である。このように、これまで検討されているアルミニウム化合物で構成されるアルミニウム酸化物膜形成用組成物では、樹脂基材への成膜が可能な、250℃以下でのアルミニウム酸化物膜形成を実施することは困難であった。 In the study by the spray coating method known so far, inorganic salts such as aluminum chloride, organoaluminum complexes of aluminum acetate, aluminum isopropoxide, aluminum trisacetylacetonate, etc. are used as the aluminum source. Yes. However, when these are used, the film forming temperature is usually as high as 500 ° C. or higher, and organoaluminum complexes such as aluminum trisacetylacetonate have low solubility in organic solvents, and the concentration of the aluminum source can be increased. In spray film formation using these, it is difficult to increase the productivity of the aluminum oxide film. Thus, in the composition for forming an aluminum oxide film composed of an aluminum compound that has been studied so far, an aluminum oxide film is formed at a temperature of 250 ° C. or lower, which can be formed on a resin substrate. It was difficult.
 一方、塗布成膜においてアルミニウム源として用いることができるアルミニウム酸化物膜形成用組成物としては、有機アルミニウム化合物としてアルキルアルミニウムの有機溶媒溶液があるが、アルキルアルミニウムは大気中で発火性があり、保管、使用時には非常な注意を払わねばならない化合物である。そのため、アルキルアルミニウムを噴霧塗布してスプレー熱分解法を行うことは極めて困難である。 On the other hand, as an aluminum oxide film forming composition that can be used as an aluminum source in coating film formation, there is an organic solvent solution of alkylaluminum as an organoaluminum compound, but alkylaluminum is ignitable in the atmosphere and stored. It is a compound that must be very careful when used. For this reason, it is extremely difficult to perform spray pyrolysis by spraying alkyl aluminum.
 また、アルキルアルミニウムは炭素数が少ないほど酸素や水との反応性が高くなることが知られている。そのため、特許文献3-9および3-10においては、アルキルアルミニウムを用いたスピンコート成膜に関する実施例においてジイソブチルアルミニウムハイドライド(アルキル基の炭素数4)や、トリオクチルアルミニウム(アルキル基の炭素数8)といった炭素数4以上のアルキルアルミニウムが用いられている。また、これらの成膜方法としてはスピンコート成膜が用いられているが、スプレー熱分解法による成膜についてはなされおらず、未だ不明である。 Also, it is known that alkyl aluminum has higher reactivity with oxygen and water as the number of carbon atoms is smaller. Therefore, in Patent Documents 3-9 and 3-10, in examples relating to spin coating film formation using alkylaluminum, diisobutylaluminum hydride (alkyl group having 4 carbon atoms) or trioctylaluminum (alkyl group having 8 carbon atoms). Alkyl aluminum having 4 or more carbon atoms is used. Further, spin coating film formation is used as these film formation methods, but film formation by spray pyrolysis is not performed, and it is still unclear.
 さらに、ジイソブチルアルミニウムハイドライドなどの水素化物は、溶媒として用いられているアニソールなどのエーテル系溶媒を利用した場合においては、ハイドライドとエーテル系溶媒とが反応する場合があり、高温になった場合、薬液の反応による分解の恐れがある。 Furthermore, hydrides such as diisobutylaluminum hydride may react with hydride and ether solvent when an ether solvent such as anisole used as a solvent is used. There is a risk of decomposition due to the reaction.
 このように、アルキルアルミニウムを有機溶媒に溶解した組成物を基材に噴霧塗布し、熱分解することによりアルミニウム酸化物膜の形成を行う際においては、検討が十分にされているとは言えず、未だ課題が多い。 As described above, when an aluminum oxide film is formed by spray-coating a composition in which an alkylaluminum is dissolved in an organic solvent and thermally decomposing it, it cannot be said that sufficient studies have been made. There are still many issues.
 また、アルキルアルミニウムの部分加水分解物についても、アルキルアルミニウムを有機溶媒に溶解した組成物の場合と同様に、基材に噴霧塗布し、熱分解することによりアルミニウム酸化物膜の形成を行う際においては、検討がされているとは言えず、未だ課題が多い。 In addition, as for the partially hydrolyzed product of alkylaluminum, as in the case of a composition in which alkylaluminum is dissolved in an organic solvent, when an aluminum oxide film is formed by spray coating on a substrate and thermally decomposing it. Has not been studied, and there are still many issues.
 本発明3の目的は、アルキルアルミニウムまたはアルキルアルミニウムの部分加水分解物を有機溶媒に溶解した組成物を基材に噴霧塗布し、熱分解分解することによりアルミニウム酸化物膜の形成を行い、密着性が優れたアルミニウム酸化物膜を得ることが可能な、アルミニウム酸化物膜の製造するための方法およびこの方法に用いることができる膜形成用組成物を提供することにある。 The purpose of the present invention 3 is to form an aluminum oxide film by spray-coating a composition obtained by dissolving alkylaluminum or a partial hydrolyzate of alkylaluminum in an organic solvent on a base material, and thermally decomposing it. An object of the present invention is to provide a method for producing an aluminum oxide film and a film-forming composition that can be used in this method, which are capable of obtaining an excellent aluminum oxide film.
 さらに本発明3の目的は、上記製造方法を用いて作製したアルミニウム酸化物膜を提供すること、さらにはこのアルミニウム酸化物膜を含むアルミニウム酸化物機能膜およびそれら膜や機能膜を有する基材である物品を提供することである。 Furthermore, an object of the present invention 3 is to provide an aluminum oxide film produced by using the above production method, and further to an aluminum oxide functional film including the aluminum oxide film and a substrate having these films and functional films. It is to provide an article.
<本発明の第四の態様>
 酸化アルミニウムは、高強度、高耐熱性、高熱伝導度、低熱膨張率、絶縁性等において優れた特性を有することから、各種用途に幅広く使用されている。酸化アルミニウム薄膜としては、電子材料用酸化アルミニウムシート、酸化アルミニウム膜の作成、触媒担体の作成、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、耐摩耗性等の付与、セラミック製造用バインダー等の用途に供されており、そのような酸化アルミニウム薄膜は高純度であることが求められている(非特許文献4-1)。具体的には、切削工具の保護膜、半導体、磁性体、太陽電池等の絶縁膜、表面デバイス、磁気ヘッド、赤外線センサー、食品、薬品、医療器材等の包装材料、光学部材等への応用が挙げられる。
<Fourth aspect of the present invention>
Aluminum oxide is widely used in various applications because it has excellent properties such as high strength, high heat resistance, high thermal conductivity, low coefficient of thermal expansion, and insulation. As aluminum oxide thin film, aluminum oxide sheet for electronic materials, aluminum oxide film, catalyst carrier, heat resistance, barrier property against air and moisture, antireflection effect, antistatic effect, antifogging effect Such aluminum oxide thin films are required to have high purity (Non-Patent Document 4-1). Specifically, it can be applied to protective films for cutting tools, insulating films for semiconductors, magnetic materials, solar cells, surface devices, magnetic heads, infrared sensors, food, medicine, medical equipment packaging materials, optical members, etc. Can be mentioned.
 酸化アルミニウム薄膜の製造方法としては、スパッタ法、化学蒸着(CVD、Chemical Vapor Depositon)法、原子層蒸着(ALD、Atomic Layer Depositon)法等の方法で形成される。 The aluminum oxide thin film is produced by a method such as a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer deposition (ALD) method, or the like.
 しかしながら、スパッタ法、CVD法、ALD法等は、大型の密閉容器を用いる必要があるため、酸化アルミニウム薄膜の製造コストが高くなる、材料使用効率が低下する等の問題があった。 However, the sputtering method, the CVD method, the ALD method, and the like have problems such as the need for using a large sealed container, which increases the manufacturing cost of the aluminum oxide thin film and decreases the material usage efficiency.
 スピンコート法、ディップコート法、スクリーン印刷法、ダイコート法、スプレー塗布法等の塗布法は、上記の方法に比べ密閉容器を用いる必要がなく装置が簡便で、製膜速度が速く、低い製造コストで酸化アルミニウム薄膜を製造できるという利点がある。 Application methods such as spin coating, dip coating, screen printing, die coating, and spray coating do not require the use of a sealed container compared to the above methods, and the apparatus is simple, the film forming speed is high, and the manufacturing cost is low. There is an advantage that an aluminum oxide thin film can be manufactured.
 塗布法として、特にスプレー熱分解法やのような噴霧塗布による成膜方法を用いて、アルミニウム酸化物薄膜の形成について種々の検討がなされている(特許文献4-1~4-2)。 As a coating method, various studies have been made on the formation of an aluminum oxide thin film, particularly using a spray pyrolysis method or a film forming method such as spray coating (Patent Documents 4-1 to 4-2).
特許文献4-1:日本特開2007-238393号公報
特許文献4-2:日本特開2010-209363号公報
非特許文献4-1:矢坂 JETI.,10(2005)p134~140
Patent Document 4-1: Japanese Patent Application Laid-Open No. 2007-238393 Patent Document 4-2: Japanese Patent Application Laid-Open No. 2010-209363 Non-Patent Document 4-1: Yasaka JETI. , 10 (2005) p134-140
 しかし、上記の特許文献4-1~4-2に記載の方法では、供に熱処理(焼成)してパッシベーション膜を製造する場合、バインダー樹脂、配位子等の残存有機物成分を焼成して脱脂する(除去する)必要があるため、焼成に長い時間が必要である、又は、400~1000℃程度の高い温度での熱処理が必要であるという課題があった。 However, in the method described in the above Patent Documents 4-1 to 4-2, when a passivation film is manufactured by heat treatment (firing), residual organic components such as a binder resin and a ligand are calcined and degreased. Therefore, there is a problem that a long time is required for firing or a heat treatment at a high temperature of about 400 to 1000 ° C. is necessary.
 さらには、透明性のある(可視光550nmの透過率が80%以上)酸化亜鉛薄膜が低温での熱処理では得にくいという課題があった。 Furthermore, there is a problem that a transparent zinc oxide (visible light transmittance of 550 nm is 80% or more) is difficult to obtain by heat treatment at low temperature.
 特に、300℃以上の焼成が必要な為プラスチック等の耐熱性のない基材には適用できないという課題があった。 In particular, since firing at 300 ° C. or higher is necessary, there is a problem that it cannot be applied to a base material having no heat resistance such as plastic.
 トリエチルアルミニウム等のトリアルキルアルミニウム化合物は大気中で発火性があり、保管、使用時に非常な注意を払わねばならない化合物である。そのため、トリアルキルアルミニウム化合物を希釈等することなしに、通常、水が存在する雰囲気中で行われることの多い、スプレー塗布法等で用いることは実用上困難である。トリアルキル化合物は、有機溶媒に希釈した状態では発火性等の危険性を低減することができるが、有機溶媒に希釈したトリアルキル化合物をスプレー塗布の検討した事例はない。 Trialkylaluminum compounds such as triethylaluminum are ignitable in the atmosphere and must be taken with great care during storage and use. Therefore, it is practically difficult to use it in a spray coating method or the like, which is usually performed in an atmosphere where water is present, without diluting the trialkylaluminum compound. Trialkyl compounds can reduce the risk of ignition and the like when diluted in an organic solvent, but there is no example of examining spray coating of a trialkyl compound diluted in an organic solvent.
 さらに、不活性ガス中での塗布操作には、不活性ガス、不活性ガス供給設備、グローブボックス等の不活性ガス保持設備を必要とし、酸化アルミニウムの製造コストがその分高くなりさらなる簡便化が求められるという課題があった。 Furthermore, the coating operation in the inert gas requires an inert gas holding facility such as an inert gas, an inert gas supply facility, a glove box, etc., and the production cost of aluminum oxide is increased correspondingly, and further simplification is achieved. There was a problem of being required.
 本発明4の目的は、簡便な酸化アルミニウム薄膜の製造方法を提供することである。本発明4の製造方法を用いれば、残存有機物が少ない透明性のある酸化アルミニウム薄膜を容易に形成することができる。 The purpose of the present invention 4 is to provide a simple method for producing an aluminum oxide thin film. If the manufacturing method of this invention 4 is used, the transparent aluminum oxide thin film with few residual organic substances can be formed easily.
<本発明の第五の態様>
 結晶シリコン太陽電池の高効率化のためには、太陽電池の裏面をパッシベーションし、キャリアの裏面再結合を抑制することが重要である。そのため、シリコン基板の裏面にパッシベーション膜が設けられる場合がある。
<Fifth aspect of the present invention>
In order to increase the efficiency of the crystalline silicon solar cell, it is important to passivate the back surface of the solar cell and suppress recombination of the back surface of the carrier. Therefore, a passivation film may be provided on the back surface of the silicon substrate.
 このパッシベーション膜としては、酸化ケイ素、窒化ケイ素、酸化アルミニウム、酸化亜鉛等を採用する技術が提案されている(特許文献5-1)。特にp型シリコン基板に関しては、正の固定電荷を有している窒化ケイ素等は漏れ電流が発生しやすいため適切とはいえず、負の固定電荷を有する酸化アルミニウムが好適である(特許文献5-2)。 As this passivation film, a technique using silicon oxide, silicon nitride, aluminum oxide, zinc oxide or the like has been proposed (Patent Document 5-1). In particular, regarding a p-type silicon substrate, silicon nitride having a positive fixed charge is not appropriate because leakage current easily occurs, and aluminum oxide having a negative fixed charge is preferable (Patent Document 5). -2).
 このパッシベーション膜としての酸化アルミニウム薄膜の製造方法としては、スパッタ法、化学蒸着(CVD、Chemical Vapor Depositon)法、原子層蒸着(ALD、Atomic Layer Depositon)法等の方法で形成される。 As a manufacturing method of the aluminum oxide thin film as the passivation film, it is formed by a method such as a sputtering method, a chemical vapor deposition (CVD) method, an atomic layer deposition (ALD) method or the like.
 しかしながら、スパッタ法、CVD法、ALD法等は、大型の密閉容器を用いる必要があるため、酸化アルミニウム薄膜の製造コストが高くなる、材料使用効率が低下する等の問題があった。 However, the sputtering method, the CVD method, the ALD method, and the like have problems such as the need for using a large sealed container, which increases the manufacturing cost of the aluminum oxide thin film and decreases the material usage efficiency.
 スピンコート法、ディップコート法、スクリーン印刷法、ダイコート法、スプレー塗布法等の塗布法は、上記の方法に比べ密閉容器を用いる必要がなく装置が簡便で、製膜速度が速く、低い製造コストで酸化アルミニウム薄膜を製造できるという利点がある。 Application methods such as spin coating, dip coating, screen printing, die coating, and spray coating do not require the use of a sealed container compared to the above methods, and the apparatus is simple, the film forming speed is high, and the manufacturing cost is low. There is an advantage that an aluminum oxide thin film can be manufactured.
 塗布法として、スピンコート法による製造方法(非特許文献5-1)、スクリーン印刷法による製造方法(特許文献5-3)が提案されている。 As a coating method, a spin coating method (Non-patent Document 5-1) and a screen printing method (Patent Document 5-3) have been proposed.
特許文献5-1:日本特開2009-164544号公報
特許文献5-2:日本特許第4767110号公報
特許文献5-3:日本特開2014-167961号公報
非特許文献5-1:Thin Solid Films,517(2009),6327-6330
Patent Document 5-1: Japanese Patent Application Laid-Open No. 2009-164544 Patent Document 5-2: Japanese Patent No. 4767110 Patent Document 5-3: Japanese Patent Application Laid-Open No. 2014-166791 Non-Patent Document 5-1: Thin Solid Films 517 (2009), 6327-6330
 しかし、上記の非特許文献5-1、特許文献5-3に記載の方法では、供に熱処理(焼成)してパッシベーション膜を製造する場合、バインダー樹脂、配位子等の残存有機物成分を焼成して脱脂する(除去する)必要があるため、焼成に長い時間が必要である、又は、650~1000℃と高い温度での熱処理が必要であるという課題があった。 However, in the methods described in Non-Patent Document 5-1 and Patent Document 5-3, when a passivation film is produced by heat treatment (firing), residual organic components such as a binder resin and a ligand are fired. Therefore, there is a problem that a long time is required for baking or a heat treatment at a high temperature of 650 to 1000 ° C. is necessary.
 また、上記の非特許文献5-1、特許文献5-3に記載の方法で製造されたパッシベーション膜のキャリアライフタイムは、基板ウェハー厚が約700μm時に100~500μsとALD法で製造されたパッシベーション膜よりも短く、さらなるキャリアライフタイムの向上が求められていた。 In addition, the carrier lifetime of the passivation film manufactured by the method described in Non-Patent Document 5-1 and Patent Document 5-3 is 100 to 500 μs when the substrate wafer thickness is about 700 μm, and the passivation film manufactured by the ALD method is used. There is a need for further improvement in carrier lifetime, which is shorter than the film.
 本発明5の目的は、簡便なパッシベーション膜の製造方法、パッシベーション膜、それを用いた太陽電池素子を提供することである。本発明5の製造方法を用いれば、キャリアライフタイムが長いパッシベーション膜を形成することができる。 An object of the present invention 5 is to provide a simple method for producing a passivation film, a passivation film, and a solar cell element using the same. If the manufacturing method of this invention 5 is used, a passivation film having a long carrier lifetime can be formed.
前記特許文献1-1~5-3および非特許文献1-1~5-1は、それらの全記載は、ここに特に開示として援用される。 The above patent documents 1-1 to 5-3 and non-patent documents 1-1 to 5-1 are incorporated herein by reference in their entirety.
 本発明1は以下の通りである。
[1-1]
ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)及び溶媒を含有する、アルキルアルミニウム化合物含有溶液であって、
前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(以下、環状アミド化合物と呼ぶ)であり、
前記アルキルアルミニウム化合物に対してモル比で2.6を超える量の前記環状アミド化合物を含有する、
前記溶液。
Figure JPOXMLDOC01-appb-C000017
[1-2]
前記環状アミド化合物は、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物である、[1-1]に記載の溶液。
[1-3]
前記アルキルアルミニウム化合物の含有量が15質量%以上である、[1-1]又は[1-2]のいずれか1項に記載の溶液。
[1-4]
前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(1)又は(2)で表されるアルキルアルミニウム化合物である、[1-1]~[1-3]のいずれか1項に記載の溶液。
Figure JPOXMLDOC01-appb-C000018
(式中、Rはメチル基、エチル基を、Rは、ハロゲン、メチル基、又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000019
(式中、Rはイソブチル基を、Rは、ハロゲン、又はイソブチル基を表す。)
[1-5]
前記一般式(1)で表されるアルキルアルミニウム化合物がトリエチルアルミニウム又はトリメチルアルミニウムである、[1-4]に記載の溶液。
[1-6]
前記一般式(2)で表されるアルキルアルミニウム化合物がトリイソブチルアルミニウムである、[1-4]に記載の溶液。
[1-7]
前記一般式(2)で表されるアルキルアルミニウム化合物を30質量%以上含有する[1-6]に記載の溶液。
[1-8]
前記環状アミド化合物以外の溶媒をさらに含む、[1-1]~[1-7]のいずれか1項に記載の溶液。
[1-9]
ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)の部分加水分解物及び溶媒を含有する、アルキルアルミニウム部分加水分解物含有溶液であって、
前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(以下、環状アミド化合物と呼ぶ)であり、
前記部分加水分解物は、前記アルキルアルミニウム化合物中のアルミニウムに対して、モル比が0.5~1.3の範囲の水で加水分解したものである、
前記溶液。
Figure JPOXMLDOC01-appb-C000020
[1-10]
前記アルキルアルミニウム化合物中のアルミニウムに対してモル比で1以上の前記環状アミド化合物を含有する、[1-9]に記載の溶液。
[1-11]
前記環状アミド化合物は、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物である、[1-9]又は[1-10]に記載の溶液。
[1-12]
前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(1)又は(2)で表されるアルキルアルミニウム化合物である、[1-9]~[1-11]のいずれか1項に記載の溶液。
Figure JPOXMLDOC01-appb-C000021
(式中、Rはメチル基、エチル基を、Rは、水素、ハロゲン、メチル基、エチル基を表す。)
Figure JPOXMLDOC01-appb-C000022
(式中、Rはイソブチル基を、Rは、水素、ハロゲン、イソブチル基を表す。)
[1-13]
前記トリアルキルアルミニウムが下記一般式(3)で表されるアルキルアルミニウム化合物である、[1-9]~[1-11]のいずれか1項に記載の溶液。
Figure JPOXMLDOC01-appb-C000023
(式中、Rはメチル基、エチル基、イソブチル基を表す。)
[1-14]
前記環状アミド化合物以外の溶媒をさらに含む、[1-9]~[1-13]のいずれか1項に記載の溶液。
[1-15]
[1-9]~[1-14]のいずれか1項に記載のアルキルアルミニウム部分加水分解物含有溶液を基板に塗布して酸化アルミニウム薄膜を得ることを含む、酸化アルミニウム薄膜の製造方法。
The present invention 1 is as follows.
[1-1]
An alkylaluminum compound-containing solution comprising an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum, or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent. ,
The solvent is an organic compound having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound).
Containing the cyclic amide compound in an amount exceeding 2.6 by molar ratio to the alkylaluminum compound;
Said solution.
Figure JPOXMLDOC01-appb-C000017
[1-2]
The cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution according to [1-1], which is a mixture of
[1-3]
The solution according to any one of [1-1] and [1-2], wherein the content of the alkylaluminum compound is 15% by mass or more.
[1-4]
The solution according to any one of [1-1] to [1-3], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2): .
Figure JPOXMLDOC01-appb-C000018
(In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a halogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000019
(In the formula, R 3 represents an isobutyl group, and R 4 represents a halogen or an isobutyl group.)
[1-5]
The solution according to [1-4], wherein the alkylaluminum compound represented by the general formula (1) is triethylaluminum or trimethylaluminum.
[1-6]
The solution according to [1-4], wherein the alkylaluminum compound represented by the general formula (2) is triisobutylaluminum.
[1-7]
The solution according to [1-6], containing 30% by mass or more of the alkylaluminum compound represented by the general formula (2).
[1-8]
The solution according to any one of [1-1] to [1-7], further comprising a solvent other than the cyclic amide compound.
[1-9]
An alkylaluminum moiety comprising a partial hydrolyzate of a dialkylaluminum, a trialkylaluminum or an alkylaluminum compound comprising a mixture thereof (wherein the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent; A hydrolyzate-containing solution comprising:
The solvent is an organic compound having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound).
The partial hydrolyzate is a product of hydrolysis with water having a molar ratio of 0.5 to 1.3 with respect to aluminum in the alkylaluminum compound.
Said solution.
Figure JPOXMLDOC01-appb-C000020
[1-10]
The solution according to [1-9], which contains 1 or more of the cyclic amide compound in a molar ratio with respect to aluminum in the alkylaluminum compound.
[1-11]
The cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution according to [1-9] or [1-10], which is a mixture of
[1-12]
The solution according to any one of [1-9] to [1-11], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2): .
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents hydrogen, a halogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000022
(In the formula, R 3 represents an isobutyl group, and R 4 represents hydrogen, halogen, or isobutyl group.)
[1-13]
The solution according to any one of [1-9] to [1-11], wherein the trialkylaluminum is an alkylaluminum compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000023
(In the formula, R 5 represents a methyl group, an ethyl group, or an isobutyl group.)
[1-14]
The solution according to any one of [1-9] to [1-13], further comprising a solvent other than the cyclic amide compound.
[1-15]
[1-9] A method for producing an aluminum oxide thin film, comprising applying an alkylaluminum partial hydrolyzate-containing solution according to any one of [1-9] to [1-14] to a substrate to obtain an aluminum oxide thin film.
 本発明2は、以下のとおりである。
[2-1]
(A)下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して、前記有機アルミニウム化合物の部分加水分解物を含有する組成物を得る工程、但し、前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行う、
(B)前記部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する工程、
(C)前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程
を含むアルミニウム酸化物膜を有する物品の製造方法。
Figure JPOXMLDOC01-appb-C000024
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
[2-2]
前記工程(B)および(C)で用いる不活性ガス雰囲気は、実質的に水分を含有しない、[2-1]に記載の製造方法。
[2-3]
前記工程(B)における前記部分加水分解物含有組成物の塗布を20~350℃の範囲の温度で行う、[2-1]または[2-2]に記載の製造方法。
[2-4]
前記工程(C)おける加熱温度は、40~400℃の範囲である、[2-1]~[2-3]のいずれかに記載の製造方法。
[2-5]
前記工程(B)で得られた塗布基材を不活性ガス雰囲気下、20~200℃の温度で加熱して、塗布膜中の少なくとも一部の有機溶媒を除去した後に、工程(C)に供してアルミニウム酸化物膜を形成する、[2-1]~[2-4]のいずれかに記載の製造方法。
[2-6]
前記工程(A)において、前記有機アルミニウム化合物と水を混合した後に、混合物を30~80℃の温度で加熱して部分加水分解物を含有する組成物を得る、[2-1]~[2-5]のいずれかに記載の製造方法。
[2-7]
前記工程(A)で調製した部分加水分解物含有組成物をろ過して不溶物を除去した後に、工程(B)に用いる、[2-1]~[2-6]のいずれかに記載の製造方法。
[2-8]
スプレー塗布法、ディップコート法、スピンコート法、スリットコート法、スロットコート法、バーコート法、ロールコート法、カーテンコート法、静電塗布法、インクジェット法、スクリーン印刷法による方法で、組成物を基材に塗布する[2-1]~[2-7]のいずれかに記載の製造方法。
[2-9]
前記部分加水分解物調製に用いる有機溶媒が、炭化水素化合物および/または電子供与性溶媒を含有する有機溶媒である[2-1]~[2-8]のいずれかに記載の製造方法。
[2-10]
前記工程(A)で調製した部分加水分解物含有組成物中の部分加水分解物の濃度が0.1~30質量%の範囲である[2-1]~[2-9]のいずれかに記載の製造方法。
[2-11]
前記工程(A)で用いる前記一般式(6)で表される有機アルミニウム化合物は、式中のR1がメチル基またはエチル基である、[2-1]~[2-10]のいずれかに記載の製造方法。
[2-12]
前記工程(A)で用いる前記一般式(6)で表される有機アルミニウム化合物がトリエチルアルミニウムまたはトリエチルアルミニウムを含有する有機アルミニウム化合物の混合物である、[2-1]~[2-11]のいずれかに記載の製造方法。
[2-13]
前記工程(B)で用いる前記基板がガラス製基板または樹脂製基板である、[2-1]~[2-12]のいずれかに記載の製造方法。
[2-14]
下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得られた、前記有機アルミニウム化合物の部分加水分解物を含有する組成物であって、
(a)前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行われ、かつ
(b)前記組成物は、膜塗布形成が不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
Figure JPOXMLDOC01-appb-C000025
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
[2-15]
前記不活性ガス雰囲気下で行われる膜塗布形成は、(b1)前記部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する工程、および
(b2)前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程、を含む、[2-14]に記載の組成物。
[2-16]
細孔径が3μm以下であるフィルターを用いてろ過した、不溶物を実質的に含有しない、[2-14]または[2-15]に記載の組成物。
[2-17]
基材に密着した透明なアルミニウム酸化物膜を形成するための[2-14]~[2-16]のいずれかに記載の組成物。
[2-18]
請求項1~13のいずれかに記載の方法、または[2-14]~[2-17]のいずれかに記載の組成物を用いて不活性ガス雰囲気下で製造した、アルミニウム酸化物膜を有する物品。
[2-19]
前記物品がアルミニウム酸化物膜を基材に付着した複合体またはアルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体である[2-18]に記載のアルミニウム酸化物膜を有する物品。
The present invention 2 is as follows.
[2-1]
(A) A step of partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound, wherein Partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound.
(B) applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate under an inert gas atmosphere to form a coating film;
(C) The manufacturing method of the articles | goods which have an aluminum oxide film including the process of heating the base material in which the said coating film was formed at the temperature of 400 degrees C or less in inert gas atmosphere.
Figure JPOXMLDOC01-appb-C000024
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
[2-2]
The production method according to [2-1], wherein the inert gas atmosphere used in the steps (B) and (C) does not substantially contain moisture.
[2-3]
The production method according to [2-1] or [2-2], wherein the application of the partial hydrolyzate-containing composition in the step (B) is performed at a temperature in the range of 20 to 350 ° C.
[2-4]
The production method according to any one of [2-1] to [2-3], wherein the heating temperature in the step (C) is in the range of 40 to 400 ° C.
[2-5]
The coated substrate obtained in the step (B) is heated at a temperature of 20 to 200 ° C. in an inert gas atmosphere to remove at least a part of the organic solvent in the coated film, and then the step (C). The manufacturing method according to any one of [2-1] to [2-4], wherein an aluminum oxide film is formed.
[2-6]
In the step (A), after mixing the organoaluminum compound and water, the mixture is heated at a temperature of 30 to 80 ° C. to obtain a composition containing a partial hydrolyzate [2-1] to [2 -5]. The production method according to any one of [5].
[2-7]
The composition according to any one of [2-1] to [2-6], which is used in the step (B) after filtering the partially hydrolyzate-containing composition prepared in the step (A) to remove insoluble matters. Production method.
[2-8]
Spray coating method, dip coating method, spin coating method, slit coating method, slot coating method, bar coating method, roll coating method, curtain coating method, electrostatic coating method, inkjet method, screen printing method, The production method according to any one of [2-1] to [2-7], which is applied to a substrate.
[2-9]
The production method according to any one of [2-1] to [2-8], wherein the organic solvent used for the preparation of the partial hydrolyzate is an organic solvent containing a hydrocarbon compound and / or an electron donating solvent.
[2-10]
[2-1] to [2-9], wherein the concentration of the partial hydrolyzate in the partial hydrolyzate-containing composition prepared in the step (A) is in the range of 0.1 to 30% by mass. The manufacturing method as described.
[2-11]
The organoaluminum compound represented by the general formula (6) used in the step (A) is any one of [2-1] to [2-10], wherein R 1 is a methyl group or an ethyl group. The manufacturing method as described in.
[2-12]
Any of [2-1] to [2-11], wherein the organoaluminum compound represented by the general formula (6) used in the step (A) is triethylaluminum or a mixture of organoaluminum compounds containing triethylaluminum. The manufacturing method of crab.
[2-13]
The production method according to any one of [2-1] to [2-12], wherein the substrate used in the step (B) is a glass substrate or a resin substrate.
[2-14]
A composition containing a partial hydrolyzate of the organoaluminum compound obtained by partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent,
(A) The partial hydrolysis is performed using water in a molar ratio with respect to the organoaluminum compound in the range of 0.4 to 1.3, and (b) the composition is formed of an inert gas. The said composition which is a thing for using for formation of the aluminum oxide film performed in atmosphere.
Figure JPOXMLDOC01-appb-C000025
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
[2-15]
The film coating formation performed in the inert gas atmosphere includes the step (b1) of forming the coating film by applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate in the inert gas atmosphere. And (b2) heating the substrate on which the coating film is formed at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film, according to [2-14] Composition.
[2-16]
The composition according to [2-14] or [2-15], which is filtered using a filter having a pore diameter of 3 μm or less and substantially does not contain insoluble matter.
[2-17]
The composition according to any one of [2-14] to [2-16] for forming a transparent aluminum oxide film in close contact with a substrate.
[2-18]
An aluminum oxide film produced in an inert gas atmosphere using the method according to any one of claims 1 to 13 or the composition according to any one of [2-14] to [2-17] The article you have.
[2-19]
[2-18] The article is a composite in which an aluminum oxide film is attached to a base material, or a composite in which a composite film having an aluminum oxide film and a layer other than the aluminum oxide film is attached to the base material. Article having an aluminum oxide film.
 本発明3は、以下のとおりである。
[3-1]
(A)下記一般式(6)で示される有機アルミニウム化合物またはその部分加水分解物の有機溶媒溶液を、基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、
 但し、前記部分加水分解物は、前記有機アルミニウム化合物に対してモル比で0.7以下の水を用いて前記有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得た物であり、かつ
 前記噴霧塗布は、0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行う、
(B)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、前記塗布膜からアルミニウム酸化物膜を形成する工程、
を含むアルミニウム酸化物膜を有する物品の製造方法。
Figure JPOXMLDOC01-appb-C000026
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
[3-2]
前記工程(A)において、有機アルミニウム化合物の有機溶媒溶液を用い、
一般式(6)中、R1は炭素数1~3の直鎖もしくは分岐したアルキル基、R2、R3は独立に、炭素数1~3の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す、[3-1]に記載の製造方法。
[3-3]
前記有機溶媒が電子供与性を有する有機溶媒を含有し、かつ
前記溶液中の有機アルミニウム化合物の濃度が、0.1~35重量%である、
[3-2]に記載の製造方法。
[3-4]
前記電子供与性を有する有機溶媒を構成する分子のモル数が、有機アルミニウム化合物のモル数に対して等倍以上存在することを特徴とする[3-3]に記載の製造方法。
[3-5]
前記工程(A)の噴霧塗布において、基材表面の温度が20~300℃である[3-2]~[3-4]のいずれか一項に記載の製造方法。
[3-6]
前記工程(A)において、有機アルミニウム化合物の部分加水分解物の有機溶媒溶液を用い、
前記工程(A)で用いる前記有機溶媒が、炭化水素化合物および/または電子供与性を有する有機溶媒を含有する有機溶媒である[3-1]に記載の製造方法。
[3-7]
前記有機溶媒溶液における部分加水分解物濃度が0.1~35質量%の範囲である[3-6]に記載の製造方法。
[3-8]
前記工程(A)を400℃以下の温度での加熱下で行い、前記工程(A)と同時に又は引き続き工程(B)での加熱を行う[3-6]または[3-7]に記載の製造方法。
[3-9]
前記噴霧塗布は、スプレー塗布法、スプレー熱分解法、静電塗布法、又はインクジェット法により行う、[3-1]~[3-8]のいずれか一項に記載の製造方法。
[3-10]
前記一般式(6)中のR1がメチル基またはエチル基である[3-1]~[3-9]のいずれか一項に記載の製造方法。
[3-11]
下記一般式(6)で示される有機アルミニウム化合物の有機溶媒溶液からなる膜形成用組成物であって、
前記組成物は、膜の塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
Figure JPOXMLDOC01-appb-C000027
(式中、R1は水素、炭素数1~3の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~3の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
[3-12]
下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得られた、前記有機アルミニウム化合物の部分加水分解物を含有する膜形成用組成物であって、
(a)前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.7以下の水を用いて行われ、かつ
(b)前記組成物は、膜塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
[3-13]
前記0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われる膜塗布形成は、
(c1)前記組成物を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、および
(c2)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程、を含む、[3-11]または[3-12]に記載の組成物。
[3-14]
基材に密着した透明なアルミニウム酸化物膜を形成するための[3-11]~[3-13]のいずれか一項に記載の組成物。
[3-15]
[3-1]~[3-10]のいずれか一項に記載の方法、または[3-11]~[3-14]のいずれか一項に記載の組成物を用いて0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で製造した、アルミニウム酸化物膜を有する物品。
[3-16]
前記物品がアルミニウム酸化物膜を基材に付着した複合体またはアルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体である[3-15]に記載のアルミニウム酸化物膜を有する物品。
Invention 3 is as follows.
[3-1]
(A) forming a coating film by spray-coating an organic solvent solution of an organoaluminum compound represented by the following general formula (6) or a partial hydrolyzate thereof on at least a part of the surface of the substrate;
However, the partial hydrolyzate is a product obtained by partially hydrolyzing the organoaluminum compound in an organic solvent using water having a molar ratio of 0.7 or less with respect to the organoaluminum compound. And the spray coating is performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water.
(B) The base material on which the coating film has been formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form an aluminum oxide film from the coating film. Forming a process,
A method for producing an article having an aluminum oxide film containing
Figure JPOXMLDOC01-appb-C000026
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
[3-2]
In the step (A), an organic solvent solution of an organoaluminum compound is used,
In the general formula (6), R 1 is a linear or branched alkyl group having 1 to 3 carbon atoms, R 2 and R 3 are independently a linear or branched alkyl group having 1 to 3 carbon atoms, 1 carbon atom The production method according to [3-1], which represents a linear or branched alkoxyl group, an acyloxy group, or an acetylacetonate group of ˜7.
[3-3]
The organic solvent contains an electron-donating organic solvent, and the concentration of the organoaluminum compound in the solution is 0.1 to 35% by weight;
The production method according to [3-2].
[3-4]
[3] The production method according to [3-3], wherein the number of moles of molecules constituting the electron-donating organic solvent is equal to or greater than the number of moles of the organoaluminum compound.
[3-5]
The production method according to any one of [3-2] to [3-4], wherein the temperature of the substrate surface is 20 to 300 ° C. in the spray application in the step (A).
[3-6]
In the step (A), using an organic solvent solution of a partial hydrolyzate of an organoaluminum compound,
The production method according to [3-1], wherein the organic solvent used in the step (A) is an organic solvent containing a hydrocarbon compound and / or an organic solvent having an electron donating property.
[3-7]
The production method according to [3-6], wherein the concentration of the partial hydrolyzate in the organic solvent solution is in the range of 0.1 to 35% by mass.
[3-8]
The step (A) is performed under heating at a temperature of 400 ° C. or lower, and the heating in the step (B) is performed simultaneously with or subsequent to the step (A) [3-6] or [3-7] Production method.
[3-9]
The production method according to any one of [3-1] to [3-8], wherein the spray coating is performed by a spray coating method, a spray pyrolysis method, an electrostatic coating method, or an ink jet method.
[3-10]
The production method according to any one of [3-1] to [3-9], wherein R 1 in the general formula (6) is a methyl group or an ethyl group.
[3-11]
A film-forming composition comprising an organic solvent solution of an organoaluminum compound represented by the following general formula (6),
The composition is a composition for use in forming an aluminum oxide film in which film formation is performed in an inert gas atmosphere containing 0.5 to 30 mol% of water.
Figure JPOXMLDOC01-appb-C000027
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
[3-12]
The composition for film formation containing the partial hydrolyzate of the said organoaluminum compound obtained by partially hydrolyzing the organoaluminum compound represented by following General formula (6) in an organic solvent,
(A) The partial hydrolysis is performed using water having a molar ratio to the organoaluminum compound of 0.7 or less, and (b) the composition is formed by coating from 0.5 mol% to 30 mol. The said composition which is a thing for using for formation of the aluminum oxide film | membrane performed in the inert gas atmosphere containing a water | moisture content of%.
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
[3-13]
The film coating formation performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water,
(C1) a step of spray-coating the composition on at least a part of the surface of the substrate in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form a coating film; and (c2) ) Heating the base material on which the coating film is formed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water at a temperature of 400 ° C. or lower to form an aluminum oxide film; A composition according to [3-11] or [3-12].
[3-14]
The composition according to any one of [3-11] to [3-13] for forming a transparent aluminum oxide film in close contact with a substrate.
[3-15]
0.5 mol using the method according to any one of [3-1] to [3-10] or the composition according to any one of [3-11] to [3-14] Articles having an aluminum oxide film produced in an inert gas atmosphere containing from 30% to 30% by mole of water.
[3-16]
[3-15] The article is a composite in which an aluminum oxide film is attached to a base material, or a composite in which a composite film having an aluminum oxide film and a layer other than the aluminum oxide film is attached to the base material. Article having an aluminum oxide film.
 本発明4は以下の通りである。
[4-1]
ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液を、空気中で平均粒径が1~100μmの液滴にして基材に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることを特徴とする酸化アルミニウム薄膜の製造方法。
[4-2]
前記液滴は、平均粒径が3~30μmの範囲であることを特徴とする[4-1]に記載の製造方法。
[4-3]
前記基材への塗布は、300℃以下の温度に加熱した基材に対して行うことを特徴とする[4-1]又は[4-2]に記載の製造方法。
[4-4]
前記空気中の雰囲気温度が50℃以下であり、25℃に換算した相対湿度が20~90%である[4-1]~[4-3]のいずれか1項に記載の製造方法。
[4-5]
前記塗布を、スプレー塗布、ミストCVD、インクジェット法により行う[4-1]~[4-4]のいずれか1項に記載の製造方法。
[4-6]
前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(8)又は(9)で表されるアルキルアルミニウム化合物である、[4-1]~[4-5]のいずれか1項に記載の製造方法。
Figure JPOXMLDOC01-appb-C000029
(式中、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000030
(式中、Rはイソブチル基を、Rは、水素又はイソブチル基を表す。)
[4-7]
前記一般式(8)で表されるアルキルアルミニウム化合物がトリエチルアルミニウムである、[4-6]に記載の製造方法。
[4-8]
前記トリエチルアルミニウムのアルキルアルミニウム化合物含有溶液における含有量が1質量%以上、10質量%以下である[4-7]に記載の製造方法。
[4-9]
前記酸化アルミニウム薄膜の可視光550nmにおける垂直透過率が80%以上である[4-1]~[4-8]のいずれか1項に記載の製造方法。
Invention 4 is as follows.
[4-1]
An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property An alkylaluminum compound-containing solution containing an organic solvent containing no active hydrogen atoms and having a mean particle size of 1 to 100 μm in the air as a droplet to form a coating film; And the manufacturing method of the aluminum oxide thin film characterized by heating the formed coating film after drying an organic solvent, or in parallel with drying of an organic solvent, and making it aluminum oxide.
[4-2]
The method according to [4-1], wherein the droplets have an average particle diameter in the range of 3 to 30 μm.
[4-3]
The production method according to [4-1] or [4-2], wherein the application to the substrate is performed on a substrate heated to a temperature of 300 ° C. or lower.
[4-4]
The production method according to any one of [4-1] to [4-3], wherein the atmospheric temperature in the air is 50 ° C. or lower and the relative humidity converted to 25 ° C. is 20 to 90%.
[4-5]
The production method according to any one of [4-1] to [4-4], wherein the coating is performed by spray coating, mist CVD, or an inkjet method.
[4-6]
The production according to any one of [4-1] to [4-5], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (8) or (9): Method.
Figure JPOXMLDOC01-appb-C000029
(In the formula, R 1 represents a methyl group or an ethyl group.)
Figure JPOXMLDOC01-appb-C000030
(In the formula, R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.)
[4-7]
The production method according to [4-6], wherein the alkylaluminum compound represented by the general formula (8) is triethylaluminum.
[4-8]
The production method according to [4-7], wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
[4-9]
The manufacturing method according to any one of [4-1] to [4-8], wherein the aluminum oxide thin film has a vertical transmittance of 80% or more at 550 nm of visible light.
 本発明5は以下の通りである。
[5-1]
ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液からなるパッシベーション膜形成剤。
[5-2]
前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(8)又は(9)で表されるアルキルアルミニウム化合物である、[5-1]に記載のパッシベーション膜形成剤。
Figure JPOXMLDOC01-appb-C000031
(式中、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000032
(式中、Rはイソブチル基を、Rは、水素又はイソブチル基を表す。)
[5-3]
前記一般式(8)で表されるアルキルアルミニウム化合物がトリエチルアルミニウムである、[5-2]に記載のパッシベーション膜形成剤。
[5-4]
前記トリエチルアルミニウムのアルキルアルミニウム化合物含有溶液における含有量1質量%以上、10質量%以下である[5-3]に記載のパッシベーション膜形成剤。
[5-5]
[5-1]~[5-4]に記載のパッシベーション膜形成剤を平均粒径が1~100μmの液滴にしてシリコン基材の裏面の少なくとも一部に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることでパッシベーション膜を形成することを特徴とするパッシベーション膜を有するシリコン基材の製造方法。
[5-6]
前記液滴は、平均粒径が3~30μmの範囲であることを特徴とする[5-5]記載の製造方法。
[5-7]
前記塗布をスプレー塗布法により行う、[5-5]又は[5-6]に記載の製造方法。
[5-8]
スプレー塗布時の基板温度が300~550℃の範囲であること、及び/又は、スプレー塗布後の加熱における温度が300~550℃の範囲である、[5-7]に記載の製造方法。
[5-9]
[5-5]~[5-8]のいずれか1項に記載の方法により製造されたことを特徴とする、パッシベーション膜を有するシリコン基板。
[5-10]
[5-9]に記載のパッシベーション膜を有するシリコン基板を用いた太陽電池素子。
The present invention 5 is as follows.
[5-1]
An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property And a passivation film forming agent comprising an alkylaluminum compound-containing solution containing an organic solvent having no active hydrogen atoms.
[5-2]
The passivation film forming agent according to [5-1], wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (8) or (9).
Figure JPOXMLDOC01-appb-C000031
(In the formula, R 1 represents a methyl group or an ethyl group.)
Figure JPOXMLDOC01-appb-C000032
(In the formula, R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.)
[5-3]
The passivation film forming agent according to [5-2], wherein the alkylaluminum compound represented by the general formula (8) is triethylaluminum.
[5-4]
The passivation film forming agent according to [5-3], wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
[5-5]
Applying the passivation film forming agent described in [5-1] to [5-4] as droplets having an average particle diameter of 1 to 100 μm to at least a part of the back surface of the silicon substrate to form a coating film And forming the passivation film by heating the formed coating film after drying the organic solvent or in parallel with the drying of the organic solvent to form aluminum oxide, and a silicon substrate having a passivation film Manufacturing method.
[5-6]
[5-5] The production method according to [5-5], wherein the droplets have an average particle diameter in the range of 3 to 30 μm.
[5-7]
The production method according to [5-5] or [5-6], wherein the coating is performed by a spray coating method.
[5-8]
[5-7] The production method according to [5-7], wherein the substrate temperature during spray coating is in the range of 300 to 550 ° C, and / or the temperature in heating after spray coating is in the range of 300 to 550 ° C.
[5-9]
A silicon substrate having a passivation film manufactured by the method according to any one of [5-5] to [5-8].
[5-10]
A solar cell element using a silicon substrate having the passivation film according to [5-9].
 本発明1によれば、自然発火性が無く空気に安定で取扱いが容易であり、嵩体積が小さく輸送等の移動が経済的に有利な高濃度のアルキルアルミニウム溶液を提供することができる。さらに本発明1によれば、空気中で安定であり、そのため取扱いが容易であり、空気中で酸化アルミニウム薄膜を形成しうるアルキルアルミニウム部分加水分解物含有溶液を提供することができる。 According to the first aspect of the present invention, it is possible to provide a high-concentration alkylaluminum solution that is not pyrophoric, stable in air and easy to handle, has a small bulk volume, and is economically advantageous for movement such as transportation. Furthermore, according to the present invention 1, it is possible to provide an alkylaluminum partial hydrolyzate-containing solution that is stable in air and therefore easy to handle and can form an aluminum oxide thin film in air.
 本発明2によれば、比較的低温での成膜において、樹脂製基材を含む基材への密着性に優れ、酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)が良好なアルミニウム酸化物膜を塗布成膜によって提供できるアルミニウム酸化物膜塗布形成用組成物を提供することができる。この組成物を用いることで、基材表面に本発明2の組成物である塗布液を直接塗布し、比較的低温で加熱する塗布成膜においても樹脂製基材を含む基材への密着性に優れ、酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)が良好なアルミニウム酸化物膜を基材表面に直接形成することができる。さらに本発明2によれば、上記本発明2の組成物を用いるアルミニウム酸化物膜の形成方法及びアルミニウム酸化物膜を表面に有する基材からなる物品の製造方法を提供することができ。 According to the present invention 2, in film formation at a relatively low temperature, it has excellent adhesion to a substrate including a resin substrate, and an oxide is formed (for example, transparency and homogeneity of an oxide film). It is possible to provide a composition for forming an aluminum oxide film that can provide a good aluminum oxide film by coating. By using this composition, the coating liquid which is the composition of the present invention 2 is directly applied to the surface of the base material, and adhesion to a base material including a resin base material even in a coating film which is heated at a relatively low temperature. It is possible to directly form an aluminum oxide film that is excellent in oxide formation state (for example, transparency and homogeneity of the oxide film) on the substrate surface. Furthermore, according to the present invention 2, there can be provided a method for forming an aluminum oxide film using the composition of the present invention 2 and a method for producing an article comprising a substrate having an aluminum oxide film on the surface.
 本発明3の製造方法およびアルミニウム酸化物膜製造用組成物を用いれば、塗布および加熱を行うだけで成膜温度が低温でも、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。 If the production method of the present invention 3 and the composition for producing an aluminum oxide film are used, the adhesion to the substrate is excellent and the oxide formation state is good even if the film formation temperature is low simply by applying and heating. An aluminum oxide film can be formed.
 より具体的には、本発明3によれば、トリエチルアルミニウム(炭素数2)のような、炭素数1~3のアルキル基を置換基に有する有機アルミニウム化合物またはその部分加水分解物を、電子供与性有機溶媒等を含む有機溶媒に溶解した塗布液を用いることで、アルキルアルミニウムのような反応性のある化合物の成膜操作における取扱いを容易にし、スプレー成膜における反応を制御をすることが容易となることで、400℃以下の低温においても、塗布および加熱を行うだけで、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。 More specifically, according to the present invention 3, an organoaluminum compound having an alkyl group having 1 to 3 carbon atoms as a substituent, such as triethylaluminum (carbon number 2), or a partial hydrolyzate thereof is provided with an electron donor. By using a coating solution dissolved in an organic solvent including a reactive organic solvent, it is easy to handle reactive compounds such as alkylaluminum in film formation operations, and it is easy to control reactions in spray film formation As a result, even at a low temperature of 400 ° C. or lower, an aluminum oxide film having excellent adhesion to the base material and good oxide formation state can be formed simply by coating and heating.
 なお、本発明3の方法で製造されたアルミニウム酸化物膜は基材への密着性に優れ、酸化物の形成状態が良好なことから、電子材料用アルミナシート、アルミニウム酸化物膜の作成、触媒担体の作成、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、耐摩耗性等の付与、セラミック製造用バインダー等の用途に供されており、具体的には、機械部品や切削工具の保護膜、半導体、磁性体、太陽電池等の絶縁膜、誘電体膜、反射防止膜、表面デバイス、磁気ヘッド、赤外線等のセンサー素子、食品、薬品、医療器材等の包装材料における空気・水分等へのバリア膜、各種粉体、フィルム、ガラスやプラスチックを素材としたフィルムや成形体等の基材へのコーティング膜およびこれらを用いた耐熱材料や高硬度フィルム、光学部材、セラミック製造用バインダー等の用途に使用されるアルミニウム酸化物膜などのアルミニウム酸化物機能膜として適用することができる。
 さらにこれらのアルミニウム酸化物膜やアルミニウム酸化物機能膜を有する基材は、耐熱フィルム等の耐熱材料、絶縁材料、水分や酸素等へのバリアフィルム等の材料、反射防止フィルム・ガラス等の反射防止材料、高硬度フィルムや材料として利用が可能である。
In addition, since the aluminum oxide film manufactured by the method of the present invention 3 has excellent adhesion to a substrate and a good oxide formation state, an alumina sheet for electronic materials, preparation of an aluminum oxide film, catalyst It is used for the production of carriers, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, imparting wear resistance, etc., and binders for ceramic production. Specifically, protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals , Barrier films against air and moisture in packaging materials such as medical devices, various powders, films, coating films on substrates such as films and molded products made of glass and plastic, and the like Refractory material and high hardness films, can be applied as the aluminum oxide functional film such as an optical member, an aluminum oxide film to be used for applications such as ceramic manufacturing binder.
Furthermore, these aluminum oxide films and base materials having aluminum oxide functional films are made of heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, and anti-reflective films such as anti-reflection films and glass. It can be used as a material, high hardness film or material.
 本発明4によれば、酸化アルミニウム薄膜を低温で簡便に製造でき、残存有機物が少ない透明性のある酸化アルミニウム薄膜を容易に形成することができる。 According to the present invention 4, an aluminum oxide thin film can be easily produced at a low temperature, and a transparent aluminum oxide thin film with little residual organic matter can be easily formed.
 本発明5によれば、残存有機物が少ない酸化アルミニウム薄膜を低温で簡便に製造でき、キャリアライフタイムが長いパッシベーション膜を形成することができる。 According to the present invention 5, an aluminum oxide thin film with little residual organic matter can be easily produced at a low temperature, and a passivation film having a long carrier lifetime can be formed.
トリエチルアルミニウム加水分解組成物NMP溶液の1H-NMRスペクトル。1H-NMR spectrum of triethylaluminum hydrolysis composition NMP solution. トリエチルアルミニウム加水分解組成物NMP溶液を乾燥させたものの透過法によるIRスペクトル。The IR spectrum by the transmission method of what dried triethylaluminum hydrolysis composition NMP solution. 酸化アルミニウム薄膜の外観写真。Appearance photograph of aluminum oxide thin film. 酸化アルミニウム薄膜のATR法によるIRスペクトル。IR spectrum of aluminum oxide thin film by ATR method. ガラス基板(コーニング社製、EagleXG)のATR法によるIRスペクトル。IR spectrum by ATR method of glass substrate (Corning, EagleXG). スプレー成膜装置を示す図である。It is a figure which shows a spray film-forming apparatus. 実施例2-1で得られた組成物Aの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum of composition A obtained in Example 2-1 after vacuum drying 実施例2-1で130℃の加熱による成膜でガラス基板上に得られたアルミニウム酸化物膜のATR-IRスペクトルATR-IR spectrum of the aluminum oxide film obtained on the glass substrate by heating at 130 ° C. in Example 2-1. 実施例2-1で130℃の加熱による成膜において使用したガラス基板のATR-IRスペクトルATR-IR spectrum of glass substrate used in film formation by heating at 130 ° C. in Example 2-1 実施例2-3で得られた組成物Bの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum after vacuum drying of composition B obtained in Example 2-3 実施例2-5で得られた組成物Cの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum of composition C obtained in Example 2-5 after vacuum drying 実施例2-15で得られた組成物Kの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum after vacuum drying of composition K obtained in Example 2-15 実施例2-15で得られた組成物Kの真空乾燥後の27Al-NMRスペクトル 27 Al-NMR spectrum after vacuum drying of composition K obtained in Example 2-15 実施例2-20で得られた組成物Nの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum after vacuum drying of composition N obtained in Example 2-20 実施例2-21で得られた組成物Oの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum after vacuum drying of composition O obtained in Example 2-21 実施例2-21で得られた組成物Oの真空乾燥後の27Al-NMRスペクトル 27 Al-NMR spectrum after vacuum drying of composition O obtained in Example 2-21 実施例2-23で窒素雰囲気中50℃の加熱による成膜で多孔質ポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜のATR-IRスペクトルATR-IR spectrum of aluminum oxide film obtained on porous polypropylene (PP) film by film formation by heating at 50 ° C. in nitrogen atmosphere in Example 2-23 実施例2-23で空気雰囲気中50℃の加熱による成膜で多孔質ポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜のATR-IRスペクトルATR-IR spectrum of the aluminum oxide film obtained on the porous polypropylene (PP) film by heating at 50 ° C. in an air atmosphere in Example 2-23 実施例2-23で空気または窒素雰囲気中50℃の加熱による成膜において使用した多孔質ポリプロピレン(PP)フィルムのATR-IRスペクトルATR-IR spectrum of porous polypropylene (PP) film used in Example 2-23 for film formation by heating at 50 ° C. in air or nitrogen atmosphere 実施例2-24で窒素雰囲気下50℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜断面)Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained on the glass substrate by heating at 50 ° C. in a nitrogen atmosphere in Example 2-24 実施例2-24で窒素雰囲気下50℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph (thin film surface) of the aluminum oxide film obtained on the glass substrate by heating at 50 ° C. in a nitrogen atmosphere in Example 2-24 実施例2-38で組成物Hを用いて窒素雰囲気中100℃の加熱による成膜でポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜のATR-IRスペクトル(剥がし試験前)ATR-IR spectrum of an aluminum oxide film obtained on a polypropylene (PP) film by heating at 100 ° C. in a nitrogen atmosphere using the composition H in Example 2-38 (before peeling test) 実施例2-38で組成物Hを用いて窒素雰囲気中100℃の加熱による成膜でポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜を剥がし試験を行った後のATR-IRスペクトルATR-IR spectrum after the test was conducted by peeling off the aluminum oxide film obtained on the polypropylene (PP) film by heating at 100 ° C. in a nitrogen atmosphere using the composition H in Example 2-38 比較例2-6で組成物3を用いて窒素雰囲気中100℃の加熱による成膜でポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜のATR-IRスペクトル(剥がし試験前)ATR-IR spectrum of an aluminum oxide film obtained on a polypropylene (PP) film by heating at 100 ° C. in a nitrogen atmosphere using the composition 3 in Comparative Example 2-6 (before peeling test) 比較例2-6で組成物3を用いて窒素雰囲気中100℃の加熱による成膜でポリプロピレン(PP)フィルム上に得られたアルミニウム酸化物膜を剥がし試験を行った後のATR-IRスペクトルATR-IR spectrum after performing test by peeling off aluminum oxide film obtained on polypropylene (PP) film by film formation by heating at 100 ° C. in nitrogen atmosphere using composition 3 in Comparative Example 2-6 実施例2-40で得られた紙に成膜したアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph (thin film surface) of the aluminum oxide film formed on the paper obtained in Example 2-40 スプレー成膜装置を示す図である。It is a figure which shows a spray film-forming apparatus. 実施例3-1-1で得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph of the aluminum oxide film obtained in Example 3-1-1 (thin film surface) 実施例3-1-1で得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜断面)Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained in Example 3-1-1 実施例3-1-10で得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph (thin film surface) of the aluminum oxide film obtained in Example 3-1-10 実施例3-1-17で得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph of the aluminum oxide film obtained in Example 3-1-17 (thin film surface) 実施例3-2-4で得られた組成物Fの真空乾燥後のH-NMRスペクトル 1 H-NMR spectrum of composition F obtained in Example 3-2-4 after vacuum drying 実施例3-2-1で窒素雰囲気下200℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph (thin film surface) of an aluminum oxide film obtained on a glass substrate by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-1 実施例3-2-1で窒素雰囲気下200℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜断面)Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained on the glass substrate by film formation by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-1 実施例3-2-2で窒素雰囲気下200℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜表面)Scanning electron micrograph (thin film surface) of an aluminum oxide film obtained on a glass substrate by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-2 実施例3-2-2で窒素雰囲気下200℃で加熱による成膜でガラス基板に上に得られたアルミニウム酸化物膜の走査型電子顕微鏡写真(薄膜断面)Scanning electron micrograph (thin film cross section) of the aluminum oxide film obtained on the glass substrate by film formation by heating at 200 ° C. in a nitrogen atmosphere in Example 3-2-2 基材である無アルカリガラスのATR法によるIRスペクトル。IR spectrum of alkali-free glass as a base material by ATR method. 酸化アルミニウム薄膜のATR法によるIRスペクトル。IR spectrum of aluminum oxide thin film by ATR method. 酸化アルミニウム薄膜のATR法によるIRスペクトル。IR spectrum of aluminum oxide thin film by ATR method. 酸化アルミニウム薄膜のATR法によるIRスペクトル。IR spectrum of aluminum oxide thin film by ATR method. スプレー製膜装置を示す。The spray film forming apparatus is shown. 本発明5の太陽電池素子の実施形態の一例を示す。An example of embodiment of the solar cell element of this invention 5 is shown.
<本発明の第一の態様>
[アルキルアルミニウム含有溶液]
 本発明の第一の態様の第1の側面は、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)及び溶媒を含有する、アルキルアルミニウム含有溶液である。前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(環状アミド化合物)である。
<First embodiment of the present invention>
[Alkyl aluminum-containing solution]
The first aspect of the first embodiment of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different). And an alkylaluminum-containing solution containing a solvent. The solvent is an organic compound (cyclic amide compound) having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 本発明のアルキルアルミニウム化合物含有溶液は、溶媒として前記環状アミド化合物を含有することで、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物であるアルキルアルミニウム化合物を化学的に安定化させることができる。前記溶媒として前記環状アミド化合物が好ましい理由は定かではないが、高沸点で揮発しにくい、アミド構造中の酸素、窒素の非共有電子対のアルミニウムへの配位結合、環状構造による嵩高さの減少、環状構造によるリジッド性の増加により空気に対する安定性が大きく向上すると推定される。通常、アミド構造を有する化合物は、アルキルアルミニウム化合物と反応する。そのため、事前の予想では、前記環状アミド化合物と混合することでアルキルアルミニウム化合物は化学変化を起こすと推察していた。しかし、予想外にアルキルアルミニウム化合物と環状アミド化合物は反応せず、アルキルアルミニウム化合物の状態を保持することを見出した。 The alkylaluminum compound-containing solution of the present invention can chemically stabilize an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing the cyclic amide compound as a solvent. The reason why the cyclic amide compound is preferable as the solvent is not clear, but it is difficult to volatilize at a high boiling point. Coordination bond of oxygen and nitrogen in the amide structure to an aluminum of an unshared electron pair and reduction in bulk due to the cyclic structure. It is presumed that the stability to the air is greatly improved by the increase in the rigid property due to the annular structure. Usually, a compound having an amide structure reacts with an alkylaluminum compound. For this reason, it has been predicted in advance that an alkylaluminum compound undergoes a chemical change when mixed with the cyclic amide compound. However, it was unexpectedly found that the alkylaluminum compound and the cyclic amide compound do not react and the state of the alkylaluminum compound is maintained.
 本発明の溶液における前記アルキルアルミニウム化合物と前記環状アミド化合物との比率は、アルキルアルミニウム化合物を化学的に安定に保つという観点からは、アルキルアルミニウム化合物に対してモル比で1以上の環状アミド化合物を含有することが好ましい。アルキルアルミニウム化合物に対してモル比で2.6を超える量の環状アミド化合物を含有することで、溶液の自然発火などの化学変化を抑制することができる。 From the viewpoint of keeping the alkylaluminum compound chemically stable, the ratio of the alkylaluminum compound to the cyclic amide compound in the solution of the present invention is such that the molar ratio of the cyclic amide compound is 1 or more with respect to the alkylaluminum compound. It is preferable to contain. By containing the cyclic amide compound in an amount exceeding 2.6 in molar ratio to the alkylaluminum compound, chemical changes such as spontaneous ignition of the solution can be suppressed.
 環状アミド化合物は、例えば、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物であることができ、安価に入手可能であることから特にN-メチル-2-ピロリドンが好ましい。 Cyclic amide compounds are, for example, N-methyl-2-pyrrolidone, or 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or N-methyl-2-pyrrolidone is particularly preferred because it can be a mixture thereof and can be obtained at low cost.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、例えば、下記一般式(1)又は(2)で表されるアルキルアルミニウム化合物であることができる。 The dialkylaluminum and / or trialkylaluminum can be, for example, an alkylaluminum compound represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000034
(式中、Rはメチル基、エチル基を、Rは、ハロゲン、メチル基、又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000035
(式中、Rはイソブチル基を、Rは、ハロゲン、又はイソブチル基を表す。)
Figure JPOXMLDOC01-appb-C000034
(In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a halogen, a methyl group, or an ethyl group.)
Figure JPOXMLDOC01-appb-C000035
(In the formula, R 3 represents an isobutyl group, and R 4 represents a halogen or an isobutyl group.)
 一般式(1)で表される化合物の例としては、例えば、トリメチルアルミニウム、ジメチルアルミニウムクロライド、トリエチルアルミニウム、ジエチルアルミニウムクロライド等を挙げることができる。一般式(1)で表されるアルキルアルミニウム化合物は、特に、トリエチルアルミニウム又はトリメチルアルミニウムであることができる。 Examples of the compound represented by the general formula (1) include trimethylaluminum, dimethylaluminum chloride, triethylaluminum, diethylaluminum chloride and the like. The alkylaluminum compound represented by the general formula (1) can in particular be triethylaluminum or trimethylaluminum.
 一般式(2)で表される化合物の例としては、例えば、トリイソブチルアルミニウム、ジイソブチルアルミニウムクロライド等を挙げることができる。一般式(2)で表されるアルキルアルミニウム化合物は、特に、トリイソブチルアルミニウムであることができる。 Examples of the compound represented by the general formula (2) include triisobutylaluminum and diisobutylaluminum chloride. In particular, the alkylaluminum compound represented by the general formula (2) can be triisobutylaluminum.
 本発明のアルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の含有量は、特に制限はないが、アルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の含有量が高いほど、輸送効率は高くなることから、輸送効率の観点からは、例えば、15質量%以上であることができる。但し、所定の量の環状アミド化合物との混合物であり、化学的に安定な状態を維持している限り、15質量%以上に限定される意図はない。 The content of the alkylaluminum compound in the alkylaluminum-containing solution of the present invention is not particularly limited, but the higher the content of the alkylaluminum compound in the alkylaluminum-containing solution, the higher the transport efficiency. From a viewpoint, it can be 15 mass% or more, for example. However, it is not intended to be limited to 15% by mass or more as long as it is a mixture with a predetermined amount of a cyclic amide compound and maintains a chemically stable state.
 前記アルキルアルミニウム化合物の濃度は、一般式(1)のRがエチル基の場合、高濃度の溶液を提供するという観点からは15質量%以上であることが好ましく、空気に対する安定性を考慮すると21質量%以下であることが好ましい。Rがメチル基の場合、高濃度の溶液を提供するという観点からは15質量%以上であることが好ましく、空気に対する安定性を考慮すると21質量%以下であることが好ましい。 The concentration of the alkylaluminum compound is preferably 15% by mass or more from the viewpoint of providing a high-concentration solution when R 1 in the general formula (1) is an ethyl group, and considering the stability to air It is preferable that it is 21 mass% or less. When R 1 is a methyl group, it is preferably 15% by mass or more from the viewpoint of providing a high-concentration solution, and is preferably 21% by mass or less in consideration of stability to air.
 一般式(2)で表されるアルキルアルミニウム化合物の濃度は、30質量%以上含有することが、輸送効率(高濃度溶液の提供)の観点から好ましい。一方、空気に対する安定性を考慮すると40質量%以下であることが好ましい。 The concentration of the alkylaluminum compound represented by the general formula (2) is preferably 30% by mass or more from the viewpoint of transport efficiency (providing a high concentration solution). On the other hand, considering the stability to air, it is preferably 40% by mass or less.
 本発明のアルキルアルミニウム含有溶液は、環状アミド化合物以外の溶媒をさらに含むことができる。環状アミド化合物以外の溶媒を添加することで、極性、粘度、沸点、経済性等を調整することができる。環状アミド化合物以外の溶媒としては、例えば、n-ヘキサン、オクタン、n-デカン、等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、クメン、等の芳香族炭化水素;ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル、等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジn-ブチルエーテル、ジアルキルエチレングリコール、ジアルキルジエチレングリコール、ジアリキルトリエチレングリコール、等のエーテル、グライム、ジグライム、トリグライム系溶媒、等を挙げることができる。環状アミド化合物以外の溶媒の添加量は、環状アミド化合物の効果を妨げない範囲であれば制限はなく、例えば、環状アミド化合物100質量部に対して100質量部以下とすることができる。但し、アルキルアルミニウム化合物の種類、環状アミド化合物及び環状アミド化合物以外の溶媒の種類により添加可能な範囲は変化する。 The alkylaluminum-containing solution of the present invention can further contain a solvent other than the cyclic amide compound. By adding a solvent other than the cyclic amide compound, the polarity, viscosity, boiling point, economy and the like can be adjusted. Examples of the solvent other than the cyclic amide compound include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene, Aromatic hydrocarbons such as xylene, cumene, etc .; hydrocarbon solvents such as mineral spirit, solvent naphtha, kerosene, petroleum ether, etc .; diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, di-n-butyl ether, dialkylethylene glycol, dialkyldiethylene glycol And ethers such as dialkyl triethylene glycol, glyme, diglyme, triglyme solvents, and the like. The addition amount of the solvent other than the cyclic amide compound is not limited as long as it does not interfere with the effect of the cyclic amide compound, and can be, for example, 100 parts by mass or less with respect to 100 parts by mass of the cyclic amide compound. However, the range that can be added varies depending on the type of alkylaluminum compound, the cyclic amide compound, and the type of solvent other than the cyclic amide compound.
 前記環状アミド化合物、及び所望により、環状アミド化合物以外の溶媒と、アルキルアルミニウム化合物の混合は不活性ガス雰囲気下の反応容器で行うことができ、それぞれあらゆる慣用の方法に従って導入することができる。アルキルアルミニウム化合物は、環状アミド化合物以外の有機溶媒との混合物としても反応容器に導入することができる。 The mixing of the cyclic amide compound and, if desired, a solvent other than the cyclic amide compound and the alkylaluminum compound can be carried out in a reaction vessel under an inert gas atmosphere, and can be introduced according to any conventional method. The alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent other than the cyclic amide compound.
 混合容器への導入順序は、アルキルアルミニウム化合物、環状アミド化合物、及び所望により、環状アミド化合物以外の溶媒の順、又は環状アミド化合物、及び所望により、環状アミド化合物以外の溶媒、アルキルアルミニウムの順、又は全て同時に導入の、どれでもよい。 The order of introduction into the mixing vessel is as follows: alkyl aluminum compound, cyclic amide compound, and optionally a solvent other than cyclic amide compound, or cyclic amide compound and optionally solvent other than cyclic amide compound, alkyl aluminum, Or they can all be introduced at the same time.
 混合容器への導入時間は、混合する原料の種類や容量等により適宜設定できるが、例えば、1分から10時間の間で行うことができる。導入時の温度は-15~150℃の間の任意の温度を選択できる。但し、導入時に引火する危険性排除等の安全性を考慮すると-15~80℃の範囲であることが好ましい。 The introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours. As the temperature at the time of introduction, any temperature between −15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of −15 to 80 ° C.
 混合容器への原料の導入時、導入後の攪拌工程は、回分操作式、半回分操作式、連続操作式のいずれでもよい。 At the time of introducing the raw material into the mixing container, the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
 本発明のアルキルアルミニウム含有溶液は、例えば、下記用途において空気中でも使用できる材料として有用である。
・有機合成におけるメチル化、エチル化等のアルキル化剤、
・特殊ポリマーの触媒、助触媒、
・有機合成におけるジイソブチルアルミニウムヒドリドを用いた還元剤
The alkylaluminum-containing solution of the present invention is useful, for example, as a material that can be used in air in the following applications.
Alkylating agents such as methylation and ethylation in organic synthesis,
・ Special polymer catalysts, promoters,
・ Reducing agent using diisobutylaluminum hydride in organic synthesis
[アルキルアルミニウム部分加水分解物含有溶液]
 本発明の第一の態様の第2の側面は、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)の部分加水分解物及び溶媒を含有する、アルキルアルミニウム部分加水分解物含有溶液である。前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(環状アミド化合物)である。さらに、前記部分加水分解物は、前記アルキルアルミニウム化合物中のアルミニウムに対して、モル比が0.5~1.3の範囲の水で加水分解したものである。
[Alkyl aluminum partial hydrolyzate-containing solution]
The second aspect of the first embodiment of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different). A solution containing a partial hydrolyzate of alkylaluminum containing a partial hydrolyzate and a solvent. The solvent is an organic compound (cyclic amide compound) having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure. Further, the partial hydrolyzate is obtained by hydrolyzing with water having a molar ratio of 0.5 to 1.3 with respect to aluminum in the alkylaluminum compound.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 環状アミド化合物は、本発明の第一の態様の第1の側面で説明した化合物と同様であり、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物であることができる。 The cyclic amide compound is the same as the compound described in the first aspect of the first embodiment of the present invention, and includes N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl. It can be -3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or a mixture thereof.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、前記一般式(1)又は(2)で表されるアルキルアルミニウム化合物であることができる。一般式(1)又は(2)で表されるアルキルアルミニウム化合物も、本発明の第一の態様の第1の側面で説明した化合物と同様である。 The dialkylaluminum and / or the trialkylaluminum can be an alkylaluminum compound represented by the general formula (1) or (2). The alkylaluminum compound represented by the general formula (1) or (2) is the same as the compound described in the first aspect of the first embodiment of the present invention.
 前記トリアルキルアルミニウムは、下記一般式(3)で表されるアルキルアルミニウム化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式中、Rはメチル基、エチル基、イソブチル基を表す。)
The trialkylaluminum is preferably an alkylaluminum compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000037
(In the formula, R 5 represents a methyl group, an ethyl group, or an isobutyl group.)
 一般式(3)で表される化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、等を挙げることができる。単位質量のアルミニウムに対する価格が安価であるという観点から、トリエチルアルミニウムが好ましい。 Examples of the compound represented by the general formula (3) include trimethylaluminum, triethylaluminum, triisobutylaluminum and the like. Triethylaluminum is preferred from the viewpoint that the price for unit mass of aluminum is low.
 前記環状アミド化合物は、前記アルキルアルミニウム化合物中のアルミニウムに対するモル比で1以上とすることが、化学的に安定な部分加水分解物含有溶液を得るとの観点から好ましい。尚、アルキルアルミニウム化合物を部分加水分解物とすることで、空気に対する化学的安定性は向上するが、依然として安定性に欠けることから、化学的に安定な部分加水分解物含有溶液を得るという観点から、所定量の環状アミド化合物との混合物とすることが好ましい。 The cyclic amide compound is preferably 1 or more in terms of a molar ratio to aluminum in the alkylaluminum compound from the viewpoint of obtaining a chemically stable partial hydrolyzate-containing solution. In addition, although the chemical stability with respect to air improves by making an alkyl aluminum compound into a partial hydrolyzate, since it still lacks stability, from the viewpoint of obtaining a chemically stable partial hydrolyzate-containing solution. It is preferable to use a mixture with a predetermined amount of the cyclic amide compound.
 本発明の部分加水分解物含有溶液は、環状アミド化合物以外の溶媒をさらに含むことができる。環状アミド化合物以外の溶媒の種類や添加量は、本発明の第一の態様の第1の側面での説明と同様である。 The partial hydrolyzate-containing solution of the present invention can further contain a solvent other than the cyclic amide compound. The kind and addition amount of the solvent other than the cyclic amide compound are the same as those described in the first aspect of the first embodiment of the present invention.
 アルキルアルミニウム化合物の部分加水分解は、前記アルキルアルミニウム化合物に対するモル比が0.5~1.3の範囲で、水、又は水を含有する溶液を用いて行う。アルキルアルミニウム化合物に対する水のモル比が0.5未満では、溶媒乾燥後も液状になり易く均一な酸化アルミニウム膜を形成することが困難である。均一な酸化アルミニウム膜を形成するという観点からは、アルキルアルミニウム化合物に対する水のモル比が0.8以上であることがより好ましい。一方、アルキルアルミニウム化合物に対する水のモル比が1.3を超えると溶媒に不溶なゲル、固体が析出し、ゲル、固体による均一な酸化アルミニウム膜の形成が困難になる。析出したゲルや固体は、ろ過除去することも可能であるが、アルミニウム分の損失に繋がるので好ましくない。 The partial hydrolysis of the alkylaluminum compound is carried out using water or a solution containing water in a molar ratio of 0.5 to 1.3 with respect to the alkylaluminum compound. If the molar ratio of water to the alkylaluminum compound is less than 0.5, it is difficult to form a uniform aluminum oxide film that tends to be liquid after solvent drying. From the viewpoint of forming a uniform aluminum oxide film, the molar ratio of water to the alkylaluminum compound is more preferably 0.8 or more. On the other hand, when the molar ratio of water to the alkylaluminum compound exceeds 1.3, a gel or solid insoluble in the solvent is deposited, and it becomes difficult to form a uniform aluminum oxide film from the gel and solid. The precipitated gel or solid can be removed by filtration, but this is not preferable because it leads to loss of aluminum content.
 前記部分加水分解反応は、不活性ガス雰囲気下、前記アルキルアルミニウム化合物を前記環状アミド化合物、及び所望により、環状アミド化合物以外の溶媒に溶解した溶液に、水、又は水を含有する溶液を添加して行う。水自身を添加してもよいが、アルキルアルミニウム化合物と水の反応時の発熱制御の点からは水を含有する溶液を添加して行うことが好ましい。 In the partial hydrolysis reaction, water or a solution containing water is added to a solution obtained by dissolving the alkylaluminum compound in the cyclic amide compound and, optionally, a solvent other than the cyclic amide compound in an inert gas atmosphere. Do it. Although water itself may be added, it is preferable to add a solution containing water from the viewpoint of heat generation control during the reaction between the alkylaluminum compound and water.
 水、又は水を含有する溶液を添加する前記アルキルアルミニウム化合物溶液中のアルキルアルミニウム化合物の濃度は、0.1~50質量%とすることができ、0.1~30質量%の範囲であることが好ましい。 The concentration of the alkylaluminum compound in the alkylaluminum compound solution to which water or a solution containing water is added can be 0.1 to 50% by mass, and is in the range of 0.1 to 30% by mass. Is preferred.
 前記アルキルアルミニウム化合物溶液への水、又は水を含有する溶液の添加は、混合する原料の種類や容量等により適宜設定できるが、例えば、1分~10時間の範囲とすることができる。添加時の温度は-15~150℃の間の任意の温度を選択できる。但し、安全性等を考慮すると-15~80℃の範囲であることが好ましい。 The addition of water or a solution containing water to the alkylaluminum compound solution can be set as appropriate depending on the type and volume of the raw material to be mixed, and can be, for example, in the range of 1 minute to 10 hours. The temperature at the time of addition can be arbitrarily selected from -15 to 150 ° C. However, in consideration of safety and the like, it is preferably in the range of −15 to 80 ° C.
 水、又は水を含有する溶液の添加後に、前記アルキルアルミニウム化合物と水の部分加水分解反応をさらに進行させるために、0.1~50時間熟成反応させることができる。熟成反応温度は-15~150℃の間で任意の温度を選択できる。但し、熟成反応時間の短縮等を考慮すると25~150℃の範囲であることが好ましい。 After the addition of water or a solution containing water, an aging reaction can be performed for 0.1 to 50 hours in order to further promote the partial hydrolysis reaction of the alkylaluminum compound and water. The aging reaction temperature can be selected from -15 to 150 ° C. However, considering the shortening of the ripening reaction time, etc., it is preferably in the range of 25 to 150 ° C.
 前記環状アミド化合物、及び所望により、環状アミド化合物以外の溶媒、アルキルアルミニウム化合物、水、又は水を含有する溶液は、あらゆる慣用の方法に従って反応容器に導入できる。反応容器の圧力は制限されない。加水分解反応工程は回分操作式、半回分操作式、連続操作式のいずれでもよく特に制限はないが、回分操作式が好ましい。 The cyclic amide compound and, if desired, a solvent other than the cyclic amide compound, an alkylaluminum compound, water, or a solution containing water can be introduced into the reaction vessel according to any conventional method. The pressure in the reaction vessel is not limited. The hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is preferable.
 上記部分加水分解反応により、上記アルキルアルミニウム部分加水分解物含有溶液が得られる。アルキルアルミニウム化合物がトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムである場合、部分加水分解組成物についての解析は古くから行われているが、報告により生成物の組成結果が異なり、生成物の組成が明確に特定されていない。また、溶媒、濃度、水の添加モル比、添加温度、反応温度、反応時間、等によっても生成物の組成は変化する。 The alkyl aluminum partial hydrolyzate-containing solution is obtained by the partial hydrolysis reaction. When the alkylaluminum compound is trimethylaluminum, triethylaluminum, or triisobutylaluminum, analysis of the partially hydrolyzed composition has been conducted for a long time, but the composition result of the product differs depending on the report, and the composition of the product is clear Not specified. The composition of the product also varies depending on the solvent, concentration, molar ratio of water added, addition temperature, reaction temperature, reaction time, and the like.
 本発明の方法におけるアルキルアルミニウム部分加水分解物は下記一般式(5)で表される構造単位を含む化合物の混合物であると推定される。 The alkyl aluminum partial hydrolyzate in the method of the present invention is presumed to be a mixture of compounds containing a structural unit represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000038
(式中、Rは一般式(3)におけるR5と同じであり、mは1~80の整数である。)
Figure JPOXMLDOC01-appb-C000038
(Wherein, R 5 is the same as R 5 in the general formula (3), m is an integer of 1 to 80.)
 上記部分加水分解反応終了後、微量の固体等が析出している場合、ろ過、クロマトグラフィー等の方法により精製することで固体等を除去することができる。 When a small amount of solid or the like is deposited after the partial hydrolysis reaction, the solid or the like can be removed by purification by a method such as filtration or chromatography.
 上記アルキルアルミニウム部分加水分解物含有溶液は、濃縮(溶媒除去)により固形分濃度を調整することができる。また、反応に使用した溶媒、反応に使用したものとは異なる溶媒を添加して、固形分濃度、極性、粘度、沸点、経済性等を適宜調整することもできる。 The solid content concentration of the alkyl aluminum partial hydrolyzate-containing solution can be adjusted by concentration (solvent removal). Moreover, the solvent used for the reaction and a solvent different from that used for the reaction can be added to adjust the solid content concentration, polarity, viscosity, boiling point, economy, etc. as appropriate.
 反応に使用したものとは異なる溶媒としては、n-ヘキサン、オクタン、n-デカン、等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、クメン、等の芳香族炭化水素;ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル、等の炭化水素系溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、ジオキサン、ジn-ブチルエーテル、ジアルキルエチレングリコール、ジアルキルジエチレングリコール、ジアリキルトリエチレングリコール、等のエーテル、グライム、ジグライム、トリグライム系溶媒、等を挙げることができる。 Solvents different from those used in the reaction include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane; benzene, toluene Aromatic hydrocarbons such as xylene, cumene, etc .; hydrocarbon solvents such as mineral spirit, solvent naphtha, kerosene, petroleum ether, etc .; diethyl ether, tetrahydrofuran, diisopropyl ether, dioxane, di-n-butyl ether, dialkylethylene glycol, dialkyl Examples include ethers such as diethylene glycol and dialkyl triethylene glycol, glyme, diglyme, and triglyme solvents.
 本発明のアルキルアルミニウム部分加水分解物含有溶液におけるアルキルアルミニウム部分加水分解物の含有量は、用途に応じて適宜決定できる。含有量は、環状アミド化合物の量及び/又は環状アミド化合物以外の溶媒の量を調整することで調整できる。アルキルアルミニウム部分加水分解物の含有量は、例えば、0.1~50質量%の範囲で適宜調整できる。但し、この範囲に限定される意図ではない。 The content of the alkylaluminum partial hydrolyzate in the alkylaluminum partial hydrolyzate-containing solution of the present invention can be appropriately determined according to the application. The content can be adjusted by adjusting the amount of the cyclic amide compound and / or the amount of the solvent other than the cyclic amide compound. The content of the alkylaluminum partial hydrolyzate can be appropriately adjusted, for example, in the range of 0.1 to 50% by mass. However, it is not intended to be limited to this range.
[酸化アルミニウム薄膜の製造方法]
 本発明の酸化アルミニウム薄膜の製造方法は、前記本発明のアルキルアルミニウム部分加水分解物含有溶液を基材に塗布して酸化アルミニウム薄膜を得る方法である。
[Method for producing aluminum oxide thin film]
The method for producing an aluminum oxide thin film of the present invention is a method for obtaining an aluminum oxide thin film by applying the alkyl aluminum partial hydrolyzate-containing solution of the present invention to a substrate.
 前記基材への塗布は、スピンコート法、ディップコート法、スクリーン印刷法、バーコート法、スリットコート法、ダイコート法、グラビアコート法、ロールコート法、カーテンコート法、スプレー熱分解法、静電スプレー熱分解法、インクジェット法、ミストCVD法、等の慣用の方法で行うことができる。 Application to the substrate is performed by spin coating, dip coating, screen printing, bar coating, slit coating, die coating, gravure coating, roll coating, curtain coating, spray pyrolysis, electrostatic A conventional method such as a spray pyrolysis method, an ink jet method, or a mist CVD method can be used.
 前記基材への塗布は、不活性雰囲気下でも空気雰囲気下でも行うことができるが、経済性の観点から、空気雰囲気下で行うことが装置も簡便となり好ましい。 Application to the substrate can be performed in an inert atmosphere or an air atmosphere, but from the viewpoint of economy, it is preferable to perform it in an air atmosphere because the apparatus is simple.
 前記基材への塗布は、加圧下や減圧下でも実施できるが、経済性の点から、大気圧下で行うことが装置も簡便となり好ましい。 Application to the substrate can be carried out under pressure or reduced pressure, but it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
 前記基材は、鉛ガラス、ソーダガラス、ホウ珪酸ガラス、無アルカリガラス、等のガラス;シリカ、アルミナ、チタニア、ジルコニア、複合酸化物、等の酸化物;ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリメチルメタクレート(PMMA)、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、ポリスチレン(PS)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、環状ポリオレフィン(COP)、エチレン-酢酸ビニル共重合体(EVA)、ポリイミド、ポリアミド、ポリエーテルスルホン(PES)、ポリウレタン、トリアセテート、トリアセチルセルロース(TAC)、セロファン、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、等の高分子、等を挙げることができる。 The substrate is made of lead glass, soda glass, borosilicate glass, alkali-free glass, etc .; oxides such as silica, alumina, titania, zirconia, complex oxides; polyethylene (PE), polypropylene (PP), Polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyphenylene sulfide (PPS), polystyrene (PS), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyvinylidene chloride, cyclic polyolefin (COP), ethylene-vinyl acetate copolymer (EVA), polyimide, polyamide, polyethersulfone (PES), polyurethane, triacetate, triacetylcellulose (TAC), cellopha , Polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), perfluoroalkoxy fluororesin (PFA), both tetrafluoroethylene and hexafluoropropylene Polymers such as a polymer (ETFE) and an ethylene / chlorotrifluoroethylene copolymer (ECTFE) can be used.
 前記基材の形状は、粉、フィルム、板、又は三次元形状を有する立体構造物を挙げることができる。 Examples of the shape of the base material include powder, a film, a plate, or a three-dimensional structure having a three-dimensional shape.
 前記アルキルアルミニウム部分加水分解物含有溶液を塗布した後、基材を所定の温度とし、溶媒を乾燥後、または乾燥と同時に所定の温度で焼成することにより酸化アルミニウム薄膜を形成させる。尚、塗布がスプレー熱分解法、静電スプレー熱分解法、インクジェット法、ミストCVD法による場合、塗布前に基材を所定の温度に加熱できるため、塗布と同時に溶媒を乾燥、または、乾燥と同時に焼成させることができる。 After applying the alkylaluminum partial hydrolyzate-containing solution, the substrate is brought to a predetermined temperature, and the solvent is dried or baked at the same temperature as the drying to form an aluminum oxide thin film. In addition, when coating is performed by spray pyrolysis, electrostatic spray pyrolysis, ink jet, or mist CVD, the substrate can be heated to a predetermined temperature before coating. It can be fired simultaneously.
 前記溶媒を乾燥させるための所定の温度は、例えば、20~250℃の間で任意の温度を選択できる。前記溶媒を、例えば、0.5~60分かけて乾燥させることができる。但し、これらの範囲に限定される意図ではない。 The predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C. The solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
 前記酸化アルミニウムを形成させるための焼成させるための所定の温度は、例えば、50~550℃の間で任意の温度を選択できる。但し、基材の種類を考慮して、基材がダメージを受けない温度に設定することが適当である。焼成させる所定の温度が、溶媒を乾燥させる所定の温度と同一な場合、溶媒の乾燥と焼成を同時に行うことができる。溶媒乾燥した前駆膜を、例えば、0.5~300分かけて焼成させることができる。 The predetermined temperature for firing for forming the aluminum oxide can be selected from 50 to 550 ° C., for example. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged. When the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously. The solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
 前記のようにして得られる酸化アルミニウム薄膜の膜厚は、例えば、0.005~3μmであることができる。酸化アルミニウム薄膜の膜厚は、必要に応じ、前記の塗布、乾燥、焼成の工程を複数回繰り返すことにより大きくすることもできる。 The film thickness of the aluminum oxide thin film obtained as described above can be, for example, 0.005 to 3 μm. The film thickness of the aluminum oxide thin film can be increased by repeating the coating, drying, and baking steps a plurality of times as necessary.
 必要に応じて前記のようにして得られた酸化アルミニウム薄膜を、酸素等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、多量に水分が存在する水蒸気雰囲気下、またはアルゴン、窒素、酸素等のプラズマ雰囲気下で、所定の温度で加熱することにより酸化アルミニウムの結晶性、緻密性を向上させることもできる。紫外線等の光照射やマイクロ波処理により得られた酸化アルミニウム薄膜中の残存有機物等を除去することができる。
 
