JP5756272B2 - Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film - Google Patents

Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film Download PDF

Info

Publication number
JP5756272B2
JP5756272B2 JP2010235478A JP2010235478A JP5756272B2 JP 5756272 B2 JP5756272 B2 JP 5756272B2 JP 2010235478 A JP2010235478 A JP 2010235478A JP 2010235478 A JP2010235478 A JP 2010235478A JP 5756272 B2 JP5756272 B2 JP 5756272B2
Authority
JP
Japan
Prior art keywords
group
compound
thin film
zinc oxide
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010235478A
Other languages
Japanese (ja)
Other versions
JP2012087014A (en
Inventor
豊田 浩司
浩司 豊田
孝一郎 稲葉
孝一郎 稲葉
健一 羽賀
健一 羽賀
功一 徳留
功一 徳留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Finechem Corp
Original Assignee
Tosoh Finechem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Finechem Corp filed Critical Tosoh Finechem Corp
Priority to JP2010235478A priority Critical patent/JP5756272B2/en
Priority to PCT/JP2011/074022 priority patent/WO2012053542A1/en
Priority to CN201180050611.1A priority patent/CN103153865B/en
Priority to KR1020137012716A priority patent/KR101861394B1/en
Priority to TW100138140A priority patent/TWI543940B/en
Publication of JP2012087014A publication Critical patent/JP2012087014A/en
Application granted granted Critical
Publication of JP5756272B2 publication Critical patent/JP5756272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

大気圧付近の圧力下、かつ300℃以下の温度で加熱することにより、可視光線に対して高い透過率を有する透明酸化亜鉛薄膜を形成することができる有機亜鉛化合物を原料として調製した、発火性がなく取扱いが容易な酸化亜鉛薄膜製造用組成物および3B族元素をドープした酸化亜鉛薄膜製造用組成物に関する。   Prepared using as raw material an organic zinc compound that can form a transparent zinc oxide thin film having a high transmittance for visible light by heating at a pressure close to atmospheric pressure and at a temperature of 300 ° C. or lower. The present invention relates to a composition for producing a zinc oxide thin film that is easy to handle and a composition for producing a zinc oxide thin film doped with a group 3B element.

可視光線に対して高い透過性を有する透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜は、光触媒膜、紫外線カット膜、赤外線反射膜、CIGS太陽電池のバッファ層、色素増感太陽電池の電極膜、帯電防止膜等に使用され、幅広い用途を持つ。   Transparent zinc oxide thin film with high transparency to visible light and zinc oxide thin film doped with 3B group element are photocatalyst film, ultraviolet cut film, infrared reflective film, CIGS solar cell buffer layer, dye-sensitized sun Used for battery electrode films, antistatic films, etc., and has a wide range of uses.

透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜の製造方法としては種々の方法が知られている(非特許文献1)。有機亜鉛化合物を原料として用いる代表的な方法としては、化学気相成長(CVD)法(非特許文献2)と、スプレー熱分解法(非特許文献3)、スピンコート法(特許文献1)、ディップコート法(非特許文献4)等の塗布法とがある。   Various methods are known as methods for producing a transparent zinc oxide thin film or a zinc oxide thin film doped with a group 3B element (Non-patent Document 1). As a typical method using an organic zinc compound as a raw material, a chemical vapor deposition (CVD) method (Non-Patent Document 2), a spray pyrolysis method (Non-Patent Document 3), a spin coating method (Patent Document 1), There are coating methods such as a dip coating method (Non-patent Document 4).

しかしながら、化学気相成長(CVD)法では、大型の真空容器を用いる必要があり、かつ製膜速度が非常に遅いために製造コストが高くなる。また、真空容器の大きさにより形成することのできる3B族元素がドープされた酸化亜鉛薄膜の大きさが制限される為に大型のものを形成することができない、等の問題があった。   However, the chemical vapor deposition (CVD) method requires the use of a large vacuum container and the film forming speed is very slow, resulting in an increase in manufacturing cost. Moreover, since the size of the zinc oxide thin film doped with the group 3B element, which can be formed depending on the size of the vacuum vessel, is limited, there is a problem that a large size cannot be formed.

上記塗布法は、上記化学気相成長(CVD)法に比べて装置が簡便で膜形成速度が速い為生産性が高く製造コストも低い。また、真空容器を用いる必要がなく真空容器による制約がない為、大きな3B族元素がドープされた酸化亜鉛薄膜の作成も可能であるという利点がある。   Compared with the chemical vapor deposition (CVD) method, the coating method is simpler and has a higher film formation speed, and therefore has higher productivity and lower manufacturing costs. Moreover, since there is no need to use a vacuum vessel and there are no restrictions due to the vacuum vessel, there is an advantage that a zinc oxide thin film doped with a large group 3B element can be produced.

上記スプレー熱分解法では、スプレー塗布と同時に溶媒乾燥し、次いで基板温度を360℃以上に加熱することで酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜塗膜を得ている。   In the spray pyrolysis method, solvent drying is performed simultaneously with spray application, and then the substrate temperature is heated to 360 ° C. or higher to obtain a zinc oxide thin film or a zinc oxide thin film coated with a group 3B element.

上記スピンコート法およびディップコート法は、スピンコートまたはディップコート後に溶媒を乾燥し、次いで基板温度を400℃以上に加熱することで酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜塗膜を得ている。   In the spin coating method and the dip coating method, the solvent is dried after spin coating or dip coating, and then the substrate temperature is heated to 400 ° C. or higher to form a zinc oxide thin film or a zinc oxide thin film coated with a group 3B element. It has gained.

特開平7−182939号公報JP 7-182939 A 特開2010−126402公報JP 2010-126402 A

日本学術振興会透明酸化物光電子材料第166委員会編、透明導電膜の技術 改訂2版(2006)、p165〜173Japan Society for the Promotion of Science Transparent Oxide Optoelectronic Materials 166th Committee, Transparent Conductive Film Technology Revision 2 (2006), p165-173 K. Sorab, et al. Appl. Phys. Lett., 37(5), 1 September 1980K. Sorab, et al. Appl. Phys. Lett., 37 (5), 1 September 1980 F. Paraguay D, et al. Thin Solid films., 16(366), 2000F. Paraguay D, et al. Thin Solid films., 16 (366), 2000 Y. Ohya, et al. J. Mater. Sci., 4099(29), 1994Y. Ohya, et al. J. Mater. Sci., 4099 (29), 1994

透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜は、プラスチック基板に形成されるようになってきている。そのため、透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜の形成時に適用される加熱は、プラスチック基板の耐熱温度以下で実施されることが必要である。しかるに、上記非特許文献3に記載のスプレー熱分解法、特許文献1に記載のスピンコート法、および非特許文献4に記載のディップコート法では、プラスチック基板の耐熱温度(通常は、材質にもよるが約300〜400℃の範囲)以下での加熱では、透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜を得ることはできない。プラスチック基板の耐熱温度と加熱に要するコスト等を考慮すると、製膜時に要する加熱は、300℃以下であることが望まれる。   Transparent zinc oxide thin films and zinc oxide thin films doped with Group 3B elements have been formed on plastic substrates. Therefore, the heating applied when forming a transparent zinc oxide thin film or a zinc oxide thin film doped with a group 3B element needs to be performed at a temperature lower than the heat resistance temperature of the plastic substrate. However, in the spray pyrolysis method described in Non-Patent Document 3, the spin-coating method described in Patent Document 1, and the dip-coating method described in Non-Patent Document 4, the heat resistance temperature of the plastic substrate (usually, the material is also used). However, a transparent zinc oxide thin film or a zinc oxide thin film doped with a group 3B element cannot be obtained by heating at a temperature of about 300 to 400 ° C. or less. Considering the heat-resistant temperature of the plastic substrate and the cost required for heating, it is desirable that the heating required for film formation is 300 ° C. or lower.