<本発明の第二の態様>
If necessary, the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc. The crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.

<Second embodiment of the present invention>
 本発明のアルミニウム酸化物膜を有する物品の製造方法は、下記(A)、(B)および(C)の工程を含む。
(A)下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して、前記有機アルミニウム化合物の部分加水分解物を含有する組成物を得る工程、但し、前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行う、
(B)前記部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する工程、
(C)前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程
The method for producing an article having an aluminum oxide film of the present invention includes the following steps (A), (B) and (C).
(A) A step of partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound, wherein Partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound.
(B) applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate under an inert gas atmosphere to form a coating film;
(C) A step of heating the base material on which the coating film is formed at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film.
Figure JPOXMLDOC01-appb-C000039
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
Figure JPOXMLDOC01-appb-C000039
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
工程(A)
 工程(A)では、一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して、前記有機アルミニウム化合物の部分加水分解物を含有する組成物を得る。
Process (A)
In the step (A), the organoaluminum compound represented by the general formula (6) is partially hydrolyzed in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound.
 一般式(6)で表される有機アルミニウム化合物におけるR1として表される炭素数1~4の直鎖もしくは分岐したアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を挙げることができる。一般式(6)で表される化合物は、R1は炭素数1、2、3または4の化合物であることが好ましい。一般式(6)で表される化合物は、特にR1が炭素数2である、エチル基であることが好ましい。R2、R3として表される炭素数1~4の直鎖もしくは分岐したアルキル基も上記R1と同様である。 Specific examples of the linear or branched alkyl group having 1 to 4 carbon atoms represented as R 1 in the organoaluminum compound represented by the general formula (6) include a methyl group, an ethyl group, a propyl group, an isopropyl group, Examples thereof include n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. In the compound represented by the general formula (6), R 1 is preferably a compound having 1, 2, 3 or 4 carbon atoms. The compound represented by the general formula (6) is particularly preferably an ethyl group in which R 1 has 2 carbon atoms. The linear or branched alkyl group having 1 to 4 carbon atoms represented by R 2 and R 3 is the same as R 1 described above.
 一般式(6)で表される有機アルミニウム化合物におけるRおよびRとして表される炭素数1~7の直鎖もしくは分岐したアルコキシル基の具体例としては、メトキシ基、エトキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、t-ブトキシ基、フェノキシ基、メトキシエトキシ基等を上げることが出来る。アシルオキシ基の具体例としてはアセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基等を挙げることが出来る。 Specific examples of the linear or branched alkoxyl group having 1 to 7 carbon atoms represented by R 2 and R 3 in the organoaluminum compound represented by the general formula (6) include a methoxy group, an ethoxy group, and an isopropoxy group. N-butoxy group, sec-butoxy group, t-butoxy group, phenoxy group, methoxyethoxy group, and the like. Specific examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, and an isobutyryloxy group.
 一般式(6)で表される化合物は、価格が安く入手が容易であるという点から、トリメチルアルミニウム、トリエチルアルミニウム、ジエチルアルミニウムエトキシド、トリイソブチルアルミニウム、トリn-ブチルアルミニウムが好ましく、特に、安価で重合助触媒としての使用量も多く入手が容易なことから、トリメチルアルミニウム、トリエチルアルミニウム、ジエチルアルミニウムエトキシド、トリイソブチルアルミニウムが好ましく、これらの中でも特に重合助触媒用途として使用量が最も多く、安価で入手が容易であるトリエチルアルミニウムが好ましい。 The compound represented by the general formula (6) is preferably trimethylaluminum, triethylaluminum, diethylaluminum ethoxide, triisobutylaluminum, or tri-n-butylaluminum because it is inexpensive and easily available. Trimethylaluminum, triethylaluminum, diethylaluminum ethoxide, and triisobutylaluminum are preferred because of their large use as a polymerization promoter and easy to obtain. Triethylaluminum, which is easily available, is preferred.
 これら化合物は一般的に市販品として入手可能なものとして、R1、R2およびR3とは異なる炭素数のアルキル基や、水素が有機アルミニウム化合物中に微量または少量含まれていることが知られている。例えば、本発明で好適なトリエチルアルミニウムは、R1、R2 およびR3においてアルキル基の大部分であるエチル基に加えて、n-ブチル基や水素等が含まれているが、本発明においては、これらを問題なく使用することが出来る。 These compounds are generally available as commercially available products, and it is known that a trace amount or a small amount of an alkyl group having a carbon number different from R 1 , R 2 and R 3 and hydrogen are contained in the organoaluminum compound. It has been. For example, triethylaluminum suitable for the present invention contains an n-butyl group, hydrogen, etc. in addition to the ethyl group which is the majority of the alkyl groups in R 1 , R 2 and R 3 . Can use these without problems.
 前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で、水を用いて行う。有機アルミニウム化合物に対する水のモル比が0.4未満では、実質的に水分や酸素などの酸素源を含有しない不活性ガス雰囲気下で行う塗布工程(B)および加熱工程(C)において、良好な品質(透明でかつ基材に対する密着性が良好)なアルミニウム酸化物膜塗布形成が困難である。有機アルミニウム化合物に対する水のモル比が1.3を超えると有機溶媒に不溶なゲル状の物質が析出し、均質なアルミニウム酸化物膜の形成の妨げとなる。 The partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound. When the molar ratio of water to the organoaluminum compound is less than 0.4, the coating step (B) and the heating step (C) performed under an inert gas atmosphere substantially containing no oxygen source such as moisture or oxygen are favorable. It is difficult to form and coat an aluminum oxide film with quality (transparent and good adhesion to a substrate). When the molar ratio of water to the organoaluminum compound exceeds 1.3, a gel-like substance that is insoluble in the organic solvent is precipitated, which hinders the formation of a homogeneous aluminum oxide film.
 有機アルミニウム化合物に対する水のモル比は、好ましくは、0.4~1.25の範囲である。この水の添加量の範囲で有機アルミニウム化合物を加水分解することによって得られたアルミニウム酸化物膜塗布形成用組成物は、不活性ガス雰囲気下での塗布及び加熱によって、良好な品質(透明でかつ基材に対する密着性が良好)なアルミニウム酸化物膜を形成することができる。ここで、不活性ガス雰囲気は、水分や酸素などの酸素源を実質的に含有しない不活性ガスからなる雰囲気であり、例えば、水分及び酸素についてはそれぞれ1000ppm以下、好ましくは400ppm以下である雰囲気を意味する。不活性ガス雰囲気中の水分量は露点温度により制御することができ、は400ppm以下であれば、例えば、5ppm(露点温度-66℃)~375ppm(露点温度-30℃)の範囲で制御できる。さらに、操作の容易性を考慮すると、100ppm(露点温度-42℃)~375ppm(露点温度-30℃)の範囲となるように制御することもできる。不活性ガスの種類については、特に限定はないが、例えば、ヘリウム、アルゴン、窒素等を挙げることができる。これらの中でも、特にコストの面で窒素が望ましい。 The molar ratio of water to the organoaluminum compound is preferably in the range of 0.4 to 1.25. The composition for forming and coating an aluminum oxide film obtained by hydrolyzing an organoaluminum compound within the range of the amount of water added is excellent in quality (transparent and transparent) by coating and heating in an inert gas atmosphere. An aluminum oxide film having good adhesion to the substrate can be formed. Here, the inert gas atmosphere is an atmosphere made of an inert gas that does not substantially contain an oxygen source such as moisture and oxygen. For example, the atmosphere of moisture and oxygen is 1000 ppm or less, preferably 400 ppm or less. means. The amount of water in the inert gas atmosphere can be controlled by the dew point temperature. If it is 400 ppm or less, for example, it can be controlled in the range of 5 ppm (dew point temperature −66 ° C.) to 375 ppm (dew point temperature −30 ° C.). Further, in consideration of the ease of operation, it can be controlled to be in the range of 100 ppm (dew point temperature −42 ° C.) to 375 ppm (dew point temperature −30 ° C.). Although there is no limitation in particular about the kind of inert gas, For example, helium, argon, nitrogen etc. can be mentioned. Among these, nitrogen is particularly preferable in terms of cost.
 前記部分加水分解物調製に用いる有機溶媒は、一般式(6)で表される有機アルミニウム化合物に対して溶解性を有するものであればよく、例えば、電子供与性有機溶媒や炭化水素化合物を挙げることができる。また、有機溶媒は、水に対して溶解性を有するものを用いることもでき、水に対して溶解性を有する有機溶媒と水に対する溶解性が低いものを併用することもできる。有機溶媒は、電子供与性有機溶媒、炭化水素化合物またはそれらの混合物であることができる。 The organic solvent used for the preparation of the partial hydrolyzate is not particularly limited as long as it has solubility in the organoaluminum compound represented by the general formula (6), and examples thereof include an electron donating organic solvent and a hydrocarbon compound. be able to. As the organic solvent, those having solubility in water can be used, and organic solvents having solubility in water and those having low solubility in water can be used in combination. The organic solvent can be an electron donating organic solvent, a hydrocarbon compound, or a mixture thereof.
 電子供与性有機溶媒の例としては、1,2-ジエトキシエタン、1,2-ジブトキエタンやジエチルエーテル、ジn-プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン、グライム、ジグライム、トリグライム、アニソール、メトキシトルエン等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等を挙げることができる。電子供与性を有する有機溶媒としては、1,2-ジエトキシエタン、テトラヒドロフラン、ジオキサンが好ましい。 Examples of electron donating organic solvents include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme And ether solvents such as triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine. As the organic solvent having an electron donating property, 1,2-diethoxyethane, tetrahydrofuran, and dioxane are preferable.
 前記炭化水素化合物としては、炭素数5~20のより好ましくは炭素数6~12の直鎖、分岐炭化水素化合物または環状炭化水素化合物、炭素数6~20の、より好ましくは炭素数6~12の芳香族炭化水素化合物およびそれらの混合物を例示することが出来る。 The hydrocarbon compound is a straight chain, branched hydrocarbon compound or cyclic hydrocarbon compound having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. And aromatic hydrocarbon compounds and mixtures thereof.
 これら炭化水素化合物の具体的な例として、ペンタン、n-ヘキサン、ヘプタン、イソヘキサン、メチルペンタン、オクタン、2,2,4-トリメチルペンタン(イソオクタン)、n-ノナン、n-デカン、n-ヘキサデカン、オクタデカン、エイコサン、メチルヘプタン、2,2-ジメチルヘキサン、2-メチルオクタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサンメチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、クメン、トリメチルベンゼン等の芳香族炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル等の炭化水素系溶媒を挙げることが出来る。 Specific examples of these hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, and hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, and petroleum ether can be used.
 工程(A)で得られる部分加水分解物含有組成物において、水による部分加水分解後に前記組成物中に残存しているR1、R2、R3が水素、炭素数1~4の直鎖もしくは分岐したアルキル基を含まない場合においては、組成物に共存が可能な溶媒として、メタノール、エタノール、n-プロピルアルコール、イソプロピルノール、イソブチルアルコール、n-ブチルアルコール、ジエチレングリコール等のアルコールの使用が可能である。 In the partial hydrolyzate-containing composition obtained in the step (A), R 1 , R 2 and R 3 remaining in the composition after partial hydrolysis with water are hydrogen, a linear chain having 1 to 4 carbon atoms Alternatively, when it does not contain branched alkyl groups, alcohols such as methanol, ethanol, n-propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, and diethylene glycol can be used as solvents that can coexist in the composition. It is.
 前記部分加水分解は、一般式(6)で表される化合物を前記有機溶媒に溶解した溶液に水を添加するか、または一般式(6)で表される化合物の有機溶媒溶液と水を混合することが行う。前記溶液中の一般式(6)で表される化合物の濃度は、有機溶媒への溶解性及び得られる部分加水分解物組成物中の部分加水分解物の濃度等を考慮して適宜決定されるが、例えば、0.1~50質量%の範囲とすることが適当であり、0.1~35質量%の範囲が好ましい。 In the partial hydrolysis, water is added to a solution obtained by dissolving the compound represented by the general formula (6) in the organic solvent, or the organic solvent solution of the compound represented by the general formula (6) is mixed with water. To do. The concentration of the compound represented by the general formula (6) in the solution is appropriately determined in consideration of the solubility in an organic solvent and the concentration of the partial hydrolyzate in the obtained partial hydrolyzate composition. However, for example, a range of 0.1 to 50% by mass is appropriate, and a range of 0.1 to 35% by mass is preferable.
 水の添加又は混合は、水を他の溶媒と混合することなく行うことも、水を他の溶媒と混合した後に行うこともできる。水の添加又は混合は、反応の規模にもよるが、例えば、60秒~10時間の間の時間をかけて行うことができる。部分加水分解物の収率が良好であるという観点から、原料である一般式(6)の有機アルミニウム化合物に水を滴下することにより添加することが好ましい。水の添加は、例えば、一般式(6)で表される化合物と電子供与性有機溶媒との溶液を攪拌せずに(静置した状態で)または攪拌しながら実施することができる。添加時の温度は、-90~150℃の間の任意の温度を選択できる。-15~30℃であることが水と有機アルミニウム化合物の反応性という観点から好ましい。 The addition or mixing of water can be performed without mixing water with another solvent or after mixing water with another solvent. Depending on the scale of the reaction, water can be added or mixed, for example, over a period of 60 seconds to 10 hours. From the viewpoint that the yield of the partial hydrolyzate is good, it is preferable to add it by dropping water into the organoaluminum compound of the general formula (6) as a raw material. The addition of water can be carried out, for example, without stirring (while standing) or stirring the solution of the compound represented by the general formula (6) and the electron donating organic solvent. As the temperature at the time of addition, any temperature between −90 to 150 ° C. can be selected. A temperature of −15 to 30 ° C. is preferable from the viewpoint of the reactivity between water and the organoaluminum compound.
 水の添加後に、水と一般式(6)で表される化合物との加水分解反応をさらに進行させるために、例えば、1分から48時間、攪拌せずに(静置した状態で)置くか、または攪拌することができる。反応温度については、-90~150℃の間の任意の温度で反応させることができる。-15~80℃であることが部分加水分解物を高収率で得るという観点から好ましい。加水分解反応における圧力は制限されない。通常は、常圧(大気圧)で実施できる。水と一般式(6)で表される化合物との加水分解反応の進行は、必要により、反応混合物をサンプリングし、サンプルをNMRあるいはIR等で分析、もしくは、発生するガスをサンプリングすることによりモニタリングすることができる。 After the addition of water, in order to further proceed the hydrolysis reaction between water and the compound represented by the general formula (6), for example, it is left without stirring (still standing) for 1 minute to 48 hours, Or it can be stirred. Regarding the reaction temperature, the reaction can be carried out at any temperature between -90 to 150 ° C. A temperature of −15 to 80 ° C. is preferable from the viewpoint of obtaining a partial hydrolyzate in a high yield. The pressure in the hydrolysis reaction is not limited. Usually, it can be carried out at normal pressure (atmospheric pressure). The progress of the hydrolysis reaction between water and the compound represented by the general formula (6) is monitored by sampling the reaction mixture, analyzing the sample by NMR or IR, or sampling the generated gas, if necessary. can do.
 前記の有機溶媒、原料である前記一般式(6)の有機アルミニウム化合物、そして水はあらゆる慣用の方法に従って反応容器に導入することができ、有機アルミニウム化合物及び水はそれぞれ有機溶媒との混合物としても導入することができる。加水分解反応工程は回分操作式、半回分操作式、連続操作式のいずれでもよく、特に制限はないが、回分操作式が望ましい。 The organic solvent, the organoaluminum compound of the general formula (6) as a raw material, and water can be introduced into the reaction vessel according to any conventional method, and the organoaluminum compound and water can each be mixed with an organic solvent. Can be introduced. The hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is desirable.
 上記加水分解反応により、一般式(6)の有機アルミニウム化合物は、水により部分的に加水分解されて、部分加水分解物を含む生成物が得られる。一般式(6)の有機アルミニウム化合物がトリメチルアルミニウムやトリエチルアルミニウム等である場合、加水分解物についての解析は古くから行われている。しかし、報告により結果が異なり、生成物の組成が明確に特定されている訳ではない。また、水の添加モル比や反応時間等によっても、生成物の組成は変化し得る。本発明の方法における生成物の主成分は部分加水分解物であり、部分加水分解物は下記一般式(7)で表される構造単位を含む化合物の混合物であると推定される。
Figure JPOXMLDOC01-appb-C000040
(式中、Qは一般式(6)におけるR、R2、R3のいずれかと同じであり、mは1~200の整数である。)
By the hydrolysis reaction, the organoaluminum compound of the general formula (6) is partially hydrolyzed with water to obtain a product containing a partially hydrolyzed product. When the organoaluminum compound of the general formula (6) is trimethylaluminum, triethylaluminum or the like, the analysis of the hydrolyzate has been performed for a long time. However, the results vary depending on the report, and the composition of the product is not clearly specified. Further, the composition of the product can be changed depending on the molar ratio of water, the reaction time, and the like. The main component of the product in the method of the present invention is a partial hydrolyzate, and the partial hydrolyzate is presumed to be a mixture of compounds containing a structural unit represented by the following general formula (7).
Figure JPOXMLDOC01-appb-C000040
(In the formula, Q is the same as any of R 1 , R 2 and R 3 in the general formula (6), and m is an integer of 1 to 200.)
 加水分解反応終了後、例えば、ろ過、濃縮、抽出、カラムクロマトグラフィー等の一般的な方法によって、上記生成物の一部または全部を回収及び/又は精製することができる。一般式(6)の有機アルミニウム化合物に対する水のモル比が比較的高い条件においては、不溶物を生じる場合があり、この場合には、細孔径が例えば、3μm以下であるフィルターを用いてろ過し、不溶物を実質的に含有しない、部分加水分解物含有組成物を得ることが好ましい。 After completion of the hydrolysis reaction, a part or all of the product can be recovered and / or purified by a general method such as filtration, concentration, extraction, column chromatography or the like. In the case where the molar ratio of water to the organoaluminum compound of the general formula (6) is relatively high, insoluble matter may be generated. In this case, filtration is performed using a filter having a pore size of 3 μm or less. It is preferable to obtain a partial hydrolyzate-containing composition that is substantially free of insolubles.
 上記方法で有機溶媒から分離して回収した部分加水分解物(固形分)は、反応に使用した有機溶媒と異なる、膜塗布形成用有機溶媒に溶解して塗布用の組成物とすることもできる。但し、有機溶媒から分離することなく反応生成混合物である部分加水分解物含有組成物をそのまま、あるいは適宜濃度を調整して塗布用の組成物とすることもできる。 The partial hydrolyzate (solid content) separated and recovered from the organic solvent by the above method can be dissolved in an organic solvent for film coating formation, which is different from the organic solvent used for the reaction, to obtain a coating composition. . However, the partial hydrolyzate-containing composition that is the reaction product mixture can be used as it is or without any separation from the organic solvent, or the concentration can be adjusted appropriately to obtain a coating composition.
 膜塗布形成用有機溶媒として用いることが出来る有機溶媒の例としては、炭素数5~20のより好ましくは炭素数6~12の直鎖、分岐炭化水素化合物または環状炭化水素化合物、炭素数6~20の、より好ましくは炭素数6~12の芳香族炭化水素化合物およびそれらの混合物を例示することが出来る。 Examples of organic solvents that can be used as the organic solvent for film coating formation include linear, branched hydrocarbon compounds or cyclic hydrocarbon compounds having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 6 carbon atoms. Examples thereof include 20 aromatic hydrocarbon compounds having 6 to 12 carbon atoms, and mixtures thereof.
 これら炭化水素化合物の具体的な例として、ペンタン、n-ヘキサン、ヘプタン、イソヘキサン、メチルペンタン、オクタン、2,2,4-トリメチルペンタン(イソオクタン)、n-ノナン、n-デカン、n-ヘキサデカン、オクタデカン、エイコサン、メチルヘプタン、2,2-ジメチルヘキサン、2-メチルオクタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサンメチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、クメン、トリメチルベンゼン等の芳香族炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル等の炭化水素系溶媒を上げることが出来る。 Specific examples of these hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, petroleum ether, etc. can be raised.
 また膜塗布形成用有機溶媒として用いることが出来る有機溶媒のその他の例としては、1,2-ジエトキシエタン、1,2-ジブトキエタンやジエチルエーテル、ジn-プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン、グライム、ジグライム、トリグライム、アニソール、メトキシトルエン等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等を挙げることができる。 Other examples of organic solvents that can be used as the organic solvent for film coating formation include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, Examples thereof include ether solvents such as cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme, triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine.
 また、これらの有機有機は単独で使用するのみならず、2 種類以上を混合して用いることも可能である。 Moreover, these organic organics can be used not only alone but also in a mixture of two or more kinds.
 また、アルミニウム酸化物膜塗布形成用組成物において、加水分解後に前記組成物中に残存しているR1、R2、R3がアルコキシド基の場合においては、組成物に共存が可能な溶媒として、メタノール、エタノール、n-プロピルアルコール、イソプロピルノール、イソブチルアルコール、n-ブチルアルコール、ジエチレングリコール等のアルコールも膜塗布形成用有機溶媒として使用が可能である。 Further, in the composition for forming an aluminum oxide film, when R 1 , R 2 , and R 3 remaining in the composition after hydrolysis are alkoxide groups, the composition can be used as a solvent that can coexist in the composition. Alcohols such as methanol, ethanol, n-propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, and diethylene glycol can also be used as the organic solvent for film coating formation.
 工程(A)で得られる部分加水分解物含有組成物の部分加水分解物の固形分濃度は、例えば、0.1~30質量%の範囲であることができる。濃度が高ければ高いほど少ない塗布回数で膜を製造できるが、有機アルミニウム化合物の部分加水分解物を含む反応生成物の溶解度、例えば、アルミニウム酸化物膜の形成の容易さを考慮すると、好ましくは0.1~25質量%、さらに好ましくは0.1~15質量%とすることが出来る。 The solid content concentration of the partial hydrolyzate of the partial hydrolyzate-containing composition obtained in the step (A) can be, for example, in the range of 0.1 to 30% by mass. The higher the concentration, the smaller the number of coatings that can be produced. However, in consideration of the solubility of the reaction product containing a partial hydrolyzate of the organoaluminum compound, for example, the ease of forming an aluminum oxide film, it is preferably 0. The content can be 1 to 25% by mass, more preferably 0.1 to 15% by mass.
 上記工程(A)で得られる部分加水分解物含有組成物は、本発明のアルミニウム酸化物膜塗布形成用組成物に相当する。本発明のアルミニウム酸化物膜塗布形成用組成物は、膜塗布形成を不活性ガス雰囲気下で行うことで、良好な品質(透明でかつ基材に対する密着性が良好)なアルミニウム酸化物膜を基材上に形成することができる。この製造方法は、工程(B)及び(C)を含む。工程(B)及び(C)については、以下に説明する。 The partial hydrolyzate-containing composition obtained in the above step (A) corresponds to the composition for forming an aluminum oxide film of the present invention. The composition for forming an aluminum oxide film of the present invention is based on an aluminum oxide film of good quality (transparent and good adhesion to a substrate) by performing film coating under an inert gas atmosphere. It can be formed on a material. This manufacturing method includes steps (B) and (C). Steps (B) and (C) will be described below.
工程(B)
 工程(A)で得られた部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する。
Process (B)
The partial hydrolyzate-containing composition obtained in the step (A) is applied to at least a part of the surface of the substrate in an inert gas atmosphere to form a coating film.
 基材表面への塗布法は、特に制限はなく、例えば、スプレー塗布法、ディップコート法、スピンコート法、スリットコート法、スロットコート法、バーコート法、ロールコート法、カーテンコート法、スプレー熱分解法、静電塗布法、インクジェット法、スクリーン印刷法等の慣用方法を採用できる。 The coating method on the substrate surface is not particularly limited. For example, spray coating method, dip coating method, spin coating method, slit coating method, slot coating method, bar coating method, roll coating method, curtain coating method, spray heat Conventional methods such as a decomposition method, an electrostatic coating method, an ink jet method, and a screen printing method can be employed.
 スプレー熱分解法や静電塗布法は、基材を加熱しながら塗布と成膜を同時にできる方法である。そのため、塗布と並行して溶媒を乾燥させることができ、条件によっては、溶媒乾燥のための加熱が不要である場合もある。さらに、条件によっては、乾燥に加えて、部分加水分解物のアルミニウム酸化物への反応も少なくとも一部、進行する場合もある。そのため、後工程である工程(C)における加熱によるアルミニウム酸化物膜形成をより容易に行える場合もある。スプレー熱分解法における塗布および成膜の際の基材の加熱温度は、例えば、20~400℃、好ましくは50~400℃の範囲であることができる。特に基材に樹脂などの耐熱性の低い基材を用いる場合には、20~350℃、更に耐熱性の低いものでは20~250℃の範囲で行うことが出来る。 The spray pyrolysis method and the electrostatic coating method are methods in which coating and film formation can be performed simultaneously while heating the substrate. Therefore, the solvent can be dried in parallel with the application, and heating for solvent drying may not be necessary depending on the conditions. Further, depending on the conditions, in addition to drying, the reaction of the partially hydrolyzed product with the aluminum oxide may proceed at least partially. Therefore, the aluminum oxide film may be formed more easily by heating in the subsequent step (C). The heating temperature of the substrate at the time of application and film formation in the spray pyrolysis method can be, for example, in the range of 20 to 400 ° C., preferably 50 to 400 ° C. In particular, when a low heat resistant substrate such as a resin is used as the substrate, it can be carried out in the range of 20 to 350 ° C., and even lower heat resistant in the range of 20 to 250 ° C.
 組成物の基材表面への塗布は、窒素等の不活性ガス雰囲気下で実施する。本発明において部分加水分解物含有組成物の塗布は、不活性ガス雰囲気下で行うことで、1)成膜温度の低温化、2)基材への密着性、3)酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)を全て満足する、アルミニウム酸化物の成膜が可能となる。不活性ガス雰囲気は、水分や酸素などの酸素源を実質的に含有しない不活性ガスからなる雰囲気であり、例えば、水分及び酸素についてはそれぞれ1000ppm以下、好ましくは400ppm以下である雰囲気を意味する。不活性ガス雰囲気中の水分量は露点温度により制御することができ、は400ppm以下であれば、例えば、5ppm(露点温度-66℃)~375ppm(露点温度-30℃)の範囲で制御できる。さらに、操作の容易性を考慮すると、100ppm(露点温度-42℃)~375ppm(露点温度-30℃)の範囲となるように制御することもできる。
 一方、水分や酸素が完全にない場合には、一般式(7)に示される部分加水分解物の構造において、Al-Qの部位が未反応となり膜に残存する場合があるため、得られた膜の均質性等、所望の物性が損なわれない範囲での水分及び酸素の共存は許容される。具体的には、不活性ガス雰囲気中の水分及び酸素として、それぞれ1000ppm以下、好ましくは400ppm以下とすることができる。
 この塗布やその後の溶媒乾燥の際に、特に溶媒が残存している状況において、不活性ガス雰囲気中の水分や酸素が前述の数値よりも大きい場合、部分加水分解物と水分および酸素との反応が過剰に進行し、膜形成の前に付着物が粉状化したり、膜の透明性が損なわれるなど、得らえたアルミニウム酸化物膜の均質性や密着性が悪くなるため好ましくない。
Application of the composition to the substrate surface is performed in an inert gas atmosphere such as nitrogen. In the present invention, the partial hydrolyzate-containing composition is applied in an inert gas atmosphere so that 1) the film formation temperature is lowered, 2) the adhesion to the substrate, and 3) the oxide formation state ( For example, it becomes possible to form an aluminum oxide film that satisfies all of the transparency and homogeneity of the oxide film. The inert gas atmosphere is an atmosphere made of an inert gas that substantially does not contain an oxygen source such as moisture and oxygen. For example, moisture and oxygen each mean an atmosphere of 1000 ppm or less, preferably 400 ppm or less. The amount of water in the inert gas atmosphere can be controlled by the dew point temperature. If it is 400 ppm or less, for example, it can be controlled in the range of 5 ppm (dew point temperature −66 ° C.) to 375 ppm (dew point temperature −30 ° C.). Further, in consideration of the ease of operation, it can be controlled to be in the range of 100 ppm (dew point temperature −42 ° C.) to 375 ppm (dew point temperature −30 ° C.).
On the other hand, when there was no water or oxygen completely, in the structure of the partial hydrolyzate represented by the general formula (7), the Al-Q site may remain unreacted and remain in the film. The coexistence of moisture and oxygen within a range where desired physical properties such as film homogeneity are not impaired is allowed. Specifically, the moisture and oxygen in the inert gas atmosphere can each be 1000 ppm or less, preferably 400 ppm or less.
When water or oxygen in the inert gas atmosphere is larger than the above-mentioned values, particularly in the situation where the solvent remains during this coating or subsequent solvent drying, the reaction between the partial hydrolyzate and water and oxygen Is excessively progressing, and deposits are pulverized before film formation, and the transparency of the film is impaired, resulting in poor homogeneity and adhesion of the obtained aluminum oxide film.
 不活性ガスについては、特に限定はないが、例えば、ヘリウム、アルゴン、窒素、等を挙げることができる。これらの中でも、特にコストの面で窒素が望ましい。また、塗布の際の圧力については、大気圧下、加圧下、減圧下のいずれでも実施できるが、通常、大気圧で実施するのが装置上も簡便であり、コストもかからず好ましい。 The inert gas is not particularly limited, and examples thereof include helium, argon, nitrogen, and the like. Among these, nitrogen is particularly preferable in terms of cost. In addition, the pressure at the time of application can be carried out under atmospheric pressure, under pressure, or under reduced pressure. However, it is usually preferable to carry out under atmospheric pressure because the apparatus is simple and inexpensive.
 図2-1に、本発明で用いることができる噴霧塗布による成膜装置の例として、スプレー成膜装置を示す。図中、1は塗布液を充填したスプレーボトル、2は基材ホルダ、3はスプレーノズル、4はコンプレッサ、5は基材を示す。スプレー塗布は、基材を基材ホルダ2に設置し、必要によりヒーターを用いて所定の温度まで加熱し、その後、不活性ガス雰囲気で、基材の上方に配置したスプレーノズル3から圧縮した不活性ガスと塗布液を同時供給し、塗布液を霧化、噴霧させ、基材上に本発明の部分加水分解物含有組成物を塗布する(工程(B))。 FIG. 2-1 shows a spray film forming apparatus as an example of a film forming apparatus by spray coating that can be used in the present invention. In the figure, 1 is a spray bottle filled with a coating solution, 2 is a substrate holder, 3 is a spray nozzle, 4 is a compressor, and 5 is a substrate. In spray coating, the base material is placed on the base material holder 2 and heated to a predetermined temperature using a heater if necessary, and then compressed in a inert gas atmosphere from a spray nozzle 3 disposed above the base material. The active gas and the coating solution are simultaneously supplied, the coating solution is atomized and sprayed, and the partially hydrolyzate-containing composition of the present invention is applied onto the substrate (step (B)).
 塗布液のスプレー塗布は、基材への付着性、溶媒の蒸発の容易性等を考慮すると、塗布液をスプレーノズルより液滴の大きさが30μm以下の範囲になるように吐出することが好ましい。また、スプレーノズルから基材に到達するまでに溶媒が幾分蒸発し液滴の大きさが減少すること等を考慮するとスプレーノズルと基材との距離を50cm以内として行うことが、部分加水分解物含有組成物の塗布膜を形成することができるという観点から好ましい。 The spray coating of the coating liquid is preferably performed by discharging the coating liquid from the spray nozzle so that the size of the liquid droplets is in a range of 30 μm or less in consideration of adhesion to the substrate, easiness of evaporation of the solvent, and the like. . In addition, considering the fact that the solvent evaporates somewhat from the spray nozzle to the substrate and the size of the droplets is reduced, the distance between the spray nozzle and the substrate should be within 50 cm. It is preferable from the viewpoint that a coating film of the product-containing composition can be formed.
 さらに、基材および雰囲気温度を加熱することなく、基材の上方に配置したスプレーノズル3 から圧縮した不活性ガスと塗布液を同時供給し、塗布液を霧化、噴霧させることだけでも基材上に部分加水分解物含有組成物の塗布膜を形成することができる。尚、本発明の方法におけるいずれの塗布は、加圧下や減圧下でも実施できるが、大気圧で実施するのが装置上も簡便であり、コストもかからず好ましい。 Furthermore, without heating the substrate and the atmospheric temperature, the substrate can be supplied by simultaneously supplying the compressed inert gas and the coating liquid from the spray nozzle 3 配置 disposed above the substrate, and atomizing and spraying the coating liquid. A coating film of the partially hydrolyzate-containing composition can be formed thereon. In addition, although any application | coating in the method of this invention can be implemented under pressurization or pressure reduction, it is preferable not to carry out at an atmospheric pressure but simple on an apparatus and it does not cost.
 上記製造方法においてアルミニウム酸化物膜を形成するための基材は、材質、形状、寸法等には制限はない。材質としては、例えば、ガラス、金属、セラミックス等の無機物、プラスチック等の樹脂製基材や紙、木材等の有機物およびこれらの複合物がある。 The base material for forming the aluminum oxide film in the above production method is not limited in material, shape, dimensions, and the like. Examples of the material include inorganic substances such as glass, metal, and ceramics, resinous base materials such as plastic, organic substances such as paper and wood, and composites thereof.
 これらの基材は、アルミニウム酸化物膜を形成に支障がなければ特に制限はないが、例えば、ガラスとしては石英ガラス、ホウ珪酸ガラス、ソーダガラス、無アルカリ、鉛ガラス等のガラスやサファイヤ等の酸化物等が挙げられる。また、金属としては、SUS304、SUS316等のステンレス鋼、アルミニウム、鉄、銅、チタン、シリコン、ニッケル、金、銀およびこれらを含む合金等が挙げられる。セラミックスとしては、アルミナ、シリカ、ジルコニア、チタニア等の酸化物、ホウ素化窒素、窒化アルミ、窒化ケイ素、窒化チタン、窒化ガリウム等の窒化物、炭化ケイ素等の炭素化合物やこれらを含む複合物等が挙げられる。さらに、プラスチックを形成する高分子には、ポリエステル( 例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリ(メタ)アクリル(例えば、ポリメチルメタクリレート(PMMA))、ポリカーボネート(PC)、ポリフェニレンサルファイド(PPS)、ポリスチレン、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリエチレン(PE)、ポリプロピレン(PP)、環状ポリオレフィン(COP)、エチレン-酢酸ビニル共重合体(EVA)、ポリイミド、ポリアミド、ポリアラミド、ポリエーテルスルホン(PES)、ポリウレタン、トリアセテート、トリアセチルセルロース(TAC)、セロファンフッ素樹脂(例えば、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)等)およびこれらを含む複合樹脂等を例示することができる。これらの中でも、EVA、COP、PP、PE、PET、PPS,PEN、PC、PMMA、PES、ポリイミド、ポリアミド、アラミド、PVC、PVAが好ましい。 These substrates are not particularly limited as long as they do not interfere with the formation of the aluminum oxide film. For example, glass such as quartz glass, borosilicate glass, soda glass, alkali-free, lead glass, or sapphire An oxide etc. are mentioned. Examples of the metal include stainless steel such as SUS304 and SUS316, aluminum, iron, copper, titanium, silicon, nickel, gold, silver, and alloys containing these. Ceramics include oxides such as alumina, silica, zirconia and titania, nitrides such as nitrogen boride, aluminum nitride, silicon nitride, titanium nitride and gallium nitride, carbon compounds such as silicon carbide, and composites containing these. Can be mentioned. Further, polymers that form plastics include polyesters (eg, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly (meth) acrylic (eg, polymethyl methacrylate (PMMA)), polycarbonate (PC), and polyphenylene. Sulfide (PPS), polystyrene, polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene chloride, polyethylene (PE), polypropylene (PP), cyclic polyolefin (COP), ethylene-vinyl acetate copolymer (EVA) , Polyimide, polyamide, polyaramid, polyethersulfone (PES), polyurethane, triacetate, triacetylcellulose (TAC), cellophane fluororesin (for example, polytetrafluoroethylene) Rene (PTFE), Polychlorotrifluoroethylene (PCTFE), Polyvinylidene fluoride (PVDF), Polyvinyl fluoride (PVF), Perfluoroalkoxy fluororesin (PFA), Tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) and the like, and composite resins containing these, etc. Among these, EVA, COP PP, PE, PET, PPS, PEN, PC, PMMA, PES, polyimide, polyamide, aramid, PVC, and PVA are preferable.
 また、これら基材の形状としては、例えば、フィルム状、板状や三次元の任意の形状を有する立体構造物のものおよびこれらの複合物が使用可能である。
 さらに、これら機材は透明、半透明、不透明のいずれでもよい。
In addition, as the shape of these base materials, for example, a three-dimensional structure having a film shape, a plate shape, a three-dimensional arbitrary shape, or a composite thereof can be used.
Furthermore, these equipments may be transparent, translucent, or opaque.
 例えば、透明基材としてフィルム状のものは、薄板ガラス等の無機物や高分子基材としてプラスチックフィルム等の有機物を例示することができる。
 基材がプラスチックフィルムの場合には、ポリマーの種類によって無延伸フィルムであっても、延伸フィルムであってもよい。例えば、ポリエステルフィルム例えばPETフィルムは、通常、二軸延伸フィルムであり、またPCフィルム、トリアセテートフィルム、セロファンフィルム等は、通常、無延伸フィルムである。
For example, as the transparent substrate, a film-like material can be exemplified by inorganic materials such as thin glass and organic materials such as plastic films as the polymer substrate.
When the substrate is a plastic film, it may be an unstretched film or a stretched film depending on the type of polymer. For example, a polyester film such as a PET film is usually a biaxially stretched film, and a PC film, a triacetate film, a cellophane film and the like are usually unstretched films.
 不透明な機材として、金属や金属の酸化物、窒化物、炭素化合物のウエハーやシート等やポリイミド、ポリアミド、アラミド、炭素繊維、PP、PE、PETシートや不織布等の高分子基材でも使用することが出来る。 As opaque equipment, it should also be used on polymer substrates such as metals, metal oxides, nitrides, carbon compound wafers and sheets, and polyimide, polyamide, aramid, carbon fiber, PP, PE, PET sheets and non-woven fabrics. I can do it.
 さらに、これらの基材以外にも、金属、酸化物、窒化物、炭素化合物等の無機物や低分子、ポリマーなどの有機物および前述の無機物および有機物の複合物から形成される、電極、半導体、絶縁物等の電子デバイス膜等の機能性材料に対しても塗布成膜が可能である。 Furthermore, in addition to these base materials, electrodes, semiconductors, insulating materials formed from inorganic substances such as metals, oxides, nitrides, carbon compounds, organic substances such as low molecules and polymers, and composites of the aforementioned inorganic substances and organic substances Application film formation is also possible for functional materials such as electronic device films.
工程(C)
 工程(C)では、前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する。
 基材表面へ塗布液を塗布した後、基材を所定の温度とし、溶媒を乾燥した後、または乾燥と同時に、所定の温度で加熱することによりアルミニウム酸化物膜を形成させる。但し、溶媒の乾燥は、工程(B)においても実質的には既に一部進行している。特に、工程(B)の塗布を比較的高温で行う場合には、工程(B)において溶媒の乾燥がほぼ完了している場合もある。
Process (C)
In step (C), the base material on which the coating film has been formed is heated at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film.
After the coating liquid is applied to the substrate surface, the substrate is brought to a predetermined temperature, and after drying the solvent or simultaneously with drying, the aluminum oxide film is formed by heating at a predetermined temperature. However, the drying of the solvent has already substantially progressed partially in the step (B). In particular, when the application in the step (B) is performed at a relatively high temperature, the drying of the solvent in the step (B) may be almost completed.
 溶媒を乾燥する条件は、共存する有機溶媒の種類や沸点(蒸気圧)に応じて適時設定することができる。溶媒を乾燥する温度として、例えば、20~350℃の範囲であることができ、溶媒の沸点が200℃以下である場合は、20~250℃、溶媒の沸点が150℃以下である場合は、あるいは20~200℃とすることができる、その乾燥時間は、通常、0.2~300分とすることができ、好ましくは0.5~120分である。これらの条件は、工程(B)において、溶媒の乾燥を少なくとも部分的に行う場合にも考慮することができる。溶媒乾燥温度とその後のアルミニウム酸化物膜形成の為の加熱温度を同一にし、溶媒乾燥とアルミニウム酸化物膜形成を同時に行うことも可能であり、その際の温度は、アルミニウム酸化物膜形成のための加熱温度に通常設定される。 The conditions for drying the solvent can be set as appropriate according to the type and boiling point (vapor pressure) of the coexisting organic solvent. The temperature for drying the solvent can be, for example, in the range of 20 to 350 ° C., when the boiling point of the solvent is 200 ° C. or less, 20 to 250 ° C., and when the boiling point of the solvent is 150 ° C. or less, Alternatively, the drying time can be 20 to 200 ° C., and the drying time can be usually 0.2 to 300 minutes, preferably 0.5 to 120 minutes. These conditions can also be considered when the solvent is at least partially dried in step (B). The solvent drying temperature and the heating temperature for the subsequent aluminum oxide film formation can be made the same, and the solvent drying and the aluminum oxide film formation can be performed at the same time. The heating temperature is normally set.
 本発明においては、溶媒乾燥後のアルミニウム酸化物膜形成の為の加熱温度は、例えば、20~400℃、さらに好ましくは20~350℃の範囲であり、この温度での処理は少なくとも1回行うことができる。この加熱温度における加熱時間は、通常、0.2~300分であり、好ましくは0.5~120分である。加熱時間は、加熱によるアルミニウム酸化物膜の形成状態を考慮して適宜決定できる。 In the present invention, the heating temperature for forming the aluminum oxide film after drying the solvent is, for example, in the range of 20 to 400 ° C., more preferably in the range of 20 to 350 ° C. The treatment at this temperature is performed at least once. be able to. The heating time at this heating temperature is usually 0.2 to 300 minutes, preferably 0.5 to 120 minutes. The heating time can be appropriately determined in consideration of the formation state of the aluminum oxide film by heating.
 特に、本発明においては、溶媒の乾燥やその後の加熱処理において、350℃以下での低温での熱処理を用いることが出来る、短時間での処理可能なことから、基材に樹脂などの耐熱性の低い基材を用いる場合の成膜や、金属、酸化物、窒化物、炭素化合物等の無機物や低分子、ポリマーなどの有機物および前述の無機物および有機物の複合物から形成される、電極、半導体、絶縁物等の電子デバイス膜等の機能性材料に対して熱や高エネルギーを与える処理で問題がある場合への成膜が可能となる。 In particular, in the present invention, a heat treatment at a low temperature of 350 ° C. or lower can be used in the drying of the solvent and the subsequent heat treatment. Electrode and semiconductor formed by film formation in the case of using a substrate having a low density, organic substances such as metals, oxides, nitrides, carbon compounds, etc., organic substances such as low molecules and polymers, and composites of the aforementioned inorganic substances and organic substances In addition, it is possible to form a film when there is a problem in the process of applying heat or high energy to a functional material such as an electronic device film such as an insulator.
 この工程(C)においても、不活性ガス雰囲気下で行う。工程(C)において加熱を、不活性ガス雰囲気下で行うことで、1)成膜温度の低温化、2)基材への密着性、3)酸化物の形成状態(例えば、酸化物膜の透明性や均質性など)を全て満足する、アルミニウム酸化物の成膜が可能となる。不活性ガス雰囲気は、水分や酸素などの酸素源を実質的に含有しない不活性ガスからなる雰囲気であり、例えば、水分及び酸素についてはそれぞれ1000ppm以下、好ましくは400ppm以下である雰囲気を意味する。不活性ガス雰囲気中の水分量は露点温度により制御することができ、は400ppm以下であれば、例えば、5ppm(露点温度-66℃)~375ppm(露点温度-30℃)の範囲で制御できる。さらに、操作の容易性を考慮すると、100ppm(露点温度-42℃)~375ppm(露点温度-30℃)の範囲となるように制御することもできる。
 工程(B)と同様、工程(C)においても、水分や酸素が完全にない場合には、一般式(7)に示される部分加水分解物の構造において、Al-Qの部位が未反応となり膜に残存する場合があるため、得られた膜の均質性等、所望の物性が損なわれない範囲での水分及び酸素の共存は許容される。具体的には、不活性ガス雰囲気中の水分及び酸素として、それぞれ1000ppm以下、好ましくは400ppm以下とすることができる。
 工程(C)においても、加熱の際に溶媒が残存している状況において、不活性ガス雰囲気中の水分や酸素が前述の数値よりも大きい場合、部分加水分解物と水分および酸素との反応が過剰に進行し、膜形成の前に付着物が粉状化したり、膜の透明性が損なわれるなど、得らえたアルミニウム酸化物膜の均質性や密着性が悪くなるため好ましくない。
This step (C) is also performed in an inert gas atmosphere. By performing heating in an inert gas atmosphere in step (C), 1) lowering the film formation temperature, 2) adhesion to the substrate, 3) oxide formation state (for example, oxide film It becomes possible to form an aluminum oxide film satisfying all of transparency and homogeneity. The inert gas atmosphere is an atmosphere made of an inert gas that substantially does not contain an oxygen source such as moisture and oxygen. For example, moisture and oxygen each mean an atmosphere of 1000 ppm or less, preferably 400 ppm or less. The amount of water in the inert gas atmosphere can be controlled by the dew point temperature. If it is 400 ppm or less, for example, it can be controlled in the range of 5 ppm (dew point temperature −66 ° C.) to 375 ppm (dew point temperature −30 ° C.). Further, in consideration of the ease of operation, it can be controlled to be in the range of 100 ppm (dew point temperature −42 ° C.) to 375 ppm (dew point temperature −30 ° C.).
Similar to step (B), in step (C), when there is no moisture or oxygen, the Al-Q site becomes unreacted in the structure of the partial hydrolyzate represented by general formula (7). Since it may remain in the film, the coexistence of moisture and oxygen within a range in which desired physical properties such as homogeneity of the obtained film are not impaired is allowed. Specifically, the moisture and oxygen in the inert gas atmosphere can each be 1000 ppm or less, preferably 400 ppm or less.
Also in the step (C), in the situation where the solvent remains in the heating, when the moisture or oxygen in the inert gas atmosphere is larger than the above-mentioned numerical value, the reaction between the partial hydrolyzate and the moisture and oxygen It is not preferable because it progresses excessively and the homogeneity and adhesiveness of the obtained aluminum oxide film are deteriorated such that the deposit is pulverized before film formation or the transparency of the film is impaired.
 工程(C)における400℃以下の加熱によって基材表面上に密着したアルミニウム酸化物膜が形成される。アルミニウム酸化物膜の膜厚には特に制限はないが、実用的には0.001~5μm、通常0.01~5μmの範囲とすることが出来る。本発明の製造方法によれば、上記塗布(乾燥)加熱を1回以上繰り返すことで、上記範囲の膜厚の膜を適宜製造することができる。また、原理的には、塗布回数を繰り返す、及び/又は塗布時間を長くすることで、5μm以上の膜形成も可能である。 The aluminum oxide film adhered on the substrate surface is formed by heating at 400 ° C. or lower in the step (C). The thickness of the aluminum oxide film is not particularly limited, but can be practically 0.001 to 5 μm, usually 0.01 to 5 μm. According to the production method of the present invention, a film having a film thickness in the above range can be appropriately produced by repeating the application (drying) heating once or more. In principle, a film having a thickness of 5 μm or more can be formed by repeating the number of times of application and / or lengthening the application time.
 尚、本発明で用いることのできるいずれの方法における溶媒乾燥や加熱は、加圧下や減圧下でも実施できるが、大気圧で実施するのが装置上も簡便であり、コストもかからず好ましい。 The solvent drying and heating in any of the methods that can be used in the present invention can be carried out under pressure or under reduced pressure, but it is preferable to carry out at atmospheric pressure because the apparatus is simple and inexpensive.
 本発明の製造方法で得られる「アルミニウム酸化物」は、アルミニウム元素と酸素元素とを含有する化合物であり、これら2つの元素がアルミニウム酸化物に占める割合が90%以上のものをいう。アルミニウムと酸素以外には水素や炭素を含有する場合があり得る。また、本発明の工程(C)において400℃以下の温度で加熱することで製造された「アルミニウム酸化膜」は、通常、X線回折分析で明瞭なピークが観測されず、アモルファス状態である。 The “aluminum oxide” obtained by the production method of the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more. In addition to aluminum and oxygen, hydrogen and carbon may be contained. In addition, the “aluminum oxide film” produced by heating at a temperature of 400 ° C. or lower in the step (C) of the present invention is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
 工程(C)で形成するアモルファスアルミニウム酸化物膜は、400℃を超える温度に別途または引き続き加熱することで、結晶性を向上させることができる。例えば、一般的知られている1000℃以上でのアルミニウム酸化物が結晶性のアルミナ等に結晶化するような加熱温度・処理雰囲気での熱処理によって結晶化を行うこともできる。 The amorphous aluminum oxide film formed in the step (C) can be improved in crystallinity by being separately or subsequently heated to a temperature exceeding 400 ° C. For example, crystallization can also be performed by heat treatment at a heating temperature / treatment atmosphere in which a generally known aluminum oxide at 1000 ° C. or higher is crystallized into crystalline alumina or the like.
 また、工程(C)で得られたアルミニウム酸化物膜は、必要に応じて、さらに、水分、酸素、オゾン等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、水素、アルゴン、酸素等のプラズマ雰囲気下で、結晶性を向上させることも可能である。 In addition, the aluminum oxide film obtained in the step (C) may further include hydrogen, argon, oxygen, or the like under an oxidizing gas atmosphere such as moisture, oxygen, or ozone, or a reducing gas atmosphere such as hydrogen, if necessary. It is also possible to improve crystallinity in a plasma atmosphere.
 本発明の製造方法の工程(A)で得られる部分加水分解物含有組成物は、(a)部分加水分解が、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行われたものであり、(b)この組成物を、膜の塗布形成が不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いることができる。不活性ガス雰囲気下での塗布及び加熱による成膜(工程(B)及び工程(C)に相当する)を行なえば、塗布および加熱を行うだけで成膜温度が低温でも、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。基材への密着性は本発明のアルミニウム酸化物膜塗布形成用組成物を用いて得られたアルミニウム酸化物膜それ自身も高く、通常、酸化物の直接成膜が困難な基材においても良好な密着性が得られる。但し、必要に応じてアンダーコート処理、プライマー処理、コロナ処理、UV照射、塩素化等等の一般的に知られている基材に成膜した酸化物の密着性を高めるような方法を用いて塗布成膜することも可能である。 The partial hydrolyzate-containing composition obtained in the step (A) of the production method of the present invention comprises (a) partial hydrolysis with water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound. (B) This composition can be used for forming an aluminum oxide film in which film formation is performed in an inert gas atmosphere. If film formation (corresponding to step (B) and step (C)) by application and heating in an inert gas atmosphere is performed, even if the film formation temperature is low by simply applying and heating, adhesion to the substrate It is possible to form an aluminum oxide film that is excellent in properties and has a good oxide formation state. Adhesion to the substrate is also high in the aluminum oxide film itself obtained using the composition for forming an aluminum oxide film of the present invention, and is usually good even in a substrate in which direct oxide film formation is difficult. Adhesiveness can be obtained. However, if necessary, a method such as undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination, etc. is used to increase the adhesion of the oxide formed on a generally known substrate. It is also possible to form a coating film.
[アルミニウム酸化物膜]
 本発明のアルミニウム酸化物膜膜塗布形成用組成物を用いれば、前述の不活性ガス雰囲気で塗布および加熱を行うだけで成膜温度が低温でも、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。
[Aluminum oxide film]
By using the composition for forming an aluminum oxide film according to the present invention, it is excellent in adhesion to a substrate even when the film forming temperature is low by simply applying and heating in the above-mentioned inert gas atmosphere. An aluminum oxide film having a good formation state can be formed.
 製造されたアルミニウム酸化物膜は、本発明における「アルミニウム酸化物」は、アルミニウム元素と酸素元素とを含有する化合物であり、これら2つの元素がアルミニウム酸化物に占める割合が90%以上のものをいう。また、本発明において400℃以下で製造された「アルミニウム酸化膜」は、通常、X線回折分析で明瞭なピークが観測されず、アモルファス状態である。
 これらアルミニウム酸化物膜は基板等の耐熱温度が許容されれば、成膜後の後処理によって一般的に知られている1000℃以上での高い温度での加熱等の手法により結晶化させることも可能である。
In the manufactured aluminum oxide film, the “aluminum oxide” in the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more. Say. In the present invention, the “aluminum oxide film” produced at 400 ° C. or lower is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
These aluminum oxide films can be crystallized by a method such as heating at a high temperature of 1000 ° C. or higher, which is generally known by post-treatment after film formation, if the heat-resistant temperature of the substrate or the like is allowed. Is possible.
 また、必要に応じて、アルミニウム酸化物膜が形成された後に、さらに、酸素等の酸化ガス雰囲気下、アルゴン、酸素等のプラズマ雰囲気下で、上記加熱を行うことによりアルミニウム酸化物の形成を促進、または、結晶性を向上させることも可能である。さらに、本発明で得られたアルミニウム酸化物膜中の残存有機物等の炭素成分の除去やアルミニウム酸化物膜の膜質の向上等を目的として一般的に用いられている紫外線等の光照射やマイクロ波等での処理を行ってもよい。 If necessary, after the aluminum oxide film is formed, the above heating is further performed in an oxidizing gas atmosphere such as oxygen or in a plasma atmosphere such as argon or oxygen to promote the formation of aluminum oxide. Alternatively, crystallinity can be improved. Furthermore, light irradiation such as ultraviolet rays and microwaves generally used for the purpose of removing carbon components such as residual organic substances in the aluminum oxide film obtained in the present invention and improving the film quality of the aluminum oxide film, etc. Etc. may be performed.
 このアルミニウム酸化物膜は、前記アルミニウム酸化物膜製造用組成物が含有する有機アルキルアルミニウム化合物の部分加水分解物において、有機アルミニウム化合物に対して部分加水分解物が得らえるように添加する水のモル比や前記部分加水分解物の濃度あるいは共存する有機溶媒、成膜条件・方法等によって、その性状が異なるが、本発明で用いる塗布成膜手法においては、透過率が高い透明なものから半透明・不透明なものを得ることができ、アルミニウム酸化物膜の膜厚は特に制限はないものの、実用的には0.001~10μm、通常0.01~5μmの範囲のものが得られ、ガラスや樹脂などへの基材への密着性の高い膜を得ることが出来る。 The aluminum oxide film is water added to obtain a partial hydrolyzate from the organic aluminum compound in the partial hydrolyzate of the organic alkylaluminum compound contained in the composition for producing an aluminum oxide film. The properties differ depending on the molar ratio, the concentration of the partial hydrolyzate or the coexisting organic solvent, the film forming conditions and methods, etc. Transparent and opaque materials can be obtained, and the thickness of the aluminum oxide film is not particularly limited, but practically 0.001 to 10 μm, usually 0.01 to 5 μm can be obtained. It is possible to obtain a film having high adhesion to a base material or resin.
 本発明の製造方法では、不活性ガス雰囲気下、基材表面に上記組成物を塗布する工程(B)及び得られた塗布物を加熱する工程(C)を1回または2回以上行うことを含む。塗布および得られた塗布物の加熱操作は、絶縁性や耐熱性など所望の物性を得るために必要な回数を適宜行なうことができるが、好ましくは1回~50回、より好ましくは、1回~30回さらに好ましくは1回~10回等の範囲で適宜実施できる。 In the production method of the present invention, the step (B) of applying the composition to the surface of the substrate and the step (C) of heating the obtained coating product are performed once or twice or more in an inert gas atmosphere. Including. The coating and heating operation of the obtained coated product can be appropriately performed as many times as necessary to obtain desired physical properties such as insulation and heat resistance, but preferably 1 to 50 times, more preferably 1 time. It can be appropriately carried out in the range of 30 times, more preferably 1-10 times.
[アルミニウム酸化物を含む機能膜]
 製造されたアルミニウム酸化物膜は基材への密着性に優れ、酸化物の形成状態が良好である。そのため、アルミニウム酸化物膜を基材に付着した複合体(物品)や、アルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体(物品)とすることができる。複合膜は、アルミニウム酸化物を含む機能膜として用いることが出来る。例えば、電子材料用アルミナシート、アルミニウム酸化物膜の作製、触媒担体の作製、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、耐摩耗性等の付与、セラミック製造用バインダー等の用途に供することが出来る。具体的には、機械部品や切削工具の保護膜、半導体、磁性体、太陽電池等の絶縁膜、誘電体膜、反射防止膜、表面デバイス、磁気ヘッド、赤外線等のセンサー素子、食品、薬品、医療器材等の包装材料における空気・水分等へのバリア膜、各種粉体、フィルム、ガラスやプラスチックを素材としたフィルムや成形体等の基材へのコーティング膜およびこれらを用いた耐熱材料や高硬度フィルム、光学部材、セラミック製造用バインダー等の用途に使用されるアルミニウム酸化物膜などの、基材に対して種々の機能性を付与することができる機能膜の一部又は全部として適用することができる。
[Functional film containing aluminum oxide]
The manufactured aluminum oxide film is excellent in adhesion to the base material and has a good oxide formation state. Therefore, a composite (article) in which an aluminum oxide film is attached to a base material, or a composite film (article) in which a composite film having an aluminum oxide film and a layer other than an aluminum oxide film is attached to the base material is used. Can do. The composite film can be used as a functional film containing aluminum oxide. For example, alumina sheet for electronic materials, production of aluminum oxide film, production of catalyst carrier, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, abrasion resistance Etc., and can be used for applications such as ceramic production binders. Specifically, protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high Apply as a part or all of a functional film capable of imparting various functionalities to a substrate, such as an aluminum oxide film used in applications such as a hardness film, an optical member, and a ceramic manufacturing binder. Can do.
[アルミニウム酸化物膜を有する基材およびアルミニウム酸化物を含む機能膜を有する基材]
 さらにこれらのアルミニウム酸化物膜やアルミニウム酸化物を含む機能膜を有する基材は、耐熱フィルム等の耐熱材料、絶縁材料、水分や酸素等へのバリアフィルム等の材料、反射防止フィルム、ガラス等の反射防止材料、高硬度フィルムや材料として利用が可能である。
<本発明の第三の態様>
[Substrate having aluminum oxide film and substrate having functional film containing aluminum oxide]
Furthermore, these aluminum oxide films and base materials having functional films containing aluminum oxide include heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, antireflection films, and glass. It can be used as an antireflection material, a high hardness film or a material.
<Third Aspect of the Present Invention>
<アルミニウム酸化物膜を有する物品の製造方法>
 本発明のアルミニウム酸化物膜を有する物品の製造方法は下記工程(A)及び(B)を含む。
工程(A)下記一般式(6)で示される有機アルミニウム化合物またはその部分加水分解物の有機溶媒溶液を、基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、
Figure JPOXMLDOC01-appb-C000041
(式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
(B)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、前記塗布膜からアルミニウム酸化物膜を形成する工程。
<Method for producing article having aluminum oxide film>
The method for producing an article having an aluminum oxide film of the present invention includes the following steps (A) and (B).
Step (A) A step of spray-coating an organic solvent solution of an organoaluminum compound represented by the following general formula (6) or a partial hydrolyzate thereof onto at least a part of the surface of the substrate to form a coating film,
Figure JPOXMLDOC01-appb-C000041
(Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
(B) The base material on which the coating film has been formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form an aluminum oxide film from the coating film. Forming.
工程(A)
 工程(A)は、一般式(6)で示される有機アルミニウム化合物の有機溶媒溶液を、基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程(以下、工程(A1)と呼ぶ)、または一般式(6)で示される有機アルミニウム化合物の部分加水分解物の有機溶媒溶液を、基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程(以下、工程(A2)と呼ぶ)である。
Process (A)
In the step (A), an organic solvent solution of the organoaluminum compound represented by the general formula (6) is spray-coated on at least a part of the surface of the substrate to form a coating film (hereinafter referred to as step (A1) and Or an organic solvent solution of a partial hydrolyzate of the organoaluminum compound represented by the general formula (6) by spray coating on at least a part of the surface of the substrate (hereinafter referred to as the step ( A2)).
 一般式(6)で表される有機アルミニウム化合物は、本発明の第二の態様における一般式(6)で表される有機アルミニウム化合物と同一であり、本発明の第二の態様における説明を参照のこと。
 