本発明者らは、非特許文献3に記載のスプレー熱分解法で用いられている3B族元素化合物と酢酸亜鉛の水溶液、特許文献1に記載のスピンコート法で用いられている3B族元素化合物、さらには有機亜鉛化合物と有機溶媒からなる溶液や非特許文献4に記載のディップコート法で用いられている有機亜鉛化合物と有機溶媒からなる溶液を用いて300℃以下の温度での製膜を試みた。しかし、いずれの場合も、透明な3B族元素がドープされた酸化亜鉛薄膜が得られず、不透明な酸化亜鉛薄膜しか得られなかった。特許文献1に記載のジエチル亜鉛のヘキサン溶液を用いても300℃以下での製膜を試みた。しかし、同様に透明な3B族元素がドープされた酸化亜鉛薄膜は得られなかった。   The present inventors have prepared an aqueous solution of a group 3B element compound and zinc acetate used in the spray pyrolysis method described in Non-Patent Document 3, and a group 3B element compound used in the spin coating method described in Patent Document 1. Furthermore, a film is formed at a temperature of 300 ° C. or lower using a solution composed of an organic zinc compound and an organic solvent or a solution composed of an organic zinc compound and an organic solvent used in the dip coating method described in Non-Patent Document 4. Tried. However, in any case, a transparent zinc oxide thin film doped with a group 3B element was not obtained, and only an opaque zinc oxide thin film was obtained. Even using the diethylzinc hexane solution described in Patent Document 1, film formation at 300 ° C. or lower was attempted. However, similarly, a transparent zinc oxide thin film doped with a group 3B element was not obtained.

また、ジエチル亜鉛は大気中で発火性があり、保管、使用時に非常な注意を払わねばならない化合物である。そのため、ジエチル亜鉛を希釈等することなしに、通常、水が存在する雰囲気中で行われることの多い、スプレー熱分解法、スピンコート法等で用いることは、実用上困難である。一方、ジエチル亜鉛は、有機溶媒に溶解した状態では、発火性などの危険性を低減できる。特許文献1に記載のように、アルコール系の有機溶媒に反応させながら溶解したジエチル亜鉛を用いた酸化亜鉛薄膜の製膜では危険性は低減できるが、透明な膜の形成には、400℃以上の高温で加熱が必要であった。   Diethyl zinc is a compound that is ignitable in the atmosphere and must be very carefully stored and used. For this reason, it is practically difficult to use it in a spray pyrolysis method, spin coating method, etc., which is often performed in an atmosphere containing water without diluting diethyl zinc. On the other hand, diethyl zinc can reduce risks such as ignition when dissolved in an organic solvent. As described in Patent Document 1, the risk can be reduced in the formation of a zinc oxide thin film using diethyl zinc dissolved while reacting with an alcohol-based organic solvent. It was necessary to heat at a high temperature.

この点を改良するため、発明者らは特許文献2のように、ジエチル亜鉛を電子供与性溶媒に溶解し、成膜方法にスプレー法を用いることで酸化亜鉛の低温成膜が可能であることを見出し、特許を出願した。この酸化亜鉛薄膜形成用の溶液をスピンコート等の塗布法で成膜を行なうと、薄膜の形成は可能であるが、有機亜鉛化合物であるジエチル亜鉛が揮発性がある、粘度が低いなどの理由から膜厚を得るための塗布回数が多くなるなどの、改良の余地がある。   In order to improve this point, the inventors are able to perform low-temperature deposition of zinc oxide by dissolving diethyl zinc in an electron-donating solvent and using a spraying method as described in Patent Document 2. And applied for a patent. When this zinc oxide thin film forming solution is deposited by spin coating or other coating methods, it is possible to form a thin film, but the reason is that diethyl zinc, an organic zinc compound, is volatile and has a low viscosity. There is room for improvement, such as an increase in the number of coatings for obtaining a film thickness.

そこで本発明の目的は、有機亜鉛化合物を原料として調製したものであるが、発火性がなく取扱いが容易であり、かつ加熱が必要であっても300℃以下の加熱で透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜を形成することができる、酸化亜鉛薄膜製造用組成物を提供することである。さらに本発明の目的は、この組成物を用いた、プラスチック基板の耐熱温度と加熱に要するコスト等を考慮して、製膜時に加熱を必要としないか、あるいは加熱しても300℃以下の加熱で、透明な酸化亜鉛薄膜や3B族元素がドープされた酸化亜鉛薄膜を得ることができる方法を提供することにある。   Therefore, the object of the present invention is to prepare an organic zinc compound as a raw material, but it is easy to handle because it is not ignitable, and even if heating is required, a transparent zinc oxide thin film can be obtained by heating at 300 ° C. or lower. To provide a composition for producing a zinc oxide thin film capable of forming a zinc oxide thin film doped with a group 3B element. Further, the object of the present invention is to take into consideration the heat resistance temperature of plastic substrates and the cost required for heating, etc., using this composition. Then, it is providing the method of obtaining the transparent zinc oxide thin film and the zinc oxide thin film doped with the 3B group element.

上記課題を解決するための本発明は、以下のとおりである。
[1]
一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解することにより得られる生成物(以下、部分加水分解物1と呼ぶことがある)を含み、前記水の添加量は、前記有機亜鉛化合物に対するモル比が0.05以上〜0.4未満の範囲である、酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
[2]
下記一般式(1)で表される有機亜鉛化合物と、下記一般式(2)または下記一般式(3)で表される3B族元素化合物の少なくとも1種とを電子供与性有機溶媒に溶解した溶液に、水を添加して、少なくとも前記有機亜鉛化合物を少なくとも部分的に加水分解して得られる生成物(以下、部分加水分解物2と呼ぶことがある)を含み、前記3B族元素化合物は、前記有機亜鉛化合物に対するモル比が0.005〜0.3の割合であり、かつ前記水の添加量は、前記有機亜鉛化合物および3B族元素化合物の合計量に対するモル比が0.05以上〜0.4未満の範囲である、ドープ酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
cd・aH2O (2)
(式中、Mは3B族元素であり、Xは、ハロゲン原子、硝酸または硫酸であり、Xがハロゲン原子または硝酸の場合、cは1、dは3、Xが硫酸の場合、cは2、dは3、aは0〜9の整数である。)
(式中、Mは3B族元素であり、R2、R3、R4は独立に、水素、炭素数1〜7の直鎖もしくは分岐したアルキル基、炭素数1〜7の直鎖もしくは分岐したアルコキシル基、カルボン酸基、またはアセチルアセトナート基であり、さらにLは窒素、酸素またはリンを含有した配位性有機化合物であり、nは0〜9の整数である。)
[3]
前記生成物は、前記3B族元素化合物の加水分解物を含む[2]に記載の組成物。
[4]
一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解した後、一般式(2)または一般式(3)で表される3B族元素化合物の少なくとも1種を、前記有機亜鉛化合物に対するモル比が0.005〜0.3の割合になるよう添加することにより得られる生成物(以下、部分加水分解物3と呼ぶことがある)を含み、かつ前記水の添加量は、前記有機亜鉛化合物に対するモル比が0.05以上〜0.4未満の範囲である、ドープ酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
cd・aH2O (2)
(式中、Mは3B族元素であり、Xは、ハロゲン原子、硝酸または硫酸であり、Xがハロゲン原子または硝酸の場合、cは1、dは3、Xが硫酸の場合、cは2、dは3、aは0〜9の整数である。)
(式中、Mは3B族元素であり、R2、R3、R4は独立に、水素、炭素数1〜7の直鎖もしくは分岐したアルキル基、炭素数1〜7の直鎖もしくは分岐したアルコキシル基、カルボン酸基、またはアセチルアセトナート基であり、さらにLは窒素、酸素またはリンを含有した配位性有機化合物であり、nは0〜9の整数である。)
[5]
前記生成物は、前記3B族元素化合物の加水分解物を実質的に含まない[4]に記載の組成物。
[6]
前記生成物の濃度が1〜30質量%の範囲である[1]〜[5]のいずれかに記載の組成物。
[7]
前記有機亜鉛化合物は、R1が炭素数1、2、3、4、5、または6のアルキル基である化合物である[1]〜[6]のいずれかに記載の組成物。
[8]
前記有機亜鉛化合物がジエチル亜鉛である[1]〜[7]のいずれかに記載の組成物。
The present invention for solving the above problems is as follows.
[1]
A product obtained by adding water to a solution in which the organozinc compound represented by the general formula (1) is dissolved in an electron-donating organic solvent and hydrolyzing the organozinc compound at least partially (hereinafter referred to as the product) And the amount of water added is a composition for producing a zinc oxide thin film in which the molar ratio relative to the organozinc compound is in the range of 0.05 to less than 0.4. object.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
[2]
An organic zinc compound represented by the following general formula (1) and at least one of group 3B element compounds represented by the following general formula (2) or the following general formula (3) were dissolved in an electron-donating organic solvent. A solution obtained by adding water to the solution and at least partially hydrolyzing the organozinc compound (hereinafter sometimes referred to as partial hydrolyzate 2), The molar ratio with respect to the organozinc compound is 0.005 to 0.3, and the amount of water added is 0.05 to 0.3 with respect to the total amount of the organozinc compound and the group 3B element compound. A composition for producing a doped zinc oxide thin film having a range of less than 0.4.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
M c X d · aH 2 O (2)
(Wherein M is a group 3B element, X is a halogen atom, nitric acid or sulfuric acid, c is 1, when d is a halogen atom or nitric acid, d is 3, and when X is sulfuric acid, c is 2 D is 3, and a is an integer of 0 to 9.)
(In the formula, M is a group 3B element, R 2 , R 3 , and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 7 carbon atoms, or a linear or branched group having 1 to 7 carbon atoms. An alkoxyl group, a carboxylic acid group, or an acetylacetonate group, L is a coordinating organic compound containing nitrogen, oxygen or phosphorus, and n is an integer of 0 to 9.)
[3]
The composition according to [2], wherein the product includes a hydrolyzate of the group 3B element compound.
[4]
Water is added to a solution in which the organozinc compound represented by the general formula (1) is dissolved in an electron-donating organic solvent to hydrolyze the organozinc compound at least partially, and then the general formula (2) or A product obtained by adding at least one group 3B element compound represented by the general formula (3) such that the molar ratio to the organozinc compound is 0.005 to 0.3 (hereinafter, referred to as “a”). And may be referred to as a partial hydrolyzate 3), and the amount of water added is in the range of 0.05 to less than 0.4 in the molar ratio to the organic zinc compound. Composition.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
M c X d · aH 2 O (2)
(Wherein M is a group 3B element, X is a halogen atom, nitric acid or sulfuric acid, c is 1, when d is a halogen atom or nitric acid, d is 3, and when X is sulfuric acid, c is 2 D is 3, and a is an integer of 0 to 9.)
(In the formula, M is a group 3B element, R 2 , R 3 , and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 7 carbon atoms, or a linear or branched group having 1 to 7 carbon atoms. An alkoxyl group, a carboxylic acid group, or an acetylacetonate group, L is a coordinating organic compound containing nitrogen, oxygen or phosphorus, and n is an integer of 0 to 9.)
[5]
The composition according to [4], wherein the product does not substantially contain a hydrolyzate of the group 3B element compound.
[6]
The composition according to any one of [1] to [5], wherein the concentration of the product is in the range of 1 to 30% by mass.
[7]
The composition according to any one of [1] to [6], wherein the organozinc compound is a compound in which R 1 is an alkyl group having 1, 2, 3, 4, 5, or 6 carbon atoms.
[8]
The composition according to any one of [1] to [7], wherein the organozinc compound is diethyl zinc.

本発明の酸化亜鉛薄膜製造用組成物および3B族元素をドープした酸化亜鉛薄膜製造用組成物は、発火性がなく取扱いが容易であり、かつ本発明の酸化亜鉛薄膜製造用組成物および3B族元素をドープした酸化亜鉛薄膜製造用組成物を用いれば、300℃以下の温度で製膜しても透明な酸化亜鉛薄膜および3B族元素がドープされた酸化亜鉛薄膜を製造することができる。   The composition for producing a zinc oxide thin film of the present invention and the composition for producing a zinc oxide thin film doped with a group 3B element are not ignitable and easy to handle, and the composition for producing a zinc oxide thin film of the present invention and the group 3B If a composition for producing a zinc oxide thin film doped with an element is used, a transparent zinc oxide thin film and a zinc oxide thin film doped with a group 3B element can be produced even if the composition is formed at a temperature of 300 ° C. or lower.