The organoaluminum compound represented by the general formula (6) is the same as the organoaluminum compound represented by the general formula (6) in the second embodiment of the present invention, and the description in the second embodiment of the present invention is referred to. That.
 また、差し支えない範囲で、トリイソブチルアルミニウム、トリn-ブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム等のアルキルアルミニウム、アルミニウムトリイソプロポキシド、アルミニウムsec-ブトキシドや、アルミニウムtert-ブトキシド等のアルコキシドのやアルミニウムアセチルアセトナト等のβジケトナト錯体、酢酸アルミニウム、水酸化アルミニウム等の無機塩といったアルミニウム化合物を本発明で使用する溶液に共存させてもよい。 In addition, alkyl aluminum such as triisobutylaluminum, tri-n-butylaluminum, trihexylaluminum, and trioctylaluminum, aluminum sec-butoxide, alkoxide such as aluminum tert-butoxide, An aluminum compound such as a β-diketonato complex such as aluminum acetylacetonate or an inorganic salt such as aluminum acetate or aluminum hydroxide may coexist in the solution used in the present invention.
工程(A1)で用いる噴霧塗布用溶液
 工程(A1)で用いる噴霧塗布用溶液は、一般式(6)で表される有機アルミニウム化合物を有機溶媒に溶解した溶液である。一般式(6)で表される有機アルミニウム化合物は、工程(A1)においては加水分解することなく用いることから、R1は炭素数1~3の直鎖もしくは分岐したアルキル基であることが適当である。
Solution for spray coating used in step (A1) The solution for spray coating used in step (A1) is a solution in which an organoaluminum compound represented by formula (6) is dissolved in an organic solvent. Since the organoaluminum compound represented by the general formula (6) is used without being hydrolyzed in the step (A1), R 1 is preferably a linear or branched alkyl group having 1 to 3 carbon atoms. It is.
 有機溶媒は、一般式(6)で表される有機アルミニウム化合物に対して溶解性を有するという観点から、電子供与性を有する有機溶媒であることが適当である。電子供与性を有する有機溶媒は、一般式(6)で表される有機アルミニウム化合物に対して溶解性を有するものであればよい。 The organic solvent is suitably an organic solvent having an electron donating property from the viewpoint of solubility in the organoaluminum compound represented by the general formula (6). The organic solvent which has an electron donating property should just be solubility with respect to the organoaluminum compound represented by General formula (6).
 電子供与性有機溶媒の例としては、1,2-ジエトキシエタン、1,2-ジブトキエタンやジエチルエーテル、ジn -プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン、グライム、ジグライム、トリグライム、アニソール、メトキシトルエン等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等を挙げることができる。電子供与性を有する溶媒としては、1,2-ジエトキシエタン、テトラヒドロフラン、ジオキサンが好ましい。 Examples of electron donating organic solvents include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n -propyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether, tetrahydrofuran, dioxane, glyme, diglyme And ether solvents such as triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine. As the electron-donating solvent, 1,2-diethoxyethane, tetrahydrofuran, and dioxane are preferable.
 工程(A1)では、電子供与性有機溶媒に共存が可能な溶媒として、炭化水素化合物を挙げることが出来、工程(A1)では、電子供与性有機溶媒と炭化水素化合物の混合物も有機溶媒として使用できる。前記炭化水素化合物としては、炭素数5~20のより好ましくは炭素数6~12の直鎖、分岐炭化水素化合物または環状炭化水素化合物、炭素数6~20の、より好ましくは炭素数6~12の芳香族炭化水素化合物およびそれらの混合物を例示することが出来る。炭化水素化合物の具体的な例として、ペンタン、n-ヘキサン、ヘプタン、イソヘキサン、メチルペンタン、オクタン、2,2,4-トリメチルペンタン(イソオクタン)、n-ノナン、n-デカン、n-ヘキサデカン、オクタデカン、エイコサン、メチルヘプタン、2,2-ジメチルヘキサン、2-メチルオクタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサンメチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、クメン、トリメチルベンゼン等の芳香族炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル等の炭化水素系溶媒を挙げることが出来る。 In the step (A1), a hydrocarbon compound can be exemplified as a solvent that can coexist in the electron donating organic solvent. In the step (A1), a mixture of the electron donating organic solvent and the hydrocarbon compound is also used as the organic solvent. it can. The hydrocarbon compound is a straight chain, branched hydrocarbon compound or cyclic hydrocarbon compound having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 20 carbon atoms, more preferably 6 to 12 carbon atoms. And aromatic hydrocarbon compounds and mixtures thereof. Specific examples of hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, and octadecane. Aliphatic hydrocarbons such as eicosan, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, trimethyl Examples include aromatic hydrocarbons such as benzene, and hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, and petroleum ether.
 工程(A1)で用いる噴霧塗布用溶液における、一般式(6)で表される有機アルミニウム化合物の濃度は、反応性の制御が容易であるという観点から、0.1~35質量%の範囲とすることが適当である。濃度が高ければ高いほど少ない塗布回数で膜を製造できるが、炭素数1~3のアルキル基を有する有機アルミニウム化合物の反応性が高くなり、成膜時以外の取扱いが難しくなる。そのため、通常、濃度の上限が問題とされ、化合物の濃度は、好ましくは0.1~25質量%、さらに好ましくは0.1~15質量%、より好ましくは0.1~12質量%である。 The concentration of the organoaluminum compound represented by the general formula (6) in the spray coating solution used in the step (A1) is in the range of 0.1 to 35% by mass from the viewpoint of easy control of reactivity. It is appropriate to do. The higher the concentration, the smaller the number of coatings that can be produced, but the higher the reactivity of the organoaluminum compound having an alkyl group having 1 to 3 carbon atoms, the more difficult to handle except during film formation. Therefore, the upper limit of the concentration is usually a problem, and the concentration of the compound is preferably 0.1 to 25% by mass, more preferably 0.1 to 15% by mass, more preferably 0.1 to 12% by mass. .
工程(A2)で用いる噴霧塗布用溶液
 工程(A2)で用いる噴霧塗布用溶液は、一般式(6)で示される有機アルミニウム化合物の部分加水分解物の有機溶媒溶液である。一般式(6)で示される有機アルミニウム化合物は、前述のとおりである。有機溶媒としては、炭化水素化合物、電子供与性有機溶媒及びその混合物の何れの有機溶媒も使用できる。炭化水素化合物及び電子供与性有機溶媒は、工程(A1)において説明したものと同様である。
Solution for spray coating used in step (A2) The solution for spray coating used in step (A2) is an organic solvent solution of a partially hydrolyzed organoaluminum compound represented by general formula (6). The organoaluminum compound represented by the general formula (6) is as described above. As the organic solvent, any organic solvent such as a hydrocarbon compound, an electron-donating organic solvent, and a mixture thereof can be used. The hydrocarbon compound and the electron donating organic solvent are the same as those described in the step (A1).
 部分加水分解物は、一般式(6)で示される有機アルミニウム化合物に対してモル比で0.7以下の水を用いて前記有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得た物である。モル比で0.7以下の水を用いた部分加水分解物であれば、工程(A1)で用いる噴霧塗布用溶液(部分加水分解していない有機アルミニウム化合物)と同様に噴霧塗布し、工程(B)を経ることで、所望の酸化アルミニウム膜を製造することができる。部分加水分解は、一般式(6)で表される化合物を有機溶媒に溶解した溶液に水を添加するか、または一般式(6)で表される化合物の有機溶媒溶液と水を混合することが行う。前記水の添加量は、前記有機アルミニウム化合物に対するモル比を0.6以下の範囲とすることが、工程(A1)で用いる噴霧塗布用溶液(部分加水分解していない有機アルミニウム化合物)と同様に噴霧塗布できることから好ましい。この水の添加量に下限はないが、部分加水分解の工程を付す以上、微量の水の添加では操作が煩雑になるだけであるから、例えば、0.05以上、好ましくは0.1以上とすることができる。 The partial hydrolyzate was obtained by partially hydrolyzing the organoaluminum compound in an organic solvent using water having a molar ratio of 0.7 or less with respect to the organoaluminum compound represented by the general formula (6). It is a thing. If it is a partial hydrolyzate using water having a molar ratio of 0.7 or less, it is spray-coated in the same manner as the spray coating solution (organoaluminum compound not partially hydrolyzed) used in step (A1). By undergoing B), a desired aluminum oxide film can be manufactured. In the partial hydrolysis, water is added to a solution obtained by dissolving the compound represented by the general formula (6) in an organic solvent, or the organic solvent solution of the compound represented by the general formula (6) is mixed with water. Do. The amount of water added is such that the molar ratio with respect to the organoaluminum compound is in the range of 0.6 or less, as with the spray coating solution (organoaluminum compound not partially hydrolyzed) used in step (A1). It is preferable because it can be sprayed. Although there is no lower limit to the amount of water to be added, since a partial hydrolysis step is added, the addition of a small amount of water only complicates the operation. For example, 0.05 or more, preferably 0.1 or more. can do.
 前記溶液中の一般式(6)で表される化合物の濃度は、有機溶媒への溶解性及び得られる部分加水分解物中の部分加水分解物の濃度等を考慮して適宜決定されるが、例えば、0.1~50質量%の範囲とすることが適当であり、0.1~35質量%の範囲が好ましい。 The concentration of the compound represented by the general formula (6) in the solution is appropriately determined in consideration of the solubility in an organic solvent and the concentration of the partial hydrolyzate in the resulting partial hydrolyzate, For example, a range of 0.1 to 50% by mass is appropriate, and a range of 0.1 to 35% by mass is preferable.
 水の添加又は混合は、水を他の溶媒と混合することなく行うことも、水を他の溶媒と混合した後に行うこともできる。水の添加又は混合は、反応の規模にもよるが、例えば、60秒~10時間の間の時間をかけて行うことができる。部分加水分解物の収率が良好であるという観点から、原料である一般式(6)の有機アルミニウム化合物に水を滴下することにより添加することが好ましい。水の添加は、例えば、一般式(6)で表される化合物と有機溶媒、例えば、電子供与性有機溶媒との溶液を攪拌せずに(静置した状態で) または攪拌しながら実施することができる。添加時の温度は、-90~150℃の間の任意の温度を選択できる。-15~30℃であることが水と有機アルミニウム化合物の反応性という観点から好ましい。 The addition or mixing of water can be performed without mixing water with another solvent or after mixing water with another solvent. Depending on the scale of the reaction, water can be added or mixed, for example, over a period of 60 seconds to 10 hours. From the viewpoint that the yield of the partial hydrolyzate is good, it is preferable to add it by dropping water into the organoaluminum compound of the general formula (6) as a raw material. The addition of water is carried out, for example, without stirring (in a standing state) or stirring the solution of the compound represented by the general formula (6) and an organic solvent, for example, an electron-donating organic solvent. Can do. As the temperature at the time of addition, any temperature between −90 to 150 ° C. can be selected. A temperature of −15 to 30 ° C. is preferable from the viewpoint of the reactivity between water and the organoaluminum compound.
 水の添加後に、水と一般式(6)で表される化合物との加水分解反応をさらに進行させるために、例えば、1分から48時間、攪拌せずに(静置した状態で)置くか、または攪拌することができる。反応温度については、-90~150℃の間の任意の温度で反応させることができる。-15~80℃であることが部分加水分解物を高収率で得るという観点から好ましい。加水分解反応における圧力は制限されない。通常は、常圧(大気圧) で実施できる。水と一般式(6) で表される化合物との加水分解反応の進行は、必要により、反応混合物をサンプリングし、サンプルをNMRあるいはIR等で分析、もしくは、発生するガスをサンプリングすることによりモニタリングすることができる。 After the addition of water, in order to further proceed the hydrolysis reaction between water and the compound represented by the general formula (6), for example, it is left without stirring (still standing) for 1 minute to 48 hours, Or it can be stirred. Regarding the reaction temperature, the reaction can be carried out at any temperature between -90 to 150 ° C. A temperature of −15 to 80 ° C. is preferable from the viewpoint of obtaining a partial hydrolyzate in a high yield. The pressure in the hydrolysis reaction is not limited. Usually, it can be carried out at normal pressure (atmospheric pressure). The progress of the hydrolysis reaction between water and the compound represented by the general formula (6) is monitored by sampling the reaction mixture and analyzing the sample by NMR or IR, or sampling the generated gas, if necessary. can do.
 有機溶媒、原料である前記一般式(6)の有機アルミニウム化合物、そして水はあらゆる慣用の方法に従って反応容器に導入することができ、有機アルミニウム化合物及び水はそれぞれ有機溶媒との混合物としても導入することができる。加水分解反応工程は回分操作式、半回分操作式、連続操作式のいずれでもよく、特に制限はないが、回分操作式が望ましい。 The organic solvent, the organic aluminum compound of the general formula (6) as a raw material, and water can be introduced into the reaction vessel according to any conventional method, and the organic aluminum compound and water are also introduced as a mixture with the organic solvent. be able to. The hydrolysis reaction step may be any of a batch operation method, a semi-batch operation method, and a continuous operation method, and is not particularly limited, but a batch operation method is desirable.
 上記加水分解反応により、一般式(6) の有機アルミニウム化合物は、水により部分的に加水分解されて、部分加水分解物を含む生成物が得られる。一般式(6)の有機アルミニウム化合物がトリメチルアルミニウムやトリエチルアルミニウム等である場合、加水分解物についての解析は古くから行われている。しかし、報告により結果が異なり、生成物の組成が明確に特定されている訳ではない。また、水の添加モル比や反応時間等によっても、生成物の組成は変化し得る。本発明の方法における生成物の主成分は部分加水分解物であり、部分加水分解物は、本発明の第二の態様と同様に、下記一般式(7)で表される構造単位を含む化合物の混合物であると推定される。
Figure JPOXMLDOC01-appb-C000042
(式中、Qは一般式(6)におけるR、R2、R3のいずれかと同じであり、mは1~200の整数である。)
By the hydrolysis reaction, the organoaluminum compound of the general formula (6) is partially hydrolyzed with water to obtain a product containing a partially hydrolyzed product. When the organoaluminum compound of the general formula (6) is trimethylaluminum, triethylaluminum or the like, the analysis of the hydrolyzate has been performed for a long time. However, the results vary depending on the report, and the composition of the product is not clearly specified. Further, the composition of the product can be changed depending on the molar ratio of water, the reaction time, and the like. The main component of the product in the method of the present invention is a partial hydrolyzate, and the partial hydrolyzate is a compound containing a structural unit represented by the following general formula (7), as in the second embodiment of the present invention. Is estimated to be a mixture of
Figure JPOXMLDOC01-appb-C000042
(In the formula, Q is the same as any of R 1 , R 2 and R 3 in the general formula (6), and m is an integer of 1 to 200.)
 加水分解反応終了後、例えば、ろ過、濃縮、抽出、カラムクロマトグラフィー等の一般的な方法によって、上記生成物の一部または全部を回収及び/又は精製することができる。一般式(6)の有機アルミニウム化合物に対する水のモル比が比較的高い条件においては、不溶物を生じる場合があり、この場合には、細孔径が例えば、3μm以下であるフィルターを用いてろ過し、不溶物を実質的に含有しない、部分加水分解物含有組成物を得ることが好ましい。 After completion of the hydrolysis reaction, a part or all of the product can be recovered and / or purified by a general method such as filtration, concentration, extraction, column chromatography or the like. In the case where the molar ratio of water to the organoaluminum compound of the general formula (6) is relatively high, insoluble matter may be generated. In this case, filtration is performed using a filter having a pore size of 3 μm or less. It is preferable to obtain a partial hydrolyzate-containing composition that is substantially free of insolubles.
 上記方法で有機溶媒から分離して回収した部分加水分解物(固形分)は、反応に使用した有機溶媒と異なる、噴霧塗布用有機溶媒に溶解して噴霧塗布用の組成物とすることもできる。但し、有機溶媒から分離することなく反応生成混合物である部分加水分解物含有物をそのまま、あるいは適宜濃度を調整して噴霧塗布用溶液とすることもできる。 The partial hydrolyzate (solid content) separated and recovered from the organic solvent by the above method can be dissolved in an organic solvent for spray application different from the organic solvent used for the reaction to form a composition for spray application. . However, the partial hydrolyzate-containing product, which is a reaction product mixture, can be used as a spray coating solution as it is or without adjustment from the organic solvent.
 噴霧塗布用有機溶媒として用いることが出来る有機溶媒の例としては、炭素数5~20のより好ましくは炭素数6~12の直鎖、分岐炭化水素化合物または環状炭化水素化合物、炭素数6~20の、より好ましくは炭素数6~12の芳香族炭化水素化合物およびそれらの混合物を例示することが出来る。 Examples of organic solvents that can be used as the organic solvent for spray coating include linear, branched hydrocarbon compounds or cyclic hydrocarbon compounds having 5 to 20 carbon atoms, more preferably 6 to 12 carbon atoms, and 6 to 20 carbon atoms. More preferably, aromatic hydrocarbon compounds having 6 to 12 carbon atoms and mixtures thereof can be exemplified.
 これら炭化水素化合物の具体的な例として、ペンタン、n-ヘキサン、ヘプタン、イソヘキサン、メチルペンタン、オクタン、2,2,4-トリメチルペンタン(イソオクタン)、n-ノナン、n-デカン、n-ヘキサデカン、オクタデカン、エイコサン、メチルヘプタン、2,2-ジメチルヘキサン、2-メチルオクタンなどの脂肪族炭化水素;シクロペンタン、シクロヘキサンメチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン、クメン、トリメチルベンゼン等の芳香族炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル等の炭化水素系溶媒を上げることが出来る。 Specific examples of these hydrocarbon compounds include pentane, n-hexane, heptane, isohexane, methylpentane, octane, 2,2,4-trimethylpentane (isooctane), n-nonane, n-decane, n-hexadecane, Aliphatic hydrocarbons such as octadecane, eicosane, methylheptane, 2,2-dimethylhexane, 2-methyloctane; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexanemethylcyclohexane, ethylcyclohexane, benzene, toluene, xylene, cumene, Aromatic hydrocarbons such as trimethylbenzene, hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, petroleum ether, etc. can be raised.
 また噴霧塗布用有機溶媒として用いることが出来る有機溶媒のその他の例としては、1,2-ジエトキシエタン、1,2-ジブトキエタンやジエチルエーテル、ジn-プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン、ジオキサン、グライム、ジグライム、トリグライム、アニソール、メトキシトルエン等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等を挙げることができる。 Other examples of organic solvents that can be used as the organic solvent for spray coating include 1,2-diethoxyethane, 1,2-dibutoxyethane, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, and cyclopentyl. Examples include ether solvents such as methyl ether, tetrahydrofuran, dioxane, glyme, diglyme, triglyme, anisole and methoxytoluene, and amine solvents such as trimethylamine, triethylamine and triphenylamine.
 また、これらの有機溶媒は単独で使用するのみならず、2 種類以上を混合して用いることも可能である。 These organic solvents can be used not only alone but also in a mixture of two or more.
 また、噴霧塗布用溶液において、加水分解後に前記溶液中に残存しているR1、R2、R3がアルコキシド基の場合においては、組成物に共存が可能な溶媒として、メタノール、エタノール、n-プロピルアルコール、イソプロピルノール、イソブチルアルコール、n-ブチルアルコール、ジエチレングリコール等のアルコールも噴霧塗布用有機溶媒として使用が可能である。 In the spray coating solution, when R 1 , R 2 , R 3 remaining in the solution after hydrolysis are alkoxide groups, methanol, ethanol, n Alcohols such as propyl alcohol, isopropylanol, isobutyl alcohol, n-butyl alcohol, diethylene glycol and the like can also be used as the organic solvent for spray coating.
 工程(A2)で用いる部分加水分解物含有組成物の部分加水分解物の固形分濃度は、例えば、0.1~30質量%の範囲であることができる。濃度が高ければ高いほど少ない塗布回数で膜を製造できるが、有機アルミニウム化合物の部分加水分解物を含む反応生成物の溶解度、例えば、アルミニウム酸化物膜の形成の容易さを考慮すると、好ましくは0.1~25質量%、さらに好ましくは0.1~15質量%とすることが出来る。 The solid content concentration of the partial hydrolyzate of the partial hydrolyzate-containing composition used in step (A2) can be, for example, in the range of 0.1 to 30% by mass. The higher the concentration, the smaller the number of coatings that can be produced. However, in consideration of the solubility of the reaction product containing a partial hydrolyzate of the organoaluminum compound, for example, the ease of forming an aluminum oxide film, it is preferably 0. The content can be 1 to 25% by mass, more preferably 0.1 to 15% by mass.
 上記工程(A2)で用いる部分加水分解物含有噴霧塗布用溶液は、本発明のアルミニウム酸化物膜塗布形成用組成物に相当する。 The partial hydrolyzate-containing spray coating solution used in the above step (A2) corresponds to the aluminum oxide film coating forming composition of the present invention.
<噴霧塗布について>
 噴霧塗布は工程(A1)及び工程(A2)で共通する。
 噴霧塗布は噴霧塗布用溶液を用い、基材の少なくとも一部の表面に噴霧塗布を行う。噴霧塗布することで、噴霧塗布用溶液の塗膜が形成される。噴霧塗布は、常温(室温)で実施することも出来るが、後述のように、加熱下で行うこともできる。さらに、噴霧塗布は、0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行う。
<About spray application>
Spray coating is common to the step (A1) and the step (A2).
The spray coating uses a spray coating solution, and spray coating is performed on at least a part of the surface of the substrate. By spray application, a coating film of the solution for spray application is formed. Spray coating can be carried out at room temperature (room temperature), but can also be carried out under heating as described later. Further, spray coating is performed in an inert gas atmosphere containing 0.5 to 30 mol% of water.
 塗噴霧布を不活性ガス雰囲気下で行うのは、噴霧塗布用溶液に含まれる有機アルミニウム化合物及び/又は部分加水分解物が雰囲気中の水分と反応し徐々に分解することや、アルミニウム酸化物膜の形成を行うために、噴霧塗布用溶液に対して、水が共存する条件での成膜の制御を容易にする観点や、可燃性の溶剤等を扱う為である。不活性ガスについては、特に限定はないが、例えば、ヘリウム、アルゴン、窒素等を挙げることができる。これらの中でも、特にコストの面で窒素が望ましい。また、塗布の際の圧力については、大気圧下、加圧下、減圧下のいずれでも実施できるが、通常、大気圧で実施するのが装置上も簡便であり、コストもかからず好ましい。 The coating and spraying cloth is performed in an inert gas atmosphere because the organoaluminum compound and / or the partial hydrolyzate contained in the spray coating solution reacts with moisture in the atmosphere and gradually decomposes, or an aluminum oxide film This is because the spray coating solution handles the viewpoint of facilitating the control of film formation under the condition where water coexists, and a flammable solvent. The inert gas is not particularly limited, and examples thereof include helium, argon, and nitrogen. Among these, nitrogen is particularly preferable in terms of cost. In addition, the pressure at the time of application can be carried out under atmospheric pressure, under pressure, or under reduced pressure. However, it is usually preferable to carry out under atmospheric pressure because the apparatus is simple and inexpensive.
 さらに、不活性ガス雰囲気には、0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下を用いる。塗噴霧布には、例えば、スプレー塗布法、スプレー熱分解法、静電塗布法、インクジェット法といった噴霧塗布用溶液が噴霧によって基材にする到達するまでの空間において、共存する水等の酸素源との反応によるアルミニウム酸化物の形成が容易な噴霧塗布の手法を用いる。その際、不活性ガス雰囲気が0.5モル%~30モル%の水分を含有することで、噴霧され、基材にする到達するまでの空間において、加水分解反応が進行し、その後のアルミニウム酸化物膜薄膜の生成がスムーズになる。アルミニウム酸化物膜薄膜の生成がよりスムーズになるという観点からは、不活性ガス雰囲気の水分含有量は、1モル%~25モル%であることが好ましい。この特定の水分を含む不活性ガスの例として、例えば、0.5モル%の水分を含有する不活性ガスとして、露点が-2℃、21℃での相対湿度として21%の不活性ガスが例示され、1モル%の水分を含有する不活性ガスとして、露点が8℃、21℃での相対湿度として43%の不活性ガスを例示でき、また、25モル%の水分を含有する不活性ガスとしては65℃の飽和水蒸気を含むものを例示できる。 Further, an inert gas atmosphere containing 0.5 to 30 mol% of water is used as the inert gas atmosphere. For example, spray coating, spray pyrolysis, electrostatic coating, ink jet, and other oxygen sources such as water that coexist in the space until the spray coating solution reaches the substrate by spraying. A spray coating technique is used in which aluminum oxide can be easily formed by the reaction with NO. At that time, when the inert gas atmosphere contains 0.5 mol% to 30 mol% of water, the hydrolysis reaction proceeds in the space until it is sprayed and reaches the base material, and the subsequent aluminum oxidation The production of the material film becomes smooth. From the viewpoint that the production of the aluminum oxide film thin film becomes smoother, the water content in the inert gas atmosphere is preferably 1 mol% to 25 mol%. Examples of this inert gas containing water include, for example, an inert gas containing 0.5 mol% of water, an inert gas having a dew point of −2 ° C. and a relative humidity at 21 ° C. of 21%. As an example of an inert gas containing 1 mol% of water, an inert gas having a dew point of 8 ° C. and a relative humidity at 21 ° C. of 43% can be exemplified, and an inert gas containing 25 mol% of water Examples of the gas include those containing 65 ° C. saturated water vapor.
 不活性ガスについては、特に限定はないが、例えば、ヘリウム、アルゴン、窒素等を挙げることができる。これらの中でも、特にコストの面で窒素が望ましい。基材表面へのスプレー塗布は、加圧下や減圧下でも実施できるが、大気圧で実施するのが、装置上も簡便であり好ましい。 The inert gas is not particularly limited, and examples thereof include helium, argon, and nitrogen. Among these, nitrogen is particularly preferable in terms of cost. Spray coating on the substrate surface can be carried out under pressure or under reduced pressure, but it is preferred to carry out at atmospheric pressure because the apparatus is simple and preferable.
 噴霧塗布の方法としては、例えば、スプレー塗布、スプレー熱分解法、静電塗布法、インクジェット法などを用いることができる。スプレー熱分解法、静電塗布法は、基材を加熱しながら塗布と成膜を同時にできる方法であり、そのため、塗布と並行して溶媒を乾燥させることができ、条件によっては、溶媒乾燥のための加熱が不要である場合もある。さらに、条件によっては、乾燥に加えて、有機アルミニウム化合物の部分加水分解物のアルミニウム酸化物への反応も少なくとも一部、進行する場合もある。そのため、後工程である、所定の温度での加熱によるアルミニウム酸化物膜形成をより容易に行える場合もある。 As the spray coating method, for example, spray coating, spray pyrolysis method, electrostatic coating method, ink jet method or the like can be used. The spray pyrolysis method and electrostatic coating method are methods in which coating and film formation can be performed simultaneously while heating the substrate. Therefore, the solvent can be dried in parallel with the coating. In some cases, heating is not necessary. Furthermore, depending on conditions, in addition to drying, the reaction of the partial hydrolyzate of the organoaluminum compound with aluminum oxide may proceed at least partially. Therefore, an aluminum oxide film can be formed more easily by heating at a predetermined temperature, which is a subsequent process.
工程(B)
 工程(B)においては、塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、前記塗布膜からアルミニウム酸化物膜を形成する。0.5モル%~30モル%の水分を含有する不活性ガス雰囲気は工程(A)で説明したものと同様である。
Process (B)
In the step (B), the base material on which the coating film is formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to remove aluminum from the coating film. An oxide film is formed. The inert gas atmosphere containing 0.5 to 30 mol% of water is the same as that described in the step (A).
 加熱温度は、塗布液の組成や噴霧塗布方法、基材の種類に応じて適宜選択できる。但し、400℃以下の温度で行う。基材の種類によっては、400℃を超える温度での加熱によってアルミニウム酸化物膜を形成することも可能であるが、本発明においては、400℃以下の温度での加熱で十分に良好な物性を有するアルミニウム酸化物膜を形成することができる。 The heating temperature can be appropriately selected according to the composition of the coating solution, the spray coating method, and the type of the substrate. However, it is performed at a temperature of 400 ° C. or lower. Depending on the type of substrate, an aluminum oxide film can be formed by heating at a temperature exceeding 400 ° C., but in the present invention, sufficiently good physical properties are obtained by heating at a temperature of 400 ° C. or lower. An aluminum oxide film can be formed.
 また、噴霧塗布方法の種類によっては、工程(A)の塗布の際にも、雰囲気及び/又は基材を加熱することもできる。この場合、塗布と加熱の温度を同一にする方が操作が簡便であり好ましい。噴霧塗布における塗布および成膜の際の雰囲気及び/又は基材の加熱温度は、例えば、50~400℃、好ましくは100~400℃の範囲であることができる。特に、本発明においては、基材に樹脂などの耐熱性の低い基材を用いる場合の成膜や、金属、酸化物、窒化物、炭素化合物等の無機物や低分子、ポリマーなどの有機物および前述の無機物および有機物の複合物から形成される、電極、半導体、絶縁物等の電子デバイス膜等の機能性材料に対して熱や高エネルギーを与える処理で問題がある場合への成膜が可能であり、50~350℃の範囲が好ましく、100~300℃範囲で行うことがより好ましい。 Also, depending on the type of spray coating method, the atmosphere and / or the substrate can be heated also during the coating in the step (A). In this case, it is preferable that the application and heating temperatures are the same because the operation is simple. The atmosphere at the time of application and film formation in spray application and / or the heating temperature of the substrate can be, for example, in the range of 50 to 400 ° C., preferably 100 to 400 ° C. In particular, in the present invention, film formation when using a low heat-resistant substrate such as a resin as the substrate, inorganic materials such as metals, oxides, nitrides, and carbon compounds, organic materials such as low molecules, polymers, and the like described above It is possible to form a film when there is a problem in the process of applying heat or high energy to functional materials such as electronic device films such as electrodes, semiconductors, and insulators, which are formed from composites of inorganic and organic materials. The temperature is preferably in the range of 50 to 350 ° C, more preferably in the range of 100 to 300 ° C.
 図3-1に、本発明で用いることができる噴霧塗布による成膜装置の例として、スプレー成膜装置を示す。図中、1は塗布液を充填したスプレーボトル、2は基材ホルダ、3スプレーノズル、4はコンプレッサ、5は基材、6・・・水蒸気導入用チューブを示す。スプレー塗布は、基材を基材ホルダ2に設置し、必要によりヒーターを用いて所定の温度まで加熱し、その後、不活性ガス雰囲気中(大気圧下)で、基材の上方に配置したスプレーノズル3から圧縮した不活性ガスと塗布液を同時供給し、塗布液を霧化、噴霧させ、水蒸気導入用チューブ6より水を導入して成膜雰囲気で共存させることにより、基材上にアルミニウム酸化物膜薄膜を形成することができる。加熱下でスプレー塗布する場合には、追加の加熱等することなしにアルミニウム酸化物膜を形成することもできる。 FIG. 3A shows a spray film forming apparatus as an example of a film forming apparatus by spray coating that can be used in the present invention. In the figure, 1 is a spray bottle filled with a coating liquid, 2 is a substrate holder, 3 spray nozzles, 4 is a compressor, 5 is a substrate, 6. Spray coating is performed by placing the base material on the base material holder 2 and heating it to a predetermined temperature using a heater if necessary, and then placing the spray in an inert gas atmosphere (under atmospheric pressure) above the base material. The compressed inert gas and the coating liquid are simultaneously supplied from the nozzle 3, the coating liquid is atomized and sprayed, and water is introduced from the water vapor introducing tube 6 to coexist in the film forming atmosphere, so that aluminum is formed on the substrate. An oxide film thin film can be formed. When spray coating is performed under heating, an aluminum oxide film can be formed without additional heating.
 塗布液のスプレー塗布は、基材への付着性、溶媒の蒸発の容易性等を考慮すると、塗布液をスプレーノズルより液滴の大きさが30μm以下の範囲になるように吐出することが好ましい。また、スプレーノズルから基材に到達するまでに有機溶媒が幾分蒸発し液滴の大きさが減少すること等を考慮するとスプレーノズルと基材との距離を50cm以内として行うことが、アルミニウム酸化物膜を製造することができるという観点から好ましい。 The spray coating of the coating liquid is preferably performed by discharging the coating liquid from the spray nozzle so that the size of the liquid droplets is in a range of 30 μm or less in consideration of adhesion to the substrate, easiness of evaporation of the solvent, and the like. . Also, considering that the organic solvent evaporates somewhat from the spray nozzle to the substrate and the size of the droplets decreases, the distance between the spray nozzle and the substrate should be within 50 cm. It is preferable from a viewpoint that a physical film can be manufactured.
 スプレー熱分解法や静電塗布法等の噴霧塗布による成膜方法は、基材を加熱しながら塗布と成膜を同時にできる方法であり、そのため、塗布と並行して有機溶媒を乾燥させることができ、条件によっては、溶媒乾燥のための加熱が不要である場合もある。さらに、条件によっては、乾燥に加えて、有機アルミニウム化合物の部分加水分解物のアルミニウム酸化物への反応も少なくとも一部、進行する場合もある。そのため、後工程である、所定の温度での加熱によるアルミニウム酸化物膜形成をより容易に行える場合もある。スプレー熱分解法における塗布および成膜の際の基材の加熱温度は、例えば、50~400℃、好ましくは100~400℃の範囲であることができる。特に基材に樹脂などの耐熱性の低い基材を用いる場合には、50~350℃の範囲、好ましくは50~350℃の範囲で行うことが出来る。 The film formation method by spray application such as spray pyrolysis method or electrostatic application method is a method in which application and film formation can be performed at the same time while heating the substrate. Therefore, the organic solvent can be dried in parallel with the application. Depending on the conditions, heating for solvent drying may not be necessary. Furthermore, depending on conditions, in addition to drying, the reaction of the partial hydrolyzate of the organoaluminum compound with aluminum oxide may proceed at least partially. Therefore, an aluminum oxide film can be formed more easily by heating at a predetermined temperature, which is a subsequent process. The heating temperature of the substrate at the time of application and film formation in the spray pyrolysis method can be, for example, in the range of 50 to 400 ° C., preferably 100 to 400 ° C. In particular, when a low heat resistant base material such as a resin is used as the base material, it can be carried out in the range of 50 to 350 ° C., preferably in the range of 50 to 350 ° C.
 また、工程(A)において基材表面へ噴霧塗布用溶液を噴霧塗布した後、必要により基材を所定の温度とし、溶媒を乾燥した後、工程(B)において所定の温度で加熱することによりアルミニウム酸化物膜を形成させることもできる。 In addition, after spray-coating the spray coating solution on the substrate surface in the step (A), the substrate is brought to a predetermined temperature if necessary, the solvent is dried, and then heated at the predetermined temperature in the step (B). An aluminum oxide film can also be formed.
 工程(A)における有機溶媒の乾燥温度は、例えば、20~200℃の範囲であることができ、共存する有機溶媒の種類に応じて適時設定することができる。溶媒乾燥後のアルミニウム酸化物膜形成の為の加熱温度は、前記のとおりである。 The drying temperature of the organic solvent in the step (A) can be, for example, in the range of 20 to 200 ° C., and can be set as appropriate according to the type of the organic solvent that coexists. The heating temperature for forming the aluminum oxide film after drying the solvent is as described above.
 本発明の噴霧塗布による成膜においては、溶媒乾燥温度とその後のアルミニウム酸化物膜形成の為の加熱温度を同一にし、溶媒乾燥とアルミニウム酸化物膜形成を同時に行うことが可能であり、その際の温度は、工程(B)における前述の範囲の加熱温度に設定される。 In the film formation by spray coating of the present invention, the solvent drying temperature and the heating temperature for the subsequent aluminum oxide film formation can be made the same, and the solvent drying and the aluminum oxide film formation can be performed simultaneously. Is set to the heating temperature in the above-described range in the step (B).
 尚、本発明における噴霧塗布および加熱は、加圧下や減圧下でも実施できるが、大気圧で実施するのが装置上も簡便であり、コストもかからず好ましい。 The spray coating and heating in the present invention can be carried out under pressure or reduced pressure, but it is preferable to carry out at atmospheric pressure because the apparatus is simple and does not cost.
 上記製造方法においてアルミニウム酸化物膜を形成するための基材として用いられるものとして、ガラス、金属、セラミックス等の無機物、プラスチック等の高分子基材や紙、木材等の有機物およびこれらの複合物がある。 Examples of materials used as a base material for forming an aluminum oxide film in the manufacturing method include inorganic materials such as glass, metal and ceramics, polymer base materials such as plastic, organic materials such as paper and wood, and composites thereof. is there.
 これらの基材の具体例は、本発明の第二の態様で説明したものと同様である。 Specific examples of these base materials are the same as those described in the second aspect of the present invention.
 本発明のアルミニウム酸化物膜製造用溶液用い、噴霧塗布による成膜を行なえば、塗布および加熱を行うだけで成膜温度が低温でも、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。機材への密着性は本発明のアルミニウム酸化物製造用溶液を用いて得られたアルミニウム酸化物膜それ自身も高く、通常、酸化物の直接成膜が困難な基材においても良好な密着性が得られるが、必要に応じてアンダーコート処理、プライマー処理、コロナ処理、UV照射、塩素化等等の一般的に知られている基材に成膜した酸化物の密着性を高めるような方法を用いて塗布成膜することも可能である。 Using the solution for producing an aluminum oxide film of the present invention and performing film formation by spray application, even when the film formation temperature is low simply by applying and heating, the adhesion to the substrate is excellent, and the state of oxide formation is A good aluminum oxide film can be formed. The aluminum oxide film obtained by using the aluminum oxide production solution of the present invention itself is high in adhesion to equipment, and usually has good adhesion even on a substrate on which direct film formation of oxide is difficult. Although it can be obtained, a method for enhancing the adhesion of the oxide formed on a generally known substrate such as undercoat treatment, primer treatment, corona treatment, UV irradiation, chlorination, etc. It is also possible to apply and form a film.
[アルミニウム酸化物およびアルミニウム酸化物膜]
 本発明のアルミニウム酸化物膜製造用溶液用い、噴霧塗布による成膜を行なえば、塗布および加熱を行うだけで成膜温度が低温でも、基材への密着性に優れ、酸化物の形成状態が良好なアルミニウム酸化物膜を形成することができる。
[Aluminum oxide and aluminum oxide film]
Using the solution for producing an aluminum oxide film of the present invention and performing film formation by spray application, even when the film formation temperature is low simply by applying and heating, the adhesion to the substrate is excellent, and the state of oxide formation is A good aluminum oxide film can be formed.
 製造されたアルミニウム酸化物膜は、本発明における「アルミニウム酸化物」は、アルミニウム元素と酸素元素とを含有する化合物であり、これら2つの元素がアルミニウム酸化物に占める割合が90%以上のものをいう。アルミニウムと酸素以外には水素や炭素を含有する場合があり得る。また、本発明において500℃以下で製造された「アルミニウム酸化膜」は、通常、X線回折分析で明瞭なピークが観測されず、アモルファス状態である。 In the manufactured aluminum oxide film, the “aluminum oxide” in the present invention is a compound containing an aluminum element and an oxygen element, and the proportion of these two elements in the aluminum oxide is 90% or more. Say. In addition to aluminum and oxygen, hydrogen and carbon may be contained. Further, in the present invention, the “aluminum oxide film” produced at 500 ° C. or lower is usually in an amorphous state with no clear peak observed by X-ray diffraction analysis.
 これらアルミニウム酸化物膜は基板等の耐熱温度が許容されれば、成膜後の後処理によって一般的に知られている1000℃以上での高い温度での加熱等の手法により結晶化させることも可能である。即ち、必要に応じて、工程(B)においてアルミニウム酸化物膜が形成された後に、さらに、酸素等の酸化ガス雰囲気下、アルゴン、酸素等のプラズマ雰囲気下で、上記加熱を行うことによりアルミニウム酸化物の形成を促進、または、結晶性を向上させることも可能である。さらに、本発明で得られたアルミニウム酸化物膜中の残存有機物等の炭素成分の除去やアルミニウム酸化物膜の膜質の向上等を目的として一般的に用いられている紫外線等の光照射やマイクロ波等での処理を行ってもよい。アルミニウム酸化物膜の膜厚には特に制限はないが、例えば、0.005~5μmの範囲、より実用的には0.001~5μmの範囲であることができる。本発明の製造方法によれば、上記塗布(乾燥)加熱を1回以上繰り返すことで、上記範囲の膜厚の膜を適宜製造することができる。また、原理的には、塗布回数を繰り返したり、塗布時間を長くすることで、5μm以上の膜の形成も可能である。本発明の製造方法では、不活性ガス雰囲気下、基材表面に上記噴霧塗布用溶液を塗布する工程(A)及び得られた塗布物を加熱する工程(B)を1回または2回以上行うことを含む。塗布および得られた塗布物の加熱操作は、絶縁性や耐熱性など所望の物性を得るために必要な回数を適宜行なうことができるが、好ましくは1回~50回、より好ましくは、1回~30回さらに好ましくは1回~10回等の範囲で適宜実施できる。本発明で用いる噴霧塗布法においては、透過率が高い透明なものから半透明・不透明なものを得ることができる。ガラスや樹脂などへの基材への密着性の高い膜を得ることが出来る。 These aluminum oxide films can be crystallized by a method such as heating at a high temperature of 1000 ° C. or higher, which is generally known by post-treatment after film formation, if the heat-resistant temperature of the substrate or the like is allowed. Is possible. That is, if necessary, after the aluminum oxide film is formed in the step (B), the aluminum oxide film is further heated in an oxidizing gas atmosphere such as oxygen or in a plasma atmosphere such as argon or oxygen. It is also possible to promote the formation of an object or improve the crystallinity. Furthermore, light irradiation such as ultraviolet rays and microwaves generally used for the purpose of removing carbon components such as residual organic substances in the aluminum oxide film obtained in the present invention and improving the film quality of the aluminum oxide film, etc. Etc. may be performed. The thickness of the aluminum oxide film is not particularly limited, but can be, for example, in the range of 0.005 to 5 μm, and more practically in the range of 0.001 to 5 μm. According to the production method of the present invention, a film having a film thickness in the above range can be appropriately produced by repeating the application (drying) heating once or more. In principle, a film having a thickness of 5 μm or more can be formed by repeating the number of times of application or extending the application time. In the production method of the present invention, the step (A) of applying the spray coating solution to the substrate surface and the step (B) of heating the obtained coated product are performed once or twice or more in an inert gas atmosphere. Including that. The coating and heating operation of the obtained coated product can be appropriately performed as many times as necessary to obtain desired physical properties such as insulation and heat resistance, but preferably 1 to 50 times, more preferably 1 time. It can be appropriately carried out in the range of 30 times, more preferably 1-10 times. In the spray coating method used in the present invention, it is possible to obtain a translucent and opaque one from a transparent one having a high transmittance. A film having high adhesion to a substrate such as glass or resin can be obtained.
[アルミニウム酸化物を含む機能膜]
 製造されたアルミニウム酸化物膜は基材への密着性に優れ、酸化物の形成状態が良好である。そのため、アルミニウム酸化物膜を基材に付着した複合体(物品)や、アルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体(物品)とすることができる。複合膜は、アルミニウム酸化物を含む機能膜として用いることが出来る。例えば、電子材料用アルミナシート、アルミニウム酸化物膜の作製、触媒担体の作製、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、耐摩耗性等の付与、セラミック製造用バインダー等の用途に供することが出来る。具体的には、機械部品や切削工具の保護膜、半導体、磁性体、太陽電池等の絶縁膜、誘電体膜、反射防止膜、表面デバイス、磁気ヘッド、赤外線等のセンサー素子、食品、薬品、医療器材等の包装材料における空気・水分等へのバリア膜、各種粉体、フィルム、ガラスやプラスチックを素材としたフィルムや成形体等の基材へのコーティング膜およびこれらを用いた耐熱材料や高硬度フィルム、光学部材、セラミック製造用バインダー等の用途に使用されるアルミニウム酸化物膜などの、基材に対して種々の機能性を付与することができる機能膜の一部又は全部として適用することができる。
[Functional film containing aluminum oxide]
The manufactured aluminum oxide film is excellent in adhesion to the base material and has a good oxide formation state. Therefore, a composite (article) in which an aluminum oxide film is attached to a base material, or a composite film (article) in which a composite film having an aluminum oxide film and a layer other than an aluminum oxide film is attached to the base material is used. Can do. The composite film can be used as a functional film containing aluminum oxide. For example, alumina sheet for electronic materials, production of aluminum oxide film, production of catalyst carrier, imparting heat resistance, imparting barrier properties against air and moisture, imparting antireflection effect, imparting antistatic effect, imparting antifogging effect, abrasion resistance Etc., and can be used for applications such as ceramic production binders. Specifically, protective films for machine parts and cutting tools, semiconductors, magnetic materials, insulating films such as solar cells, dielectric films, antireflection films, surface devices, magnetic heads, sensor elements such as infrared rays, foods, chemicals, Barrier films against air and moisture in packaging materials such as medical equipment, various powders, films, coating films on substrates such as films and molded bodies made of glass and plastic, and heat-resistant materials and high Apply as a part or all of a functional film capable of imparting various functionalities to a substrate, such as an aluminum oxide film used in applications such as a hardness film, an optical member, and a ceramic manufacturing binder. Can do.
[アルミニウム酸化物膜を有する基材およびアルミニウム酸化物を含む機能膜を有する基材]
 さらにこれらのアルミニウム酸化物膜やアルミニウム酸化物を含む機能膜を有する基材は、耐熱フィルム等の耐熱材料、絶縁材料、水分や酸素等へのバリアフィルム等の材料、反射防止フィルム、ガラス等の反射防止材料、高硬度フィルムや材料として利用が可能である。
[Substrate having aluminum oxide film and substrate having functional film containing aluminum oxide]
Furthermore, these aluminum oxide films and base materials having functional films containing aluminum oxide include heat-resistant materials such as heat-resistant films, insulating materials, materials such as barrier films against moisture and oxygen, antireflection films, and glass. It can be used as an antireflection material, a high hardness film or a material.
[アルミニウム酸化物膜製造用組成物]
 本発明は、アルミニウム酸化物膜形成用組成物を包含する。
この組成物の第一の態様は、前記一般式(6)で示される有機アルミニウム化合物の有機溶媒溶液からなる膜形成用組成物であって、前記組成物は、膜の塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
[Composition for producing aluminum oxide film]
The present invention includes a composition for forming an aluminum oxide film.
A first aspect of this composition is a film-forming composition comprising an organic solvent solution of an organoaluminum compound represented by the general formula (6), wherein the composition has a film coating formation of 0.5. The composition as described above, which is used for forming an aluminum oxide film which is carried out in an inert gas atmosphere containing mol% to 30 mol% of water.
 この組成物の第二の態様は、 前記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得られた、前記有機アルミニウム化合物の部分加水分解物を含有する膜形成用組成物であって、
(a)前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.7以下の水を用いて行われ、かつ
(b)前記組成物は、膜塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物である。
A second embodiment of the composition includes a partial hydrolyzate of the organoaluminum compound obtained by partially hydrolyzing the organoaluminum compound represented by the general formula (6) in an organic solvent. A film-forming composition comprising:
(A) The partial hydrolysis is performed using water having a molar ratio to the organoaluminum compound of 0.7 or less, and (b) the composition is formed by coating from 0.5 mol% to 30 mol. It is the said composition which is a thing used for formation of the aluminum oxide film performed in the inert gas atmosphere containing a water | moisture content of%.
 第一の態様の組成物は、工程(A1)において噴霧塗布用溶液として説明したものである。第二の態様の組成物は、工程(A2)において噴霧塗布用溶液として説明したものである。 The composition of the first embodiment is the one described as a spray coating solution in the step (A1). The composition of a 2nd aspect is demonstrated as a solution for spray application in a process (A2).
 前記0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われる膜塗布形成は、
(c1)前記組成物を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、および
(c2)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程、を含む。これらの工程は、工程(A)および工程(B)として前述したとおりである。
The film coating formation performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water,
(C1) a step of spray-coating the composition on at least a part of the surface of the substrate in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form a coating film; and (c2) ) Heating the base material on which the coating film is formed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water at a temperature of 400 ° C. or lower to form an aluminum oxide film; Including. These steps are as described above as the step (A) and the step (B).
 本発明の組成物は、基材に密着した透明なアルミニウム酸化物膜を形成するために用いられる組成物である。
<本発明の第四の態様>
The composition of this invention is a composition used in order to form the transparent aluminum oxide film closely_contact | adhered to the base material.
<Fourth aspect of the present invention>
[アルキルアルミニウム含有溶液]
 本発明の第四の態様の第1の側面は、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液を、大気中で平均粒径が3~30μmの液滴にして基材に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることを特徴とする酸化アルミニウム薄膜の製造方法である。
[Alkyl aluminum-containing solution]
A first aspect of the fourth aspect of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms) And an alkylaluminum compound-containing solution containing an organic solvent that has an electron-donating property and does not contain an active hydrogen atom is made into droplets having an average particle diameter of 3 to 30 μm in the atmosphere. The coating film is formed by applying to the base material, and the formed coating film is heated to an aluminum oxide after drying the organic solvent or in parallel with the drying of the organic solvent. It is a manufacturing method of an aluminum thin film.
 本発明のアルキルアルミニウム化合物含有溶液は、有機溶媒として電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有することで、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物であるアルキルアルミニウム化合物を化学的に安定化させることができる。電子供与性を有しかつ活性水素原子を含有しない有機溶媒が好ましい理由は定かではないが、構造中の酸素の非共有電子対のアルミニウムへの配位結合により水に対する反応性を適切にすると推定される。 The alkylaluminum compound-containing solution of the present invention contains an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom as an organic solvent. Can be chemically stabilized. The reason why an organic solvent having an electron donating property and not containing an active hydrogen atom is preferable is not clear, but it is presumed that the reactivity to water is made appropriate by the coordination bond of the lone pair of oxygen in the structure to aluminum. Is done.
 本発明の溶液における前記アルキルアルミニウム化合物と前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒との比率は、アルキルアルミニウム化合物を化学的に安定に保つという観点からは、アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有することが好ましい。アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有することで、溶液の自然発火などの化学変化を抑制すること、水に対する反応性を適切にすることができる。 From the viewpoint of keeping the alkylaluminum compound chemically stable, the ratio of the alkylaluminum compound in the solution of the present invention to the organic solvent having an electron-donating property and not containing an active hydrogen atom is On the other hand, it is preferable to contain an organic solvent which has an electron donating property of 1 or more in molar ratio and does not contain an active hydrogen atom. By containing an organic solvent that has an electron donating ratio of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom, it suppresses chemical changes such as spontaneous ignition of the solution, and reactivity to water Can be made appropriate.
 前記活性水素原子とは、有機化合物の分子内水素原子のうち、窒素原子、酸素原子、硫黄原子等の炭素原子以外の元素の原子に結合した反応性の高い水素原子を意味する。 The active hydrogen atom means a highly reactive hydrogen atom bonded to an atom of an element other than a carbon atom such as a nitrogen atom, an oxygen atom, or a sulfur atom among intramolecular hydrogen atoms of an organic compound.
 電子供与性を有しかつ活性水素原子を含有しない有機溶媒の例としては、ジエチルエーテル、テトラヒドロフラン、t-ブチルメチルエーテル、ジn-プロピルエーテル、ジイソプロピルエーテル、1,4-ジオキサン、1,3-ジオキサラン、ジブチルエーテル、シクロペンチルメチルエーテル、アニソール等のエーテル化合物;1,2-ジメトキシエタン、1,2-ジエトキシエタン、1,2-ジブトキシエタン等のエチレングリコールジアルキルエーテル化合物;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールジアルキルエーテル化合物;トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル等のトリエチレングリコールジアルキルエーテル化合物;プロピレングリコールジメチルエーテル等のプロピレングリコールジアルキル化合物;ジプロピレングリコールジメチル等のジプロピレングリコールジアルキル;トリプロピレングリコールジメチル等のトリプロピレングリコールジアルキル化合物;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸sec-ブチル、酢酸ペンチル、酢酸メトキシブチル、酢酸アミル、酢酸セロソルブ等のエステル化合物;N,N-ジメチルホルムアミド等のアミド化合物;N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン等の環状アミド化合物;エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート等のカーボネート化合物、又はそれらの混合物を挙げることができる。 Examples of the organic solvent having an electron donating property and containing no active hydrogen atom include diethyl ether, tetrahydrofuran, t-butyl methyl ether, di-n-propyl ether, diisopropyl ether, 1,4-dioxane, 1,3- Ether compounds such as dioxalane, dibutyl ether, cyclopentyl methyl ether, anisole; ethylene glycol dialkyl ether compounds such as 1,2-dimethoxyethane, 1,2-diethoxyethane, 1,2-dibutoxyethane; diethylene glycol dimethyl ether, diethylene glycol diethyl Diethylene glycol dialkyl ether compounds such as ether and diethylene glycol dibutyl ether; triethylene glycol dimethyl ether, triethylene glycol diethyl ether, etc. Triethylene glycol dialkyl ether compounds; propylene glycol dialkyl compounds such as propylene glycol dimethyl ether; dipropylene glycol dialkyl compounds such as dipropylene glycol dimethyl; tripropylene glycol dialkyl compounds such as tripropylene glycol dimethyl; methyl acetate, ethyl acetate, propyl acetate, acetic acid Ester compounds such as isopropyl, butyl acetate, sec-butyl acetate, pentyl acetate, methoxybutyl acetate, amyl acetate, cellosolve acetate; amide compounds such as N, N-dimethylformamide; N-methyl-2-pyrrolidone, or 1,3 -Cyclic amide compounds such as dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone; ethylene carbonate DOO, propylene carbonate, dimethyl carbonate, and carbonate compounds such as diethyl carbonate, or mixtures thereof.
 エタノール、イソプロパノール、ブタノール等のアルコール系溶媒、ギ酸、酢酸、プロピオン酸等のカルボン酸系溶媒は、共に活性水素原子を有するため、前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒ではない。 Alcohol solvents such as ethanol, isopropanol and butanol, and carboxylic acid solvents such as formic acid, acetic acid and propionic acid both have an active hydrogen atom. Therefore, in an organic solvent having the electron donating property and containing no active hydrogen atom, Absent.
 アセチルアセトン等の共役したジケトンは、エノラート化合物になり活性水素原子を発生するため前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒ではない。 A conjugated diketone such as acetylacetone is not an organic solvent having the above-described electron donating property and containing no active hydrogen atom because it becomes an enolate compound and generates an active hydrogen atom.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基が、炭素数1~6であり、1個のジアルキルアルミニウム又は1個のトリアルキルアルミニウムが有する複数のアルキル基は、同一又は異なってもよい。 In the dialkylaluminum and / or trialkylaluminum, the alkyl group of the dialkylaluminum and trialkylaluminum has 1 to 6 carbon atoms, and the plurality of alkyl groups of one dialkylaluminum or one trialkylaluminum is May be the same or different.
 前記ジアルキルアルミニウムとは、配位子の2つがアルキル基であり1つがアルキル基以外の3価のアルミニウム化合物のことであり、前記トリアルキルアルミニウムとは、配位子3つが全てアルキル基である3価のアルミニウム化合物のことである。 The dialkylaluminum means that two of the ligands are alkyl groups and one is a trivalent aluminum compound other than the alkyl group, and the trialkylaluminum means that all three ligands are alkyl groups. It is a valent aluminum compound.
 ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、例えば、下記一般式(8)又は(9)で表されるアルキルアルミニウム化合物であることができる。 The dialkylaluminum and / or trialkylaluminum can be, for example, an alkylaluminum compound represented by the following general formula (8) or (9).
Figure JPOXMLDOC01-appb-C000043
(式中、Rはメチル基又はエチル基を表す。)
Figure JPOXMLDOC01-appb-C000044
(式中、Rはイソブチル基を、Rは、水素又はイソブチル基を表す。)
Figure JPOXMLDOC01-appb-C000043
(In the formula, R 1 represents a methyl group or an ethyl group.)
Figure JPOXMLDOC01-appb-C000044
(In the formula, R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.)
 一般式(8)で表される化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム等を挙げることができる。 Examples of the compound represented by the general formula (8) include trimethylaluminum and triethylaluminum.
 一般式(9)で表される化合物の例としては、トリイソブチルアルミニウム、ジイソブチルアルミニウムヒドリド等を挙げることができる。 Examples of the compound represented by the general formula (9) include triisobutylaluminum, diisobutylaluminum hydride and the like.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、単位質量のアルミニウムに対する価格が安価であるという観点から、トリエチルアルミニウム、トリイソブチルアルミニウムであることが好ましい。 The dialkylaluminum and / or trialkylaluminum is preferably triethylaluminum or triisobutylaluminum from the viewpoint that the price for unit mass of aluminum is low.