スプレー製膜装置を示す図である。It is a figure which shows a spray film forming apparatus. 実施例1で得られた組成物の真空乾燥後のNMRスペクトルNMR spectrum after vacuum drying of the composition obtained in Example 1 実施例5で得られた酸化亜鉛薄膜のXRDチャートXRD chart of the zinc oxide thin film obtained in Example 5 実施例8で得られたインジウムがドープされた酸化亜鉛薄膜のXRDチャートXRD chart of the zinc oxide thin film doped with indium obtained in Example 8

[酸化亜鉛薄膜製造用組成物]
本発明の酸化亜鉛薄膜製造用組成物は、下記一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解して得られる生成物(部分加水分解物1)を含み、前記水の添加量は、前記有機亜鉛化合物に対するモル比が0.05以上〜0.4未満の範囲である。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
[Composition for zinc oxide thin film production]
In the composition for producing a zinc oxide thin film of the present invention, water is added to a solution in which an organic zinc compound represented by the following general formula (1) is dissolved in an electron-donating organic solvent, so that the organic zinc compound is at least partially The product (partial hydrolyzate 1) obtained by hydrolytic hydrolysis is included, and the amount of water added is such that the molar ratio with respect to the organozinc compound is 0.05 or more and less than 0.4.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)

部分加水分解物1において、0.4以上に水の添加量を増やして加水分解度を進めても加水分解生成物を得ることが出来るが、未反応の反応性の高いジエチル亜鉛の残存量が少なくなり、200℃以下などでの低温での反応性が得られなくなる可能性がある。   In the partial hydrolyzate 1, a hydrolysis product can be obtained even if the amount of water added is increased to 0.4 or more to increase the degree of hydrolysis, but the residual amount of unreacted highly reactive diethylzinc There is a possibility that reactivity at a low temperature such as 200 ° C. or less cannot be obtained.

[3B族元素をドープした酸化亜鉛薄膜製造用組成物]
本発明の3B族元素をドープした酸化亜鉛薄膜製造用組成物は、(i)下記一般式(1)で表される有機亜鉛化合物と下記一般式(2)または(3)で表される3B族元素化合物の少なくとも1種とを電子供与性有機溶媒に溶解した溶液に、水を添加して、少なくとも前記有機亜鉛化合物を少なくとも部分的に加水分解して得られる生成物(部分加水分解物2)を含むか、あるいは(ii)前記一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解した後、前記一般式(2)または(3)で表される3B族元素化合物の少なくとも1種を添加して得られる生成物(以下、部分加水分解物3と呼ぶことがある)を含む。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
cd・aH2O (2)
(式中、Mは3B族元素であり、Xは、ハロゲン原子、硝酸または、硫酸、リン酸であり、Xがハロゲン原子または、硝酸の場合、cは1、dは3、Xが硫酸の場合、cは2、dは3、aは0〜9の整数である。)
(式中、Mは3B族元素であり、R2、R3、R4は独立に、水素、炭素数1〜7の直鎖もしくは分岐したアルキル基、炭素数1〜7の直鎖もしくは分岐したアルコキシル基、カルボン酸基、もしくはアセチルアセトナート基であり、さらに、Lは窒素、酸素、リンいずれかを含有した配位性有機化合物であり、bは0〜9の整数である。)
[Composition for producing zinc oxide thin film doped with group 3B element]
The composition for producing a zinc oxide thin film doped with a group 3B element of the present invention comprises (i) an organozinc compound represented by the following general formula (1) and 3B represented by the following general formula (2) or (3). A product (partial hydrolyzate 2) obtained by adding water to a solution in which at least one group element compound is dissolved in an electron-donating organic solvent and at least partially hydrolyzing the organozinc compound. Or (ii) water is added to a solution in which the organozinc compound represented by the general formula (1) is dissolved in an electron-donating organic solvent, so that the organozinc compound is at least partially hydrolyzed. After decomposition, a product obtained by adding at least one group 3B element compound represented by the general formula (2) or (3) (hereinafter sometimes referred to as partial hydrolyzate 3) is included. .
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
M c X d · aH 2 O (2)
(In the formula, M is a group 3B element, X is a halogen atom, nitric acid, sulfuric acid, or phosphoric acid. When X is a halogen atom or nitric acid, c is 1, d is 3, and X is sulfuric acid. In this case, c is 2, d is 3, and a is an integer of 0 to 9.)
(In the formula, M is a group 3B element, R 2 , R 3 , and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 7 carbon atoms, or a linear or branched group having 1 to 7 carbon atoms. And L is a coordinating organic compound containing any one of nitrogen, oxygen and phosphorus, and b is an integer of 0 to 9.)

部分加水分解物2においては、有機亜鉛化合物と3B族元素化合物の混合溶液に水を添加するので、前記生成物は、通常、前記3B族元素化合物の加水分解物を含む。3B族元素化合物の加水分解物は、水の添加量等によるが、部分加水分解物であることができる。また、部分加水分解物3においては、有機亜鉛化合物に水を添加した後に、3B族元素化合物を添加することから、水の添加量等によるが、添加した水が有機亜鉛化合物の加水分解に消費された後に3B族元素化合物へ添加される場合には、前記生成物は、通常、前記3B族元素化合物の加水分解物は含まない。3B族元素化合物は、加水分解されず、原料のままで含有されるか、あるいは、有機亜鉛化合物の部分加水分解物が有する有機基と3B族元素化合物の有機基(配位子)が交換(配位子交換)したものになる可能性もある。   In the partial hydrolyzate 2, water is added to the mixed solution of the organozinc compound and the group 3B element compound, so that the product usually contains a hydrolyzate of the group 3B element compound. The hydrolyzate of the group 3B element compound may be a partial hydrolyzate depending on the amount of water added. In the partial hydrolyzate 3, since the group 3B element compound is added after adding water to the organic zinc compound, the added water is consumed for hydrolysis of the organic zinc compound depending on the amount of water added. When the product is added to the group 3B element compound, the product usually does not contain the hydrolyzate of the group 3B element compound. The group 3B element compound is not hydrolyzed and is contained as a raw material, or the organic group of the partial hydrolyzate of the organozinc compound and the organic group (ligand) of the group 3B element compound are exchanged ( Ligand exchange) may also occur.

前記水の添加量は、部分加水分解物2においては、前記有機亜鉛化合物と3B族元素化合物の合計量に対するモル比を0.05以上〜0.4未満の範囲とする。また、酸化亜鉛薄膜製造用組成物や部分加水分解物3においては、前記水の添加量は、前記有機亜鉛化合物に対するモル比を0.05以上〜0.4未満の範囲とする。0.4以上に水の添加量を増やして加水分解度を進めても加水分解生成物を得ることが出来るが、未反応の反応性の高いジエチル亜鉛の残存量が少なくなり、200℃以下などでの低温での反応性が得られなくなる可能性がある。   In the partial hydrolyzate 2, the amount of water added is such that the molar ratio to the total amount of the organozinc compound and the group 3B element compound is in the range of 0.05 to less than 0.4. Moreover, in the composition for zinc oxide thin film manufacture and the partial hydrolyzate 3, the addition amount of the water makes the molar ratio with respect to the said organic zinc compound the range of 0.05-0.4. Even if the amount of water added is increased to 0.4 or more to increase the hydrolysis degree, a hydrolysis product can be obtained, but the residual amount of unreacted highly reactive diethylzinc is reduced, such as 200 ° C. or less. There is a possibility that reactivity at a low temperature may not be obtained.

以下、部分加水分解物1〜3について合わせて説明する。
電子供与性有機溶媒は、部分加水分解物1においては、一般式(1)で表される有機亜鉛化合物および水に対して溶解性を有するものであればよく、部分加水分解物2および3においては、一般式(1)で表される有機亜鉛化合物、一般式(2)または(3)で表される3B族元素化合物および水に対して溶解性を有するものであればよい。そのような電子供与性有機溶媒の例としては、1,2−ジエトキシエタンやジエチルエーテル、ジn−プロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、グライム、ジグライム、トリグライム等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等を挙げることができる。電子供与性を有する溶媒としては、1,2−ジエトキシエタン、テトラヒドロフラン、ジオキサンが好ましい。
Hereinafter, the partial hydrolysates 1 to 3 will be described together.
In the partial hydrolyzate 1, the electron-donating organic solvent only needs to have solubility in the organic zinc compound represented by the general formula (1) and water. The organic zinc compound represented by the general formula (1), the group 3B element compound represented by the general formula (2) or (3), and water may be used. Examples of such electron-donating organic solvents include ether solvents such as 1,2-diethoxyethane, diethyl ether, di-n-propyl ether, diisopropyl ether, dibutyl ether, tetrahydrofuran, dioxane, glyme, diglyme, and triglyme. And amine solvents such as trimethylamine, triethylamine, and triphenylamine. As the solvent having an electron donating property, 1,2-diethoxyethane, tetrahydrofuran, and dioxane are preferable.

前記一般式(1)で表される有機亜鉛化合物におけるR1として表されるアルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、2−ヘキシル基、およびヘプチル基を挙げることができる。一般式(1)で表される化合物は、R1が炭素数1、2、3、4、5、または6の化合物であることが好ましい。一般式(1)で表される化合物は、特にR1が炭素数2である、ジエチル亜鉛であることが好ましい。 Specific examples of the alkyl group represented by R 1 in the organozinc compound represented by the general formula (1) include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, 2-hexyl group, and heptyl group. In the compound represented by the general formula (1), R 1 is preferably a compound having 1, 2, 3, 4, 5, or 6 carbon atoms. The compound represented by the general formula (1) is preferably diethyl zinc, in which R 1 has 2 carbon atoms.

前記一般式(2)で表される3B族元素化合物におけるMとして表される金属の具体例としては、B、Al、Ga、Inを挙げことができる。また、Xとして表される塩の具体例としては、フッ素、塩素、臭素、ヨウ素、硝酸、硫酸、リン酸を挙げることができる。一般式(2)で表される3B族元素化合物は、特に、塩化ホウ素、塩化アルミニウム6水和物、硝酸アルミニウム9水和物、塩化ガリウム、硝酸ガリウム水和物、塩化インジウム4水和物、硝酸インジウム5水和物を挙げることができる。   Specific examples of the metal represented by M in the group 3B element compound represented by the general formula (2) include B, Al, Ga, and In. Specific examples of the salt represented by X include fluorine, chlorine, bromine, iodine, nitric acid, sulfuric acid, and phosphoric acid. The group 3B element compound represented by the general formula (2) includes, in particular, boron chloride, aluminum chloride hexahydrate, aluminum nitrate nonahydrate, gallium chloride, gallium nitrate hydrate, indium chloride tetrahydrate, Mention may be made of indium nitrate pentahydrate.

前記一般式(3)で表される3B族元素化合物におけるMとして表される金属の具体例としては、B、Al、Ga、Inを挙げことができる。また、R2、R3、及びR4は水素であることが好ましい。あるいは、R2、R3、及びR4はアルキル基であることも好ましく、アルキル基の具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert−ペンチル基、ヘキシル基、イソヘキシル基、sec−ヘキシル基、tert−ヘキシル基、2−ヘキシル基、およびヘプチル基を挙げることができる。R2、R3、及びR4は、少なくとも1つが水素であり、残りがアルキル基であることも好ましい。Lとして表される配位子は、トリメチルアミン、トリエチルアミン、トリフェニルアミン、ピリジン、モノフォリン、N,N−ジメチルアニリン、N,N−ジエチルアニリン、トリフェニルフォスフィン、ジメチル硫黄、ジエチルエーテル、テトラヒドロフランを挙げることができる。一般式(3)で表される3B族元素化合物は、特に、ジボラン、ボラン−テトラヒドロフラン錯体、ボラン−トリメチルアミン錯体、ボラン−トリエチルアミン錯体、トリエチルボラン、トリブチルボラン、アラン−トリメチルアミン錯体、アラン−トリエチルアミン錯体、トリメチルアルミニウム、ジメチルアミルニウムヒドリド、トリイソブチルアルミニウム、ジイソブチルアルミニウムヒドリド、トリメチルガリウム、トリエチルガリウム、トリメチルインジウム、トリメチルインジウム、トリエチルインジウムを挙げることができる。価格が安く入手が容易であるという点から、トリエチルアルミニウム、トリイソブチルアルミニウム、トリメチルガリウム、トリメチルインジウムが特に好ましい。 Specific examples of the metal represented by M in the group 3B element compound represented by the general formula (3) include B, Al, Ga, and In. R 2 , R 3 and R 4 are preferably hydrogen. Alternatively, R 2 , R 3 , and R 4 are preferably alkyl groups. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, 2-hexyl group, and heptyl group. It is also preferred that at least one of R 2 , R 3 and R 4 is hydrogen and the rest is an alkyl group. Examples of the ligand represented by L include trimethylamine, triethylamine, triphenylamine, pyridine, monophorin, N, N-dimethylaniline, N, N-diethylaniline, triphenylphosphine, dimethylsulfur, diethyl ether, and tetrahydrofuran. be able to. The group 3B element compound represented by the general formula (3) includes, in particular, diborane, borane-tetrahydrofuran complex, borane-trimethylamine complex, borane-triethylamine complex, triethylborane, tributylborane, alane-trimethylamine complex, alane-triethylamine complex, Mention may be made of trimethylaluminum, dimethylamylnium hydride, triisobutylaluminum, diisobutylaluminum hydride, trimethylgallium, triethylgallium, trimethylindium, trimethylindium and triethylindium. Triethylaluminum, triisobutylaluminum, trimethylgallium, and trimethylindium are particularly preferable because they are inexpensive and easily available.

本発明の組成物(部分加水分解物2および3)においては、前記一般式(1)で表される有機亜鉛化合物と有機亜鉛化合物に対する前記一般式(2)または(3)で表される3B族元素化合物のモル比が0.005〜0.3の割合で添加する。3B族元素化合物の添加量が多くなり過ぎると、不純物として膜特性を劣化させる傾向がある為、0.005〜0.1の割合とすることが好ましい。但し、部分加水分解物2においては、上記モル比で有機亜鉛化合物と3B族元素化合物を含有する溶液に水を添加して部分加水分解物を得る。また、部分加水分解物3においては、有機亜鉛化合物を含有する溶液に水を添加して部分加水分解物を得、その上で、上記モル比で3B族元素化合物を添加する。   In the composition of the present invention (partial hydrolysates 2 and 3), the organic zinc compound represented by the general formula (1) and 3B represented by the general formula (2) or (3) with respect to the organic zinc compound. The group element compound is added at a molar ratio of 0.005 to 0.3. If the added amount of the group 3B element compound is too large, the film characteristics tend to be deteriorated as impurities, and therefore the ratio is preferably 0.005 to 0.1. However, in the partial hydrolyzate 2, water is added to the solution containing the organozinc compound and the 3B group element compound at the above molar ratio to obtain a partial hydrolyzate. Moreover, in the partial hydrolyzate 3, water is added to the solution containing an organic zinc compound, a partial hydrolyzate is obtained, and the 3B group element compound is added by the said molar ratio on it.