 本発明の製造方法で用いるアルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の濃度は、例えば、1質量%以上20質量%以下であることができる。前記一般式(8)で表されるアルキルアルミニウム化合物の場合には、1質量%以上、10質量%以下、前記一般式(9)で表されるアルキルアルミニウム化合物の場合には、1質量%以上、20質量%以下であることが好ましい。1質量%未満であると膜の生産性が低下するので、1質量%以上であることが好ましい。アルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の濃度は、特に空気中で塗布することによる酸化アルミニウム製造時において発火等の危険性に影響があるが、上記濃度範囲とすることで、特別な注意を払わずに酸化アルミニウム薄膜を安全に製造できるという利点がある。 The concentration of the alkylaluminum compound in the alkylaluminum-containing solution used in the production method of the present invention can be, for example, 1% by mass or more and 20% by mass or less. In the case of the alkylaluminum compound represented by the general formula (8), 1% by mass or more and 10% by mass or less, and in the case of the alkylaluminum compound represented by the general formula (9), 1% by mass or more. 20 mass% or less is preferable. If it is less than 1% by mass, the productivity of the film is lowered, so that it is preferably 1% by mass or more. The concentration of the alkylaluminum compound in the alkylaluminum-containing solution has an influence on the risk of ignition, etc., particularly during the production of aluminum oxide by applying it in the air. Therefore, there is an advantage that the aluminum oxide thin film can be manufactured safely.
 本発明の製造方法で用いるアルキルアルミニウム含有溶液は、電子供与性を有しかつ活性水素原子を含有しない有機溶媒以外の有機溶媒として、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒をさらに含むことができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒を添加することで、極性、粘度、沸点、経済性等を調整することができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒としては、例えば、n-ヘキサン、オクタン、n-デカン、等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素;ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル、等の炭化水素系溶媒等を挙げることができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒の添加量は、電子供与性を有しかつ活性水素原子を含有しない有機溶媒の効果を妨げない範囲であれば制限はなく、例えば、電子供与性を有しかつ活性水素原子を含有しない有機溶媒100質量部に対して100質量部以下とすることができる。但し、アルキルアルミニウム化合物の種類、電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒の種類により添加可能な範囲は変化する。尚、アルキルアルミニウム化合物含有溶液において、アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有すれば、アルキルアルミニウム化合物含有溶液中のアルキルアルミニウム化合物を化学的に安定化させることができる。従って、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒を併用する場合、この点を考慮して、併用量を決定することが好ましい。 The alkylaluminum-containing solution used in the production method of the present invention is an organic solvent other than an organic solvent having an electron donating property and not containing an active hydrogen atom. A solvent may further be included. By adding an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, the polarity, viscosity, boiling point, economy, and the like can be adjusted. Examples of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene and cumene; hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene and petroleum ether. The amount of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is not limited as long as it does not interfere with the effect of the organic solvent that has an electron donating property and does not contain an active hydrogen atom. For example, the amount can be 100 parts by mass or less with respect to 100 parts by mass of the organic solvent that has an electron donating property and does not contain an active hydrogen atom. However, the range that can be added depending on the type of the alkylaluminum compound, the organic solvent that has an electron donating property and does not contain an active hydrogen atom, and the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom. Will change. In addition, if the alkylaluminum compound-containing solution contains an organic solvent that has an electron donating property of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom, the alkylaluminum in the alkylaluminum compound-containing solution The compound can be chemically stabilized. Therefore, when an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is used in combination, it is preferable to determine the combined amount in consideration of this point.
 前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒と、アルキルアルミニウム化合物の混合は不活性ガス雰囲気下の反応容器で行うことができ、それぞれあらゆる慣用の方法に従って導入することができる。アルキルアルミニウム化合物は、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒との混合物としても反応容器に導入することができる。 Mixing of the organic solvent having an electron donating property and not containing an active hydrogen atom, and optionally an organic solvent not having an electron donating property and containing an active hydrogen atom, and an alkylaluminum compound is an inert gas atmosphere. The reaction can be carried out in the lower reaction vessel, each introduced according to any conventional method. The alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom.
 混合容器への導入順序は、アルキルアルミニウム化合物、電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機化合物の順、又は電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒、アルキルアルミニウムの順、又は全て同時に導入の、どれでもよい。 The order of introduction into the mixing vessel is as follows: an alkylaluminum compound, an organic solvent that has an electron-donating property and does not contain an active hydrogen atom, and an organic compound that does not have an electron-donating property and does not contain an active hydrogen atom if desired. Introduced in order, or an organic solvent that has an electron donating property and does not contain an active hydrogen atom, and optionally, an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, an alkylaluminum, in that order, or all at the same time Any of them can be used.
 混合容器への導入時間は、混合する原料の種類や容量等により適宜設定できるが、例えば、1分から10時間の間で行うことができる。導入時の温度は-15~150℃の間の任意の温度を選択できる。但し、導入時に引火する危険性排除等の安全性を考慮すると-15~80℃の範囲であることが好ましい。 The introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours. As the temperature at the time of introduction, any temperature between −15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of −15 to 80 ° C.
 混合容器への原料の導入時、導入後の攪拌工程は、回分操作式、半回分操作式、連続操作式のいずれでもよい。 At the time of introducing the raw material into the mixing container, the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
[酸化アルミニウム薄膜の製造方法]
 本発明の酸化アルミニウム薄膜の製造方法は、前記アルキルアルミニウム化合物含有溶液を基材に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることで、酸化アルミニウム薄膜を得る方法である。
[Method for producing aluminum oxide thin film]
In the method for producing an aluminum oxide thin film of the present invention, the alkyl aluminum compound-containing solution is applied to a substrate to form a coating film, and the formed coating film is dried with an organic solvent, or dried with an organic solvent. In parallel, the aluminum oxide thin film is obtained by heating to aluminum oxide.
 前記基材へのアルキルアルミニウム化合物含有溶液の塗布は、スプレー塗布法、静電スプレー塗布法、インクジェット法、ミストCVD法、等の方法で行うことが好ましく、装置がより簡便であることからスプレー塗布法がより好ましい。 Application of the alkylaluminum compound-containing solution to the substrate is preferably performed by a spray coating method, an electrostatic spray coating method, an ink jet method, a mist CVD method, or the like, and spray coating is performed because the apparatus is simpler. The method is more preferred.
 前記基材へのアルキルアルミニウム化合物含有溶液の塗布は、経済性の観点から、空気雰囲気下で行う。空気雰囲気下で行うことで、装置も簡便となり好ましい。 The application of the alkylaluminum compound-containing solution to the substrate is performed in an air atmosphere from the viewpoint of economy. Performing in an air atmosphere is preferable because the apparatus is simple.
 前記基材へのアルキルアルミニウム化合物含有溶液の塗布は、加圧下や減圧下でも実施できるが、経済性の点から、大気圧下で行うことが装置も簡便となり好ましい。 The application of the alkylaluminum compound-containing solution to the substrate can be carried out under pressure or under reduced pressure. However, it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
 前記基材へのアルキルアルミニウム化合物含有溶液の塗布は、アルキルアルミニウム含有溶液を平均粒径が1~100μmの液滴にして基材に塗布することにより実施する。アルキルアルミニウム化合物含有溶液の平均粒径が1μm未満の液滴を用いると、材料の使用効率(基材への付着効率)が低下し、平均粒径が100μmを超える液滴を用いると、塗布により形成された膜の特性(特に緻密性)が低下するため、アルキルアルミニウム含有溶液の平均粒径は、上記範囲に限定される。アルキルアルミニウム含有溶液は、平均粒径が3~30μmの液滴にして基材に塗布することが、材料の使用効率(基材への付着効率)が高く、かつ塗布により形成された膜の特性(特に緻密性)が良好という観点から好ましい。例えば、アルキルアルミニウム含有溶液を精密塗布用スプレーノズルに通すことにより1~100μmの液滴にすることができる。スプレーノズルは2流体ノズルであることが好ましく、液滴は3~30μmであることが好ましい。3μm以上であることで、液滴の基材への付着効率が向上し、30μm以下であることで膜特性(透明性、面内均一性、緻密性)がより良好になる。 Application of the alkylaluminum compound-containing solution to the substrate is carried out by applying the alkylaluminum-containing solution to the substrate in the form of droplets having an average particle size of 1 to 100 μm. When using droplets having an average particle size of the alkylaluminum compound-containing solution of less than 1 μm, the use efficiency of the material (adhesion efficiency to the substrate) decreases, and when droplets having an average particle size of more than 100 μm are used, Since the properties (particularly denseness) of the formed film are lowered, the average particle size of the alkylaluminum-containing solution is limited to the above range. Alkyl aluminum-containing solutions can be applied to a substrate in the form of droplets having an average particle size of 3 to 30 μm, and the use efficiency of the material (adhesion efficiency to the substrate) is high, and the characteristics of the film formed by coating It is preferable from the viewpoint of good (especially denseness). For example, by passing an alkylaluminum-containing solution through a precision application spray nozzle, droplets of 1 to 100 μm can be formed. The spray nozzle is preferably a two-fluid nozzle, and the droplets are preferably 3 to 30 μm. When it is 3 μm or more, the adhesion efficiency of the droplets to the substrate is improved, and when it is 30 μm or less, the film properties (transparency, in-plane uniformity, denseness) are further improved.
 塗布する際の、スプレーノズルと基材との距離を50cm以内として実施することが好ましく、さらには20cm以内として実施することがより好ましい。50cm以上になると、液滴は基材に到達するまでに液滴中の溶媒が乾燥し液滴の大きさが小さくなり液滴の基材への付着効率が低下する。 It is preferable that the distance between the spray nozzle and the base material is 50 cm or less, more preferably 20 cm or less. When the distance is 50 cm or more, the solvent in the droplet dries before the droplet reaches the substrate, the size of the droplet decreases, and the adhesion efficiency of the droplet to the substrate decreases.
 塗布をする際の雰囲気温度は50℃以下であることが好ましい。 The atmospheric temperature when applying is preferably 50 ° C. or less.
 空気の湿度は、例えば、25℃に換算した相対湿度が20~90%分の水を含有した空気雰囲気であることができる。25℃に換算した相対湿度は、酸化アルミニウム薄膜の形成がスムーズである観点からは、より好ましくは30~70%である。 The humidity of the air can be, for example, an air atmosphere containing 20 to 90% of relative humidity converted to 25 ° C. The relative humidity converted to 25 ° C. is more preferably 30 to 70% from the viewpoint of smooth formation of the aluminum oxide thin film.
 前記基材は、酸化アルミニウム薄膜を形成することが望まれる基材であれば、特に制限はない。前記基材の具体例は、本発明の第一の態様で説明したものと同様である。 The base material is not particularly limited as long as it is desired to form an aluminum oxide thin film. Specific examples of the substrate are the same as those described in the first aspect of the present invention.
 前記基材の形状は、粉、フィルム、板、又は三次元形状を有する立体構造物を挙げることができる。但し、これらに制限される意図ではない。 Examples of the shape of the base material include powder, a film, a plate, or a three-dimensional structure having a three-dimensional shape. However, it is not intended to be limited to these.
 前記アルキルアルミニウム化合物含有溶液を塗布して塗膜を形成し、次いで形成した塗膜を、基材を所定の温度として、有機溶媒を乾燥後、または乾燥と同時に所定の温度で加熱することで、焼成して酸化アルミニウム薄膜を形成させる。アルキルアルミニウム化合物含有溶液を塗布して形成する塗膜の膜厚は、酸化アルミニウム薄膜の所望の膜を考慮して適宜決定できる。尚、塗布前に基材を所定の温度に加熱しておくこともでき、所定の温度に加熱した基材に塗布することで、塗布と同時に溶媒を乾燥、または、乾燥と同時に焼成させることもできる。上記所定の温度とは、例えば、300℃以下である。300℃以下の温度での加熱であれば、プラスチック等の耐熱性のない基材にも適用できる。 By applying the alkylaluminum compound-containing solution to form a coating film, and then heating the formed coating film at a predetermined temperature after drying the organic solvent or simultaneously with the drying, with the substrate as a predetermined temperature, Baking to form an aluminum oxide thin film. The film thickness of the coating film formed by applying the alkylaluminum compound-containing solution can be appropriately determined in consideration of the desired film of the aluminum oxide thin film. In addition, the substrate can be heated to a predetermined temperature before coating, and by applying to the substrate heated to a predetermined temperature, the solvent can be dried at the same time as coating, or baked at the same time as drying. it can. The predetermined temperature is, for example, 300 ° C. or less. Heating at a temperature of 300 ° C. or lower can be applied to a non-heat-resistant substrate such as plastic.
 前記溶媒を乾燥させるための所定の温度は、例えば、20~250℃の間で任意の温度を選択できる。前記溶媒を、例えば、0.5~60分かけて乾燥させることができる。但し、これらの範囲に限定される意図ではない。 The predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C. The solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
 前記酸化アルミニウムを形成させるための焼成させるための所定の温度は、例えば、50~600℃の間で任意の温度を選択できる。但し、基材の種類を考慮して、基材がダメージを受けない温度に設定することが適当である。プラスチック等の耐熱性のない基材には適用できる観点から300℃以下であることが好ましい。焼成させる所定の温度が、溶媒を乾燥させる所定の温度と同一な場合、溶媒の乾燥と焼成を同時に行うことができる。溶媒乾燥した前駆膜を、例えば、0.5~300分かけて焼成させることができる。 The predetermined temperature for firing for forming the aluminum oxide can be selected from 50 to 600 ° C., for example. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged. It is preferable that it is 300 degrees C or less from a viewpoint applicable to a base material without heat resistance, such as a plastics. When the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously. The solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
 前記のようにして得られる酸化アルミニウム薄膜の膜厚は、例えば、0.005μm~3μmの範囲であることができる。但し、この範囲に限定される意図ではなく、膜厚は、酸化アルミニウム薄膜を形成させる意図に応じて適宜決定できる。 The film thickness of the aluminum oxide thin film obtained as described above can be in the range of 0.005 μm to 3 μm, for example. However, it is not intended to be limited to this range, and the film thickness can be appropriately determined according to the intention of forming the aluminum oxide thin film.
 必要に応じて前記のようにして得られた酸化アルミニウム薄膜を、酸素等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、多量に水分が存在する水蒸気雰囲気下、またはアルゴン、窒素、酸素等のプラズマ雰囲気下で、所定の温度で加熱することにより酸化アルミニウムの結晶性、緻密性を向上させることもできる。紫外線等の光照射やマイクロ波処理により得られた酸化アルミニウム薄膜中の残存有機物等を除去することができる。 If necessary, the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc. The crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.
 本発明の製造方法によれば、可視光550nmにおける垂直透過率が80%以上である酸化アルミニウム薄膜を基材上に有する酸化アルミニウム薄膜付き基材を得ることができる。酸化アルミニウム薄膜の可視光550nmにおける垂直透過率、高ければ高いほど可視光領域における透明性が高いという観点では好ましく、例えば、90%以上であることがより好ましく、95%以上であることがさらに好ましい。
<本発明の第五の態様>
According to the production method of the present invention, a substrate with an aluminum oxide thin film having an aluminum oxide thin film having a vertical transmittance of 80% or more at 550 nm of visible light on the substrate can be obtained. The vertical transmittance at 550 nm of visible light of the aluminum oxide thin film is higher from the viewpoint of higher transparency in the visible light region. For example, it is preferably 90% or more, more preferably 95% or more. .
<Fifth aspect of the present invention>
[パッシベーション膜形成剤]
 本発明はパッシベーション膜形成剤に関する。パッシベーション膜とは、「シリコン基板の裏面の少なくとも一部に設け、シリコン基板におけるキャリアの裏面再結合を抑制する膜」を意味する。パッシベーション膜を設けるシリコン基板には特に制限はない。但し、シリコン基板におけるキャリアの裏面再結合を抑制する必要性が高いという観点からは、結晶性シリコン等のシリコン基板であることができる。
[Passivation film forming agent]
The present invention relates to a passivation film forming agent. The passivation film means “a film that is provided on at least a part of the back surface of the silicon substrate and suppresses recombination of the back surface of the carrier in the silicon substrate”. There is no particular limitation on the silicon substrate on which the passivation film is provided. However, a silicon substrate such as crystalline silicon can be used from the viewpoint that it is highly necessary to suppress the backside recombination of carriers in the silicon substrate.
 本発明のパッシベーション膜形成剤は、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液からなる。 The passivation film forming agent of the present invention is an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group possessed by the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and is the same or different. And an alkylaluminum compound-containing solution containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom.
 本発明のアルキルアルミニウム化合物含有溶液は、有機溶媒として電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有することで、ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物であるアルキルアルミニウム化合物を化学的に安定化させることができる。電子供与性を有しかつ活性水素原子を含有しない有機溶媒が好ましい理由は定かではないが、構造中の酸素の非共有電子対のアルミニウムへの配位結合により水に対する反応性を適切にすると推定される。 The alkylaluminum compound-containing solution of the present invention contains an alkylaluminum compound that is a dialkylaluminum, a trialkylaluminum, or a mixture thereof by containing an organic solvent that has an electron donating property and does not contain an active hydrogen atom as an organic solvent. Can be chemically stabilized. The reason why an organic solvent having an electron donating property and not containing an active hydrogen atom is preferable is not clear, but it is presumed that the reactivity to water is made appropriate by the coordination bond of the lone pair of oxygen in the structure to aluminum. Is done.
 本発明の溶液における前記アルキルアルミニウム化合物と前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒との比率は、アルキルアルミニウム化合物を化学的に安定に保つという観点からは、アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機化合物を含有することが好ましい。アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有することで、溶液の自然発火などの化学変化を抑制すること、水に対する反応性を適切にすることができる。 From the viewpoint of keeping the alkylaluminum compound chemically stable, the ratio of the alkylaluminum compound in the solution of the present invention to the organic solvent having an electron-donating property and not containing an active hydrogen atom is On the other hand, it is preferable to contain an organic compound which has an electron donating property of 1 or more in molar ratio and does not contain an active hydrogen atom. By containing an organic solvent that has an electron donating ratio of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom, it suppresses chemical changes such as spontaneous ignition of the solution, and reactivity to water Can be made appropriate.
 前記活性水素原子とは、有機化合物の分子内水素原子のうち、窒素原子、酸素原子、硫黄原子等の炭素原子以外の元素の原子に結合した反応性の高い水素原子を意味する。 The active hydrogen atom means a highly reactive hydrogen atom bonded to an atom of an element other than a carbon atom such as a nitrogen atom, an oxygen atom, or a sulfur atom among intramolecular hydrogen atoms of an organic compound.
 電子供与性を有しかつ活性水素原子を含有しない有機溶媒の例は、本発明の第四の態様における電子供与性を有しかつ活性水素原子を含有しない有機溶媒と同様である。 Examples of the organic solvent having an electron donating property and containing no active hydrogen atom are the same as those of the organic solvent having an electron donating property and containing no active hydrogen atom in the fourth embodiment of the present invention.
 エタノール、イソプロパノール、ブタノール等のアルコール系溶媒、ギ酸、酢酸、プロピオン酸等のカルボン酸系溶媒は、共に活性水素原子を有するため、前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒ではない。 Alcohol solvents such as ethanol, isopropanol and butanol, and carboxylic acid solvents such as formic acid, acetic acid and propionic acid both have an active hydrogen atom. Therefore, in an organic solvent having the electron donating property and containing no active hydrogen atom, Absent.
 アセチルアセトン等の共役したジケトンは、エノラート化合物になり活性水素原子を発生するため前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒ではない。 A conjugated diketone such as acetylacetone is not an organic solvent having the above-described electron donating property and containing no active hydrogen atom because it becomes an enolate compound and generates an active hydrogen atom.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基が、炭素数1~6であり、1個のジアルキルアルミニウム又は1個のトリアルキルアルミニウムが有する複数のアルキル基は、同一又は異なってもよい。 In the dialkylaluminum and / or trialkylaluminum, the alkyl group of the dialkylaluminum and trialkylaluminum has 1 to 6 carbon atoms, and the plurality of alkyl groups of one dialkylaluminum or one trialkylaluminum is May be the same or different.
 前記ジアルキルアルミニウムとは、配位子の2つがアルキル基であり1つがアルキル基以外の3価のアルミニウム化合物のことであり、前記トリアルキルアルミニウムとは、配位子3つが全てアルキル基である3価のアルミニウム化合物のことである。 The dialkylaluminum means that two of the ligands are alkyl groups and one is a trivalent aluminum compound other than the alkyl group, and the trialkylaluminum means that all three ligands are alkyl groups. It is a valent aluminum compound.
 ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、例えば、前記一般式(8)又は(9)で表されるアルキルアルミニウム化合物であることができ、本発明の第四の態様における説明を参照できる。 The dialkylaluminum and / or trialkylaluminum can be, for example, the alkylaluminum compound represented by the general formula (8) or (9), and the description in the fourth aspect of the present invention can be referred to.
 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムは、単位質量のアルミニウムに対する価格が安価であるという観点から、トリエチルアルミニウム、トリイソブチルアルミニウムであることが好ましい。 The dialkylaluminum and / or trialkylaluminum is preferably triethylaluminum or triisobutylaluminum from the viewpoint that the price for unit mass of aluminum is low.
 本発明のアルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の濃度は、例えば、1質量%以上、20質量%以下であることができる。前記一般式(8)で表されるアルキルアルミニウム化合物の場合には、1質量%以上、10質量%以下、前記一般式(9)で表されるアルキルアルミニウム化合物の場合1質量%以上、20質量%以下であることが好ましい。1質量%未満であるとパッシベーション膜の生産性が低下するので、1質量%以上であることが好ましい。アルキルアルミニウム含有溶液中のアルキルアルミニウム化合物の濃度は、特に空気中で塗布することによる酸化アルミニウム製造時において発火等の危険性に影響があるが、上記濃度範囲とすることで、特別な注意を払わずに、酸化アルミニウムからなるパッシベーション膜を安全に製造できるという利点がある。 The concentration of the alkylaluminum compound in the alkylaluminum-containing solution of the present invention can be, for example, 1% by mass or more and 20% by mass or less. In the case of the alkylaluminum compound represented by the general formula (8), 1% by mass to 10% by mass, and in the case of the alkylaluminum compound represented by the general formula (9), 1% by mass to 20% by mass. % Or less is preferable. Since the productivity of a passivation film falls that it is less than 1 mass%, it is preferable that it is 1 mass% or more. The concentration of the alkylaluminum compound in the alkylaluminum-containing solution has an influence on the risk of ignition, etc., particularly during the production of aluminum oxide by applying it in the air. In addition, there is an advantage that a passivation film made of aluminum oxide can be manufactured safely.
 本発明のアルキルアルミニウム含有溶液は、電子供与性を有しかつ活性水素を含有しない有機溶媒以外の有機溶媒として、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒をさらに含むことができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒を添加することで、極性、粘度、沸点、経済性等を調整することができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒としては、例えば、n-ヘキサン、オクタン、n-デカン、等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン、クメン等の芳香族炭化水素;ミネラルスピリット、ソルベントナフサ、ケロシン、石油エーテル、等の炭化水素系溶媒等を挙げることができる。電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒の添加量は、電子供与性を有しかつ活性水素原子を含有しない有機溶媒の効果を妨げない範囲であれば制限はなく、例えば、環状アミド化合物100質量部に対して100質量部以下とすることができる。但し、アルキルアルミニウム化合物の種類、電子供与性を有しかつ活性水素原子を含有しない有機化溶媒、及び、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒の種類により添加可能な範囲は変化する。尚、アルキルアルミニウム化合物含有溶液において、アルキルアルミニウム化合物に対してモル比で1以上の電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有すれば、アルキルアルミニウム化合物含有溶液中のアルキルアルミニウム化合物を化学的に安定化させることができる。従って、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒を併用する場合、この点を考慮して、併用量を決定することが好ましい。 The alkylaluminum-containing solution of the present invention further includes an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom as an organic solvent other than an organic solvent that has an electron donating property and does not contain an active hydrogen. Can do. By adding an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, the polarity, viscosity, boiling point, economy, and the like can be adjusted. Examples of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom include aliphatic hydrocarbons such as n-hexane, octane, and n-decane; cyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane, etc. And alicyclic hydrocarbons; aromatic hydrocarbons such as benzene, toluene, xylene and cumene; hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene and petroleum ether. The amount of the organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is not limited as long as it does not interfere with the effect of the organic solvent that has an electron donating property and does not contain an active hydrogen atom. For example, the amount can be 100 parts by mass or less with respect to 100 parts by mass of the cyclic amide compound. However, it can be added depending on the type of alkylaluminum compound, the organic solvent having electron donating properties and not containing active hydrogen atoms, and the organic solvent not having electron donating properties and containing no active hydrogen atoms. Range varies. In addition, if the alkylaluminum compound-containing solution contains an organic solvent that has an electron donating property of 1 or more in molar ratio to the alkylaluminum compound and does not contain an active hydrogen atom, the alkylaluminum in the alkylaluminum compound-containing solution The compound can be chemically stabilized. Therefore, when an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom is used in combination, it is preferable to determine the combined amount in consideration of this point.
 前記電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒と、アルキルアルミニウム化合物の混合は不活性ガス雰囲気下の反応容器で行うことができ、それぞれあらゆる慣用の方法に従って導入することができる。アルキルアルミニウム化合物は、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒との混合物としても反応容器に導入することができる。 Mixing of the organic solvent having an electron donating property and not containing an active hydrogen atom, and optionally an organic solvent not having an electron donating property and containing an active hydrogen atom, and an alkylaluminum compound is an inert gas atmosphere. The reaction can be carried out in the lower reaction vessel, each introduced according to any conventional method. The alkylaluminum compound can also be introduced into the reaction vessel as a mixture with an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom.
 混合容器への導入順序は、アルキルアルミニウム化合物、電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒の順、又は、電子供与性を有しかつ活性水素原子を含有しない有機溶媒、及び所望により、電子供与性を有さず、かつ活性水素原子を含有しない有機溶媒、アルキルアルミニウムの順、又は全て同時に導入の、どれでもよい。 The order of introduction into the mixing vessel is as follows: an alkylaluminum compound, an organic solvent that has an electron-donating property and does not contain an active hydrogen atom, and an organic solvent that does not have an electron-donating property and does not contain an active hydrogen atom if desired. An organic solvent that does not have an electron donating property and does not contain an active hydrogen atom, and optionally an organic solvent that does not have an electron donating property and does not contain an active hydrogen atom. Any of the introductions may be.
 混合容器への導入時間は、混合する原料の種類や容量等により適宜設定できるが、例えば、1分から10時間の間で行うことができる。導入時の温度は-15~150℃の間の任意の温度を選択できる。但し、導入時に引火する危険性排除等の安全性を考慮すると-15~80℃の範囲であることが好ましい。 The introduction time into the mixing container can be set as appropriate depending on the type and volume of the raw materials to be mixed, but can be set, for example, between 1 minute and 10 hours. As the temperature at the time of introduction, any temperature between −15 to 150 ° C. can be selected. However, in consideration of safety such as elimination of danger of ignition when introduced, it is preferably in the range of −15 to 80 ° C.
 混合容器への原料の導入時、導入後の攪拌工程は、回分操作式、半回分操作式、連続操作式のいずれでもよい。 At the time of introducing the raw material into the mixing container, the stirring process after the introduction may be any of batch operation type, semi-batch operation type, and continuous operation type.
[パッシベーション膜を有するシリコン基板の製造方法]
 本発明のパッシベーション膜を有するシリコン基板の製造方法は、前記本発明のパッシベーション膜形成剤として説明したアルキルアルミニウム化合物含有溶液をシリコン基材の裏面の少なくとも一部に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることで、パッシベーション膜を形成することを含む、酸化アルミニウムからなるパッシベーション膜を有するシリコン基板を得る方法である。
[Method for producing silicon substrate having passivation film]
In the method for producing a silicon substrate having a passivation film of the present invention, a coating film is formed by applying the alkylaluminum compound-containing solution described as the passivation film forming agent of the present invention to at least a part of the back surface of the silicon substrate. A passivation film made of aluminum oxide, including forming the passivation film by heating the formed coating film after drying the organic solvent or in parallel with drying of the organic solvent to aluminum oxide. This is a method for obtaining a silicon substrate.
 前記シリコン基材への塗布は、スプレー塗布法、静電スプレー塗布法、インクジェット法、ミストCVD法、等の方法で行うことが好ましく、装置がより簡便であることからスプレー塗布法がより好ましい。 Application to the silicon substrate is preferably performed by a spray coating method, an electrostatic spray coating method, an ink jet method, a mist CVD method, or the like, and a spray coating method is more preferable because the apparatus is simpler.
 前記基材への塗布は、不活性雰囲気下でも空気雰囲気下でも行うことができる。不活性雰囲気下の場合、図5-1のような装置一式を用いて実施できる。 Application to the substrate can be performed in an inert atmosphere or an air atmosphere. In the case of an inert atmosphere, it can be carried out using a set of apparatuses as shown in FIG.
 前記基材への塗布は、加圧下や減圧下でも実施できるが、経済性の点から、大気圧下で行うことが装置も簡便となり好ましい。 Application to the substrate can be carried out under pressure or reduced pressure, but it is preferable to carry out under atmospheric pressure from the viewpoint of economy because the apparatus is simple.
 前記基材への塗布は、アルキルアルミニウム含有溶液を平均粒径が1~100μmの液滴にしてシリコン基材に塗布することにより実施する。アルキルアルミニウム化合物含有溶液の平均粒径が1μm未満の液滴を用いると、材料の使用効率(基材への付着効率)が低下し、平均粒径が100μmを超える液滴を用いると、塗布により形成された膜の特性(特に緻密性)が低下するため、アルキルアルミニウム含有溶液の平均粒径は、上記範囲に限定される。アルキルアルミニウム含有溶液は、平均粒径が3~30μmの液滴にして基材に塗布することが、材料の使用効率(基材への付着効率)が高く、かつ塗布により形成された膜の特性(特に緻密性)が良好という観点から好ましい。例えば、アルキルアルミニウム含有溶液を精密塗布用スプレーノズルに通すことにより1~100μmの液滴にすることができる。スプレーノズルは2流体ノズルであることが好ましく、液滴は3~30μmであることが好ましい。3μm以上であることで、液滴の基材への付着効率が向上し、30μm以下であることで膜特性(透明性、面内均一性、緻密性)がより良好になる。 Application to the substrate is carried out by applying an alkylaluminum-containing solution as droplets having an average particle diameter of 1 to 100 μm to the silicon substrate. When using droplets having an average particle size of the alkylaluminum compound-containing solution of less than 1 μm, the use efficiency of the material (adhesion efficiency to the substrate) decreases, and when droplets having an average particle size of more than 100 μm are used, Since the properties (particularly denseness) of the formed film are lowered, the average particle size of the alkylaluminum-containing solution is limited to the above range. Alkyl aluminum-containing solutions can be applied to a substrate in the form of droplets having an average particle size of 3 to 30 μm, and the use efficiency of the material (adhesion efficiency to the substrate) is high, and the characteristics of the film formed by coating It is preferable from the viewpoint of good (especially denseness). For example, by passing an alkylaluminum-containing solution through a precision application spray nozzle, droplets of 1 to 100 μm can be formed. The spray nozzle is preferably a two-fluid nozzle, and the droplets are preferably 3 to 30 μm. When it is 3 μm or more, the adhesion efficiency of the droplets to the substrate is improved, and when it is 30 μm or less, the film properties (transparency, in-plane uniformity, denseness) are further improved.
 塗布する際の、スプレーノズルと基材との距離を50cm以内として実施することが好ましく、さらには20cm以内として実施することがより好ましい。50cm以上になると、液滴は基材に到達するまでに液滴中の溶媒が乾燥し液滴の大きさが小さくなり液滴の基材への付着効率が低下する。 It is preferable that the distance between the spray nozzle and the base material is 50 cm or less, more preferably 20 cm or less. When the distance is 50 cm or more, the solvent in the droplet dries before the droplet reaches the substrate, the size of the droplet decreases, and the adhesion efficiency of the droplet to the substrate decreases.
 塗布をする際の雰囲気温度は50℃以下であることが好ましい。 The atmospheric temperature when applying is preferably 50 ° C. or less.
 空気中でスプレー塗布する場合、例えば、25℃に換算した相対湿度が20~90%分の水を含有した空気雰囲気であることができる。25℃に換算した相対湿度は、酸化アルミニウム薄膜の形成がスムーズである観点からは、より好ましくは30~70%である。 In the case of spray application in the air, for example, it can be an air atmosphere containing 20 to 90% of relative humidity converted to 25 ° C. The relative humidity converted to 25 ° C. is more preferably 30 to 70% from the viewpoint of smooth formation of the aluminum oxide thin film.
 不活性雰囲気下でスプレー塗布をする場合、図5-1の装置中、水分導入口6より水蒸気等の形態として水分を導入させることにより、基材付近の雰囲気を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下にして実施する。 When spray coating is performed in an inert atmosphere, the atmosphere in the vicinity of the substrate is changed from 0.5 mol% to 30 mol by introducing water in the form of water vapor or the like from the water introduction port 6 in the apparatus shown in FIG. It is carried out under an inert gas atmosphere containing% moisture.
 前記シリコン基材としては、アモルファスシリコン、結晶シリコン;単結晶シリコン、多結晶シリコン等を挙げることができる。 Examples of the silicon substrate include amorphous silicon, crystalline silicon; single crystal silicon, polycrystalline silicon, and the like.
 前記シリコン基材の形状は、フィルム、板、又は三次元形状を有する立体構造物、例えば、球状を挙げることができる。 The shape of the silicon substrate may be a film, a plate, or a three-dimensional structure having a three-dimensional shape, for example, a spherical shape.
 前記シリコン基材は、パッシベーション効果が有効であるという観点から、結晶シリコン基板であることが好ましい。 The silicon base material is preferably a crystalline silicon substrate from the viewpoint that the passivation effect is effective.
 前記アルキルアルミニウム化合物含有溶液を塗布して塗膜を形成し、次いで形成した塗膜を、基材を所定の温度として、有機溶媒を乾燥後、または乾燥と同時に所定の温度で加熱することで、焼成して酸化アルミニウム薄膜を形成させる。アルキルアルミニウム化合物含有溶液を塗布して形成する塗膜の膜厚は、パッシベーション膜として要求される特性を考慮して適宜決定できる。尚、塗布前に基材を所定の温度に加熱しておくこともでき、所定の温度に加熱した基材に塗布することで、塗布と同時に溶媒を乾燥、または、乾燥と同時に焼成させることもできる。 By applying the alkylaluminum compound-containing solution to form a coating film, and then heating the formed coating film at a predetermined temperature after drying the organic solvent or simultaneously with the drying, with the substrate as a predetermined temperature, Baking to form an aluminum oxide thin film. The film thickness of the coating film formed by applying the alkylaluminum compound-containing solution can be appropriately determined in consideration of the characteristics required as a passivation film. In addition, the substrate can be heated to a predetermined temperature before coating, and by applying to the substrate heated to a predetermined temperature, the solvent can be dried at the same time as coating, or baked at the same time as drying. it can.
 前記溶媒を乾燥させるための所定の温度は、例えば、20~250℃の間で任意の温度を選択できる。前記溶媒を、例えば、0.5~60分かけて乾燥させることができる。但し、これらの範囲に限定される意図ではない。 The predetermined temperature for drying the solvent can be selected, for example, from 20 to 250 ° C. The solvent can be dried, for example, over 0.5 to 60 minutes. However, it is not intended to be limited to these ranges.
 前記酸化アルミニウムを形成させるための焼成させるための所定の温度は、例えば、300~600℃の間で任意の温度を選択できる。但し、基材の種類を考慮して、基材がダメージを受けない温度に設定することが適当である。焼成させる所定の温度が、溶媒を乾燥させる所定の温度と同一な場合、溶媒の乾燥と焼成を同時に行うことができる。溶媒乾燥した前駆膜を、例えば、0.5~300分かけて焼成させることができる。 As the predetermined temperature for firing for forming the aluminum oxide, for example, an arbitrary temperature between 300 ° C. and 600 ° C. can be selected. However, considering the type of the substrate, it is appropriate to set the temperature so that the substrate is not damaged. When the predetermined temperature for baking is the same as the predetermined temperature for drying the solvent, drying and baking of the solvent can be performed simultaneously. The solvent-dried precursor film can be fired, for example, over 0.5 to 300 minutes.
 特に焼成温度を350~500℃にすることにより、より多くの負の固定電荷を発生させることができると推定される。 Especially, it is estimated that more negative fixed charges can be generated by setting the firing temperature to 350 to 500 ° C.
 前記のようにして得られる酸化アルミニウムからなるパッシベーション膜の膜厚は、例えば、0.005μm~3μmの範囲であることができ、好ましく0.01μm~0.3μmの範囲である。0.01μm以上とすることで、膜の連続性が向上し、膜の付着がない部分ができる可能性を低くすることができ、0.3μm以下であれば、太陽電池素子製造時の焼成処理時にブリスタリングによる剥離を起こす可能性が低くなるという利点がある。 The thickness of the passivation film made of aluminum oxide obtained as described above can be, for example, in the range of 0.005 μm to 3 μm, and preferably in the range of 0.01 μm to 0.3 μm. By setting the thickness to 0.01 μm or more, the continuity of the film can be improved, and the possibility that a portion without film adhesion can be reduced can be reduced. There is an advantage that the possibility of causing peeling due to blistering is sometimes reduced.
 必要に応じて前記のようにして得られた酸化アルミニウム薄膜を、酸素等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、多量に水分が存在する水蒸気雰囲気下、またはアルゴン、窒素、酸素等のプラズマ雰囲気下で、所定の温度で加熱することにより酸化アルミニウムの結晶性、緻密性を向上させることもできる。紫外線等の光照射やマイクロ波処理により得られた酸化アルミニウム薄膜中の残存有機物等を除去することができる。 If necessary, the aluminum oxide thin film obtained as described above can be used in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, a water vapor atmosphere in which a large amount of moisture exists, or argon, nitrogen, oxygen, etc. The crystallinity and denseness of aluminum oxide can be improved by heating at a predetermined temperature in the plasma atmosphere. Residual organic substances and the like in the aluminum oxide thin film obtained by irradiation with light such as ultraviolet rays or microwave treatment can be removed.
 本発明の製造方法によれば、実効ライフタイムが、例えば、150~2000μsの範囲であり、再結合速度が、厚みが300μmのシリコン基材使用時に、例えば、7~100cm/sの範囲であるパッシベーション膜をシリコン基材上に形成することができる。加熱焼成により形成した酸化アルミニウム膜は、さらに、フォーミングガス雰囲気下で処理することで、実効ライフタイムをより長くし、再結合速度を早めることもできる。フォーミングガスとしては、例えば、非酸化ガス(水素含有ガス、窒素含有ガス等)を挙げることができる。 According to the manufacturing method of the present invention, the effective lifetime is, for example, in the range of 150 to 2000 μs, and the recombination speed is, for example, in the range of 7 to 100 cm / s when using a silicon substrate having a thickness of 300 μm. A passivation film can be formed on the silicon substrate. The aluminum oxide film formed by heating and firing can be further processed in a forming gas atmosphere to increase the effective lifetime and increase the recombination rate. Examples of forming gas include non-oxidizing gas (hydrogen-containing gas, nitrogen-containing gas, etc.).
[太陽電池素子]
 本発明は、前記本発明のパッシベーション膜を有するシリコン基板を用いた太陽電池素子を包含する。
[Solar cell element]
The present invention includes a solar cell element using a silicon substrate having the passivation film of the present invention.
 図5-2に、本発明の太陽電池素子の実施形態の一例を示す。p型の太陽電池素子100は、厚みが180~300μmのp型シリコン半導体基板11より構成される。11の受光面側の表面に、厚みが0.3~1.0μmのn型不純物層であるn層12と、その上に窒化シリコン薄膜からなる反射防止兼パッシベーション薄膜13と、銀からなるグリッド電極15がそれぞれ、SiHとNHを用いたプラズマCVD法等、銀粉末を含有するペースト組成物を用いたスクリーン印刷法等により形成される。 FIG. 5-2 shows an example of the embodiment of the solar cell element of the present invention. The p-type solar cell element 100 is composed of a p-type silicon semiconductor substrate 11 having a thickness of 180 to 300 μm. 11 on the light receiving surface side, an n + layer 12 which is an n-type impurity layer having a thickness of 0.3 to 1.0 μm, an antireflection / passivation thin film 13 made of a silicon nitride thin film, and silver. Each of the grid electrodes 15 is formed by a screen printing method using a paste composition containing silver powder, such as a plasma CVD method using SiH 3 and NH 3 .
 シリコン半導体基板11の受光面側と逆側の裏面には、本発明の酸化アルミニウム薄膜からなるパッシベーション薄膜14が形成され、14を貫通するように所定のパターン形状に則ったアルミニウム電極16が形成される。 A passivation thin film 14 made of an aluminum oxide thin film of the present invention is formed on the back surface opposite to the light receiving surface side of the silicon semiconductor substrate 11, and an aluminum electrode 16 conforming to a predetermined pattern shape is formed so as to penetrate the 14. The
 アルミニウム電極16は、通常、アルミニウム粉末を含有するペースト組成物をスクリーン印刷等により塗布、乾燥させた後、アルミニウムの融点である660℃より高い温度にて1~10秒の短時間焼成することによって形成される。この焼成(ファイアースルー)の際にアルミニウムがシリコン半導体基板11の内部に拡散することにより、アルミニウム電極16とシリコン半導体基板11の間にAl-Si合金層17が形成され、さらに同時に、アルミニウム原子の拡散による不純物層としてp層(Back Surface Field(BSF)層)18が形成される。 The aluminum electrode 16 is usually formed by applying and drying a paste composition containing aluminum powder by screen printing or the like, followed by baking for a short time of 1 to 10 seconds at a temperature higher than 660 ° C., which is the melting point of aluminum. It is formed. During the firing (fire-through), aluminum diffuses into the silicon semiconductor substrate 11 to form an Al—Si alloy layer 17 between the aluminum electrode 16 and the silicon semiconductor substrate 11, and at the same time, aluminum atoms A p + layer (Back Surface Field (BSF) layer) 18 is formed as an impurity layer by diffusion.
 以下、本発明を実施例に基づいて更に詳細に説明する。但し、実施例は本発明の例示であって、本発明は実施例に限定される意図ではない。 Hereinafter, the present invention will be described in more detail based on examples. However, the examples are illustrative of the present invention, and the present invention is not intended to be limited to the examples.
<本発明の第一の態様>
 本発明のアルキルアルミニウム化合物含有溶液およびアルキルアルミニウム部分加水分解物含有溶液の調製は、窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。
<First embodiment of the present invention>
The alkyl aluminum compound-containing solution and alkyl aluminum partial hydrolyzate-containing solution of the present invention were prepared in a nitrogen gas atmosphere, and all solvents were used after dehydration and deaeration.
<トリアルキルアルミニウムのモル数>
 トリアルキルアルミニウムのモル数は以下の式より算出した。
[トリアルキルアルミニウムのモル数]
=[導入したトリアルキルアルミニウムの質量(g)]/[トリアルキルアルミニウムの分子量(トリエチルアルミニウムの場合114.16)]
<Mole number of trialkylaluminum>
The number of moles of trialkylaluminum was calculated from the following formula.
[Mole number of trialkylaluminum]
= [Mass of introduced trialkylaluminum (g)] / [Molecular weight of trialkylaluminum (114.16 in the case of triethylaluminum)]
<物性測定>
 本発明のアルキルアルミニウム化合物含有溶液、アルキルアルミニウム部分加水分解物含有溶液、およびアルキルアルミニウム部分加水分解物含有溶液の溶媒をエバポレーターにより乾燥させたものをCに溶解させた後、NMR装置(JEOL RESONANCE社製「JNM-ECA500」)にて1H-NMR測定を実施した。
<Measurement of physical properties>
The solution of the alkylaluminum compound-containing solution, the alkylaluminum partial hydrolyzate-containing solution, and the alkylaluminum partial hydrolyzate-containing solution of the present invention, which is dried by an evaporator, is dissolved in C 6 D 6 , and then an NMR apparatus ( 1H-NMR measurement was performed with “JNM-ECA500” manufactured by JEOL RESONANCE.
 本発明のアルキルアルミニウム部分加水分解物含有溶液の溶媒をエバポレーターにより乾燥させたものを、FT-IR分光装置(日本分光社製「FT/IR-4100」)にて透過法によりIR測定を実施した。 The solvent of the alkylaluminum partial hydrolyzate-containing solution of the present invention was dried by an evaporator, and IR measurement was performed by a transmission method using an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). .
 本発明のアルキルアルミニウム化合物含有溶液、アルキルアルミニウム部分加水分解物含有溶液の空気に対する安定性は、「危険物確認試験マニュアル」(消防庁危険物規制課監修、新日本法規出版株式会社、1989)中、第3節「第3類の試験方法」、2「自然発火性試験」に基づき試験した。磁性カップ上でも自然発火するものをランク1、磁性カップ上では自然発火しないがろ紙を焦がすものをランク2、自然発火せず、かつろ紙を焦がさないものを「危険性無し」と分類した。 The stability of the alkylaluminum compound-containing solution and the alkylaluminum partial hydrolyzate-containing solution of the present invention to air is described in the “Dangerous Goods Confirmation Test Manual” (supervised by the Fire and Disaster Management Agency Dangerous Goods Regulations Division, New Japan Law Publishing Co., 1989). The test was conducted based on Section 3 “Test Method of Class 3” and 2 “Spontaneous Ignition Test”. Those that spontaneously ignite on the magnetic cup are classified as Rank 1, those that do not ignite spontaneously on the magnetic cup but that scorch the filter paper are classified as Rank 2, and those that do not ignite spontaneously and do not scorch the filter paper are classified as “no danger”.
 本発明の製造方法により作成された酸化アルミニウム薄膜は、FT-IR分光装置(日本分光社製「FT/IR-4100」)にてZnSeプリズムを用いたATR(Attenuated Total Reflection:全反射)法によりATR補正なしで相対的にIR測定を実施した。 The aluminum oxide thin film prepared by the production method of the present invention is obtained by an ATR (Attenuated Total Reflection) method using a ZnSe prism with an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). Relative IR measurements were performed without ATR correction.
 本来ZnSeプリズムを用いた場合、屈折率が1.7を超える薄膜の測定は難しく、一般的な酸化アルミニウムの屈折率が1.77であることを考えると測定は難しいと想定された。しかし、驚くべきことに測定が可能であった。本発明による酸化アルミニウム薄膜の屈折率は1.7以下であることが推定された。 Originally, when a ZnSe prism was used, it was difficult to measure a thin film having a refractive index exceeding 1.7, and it was assumed that the measurement was difficult considering that the refractive index of a general aluminum oxide was 1.77. However, surprisingly measurements were possible. The refractive index of the aluminum oxide thin film according to the present invention was estimated to be 1.7 or less.
 本発明の製造方法により作成された酸化アルミニウム薄膜は、膜の一部をナイフで削り取り、触針式表面形状測定装置(ブルカーナノ社製、DektakXT-S)を用いて膜厚を測定した。 The aluminum oxide thin film prepared by the production method of the present invention was partly cut with a knife, and the film thickness was measured using a stylus type surface shape measuring device (DektakXT-S manufactured by Bruker Nano).
[実施例1-1]
 N-メチル-2-ピロリドン(以下NMP)20.0gにトリエチルアルミニウム(東ソー・ファインケム社製)5.31gを25℃で加え、十分攪拌することにより21質量%のトリエチルアルミニウムNMP溶液を得た。NMRスペクトルは、24時間後再測定したところ最初に得られたスペクトルと同じスペクトルが得られた。
[Example 1-1]
To 210.0 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP), 5.31 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 21 mass% triethylaluminum NMP solution. The NMR spectrum was remeasured 24 hours later, and the same spectrum as the spectrum obtained first was obtained.
 このようにして得られた21質量%トリエチルアルミニウムNMP溶液を自然発火性試験したところ、「危険性無し」と分類された。 The 21 mass% triethylaluminum NMP solution thus obtained was subjected to a spontaneous ignition test, and was classified as “no danger”.
[実施例1-2]
 NMP5.00gにトリメチルアルミニウム(東ソー・ファインケム社製)1.32gを25℃で加え、十分攪拌することにより21質量%のトリメチルアルミニウムNMP溶液を得た。このようにして得られた21質量%トリメチルアルミニウムNMP溶液を自然発火性試験したところ、「危険性無し」と分類された。
[Example 1-2]
By adding 1.32 g of trimethylaluminum (manufactured by Tosoh Finechem) to 5.00 g of NMP at 25 ° C. and sufficiently stirring, a 21 mass% trimethylaluminum NMP solution was obtained. When the 21 mass% trimethylaluminum NMP solution obtained in this way was subjected to a pyrophoric test, it was classified as “no danger”.
[実施例1-3]
 NMP5.00gにトリイソブチルアルミニウム(東ソー・ファインケム社製)3.48gを25℃で加え、十分攪拌することにより41質量%のトリイソブチルアルミニウムNMP溶液を得た。このようにして得られた41質量%トリイソブチルアルミニウムNMP溶液を自然発火性試験したところ、「危険性無し」と分類された。
[Example 1-3]
To NMP 5.00 g, 3.48 g of triisobutylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 41 mass% triisobutylaluminum NMP solution. The 41 mass% triisobutylaluminum NMP solution obtained in this manner was subjected to a spontaneous ignition test, and was classified as “no danger”.
 前記までの自然発火性試験の結果を表1-1にまとめた。 The results of the spontaneous ignition test described above are summarized in Table 1-1.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
[実施例1-4]
 NMP8.01gに、混合キシレン0.90g、トリエチルアルミニウム2.10gを25℃で加え、十分攪拌することにより19質量%のトリエチルアルミニウムNMPキシレン混合溶液を得た。このようにして得られた19質量%トリエチルアルミニウムNMPキシレン混合溶液を自然発火性試験したところ、「危険性無し」と分類された。
[Example 1-4]
To 9.01 g of NMP, 0.90 g of mixed xylene and 2.10 g of triethylaluminum were added at 25 ° C. and sufficiently stirred to obtain a 19 mass% triethylaluminum NMP xylene mixed solution. The 19 mass% triethylaluminum NMP xylene mixed solution thus obtained was subjected to a spontaneous ignition test, and was classified as “no danger”.
[実施例1-5]
 NMP8.01gに、混合キシレン0.90g、トリメチルアルミニウム(東ソー・ファインケム社製)2.11gを25℃で加え、十分攪拌することにより19質量%のトリメチルアルミニウムNMPキシレン混合溶液を得た。このようにして得られた19質量%トリメチルアルミニウムNMPキシレン混合溶液を自然発火性試験したところ、「危険性無し」と分類された。
[Example 1-5]
To NMP 8.01 g, 0.90 g of mixed xylene and 2.11 g of trimethylaluminum (manufactured by Tosoh Finechem) were added at 25 ° C. and sufficiently stirred to obtain a 19 mass% trimethylaluminum NMP xylene mixed solution. When the 19 mass% trimethylaluminum NMP xylene mixed solution thus obtained was subjected to a pyrophoric test, it was classified as “no danger”.
[実施例1-6]
 NMP20.0gにトリエチルアルミニウム(東ソー・ファインケム社製)8.59gを25℃で加え、十分攪拌した。その後、25℃で20質量%水NMP溶液6.77g([水]/[トリエチルアルミニウム]=1.0)を50分間かけて滴下して加えた。25℃で5時間攪拌を続けることにより熟成反応を行い、トリエチルアルミニウム加水分解組成物NMP溶液を得た。NMR測定したところ図1-1のようなスペクトルが得られ、トリエチルアルミニウムに対応するピークの消失が確認された。
[Example 1-6]
To 20.0 g of NMP, 8.59 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at 25 ° C. and sufficiently stirred. Thereafter, 6.77 g of a 20 mass% water NMP solution ([water] / [triethylaluminum] = 1.0) was added dropwise at 25 ° C. over 50 minutes. The aging reaction was carried out by continuing stirring at 25 ° C. for 5 hours to obtain a triethylaluminum hydrolyzed composition NMP solution. As a result of NMR measurement, a spectrum as shown in FIG. 1-1 was obtained, and the disappearance of the peak corresponding to triethylaluminum was confirmed.
 得られたトリエチルアルミニウム加水分解組成物NMP溶液をエバポレーターを用いて70℃で90分かけて溶媒乾燥させたものを透過法によりIR測定したところ、図1-2のようなスペクトルが得られた。400から1500cm-1付近にブロードなAl-O-Alの振動ピークが確認され、加水分解によるAl-O-Al結合の形成が確認できた。 When the obtained triethylaluminum hydrolyzed composition NMP solution was solvent-dried at 70 ° C. for 90 minutes using an evaporator and subjected to IR measurement by a transmission method, a spectrum as shown in FIG. 1-2 was obtained. A broad Al—O—Al vibration peak was observed in the vicinity of 400 to 1500 cm −1 , and formation of Al—O—Al bonds by hydrolysis was confirmed.
[実施例1-7]
 NMP18.0gに、混合キシレン2.00g、トリエチルアルミニウム(東ソー・ファインケム社製)8.59gを25℃で加え、十分攪拌した。その後、25℃で20質量%水NMP溶液6.77g([水]/[トリエチルアルミニウム]=1.0)を50分間かけて滴下して加えた。25℃で5時間攪拌を続けることにより熟成反応を行い、トリエチルアルミニウム加水分解組成物NMP溶液を得た。NMR測定したところ、実施例1-6と同様にトリエチルアルミニウムに対応するピークの消失が確認された。
[Example 1-7]
To 18.0 g of NMP, 2.00 g of mixed xylene and 8.59 g of triethylaluminum (manufactured by Tosoh Finechem) were added at 25 ° C. and sufficiently stirred. Thereafter, 6.77 g of a 20 mass% water NMP solution ([water] / [triethylaluminum] = 1.0) was added dropwise at 25 ° C. over 50 minutes. The aging reaction was carried out by continuing stirring at 25 ° C. for 5 hours to obtain a triethylaluminum hydrolyzed composition NMP solution. As a result of NMR measurement, the disappearance of the peak corresponding to triethylaluminum was confirmed as in Example 1-6.
[実施例1-8]
 実施例1-6で得られたトリエチルアルミニウム加水分解組成物NMP溶液を、空気雰囲気下、18mm角のガラス基板(コーニング社製、EagleXG)上に50μl滴下し、スピンコーターにより2000rpm、20秒間スピンして塗布した。25℃で1分乾燥させた後、90℃で5分加熱することで薄膜を形成させた。
[Example 1-8]
50 μl of the triethylaluminum hydrolyzed composition NMP solution obtained in Example 1-6 was dropped on an 18 mm square glass substrate (Corning Inc., EagleXG) in an air atmosphere and spun at 2000 rpm for 20 seconds with a spin coater. And applied. After drying at 25 ° C. for 1 minute, a thin film was formed by heating at 90 ° C. for 5 minutes.
 図1-3のような透明な薄膜が得られ、ATR法によるIR測定したところ、図1-4のようなスペクトルが得られた。550から1500cm-1付近にブロードなAl-O-Alの振動ピーク、2500から4000cm-1付近にブロードなAl-OHの振動ピークが確認され、Al-O-Al、Al-OH結合の形成が確認できた。したがって、酸化アルミニウム薄膜の形成が確認された。3000cm-1付近の有機物の振動ピークがないため、残存有機物が無いことが確認できた。ガラス基板自体のATR法によるIRスペクトルは図1-5であり明らかに図1-4と異なる。膜厚は638nmであった。 A transparent thin film as shown in FIG. 1-3 was obtained, and when IR measurement was performed by the ATR method, a spectrum as shown in FIG. 1-4 was obtained. A broad Al—O—Al vibration peak in the vicinity of 550 to 1500 cm −1 and a broad Al—OH vibration peak in the vicinity of 2500 to 4000 cm −1 were confirmed, indicating the formation of Al—O—Al and Al—OH bonds. It could be confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm −1, it was confirmed that there was no residual organic substance. The IR spectrum of the glass substrate itself by the ATR method is as shown in FIG. The film thickness was 638 nm.
<本発明の第二の態様>
 全ての有機アルミニウム化合物を含む溶液の調製およびそれを用いた成膜は窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。
<Second embodiment of the present invention>
Preparation of a solution containing all organoaluminum compounds and film formation using the solution were performed in a nitrogen gas atmosphere, and all solvents were used after dehydration and deaeration.
<トリアルキルアルミニウムのモル数>
 本発明の第一の態様と同様。
 