前記一般式(1)で表される化合物を前記電子供与性有機溶媒に溶解した溶液における、前記一般式(1)で表される化合物の濃度は、溶媒への溶解性等を考慮して適宜決定されるが、例えば、0.1〜50質量%の範囲とすることが適当であり、1〜30質量%の範囲が好ましい。前記一般式(1)で表される化合物と前記一般式(2)または(3)で表される3B族元素化合物を前記電子供与性有機溶媒に溶解した溶液における、前記一般式(1)で表される化合物と前記一般式(2)または(3)で表される3B族元素化合物の合計量の濃度は、溶媒への溶解性等を考慮して適宜決定されるが、例えば、0.1〜50質量%の範囲とすることが適当である。   The concentration of the compound represented by the general formula (1) in the solution obtained by dissolving the compound represented by the general formula (1) in the electron donating organic solvent is appropriately determined in consideration of the solubility in the solvent. Although it is determined, for example, a range of 0.1 to 50% by mass is appropriate, and a range of 1 to 30% by mass is preferable. In the general formula (1) in a solution obtained by dissolving the compound represented by the general formula (1) and the group 3B element compound represented by the general formula (2) or (3) in the electron donating organic solvent. The total concentration of the compound represented by the general formula (2) or (3) and the concentration of the compound represented by the general formula (2) or (3) is appropriately determined in consideration of solubility in a solvent. The range of 1 to 50% by mass is appropriate.

前記一般式(1)の有機亜鉛化合物を少なくとも部分加水分解した後、前記一般式(2)または(3)の3B元素化合物を添加する場合(部分加水分解物3の場合)、前記一般式(1)で表される化合物を前記電子供与性有機溶媒に溶解した溶液における、前記一般式(1)で表される化合物の濃度は、溶媒への溶解性等を考慮して適宜決定されるが、例えば、0.1〜50質量%の範囲とすることが適当である。   When at least partially hydrolyzing the organozinc compound of the general formula (1), the 3B element compound of the general formula (2) or (3) is added (in the case of the partial hydrolyzate 3), The concentration of the compound represented by the general formula (1) in the solution obtained by dissolving the compound represented by 1) in the electron donating organic solvent is appropriately determined in consideration of the solubility in the solvent. For example, it is suitable to set it as the range of 0.1-50 mass%.

水の添加は、水を他の溶媒と混合することなく行うことも、水を他の溶媒と混合した後に行うこともできる。水の添加は、反応の規模にもよるが、例えば、60秒〜10時間の間の時間をかけて行うことができる。生成物の収率が良好であるという観点から、原料である前記一般式(1)の有機亜鉛化合物に水を滴下することにより添加することが好ましい。水の添加は、一般式(1)で表される化合物と電子供与性有機溶媒との溶液を攪拌せずに(静置した状態で)または攪拌しながら実施することができる。添加時の温度は、−90〜150℃の間の任意の温度を選択できる。−15〜30℃であることが水と有機亜鉛化合物の反応性という観点から好ましい。   The addition of water can be performed without mixing water with another solvent or after mixing water with another solvent. The addition of water can be performed, for example, over a time period of 60 seconds to 10 hours, depending on the scale of the reaction. From the viewpoint that the yield of the product is good, it is preferable to add it by dropping water into the organozinc compound of the general formula (1) as a raw material. The addition of water can be carried out without stirring (while standing) or stirring the solution of the compound represented by the general formula (1) and the electron donating organic solvent. The temperature at the time of addition can select arbitrary temperature between -90-150 degreeC. It is preferable that it is -15-30 degreeC from a viewpoint of the reactivity of water and an organic zinc compound.

水の添加後に、水と一般式(1)で表される化合物と一般式(2)または(3)で表される化合物、もしくは、水と一般式(1)で表される化合物との反応を進行させるために、例えば、1分から48時間、攪拌せずに(静置した状態で)置くか、または攪拌する。反応温度については、−90〜150℃の間の任意の温度で反応させることができる。5〜80℃であることが部分加水分解物を高収率で得るという観点から好ましい。反応圧力は制限されない。通常は、常圧(大気圧)で実施できる。水と一般式(1)で表される化合物との反応の進行は、必要により、反応混合物をサンプリングし、サンプルをNMRあるいはIR等で分析、もしくは、発生するガスをサンプリングすることによりモニタリングすることができる。   Reaction of water and the compound represented by general formula (1) and the compound represented by general formula (2) or (3), or water and the compound represented by general formula (1) after addition of water For example, leave for 1 minute to 48 hours without stirring (still standing) or stir. About reaction temperature, it can be made to react at arbitrary temperature between -90-150 degreeC. It is preferable that it is 5-80 degreeC from a viewpoint of obtaining a partial hydrolyzate with a high yield. The reaction pressure is not limited. Usually, it can be carried out at normal pressure (atmospheric pressure). The progress of the reaction between water and the compound represented by the general formula (1) is monitored by sampling the reaction mixture, analyzing the sample by NMR or IR, or sampling the generated gas, if necessary. Can do.

前記の有機溶媒、原料である前記一般式(1)の有機亜鉛化合物、そして水はあらゆる慣用の方法に従って反応容器に導入することができ、溶媒との混合物としても導入することができる。これらの反応工程は回分操作式、半回分操作式、連続操作式のいずれでもよく、特に制限はないが、回分操作式が望ましい。   The organic solvent, the organic zinc compound of the general formula (1) as a raw material, and water can be introduced into the reaction vessel according to any conventional method, and can also be introduced as a mixture with the solvent. These reaction steps may be a batch operation method, a semi-batch operation method, or a continuous operation method, and are not particularly limited, but a batch operation method is desirable.