<Mole number of trialkylaluminum>
Similar to the first aspect of the present invention.
 アルミニウム酸化物膜に成膜時における水は、必要に応じて加熱した水に窒素をバブリングさせることによって窒素中に水を飽和させた状態のものとして成膜雰囲気に供給した。 Water at the time of film formation on the aluminum oxide film was supplied to the film forming atmosphere as water in which nitrogen was saturated by bubbling nitrogen into heated water as necessary.
 実施例および比較例における各成膜における基材上におけるアルミニウム酸化物およびその膜の形成は、ATR-IR(全反射(attenuated total reflection,:ATR)法による赤外分光法)、EPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)、XRD(X‐ray diffraction:X線回折)による解析で確認した。 The formation of aluminum oxide and its film on the substrate in each film formation in Examples and Comparative Examples is performed by ATR-IR (Attenuated 全 total reflection, ATR), EPMA (Electron Probe). Micro-Analyzer (electron beam microanalyzer) and XRD (X-ray diffraction: X-ray diffraction) were used for analysis.
-可視光等の透過率は、分光光度計を用いて測定した。
-アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定または薄膜断面のSEM測定により行った。
-成膜したアルミニウム酸化物膜の基材への密着性は、、JIS K 5600-5-6「塗料一般試験方法-第5部:塗膜の機械的性質-第6節:付着性(クロスカット法)」またはスコッチテープ(R)(3M社製)、セロハンテープ等の粘着テープを用いた基材に塗布製膜したアルミニウム酸化物膜へのテープ貼り・剥がしによる剥離試験により確認した。
-薬液の反応性は、温度(20℃)および湿度(50%)が一定な無風大気中において濾紙に薬液を滴下し、濾紙上での反応性を目視で確認した。
-窒素雰囲気中の水分値は、露点測定を行い、体積%に換算した値とした。
-成膜時の塗布および溶媒乾燥や加熱における窒素雰囲気は、特に断りのない場合以外は、窒素ガス中の水分が100ppm(露点温度-42℃)~375ppm(露点温度-30℃)の範囲となるように制御した。なお、設定を調整することで、5ppm(露点温度-66℃)~375ppm(露点温度-30℃)の範囲内に調整とすることも可能である。
-The transmittance of visible light etc. was measured using a spectrophotometer.
-The thickness of the aluminum oxide film was measured by a stylus type surface profile measuring device or SEM measurement of a thin film cross section.
-Adhesion of the aluminum oxide film to the substrate is determined according to JIS K 5600-5-6 "General test method for coating materials-Part 5: Mechanical properties of coating film-Section 6: Adhesion (cross Cut method) "or Scotch tape (R) (manufactured by 3M), and a peeling test by applying and peeling the tape on an aluminum oxide film formed on a substrate using an adhesive tape such as cellophane tape.
-The reactivity of the chemical solution was confirmed by visual observation of the reactivity on the filter paper by dropping the chemical solution onto the filter paper in a windless atmosphere with a constant temperature (20 ° C) and humidity (50%).
-The moisture value in the nitrogen atmosphere was measured by dew point measurement and converted to volume%.
-Nitrogen atmosphere for coating, solvent drying and heating during film formation is in the range of 100 ppm (dew point temperature -42 ° C) to 375 ppm (dew point temperature-30 ° C) unless otherwise specified. Controlled to be. It is also possible to adjust the setting within the range of 5 ppm (dew point temperature −66 ° C.) to 375 ppm (dew point temperature −30 ° C.).
[実施例2-1]
 テトラヒドロフラン(THF)73.2gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)11.35g を室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水1.08gを含有したTHF溶液36.6gを、水のTEALに対するモル比(水/TEAL)が0.6になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-1]
Triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) (11.35 g) was added to 73.2 g of tetrahydrofuran (THF) at room temperature. To a TEAL / THF solution obtained by thorough stirring, 36.6 g of a THF solution containing 1.08 g of water was removed in a molar ratio of water to TEAL (water / TEAL) was added dropwise with stirring so as to be 0.6. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物A)を得た。また、組成物Aの一部を真空乾燥により溶媒等を除去した後のトリエチルアルミニウムを部分的に加水分解した生成物を主成分とする残存物について、1H-NMR(THF-d,ppm)測定を行い、図2-2のスペクトルを得た。 In this way, a composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum was obtained. In addition, a 1 H-NMR (THF-d 8 ppm ) Measurement was performed to obtain the spectrum of FIG.
 この組成物Aをスピンコート法により18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))表面上に塗布した。窒素雰囲気下、室温において、前記溶液50μlを前記ガラス基板に滴下し、回転数1000rpmで20秒間基板を回転させて溶液をガラス基板全体に塗布し、室温で乾燥の後、基板を所定の各温度で2分加熱することで溶媒を乾燥させると同時に膜を形成させた。 18mm square (thickness 0.7 mm) glass substrate by spin coating the composition A was applied to (Corning, EagleXG (R)) on the surface. In a nitrogen atmosphere, at room temperature, 50 μl of the solution is dropped onto the glass substrate, the substrate is rotated for 20 seconds at a rotation speed of 1000 rpm, the solution is applied to the entire glass substrate, dried at room temperature, and then the substrate is heated to a predetermined temperature. The film was formed at the same time as drying the solvent by heating for 2 minutes.
 この膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、いずれの温度の加熱で得られた膜においても、組成物A中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。図2-3に130℃の加熱によって得られた膜、図2-4にガラス基板のみのそれぞれのATR-IR分析結果をそれぞれ示した。得らえた膜はいずれも透過率が高く透明であり、各温度における加熱で得られた膜の550nmにおける垂直透過率は表2-1の値を得た。 The substrate with this film is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR. In any film obtained by heating at any temperature, the solvent or triethylaluminum contained in the composition A It was confirmed that no peak derived from an organic substance such as an ethyl group contained in the partial hydrolyzate was formed, and the formation of an aluminum oxide film was confirmed. FIG. 2-3 shows the film obtained by heating at 130 ° C., and FIG. 2-4 shows the results of ATR-IR analysis of only the glass substrate. All of the obtained films were transparent with high transmittance, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature was the value shown in Table 2-1.
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000046
[実施例2-2]
 実施例2-1において、塗布成膜の操作を3回繰り返し、300℃において同様に膜を得た。300℃において加熱して得られたアルミニウム酸化物膜の550nmにおける垂直透過率は94%であった。
[Example 2-2]
In Example 2-1, the coating film forming operation was repeated three times, and a film was similarly obtained at 300 ° C. The vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 94%.
[実施例2-3]
 テトラヒドロフラン(THF)74.18gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)27.94gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水4.41gを含有したTHF溶液38.04gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-3]
27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added to 74.18 g of tetrahydrofuran (THF) at room temperature. To the TEAL / THF solution obtained by thorough stirring, 38.04 g of a THF solution containing 4.41 g of water was removed in a molar ratio of water to TEAL (water) while removing heat generated by the reaction so as to reach about 20 ° C. / TEAL) was added dropwise with stirring so as to be 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物B)を得た。また、組成物Bの一部を真空乾燥により溶媒等を除去した後のトリエチルアルミニウムを部分的に加水分解した生成物を主成分とする残存物について、1H-NMR(THF-d,ppm) 測定を行い、図2-5のスペクトルを得た。 In this way, a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum was obtained. In addition, a 1 H-NMR (THF-d 8 , ppm) of the residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum after removing a part of the composition B by vacuum drying was used. ) Measurement was performed to obtain the spectrum of FIG. 2-5.
 この組成物Bを用いて、実施例2-1と同様の手法でガラス基板に塗布成膜を行った。塗布および溶媒の乾燥後の加熱は、50、100、130、200、250、300、350、400℃の各温度で各々について2分間行った。各温度で得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物B中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透過率が高く透明であり、各温度における加熱で得られた膜の550nmにおける垂直透過率は表2-2の値を得た。 Using this composition B, a coating film was formed on a glass substrate in the same manner as in Example 2-1. The heating after coating and drying of the solvent was performed for 2 minutes at each temperature of 50, 100, 130, 200, 250, 300, 350, and 400 ° C. The substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR, and is contained in the solvent and triethylaluminum partial hydrolyzate contained in the composition B. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films had high transmittance and were transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-2.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
[比較例2-1]
 実施例2-1において、塗布後の加熱温度を450℃又は500℃で行って得られたアルミニウム酸化物膜の550nmにおける垂直透過率は、それぞれ、79および78%の値を得た。塗布膜の加熱温度は400℃以下が好ましいことが明らかになった。
[Comparative Example 2-1]
In Example 2-1, the vertical transmittance at 550 nm of the aluminum oxide film obtained by performing the heating temperature after coating at 450 ° C. or 500 ° C. was 79 and 78%, respectively. It has been found that the heating temperature of the coating film is preferably 400 ° C. or lower.
[実施例2-4]
 実施例2-3において、塗布成膜の操作を3回繰り返し、350℃において同様に膜を得た。350℃において加熱して得られたアルミニウム酸化物膜の550nmにおける垂直透過率は84%の値を得た。
[Example 2-4]
In Example 2-3, the coating film forming operation was repeated three times, and a film was similarly obtained at 350 ° C. The vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 350 ° C. was 84%.
[比較例2-2]
 テトラヒドロフラン(THF)150gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)15.0gを室温で加えた。十分攪拌して得られたTEAL/THF溶液(組成物1)を得た。
[Comparative Example 2-2]
To 150 g of tetrahydrofuran (THF), 15.0 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature. A TEAL / THF solution (Composition 1) obtained by sufficiently stirring was obtained.
 アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))を用い、TEAL/THF溶液(組成物1)を用いて、組成物1の量を200μl、回転数を500rpmとして実施例2-1と同様の塗布操作を行い、乾燥の後、このフィルムを130℃で2分加熱して、スピンコート成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析を行ったが、酸化物の基板への付着はほとんどなく、本溶液を用いた成膜方法により、130℃の低温におけるポリプロピレン(PP)フィルムへのアルミニウム酸化物膜の形成は確認できなかった。さらに、基材をポリプロピレン(PP)フィルムから18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R)))に代えて同様の操作を行ったが、アルミニウム酸化物膜の形成は確認されなかった。 As a base material for forming an aluminum oxide film, a polypropylene (PP) film (30 mm square (thickness: 0.2 mm)) is used, and a TEAL / THF solution (composition 1) is used. The same coating operation as in Example 2-1 was performed at 200 μl and a rotation speed of 500 rpm. After drying, this film was heated at 130 ° C. for 2 minutes to form an aluminum oxide film by spin coating. went. The same analysis of the film formed on the substrate was performed, but there was almost no adhesion of the oxide to the substrate, and the film forming method using this solution made aluminum on the polypropylene (PP) film at a low temperature of 130 ° C. Formation of the oxide film could not be confirmed. Furthermore, the same operation was performed by replacing the base material from a polypropylene (PP) film with an 18 mm square (thickness 0.7 mm) glass substrate (Corning, EagleXG (R)). Formation was not confirmed.
 成膜方法をディップコート法に代え、窒素雰囲気下、ポリプロピレン(PP)フィルム(15mm角(厚さ30μm)を組成物Xに1秒間浸漬し、フィルムを引き上げた後、フィルムに溜まった液を切り落とした。溶媒を室温乾燥後、さらに室温で10分間放置または50℃で10分間加熱し、ポリプロピレン(PP)フィルムに膜を成膜した。基板上に形成された膜の同様の分析を行ったが、酸化物の基板への付着はほとんどなく、本溶液を用いた成膜方法により、50℃の低温におけるポリプロピレン(PP)フィルムへのアルミニウム酸化物膜の形成は確認できなかった。 Instead of the dip coating method, the polypropylene (PP) film (15 mm square (thickness 30 μm) is immersed in composition X for 1 second in a nitrogen atmosphere, the film is pulled up, and the liquid accumulated in the film is cut off. After the solvent was dried at room temperature, it was further allowed to stand at room temperature for 10 minutes or heated at 50 ° C. for 10 minutes to form a film on a polypropylene (PP) film, and the same analysis was performed on the film formed on the substrate. The oxide hardly adhered to the substrate, and the formation of the aluminum oxide film on the polypropylene (PP) film at a low temperature of 50 ° C. could not be confirmed by the film forming method using this solution.
[比較例2-3]
 実施例2-3において、水4.41gを加えないこと以外は、実施例2-3と同様にして、TEALの部分加水分解を行っていないTEAL/THF溶液(組成物2)を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙に焦げが見られ、部分加水分解を行っていないTEAL/THF溶液は、高いAl濃度の溶液の取扱いが困難であることが判明した。
[Comparative Example 2-3]
In Example 2-3, a TEAL / THF solution (composition 2) in which TEAL was not partially hydrolyzed was obtained in the same manner as in Example 2-3, except that 4.41 g of water was not added. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed visually, the filter paper was scorched, and the TEAL / THF solution not subjected to partial hydrolysis is difficult to handle a solution with a high Al concentration. It has been found.
[比較例2-4]
 実施例2-2において、テトラヒドロフラン(THF)の使用量を70.0g、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)27.94gの代わりにアルミニウムトリイソプロポキシド32.9g、および水4.41gを含有したTHF溶液38.04gの代わりに水2.9gを含有したTHF溶液11.6gを、水のアルミニウムトリイソプロポキシドが含有するAlに対するモル比(水/Al)が1になるように滴下すること以外は、実施例2-2と同様の手法を用いてアルミニウムトリイソプロポキシドを部分加水分解した溶液を得ることを試みたが、大量の白色の不溶物が析出し、均一な塗布溶液として十分なAl濃度を含有しているものを得ることが出来なかった。
[Comparative Example 2-4]
In Example 2-2, 70.0 g of tetrahydrofuran (THF) was used, 32.9 g of aluminum triisopropoxide instead of 27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and water 4. Instead of 38.04 g of THF solution containing 41 g, 11.6 g of THF solution containing 2.9 g of water was adjusted so that the molar ratio (water / Al) of water to Al contained in aluminum triisopropoxide was 1. Except for dripping in the solution, an attempt was made to obtain a solution obtained by partially hydrolyzing aluminum triisopropoxide using the same method as in Example 2-2. A coating solution containing a sufficient Al concentration could not be obtained.
[比較例2-5]
 実施例2-2において、テトラヒドロフラン(THF)74.18gの代わりにトルエン70.0g、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)27.94g の代わりにアルミニウムトリイソプロポキシド32.3g、水4.41gを含有したTHF溶液38.04gの代わりに水2.84gを含有したTHF溶液11.4gを、水のアルミニウムトリイソプロポキシドに対するモル比が1になるように滴下すること以外は、実施例2-2と同様の手法を用いてアルミニウムトリイソプロポキシドを部分加水分解した溶液を得ることを試みた。得られた反応生成物からは、大量の白色の不溶物が析出し、均一な塗布溶液として十分なAl濃度を含有しているものを得ることが出来なかった。
[Comparative Example 2-5]
In Example 2-2, 70.0 g of toluene instead of 74.18 g of tetrahydrofuran (THF), 32.3 g of aluminum triisopropoxide instead of 27.94 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), water 11.4 g of a THF solution containing 2.84 g of water instead of 38.04 g of a THF solution containing 4.41 g was added dropwise so that the molar ratio of water to aluminum triisopropoxide was 1. An attempt was made to obtain a solution in which aluminum triisopropoxide was partially hydrolyzed using the same method as in Example 2-2. From the obtained reaction product, a large amount of white insoluble matter was precipitated, and a product containing a sufficient Al concentration as a uniform coating solution could not be obtained.
[実施例2-5]
 テトラヒドロフラン(THF)73.21gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)11.35gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20~26℃の温度の範囲で反応による発熱を除熱しながら、水2.09gを含有したTHF溶液36.60gを、水のTEALに対するモル比(水/TEAL)が1.17になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-5]
Triethylaluminum (TEAL: manufactured by Tosoh Finechem Corp.) 11.35 g was added to 73.21 g of tetrahydrofuran (THF) at room temperature. To the TEAL / THF solution obtained by thorough stirring, 36.60 g of a THF solution containing 2.09 g of water was removed in a molar ratio of water to TEAL while removing heat generated by the reaction in the temperature range of 20 to 26 ° C. The solution was added dropwise with stirring so that (water / TEAL) was 1.17. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物C)を得た。また、組成物Cの一部を真空乾燥により溶媒等を除去して得られたトリエチルアルミニウムを部分的に加水分解した生成物を主成分とする残存物について、1H-NMR(THF-d,ppm) 測定を行い、図2-6のスペクトルを得た。 In this way, a composition for producing an aluminum oxide film (composition C) containing a product obtained by partially hydrolyzing triethylaluminum was obtained. In addition, a 1 H-NMR (THF-d 8 ) was used for a residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum obtained by removing a solvent or the like by vacuum drying a part of the composition C. , Ppm) was measured, and the spectrum of Fig. 2-6 was obtained.
 この組成物Cを用いて、実施例2-1と同様の手法でガラス基板に塗布成膜を行い、各温度で得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物C中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透過率が高く透明であり、各温度における加熱で得られた膜の550nmにおける垂直透過率は表2-3の値を得た。 Using this composition C, a coating film was formed on a glass substrate in the same manner as in Example 2-1, and the substrate with the film obtained at each temperature was taken out into the atmosphere. Analysis was performed by ATR-IR, and it was confirmed that no peak derived from an organic substance such as an ethyl group contained in a solvent contained in the composition C or a partial hydrolyzate of triethylaluminum was confirmed and the formation of an aluminum oxide film. Each of the obtained films had high transmittance and was transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-3.
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
[実施例2-6]
 実施例2-5において、塗布成膜の操作を3回繰り返し、300℃において同様に膜を得た。300℃において加熱して得られたアルミニウム酸化物膜の550nmにおける垂直透過率は98%であった。
[Example 2-6]
In Example 2-5, the coating film forming operation was repeated three times, and a film was similarly obtained at 300 ° C. The vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 98%.
[実施例2-7]
 トルエン166.7gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)23.5g を室温で加えた。十分攪拌して得られたTEAL/THF溶液に、16~27℃で発熱を除熱により制御しながら、水3.92gを含有したTHF溶液19.54gを、水のTEALに対するモル比(水/TEAL)が1.06になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-7]
To 166.7 g of toluene, 23.5 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. In a TEAL / THF solution obtained by thorough stirring, 19.54 g of a THF solution containing 3.92 g of water was controlled at a molar ratio of water to TEAL (water / water) while controlling the exotherm at 16 to 27 ° C. by removing heat. It was added dropwise with stirring so that (TEAL) was 1.06. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物D)を得た。 Thus, an aluminum oxide film composition (composition D) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
 この組成物Dを用いて、ディップコート法によりポリプロピレン(PP)板(50mm角(厚さ3mm))に塗布を行った。窒素雰囲気下、ポリプロピレン板を組成物Dに1秒間浸漬し、フィルムを引き上げた後、フィルムに溜まった液を切り落とした。溶媒を室温乾燥後、50または100℃で10分間加熱し、ポリプロピレン(PP)板に膜を成膜した。 The composition D was applied to a polypropylene (PP) plate (50 mm square (thickness 3 mm)) by a dip coating method. Under a nitrogen atmosphere, a polypropylene plate was immersed in the composition D for 1 second, the film was pulled up, and then the liquid accumulated in the film was cut off. The solvent was dried at room temperature and then heated at 50 or 100 ° C. for 10 minutes to form a film on a polypropylene (PP) plate.
 各温度で得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透明であった。 The substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR. It is contained in the solvent and the partial hydrolyzate of triethylaluminum contained in the composition D. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films were transparent.
 得られた膜の密着性について、JIS K 5600-5-6「塗料一般試験方法-第5部:塗膜の機械的性質-第6節:付着性(クロスカット法)」に基づき、密着性試験を行った。膜に付着させたスコッチテープ(R)2364(3M社製)を引き剥がした後を目視で確認したところ「分類1:カットの交点における塗膜の小さな剥がれ。クロスカット部分で影響を受けるのは、明確に5%を下回ることはない」であり、膜の基板への密着性が良好であることを確認した。、さらに、ATR-IRおよびSEM測定で膜の状況を確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。 Regarding the adhesiveness of the obtained film, the adhesiveness is based on JIS K 5600-5-6 “General test method for coating materials—Part 5: Mechanical properties of coating film—Section 6: Adhesiveness (cross-cut method)” A test was conducted. When the scotch tape (R) 2364 (manufactured by 3M ) attached to the film was peeled off, it was visually confirmed that “Category 1: Small peeling of the coating film at the intersection of cuts. It is clearly not less than 5% ", and it was confirmed that the film has good adhesion to the substrate. Further, when the state of the film was confirmed by ATR-IR and SEM measurement, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
[実施例2-8]
 実施例2-7において、ポリプロピレン(PP)フィルム板の代わりに、アクリル板を用いて、加熱温度を50℃として、実施例2-3と同様の手法でアクリル板に膜を成膜した。得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得られた膜の密着性について、実施例2-7と同様の試験で確認したところ、クロスカット法による試験からは「分類1」であり、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
[Example 2-8]
In Example 2-7, an acrylic plate was used instead of the polypropylene (PP) film plate, and the heating temperature was 50 ° C., and a film was formed on the acrylic plate in the same manner as in Example 2-3. The obtained film was analyzed by ATR-IR, and a peak derived from an organic substance such as an ethyl group contained in a solvent or a partial hydrolyzate of triethylaluminum contained in the composition D was not confirmed. Formation was confirmed. The adhesion of the obtained film was confirmed by the same test as in Example 2-7. As a result, it was “Category 1” from the test by the cross-cut method, and no strong film peeling was confirmed. It was confirmed that the adhesion of the formed film was high.
[実施例2-9]
 実施例2-1において、テトラヒドロフラン(THF)の使用量を108.45g、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)の使用量を15.13g、水1.08gを含有したTHF溶液36.6gの代わりに水0.95gを含有したTHF溶液48.8gとし、水のTEALに対するモル比(水/TEAL)が0.4になるように滴下すること以外は、実施例2-1と同様の手法を用いて反応を行い、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-9]
In Example 2-1, a THF solution containing 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and 1.08 g of water 36. Similar to Example 2-1, except that 48.8 g of a THF solution containing 0.95 g of water instead of 6 g was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.4. The reaction was carried out using the method described above to obtain a colorless transparent solution. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物E)を得た。 Regarding the reactivity of the chemical solution, when the reactivity on the filter paper was visually confirmed, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition E) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-10]
 実施例2-9において、水0.95gの代わりに水1.44gとし、水のTEALに対するモル比(水/TEAL)が0.6になるように滴下すること以外は、実施例2-9と同様の手法を用いて、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物F)を得た。
[Example 2-10]
In Example 2-9, except that water was changed to 1.44 g instead of 0.95 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.6, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition F) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-11]
 実施例2-9において、水0.95gの代わりに水1.91gとし、水のTEALに対するモル比(水/TEAL)が0.8になるように滴下すること以外は、実施例2-9と同様の手法を用いて、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物G)を得た。
[Example 2-11]
In Example 2-9, except that water was changed to 1.91 g instead of 0.95 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.8, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition G) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-12]
 実施例2-9において、水0.95gの代わりに水2.79gとし、水のTEALに対するモル比(水/TEAL)が1.17になるように滴下すること以外は、実施例2-9と同様の手法を用いて、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物H)を得た。
[Example 2-12]
In Example 2-9, except that 0.95 g of water was replaced with 2.79 g of water, and dropwise addition was performed so that the molar ratio of water to TEAL (water / TEAL) was 1.17, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition H) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-13]
 実施例2-9において、水0.95gの代わりに水2.98gとし、水のTEALに対するモル比(水/TEAL)が1.25になるように滴下すること以外は、実施例2-9と同様の手法を用いて、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物I)を得た。
[Example 2-13]
In Example 2-9, except that 0.98 g of water was replaced with 2.98 g of water, and dropwise addition was performed so that the molar ratio of water to TEAL (water / TEAL) was 1.25, Example 2-9 A colorless and transparent solution was obtained using the same method as described above. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition I) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
 実施例2-9、10、11、12および13においてそれぞれ調製した各組成物についての水/TEALモル比と反応生成物外観、ゲルの発生状況および組成物の反応性等について表2-4に示す。 Table 2-4 shows the water / TEAL molar ratio, reaction product appearance, gel generation status, composition reactivity, etc. of each composition prepared in Examples 2-9, 10, 11, 12, and 13, respectively. Show.
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
[実施例2-14]
 テトラヒドロフラン(THF)79.92gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)11.35gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水1.79gを含有したTHF溶液36.60gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物J)を得た。
[Example 2-14]
Triethylaluminum (TEAL: manufactured by Tosoh Finechem Corp.) 11.35 g was added to 79.92 g of tetrahydrofuran (THF) at room temperature. To a TEAL / THF solution obtained by sufficiently stirring, 36.60 g of a THF solution containing 1.79 g of water was removed in a molar ratio of water to TEAL (water / TEAL) was added dropwise with stirring so as to be 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In this way, a composition for producing an aluminum oxide film (composition J) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-15]
 テトラヒドロフラン(THF)67.5gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)24.07g を室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20~27℃において反応による発熱を除熱しながら、イソプロパノール12.67gを撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、18℃まで冷却し、20℃前後となるように反応による発熱を除熱しながら、水3.8gを含有したTHF溶液30.05gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。また、得られた溶液の一部を真空乾燥により溶媒等を除去した後の残存物について、1H-NMR(図2-7)および27Al-NMR(図2-8)(いずれもBenzene-d,ppm)により分析し、生成物の構造中にイソプロポキシ基が存在していることを確認した。
 このようにして、構造中にイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物K)を得た。
[Example 2-15]
24.07 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added to 67.5 g of tetrahydrofuran (THF) at room temperature. To a TEAL / THF solution obtained by sufficiently stirring, 12.67 g of isopropanol was added dropwise with stirring while removing heat generated by the reaction at 20 to 27 ° C. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction mixture was cooled to 18 ° C., and 30.05 g of a THF solution containing 3.8 g of water was removed in a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction so that the temperature was about 20 ° C. Was added dropwise with stirring so as to be 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. In addition, 1 H-NMR (FIG. 2-7) and 27 Al-NMR (FIG. 2-8) (both Benzen- d 6 , ppm), and it was confirmed that an isopropoxy group was present in the structure of the product.
In this way, a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure was obtained.
 この組成物Kを用いて、実施例2-1と同様の手法でガラス基板に塗布成膜を行った。塗布および溶媒の乾燥後の加熱は、250、300、350、400℃の各温度で2分間行った。各温度で得らえた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物B中に含まれる溶媒や構造中にイソプロポキシ基を有したトリエチルアルミニウムの部分加水分解物に含まれるエチル基やイソプロポキシ基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透過率が高く透明であり、各温度における加熱で得られた膜の550nmにおける垂直透過率は表2-5の値を得た。 Using this composition K, a coating film was formed on a glass substrate in the same manner as in Example 2-1. Heating after coating and drying of the solvent was performed for 2 minutes at each temperature of 250, 300, 350, and 400 ° C. The substrate with the film obtained at each temperature was taken out into the atmosphere, the obtained film was analyzed by ATR-IR, and the solvent contained in composition B and triethyl having an isopropoxy group in the structure It was confirmed that peaks derived from organic substances such as ethyl group and isopropoxy group contained in the partial hydrolyzate of aluminum were not confirmed and the formation of the aluminum oxide film. Each of the obtained films had high transmittance and was transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-5.
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050
[実施例2-16]
 このイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物K)5g分取し、イソプロパノール5gを加えて十分に混合したが均一溶液のままであった。このように構造中にイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物K)はイソプロパノールのようなアルコールを溶媒とすることができる。
[Example 2-16]
5 g of a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group was taken, and 5 g of isopropanol was added and mixed well, but a homogeneous solution It remained. As described above, the composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure may contain an alcohol such as isopropanol as a solvent. it can.
[実施例2-17]
 実施例2-15で得られた構造中にイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物K)を2.14g分取し、これからTHFを除去し、0.943gまで溶液を濃縮した。得られた濃縮物は透明のゲル状固形物であった。この濃縮物に0.25gトルエンを加えて混合したところ、固形物は溶解して均一溶液となった。このように、アルミニウム酸化物膜製造用組成物(組成物K)に含まれるイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物は、有機溶媒に不溶なアルミニウム酸化物や水酸化物等の無機物質を含んでいない。
[Example 2-17]
2.14 g of a composition for producing an aluminum oxide film (composition K) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure obtained in Example 2-15 From this, THF was removed and the solution was concentrated to 0.943 g. The resulting concentrate was a transparent gel-like solid. When 0.25 g toluene was added to this concentrate and mixed, the solid matter dissolved and became a homogeneous solution. As described above, a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group contained in the composition for producing an aluminum oxide film (composition K) is an aluminum oxide insoluble in an organic solvent or hydroxylated. Does not contain inorganic substances such as food.
[実施例2-18]
 実施例2-2で得らえたトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物B)を5g分取し、これに撹拌しながら室温(20℃)でイソプロパノール5gを添加し、反応で生成するエタンが発生しなくなるまで反応を行った。得られた溶液は均一であり、また、得られた溶液の一部を真空乾燥により溶媒等を除去した後の1H-NMR(Benzene-d,ppm)を分析し、生成物の構造中にイソプロポキシ基が存在していることを確認した。
[Example 2-18]
5 g of a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-2 was taken and stirred at room temperature (20 ° C.). ), 5 g of isopropanol was added, and the reaction was continued until ethane produced by the reaction was not generated. The obtained solution was homogeneous, and 1 H-NMR (Benzene-d 6 , ppm) after removing a solvent or the like by vacuum drying a part of the obtained solution was analyzed. It was confirmed that an isopropoxy group was present.
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物とイソプロパノールとの反応により得た生成物であり構造中にイソプロポキシ基を有したアルミニウム酸化物膜製造用組成物(組成物L)を得ることができ、この生成物はイソプロパノールが共存していても均一溶液のままである。このようにトリエチルアルミニウムを部分的に加水分解した生成物を経て得らえた構造中にイソプロポキシ基を有したアルミニウム酸化物膜製造用溶液(組成物L)はイソプロパノールのようなアルコールを溶媒とすることができる。 Thus, a composition for producing an aluminum oxide film having a structure having an isopropoxy group in its structure, which is a product obtained by reacting a product obtained by partially hydrolyzing triethylaluminum with isopropanol (composition L) The product remains a homogeneous solution even in the presence of isopropanol. In this way, the solution (composition L) for producing an aluminum oxide film having an isopropoxy group in a structure obtained through a product obtained by partially hydrolyzing triethylaluminum uses an alcohol such as isopropanol as a solvent. be able to.
[実施例2-19]
 1,2-ジエトキシエタン74.1gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)27.91gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水4.41gを含有したTHF溶液38gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は薄い黄色の透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物M)を得た。
[Example 2-19]
To 74.1 g of 1,2-diethoxyethane, 27.91 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature. To the TEAL / THF solution obtained by thorough stirring, 38 g of THF solution containing 4.41 g of water was removed in a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction so as to reach about 20 ° C. ) Was added dropwise with stirring to 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a pale yellow clear solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition M) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-20]
 テトラヒドロフラン(THF)74.1gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)27.91g を室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20~27℃において反応による発熱を除熱しながら、水4.41gを含有したTHF溶液38gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、反応混合物を18℃まで冷却し、18~20℃で反応による発熱を除熱しながら、イソプロパノール14.69gを撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-20]
To 74.1 g of tetrahydrofuran (THF), 27.91 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature. To a TEAL / THF solution obtained by sufficiently stirring, 38 g of THF solution containing 4.41 g of water was removed at a molar ratio of water to TEAL (water / TEAL) while removing heat generated by the reaction at 20 to 27 ° C. The solution was added dropwise with stirring to 1.0. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction mixture was cooled to 18 ° C., and 14.69 g of isopropanol was added dropwise with stirring while removing heat generated by the reaction at 18 to 20 ° C. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
 このようにして、構造中にイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物N)を得た。また、組成物Nの一部を真空乾燥により溶媒等を除去した後の残存物について1H-NMR(Benzene-d,ppm) 測定を行い、図2-9のスペクトルを得た。この組成物Nは構造中にイソプロポキシ基を有したトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物である組成物Kとほぼ同様のピークパターンを与えており、組成物Kと同様、アルミニウム酸化物膜の塗布成膜に使用することができる。 In this way, a composition for producing an aluminum oxide film (composition N) containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure was obtained. Further, 1 H-NMR (Benzene-d 6 , ppm) measurement was performed on the residue after removing a part of the composition N by vacuum drying to obtain the spectrum of FIG. 2-9. This composition N gives almost the same peak pattern as the composition K which is a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum having an isopropoxy group in the structure. Like the composition K, it can be used for coating and forming an aluminum oxide film.
[実施例2-21]
 トルエン10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)1.31g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.21gを含有したTHF溶液1.03gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。た、得られた溶液の一部を真空乾燥により溶媒等を除去して得られたトリエチルアルミニウムを部分的に加水分解した生成物を主成分とする残存物について、1H-NMRおよび27Al-NMR(いずれもBenzene-d,ppm)により分析し、図2-10(1H-NMR)および図2-11(27Al-NMR)の各スペクトルを得た。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物O)を得た。
[Example 2-21]
To 10.0 g of toluene, 1.31 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 1.03 g of a THF solution containing 0.21 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed. Further, with respect to a residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum obtained by removing a solvent or the like by vacuum drying a part of the obtained solution, 1 H-NMR and 27 Al- Analysis by NMR (both Benzen-d 6 , ppm) gave each spectrum of FIG. 2-10 ( 1 H-NMR) and FIG. 2-11 ( 27 Al-NMR).
In this way, a composition for producing an aluminum oxide film (composition O) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
 この組成物Oを用いて、ディップコート法によりポリプロピレン(PP)フィルム(15mm角(厚さ30μm)に塗布を行った。窒素雰囲気下、室温でポリプロピレン(PP)フィルム(15mm角(厚さ30μm)を組成物Oに1秒間浸漬し、フィルムを引き上げた後、フィルムに溜まった液を切り落とした。溶媒を室温乾燥後、さらに室温で10分間放置または50℃で10分間加熱し、ポリプロピレン(PP)フィルムに膜を成膜した。 This composition O was used to apply a polypropylene (PP) film (15 mm square (thickness 30 μm) by dip coating. Polypropylene (PP) film (15 mm square (thickness 30 μm) at room temperature in a nitrogen atmosphere) Was soaked in Composition O for 1 second, the film was pulled up, and the liquid accumulated in the film was cut off.After drying at room temperature, the solvent was further allowed to stand at room temperature for 10 minutes or heated at 50 ° C. for 10 minutes to obtain polypropylene (PP). A film was formed on the film.
 各温度で得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物O中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透明であった。 The substrate with the film obtained at each temperature is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR, and is contained in the solvent and the partial hydrolyzate of triethylaluminum contained in the composition O. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All of the obtained films were transparent.
 得られた膜の密着性について、12mm幅のセロファンテープを用いて、剥がし試験により確認を行った。アルミニウム酸化物膜を成膜した前記ポリプロピレン(PP)フィルムの成膜面にセロファンテープを押し付けて貼り、斜め45°に引き剥がした。引き剥がした後を目視、ATR-IRおよびSEM測定で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。 The adhesion of the obtained film was confirmed by a peeling test using a cellophane tape having a width of 12 mm. Cellophane tape was pressed against the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
[実施例2-22]
 実施例2-21において、50℃で10分間加熱する雰囲気を窒素雰囲気から空気中で行ったこと以外は実施例2-22と同様の手法でポリプロピレン(PP)フィルムに膜を成膜した。
 得らえた膜をATR-IRにより分析を行い、組成物O中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜は透明であった。
 得られた膜の密着性について、実施例2-21と同様の試験で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
[Example 2-22]
In Example 2-21, a film was formed on a polypropylene (PP) film in the same manner as in Example 2-22, except that the atmosphere heated at 50 ° C. for 10 minutes was changed from a nitrogen atmosphere to air.
The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. The obtained film was transparent.
When the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
[実施例2-23]
 実施例2-21において、ポリプロピレン(PP)フィルム(15mm角(厚さ30μm)の代わりに、多孔質ポリプロピレン(PP)フィルム(2次電池セパレータ用:15mm角(厚さ20μm))を用いて、実施例2-21および2-22と同様の手法で多孔質ポリプロピレン(PP)フィルムに膜を成膜した。
 得らえた膜をATR-IRにより分析を行い、組成物O中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。図2-12に窒素雰囲気中において50℃の加熱によって得られた膜、図2-13に空気雰囲気中において50℃の加熱によって得られた膜、図2-14に膜を成膜していない多孔質ポリプロピレン(PP)フィルムのみのそれぞれのATR-IR分析結果をそれぞれ示した。表面をEPMAで分析したところ、AlおよびO(酸素)の存在を確認した。
 得られた膜の密着性について、実施例2-21と同様の試験で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
[Example 2-23]
In Example 2-21, instead of polypropylene (PP) film (instead of 15 mm square (thickness 30 μm), porous polypropylene (PP) film (for secondary battery separator: 15 mm square (thickness 20 μm)), A film was formed on a porous polypropylene (PP) film in the same manner as in Examples 2-21 and 2-22.
The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. 2-12 shows a film obtained by heating at 50 ° C. in a nitrogen atmosphere, FIG. 2-13 shows a film obtained by heating at 50 ° C. in an air atmosphere, and FIG. 2-14 shows no film formed. The results of ATR-IR analysis of only the porous polypropylene (PP) film are shown. When the surface was analyzed by EPMA, the presence of Al and O (oxygen) was confirmed.
When the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
[実施例2-24]
 実施例2-21において、ポリプロピレン(PP)フィルム(15mm角(厚さ30μm)の代わりに、18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))を用いて、実施例2-21および2-22と同様の手法でガラス基板に膜を成膜した。塗布後の加熱温度は、室温(加熱なし)、50、100、200、300、400、500℃の各温度で行った。
[Example 2-24]
In Example 2-21, instead of a polypropylene (PP) film (instead of a 15 mm square (thickness 30 μm), a 18 mm square (thickness 0.7 mm) glass substrate (manufactured by Corning, EagleXG® ) , A film was formed on a glass substrate in the same manner as in Examples 2-21 and 2-22, and the heating temperature after coating was room temperature (no heating), 50, 100, 200, 300, 400, 500 ° C. Performed at temperature.
 得らえた膜をATR-IRにより分析を行い、組成物O中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。また、窒素雰囲気下50℃で加熱した膜を空気中に取り出し、膜厚をSEM分析で測定したところ、図2-15が得られ、これより算出された膜厚は470nmであった。併せて膜の表面についてSEM分析を行い、図2-16の結果を得た。
 得られた膜の密着性について、実施例2-21と同様の試験で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed. Further, when the film heated at 50 ° C. in a nitrogen atmosphere was taken out into the air and the film thickness was measured by SEM analysis, FIG. 2-15 was obtained, and the film thickness calculated from this was 470 nm. In addition, SEM analysis was performed on the surface of the film, and the results shown in FIG. 2-16 were obtained.
When the adhesion of the obtained film was confirmed by the same test as in Example 2-21, strong film peeling was not confirmed, and it was confirmed that the adhesion of the film formed by this composition was high.
[実施例2-25]
 実施例2-21において、ポリプロピレン(PP)フィルム(15mm角(厚さ30μm)の代わりに、ポリエチレンテレフタレート(PET)フィルム(15mm角(厚さ25μm)および30mm角(188μm))を用いて、実施例2-21および2-22と同様の手法でPETフィルムに膜を成膜した。塗布・乾燥後の加熱は、室温(加熱なし)、50、100、130℃の各温度で各々について2分間行った。
 得らえた膜をATR-IRにより分析を行い、組成物O中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。
 100℃および130℃で得られた膜の密着性について、実施例2-21と同様の試験で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
[Example 2-25]
In Example 2-21, polypropylene (PP) film (polyethylene terephthalate (PET) film (15 mm square (thickness 25 μm) and 30 mm square (188 μm)) was used instead of 15 mm square (thickness 30 μm)) A film was formed on a PET film in the same manner as in Examples 2-21 and 2-22, and heating after coating and drying was performed at room temperature (no heating), 50, 100, and 130 ° C. for 2 minutes each. went.
The obtained film was analyzed by ATR-IR, and no peaks derived from organic substances such as ethyl group contained in the solvent and partial hydrolyzate of triethylaluminum contained in the composition O were confirmed. Formation was confirmed.
The adhesion of the films obtained at 100 ° C. and 130 ° C. was confirmed by the same test as in Example 2-21. As a result, no strong film peeling was confirmed, and the adhesion of the film formed by this composition was confirmed. Confirmed that it was high.
[実施例2-26]
 実施例2-21で調製した組成物Oを窒素雰囲気下で3.43g秤取し、トルエン2.29gを加えて撹拌して均一な溶液を得た。この均一溶液をトリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物P)とした。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
[Example 2-26]
3.43 g of the composition O prepared in Example 2-21 was weighed under a nitrogen atmosphere, and 2.29 g of toluene was added and stirred to obtain a uniform solution. This homogeneous solution was used as a composition for producing an aluminum oxide film (composition P) containing a product obtained by partially hydrolyzing triethylaluminum. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
[実施例2-27]
 トルエン10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)3.13g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.49gを含有したTHF溶液2.46gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物Q)を得た。
[Example 2-27]
To 10.0 g of toluene, 3.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature (25 ° C.). 2.46 g of THF solution containing 0.49 g of water is added to the TEAL / THF solution obtained by thorough stirring, and the molar ratio of water to TEAL (water / TEAL) is 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition Q) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-28]
 トルエン10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)5.83g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.91gを含有したTHF溶液4.55gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は白色の不溶物を含む無色透明溶液であった。この生成物中に含まれる白色の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物R)を得た。
[Example 2-28]
To 10.0 g of toluene, 5.83 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 4.55 g of a THF solution containing 0.91 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material. The white insoluble matter contained in this product was filtered through a filter (pore: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition R) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-29]
 トルエン10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)12.3g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水1.63gを含有したTHF溶液8.13gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は白色の不溶物を含む無色透明溶液であった。この生成物中に含まれる白色の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物S)を得た。
[Example 2-29]
To 10.0 g of toluene, 12.3 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Corporation) was added at room temperature (25 ° C.). In a TEAL / THF solution obtained by sufficiently stirring, 8.13 g of a THF solution containing 1.63 g of water and a molar ratio of water to TEAL (water / TEAL) is 1.0 while paying attention to heat generation. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material. The white insoluble matter contained in this product was filtered through a filter (pore: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition S) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-30]
 テトラヒドロフラン(THF)10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)1.31g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.21gを含有したTHF溶液1.03gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は白色の不溶物を含む無色透明溶液であった。この生成物中に含まれる白色の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物T)を得た。
[Example 2-30]
To 10.0 g of tetrahydrofuran (THF), 1.31 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To a TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 1.03 g of a THF solution containing 0.21 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material. The white insoluble matter contained in this product was filtered through a filter (pore: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition T) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-31]
 テトラヒドロフラン(THF)10.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)5.83gを室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.92gを含有したTHF溶液4.58gを、水のTEALに対するモル比(水/TEAL)が1.0になるように撹拌しながら滴下した。その後、25℃で18時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は白色の不溶物を含む無色透明溶液であった。この生成物中に含まれる白色の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物U)を得た。
[Example 2-31]
To 10.0 g of tetrahydrofuran (THF), 5.83 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). To the TEAL / THF solution obtained by thorough stirring, paying attention to heat generation, 4.58 g of THF solution containing 0.92 g of water has a molar ratio of water to TEAL (water / TEAL) of 1.0. Was added dropwise with stirring. Then, it was made to react at 25 degreeC for 18 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a white insoluble material. The white insoluble matter contained in this product was filtered through a filter (pore: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition U) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
[実施例2-32]
 テトラヒドロフラン(THF)20.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)2.22g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.42gを含有したTHF溶液3.50gを、水のTEALに対するモル比(水/TEAL)が1.2になるように撹拌しながら滴下した。その後、65℃に昇温し、65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は微量のゲル状の不溶物を含む無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物V)を得た。
 この組成物Vをスピンコート法により18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))表面上に塗布した。窒素雰囲気下、室温において、前記溶液50μlを前記ガラス基板に滴下し、回転数1000rpmで20秒間基板を回転させて溶液をガラス基板全体に塗布し、室温で乾燥の後、基板を所定の各温度で2分加熱することで溶媒を乾燥させると同時に膜を形成させた。
 この膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、アルミニウム酸化物膜の形成を確認した。得らえた膜はいずれも透過率が高く透明であり、各温度における加熱で得られた膜の550nmにおける垂直透過率は表2-6の値を得た。また、130℃で加熱した膜の膜厚を触針式表面形状測定器で測定したところ、178nmであった。
[Example 2-32]
To 20.0 g of tetrahydrofuran (THF), 2.22 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). The TEAL / THF solution obtained by thorough stirring is prepared by adding 3.50 g of THF solution containing 0.42 g of water to a molar ratio of water to TEAL (water / TEAL) of 1.2 while paying attention to heat generation. Was added dropwise with stirring. Then, it heated up at 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a small amount of gel-like insoluble matter. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition V) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
The composition V was applied on the surface of a 18 mm square (0.7 mm thick) glass substrate (Corning Corp., EagleXG®) by spin coating. In a nitrogen atmosphere, at room temperature, 50 μl of the solution is dropped onto the glass substrate, the substrate is rotated for 20 seconds at a rotation speed of 1000 rpm, the solution is applied to the entire glass substrate, dried at room temperature, and then the substrate is heated to a predetermined temperature. The film was formed at the same time as drying the solvent by heating for 2 minutes.
The substrate with this film was taken out into the atmosphere, and the obtained film was analyzed by ATR-IR to confirm the formation of an aluminum oxide film. Each of the obtained films had high transmittance and was transparent, and the vertical transmittance at 550 nm of the film obtained by heating at each temperature obtained the values shown in Table 2-6. Moreover, it was 178 nm when the film thickness of the film | membrane heated at 130 degreeC was measured with the stylus type surface shape measuring device.
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000051
[実施例2-33]
 実施例2-32において、塗布成膜の操作を3回繰り返し、300℃において同様に膜を得た。300℃において加熱して得られたアルミニウム酸化物膜の550nmにおける垂直透過率は85%の値を得た。
[Example 2-33]
In Example 2-32, the operation of coating film formation was repeated 3 times, and a film was similarly obtained at 300 ° C. The vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 85%.
[実施例2-34]
 テトラヒドロフラン(THF)20.0gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)1.05g を室温(25℃)で加えた。十分攪拌して得られたTEAL/THF溶液に、発熱に注意しながら、水0.20gを含有したTHF溶液1.66gを、水のTEALに対するモル比(水/TEAL)が1.2になるように撹拌しながら滴下した。その後、65℃に昇温し、65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は微量のゲル状の不溶物を含む無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物W)を得た。
 この組成物Wを用いて、実施例2-33と同様の手法でガラス基板に塗布成膜を行い、表2-7の結果を得た。また、130℃で加熱した膜の膜厚を触針式表面形状測定器で測定したところ、146nmであった。
[Example 2-34]
To 20.0 g of tetrahydrofuran (THF), 1.05 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature (25 ° C.). The TEAL / THF solution obtained by thorough stirring was mixed with 1.66 g of a THF solution containing 0.20 g of water, while paying attention to heat generation, and the molar ratio of water to TEAL (water / TEAL) was 1.2. Was added dropwise with stirring. Then, it heated up at 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution containing a small amount of gel-like insoluble matter. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition W) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
Using this composition W, coating was performed on a glass substrate in the same manner as in Example 2-33, and the results shown in Table 2-7 were obtained. Moreover, it was 146 nm when the film thickness of the film | membrane heated at 130 degreeC was measured with the stylus type surface shape measuring device.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
[実施例2-35]
 実施例2-34において、塗布成膜の操作を3回繰り返し、300℃において同様に膜を得た。300℃において加熱して得られたアルミニウム酸化物膜の550nmにおける垂直透過率は92%の値を得た。
[Example 2-35]
In Example 2-34, the coating film forming operation was repeated 3 times, and a film was similarly obtained at 300 ° C. The vertical transmittance at 550 nm of the aluminum oxide film obtained by heating at 300 ° C. was 92%.
[実施例2-36]
 実施例2-7で得られた、水のTEALに対するモル比(水/TEAL)が1.06になるようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物D)を用いて、アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))を用い、窒素雰囲気下、室温で前記溶液200μlを前記フィルムに滴下し、回転数500rpmで20秒間基板を回転させて溶液をフィルム全体に塗布し、溶媒の乾燥の後、基板を50、100および130℃の各温度で2分加熱することで溶媒を乾燥させると同時に膜を形成させた。
[Example 2-36]
For producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-7 so that the molar ratio of water to TEAL (water / TEAL) is 1.06 A polypropylene (PP) film (30 mm square (thickness 0.2 mm)) is used as a base material on which an aluminum oxide film is formed using the composition (composition D), and the solution at room temperature in a nitrogen atmosphere. 200 μl is dropped onto the film, the substrate is rotated at 500 rpm for 20 seconds to apply the solution to the entire film, and after drying the solvent, the substrate is heated at each temperature of 50, 100, and 130 ° C. for 2 minutes. The film was formed simultaneously with drying the solvent.
 これらの膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。各温度において得らえた膜はいずれも透明であった。 The substrate with these films is taken out into the atmosphere, and the obtained film is analyzed by ATR-IR. The solvent contained in the composition D, ethyl groups contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from organic matter was confirmed and the formation of an aluminum oxide film. All the films obtained at each temperature were transparent.
 各温度での加熱で得られた膜の密着性について、12mm幅のセロファンテープを用いて、剥がし試験により確認を行った。アルミニウム酸化物膜を成膜した前記ポリプロピレン(PP)フィルムの成膜面にセロファンテープを押し付けて貼り、斜め45°に引き剥がした。引き剥がした後を目視、ATR-IRおよびSEM測定で確認したところ、いずれも強い膜の剥がれは確認されず、130℃以下といった低温での熱処理においても、本組成物によって成膜した膜の密着性が高いことを確認した。これらの中でも特に130℃で成膜したものの膜の密着性は良好であった。 The adhesion of the film obtained by heating at each temperature was confirmed by a peeling test using a 12 mm wide cellophane tape. Cellophane tape was pressed against the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and peeled off at an angle of 45 °. After peeling, it was confirmed by visual observation, ATR-IR and SEM measurement. As a result, no strong peeling of the film was confirmed. Even in heat treatment at a low temperature of 130.degree. It was confirmed that the property is high. Among these, the film adhesion at a temperature of 130 ° C. was particularly good.
[実施例2-37]
 実施例2-21で得られた組成物O、実施例2-26で得られた組成物P、実施例2-27で得られた組成物Q、実施例2-28で得られた組成物R、実施例2-30で得られた組成物T、実施例2-31で得られた組成物U(組成物O、P、Q、R、TおよびUは、いずれも水のTEALに対するモル比(水/TEAL)が1.0)の各トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物をそれぞれ用いて、実施例2-36と同様の手法でスピンコートにより膜を塗布成膜し、溶媒の乾燥の後、50、100、130℃の各温度で2分間加熱して、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))上に膜を形成した。
 これらの膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、各組成物中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。
[Example 2-37]
Composition O obtained in Example 2-21, Composition P obtained in Example 2-26, Composition Q obtained in Example 2-27, Composition obtained in Example 2-28 R, composition T obtained in Example 2-30, composition U obtained in Example 2-31 (compositions O, P, Q, R, T and U are all in moles relative to TEAL of water. Spinning was performed in the same manner as in Example 2-36, using a composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing each triethylaluminum having a ratio (water / TEAL) of 1.0) A film is applied by coating, and after drying the solvent, the film is heated on each temperature of 50, 100, and 130 ° C. for 2 minutes to form a film on a polypropylene (PP) film (30 mm square (thickness 0.2 mm)). Formed.
The substrate with these films is taken out into the atmosphere, and the obtained films are analyzed by ATR-IR. The solvent contained in each composition, ethyl groups contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from organic matter was confirmed and the formation of an aluminum oxide film.
[実施例2-38]
 実施例2-7で得られた組成物D(水のTEALに対するモル比(水/TEAL)が1.06)、実施例2-9で得られた組成物E(同(水/TEAL)が0.4)、実施例2-10で得られた組成物F(同(水/TEAL)が0.6)、実施例2-11で得られた組成物G(同(水/TEAL)が0.8)、実施例2-12で得られた組成物H(同(水/TEAL)が1.17)、実施例2-13で得られた組成物I(同(水/TEAL)が1.25)の各トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物をそれぞれ用いて、実施例2-36と同様の手法でスピンコートにより膜を塗布成膜し、溶媒の乾燥の後、50、100、130℃の各温度で2分間加熱して、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))上に膜を形成した。
[Example 2-38]
Composition D obtained in Example 2-7 (molar ratio of water to TEAL (water / TEAL) is 1.06), Composition E obtained in Example 2-9 (the same (water / TEAL) is 0.4), composition F obtained in Example 2-10 (same (water / TEAL) was 0.6), and composition G obtained in Example 2-11 (same (water / TEAL) was 0.8), composition H obtained in Example 2-12 (the same (water / TEAL) was 1.17), and composition I obtained in Example 2-13 (the same (water / TEAL) was Using the composition for producing an aluminum oxide film containing a product obtained by partially hydrolyzing each triethylaluminum in 1.25), a film was applied by spin coating in the same manner as in Example 2-36. After drying the solvent, heat it at 50, 100, and 130 ° C for 2 minutes to obtain polypropylene (PP) film. A film was formed on a film (30 mm square (thickness 0.2 mm)).
 これらの膜のついたポリプロピレン(PP)フィルムを大気中に取り出して、得らえた膜をATR-IRにより分析を行い、各組成物中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。各温度において得らえた膜はいずれも透明であった。 Polypropylene (PP) films with these films are taken out into the atmosphere, and the obtained films are analyzed by ATR-IR and contained in the solvent and triethylaluminum partial hydrolyzate contained in each composition. It was confirmed that no peak derived from an organic substance such as an ethyl group was observed and the formation of an aluminum oxide film. All the films obtained at each temperature were transparent.
 さらに、得られた膜の密着性について、実施例2-7のクロスカット試験で使用したスコッチテープ(R)2364(3M社製)を用いて、剥がし試験により確認を行った。アルミニウム酸化物膜を成膜した前記ポリプロピレン(PP)フィルムの成膜面にテープを押し付けて貼り、斜め45°に引き剥がした。引き剥がした後を目視、ATR-IRおよびSEM測定で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。これら得られた膜において組成物D(水のTEALに対するモル比(水/TEAL)が1.06)、組成物G(同(水/TEAL)が0.8)、組成物H(同(水/TEAL)が1.17)、組成物I(同(水/TEAL)が1.25)を用いて塗布を行い、100℃以上での加熱により得られた膜がポリプロピレン(PP)フィルムへの密着性が良好であった。組成物H(同(水/TEAL)が1.17)を用いて100℃でPPフィルム上に成膜したアルミニウム酸化物膜について剥がし試験を行った前後のアルミニウム酸化物膜のそれぞれのATR-IRスペクトルを図2-17、2-18に示す(図2-17:剥がし試験実施前、図2-18:同実施後)。 Further, the adhesion of the obtained film was confirmed by a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used in the crosscut test of Example 2-7. A tape was pressed on the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and was peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion. In these films, composition D (molar ratio of water to TEAL (water / TEAL) is 1.06), composition G (same (water / TEAL) is 0.8), composition H (same (water / TEAL) is 1.17), composition I (the same (water / TEAL) is 1.25), and the film obtained by heating at 100 ° C. or higher is applied to a polypropylene (PP) film. Adhesion was good. Each ATR-IR of the aluminum oxide film before and after the peeling test was conducted on the aluminum oxide film formed on the PP film at 100 ° C. using the composition H (the same (water / TEAL) was 1.17). The spectra are shown in FIGS. 2-17 and 2-18 (FIG. 2-17: before the peeling test was performed, FIG. 2-18: after the same).
[比較例2-6]
 実施例2-1において、テトラヒドロフラン(THF)の使用量を108.45g、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)の使用量を15.13g、水1.08gを含有したTHF溶液36.6gの代わりに水0.48gを含有したTHF溶液48.8gとし、水のTEALに対するモル比(水/TEAL)が0.2になるように滴下すること以外は、実施例2-1と同様の手法を用いて反応を行い、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物3)を得た。
[Comparative Example 2-6]
In Example 2-1, a THF solution containing 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.), and 1.08 g of water 36. The same as Example 2-1 except that 48.8 g of THF solution containing 0.48 g of water instead of 6 g was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.2. The reaction was carried out using the method described above to obtain a colorless transparent solution. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
 この、水のTEALに対するモル比(水/TEAL)が0.2になるようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物3)を用い、アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))を用いて、実施例2-1と同様の操作を行い、スピンコート成膜により、アルミニウム酸化物膜の成膜を行った。このとき組成物3の塗布および溶媒の乾燥後、フィルムは130℃の各温度で2分間加熱した。これらの各温度で加熱して得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、図2-19のスペクトルを得た。図2-19より明らかなように、実施例2-38の図2-17と比較して、アルミニウム酸化物のピークに対してPP基板由来のピークが大きく、水のTEALに対するモル比(水/TEAL)が0.2になるようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物3)を用いた成膜で得られるアルミニウム酸化物の膜は、本発明の組成物を用いた成膜で得られる膜に比べて薄くなることが確認された。 A composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum so that the molar ratio of water to TEAL (water / TEAL) is 0.2. Using a polypropylene (PP) film (30 mm square (thickness: 0.2 mm)) as a base material for forming an aluminum oxide film, the same operation as in Example 2-1 was performed to form a spin coat film. Thus, an aluminum oxide film was formed. At this time, after application of the composition 3 and drying of the solvent, the film was heated at 130 ° C. for 2 minutes. The substrate with the film obtained by heating at each of these temperatures was taken out into the atmosphere, and the obtained film was analyzed by ATR-IR to obtain the spectrum of FIG. 2-19. As is clear from FIG. 2-19, the peak derived from the PP substrate is larger than the peak of the aluminum oxide compared to FIG. 2-17 of Example 2-38, and the molar ratio of water to TEAL (water / TEAL) is 0.2, and aluminum oxide obtained by film formation using a composition for producing an aluminum oxide film (composition 3) containing a product obtained by partially hydrolyzing triethylaluminum It was confirmed that the film was thinner than the film obtained by film formation using the composition of the present invention.
 さらに、得られた膜の密着性について、実施例2-7のクロスカット試験で使用したスコッチテープ(R)2364(3M社製)を用いて、剥がし試験を行い、ATR-IRおよびSEM測定で分析した。組成物3を用いて100℃でPPフィルム上に成膜したアルミニウム酸化物膜について剥がし試験を行った後のアルミニウム酸化物膜のATR-IRスペクトルを図2-20に示す。図2-20のスペクトルはアルミミウム酸化物のピークが減少していることから、成膜時の酸化物の付着が少ないだけでなく、膜も剥がれ易いことを確認した。
 このように、本比較例で使用した水のTEALに対するモル比(水/TEAL)が0.2になるようにトリエチルアルミニウムを部分的に加水分解した生成物は、実施例2-38で使用した水のTEALに対するモル比(水/TEAL)が0.4~1.25で得られた組成物に比べて、膜の成膜性・密着性が劣っていることを確認した。
Further, the adhesion of the obtained film was subjected to a peeling test using Scotch tape (R) 2364 (manufactured by 3M ) used in the cross-cut test of Example 2-7, and ATR-IR and SEM measurements were performed. analyzed. FIG. 2-20 shows an ATR-IR spectrum of the aluminum oxide film after the peeling test was conducted on the aluminum oxide film formed on the PP film at 100 ° C. using the composition 3. In the spectrum of FIG. 2-20, since the peak of aluminum oxide was reduced, it was confirmed that not only the oxide adhered during film formation but also the film was easily peeled off.
Thus, the product obtained by partially hydrolyzing triethylaluminum so that the molar ratio of water to TEAL used in this comparative example (water / TEAL) was 0.2 was used in Example 2-38. It was confirmed that the film formability and adhesiveness of the film were inferior compared to the composition obtained in a molar ratio of water to TEAL (water / TEAL) of 0.4 to 1.25.
[比較例2-7]
 アルミニウムトリイソプロポキシド18.38gにイソプロパノール90mlを加え、水1.62gを用いてアルミニウムトリイソプロポキシドに対するモル比が1になるように撹拌しながら室温で滴下した。その後、80℃に昇温し、80℃で3時間反応させた。反応終了後、冷却して内容物を回収したが、アルミニウムトリイソプロポキシドのほとんどが未反応物として回収された。
[Comparative Example 2-7]
90 ml of isopropanol was added to 18.38 g of aluminum triisopropoxide, and 1.62 g of water was added dropwise at room temperature with stirring so that the molar ratio to aluminum triisopropoxide was 1. Then, it heated up at 80 degreeC and made it react at 80 degreeC for 3 hours. After completion of the reaction, the content was recovered by cooling, but most of the aluminum triisopropoxide was recovered as an unreacted material.
[比較例2-8]
 水109.25gを72℃に加熱し、アルミニウムトリイソプロポキシド41.8gを撹拌しながら加えた。85℃で4時間加熱し、その後、室温まで放冷した。溶液はゲル状であり、撹拌が困難であった。さらに60重量%硝酸を1.89g加えたところ白っぽいゲル状の物質を得た。この溶液を91℃で3時間加熱した。その後、室温まで放冷しゲル状の物質を得た。このゲル状物質の液中の分散が悪いため、水200gを加えて希釈し、乳白色に濁った半透明の液体とし、これを回収した(組成物4)。
[Comparative Example 2-8]
109.25 g of water was heated to 72 ° C. and 41.8 g of aluminum triisopropoxide was added with stirring. The mixture was heated at 85 ° C. for 4 hours and then allowed to cool to room temperature. The solution was gel and difficult to stir. When 1.89 g of 60% by weight nitric acid was further added, a whitish gel-like substance was obtained. The solution was heated at 91 ° C. for 3 hours. Thereafter, the mixture was allowed to cool to room temperature to obtain a gel-like substance. Since this gel substance was poorly dispersed in the liquid, it was diluted by adding 200 g of water to obtain a translucent liquid that became milky white and was collected (Composition 4).
 アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))を用い、組成物4を用いて、実施例2-1と同様の操作を行い、スピンコート成膜により、アルミニウム酸化物膜の成膜を行った。このとき組成物4の塗布および溶媒の乾燥後、フィルムは130℃で2分間加熱した。組成物4はフィルム表面にほとんど残らず、膜の形成が出来なかった。ディップコートによる成膜も同様に試みたが、スピンコートと同様に膜の形成が出来なかった。さらに、組成物4をポリプロピレン(PP)フィルム上に出来るだけ広げた後、60℃で加熱してアルミニウム酸化物膜の形成を試みたが、透明の膜状物質が断片的に形成されたものの、すべてフィルムから剥がれてしまった。 A polypropylene (PP) film (30 mm square (thickness 0.2 mm)) was used as a base material for forming an aluminum oxide film, and the same operation as in Example 2-1 was performed using the composition 4. An aluminum oxide film was formed by spin coating. At this time, after application of the composition 4 and drying of the solvent, the film was heated at 130 ° C. for 2 minutes. Composition 4 hardly remained on the film surface, and no film could be formed. Dip coating was also attempted in the same manner, but no film could be formed as with spin coating. Further, the composition 4 was spread on a polypropylene (PP) film as much as possible, and then heated at 60 ° C. to try to form an aluminum oxide film. However, although a transparent film-like substance was formed in pieces, Everything has come off the film.
 実施例2-38、比較例2-2および2-6で得た各組成物を用いて、PPフィルムへスピンコート成膜して得られたの膜の密着性評価について表2-8および表2-9に結果を示す。 Table 2-8 and Table 2 show the evaluation of adhesion of films obtained by spin-coating a PP film using the compositions obtained in Example 2-38 and Comparative Examples 2-2 and 2-6. The results are shown in 2-9.
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
[実施例2-39]
 実施例2-13において、水のTEALに対するモル比(水/TEAL)が1.27または1.29とになるように水/THF溶液を追加滴下したところ白色の不溶物が発生した(溶液中に占める固形物の体積で10%以下)。溶液を室温(20~25℃)で3日放置後の組成物の外観を観察したところ、水/THF溶液を追加添加した際に発生した白色の不溶物の増加はほとんどなく、これらの不溶物を除去することでトリエチルアルミニウムを部分的に加水分解した生成物を含む均一な溶液としてアルミニウム酸化物膜製造用組成物を得ることが出来た(組成物X(水/TEAL=1.27)および組成物Y(水/TEAL=1.29)。これらの組成物は、本発明2の実施例記載のスピンコート成膜やディップコート成膜により、ガラスや樹脂などの基材に塗布し、さらに加熱を行うことでアルミニウム酸化物膜を形成出来た。実施例2-9~2-13で得た、水のTEALに対するモル比(水/TEAL)が0.4~1.25でそれぞれ、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物についても、溶液を室温(20~25℃)で3日放置後の組成物の外観を目視で観察したところ、溶液に変化は見られなかった。
[Example 2-39]
In Example 2-13, when an additional water / THF solution was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 1.27 or 1.29, white insoluble matter was generated (in the solution 10% or less by volume of solids in the When the appearance of the composition after observing the solution at room temperature (20 to 25 ° C.) for 3 days was observed, there was almost no increase in white insoluble matter generated when an additional water / THF solution was added. The composition for producing an aluminum oxide film could be obtained as a uniform solution containing a product obtained by partially hydrolyzing triethylaluminum (composition X (water / TEAL = 1.27) and Composition Y (water / TEAL = 1.29) These compositions were applied to a substrate such as glass or resin by spin coating film formation or dip coating film formation described in the examples of the present invention 2, and By heating, an aluminum oxide film was formed, and the molar ratio of water to TEAL (water / TEAL) obtained in Examples 2-9 to 2-13 was 0.4 to 1.25, respectively. Aluminum As for the composition for producing an aluminum oxide film containing a partially hydrolyzed product, the appearance of the composition was visually observed after standing for 3 days at room temperature (20 to 25 ° C.). Was not seen.
[比較例2-9]
 実施例2-13において、水のTEALに対するモル比(水/TEAL)が1.31、1.33または1.35とになるように水/THF溶液を追加滴下したところ、白色の不溶物が大量に発生した(溶液中に占める体積で15%以上)。溶液を3日放置後の組成物の外観を観察したところ、溶液全体がゲル状化し、均一溶液部分がほとんどなく、溶液としての流動性がほとんどなくなった。このように水のTEALに対するモル比(水/TEAL)が多い場合には、均一な溶液として組成物を得ることが出来なくなり、塗布剤としての使用が困難となった。
 実施例2-39および比較例2-9において各水/TEAL(モル比)でのTEALの部分加水分解で得た反応生成物の外観と不溶物であるゲルの発生状況(調製直後および3日放置後)について表2-10および表2-11に結果を示す。
[Comparative Example 2-9]
In Example 2-13, when a water / THF solution was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 1.31, 1.33, or 1.35, white insoluble matter was obtained. A large amount was generated (15% or more by volume in the solution). When the appearance of the composition after observing the solution for 3 days was observed, the whole solution was gelled, there was almost no uniform solution portion, and the fluidity of the solution was almost lost. Thus, when there is much molar ratio (water / TEAL) with respect to TEAL of water, it became impossible to obtain a composition as a uniform solution, and the use as a coating agent became difficult.
Appearance of the reaction product obtained by partial hydrolysis of TEAL at each water / TEAL (molar ratio) in Example 2-39 and Comparative Example 2-9 and the occurrence of gel as an insoluble material (immediately after preparation and 3 days) The results are shown in Table 2-10 and Table 2-11.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000056
[実施例2-40]
 実施例2-7で得られた、水のTEALに対するモル比(水/TEAL)が1.06になるようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物D)を用いて、アルミニウム酸化物膜を成膜する基材として紙(薬包紙:(20mm角(厚さ31μm))を用いて、ディップコート法によって塗布を行った。窒素雰囲気下、紙を組成物Dに1秒間浸漬し紙を引き上げた後、紙に溜まった液を切り落とした。溶媒を室温乾燥後、200℃で2分間加熱し、紙に膜を成膜した。
 得られた膜のついた紙を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえた膜をSEM分析を行ったところ、図2-21が得られ、紙の繊維の表面をアルミニウム酸化物がコートされていることが確認された。
[Example 2-40]
For producing an aluminum oxide film containing a product obtained by partially hydrolyzing triethylaluminum obtained in Example 2-7 so that the molar ratio of water to TEAL (water / TEAL) is 1.06 Using the composition (Composition D), coating was performed by dip coating using paper (medicine wrapping paper: 20 mm square (thickness 31 μm)) as a base material on which an aluminum oxide film was formed. Then, the paper was dipped in the composition D for 1 second and the paper was pulled up, and then the liquid accumulated on the paper was cut off.
The obtained film-attached paper is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from the organic matter was observed and the formation of the aluminum oxide film. When the obtained film was subjected to SEM analysis, FIG. 2-21 was obtained, and it was confirmed that the surface of the paper fiber was coated with aluminum oxide.
[実施例2-41]
 実施例2-40において、アルミニウム酸化物膜を成膜する基材として紙(薬包紙:(20mm角(厚さ31μm))の代わりにを18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))を用いて、ディップコート法によって塗布を行った。窒素雰囲気下、ガラス基板を組成物Dに1秒間浸漬し、ガラス基板を引き上げた後、基板に溜まった液を切り落とした。溶媒を室温乾燥後、130℃で2分間加熱し、基板に膜を成膜した。この塗布・溶媒乾燥・加熱の一連の成膜操作時における窒素ガス雰囲気において、水分含有率は246~304ppm(露点温度-32~34℃)であった。
[Example 2-41]
In Example 2-40, instead of paper (medicine wrapping paper: (20 mm square (thickness 31 μm)) as a base material for forming an aluminum oxide film, an 18 mm square (thickness 0.7 mm) glass substrate (Corning) ( EagleXG (R) ) was applied by the dip coating method, and the glass substrate was immersed in the composition D for 1 second in a nitrogen atmosphere, the glass substrate was pulled up, and then the liquid accumulated on the substrate was cut off. After the solvent was dried at room temperature, the solvent was heated at 130 ° C. for 2 minutes to form a film on the substrate.In the nitrogen gas atmosphere during this series of coating, solvent drying and heating film formation operations, the moisture content was 246 to It was 304 ppm (dew point temperature -32 to 34 ° C.).
 得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認した。得らえたアルミニウム酸化物膜の外観は透明で均質であった。 The substrate with the obtained film is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. It was confirmed that no peak derived from the organic matter was observed and the formation of the aluminum oxide film. The appearance of the obtained aluminum oxide film was transparent and homogeneous.
[比較例2-10]
 実施例42-1において、塗布・溶媒乾燥・加熱の一連の成膜操作時における窒素ガス雰囲気において、水分含有率を9312モルppm~9778ppm(約1%)(露点温度-6~-7℃)で行ったこと以外は実施例2-41と同様にして、ガラス基板に膜を成膜した。
 得られた膜のついた基板を大気中に取り出して、得らえた膜をATR-IRにより分析を行い、組成物D中に含まれる溶媒やトリエチルアルミニウムの部分加水分解物に含まれるエチル基等の有機物由来のピークが確認されないことおよびアルミニウム酸化物膜の形成を確認したが、得らえたアルミニウム酸化物膜の一部が粉状となり、均質な膜として得ることが出来なかった。
[Comparative Example 2-10]
In Example 42-1, the moisture content was 9312 mol ppm to 9778 ppm (about 1%) (dew point temperature −6 to −7 ° C.) in a nitrogen gas atmosphere during a series of coating, solvent drying and heating film forming operations. A film was formed on a glass substrate in the same manner as in Example 2-41 except for the above.
The substrate with the obtained film is taken out into the atmosphere, the obtained film is analyzed by ATR-IR, the solvent contained in the composition D, the ethyl group contained in the partial hydrolyzate of triethylaluminum, etc. Although no organic-derived peak was confirmed and the formation of the aluminum oxide film was confirmed, a part of the obtained aluminum oxide film became powdery and could not be obtained as a homogeneous film.
[実施例2-42]
 実施例2-1、2-2、2-3、2-4、2-5、2-15、2-32、2-33、2-34において得られたアルミニウム酸化物膜のついたいずれの基材も、550nmでの垂直透過率が80%以上と高く、光学材料として利用が可能である。また、ガラス基板に成膜したアルミニウム酸化物膜は、成膜後にさらに500℃で加熱を行っても変質が見られず、耐熱材料としての利用が可能である。これらの膜の表面抵抗値を測定したところ、抵抗値が得られず導電性がないことから、絶縁材料としての利用が可能である。実施例2-24のアルミニウム酸化物膜のついた基材は成膜で得らえた膜表面に微小な凹凸を有することが確認され、反射防止効果、触媒担体としての利用が可能である。実施例2-7、8、21、22、23、24、25、36、37、38、40において、本発明の組成物で成膜したアルミニウム酸化物膜はガラスや樹脂および紙等の基材への密着性が高いことから、各種基材の保護膜や塗装や積層膜の下地等、アンダーコート膜、基材に積層可能な電子デバイス用膜等の利用が可能である。このように、本発明のアルミニウム酸化物膜のついた基材は、アルミニウム酸化物機能膜としての利用が可能である。
[Example 2-42]
Any of the aluminum oxide films obtained in Examples 2-1, 2-2, 2-3, 2-4, 2-5, 2-15, 2-32, 2-33, 2-34 The substrate also has a high vertical transmittance at 550 nm of 80% or more, and can be used as an optical material. Further, the aluminum oxide film formed on the glass substrate does not change in quality even when heated at 500 ° C. after the film formation, and can be used as a heat resistant material. When the surface resistance values of these films were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials. The substrate with the aluminum oxide film of Example 2-24 was confirmed to have minute irregularities on the film surface obtained by the film formation, and can be used as an antireflection effect and as a catalyst carrier. In Examples 2-7, 8, 21, 22, 23, 24, 25, 36, 37, 38, 40, the aluminum oxide film formed with the composition of the present invention is a substrate such as glass, resin, and paper. Because of its high adhesion to the substrate, it is possible to use a protective film for various base materials, an undercoat film, an undercoat film, a film for electronic devices that can be laminated on the base material, and the like. Thus, the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
[実施例2-43]
 実施例2-1、2、3、4、5、6、15、24、32、33、34、35および39に記載のアルミニウム酸化物膜を有するガラス基板や、実施例2-7、8、21、22、23、25、36、37、38、39および40において得られたアルミニウム酸化物膜を有するポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、アクリルといった樹脂の板およびフィルムや紙は、いずれも実施例42記載の機能を有するアルミニウム酸化物機能膜を有する基材として利用が可能である。
<本発明の第三の態様>
[Example 2-43]
A glass substrate having an aluminum oxide film described in Examples 2-1, 2, 3, 4, 5, 6, 15, 24, 32, 33, 34, 35, and 39; and Examples 2-7, 8, The resin plate such as polypropylene (PP), polyethylene terephthalate (PET), and acrylic having the aluminum oxide film obtained in 21, 22, 23, 25, 36, 37, 38, 39, and 40, film, and paper Also, it can be used as a base material having an aluminum oxide functional film having the function described in Example 42.
<Third Aspect of the Present Invention>
 全ての有機アルミニウム化合物を含む溶液の調製およびそれを用いた成膜は窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。
 <トリエチルアルミニウムのモル数>
 本発明の第一の態様と同様。
 アルミニウム酸化物膜に成膜時における水は、必要に応じて65℃に加熱した水に窒素をバブリングさせることによって窒素中に水を飽和させた状態(不活性ガス中の水分として25モル%)のものとして成膜雰囲気に供給した。成膜雰囲気における不活性ガス中の水分含有率は露点測定(湿度)により得た。また、溶液の調製や成膜等の操作において室温で行う場合は、室温が18~27℃でとなるような環境下において実施した。
Preparation of a solution containing all organoaluminum compounds and film formation using the solution were performed in a nitrogen gas atmosphere, and all solvents were used after dehydration and deaeration.
<Mole number of triethylaluminum>
Similar to the first aspect of the present invention.
When forming the aluminum oxide film, water is saturated in nitrogen by bubbling nitrogen into water heated to 65 ° C. as necessary (25 mol% as moisture in the inert gas). Was supplied to the film forming atmosphere. The moisture content in the inert gas in the film forming atmosphere was obtained by dew point measurement (humidity). In addition, when performing the preparation of the solution or the film formation at room temperature, it was performed in an environment where the room temperature was 18 to 27 ° C.
 実施例および比較例における各成膜における基材上におけるアルミニウム酸化物およびその膜の形成は、ATR-IR(全反射(attenuated total reflection,:ATR)法による赤外分光法)、EPMA(Electron Probe Micro Analyzer:電子線マイクロアナライザ)、XRD(X‐ray diffraction:X線回折)による解析で確認した。
 可視光等の透過率は、分光光度計を用いて測定した。
 アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定または薄膜断面のSEM測定により行った。
 成膜したアルミニウム酸化物膜の基材への密着性は、粘着テープを用いた基材に塗布製膜したアルミニウム酸化物膜へのテープ貼り・剥がしによる剥離試験により確認した。
 薬液の反応性は、温度(20℃)および湿度(50%)が一定な無風大気中において濾紙に薬液を滴下し、濾紙上での反応性を目視で確認した。
The formation of aluminum oxide and its film on the substrate in each film formation in the examples and comparative examples is performed by ATR-IR (infrared spectroscopy by the attenuated total reflection (ATR) method), EPMA (Electron Probe). This was confirmed by analysis by Micro Analyzer (electron beam microanalyzer) and XRD (X-ray diffraction).
The transmittance of visible light or the like was measured using a spectrophotometer.
The film thickness of the aluminum oxide film was measured by a stylus type surface shape measuring instrument or SEM measurement of a thin film cross section.
The adhesion of the formed aluminum oxide film to the substrate was confirmed by a peeling test by applying and peeling the tape on the aluminum oxide film coated and formed on the substrate using an adhesive tape.
As for the reactivity of the chemical solution, the chemical solution was dropped on the filter paper in a windless atmosphere with a constant temperature (20 ° C.) and humidity (50%), and the reactivity on the filter paper was visually confirmed.
[実施例3-1-1]
 テトラヒドロフラン(THF)74.8gに、トリエチルアルミニウム(東ソー・ファインケム株式会社製)8.3g を室温で加えた。十分攪拌した後に、ろ過することで、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液A)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液A)を用いて、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。アルミニウム酸化物膜を成膜する基材として、18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))を用い、このガラス基板を200℃に加熱し、大気圧、不活性ガス中の水分が2.3モル%(相対湿度90%@21℃)で水が存在する窒素雰囲気下において、ヒーターで加熱した基板に対して、スプレーノズルより溶液Aを2ml/分で8分間噴霧した。スプレーノズルより吐出する液滴の大きさは、3~20μmの範囲であり、かつスプレーノズルと基板との距離を20cmとして行った。噴霧終了後、製膜した基材を5分間加熱を継続した。
[Example 3-1-1]
To 74.8 g of tetrahydrofuran (THF), 8.3 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. After sufficiently stirring, the solution was filtered to obtain an aluminum oxide film production solution (solution A) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
An aluminum oxide film was formed by spray film formation using the obtained aluminum oxide film production solution (solution A). As a base material for forming an aluminum oxide film, an 18 mm square (thickness 0.7 mm) glass substrate (Corning Corp., EagleXG (R) ) was used. In a nitrogen atmosphere where water in the inert gas is 2.3 mol% (relative humidity 90% @ 21 ° C.) and water is present, the solution A is applied at 2 ml / min from the spray nozzle to the substrate heated by the heater. Sprayed for 8 minutes. The size of droplets discharged from the spray nozzle was in the range of 3 to 20 μm, and the distance between the spray nozzle and the substrate was 20 cm. After spraying, the film-formed substrate was continuously heated for 5 minutes.
 ガラス基板上に形成された膜を、放冷後に大気中に取り出して、SEMおよびEPMAで分析し、膜の付着および膜を構成する元素が酸素およびアルミニウム元素であることを確認した、さらにATR-IRにより分析を行ったところ、550~1000cm-1付近のガラス基板由来のピークと重なるピークの増加および2800~3100cm-1の間に見られる、有機アルミニウム化合物や溶媒がそれらの構造中に有するC-Hに由来するに帰属されるピークが観測されないことを確認した。以上の分析から、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。また、本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定したところ、329nmであった。また、可視光(550nm)での透過率は97.9%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
 この実施例3-1-1のトリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液A)と同様の組成の溶液を用いて、実施例3-1-1記載の上記の成膜をもう一度行い、アルミニウム酸化物膜の膜厚が332nmを得た。この膜についてSEMで分析を行い、膜の表面構造として図3-2、膜の断面構造として図3-3の形状であることをそれぞれ確認した。
The film formed on the glass substrate was allowed to cool and then taken out into the atmosphere and analyzed by SEM and EPMA to confirm that the film adhered and the elements constituting the film were oxygen and aluminum elements. As a result of IR analysis, an increase in a peak overlapping with a peak derived from a glass substrate in the vicinity of 550 to 1000 cm −1 , and an organoaluminum compound or solvent that is observed between 2800 and 3100 cm −1 in the structure It was confirmed that no peak attributed to —H was observed. From the above analysis, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD. The thickness of the aluminum oxide film was 329 nm as measured by a stylus type surface shape measuring instrument. Moreover, the transmittance | permeability in visible light (550 nm) was 97.9%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
Using the solution having the same composition as the solution for producing an aluminum oxide film containing triethylaluminum of Example 3-1-1 (Solution A), the above-described film formation described in Example 3-1-1 was performed once again. The film thickness of the aluminum oxide film was 332 nm. This film was analyzed by SEM, and it was confirmed that the surface structure of the film was as shown in FIG. 3-2 and the cross-sectional structure of the film was as shown in FIG. 3-3.
[実施例3-1-2]
 実施例3-1-1において、テトラヒドロフラン(THF)を76.5g、トリエチルアルミニウム(東ソー・ファインケム株式会社製)4.0gとして、実施例3-1-1と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液B)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液B)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、279nmであった。得られた膜の可視光(550nm)での透過率は94.8%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-2]
In Example 3-1-1, 76.5 g of tetrahydrofuran (THF) and 4.0 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) were used in the same manner as in Example 3-1-1 for spray coating. An aluminum oxide film production solution (solution B) containing triethylaluminum for use was obtained.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution B), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 279 nm. The transmittance of the obtained film in visible light (550 nm) was 94.8%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
[実施例3-1-3]
 実施例3-1-1において、テトラヒドロフラン(THF)の代わりに1,2-ジエトキシエタン79.2gを用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を8.8gとして、実施例3-1-1と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液C)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液C)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、358nmであった。また、可視光(550nm)での透過率は95.3% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-3]
In Example 3-1-1, 79.2 g of 1,2-diethoxyethane was used in place of tetrahydrofuran (THF), and 8.8 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. -1 was performed to obtain an aluminum oxide film production solution (solution C) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution C), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 358 nm. Further, the transmittance with visible light (550 nm) was 95.3%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
[実施例3-1-4]
 実施例3-1-1において、テトラヒドロフラン(THF)の代わりにジイソプロピルエーテル82.7gを用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を9.2gとして、実施例3-1-1と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液D)を得た。
 得られたアルミニウム酸化物膜製造用溶液(溶液D)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、307nmであった。また、可視光(550nm)での透過率は97.6% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-4]
In Example 3-1-1, 82.7 g of diisopropyl ether was used instead of tetrahydrofuran (THF), and 9.2 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. The operation was performed to obtain an aluminum oxide film production solution (solution D) containing triethylaluminum for use in spray coating.
Using the obtained aluminum oxide film production solution (solution D), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 307 nm. The transmittance with visible light (550 nm) was 97.6%, and a transparent aluminum oxide film with a transmittance of 80% or more was obtained.
[実施例3-1-5]
 実施例3-1-1において、テトラヒドロフラン(THF)の代わりにテトラヒドロフラン(THF)41.3gとヘキサン41.3gとの混合溶媒を用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を9.2gとして、実施例3-1-1と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液E)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液E)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、211nmであった。また、可視光(550nm)での透過率は97.6% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-5]
In Example 3-1-1, instead of tetrahydrofuran (THF), a mixed solvent of tetrahydrofuran (THF) 41.3 g and hexane 41.3 g was used, and triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was changed to 9.2 g. Then, the same operation as in Example 3-1-1 was performed to obtain an aluminum oxide film production solution (solution E) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution E), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 211 nm. The transmittance with visible light (550 nm) was 97.6%, and a transparent aluminum oxide film with a transmittance of 80% or more was obtained.
[実施例3-1-6]
 実施例3-1-1において、テトラヒドロフラン(THF)の代わりにテトラヒドロフラン(THF)21.9gとトルエン51.0gとの混合溶媒を用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を8.1gとして、実施例3-1-1と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液F)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液F)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、271nmであった。また、可視光(550nm)での透過率は95.5% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-6]
In Example 3-1-1, a mixed solvent of 21.9 g of tetrahydrofuran (THF) and 51.0 g of toluene was used in place of tetrahydrofuran (THF), and 8.1 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was used. Then, the same operation as in Example 3-1-1 was performed to obtain an aluminum oxide film production solution (solution F) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution F), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 271 nm. Moreover, the transmittance | permeability in visible light (550 nm) is 95.5%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
[実施例3-1-7]
 実施例3-1-4において、ジイソプロピルエーテルの代わりにジイソプロピルエーテル41.2gと混合キシレン41.2gとの混合溶媒を用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を9.1gとして、実施例3-1-4と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液G)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液G)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、330nmであった。また、可視光(550nm)での透過率は93.9% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[実施例3-1-8]
 実施例3-1-3において、1,2-ジエトキシエタンの代わりに1,2-ジエトキシエタン62.3gと混合キシレン15.6gとの混合溶媒を用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を8.7gとして、実施例3-1-3と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液H)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液H)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、281nmであった。また、可視光(550nm)での透過率は94.4% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-7]
In Example 3-1-4, instead of diisopropyl ether, a mixed solvent of 41.2 g of diisopropyl ether and 41.2 g of mixed xylene was used, and triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was changed to 9.1 g. The same operation as in 3-1-4 was performed to obtain an aluminum oxide film production solution (solution G) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution G), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 330 nm. Moreover, the transmittance | permeability in visible light (550 nm) was 93.9%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
[Example 3-1-8]
In Example 3-1-3, instead of 1,2-diethoxyethane, a mixed solvent of 62.3 g of 1,2-diethoxyethane and 15.6 g of mixed xylene was used, and triethylaluminum (Tosoh Finechem Corporation) was used. The product was prepared in the same manner as in Example 3-1-3, to obtain a solution for producing an aluminum oxide film (solution H) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution H), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 281 nm. The transmittance with visible light (550 nm) was 94.4%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
[実施例3-1-9]
 実施例3-1-8において、1,2-ジエトキシエタンと混合キシレンとの混合溶媒の代わりに1,2-ジエトキシエタン39.5gとトルエン39.5gとの混合溶媒を用い、トリエチルアルミニウム(東ソー・ファインケム株式会社製)を8.9gとして、実施例3-1-8と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液I)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 得られたアルミニウム酸化物膜製造用溶液(溶液I)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。ガラス基板上に形成されたアルミニウム酸化物膜の膜厚は、310nmであった。また、可視光(550nm)での透過率は94.3% であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-9]
In Example 3-1-8, instead of the mixed solvent of 1,2-diethoxyethane and mixed xylene, a mixed solvent of 39.5 g of 1,2-diethoxyethane and 39.5 g of toluene was used. The same procedure as in Example 3-1-8 was carried out using 8.9 g (manufactured by Tosoh Finechem Co., Ltd.), and a solution for producing an aluminum oxide film containing triethylaluminum for use in spray coating (solution I) Got.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
Using the obtained aluminum oxide film production solution (solution I), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. The film thickness of the aluminum oxide film formed on the glass substrate was 310 nm. Moreover, the transmittance | permeability in visible light (550 nm) was 94.3%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
[実施例3-1-10]
 実施例3-1-1において、アルミニウム酸化物膜を成膜する基材として、18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))の代わりにポリエチレンテレフタレート(PET)フィルム(60mm角(厚さ75μm))を用い、基材の加熱温度を200℃から130℃に変更した条件で、実施例3-1-1と同様の操作を行い、アルミニウム酸化物膜製造用溶液(溶液A)と同様の組成の溶液を用いて、スプレー成膜により130℃に加熱したポリエチレンテレフタレート(PET)フィルム上にアルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、130℃の低温におけるポリエチレンテレフタレート(PET)フィルムへのアルミニウム酸化物膜の形成を確認した。得られた膜の表面構造に関するSEM測定結果を図3-4に示す。このアルミニウム酸化物膜の可視光(550nm)での透過率は86%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
[Example 3-1-10]
In Example 3-1-1, polyethylene terephthalate (PET) was used as a base material for forming an aluminum oxide film instead of an 18 mm square (0.7 mm thick) glass substrate (Corning, EagleXG® ). ) Using a film (60 mm square (thickness 75 μm)) and changing the heating temperature of the substrate from 200 ° C. to 130 ° C., the same operation as in Example 3-1-1 was carried out to produce an aluminum oxide film An aluminum oxide film was formed on a polyethylene terephthalate (PET) film heated to 130 ° C. by spray film formation using a solution having the same composition as the solution for solution (solution A). By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on a polyethylene terephthalate (PET) film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution. The SEM measurement results for the surface structure of the obtained film are shown in Fig. 3-4. The visible light (550 nm) transmittance of this aluminum oxide film was 86%, and a transparent aluminum oxide film having a transmittance of 80% or more was obtained.
[実施例3-1-11]
 実施例3-1-10において、アルミニウム酸化物膜を成膜する基材として、ポリエチレンテレフタレート(PET)フィルム(60mm角(厚さ25μm))の代わりに多孔質ポリプロピレン(PP)フィルム(2次電池セパレータ用:60mm角(厚さ20μm))を用い、このフィルムを130℃に加熱し、アルミニウム酸化物膜製造用溶液(溶液A)と同様の組成の溶液を用いて、実施例3-1-10と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、130℃の低温におけるポリプロピレン(PP)多孔質フィルムへのアルミニウム酸化物膜の形成を確認した。
[Example 3-1-11]
In Example 3-1-10, instead of polyethylene terephthalate (PET) film (60 mm square (thickness 25 μm)), a porous polypropylene (PP) film (secondary battery) was used as a base material for forming an aluminum oxide film. For separators: 60 mm square (thickness 20 μm)), this film was heated to 130 ° C., and a solution having the same composition as the aluminum oxide film production solution (solution A) was used. The same operation as in No. 10 was performed, and an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on a polypropylene (PP) porous film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
[実施例3-1-12]
 実施例3-1-10において、アルミニウム酸化物膜を成膜する基材として、ポリエチレンテレフタレート(PET)フィルム(60mm角(厚さ75μm))の代わりにアラミド不織布(2次電池セパレータ仕様:60mm角(厚さ57μm))を用い、このフィルムを130℃に加熱し、アルミニウム酸化物膜製造用溶液(溶液A)と同様の組成の溶液を用いて、実施例3-1-10と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、130℃の低温におけるアラミド多孔質フィルムへのアルミニウム酸化物膜の形成を確認した。
[Example 3-1-12]
In Example 3-1-10, as a base material for forming an aluminum oxide film, an aramid nonwoven fabric (secondary battery separator specification: 60 mm square) instead of polyethylene terephthalate (PET) film (60 mm square (thickness 75 μm)) (Thickness 57 μm)), and this film was heated to 130 ° C., and the same operation as in Example 3-1-10 was performed using a solution having the same composition as the solution for aluminum oxide film production (solution A). Then, an aluminum oxide film was formed by spray film formation. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on the aramid porous film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
[実施例3-1-13]
 テトラヒドロフラン(THF)150.0gに、トリエチルアルミニウム(東ソー・ファインケム株式会社製)15.0g を室温で加えた。十分攪拌した後に、溶液をフィルター(細孔:3μm以下)でろ過することで、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液J)を得た。
 薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))を用い、このフィルムを130℃に加熱し、アルミニウム酸化物膜製造用溶液(溶液J)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。基板上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、130℃の低温におけるポリプロピレン(PP)フィルムへのアルミニウム酸化物膜の形成を確認した。
[Example 3-1-13]
To 150.0 g of tetrahydrofuran (THF), 15.0 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. After sufficiently stirring, the solution was filtered with a filter (pore: 3 μm or less) to obtain an aluminum oxide film production solution (solution J) containing triethylaluminum for use in spray coating.
As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
A polypropylene (PP) film (30 mm square (thickness 0.2 mm)) was used as a base material for forming an aluminum oxide film, and this film was heated to 130 ° C. to prepare an aluminum oxide film production solution (solution J The aluminum oxide film was formed by spray film formation in the same manner as in Example 3-1-1. By the same analysis of the film formed on the substrate, formation of an aluminum oxide film on a polypropylene (PP) film at a low temperature of 130 ° C. was confirmed by a film forming method using this solution.
[実施例3-1-14]
 トリエチルアルミニウムの含有量を少なくした、テトラヒドロフラン(THF)69.7gとトリエチルアルミニウム(東ソー・ファインケム株式会社製)2.16gとからなるアルミニウム酸化物膜製造用溶液(溶液K)およびトリエチルアルミニウムの含有量を少なくした、テトラヒドロフラン(THF)69.7gとトリエチルアルミニウム(東ソー・ファインケム株式会社製)0.70g とからなるアルミニウム酸化物膜製造用溶液(溶液L)を実施例3-1-1と同様の手法で調製し、ガラス基板の加熱温度を200℃において実施例3-1-1記載の条件で成膜を行ったところ、200℃におけるアルミニウム酸化物膜の形成を確認した。
 また、本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。溶液Kおよび溶液Lのおのおのの溶液を用いてスプレー成膜によって得られたアルミニウム酸化物膜の可視光(550nm)での透過率および膜厚は、ぞれぞれ、99%、75nm(溶液K)、99%、30nm(溶液L)であった。
[Example 3-1-14]
Aluminum oxide film production solution (solution K) consisting of 69.7 g of tetrahydrofuran (THF) and 2.16 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) and triethylaluminum with reduced triethylaluminum content A solution (solution L) for producing an aluminum oxide film consisting of 69.7 g of tetrahydrofuran (THF) and 0.70 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) in the same manner as in Example 3-1-1 The glass substrate was prepared by the method, and the glass substrate was heated at 200 ° C. under the conditions described in Example 3-1-1. As a result, formation of an aluminum oxide film at 200 ° C. was confirmed.
In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD. The visible light transmittance (550 nm) and the film thickness of the aluminum oxide film obtained by spray film formation using each of the solutions K and L were 99% and 75 nm (solution K, respectively). ), 99%, 30 nm (solution L).
[実施例3-1-15]
 実施例3-1-1および実施例3-1-2において、それぞれの実施例で得たアルミニウム酸化物膜製造用溶液(溶液A:実施例3-1-1、溶液B:実施例3-1-2)を用い、ガラス基板の加熱温度を300℃に変えて、同様の操作を行い、同様の解析により、本溶液を用いた成膜方法により、300℃におけるアルミニウム酸化物膜の形成を確認した。本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。
[Example 3-1-15]
In Example 3-1-1 and Example 3-1-2, the aluminum oxide film production solutions obtained in the respective examples (Solution A: Example 3-1-1, Solution B: Example 3- 1-2), changing the heating temperature of the glass substrate to 300 ° C., performing the same operation, and by the same analysis, forming the aluminum oxide film at 300 ° C. by the film forming method using this solution. confirmed. In the aluminum oxide film obtained in this example, no peak was confirmed by XRD, and it was confirmed that the aluminum oxide film was in an amorphous state.
[実施例3-1-16]
 実施例3-1-1~10で得られた膜の密着性について、スコッチテープ(R)2364(3M社製)を用いて、剥がし試験により確認を行った。アルミニウム酸化物膜を成膜した前記ポリプロピレン(PP)フィルムの成膜面にテープを押し付けて貼り、斜め45°に引き剥がした。引き剥がした後を目視、ATR-IRおよびSEM測定で確認したところ、強い膜の剥がれは確認されず、本組成物によって成膜した膜の密着性が高いことを確認した。
[Example 3-1-16]
The adhesion of the films obtained in Examples 3-1-1 to 10 was confirmed by a peeling test using Scotch Tape (R) 2364 (manufactured by 3M). A tape was pressed on the film-forming surface of the polypropylene (PP) film on which the aluminum oxide film was formed, and was peeled off at an angle of 45 °. After peeling, the film was visually confirmed by ATR-IR and SEM measurement. As a result, strong film peeling was not confirmed, and it was confirmed that the film formed with this composition had high adhesion.
[実施例3-1-17]
 アルミニウム酸化物膜を成膜する基材として、紙(薬包紙(20mm角(厚さ31μm))を用い、この紙を142℃に加熱し、実施例3-1-4で調製したアルミニウム酸化物膜製造用溶液(溶液D)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。紙上に形成された膜の同様の分析により、本溶液を用いた成膜方法により、142℃の低温における紙へのアルミニウム酸化物膜の形成を確認した。
 得らえた膜をSEM分析を行ったところ、図3-5が得られ、紙の繊維の表面を粒子状のアルミニウム酸化物がコートされていることが確認された。
[Example 3-1-17]
As the base material for forming the aluminum oxide film, paper (medicine wrapping paper (20 mm square (thickness 31 μm))) was used. This paper was heated to 142 ° C., and the aluminum oxide film prepared in Example 3-1-4 Using the production solution (Solution D), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation, similar to the film formed on paper. The analysis confirmed the formation of an aluminum oxide film on paper at a low temperature of 142 ° C. by a film forming method using this solution.
When the obtained film was subjected to SEM analysis, FIGS. 3-5 were obtained, and it was confirmed that the surface of the paper fiber was coated with particulate aluminum oxide.
[実施例3-1-18]
 実施例3-1-1~10および14において得られたアルミニウム酸化物膜のついたいずれの基材も、550nmでの垂直透過率が80%以上と高く、光学材料として利用が可能である。また、ガラス基板に成膜したアルミニウム酸化物膜は、500℃の加熱でも変質が見られず、耐熱材料としての利用が可能である。実施例3-1-1~15および17で得られた膜の表面抵抗値を測定したところ、抵抗値が得られず導電性がないことから、絶縁材料としての利用が可能である。実施例3-1-1、10および17のアルミニウム酸化物膜のついた基材は成膜で得らえた膜表面に微小な凹凸を有することが確認され、反射防止効果、触媒担体としての利用が可能である。実施例3-1-1~10および17において、本発明の組成物で成膜したアルミニウム酸化物膜はガラスや樹脂等の基材への密着性が高いことから、各種基材の保護膜や塗装や積層膜の下地等、アンダーコート膜、基材に積層可能な電子デバイス用膜等の利用が可能である。このように、本発明のアルミニウム酸化物膜のついた基材は、アルミニウム酸化物機能膜としての利用が可能である。
[Example 3-1-18]
Any of the substrates with the aluminum oxide films obtained in Examples 3-1-1 to 10 and 14 has a high vertical transmittance of 80% or more at 550 nm and can be used as an optical material. In addition, the aluminum oxide film formed on the glass substrate does not change even when heated at 500 ° C., and can be used as a heat-resistant material. When the surface resistance values of the films obtained in Examples 3-1-1 to 15 and 17 were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials. The substrates with the aluminum oxide films of Examples 3-1-1, 10 and 17 were confirmed to have minute irregularities on the film surface obtained by the film formation, antireflection effect, use as a catalyst carrier Is possible. In Examples 3-1-1 to 10 and 17, since the aluminum oxide film formed with the composition of the present invention has high adhesion to a substrate such as glass or resin, It is possible to use an undercoat film, a film for an electronic device that can be laminated on a base material, etc., such as coating or a base of a laminated film. Thus, the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
[実施例3-1-19]
 実施例3-1-1~9、14および15に記載のアルミニウム酸化物膜を有するガラス基板や、実施10~13において得られたアルミニウム酸化物膜を有するポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、アクリルといった樹脂の板およびフィルム、および実施例3-1-17で得られたアルミニウム酸化物膜を有する紙は、いずれも実施例3-1-18記載の機能を有するアルミニウム酸化物機能膜を有する基材として利用が可能である。
[Example 3-1-19]
Glass substrates having the aluminum oxide films described in Examples 3-1-1 to 9, 14, and 15, polypropylene (PP) and polyethylene terephthalate (PET) having the aluminum oxide films obtained in Examples 10 to 13 A resin plate and film such as acrylic, and a paper having an aluminum oxide film obtained in Example 3-1-17 all have an aluminum oxide functional film having the function described in Example 3-1-18. It can be used as a base material.
[比較例3-1-1]
 実施例3-1-2において、テトラヒドロフラン(THF)の代わりにヘキサンを用いて、実施例3-1-2と同様の操作を行い、噴霧塗布に用いるための、トリエチルアルミニウムを含むアルミニウム酸化物膜製造用溶液(溶液X)を得た。
 この電子供与性溶媒を含まない溶液(溶液K)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行ったが、粉状の物質が基材に付着したのみであった。また、付着した粉状の物質はほとんどなく、基材から剥がれ落ちてしまい、アルミニウム酸化物膜は形成されなかった。
[Comparative Example 3-1-1]
In Example 3-1-2, hexane was used in place of tetrahydrofuran (THF), and the same operation as in Example 3-1-2 was performed, and an aluminum oxide film containing triethylaluminum for use in spray coating A production solution (solution X) was obtained.
Using this solution containing no electron-donating solvent (solution K), the same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. This material only adhered to the substrate. Moreover, there was almost no adhering powdery substance, it peeled off from the base material, and the aluminum oxide film was not formed.
[比較例3-1-2]
 実施例3-1-1おいて、大気圧、不活性ガス中の水分が0.003モル%(相対湿度0.1%@21℃)と実質的にほとんど水分を含まない窒素雰囲気下において、ヒーターで加熱した基板に対して、スプレーノズルより溶液Aを2ml/分で8分間噴霧した。実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行ったが、基材に付着物はほとんどなく、成膜終了後に、得られた膜を相対湿度90%の水分を含む窒素雰囲気下で200℃の加熱を行ったが、基材に付着した物質がほとんどないことから、同様にアルミニウム酸化物膜の形成は確認できなかった。
[Comparative Example 3-1-2]
In Example 3-1-1, the moisture in the inert gas at atmospheric pressure was 0.003 mol% (relative humidity 0.1% @ 21 ° C.), and under a nitrogen atmosphere substantially free of moisture, The solution A was sprayed at 2 ml / min for 8 minutes from the spray nozzle onto the substrate heated by the heater. The same operation as in Example 3-1-1 was performed, and an aluminum oxide film was formed by spray film formation. However, there was almost no deposit on the base material, and after the film formation, Although heating was performed at 200 ° C. in a nitrogen atmosphere containing water having a relative humidity of 90%, since there was almost no substance adhering to the base material, formation of an aluminum oxide film could not be confirmed.
[比較例3-1-3]
 トルエン86.41gに、アルミニウムトリスアセチルアセトナト(Al(acac))4.32g を室温で加えた。十分攪拌した後に、溶液をフィルター(細孔:3μm以下)でろ過することで、噴霧塗布に用いるための、アルミニウムトリスアセチルアセトナト(Al(acac))を含むアルミニウム酸化物膜製造用溶液(溶液L)を得た。
 この炭素数1~3の直鎖もしくは分岐したアルキル基を有機アルミニウム化合物の構造中に含まない有機アルミニウム化合物を含有する溶液(溶液Y)を用いて、実施例3-1-1と同様の操作を行い、スプレー成膜により、アルミニウム酸化物膜の成膜を行った。
 この電子供与性溶媒を含まない溶液(溶液L)を用いて、実施例3-1-1と同様の操作を行い、基板の加熱温度が200℃においてスプレー成膜により膜の成膜を行ったが、基材への付着物はほとんどなくアルミニウム酸化物膜は形成されなかった。
[Comparative Example 3-1-3]
To 86.41 g of toluene, 4.32 g of aluminum trisacetylacetonate (Al (acac) 3 ) was added at room temperature. After sufficiently stirring, the solution is filtered through a filter (pore: 3 μm or less), so that an aluminum oxide film production solution containing aluminum trisacetylacetonate (Al (acac) 3 ) for use in spray coating ( Solution L) was obtained.
The same operation as in Example 3-1-1 was carried out using a solution (solution Y) containing an organoaluminum compound which does not contain a linear or branched alkyl group having 1 to 3 carbon atoms in the structure of the organoaluminum compound. Then, an aluminum oxide film was formed by spray film formation.
Using this solution containing no electron-donating solvent (solution L), the same operation as in Example 3-1-1 was performed, and a film was formed by spray film formation at a substrate heating temperature of 200 ° C. However, there was almost no deposit on the substrate, and no aluminum oxide film was formed.
[比較例3-1-4]
 トルエン90.19gに、アルミニウムトリイソプロポキシド(Al(OPr))4.51g を室温で加えた。十分攪拌した後に、溶液をフィルター(細孔:3μm以下)でろ過することで、噴霧塗布に用いるための、アルミニウムトリイソプロポキシド(Al(OPr))を含むアルミニウム酸化物膜製造用溶液(溶液Z)を得た。
 この炭素数1~3の直鎖もしくは分岐したアルキル基を有機アルミニウム化合物の構造中に含まない有機アルミニウム化合物を含有する溶液(溶液M)を用いて、実施例3-1-1と同様の操作を行い、、基板の加熱温度が200℃においてスプレー成膜により膜の成膜を行ったが、基材への付着物はほとんどなくアルミニウム酸化物膜は形成されなかった。
[Comparative Example 3-1-4]
To 90.19 g of toluene, 4.51 g of aluminum triisopropoxide (Al (O i Pr) 3 ) was added at room temperature. After sufficiently stirring, the solution is filtered through a filter (pore: 3 μm or less) to produce an aluminum oxide film containing aluminum triisopropoxide (Al (O i Pr) 3 ) for use in spray coating. A solution (Solution Z) was obtained.
Using the solution containing the organoaluminum compound that does not contain the linear or branched alkyl group having 1 to 3 carbon atoms in the structure of the organoaluminum compound (solution M), the same operation as in Example 3-1-1 The film was formed by spray film formation at a substrate heating temperature of 200 ° C., but there was almost no deposit on the substrate, and no aluminum oxide film was formed.
[実施例3-2-1]
 テトラヒドロフラン(THF)108.45gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)15.13gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水0.48gを含有したTHF溶液48.8gを、水のTEALに対するモル比(水/TEAL)が0.2になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物A)を得た。
 この組成物Aを用いて、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行った。アルミニウム酸化物膜を成膜する基材として、18mm角(厚さ0.7mm)のガラス基板(コーニング社製、EagleXG(R))を用い、このガラス基板を200℃に加熱し、大気圧、不活性ガス中の水分が2.3モル%(相対湿度90%@21℃)でと水が存在する窒素雰囲気下において、ヒーターで加熱した基板に対して、スプレーノズルより溶液Aを2ml/分で8分間噴霧した。この成膜時において供給した酸素源である水の組成物A中のAlモル数に対するモル比は90であった。スプレーノズルより吐出する液滴の大きさは、3~20μmの範囲であり、かつスプレーノズルと基板との距離を20cmとして行った。噴霧終了後、製膜した基材を5分間加熱を継続した。
 ガラス基板上に形成された膜を、放冷後に大気中に取り出して、SEMおよびEPMAで分析し、膜の付着および膜を構成する元素が酸素およびアルミニウム元素であることを確認した。図3-7に本実施例で得られた膜の表面、図3-8に前記膜の断面のSEM分析の結果をそれぞれ示した。さらにATR-IRにより分析を行ったところ、550~1000cm-1付近のガラス基板由来のピークと重なるピークの増加および2800~3100cm-1の間に見られる、有機アルミニウム化合物や溶媒がそれらの構造中に有するC-Hに由来するに帰属されるピークが観測されないことを確認した。以上の分析から、本溶液を用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。また、本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定したところ、146nmであった。また、可視光(550nm)での透過率は91.0%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
 得られた膜の密着性について、クロスカット試験およびそこで使用したスコッチテープ(R)2364(3M社製)を用いた剥がし試験を行い、目視およびATR-IRおよびSEM測定で確認したところ、膜の剥がれ等のないことを確認した。
[実施例3-2-2]
 実施例3-2-1において、水0.48gの代わりに水0.95gとし、水のTEALに対するモル比(水/TEAL)が0.4になるように滴下すること以外は、実施例3-2-1と同様の手法を用いて、無色透明溶液を得た。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物B)を得た。
 この組成物Bを用いて、実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行った。実施例3-2-1と同様の分析により、組成物Bを用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。また、本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定したところ、119nmであった。また、可視光(550nm)での透過率は84.3%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
 得られた膜の密着性について、実施例3-2-1と同様、クロスカット試験およびそこで使用したスコッチテープ(R)2364(3M社製)を用いた剥がし試験を行い、目視およびATR-IRおよびSEM測定で確認したところ、膜の剥がれ等のないことを確認した。図3-9に本実施例で得られた膜の表面、図3-10に同膜の断面のSEM分析の結果をそれぞれ示した。
[実施例3-2-3]
 実施例3-2-1において、水0.48gの代わりに水1.44gとし、水のTEALに対するモル比(水/TEAL)が0.6になるように滴下すること以外は、実施例3-2-1と同様の手法を用いて、無色透明溶液を得た。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物C)を得た。
 この組成物Cを用いて、実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行った。実施例3-2-1と同様の分析により、組成物Cを用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。また、本実施例で得られたアルミニウム酸化物膜は、XRDによりピークが確認されず、アモルファス状態であることが確認された。アルミニウム酸化物膜の膜厚は、触針式表面形状測定器による測定したところ、76nmであった。また、可視光(550nm)での透過率は83.3%であり、透過率80%以上の透明なアルミニウム酸化物膜を得た。
 得られた膜の密着性について、実施例3-2-1と同様、クロスカット試験およびそこで使用したスコッチテープ(R)2364(3M社製)を用いた剥がし試験を行い、目視およびATR-IRおよびSEM測定で確認したところ、膜の剥がれ等のないことを確認した。
[比較例3-2-1]
 実施例3-2-1において、水0.48gの代わりに水1.91gとし、水のTEALに対するモル比(水/TEAL)が0.8になるように滴下すること以外は、実施例3-2-1と同様の手法を用いて、無色透明溶液を得た。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物D)を得た。
 この組成物Dを用いて、実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行ったが、基板への付着物はほとんど見られず、膜を形成をすることが出来なかった。
[比較例3-2-2]
 実施例3-2-1において、加水分解時に添加する水の量を変えて水のTEALに対するモル比(水/TEAL)が1.0になるように水の量を調整したこと以外は実施例3-2-1の組成物Aの調製方法と同様にして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物E)を調製した。この組成物Eを用いて、実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜を200℃で行ったが、白い粉状の粉体が基板表面に付着し、密着性の良い膜を得ることが出来なかった。
 得られた膜の密着性について、実施例3-2-1と同様、クロスカット試験およびそこで使用したスコッチテープ(R)2364(3M社製)を用いた剥がし試験を行い、目視およびATR-IRおよびSEM測定で確認したところ、基板表面に付着した白い粉状の粉体は剥がれてしまうことを確認した。
 実施例3-2-1、2、3、4および比較例3-2-1でそれぞれ調製した各組成物を用いたスプレー成膜の結果について表3-1に示す。
[実施例3-2-4]
 テトラヒドロフラン(THF)73.2gに、トリエチルアルミニウム(TEAL:東ソー・ファインケム株式会社製)11.35gを室温で加えた。十分攪拌して得られたTEAL/THF溶液に、20℃前後となるように反応による発熱を除熱しながら、水1.08gを含有したTHF溶液36.6gを、水のTEALに対するモル比(水/TEAL)が0.6になるように撹拌しながら滴下した。その後、65℃まで加熱して65℃で2.5時間反応させた。反応終了後、放冷して反応生成物を回収した。反応後の生成物は無色透明溶液であった。この生成物中に含まれる微量のゲル状の不溶物をフィルター(細孔:3μm以下)でろ過を行い、無色透明溶液を回収した。薬液の反応性について、濾紙上での反応性を目視で確認したところ、濾紙の焦げ等は確認されなかった。
 このようにして、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物F)を得た。この組成物Fの一部について、真空乾燥により溶媒等を除去した後のトリエチルアルミニウムを部分的に加水分解した生成物を主成分とする残存物について、1H-NMR(THF-d,ppm) 測定を行い、図3-6のスペクトルを得た。この組成物Fを用いて、実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行った。実施例3-2-1と同様の分析により、組成物Fを用いた成膜方法により、200℃の低温におけるアルミニウム酸化物膜の形成を確認した。
[実施例3-2-5]
 実施例3-2-1で調製した組成物Aを用いて、アルミニウム酸化物膜を成膜する基材として、ポリプロピレン(PP)フィルム(30mm角(厚さ0.2mm))およびポリエチレンテレフタレート(PET)フィルム(60mm角(厚さ75μm))を用いて、基材の加熱温度を130℃として実施例3-2-1と同様な手法で、スプレー熱分解法により、アルミニウム酸化物膜の成膜をそれぞれの基材に行った。実施例3-2-1と同様の分析により、組成物Fを用いた成膜方法により、130℃の低温におけるアルミニウム酸化物膜の形成を確認した。
[Example 3-2-1]
To 108.45 g of tetrahydrofuran (THF), 15.13 g of triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) was added at room temperature. To a TEAL / THF solution obtained by thorough stirring, 48.8 g of a THF solution containing 0.48 g of water was removed in a molar ratio of water to TEAL (water) while removing heat generated by the reaction so that the temperature was about 20 ° C. / TEAL) was added dropwise with stirring so as to be 0.2. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
Using this composition A, an aluminum oxide film was formed by spray pyrolysis. As a base material for forming an aluminum oxide film, an 18 mm square (0.7 mm thick) glass substrate (Corning Corp., EagleXG (R) ) was used. In a nitrogen atmosphere where the moisture in the inert gas is 2.3 mol% (relative humidity 90% @ 21 ° C.) and water is present, the solution A is 2 ml / min from the spray nozzle to the substrate heated by the heater. For 8 minutes. The molar ratio to the number of moles of Al in the composition A of water, which is the oxygen source supplied at the time of film formation, was 90. The size of droplets discharged from the spray nozzle was in the range of 3 to 20 μm, and the distance between the spray nozzle and the substrate was 20 cm. After spraying, the film-formed substrate was continuously heated for 5 minutes.
The film formed on the glass substrate was allowed to cool and then taken out into the atmosphere and analyzed by SEM and EPMA, and it was confirmed that the film was attached and the elements constituting the film were oxygen and aluminum elements. FIG. 3-7 shows the surface of the film obtained in this example, and FIG. 3-8 shows the result of SEM analysis of the cross section of the film. Further analysis by ATR-IR revealed that an increase in the peak overlapping with the peak derived from the glass substrate in the vicinity of 550 to 1000 cm −1 and an organoaluminum compound or solvent found between 2800 to 3100 cm −1 in the structure. It was confirmed that no peak attributed to C—H derived from was observed. From the above analysis, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using this solution. In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD. The thickness of the aluminum oxide film was 146 nm as measured by a stylus type surface shape measuring instrument. Moreover, the transmittance | permeability in visible light (550 nm) was 91.0%, and the transparent aluminum oxide film | membrane of the transmittance | permeability 80% or more was obtained.
The adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M Co.), and the result was confirmed visually and by ATR-IR and SEM measurement. It was confirmed that there was no peeling.
[Example 3-2-2]
In Example 3-2-1, except that water was changed to 0.95 g instead of 0.48 g of water and dropped so that the molar ratio of water to TEAL (water / TEAL) was 0.4, Example 3 A colorless and transparent solution was obtained using the same method as for -2-1. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition B) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
Using this composition B, an aluminum oxide film was formed by spray pyrolysis in the same manner as in Example 3-2-1. By the same analysis as in Example 3-2-1, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using the composition B. In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD. The thickness of the aluminum oxide film was 119 nm as measured by a stylus type surface shape measuring instrument. Moreover, the transmittance | permeability in visible light (550 nm) was 84.3%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
As in Example 3-2-1, the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor. When confirmed by SEM measurement, it was confirmed that there was no peeling of the film. FIG. 3-9 shows the surface of the film obtained in this example, and FIG. 3-10 shows the result of SEM analysis of the cross section of the film.
[Example 3-2-3]
In Example 3-2-1, except that water was replaced with 1.44 g instead of 0.48 g of water and added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.6. A colorless and transparent solution was obtained using the same method as for -2-1. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition C) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
Using this composition C, an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1. By the same analysis as in Example 3-2-1, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using the composition C. In addition, the aluminum oxide film obtained in this example was confirmed to be in an amorphous state without any peak being confirmed by XRD. The thickness of the aluminum oxide film was 76 nm as measured by a stylus type surface shape measuring instrument. Moreover, the transmittance | permeability in visible light (550 nm) was 83.3%, and the transparent aluminum oxide film | membrane with a transmittance | permeability of 80% or more was obtained.
As in Example 3-2-1, the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor. When confirmed by SEM measurement, it was confirmed that there was no peeling of the film.
[Comparative Example 3-2-1]
In Example 3-2-1, except that water was changed to 1.91 g instead of 0.48 g and water was added dropwise so that the molar ratio of water to TEAL (water / TEAL) was 0.8, Example 3 A colorless and transparent solution was obtained using the same method as for -2-1. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition D) containing a product obtained by partially hydrolyzing triethylaluminum was obtained.
Using this composition D, an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1, but there was almost no deposit on the substrate. A film could not be formed.
[Comparative Example 3-2-2]
In Example 3-2-1, except that the amount of water added at the time of hydrolysis was changed and the amount of water was adjusted so that the molar ratio of water to TEAL (water / TEAL) was 1.0. A composition for producing an aluminum oxide film (composition E) containing a product obtained by partially hydrolyzing triethylaluminum was prepared in the same manner as the preparation method of composition A in 3-2-1. Using this composition E, an aluminum oxide film was formed at 200 ° C. by a spray pyrolysis method in the same manner as in Example 3-2-1. A film adhered to the surface and having good adhesion could not be obtained.
As in Example 3-2-1, the adhesion of the obtained film was subjected to a cross-cut test and a peeling test using Scotch Tape (R) 2364 (manufactured by 3M ) used therefor. As a result of confirmation by SEM measurement, it was confirmed that the white powdery powder adhering to the substrate surface was peeled off.
Table 3-1 shows the results of spray film formation using the respective compositions prepared in Examples 3-2-1, 2, 3, 4 and Comparative Example 3-2-1.
[Example 3-2-4]
Triethylaluminum (TEAL: manufactured by Tosoh Finechem Co., Ltd.) (11.35 g) was added to 73.2 g of tetrahydrofuran (THF) at room temperature. To a TEAL / THF solution obtained by thorough stirring, 36.6 g of a THF solution containing 1.08 g of water was removed in a molar ratio of water to TEAL (water / TEAL) was added dropwise with stirring so as to be 0.6. Then, it heated to 65 degreeC and made it react at 65 degreeC for 2.5 hours. After completion of the reaction, the reaction product was recovered by cooling. The product after the reaction was a colorless and transparent solution. A small amount of gel-like insoluble matter contained in this product was filtered with a filter (pores: 3 μm or less), and a colorless transparent solution was recovered. As for the reactivity of the chemical solution, when the reactivity on the filter paper was confirmed by visual observation, no scorching or the like of the filter paper was confirmed.
In this way, a composition for producing an aluminum oxide film (composition F) containing a product obtained by partially hydrolyzing triethylaluminum was obtained. About a part of the composition F, a residue mainly composed of a product obtained by partially hydrolyzing triethylaluminum after removing the solvent and the like by vacuum drying was analyzed by 1 H-NMR (THF-d 8 , ppm ) Measurement was performed to obtain the spectrum of Fig. 3-6. Using this composition F, an aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1. By the same analysis as in Example 3-2-1, formation of an aluminum oxide film at a low temperature of 200 ° C. was confirmed by a film forming method using the composition F.
[Example 3-2-5]
Using the composition A prepared in Example 3-2-1, as a substrate for forming an aluminum oxide film, a polypropylene (PP) film (30 mm square (thickness 0.2 mm)) and polyethylene terephthalate (PET) ) Using a film (60 mm square (thickness 75 μm)) and heating the substrate at 130 ° C., the aluminum oxide film was formed by the spray pyrolysis method in the same manner as in Example 3-2-1. For each substrate. By the same analysis as in Example 3-2-1, formation of an aluminum oxide film at a low temperature of 130 ° C. was confirmed by a film forming method using the composition F.
[比較例3-2-3]
 実施例3-2-1において、トリエチルアルミニウムを部分的に加水分解した生成物を含むアルミニウム酸化物膜製造用組成物(組成物A)を用いて、不活性ガス中の水分が0.25モル%(相対湿度1%@21℃)でと水が存在する窒素雰囲気下としたこと以外は実施例3-2-1と同様の手法により、スプレー熱分解法により、アルミニウム酸化物膜の成膜を行った。この成膜では、ガラス基板への付着物はほとんどなく、アルミニウム酸化物膜を得ることが出来なかった。
[Comparative Example 3-2-3]
In Example 3-2-1, using the composition for producing an aluminum oxide film (composition A) containing a product obtained by partially hydrolyzing triethylaluminum, the water content in the inert gas was 0.25 mol. % (Relative humidity 1% @ 21 ° C.) and a nitrogen atmosphere in which water is present, the aluminum oxide film is formed by the spray pyrolysis method in the same manner as in Example 3-2-1. Went. In this film formation, there was almost no deposit on the glass substrate, and an aluminum oxide film could not be obtained.
[実施例3-2-6]
 実施例3-2-1、2、3において得られたアルミニウム酸化物膜のついたいずれの基材も、550nmでの垂直透過率が80%以上と高く、光学材料として利用が可能である。また、ガラス基板に成膜したアルミニウム酸化物膜は、成膜後にさらに500℃で加熱を行っても変質が見られず、耐熱材料としての利用が可能である。これらの膜の表面抵抗値を測定したところ、抵抗値が得られず導電性がないことから、絶縁材料としての利用が可能である。さらに、本発明の組成物で成膜したアルミニウム酸化物膜はガラスや樹脂等の基材への密着性が高いことから、各種基材の保護膜や塗装や積層膜の下地等、アンダーコート膜、基材に積層可能な電子デバイス用膜等の利用が可能である。これらのアルミニウム酸化物膜のついた基材は成膜で得らえた膜表面に微小な凹凸を有することが確認され、反射防止効果、触媒担体としての利用が可能である。このように、本発明のアルミニウム酸化物膜のついた基材は、アルミニウム酸化物機能膜としての利用が可能である。
[実施例3-2-8]
 実施例3-2-1、2、3および4に記載のアルミニウム酸化物膜を有するガラス基板や、実施例3-2-6において得られたアルミニウム酸化物膜を有するポリプロピレン(PP)、ポリエチレンテレフタレート(PET)といった樹脂フィルムは、いずれも実施例3-2-7記載の機能を有するアルミニウム酸化物機能膜を有する基材として利用が可能である。
<本発明の第四の態様>
[Example 3-2-6]
Any of the substrates with the aluminum oxide films obtained in Examples 3-2-1, 2, and 3 has a high vertical transmittance of 80% or more at 550 nm and can be used as an optical material. Further, the aluminum oxide film formed on the glass substrate does not change in quality even when heated at 500 ° C. after the film formation, and can be used as a heat resistant material. When the surface resistance values of these films were measured, the resistance values could not be obtained and there was no conductivity, so that the films could be used as insulating materials. Furthermore, since the aluminum oxide film formed with the composition of the present invention has high adhesion to substrates such as glass and resin, undercoat films such as protective films for various substrates and bases for coating and laminated films Further, it is possible to use a film for electronic devices that can be laminated on a substrate. It is confirmed that the base material with these aluminum oxide films has minute irregularities on the film surface obtained by film formation, and can be used as an antireflection effect and as a catalyst carrier. Thus, the base material with the aluminum oxide film of the present invention can be used as an aluminum oxide functional film.
[Example 3-2-8]
A glass substrate having the aluminum oxide film described in Examples 3-2-1, 2, 3 and 4, and polypropylene (PP) and polyethylene terephthalate having the aluminum oxide film obtained in Example 3-2-6 Any resin film such as (PET) can be used as a base material having an aluminum oxide functional film having the function described in Example 3-2-7.
<Fourth aspect of the present invention>
 本発明のアルキルアルミニウム化合物含有溶液の調製は、窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。 The alkylaluminum compound-containing solution of the present invention was prepared in a nitrogen gas atmosphere, and all solvents were dehydrated and degassed before use.
<トリアルキルアルミニウムのモル数>
 本発明の第一の態様と同様。
<Mole number of trialkylaluminum>
Similar to the first aspect of the present invention.
<物性測定> <Measurement of physical properties>
 本発明のスプレーノズルを用いて形成された液滴の平均粒径(50%体積径)は、レーザー光散乱方式粒度分布測定装置(日機装社製「スプレー粒子径分布測定装置CTエアロトラック LDSA-3500A」)を用いて、スプレーノズルより20cmの距離の液滴を測定した。 The average particle size (50% volume diameter) of the droplets formed using the spray nozzle of the present invention is determined by a laser light scattering type particle size distribution measuring device (“Spray particle size distribution measuring device CT Aerotrac LDSA-3500A manufactured by Nikkiso Co., Ltd.). )) Was used to measure droplets at a distance of 20 cm from the spray nozzle.
 本発明の製造方法により作成された酸化アルミニウム薄膜は、FT-IR分光装置(日本分光社製「FT/IR-4100」)にてZnSeプリズムを用いたATR(Attenuated Total Reflection:全反射)法によりATR補正なしで相対的にIR測定を実施した。 The aluminum oxide thin film prepared by the production method of the present invention is obtained by an ATR (Attenuated Total Reflection) method using a ZnSe prism with an FT-IR spectrometer (“FT / IR-4100” manufactured by JASCO Corporation). Relative IR measurements were performed without ATR correction.
 本来ZnSeプリズムを用いた場合、屈折率が1.7を超える薄膜の測定は難しく、一般的な酸化アルミニウムの屈折率が1.77であることを考えると測定は難しいと想定された。しかし、驚くべきことに測定が可能であった。本発明による酸化アルミニウム薄膜の屈折率は1.7以下であることが推定された。 Originally, when a ZnSe prism was used, it was difficult to measure a thin film having a refractive index exceeding 1.7, and it was assumed that the measurement was difficult considering that the refractive index of a general aluminum oxide was 1.77. However, surprisingly measurements were possible. The refractive index of the aluminum oxide thin film according to the present invention was estimated to be 1.7 or less.
 本発明の製造方法により作成された酸化アルミニウム薄膜は、膜の一部をナイフで削り取り、触針式表面形状測定装置(ブルカーナノ社製、DektakXT-S)を用いて膜厚を測定した。 The aluminum oxide thin film prepared by the production method of the present invention was partly cut with a knife, and the film thickness was measured using a stylus type surface shape measuring device (DektakXT-S manufactured by Bruker Nano).
 本発明の製造方法により作成された酸化アルミニウム薄膜は、光源(オーシャンフォトニクス社製、DH-2000-BAL)、分光器(オーシャンフォトニクス社製、USB-4000)を用いて可視光の垂直透過率を測定した。 The aluminum oxide thin film prepared by the production method of the present invention has a visible light vertical transmittance using a light source (Ocean Photonics, DH-2000-BAL) and a spectroscope (Ocean Photonics, USB-4000). It was measured.
[実施例4-1]
 テトラヒドロフラン(以下THF)18.0gにトリエチルアルミニウム(東ソー・ファインケム社製)2.01gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムTHF溶液(以下溶液A)を得た。
[Example 4-1]
To 18.0 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum THF solution (hereinafter referred to as Solution A).
 得られた溶液Aを用いてスプレー塗布を行った。室温25℃、相対湿度43%の空気中で、2流体スプレーノズル(超小型過流式精密噴霧ノズル、アトマックス社製、AM4S-OSV-0.4、ノズル径0.4mm)を用いて行った。スプレーノズルと基材(無アルカリガラス、コーニング社製、イーグルXG、18mm×18mm×0.7mmt)の距離を20cmとして行った。スプレーノズルで2ml/分の溶液Aと8NL/分の窒素ガスを混合させることにより3~30μmの液滴を形成させた。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ8.5μmであった。形成された液滴を8分間200℃に加熱された基材に噴霧した。 The resulting solution A was used for spray coating. Performed in air at room temperature of 25 ° C and relative humidity of 43% using a two-fluid spray nozzle (ultra-compact overflow precision spray nozzle, manufactured by Atmax, AM4S-OSV-0.4, nozzle diameter 0.4 mm) It was. The distance between the spray nozzle and the substrate (non-alkali glass, Corning, Eagle XG, 18 mm × 18 mm × 0.7 mmt) was set to 20 cm. 3 to 30 μm droplets were formed by mixing 2 ml / min of solution A and 8 NL / min of nitrogen gas with a spray nozzle. It was 8.5 micrometers when the average particle diameter (50% volume diameter) of the formed droplet was measured with the laser light scattering type particle size distribution measuring apparatus. The formed droplets were sprayed on a substrate heated to 200 ° C. for 8 minutes.
 基材上に形成された薄膜をATR法によるIR測定したところ、図4-2のようなスペクトルが得られた。550から1500cm-1付近にブロードなAl-O-Alの振動ピークが確認され、Al-O-Al結合の形成が確認できた。したがって、酸化アルミニウム薄膜の形成が確認された。3000cm-1付近の有機物の振動ピークがないため、残存有機物が無いことが確認できた。無アルカリガラス自体のATR法によるIRスペクトルは図4-1であり明らかに図4-2と異なる。可視光550nmの垂直透過率は97.5%と透明であり、触針式表面形状測定装置によると膜厚は293nmであった。 When a thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-2 was obtained. A broad Al—O—Al vibration peak was observed in the vicinity of 550 to 1500 cm −1, confirming the formation of an Al—O—Al bond. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm −1, it was confirmed that there was no residual organic substance. The IR spectrum of the alkali-free glass itself by the ATR method is shown in FIG. 4-1, which is clearly different from FIG. 4-2. The vertical transmittance of visible light at 550 nm was 97.5%, and the film thickness was 293 nm according to the stylus type surface shape measuring apparatus.
[実施例4-2]
 ジイソプロピルエーテル18.01gにトリエチルアルミニウム(東ソー・ファインケム社製)2.00gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムジイソプロピルエーテル溶液(以下溶液B)を得た。
[Example 4-2]
To 18.01 g of diisopropyl ether, 2.00 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum diisopropyl ether solution (hereinafter referred to as Solution B).
 溶液Bを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ8.0μmであった。 Except that the solution B was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1. The average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 μm.
 基材上に形成された薄膜をATR法によるIR測定したところ、図4-3のようなスペクトルが得られた。実施例4-1と同様に、Al-O-Al結合の形成が確認できた。したがって、酸化アルミニウム薄膜の形成が確認された。3000cm-1付近の有機物の振動ピークがないため、残存有機物が無いことが確認できた。可視光550nmの垂直透過率は98.0%と透明であり、触針式表面形状測定装置によると膜厚は277nmであった。 When the thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-3 was obtained. As in Example 4-1, formation of an Al—O—Al bond was confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm −1, it was confirmed that there was no residual organic substance. The visible light 550 nm had a vertical transmittance of 98.0% and was transparent, and the film thickness was 277 nm according to the stylus type surface shape measuring apparatus.
[実施例4-3]
 THF8.00gにヘキサン10.01g、トリエチルアルミニウム(東ソー・ファインケム社製)2.01gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムジイソプロピルエーテル溶液(以下溶液C)を得た。
[Example 4-3]
To 10.00 g of THF, 10.01 g of hexane and 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) were added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum diisopropyl ether solution (hereinafter, solution C).
 溶液Cを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ7.5μmであった。 Except that the solution C was used, the same method and conditions as in Example 4-1 were used for spray coating on the same substrate as in Example 4-1. The average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring device and found to be 7.5 μm.
 基材上に形成された薄膜をATR法によるIR測定したところ、実施例4-1と同様に、Al-O-Al結合の形成が確認できた。したがって、酸化アルミニウム薄膜の形成が確認された。 When the thin film formed on the substrate was subjected to IR measurement by the ATR method, formation of Al—O—Al bonds was confirmed as in Example 4-1. Therefore, formation of the aluminum oxide thin film was confirmed.
[実施例4-4]
 テトラヒドロフラン(以下THF)17.9gにトリイソブチルアルミニウム(東ソー・ファインケム社製)2.01gを25℃で加え、十分攪拌することにより10質量%のトリイソブチルアルミニウムTHF溶液(以下溶液D)を得た。
[Example 4-4]
To 17.9 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triisobutylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triisobutylaluminum THF solution (hereinafter referred to as Solution D). .
 溶液Dを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ8.0μmであった。 Except that the solution D was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1. The average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 μm.
 基材上に形成された薄膜をATR法によるIR測定したところ、図4-4のようなスペクトルが得られた。実施例4-1と同様に、Al-O-Al結合の形成が確認できた。したがって、酸化アルミニウム薄膜の形成が確認された。3000cm-1付近の有機物の振動ピークがないため、残存有機物が無いことが確認できた。可視光550nmの垂直透過率は99.3%と透明であり、触針式表面形状測定装置によると膜厚は130nmであった。 When the thin film formed on the substrate was subjected to IR measurement by the ATR method, a spectrum as shown in FIG. 4-4 was obtained. As in Example 4-1, formation of an Al—O—Al bond was confirmed. Therefore, formation of the aluminum oxide thin film was confirmed. Since there was no vibration peak of the organic substance around 3000 cm −1, it was confirmed that there was no residual organic substance. The vertical transmittance of visible light 550 nm was as transparent as 99.3%, and the film thickness was 130 nm according to the stylus type surface shape measuring apparatus.
[比較例4-1]
 ヘキサン18.00gにトリエチルアルミニウム(東ソー・ファインケム社製)2.00gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムヘキサン溶液(以下溶液E)を得た。
[Comparative Example 4-1]
To 18.00 g of hexane, 2.00 g of triethylaluminum (manufactured by Tosoh Finechem Co., Ltd.) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum hexane solution (hereinafter, solution E).
 溶液Eを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。ATR法によるIR測定、垂直透過率測定、触針式表面形状測定から薄膜は形成されず、薄膜は付着していなかった。 Except that the solution E was used, the same method and conditions as in Example 4-1, were applied to the same base material as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached.
[比較例4-2]
 トルエン19.1gにアルミニウムイソプロポキシド(アルドリッチ社製)1.01gを25℃で加え、十分攪拌することにより5質量%のアルミニウムイソプロポキシドトルエン溶液(以下溶液F)を得た。
[Comparative Example 4-2]
To 19.1 g of toluene, 1.01 g of aluminum isopropoxide (manufactured by Aldrich) was added at 25 ° C. and sufficiently stirred to obtain a 5 mass% aluminum isopropoxide toluene solution (hereinafter referred to as Solution F).
 溶液Fを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。ATR法によるIR測定、垂直透過率測定、触針式表面形状測定から薄膜は形成されず、薄膜は付着していなかった。 Except that the solution F was used, the same method and conditions as in Example 4-1, were applied to the same base material as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached.
[比較例4-3]
 トルエン19.0gにアルミニウムアセチルアセトナート(アルドリッチ社製)1.00gを25℃で加え、十分攪拌することにより5質量%のアルミニウムアセチルアセトナートトルエン溶液(以下溶液G)を得た。
[Comparative Example 4-3]
To 19.0 g of toluene, 1.00 g of aluminum acetylacetonate (manufactured by Aldrich) was added at 25 ° C. and sufficiently stirred to obtain a 5 mass% aluminum acetylacetonate toluene solution (hereinafter referred to as Solution G).
 溶液Gを用いた以外は実施例4-1と同様の方法および条件で実施例4-1と同様な基材にスプレー塗布した。ATR法によるIR測定、垂直透過率測定、触針式表面形状測定から薄膜は形成されず、薄膜は付着していなかった。
<本発明の第五の態様>
Except that the solution G was used, the same method and conditions as in Example 4-1, were applied to the same substrate as in Example 4-1. A thin film was not formed from the IR measurement by the ATR method, the vertical transmittance measurement, and the stylus type surface shape measurement, and the thin film was not attached.
<Fifth aspect of the present invention>
 本発明のアルキルアルミニウム化合物含有溶液の調製は、窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。 The alkylaluminum compound-containing solution of the present invention was prepared in a nitrogen gas atmosphere, and all solvents were dehydrated and degassed before use.
<トリアルキルアルミニウムのモル数>
 本発明の第一の態様と同様。
<Mole number of trialkylaluminum>
Similar to the first aspect of the present invention.
<物性測定>
 本発明のスプレーノズルを用いて形成された液滴の平均粒径(50%体積径)は、レーザー光散乱方式粒度分布測定装置(日機装社製「スプレー粒子径分布測定装置CTエアロトラック LDSA-3500A」)を用いて、スプレーノズルより20cmの距離の液滴を測定した。
<Measurement of physical properties>
The average particle size (50% volume diameter) of the droplets formed using the spray nozzle of the present invention is determined by a laser light scattering type particle size distribution measuring device (“Spray particle size distribution measuring device CT Aerotrac LDSA-3500A manufactured by Nikkiso Co., Ltd.). )) Was used to measure droplets at a distance of 20 cm from the spray nozzle.
 本発明の製造方法により作成された酸化アルミニウム薄膜は、高速分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製、M-2000)を用いて膜厚、屈折率を測定した。 The film thickness and refractive index of the aluminum oxide thin film prepared by the production method of the present invention were measured using a high-speed spectroscopic ellipsometer (manufactured by JA Woollam Japan Co., Ltd., M-2000).
 実効キャリアライフタイムは擬定常状態光導電法(QSSPC法)によりライムタイム測定器(Sinton社製、WCT-120)を用いて測定した。なお、実施例における実効キャリアライフタイムは、過剰キャリア密度が1015cm-3における値である。 The effective carrier lifetime was measured by a quasi-steady state photoconductive method (QSSPC method) using a lime time measuring device (SCT, WCT-120). The effective carrier lifetime in the example is a value at an excess carrier density of 10 15 cm −3 .
 前記のように測定した実効キャリアライフタイム値を用いて、以下の式(1)に基づき表面再結合速度Sを求めた。式(1)中、Wはウェハー厚、τeffは実効ライフタイム、τbulkはバルクライフタイムを示す。Wは300μm、τbulkは∞として計算した。 Using the effective carrier lifetime value measured as described above, the surface recombination velocity S was determined based on the following equation (1). In formula (1), W is the wafer thickness, τ eff is the effective lifetime, and τ bulk is the bulk lifetime. W was calculated as 300 μm, and τ bulk as ∞.
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
[実施例5-1]
 テトラヒドロフラン(以下THF)18.1gにトリエチルアルミニウム(東ソー・ファインケム社製)2.01gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムTHF溶液(以下溶液A)を得た。
[Example 5-1]
To 18.1 g of tetrahydrofuran (hereinafter referred to as THF), 2.01 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10 mass% triethylaluminum THF solution (hereinafter referred to as Solution A).
 得られた溶液Aを用いてスプレー塗布を行った。窒素ガス雰囲気で、2流体スプレーノズル(超小型過流式精密噴霧ノズル、アトマックス社製、AM4S-OSV-0.4、ノズル径:0.4mm)を用いて行った。スプレーノズルと基材(p型シリコン基板、Topsil社製、PV-FZ(ウェハー厚255~305μm、配向<100>、体積抵抗1~5Ωcm)、4インチ円板を均等に4分割したもの、5wt%フッ酸にて洗浄後使用)の距離を20cmとして行った。スプレーノズルで2ml/分の溶液Aと8NL/分の窒素ガスを混合させることにより平均粒径が3~30μmの液滴を形成させた。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ8.5μmであった。同時に、65℃に加熱された水に10NL/分の窒素ガスを導入することによって形成された水分を含有する窒素ガスを基材付近に導入した。形成された液滴を前記水分の共存下で2分間200℃に加熱された基材に噴霧した。その後、基材を完全な窒素ガス雰囲気にした後、400℃、5分間焼成した。同様な処理を裏面にも施した。 The resulting solution A was used for spray coating. In a nitrogen gas atmosphere, a two-fluid spray nozzle (ultra-compact overflow type precision spray nozzle, manufactured by Atmax, AM4S-OSV-0.4, nozzle diameter: 0.4 mm) was used. Spray nozzle and base material (p-type silicon substrate, manufactured by Topsil, PV-FZ (wafer thickness 255 to 305 μm, orientation <100>, volume resistance 1 to 5 Ωcm), 4 inch circular plate equally divided into 4 parts, 5 wt. (Used after washing with% hydrofluoric acid) at a distance of 20 cm. Droplets having an average particle diameter of 3 to 30 μm were formed by mixing 2 ml / min of solution A and 8 NL / min of nitrogen gas with a spray nozzle. It was 8.5 micrometers when the average particle diameter (50% volume diameter) of the formed droplet was measured with the laser light scattering type particle size distribution measuring apparatus. At the same time, nitrogen gas containing moisture formed by introducing nitrogen gas at 10 NL / min into water heated to 65 ° C. was introduced near the substrate. The formed droplets were sprayed onto a substrate heated to 200 ° C. for 2 minutes in the presence of the water. Then, after making a base material into a perfect nitrogen gas atmosphere, it baked at 400 degreeC for 5 minutes. A similar treatment was applied to the back side.
 基材上に形成された薄膜の膜厚、屈折率を、高速分光エリプソメーターを用いて測定したところ69nm、1.50であった。実効ライフタイムは606μsであり、再結合速度は24.8cm/sであった。 When the film thickness and refractive index of the thin film formed on the substrate were measured using a high-speed spectroscopic ellipsometer, they were 69 nm and 1.50. The effective lifetime was 606 μs, and the recombination rate was 24.8 cm / s.
[実施例5-2]
 実施例5-1で得られた膜を、さらに水素5vol%、窒素95vol%から構成されるフォーミングガス雰囲気下で400℃、5分追加焼成した。得られた膜の実効ライフタイムは698μsに上昇し、再結合速度は21.5cm/sとなった。
[Example 5-2]
The film obtained in Example 5-1 was further calcined at 400 ° C. for 5 minutes in a forming gas atmosphere composed of 5 vol% hydrogen and 95 vol% nitrogen. The effective lifetime of the resulting film increased to 698 μs and the recombination rate was 21.5 cm / s.
[実施例5-3]
 ジイソプロピルエーテル18.1gにトリエチルアルミニウム(東ソー・ファインケム社製)2.00gを25℃で加え、十分攪拌することにより10質量%のトリエチルアルミニウムジイソプロピルエーテル溶液(以下溶液B)を得た。
[Example 5-3]
To 18.1 g of diisopropyl ether, 2.00 g of triethylaluminum (manufactured by Tosoh Finechem) was added at 25 ° C. and sufficiently stirred to obtain a 10% by mass triethylaluminum diisopropyl ether solution (hereinafter referred to as Solution B).
 溶液Bを用いた以外は実施例5-1と同様の方法および条件で実施例5-1と同様な基材にスプレー塗布、焼成した。形成された液滴の平均粒径(50%体積径)をレーザー光散乱方式粒度分布測定装置で測定したところ8.0μmであった。 The same base material as in Example 5-1 was spray coated and fired in the same manner and conditions as in Example 5-1, except that Solution B was used. The average particle diameter (50% volume diameter) of the formed droplets was measured with a laser light scattering type particle size distribution measuring apparatus, and found to be 8.0 μm.
 基材上に形成された薄膜の実効ライフタイムは506μsであり、再結合速度は29.6cm/sであった。 The effective lifetime of the thin film formed on the substrate was 506 μs, and the recombination speed was 29.6 cm / s.
[実施例5-4]
 実施例5-3で得られた膜を、さらに水素5vol%、窒素95vol%から構成されるフォーミングガス雰囲気下で400℃、5分追加焼成した。得られた膜の実効ライフタイムは821μsに上昇し、再結合速度は18.3cm/sとなった。
[Example 5-4]
The film obtained in Example 5-3 was further baked at 400 ° C. for 5 minutes in a forming gas atmosphere composed of 5 vol% hydrogen and 95 vol% nitrogen. The effective lifetime of the resulting film increased to 821 μs and the recombination rate was 18.3 cm / s.
 前記までの結果を表5-1にまとめた。 The results so far are summarized in Table 5-1.
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000058
 本発明1~5は、アルミニウム酸化物膜の製造分野に有用である。
 特に本発明1は、有機合成等のアルキル化剤、反応剤の分野、酸化アルミニウム薄膜の製造分野に有用である。酸化アルミニウム薄膜は放熱性付与、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、対磨耗性付与、等に供することができる。
The present inventions 1 to 5 are useful in the field of manufacturing an aluminum oxide film.
In particular, the present invention 1 is useful in the field of alkylating agents and reagents such as organic synthesis, and the field of manufacturing aluminum oxide thin films. The aluminum oxide thin film can be used for imparting heat dissipation, imparting heat resistance, imparting barrier properties against air and moisture, imparting an antireflection effect, imparting an antistatic effect, imparting an antifogging effect, imparting wear resistance, and the like.
 本発明4の酸化アルミニウム薄膜は、放熱性付与、耐熱性付与、空気、水分に対するバリア性付与、反射防止効果付与、帯電防止効果付与、防曇効果付与、対磨耗性付与、パッシベーション膜等に供することができる。 The aluminum oxide thin film of the present invention 4 is used for imparting heat radiation, imparting heat resistance, imparting barrier properties against air and moisture, imparting an antireflection effect, imparting an antistatic effect, imparting an antifogging effect, imparting abrasion resistance, a passivation film, and the like. be able to.
 本発明5の酸化アルミニウム薄膜は、パッシベーション膜、それを用いた太陽電池素子等に供することができる。 The aluminum oxide thin film of the present invention 5 can be used for a passivation film, a solar cell element using the passivation film, and the like.
図2-1および3-1
1・・・スプレーボトル、
2・・・基材ホルダ(ヒーター付)、
3・・・スプレーノズル、
4・・・コンプレッサ-、
5・・・基材、
6・・・水蒸気導入用チューブ
Figures 2-1 and 3-1
1 ... spray bottle,
2 ... Base material holder (with heater),
3 ... spray nozzle,
4 ... Compressor,
5 ... base material,
6 ... Steam introduction tube
図5-1および5-2
1 スプレーボトル
2 基材ホルダ(ヒーター付)
3 スプレーノズル
4 高圧窒素ボンベ
5 基材
6 水分導入口
7 不活性ガス導入口
8 排気口
9 囲い
11 シリコン半導体基板
12 n
13 反射防止兼パッシベーション薄膜
14 パッシベーション薄膜
15 グリッド電極
16 アルミニウム電極
17 Al-Si合金層
18 P
100 太陽電池素子
Figures 5-1 and 5-2
1 Spray bottle 2 Base material holder (with heater)
3 Spray nozzle 4 High-pressure nitrogen cylinder 5 Base material 6 Water introduction port 7 Inert gas introduction port 8 Exhaust port 9 Enclosure 11 Silicon semiconductor substrate 12 n + layer 13 Antireflection / passivation thin film 14 Passivation thin film 15 Grid electrode 16 Aluminum electrode 17 Al -Si alloy layer 18 P + layer 100 solar cell element