上記反応により、前記一般式(1)の有機亜鉛化合物と前記一般式(2)または(3)の3B族元素化合物、もしくは、前記一般式(1)の有機亜鉛化合物は、水により少なくとも部分的に加水分解されて、部分加水分解物を含む生成物が得られる。一般式(1)の有機亜鉛化合物がジエチル亜鉛である場合、水との反応により得られる生成物についての解析は古くから行われているが、報告により結果が異なり、生成物の組成が明確に特定されている訳ではない。また、水の添加モル比や反応時間等によっても、生成物の組成は変化し得る。本発明においては、生成物の主成分は、部分加水分解物2については、下記一般式(4)および(5)で表される構造単位と下記一般式(6)で表される構造単位を組み合わせた化合物であるか、あるいはmが異なる複数種類の化合物の混合物である。
(R1−Zn)− (4)
−[O−Zn]m− (5)
(式中、R1は一般式(1)におけるR1と同じであり、mは2〜20の整数である。)
(式中、Mは一般式(2)または(3)におけるMと同じであり、Qは一般式(2)または(3)におけるX、R2、R3、R4のいずれかと同じであり、mは2〜20の整数である。)
By the above reaction, the organozinc compound of the general formula (1) and the group 3B element compound of the general formula (2) or (3), or the organozinc compound of the general formula (1) are at least partially in water. To obtain a product containing a partial hydrolyzate. When the organozinc compound of the general formula (1) is diethyl zinc, the analysis of the product obtained by reaction with water has been conducted for a long time, but the results differ depending on the report, and the composition of the product is clearly It is not specified. Further, the composition of the product can be changed depending on the molar ratio of water, the reaction time, and the like. In the present invention, the main component of the product includes, for the partial hydrolyzate 2, a structural unit represented by the following general formulas (4) and (5) and a structural unit represented by the following general formula (6). It is a combined compound or a mixture of a plurality of compounds with different m.
(R 1 -Zn)-(4)
-[O-Zn] m- (5)
(In the formula, R 1 is the same as R 1 in the general formula (1), m is an integer from 2 to 20.)
(In the formula, M is the same as M in the general formula (2) or (3), and Q is the same as any one of X, R 2 , R 3 and R 4 in the general formula (2) or (3). , M is an integer from 2 to 20.)

酸化亜鉛薄膜製造用組成物における部分加水分解物1や部分加水分解物3については、下記一般式(8)で表される化合物であるか、あるいは、mが異なる複数種類化合物の混合物であると推定される。
R1−Zn−[O−Zn]p−R1 (8)
(式中、R1は一般式(1)におけるR1と同じであり、pは2〜20の整数である。)
About the partial hydrolyzate 1 and the partial hydrolyzate 3 in the composition for zinc oxide thin film manufacture, it is a compound represented by the following general formula (8), or a mixture of plural kinds of compounds having different m Presumed.
R 1 —Zn— [O—Zn] p —R 1 (8)
(In the formula, R 1 is the same as R 1 in the general formula (1), p is an integer from 2 to 20.)

3B族元素をドープした酸化亜鉛薄膜製造用組成物においては、前記有機亜鉛化合物の加水分解の際に、前記3B族元素化合物を共存させていない場合、反応終了後、前記一般式(2)または(3)の3B族化合物を添加することにより組成物を製造する。前記3B族元素化合物の添加量は、前記有機亜鉛化合物の仕込み量に対して0.005〜0.3である。3B族元素化合物の添加効果を確実にえるいという観点、および添加量が多くなると不純物として膜特性を劣化させる傾向がある為、0.005〜0.1が特に好ましい。   In the composition for producing a zinc oxide thin film doped with a group 3B element, when the group 3B element compound is not present at the time of hydrolysis of the organozinc compound, the general formula (2) or A composition is produced by adding the group 3B compound of (3). The addition amount of the 3B group element compound is 0.005 to 0.3 with respect to the charged amount of the organic zinc compound. From the viewpoint of ensuring the effect of addition of the group 3B element compound, and when the addition amount increases, the film characteristics tend to be deteriorated as impurities, so 0.005 to 0.1 is particularly preferable.

加水分解反応終了後、例えば、ろ過、濃縮、抽出、カラムクロマトグラフィー等の一般的な方法によって、上記生成物の一部または全部を回収及び精製することができる。また、加水分解反応終了後に3B族元素化合物を添加する場合には、ろ過によって、上記生成物の一部または全部を回収及び精製することができる。反応生成物中に、原料である一般式(1)の有機亜鉛化合物が残存する場合には、上記方法で回収することもでき、回収することもできる。   After completion of the hydrolysis reaction, a part or all of the product can be recovered and purified by a general method such as filtration, concentration, extraction, column chromatography and the like. Moreover, when adding a 3B group element compound after completion | finish of a hydrolysis reaction, a part or all of the said product can be collect | recovered and refine | purified by filtration. When the organozinc compound of general formula (1), which is a raw material, remains in the reaction product, it can be recovered by the above method or can be recovered.

上記方法で電子供与性有機溶媒から分離して回収した組成物は、反応に使用した電子供与性有機溶媒と異なる薄膜形成用有機溶媒に溶解して塗布用の溶液とすることもできる。また、電子供与性有機溶媒を分離することなく反応生成混合物をそのまま、あるいは適宜濃度を調整して塗布用の溶液とすることもできる。   The composition separated and recovered from the electron donating organic solvent by the above method can be dissolved in a thin film forming organic solvent different from the electron donating organic solvent used in the reaction to form a coating solution. In addition, the reaction product mixture can be used as it is or without any separation of the electron-donating organic solvent, or the concentration can be adjusted appropriately to obtain a coating solution.

前記薄膜形成用有機溶媒の例としては、ペンタン、ヘキサン、ヘプタン、オクタン、石油エーテル等の脂肪族炭化水素系溶媒、ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素系溶媒、ジエチルエーテル、ジイソプロピルエーテル、グライム、ジグライム、トリグライム、ジオキサン、テトラヒドロフラン等のエーテル系溶媒、トリメチルアミン、トリエチルアミン、トリフェニルアミン等のアミン系溶媒等が挙げられる。また、これらは単独で使用するのみならず、2種類以上を混合して用いることも可能である。前記反応生成物に含まれる有機亜鉛化合物の部分加水分解物を含む反応生成物の溶解性、および、有機溶媒自身の揮発性等を考慮すると、薄膜形成用有機溶媒としては、1,2−ジエトキシエタン、1,4−ジオキサン、メチルモノグライム、エチルモノグライム、メチルジグライムが好ましい。   Examples of the organic solvent for forming the thin film include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane and petroleum ether, aromatic hydrocarbon solvents such as benzene, toluene, ethylbenzene and xylene, diethyl ether and diisopropyl. Examples include ether solvents such as ether, glyme, diglyme, triglyme, dioxane and tetrahydrofuran, and amine solvents such as trimethylamine, triethylamine and triphenylamine. These can be used not only alone but also in combination of two or more. Considering the solubility of the reaction product containing the partial hydrolyzate of the organozinc compound contained in the reaction product and the volatility of the organic solvent itself, the organic solvent for forming a thin film is 1,2-diethyl. Ethoxyethane, 1,4-dioxane, methyl monoglyme, ethyl monoglyme and methyldiglyme are preferred.

酸化亜鉛薄膜形成用組成物や3B族元素をドープした酸化亜鉛薄膜製造用組成物の固形分濃度は1〜30質量%の範囲を任意に選択できる。濃度が高ければ高いほど少ない塗布回数で薄膜を製造できるが、有機亜鉛化合物の部分加水分解物を含む反応生成物の溶解度、透明な酸化亜鉛薄膜の形成の容易さを考慮すると1〜12質量%が好ましい。   The solid content concentration of the composition for forming a zinc oxide thin film or the composition for producing a zinc oxide thin film doped with a group 3B element can be arbitrarily selected within the range of 1 to 30% by mass. The higher the concentration, the smaller the number of coatings that can be produced, but in consideration of the solubility of the reaction product containing the partial hydrolyzate of the organozinc compound and the ease of forming a transparent zinc oxide thin film, 1-12% by mass Is preferred.