Claims (69)

  1. ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)及び溶媒を含有する、アルキルアルミニウム化合物含有溶液であって、
    前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(以下、環状アミド化合物と呼ぶ)であり、
    前記アルキルアルミニウム化合物に対してモル比で2.6を超える量の前記環状アミド化合物を含有する、
    前記溶液。
    Figure JPOXMLDOC01-appb-C000001
    An alkylaluminum compound-containing solution comprising an alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum, or a mixture thereof (provided that the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent. ,
    The solvent is an organic compound having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound).
    Containing the cyclic amide compound in an amount exceeding 2.6 by molar ratio to the alkylaluminum compound;
    Said solution.
    Figure JPOXMLDOC01-appb-C000001
  2. 前記環状アミド化合物は、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物である、請求項1に記載の溶液。 The cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution of claim 1, which is a mixture of
  3. 前記アルキルアルミニウム化合物の含有量が15質量%以上である、請求項1又は2のいずれか1項に記載の溶液。 The solution according to claim 1, wherein the content of the alkylaluminum compound is 15% by mass or more.
  4. 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(1)又は(2)で表されるアルキルアルミニウム化合物である、請求項1~3のいずれか1項に記載の溶液。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rはメチル基、エチル基を、Rは、ハロゲン、メチル基、又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rはイソブチル基を、Rは、ハロゲン、又はイソブチル基を表す。)
    The solution according to any one of claims 1 to 3, wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a halogen, a methyl group, or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 3 represents an isobutyl group, and R 4 represents a halogen or an isobutyl group.)
  5. 前記一般式(1)で表されるアルキルアルミニウム化合物がトリエチルアルミニウム又はトリメチルアルミニウムである、請求項4に記載の溶液。 The solution according to claim 4, wherein the alkylaluminum compound represented by the general formula (1) is triethylaluminum or trimethylaluminum.
  6. 前記一般式(2)で表されるアルキルアルミニウム化合物がトリイソブチルアルミニウムである、請求項4に記載の溶液。 The solution according to claim 4, wherein the alkylaluminum compound represented by the general formula (2) is triisobutylaluminum.
  7. 前記一般式(2)で表されるアルキルアルミニウム化合物を30質量%以上含有する請求項6に記載の溶液。 The solution according to claim 6, comprising 30% by mass or more of the alkylaluminum compound represented by the general formula (2).
  8. 前記環状アミド化合物以外の溶媒をさらに含む、請求項1~7のいずれか1項に記載の溶液。 The solution according to any one of claims 1 to 7, further comprising a solvent other than the cyclic amide compound.
  9. ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、アルキル基は炭素数1~6であり、同一又は異なってもよい)の部分加水分解物及び溶媒を含有する、アルキルアルミニウム部分加水分解物含有溶液であって、
    前記溶媒は、沸点が160℃以上であり、下記一般式(4)で示すアミド構造を有し、かつ、環状構造を有する有機化合物(以下、環状アミド化合物と呼ぶ)であり、
    前記部分加水分解物は、前記アルキルアルミニウム化合物中のアルミニウムに対して、モル比が0.5~1.3の範囲の水で加水分解したものである、
    前記溶液。
    Figure JPOXMLDOC01-appb-C000004
    An alkylaluminum moiety comprising a partial hydrolyzate of a dialkylaluminum, a trialkylaluminum or an alkylaluminum compound comprising a mixture thereof (wherein the alkyl group has 1 to 6 carbon atoms and may be the same or different) and a solvent; A hydrolyzate-containing solution comprising:
    The solvent is an organic compound having a boiling point of 160 ° C. or higher, an amide structure represented by the following general formula (4), and a cyclic structure (hereinafter referred to as a cyclic amide compound).
    The partial hydrolyzate is a product of hydrolysis with water having a molar ratio of 0.5 to 1.3 with respect to aluminum in the alkylaluminum compound.
    Said solution.
    Figure JPOXMLDOC01-appb-C000004
  10. 前記アルキルアルミニウム化合物中のアルミニウムに対してモル比で1以上の前記環状アミド化合物を含有する、請求項9に記載の溶液。 The solution according to claim 9, wherein the cyclic amide compound is contained in a molar ratio of 1 or more with respect to aluminum in the alkylaluminum compound.
  11. 前記環状アミド化合物は、N-メチル-2-ピロリドン、又は1,3-ジメチル-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン、又はそれらの混合物である、請求項9又は10に記載の溶液。 The cyclic amide compound is N-methyl-2-pyrrolidone, 1,3-dimethyl-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, or The solution according to claim 9 or 10, which is a mixture of
  12. 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(1)又は(2)で表されるアルキルアルミニウム化合物である、請求項9~11のいずれか1項に記載の溶液。
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rはメチル基、エチル基を、Rは、ハロゲン、メチル基、又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、Rはイソブチル基を、Rは、ハロゲン、又はイソブチル基を表す。)
    The solution according to any one of claims 9 to 11, wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 1 represents a methyl group or an ethyl group, and R 2 represents a halogen, a methyl group, or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 3 represents an isobutyl group, and R 4 represents a halogen or an isobutyl group.)
  13. 前記トリアルキルアルミニウムが下記一般式(3)で表されるアルキルアルミニウム化合物である、請求項9~11のいずれか1項に記載の溶液。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Rはメチル基、エチル基、イソブチル基を表す。)
    The solution according to any one of claims 9 to 11, wherein the trialkylaluminum is an alkylaluminum compound represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, R 5 represents a methyl group, an ethyl group, or an isobutyl group.)
  14. 前記環状アミド化合物以外の溶媒をさらに含む、請求項9~13のいずれか1項に記載の溶液。 The solution according to any one of claims 9 to 13, further comprising a solvent other than the cyclic amide compound.
  15. 請求項9~14のいずれか1項に記載のアルキルアルミニウム部分加水分解物含有溶液を基板に塗布して酸化アルミニウム薄膜を得ることを含む、酸化アルミニウム薄膜の製造方法。 A method for producing an aluminum oxide thin film, comprising applying the alkylaluminum partial hydrolyzate-containing solution according to any one of claims 9 to 14 to a substrate to obtain an aluminum oxide thin film.
  16. (A)下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して、前記有機アルミニウム化合物の部分加水分解物を含有する組成物を得る工程、但し、前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行う、
    (B)前記部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する工程、
    (C)前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程
    を含むアルミニウム酸化物膜を有する物品の製造方法。
    Figure JPOXMLDOC01-appb-C000008
    (式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
    (A) A step of partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent to obtain a composition containing a partial hydrolyzate of the organoaluminum compound, wherein Partial hydrolysis is performed using water in a molar ratio of 0.4 to 1.3 with respect to the organoaluminum compound.
    (B) applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate under an inert gas atmosphere to form a coating film;
    (C) The manufacturing method of the articles | goods which have an aluminum oxide film including the process of heating the base material in which the said coating film was formed at the temperature of 400 degrees C or less in inert gas atmosphere.
    Figure JPOXMLDOC01-appb-C000008
    (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  17. 前記工程(B)および(C)で用いる不活性ガス雰囲気は、実質的に水分を含有しない、請求項16に記載の製造方法。 The manufacturing method according to claim 16, wherein the inert gas atmosphere used in the steps (B) and (C) does not substantially contain moisture.
  18. 前記工程(B)における前記部分加水分解物含有組成物の塗布を20~350℃の範囲の温度で行う、請求項16または17に記載の製造方法。 The production method according to claim 16 or 17, wherein the partial hydrolyzate-containing composition in the step (B) is applied at a temperature in the range of 20 to 350 ° C.
  19. 前記工程(C)おける加熱温度は、40~400℃の範囲である、請求項16~18のいずれかに記載の製造方法。 The production method according to any of claims 16 to 18, wherein the heating temperature in the step (C) is in the range of 40 to 400 ° C.
  20. 前記工程(B)で得られた塗布基材を不活性ガス雰囲気下、20~200℃の温度で加熱して、塗布膜中の少なくとも一部の有機溶媒を除去した後に、工程(C)に供してアルミニウム酸化物膜を形成する、請求項16~19のいずれかに記載の製造方法。 The coated substrate obtained in the step (B) is heated at a temperature of 20 to 200 ° C. in an inert gas atmosphere to remove at least a part of the organic solvent in the coated film, and then the step (C). The manufacturing method according to any one of claims 16 to 19, wherein the aluminum oxide film is formed.
  21. 前記工程(A)において、前記有機アルミニウム化合物と水を混合した後に、混合物を30~80℃の温度で加熱して部分加水分解物を含有する組成物を得る、請求項16~20のいずれかに記載の製造方法。 In the step (A), after mixing the organoaluminum compound and water, the mixture is heated at a temperature of 30 to 80 ° C. to obtain a composition containing a partial hydrolyzate. The manufacturing method as described in.
  22. 前記工程(A)で調製した部分加水分解物含有組成物をろ過して不溶物を除去した後に、工程(B)に用いる、請求項16~21のいずれかに記載の製造方法。 The production method according to any one of claims 16 to 21, wherein the partial hydrolyzate-containing composition prepared in the step (A) is filtered to remove insoluble matters and then used in the step (B).
  23. 前記工程(B)での塗布膜形成は、スプレー塗布法、ディップコート法、スピンコート法、スリットコート法、スロットコート法、バーコート法、ロールコート法、カーテンコート法、静電塗布法、インクジェット法、またはスクリーン印刷法により実施する請求項16~22のいずれかに記載の製造方法。 The coating film formation in the step (B) includes spray coating, dip coating, spin coating, slit coating, slot coating, bar coating, roll coating, curtain coating, electrostatic coating, and inkjet. The production method according to any one of claims 16 to 22, which is carried out by a method or a screen printing method.
  24. 前記工程(A)において部分加水分解物調製に用いる有機溶媒が、炭化水素化合物および/または電子供与性溶媒を含有する有機溶媒である請求項16~23のいずれかに記載の製造方法。 The production method according to any one of claims 16 to 23, wherein the organic solvent used for preparing the partial hydrolyzate in the step (A) is an organic solvent containing a hydrocarbon compound and / or an electron donating solvent.
  25. 前記工程(A)で調製した部分加水分解物含有組成物中の部分加水分解物の濃度が0.1~30質量%の範囲である請求項16~24のいずれかに記載の製造方法。 The production method according to any one of claims 16 to 24, wherein the concentration of the partial hydrolyzate in the partial hydrolyzate-containing composition prepared in the step (A) is in the range of 0.1 to 30% by mass.
  26. 前記工程(A)で用いる前記一般式(6)で表される有機アルミニウム化合物は、式中のR1がメチル基またはエチル基である、請求項16~25のいずれかに記載の製造方法。 The production method according to any one of claims 16 to 25, wherein in the organoaluminum compound represented by the general formula (6) used in the step (A), R 1 in the formula is a methyl group or an ethyl group.
  27. 前記工程(A)で用いる前記一般式(6)で表される有機アルミニウム化合物がトリエチルアルミニウムまたはトリエチルアルミニウムを含有する有機アルミニウム化合物の混合物である、請求項16~26のいずれかに記載の製造方法。 The production method according to any of claims 16 to 26, wherein the organoaluminum compound represented by the general formula (6) used in the step (A) is triethylaluminum or a mixture of organoaluminum compounds containing triethylaluminum. .
  28. 前記工程(B)で用いる前記基板がガラス製基板または樹脂製基板である、請求項16~27のいずれかに記載の製造方法。 The production method according to any one of claims 16 to 27, wherein the substrate used in the step (B) is a glass substrate or a resin substrate.
  29. 下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得られた、前記有機アルミニウム化合物の部分加水分解物を含有する組成物であって、
    (a)前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.4~1.3の範囲で水を用いて行われ、かつ
    (b)前記組成物は、膜塗布形成が不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
    Figure JPOXMLDOC01-appb-C000009
    (式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
    A composition containing a partial hydrolyzate of the organoaluminum compound obtained by partially hydrolyzing an organoaluminum compound represented by the following general formula (6) in an organic solvent,
    (A) The partial hydrolysis is performed using water in a molar ratio with respect to the organoaluminum compound in the range of 0.4 to 1.3, and (b) the composition is formed of an inert gas. The said composition which is a thing for using for formation of the aluminum oxide film performed in atmosphere.
    Figure JPOXMLDOC01-appb-C000009
    (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  30. 前記不活性ガス雰囲気下で行われる膜塗布形成は、(b1)前記部分加水分解物含有組成物を不活性ガス雰囲気下で基材の少なくとも一部の表面に塗布して塗布膜を形成する工程、および
    (b2)前記塗布膜を形成した基材を不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程、を含む、請求項29に記載の組成物。
    The film coating formation performed in the inert gas atmosphere includes the step (b1) of forming the coating film by applying the partial hydrolyzate-containing composition to at least a part of the surface of the substrate in the inert gas atmosphere. And (b2) heating the base material on which the coating film is formed at a temperature of 400 ° C. or lower in an inert gas atmosphere to form an aluminum oxide film. .
  31. 細孔径が3μm以下であるフィルターを用いてろ過した、不溶物を実質的に含有しない、請求項29または30に記載の組成物。 The composition according to claim 29 or 30, which contains substantially no insoluble matter, which is filtered using a filter having a pore size of 3 µm or less.
  32. 基材に密着した透明なアルミニウム酸化物膜を形成するための請求項29~31のいずれかに記載の組成物。 The composition according to any one of claims 29 to 31, for forming a transparent aluminum oxide film in close contact with a substrate.
  33. 請求項16~28のいずれかに記載の方法、または請求項29~32のいずれかに記載の組成物を用いて不活性ガス雰囲気下で製造した、アルミニウム酸化物膜を有する物品。 An article having an aluminum oxide film produced using the method according to any of claims 16 to 28 or the composition according to any of claims 29 to 32 in an inert gas atmosphere.
  34. 前記物品がアルミニウム酸化物膜を基材に付着した複合体またはアルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体である請求項33に記載のアルミニウム酸化物膜を有する物品。
     
    The aluminum according to claim 33, wherein the article is a composite in which an aluminum oxide film is attached to a base material or a composite in which a composite film having an aluminum oxide film and a layer other than an aluminum oxide film is attached to a base material. An article having an oxide film.
  35. (A)下記一般式(6)で示される有機アルミニウム化合物またはその部分加水分解物の有機溶媒溶液を、基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、
     但し、前記部分加水分解物は、前記有機アルミニウム化合物に対してモル比で0.7以下の水を用いて前記有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得た物であり、かつ
     前記噴霧塗布は、0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行う、
    (B)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、前記塗布膜からアルミニウム酸化物膜を形成する工程、
    を含むアルミニウム酸化物膜を有する物品の製造方法。
    Figure JPOXMLDOC01-appb-C000010
    (式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
    (A) forming a coating film by spray-coating an organic solvent solution of an organoaluminum compound represented by the following general formula (6) or a partial hydrolyzate thereof on at least a part of the surface of the substrate;
    However, the partial hydrolyzate is a product obtained by partially hydrolyzing the organoaluminum compound in an organic solvent using water having a molar ratio of 0.7 or less with respect to the organoaluminum compound. And the spray coating is performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water.
    (B) The base material on which the coating film has been formed is heated at a temperature of 400 ° C. or less in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form an aluminum oxide film from the coating film. Forming a process,
    A method for producing an article having an aluminum oxide film containing
    Figure JPOXMLDOC01-appb-C000010
    (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  36. 前記工程(A)において、有機アルミニウム化合物の有機溶媒溶液を用い、
    一般式(6)中、R1は炭素数1~3の直鎖もしくは分岐したアルキル基、R2、R3は独立に、炭素数1~3の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す、請求項35に記載の製造方法。
    In the step (A), an organic solvent solution of an organoaluminum compound is used,
    In the general formula (6), R 1 is a linear or branched alkyl group having 1 to 3 carbon atoms, R 2 and R 3 are independently a linear or branched alkyl group having 1 to 3 carbon atoms, 1 carbon atom The production method according to claim 35, which represents a linear or branched alkoxyl group, an acyloxy group, or an acetylacetonate group of -7.
  37. 前記有機溶媒が電子供与性を有する有機溶媒を含有し、かつ
    前記溶液中の有機アルミニウム化合物の濃度が、0.1~35重量%である、
    請求項36に記載の製造方法。
    The organic solvent contains an electron-donating organic solvent, and the concentration of the organoaluminum compound in the solution is 0.1 to 35% by weight;
    The manufacturing method according to claim 36.
  38. 前記電子供与性を有する有機溶媒を構成する分子のモル数が、有機アルミニウム化合物のモル数に対して等倍以上存在することを特徴とする請求項37に記載の製造方法。 38. The production method according to claim 37, wherein the number of moles of molecules constituting the electron-donating organic solvent is equal to or greater than the number of moles of the organoaluminum compound.
  39. 前記工程(A)の噴霧塗布において、基材表面の温度が20~300℃である請求項36~38のいずれか一項に記載の製造方法。 The production method according to any one of claims 36 to 38, wherein the temperature of the surface of the substrate is 20 to 300 ° C in the spray application in the step (A).
  40. 前記工程(A)において、有機アルミニウム化合物の部分加水分解物の有機溶媒溶液を用い、
    前記工程(A)で用いる前記有機溶媒が、炭化水素化合物および/または電子供与性を有する有機溶媒を含有する有機溶媒である請求項35に記載の製造方法。
    In the step (A), using an organic solvent solution of a partial hydrolyzate of an organoaluminum compound,
    The manufacturing method according to claim 35, wherein the organic solvent used in the step (A) is an organic solvent containing a hydrocarbon compound and / or an organic solvent having an electron donating property.
  41. 前記有機溶媒溶液における部分加水分解物濃度が0.1~35質量%の範囲である請求項40に記載の製造方法。 The production method according to claim 40, wherein the concentration of the partial hydrolyzate in the organic solvent solution is in the range of 0.1 to 35 mass%.
  42. 前記工程(A)を400℃以下の温度での加熱下で行い、前記工程(A)と同時に又は引き続き工程(B)での加熱を行う請求項40または41に記載の製造方法。 The manufacturing method according to claim 40 or 41, wherein the step (A) is performed under heating at a temperature of 400 ° C or lower, and the heating in the step (B) is performed simultaneously with or subsequent to the step (A).
  43. 前記噴霧塗布は、スプレー塗布法、スプレー熱分解法、静電塗布法、又はインクジェット法により行う、請求項35~42のいずれか一項に記載の製造方法。 The production method according to any one of claims 35 to 42, wherein the spray coating is performed by a spray coating method, a spray pyrolysis method, an electrostatic coating method, or an ink jet method.
  44. 前記一般式(6)中のR1がメチル基またはエチル基である請求項35~43のいずれか一項に記載の製造方法。 The production method according to any one of claims 35 to 43, wherein R 1 in the general formula (6) is a methyl group or an ethyl group.
  45. 下記一般式(6)で示される有機アルミニウム化合物の有機溶媒溶液からなる膜形成用組成物であって、
    前記組成物は、膜の塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
    Figure JPOXMLDOC01-appb-C000011
    (式中、R1は水素、炭素数1~3の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~3の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
    A film-forming composition comprising an organic solvent solution of an organoaluminum compound represented by the following general formula (6),
    The composition is a composition for use in forming an aluminum oxide film in which film formation is performed in an inert gas atmosphere containing 0.5 to 30 mol% of water.
    Figure JPOXMLDOC01-appb-C000011
    (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 3 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  46. 下記一般式(6)で表される有機アルミニウム化合物を有機溶媒中で部分的に加水分解して得られた、前記有機アルミニウム化合物の部分加水分解物を含有する膜形成用組成物であって、
    (a)前記部分加水分解は、前記有機アルミニウム化合物に対するモル比が0.7以下の水を用いて行われ、かつ
    (b)前記組成物は、膜塗布形成が0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われるアルミニウム酸化物膜の形成に用いるための物である、前記組成物。
    Figure JPOXMLDOC01-appb-C000012
    (式中、R1は水素、炭素数1~4の直鎖もしくは分岐したアルキル基、R2、R3は独立に、水素、炭素数1~4の直鎖もしくは分岐したアルキル基、炭素数1~7の直鎖もしくは分岐したアルコキシル基、アシルオキシ基、またはアセチルアセトナート基を表す。)
    The composition for film formation containing the partial hydrolyzate of the said organoaluminum compound obtained by partially hydrolyzing the organoaluminum compound represented by following General formula (6) in an organic solvent,
    (A) The partial hydrolysis is performed using water having a molar ratio to the organoaluminum compound of 0.7 or less, and (b) the composition is formed by coating from 0.5 mol% to 30 mol. The said composition which is a thing for using for formation of the aluminum oxide film | membrane performed in the inert gas atmosphere containing a water | moisture content of%.
    Figure JPOXMLDOC01-appb-C000012
    (Wherein R 1 is hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, R 2 and R 3 are independently hydrogen, a linear or branched alkyl group having 1 to 4 carbon atoms, carbon number 1 to 7 linear or branched alkoxyl groups, acyloxy groups, or acetylacetonate groups.)
  47. 前記0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で行われる膜塗布形成は、
    (c1)前記組成物を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で基材の少なくとも一部の表面に噴霧塗布して塗布膜を形成する工程、および
    (c2)前記塗布膜を形成した基材を0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下、400℃以下の温度で加熱して、アルミニウム酸化物膜を形成する工程、を含む、請求項45または46に記載の組成物。
    The film coating formation performed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water,
    (C1) a step of spray-coating the composition on at least a part of the surface of the substrate in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water to form a coating film; and (c2) ) Heating the base material on which the coating film is formed in an inert gas atmosphere containing 0.5 mol% to 30 mol% of water at a temperature of 400 ° C. or lower to form an aluminum oxide film; 47. A composition according to claim 45 or 46 comprising.
  48. 基材に密着した透明なアルミニウム酸化物膜を形成するための請求項45~47のいずれか一項に記載の組成物。 The composition according to any one of claims 45 to 47, which forms a transparent aluminum oxide film in close contact with a substrate.
  49. 請求項35~44のいずれか一項に記載の方法、または請求項45~48のいずれか一項に記載の組成物を用いて0.5モル%~30モル%の水分を含有する不活性ガス雰囲気下で製造した、アルミニウム酸化物膜を有する物品。 Inert containing 0.5 to 30 mol% moisture using the method according to any one of claims 35 to 44 or the composition according to any one of claims 45 to 48 An article having an aluminum oxide film manufactured under a gas atmosphere.
  50. 前記物品がアルミニウム酸化物膜を基材に付着した複合体またはアルミニウム酸化物膜とアルミニウム酸化物膜以外の層とを有する複合膜を基材に付着した複合体である請求項49に記載のアルミニウム酸化物膜を有する物品。 The aluminum according to claim 49, wherein the article is a composite in which an aluminum oxide film is attached to a substrate or a composite in which an aluminum oxide film and a layer other than an aluminum oxide film are attached to a substrate. An article having an oxide film.
  51. ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液を、空気中で平均粒径が1~100μmの液滴にして基材に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることを特徴とする酸化アルミニウム薄膜の製造方法。 An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property An alkylaluminum compound-containing solution containing an organic solvent containing no active hydrogen atoms and having a mean particle size of 1 to 100 μm in the air as a droplet to form a coating film; And the manufacturing method of the aluminum oxide thin film characterized by heating the formed coating film after drying an organic solvent, or in parallel with drying of an organic solvent, and making it aluminum oxide.
  52. 前記液滴は、平均粒径が3~30μmの範囲であることを特徴とする請求項51に記載の製造方法。 The method according to claim 51, wherein the droplets have an average particle size in the range of 3 to 30 µm.
  53. 前記基材への塗布は、300℃以下の温度に加熱した基材に対して行うことを特徴とする請求項51又は52に記載の製造方法。 53. The manufacturing method according to claim 51 or 52, wherein the application to the substrate is performed on a substrate heated to a temperature of 300 ° C or lower.
  54. 前記空気中の雰囲気温度が50℃以下であり、25℃に換算した相対湿度が20~90%である請求項51~53のいずれか1項に記載の製造方法。 The production method according to any one of claims 51 to 53, wherein an atmospheric temperature in the air is 50 ° C or lower, and a relative humidity converted to 25 ° C is 20 to 90%.
  55. 前記塗布を、スプレー塗布、ミストCVD、インクジェット法により行う請求項51~54のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 51 to 54, wherein the coating is performed by spray coating, mist CVD, or an ink jet method.
  56. 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(8)又は(9)で表されるアルキルアルミニウム化合物である、請求項51~55のいずれか1項に記載の製造方法。
    Figure JPOXMLDOC01-appb-C000013
    (式中、Rはメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式中、Rはイソブチル基を、Rは、水素又はイソブチル基を表す。)
    The production method according to any one of claims 51 to 55, wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (8) or (9).
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, R 1 represents a methyl group or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.)
  57. 前記一般式(8)で表されるアルキルアルミニウム化合物がトリエチルアルミニウムである、請求項56に記載の製造方法。 57. The production method according to claim 56, wherein the alkylaluminum compound represented by the general formula (8) is triethylaluminum.
  58. 前記トリエチルアルミニウムのアルキルアルミニウム化合物含有溶液における含有量が1質量%以上、10質量%以下である請求項57に記載の製造方法。 The production method according to claim 57, wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
  59. 前記酸化アルミニウム薄膜の可視光550nmにおける垂直透過率が80%以上である請求項51~58のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 51 to 58, wherein the aluminum oxide thin film has a vertical transmittance of 80% or more at a visible light of 550 nm.
  60. ジアルキルアルミニウム、トリアルキルアルミニウム又はそれらの混合物からなるアルキルアルミニウム化合物(但し、ジアルキルアルミニウム及びトリアルキルアルミニウムが有するアルキル基は炭素数1~6であり、同一又は異なってもよい)、及び、電子供与性を有しかつ活性水素原子を含有しない有機溶媒を含有するアルキルアルミニウム化合物含有溶液からなるパッシベーション膜形成剤。 An alkylaluminum compound comprising a dialkylaluminum, a trialkylaluminum or a mixture thereof (provided that the alkyl group of the dialkylaluminum and the trialkylaluminum has 1 to 6 carbon atoms and may be the same or different), and an electron donating property And a passivation film forming agent comprising an alkylaluminum compound-containing solution containing an organic solvent having no active hydrogen atoms.
  61. 前記ジアルキルアルミニウム及び/又はトリアルキルアルミニウムが下記一般式(8)又は(9)で表されるアルキルアルミニウム化合物である、請求項60に記載のパッシベーション膜形成剤。
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rはメチル基又はエチル基を表す。)
    Figure JPOXMLDOC01-appb-C000016
    (式中、Rはイソブチル基を、Rは、水素又はイソブチル基を表す。)
    The passivation film forming agent according to claim 60, wherein the dialkylaluminum and / or trialkylaluminum is an alkylaluminum compound represented by the following general formula (8) or (9).
    Figure JPOXMLDOC01-appb-C000015
    (In the formula, R 1 represents a methyl group or an ethyl group.)
    Figure JPOXMLDOC01-appb-C000016
    (In the formula, R 2 represents an isobutyl group, and R 3 represents hydrogen or an isobutyl group.)
  62. 前記一般式(8)で表されるアルキルアルミニウム化合物がトリエチルアルミニウムである、請求項61に記載のパッシベーション膜形成剤。 62. The passivation film forming agent according to claim 61, wherein the alkylaluminum compound represented by the general formula (8) is triethylaluminum.
  63. 前記トリエチルアルミニウムのアルキルアルミニウム化合物含有溶液における含有量1質量%以上、10質量%以下である請求項62に記載のパッシベーション膜形成剤。 63. The passivation film forming agent according to claim 62, wherein the content of the triethylaluminum in the alkylaluminum compound-containing solution is 1% by mass or more and 10% by mass or less.
  64. 請求項60~63に記載のパッシベーション膜形成剤を平均粒径が1~100μmの液滴にしてシリコン基材の裏面の少なくとも一部に塗布して塗膜を形成すること、及び形成した塗膜を、有機溶媒を乾燥後、または有機溶媒の乾燥と並行して、加熱して酸化アルミニウムとすることでパッシベーション膜を形成することを特徴とするパッシベーション膜を有するシリコン基材の製造方法。 A coating film is formed by applying the passivation film forming agent according to any one of claims 60 to 63 as droplets having an average particle diameter of 1 to 100 μm to at least a part of the back surface of the silicon substrate, and the coating film formed A method for producing a silicon substrate having a passivation film, wherein the passivation film is formed by heating to an aluminum oxide after drying the organic solvent or concurrently with drying of the organic solvent.
  65. 前記液滴は、平均粒径が3~30μmの範囲であることを特徴とする請求項64記載の製造方法。 The method according to claim 64, wherein the droplets have an average particle diameter in the range of 3 to 30 µm.
  66. 前記塗布をスプレー塗布法により行う、請求項64又は65に記載の製造方法。 The manufacturing method according to claim 64 or 65, wherein the coating is performed by a spray coating method.
  67. スプレー塗布時の基板温度が300~550℃の範囲であること、及び/又は、スプレー塗布後の加熱における温度が300~550℃の範囲である、請求項66に記載の製造方法。 The production method according to claim 66, wherein the substrate temperature during spray coating is in the range of 300 to 550 ° C, and / or the temperature in heating after spray coating is in the range of 300 to 550 ° C.
  68. 請求項64~67のいずれか1項に記載の方法により製造されたことを特徴とする、パッシベーション膜を有するシリコン基板。 A silicon substrate having a passivation film, which is manufactured by the method according to any one of claims 64 to 67.
  69. 請求項68に記載のパッシベーション膜を有するシリコン基板を用いた太陽電池素子。 69. A solar cell element using a silicon substrate having the passivation film according to claim 68.
PCT/JP2015/073394 2014-08-21 2015-08-20 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same WO2016027861A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227041096A KR102619467B1 (en) 2014-08-21 2015-08-20 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
KR1020227041095A KR20220160126A (en) 2014-08-21 2015-08-20 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
CN201580044877.3A CN106573790B (en) 2014-08-21 2015-08-20 Alkylaluminum solution, alkylaluminum hydrolysis composition solution, composition for coating aluminum oxide film, and article having aluminum oxide film
KR1020177006408A KR102472173B1 (en) 2014-08-21 2015-08-20 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014168549A JP6440409B2 (en) 2014-08-21 2014-08-21 Aluminum oxide film coating composition, method for producing article having aluminum oxide film, and article having aluminum oxide film
JP2014-168541 2014-08-21
JP2014-168549 2014-08-21
JP2014168541A JP6440408B2 (en) 2014-08-21 2014-08-21 Aluminum oxide film coating composition, method for producing article having aluminum oxide film, and article having aluminum oxide film
JP2014-238778 2014-11-26
JP2014238778 2014-11-26
JP2015031567A JP6487709B2 (en) 2015-02-20 2015-02-20 Simple method for producing aluminum oxide thin film
JP2015-031567 2015-02-20
JP2015046592A JP6498967B2 (en) 2015-03-10 2015-03-10 Method of manufacturing passivation film, passivation film, solar cell element using the same
JP2015-046592 2015-03-10

Publications (1)

Publication Number Publication Date
WO2016027861A1 true WO2016027861A1 (en) 2016-02-25

Family

ID=55350802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073394 WO2016027861A1 (en) 2014-08-21 2015-08-20 Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same

Country Status (4)

Country Link
KR (3) KR20220160126A (en)
CN (1) CN106573790B (en)
TW (1) TWI693228B (en)
WO (1) WO2016027861A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185939A1 (en) * 2015-05-19 2016-11-24 東ソー・ファインケム株式会社 Dialkylzinc partial hydrolysate-containing solution and method for producing zinc oxide thin film using solution
WO2017199870A1 (en) * 2016-05-16 2017-11-23 東ソー・ファインケム株式会社 Aluminum-oxide-forming composition and method of producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
CN110520383A (en) * 2017-03-22 2019-11-29 东曹精细化工株式会社 Aluminum oxide article
WO2022234750A1 (en) * 2021-05-04 2022-11-10 信越化学工業株式会社 Method for producing source solution, method for forming film, and product lot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154677B1 (en) 2017-12-22 2020-09-10 삼성에스디아이 주식회사 Composition for forming electrode, electrode manufactured using the same and solar cell
CN110568102A (en) * 2019-09-11 2019-12-13 苏州普耀光电材料有限公司 method for determining MO source purity by gas chromatograph
KR102265920B1 (en) * 2019-10-31 2021-06-17 이켐 주식회사 Method for manufacturing gamma-aluminium oxide using spray pyrolysis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891030A (en) * 1981-11-24 1983-05-30 Sumitomo Chem Co Ltd Composition for manufacturing inorganic calcined body
JPS5895611A (en) * 1981-11-30 1983-06-07 Sumitomo Chem Co Ltd Preparation of calcined inorganic material
JP2008010746A (en) * 2006-06-30 2008-01-17 Sharp Corp Solar battery and method for manufacture thereof
WO2012053433A1 (en) * 2010-10-22 2012-04-26 Jsr株式会社 Method for forming alumina film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495121A (en) * 1981-11-30 1985-01-22 Sumitomo Chemical Company, Ltd. Process for producing inorganic fiber
CN101746787B (en) * 2008-12-08 2012-09-19 广州慧谷化学有限公司 Preparation method of nanometer aluminium hydroxide and application thereof
KR101717135B1 (en) * 2010-08-31 2017-03-28 삼성디스플레이 주식회사 Organic Light Emitting Display Device and Driving Method Thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891030A (en) * 1981-11-24 1983-05-30 Sumitomo Chem Co Ltd Composition for manufacturing inorganic calcined body
JPS5895611A (en) * 1981-11-30 1983-06-07 Sumitomo Chem Co Ltd Preparation of calcined inorganic material
JP2008010746A (en) * 2006-06-30 2008-01-17 Sharp Corp Solar battery and method for manufacture thereof
WO2012053433A1 (en) * 2010-10-22 2012-04-26 Jsr株式会社 Method for forming alumina film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10381488B2 (en) 2015-05-19 2019-08-13 Tosoh Finechem Corporation Dialkylzinc partial hydrolysate-containing solution and method of production of zinc oxide thin film using the solution
WO2016185939A1 (en) * 2015-05-19 2016-11-24 東ソー・ファインケム株式会社 Dialkylzinc partial hydrolysate-containing solution and method for producing zinc oxide thin film using solution
US20220144657A1 (en) * 2016-05-16 2022-05-12 Tosoh Finechem Corporation Aluminum oxide-forming composition and method for producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
KR20190008266A (en) * 2016-05-16 2019-01-23 토소 화인켐 가부시키가이샤 COMPOSITION FOR FORMING ALUMINUM OXIDE AND METHOD FOR PRODUCING THE SAME, AND POLYOLEFINIC POLYMER NANO-COMPOSITE COMPOUND COMPRISING ZINC OXIDE PARTICLES OR ALUMINUM OXIDE PARTICLES
JPWO2017199870A1 (en) * 2016-05-16 2019-03-22 東ソー・ファインケム株式会社 Composition for forming aluminum oxide and method for producing the same, and polyolefin polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method for producing the same
CN109153580A (en) * 2016-05-16 2019-01-04 东曹精细化工株式会社 Aluminium oxide formation composition and its manufacturing method and polyolefin polymer nanocomposites and its manufacturing method containing zinc oxide particles or aluminium oxide particles
KR102324241B1 (en) 2016-05-16 2021-11-09 토소 화인켐 가부시키가이샤 Composition for forming aluminum oxide, method for preparing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles, and method for preparing same
US11267940B2 (en) 2016-05-16 2022-03-08 Tosoh Finechem Corporation Aluminum-oxide-forming composition and method for producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
WO2017199870A1 (en) * 2016-05-16 2017-11-23 東ソー・ファインケム株式会社 Aluminum-oxide-forming composition and method of producing same, and polyolefin-based polymer nanocomposite containing zinc oxide particles or aluminum oxide particles and method of producing same
US11795277B2 (en) 2016-05-16 2023-10-24 Tosoh Finechem Corporation Polyolefin-based polymer nanocomposite containing zinc oxide particles and method of producing same
US11820871B2 (en) 2016-05-16 2023-11-21 Tosoh Finechem Corporation Aluminum oxide-forming composition and method for producing same
CN110520383A (en) * 2017-03-22 2019-11-29 东曹精细化工株式会社 Aluminum oxide article
US11482709B2 (en) 2017-03-22 2022-10-25 Tosoh Finechem Corporation Aluminum oxide article
CN110520383B (en) * 2017-03-22 2023-02-17 东曹精细化工株式会社 Aluminum oxide article
WO2022234750A1 (en) * 2021-05-04 2022-11-10 信越化学工業株式会社 Method for producing source solution, method for forming film, and product lot

Also Published As

Publication number Publication date
KR102472173B1 (en) 2022-11-29
CN106573790B (en) 2020-02-21
KR102619467B1 (en) 2023-12-29
KR20220160127A (en) 2022-12-05
TWI693228B (en) 2020-05-11
CN106573790A (en) 2017-04-19
TW201612185A (en) 2016-04-01
KR20220160126A (en) 2022-12-05
KR20170044128A (en) 2017-04-24

Similar Documents

Publication Publication Date Title
WO2016027861A1 (en) Chemically stable alkyl aluminum solution, alkyl aluminum hydrolysate composition solution, composition for aluminum oxide film coating formation, article having aluminum oxide film, method for producing same, method for producing aluminum oxide thin-film, method for producing passivation film, passivation film, and solar cell element using same
KR101743308B1 (en) Composition for forming doped or non-doped zinc oxide thin film, and method for producing zinc oxide thin film using same
TWI583628B (en) A composite oxide film manufacturing composition, and a method for producing a film using the same, and a composite oxide film
JP6440409B2 (en) Aluminum oxide film coating composition, method for producing article having aluminum oxide film, and article having aluminum oxide film
WO2012053542A1 (en) Composition for production of oxide thin films and method for producing oxide thin films by using said composition
JP6440408B2 (en) Aluminum oxide film coating composition, method for producing article having aluminum oxide film, and article having aluminum oxide film
JP5822449B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
EP3299341A1 (en) Dialkylzinc partial hydrolysate-containing solution and method for producing zinc oxide thin film using solution
WO2010131621A1 (en) Composition for production of doped zinc oxide thin film, process for production of zinc oxide thin film, antistatic thin film, ultraviolet ray blocking thin film, and transparent electrode thin film
WO2016063699A1 (en) Composition for producing zinc oxide thin film containing group 2 element and production method for same
CN110234623B (en) Solution containing dialkylzinc and dialkylzinc partial hydrolysate, and method for producing zinc oxide thin film using same
JP2011046566A (en) Composition for producing doped zinc oxide thin film, and method for producing doped zinc oxide thin film using the same
JP6487709B2 (en) Simple method for producing aluminum oxide thin film
CN111758053B (en) Composition for forming zinc oxide thin film and method for producing zinc oxide thin film
JP2016108313A (en) Chemically stable alkylaluminum solution, alkylaluminum hydrolyzate composition solution, and production method of aluminum oxide thin film
JP5756273B2 (en) Zinc oxide thin film production composition and zinc oxide thin film production method using doped zinc oxide thin film production composition, and antistatic thin film, UV cut thin film, transparent electrode thin film produced by this method
JP5892641B2 (en) Zinc oxide thin film production method, and antistatic thin film, ultraviolet cut thin film, transparent electrode thin film produced by this method
JP5756272B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006408

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15834433

Country of ref document: EP

Kind code of ref document: A1