[酸化亜鉛薄膜の製造方法]
本発明の酸化亜鉛薄膜形成用組成物を用いることで、酸化亜鉛薄膜の製造することができる。この製造方法は、具体的には、前記本発明の酸化亜鉛薄膜形成用組成物を基板表面に塗布し、次いで、得られた塗布膜を300℃以下の温度で加熱して酸化亜鉛薄膜を形成することを含む。
[Method for producing zinc oxide thin film]
By using the composition for forming a zinc oxide thin film of the present invention, a zinc oxide thin film can be produced. Specifically, in this production method, the zinc oxide thin film-forming composition of the present invention is applied to the substrate surface, and then the obtained coating film is heated at a temperature of 300 ° C. or lower to form a zinc oxide thin film. Including doing.

基板表面への塗布は、ディップコート法、スピンコート法、スプレー熱分解法、インクジェット法、スクリーン印刷法等の慣用手段により実施できる。スプレー熱分解法は、基板を加熱しながらできる方法であり、そのため、塗布と並行して溶媒を乾燥させることができ、条件によっては、の溶媒乾燥のための加熱が不要である場合もある。さらに、条件によっては、乾燥に加えて、有機亜鉛化合物の部分加水分解物の酸化亜鉛への反応も少なくとも一部、進行する場合もある。そのため、後工程である、所定の温度での加熱による酸化亜鉛薄膜形成をより容易に行える場合もある。スプレー熱分解法における基板の加熱温度は、例えば、50〜250℃の範囲であることができる。   Application to the substrate surface can be carried out by conventional means such as dip coating, spin coating, spray pyrolysis, ink jet, and screen printing. The spray pyrolysis method is a method that can be performed while heating the substrate. Therefore, the solvent can be dried in parallel with the application, and depending on conditions, heating for drying the solvent may be unnecessary. Furthermore, depending on conditions, in addition to drying, the reaction of the partial hydrolyzate of the organozinc compound with zinc oxide may proceed at least partially. Therefore, the zinc oxide thin film can be formed more easily by heating at a predetermined temperature, which is a subsequent process. The heating temperature of the substrate in the spray pyrolysis method can be in the range of 50 to 250 ° C., for example.

組成物の基板表面への塗布は、窒素等の不活性ガス雰囲気下、空気雰囲気下、水蒸気を多く含有した相対湿度が高い空気雰囲気下、酸素等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、もしくは、それらの混合ガス雰囲気下等のいずれかの雰囲気下、かつ、大気圧または加圧下で実施することができる。本発明の組成物に含まれる生成物は、雰囲気中の水分と反応し徐々に分解することから、不活性ガス雰囲気下で行うことが好ましい。尚、本発明の方法における塗布は、減圧下でも実施できるが、大気圧で実施するのが装置上も簡便であり好ましい。   The composition is applied to the substrate surface under an inert gas atmosphere such as nitrogen, an air atmosphere, an air atmosphere containing a large amount of water vapor, a high relative humidity, an oxidizing gas atmosphere such as oxygen, or a reducing gas atmosphere such as hydrogen. Or under any atmosphere such as a mixed gas atmosphere thereof and at atmospheric pressure or under pressure. Since the product contained in the composition of the present invention reacts with moisture in the atmosphere and gradually decomposes, it is preferably carried out in an inert gas atmosphere. The coating in the method of the present invention can be carried out under reduced pressure, but it is preferable to carry out at atmospheric pressure because the apparatus is simple and convenient.

基板表面へ塗布液を塗布した後、必要により基板を所定の温度とし、溶媒を乾燥した後、所定の温度で加熱することにより酸化亜鉛薄膜を形成させる。   After coating the coating liquid on the substrate surface, the substrate is brought to a predetermined temperature if necessary, the solvent is dried, and then heated at the predetermined temperature to form a zinc oxide thin film.

溶媒を乾燥する温度は、例えば、20〜200℃の範囲であることができ、共存する有機溶媒の種類に応じて適時設定することができる。溶媒乾燥後の酸化亜鉛形成の為の加熱温度は、例えば、20〜300℃の範囲であり、好ましくは50〜250℃の範囲であり、さらに好ましくは100〜200℃の範囲である。溶媒乾燥温度とその後の酸化亜鉛形成の為の加熱温度を同一にし、溶媒乾燥と酸化亜鉛形成を同時に行うことも可能である。   The temperature at which the solvent is dried can be, for example, in the range of 20 to 200 ° C., and can be set as appropriate according to the type of the organic solvent that coexists. The heating temperature for forming zinc oxide after drying the solvent is, for example, in the range of 20 to 300 ° C, preferably in the range of 50 to 250 ° C, and more preferably in the range of 100 to 200 ° C. It is also possible to perform the solvent drying and the zinc oxide formation at the same time by making the solvent drying temperature the same as the heating temperature for the subsequent zinc oxide formation.

必要に応じて、さらに、酸素等の酸化ガス雰囲気下、水素等の還元ガス雰囲気下、水素、アルゴン、酸素等のプラズマ雰囲気下で、上記加熱を行うことにより酸化亜鉛の形成を促進、または、結晶性を向上させることも可能である。酸化亜鉛薄膜の膜厚には特に制限はないが、実用的には0.05〜2μmの範囲であることが好ましい。本発明の製造方法によれば、上記塗布(乾燥)加熱を1回以上繰り返すことで、上記範囲の膜厚の薄膜を適宜製造することができる。   If necessary, further promote the formation of zinc oxide by performing the above heating in an oxidizing gas atmosphere such as oxygen, a reducing gas atmosphere such as hydrogen, and a plasma atmosphere such as hydrogen, argon, oxygen, or the like, or It is also possible to improve crystallinity. Although there is no restriction | limiting in particular in the film thickness of a zinc oxide thin film, It is preferable that it is the range of 0.05-2 micrometers practically. According to the production method of the present invention, a thin film having a film thickness in the above range can be appropriately produced by repeating the application (drying) heating once or more.

この製造方法により形成される酸化亜鉛薄膜は、好ましくは可視光線に対して80%以上の平均透過率を有するものであり、より好ましくは可視光線に対して85%以上の平均透過率を有する。「可視光線に対する平均透過率」とは、以下のように定義され、かつ測定される。可視光線に対する平均透過率とは、380〜780nmの範囲の光線の透過率の平均を云い、紫外可視分光光度計により測定される。尚、可視光線に対する平均透過率は、550nmの可視光の透過率を提示することによっても表現できる。可視光線に対する透過率は、スプレー塗布時、もしくは、塗布後の加熱による酸化亜鉛の生成の程度により変化(増大)するので、薄膜の可視光線に対する透過率が80%以上になるよう考慮してスプレー塗布時、もしくは、塗布後の加熱条件(温度及び時間)を設定することが好ましい。   The zinc oxide thin film formed by this production method preferably has an average transmittance of 80% or more for visible light, and more preferably has an average transmittance of 85% or more for visible light. “Average transmittance for visible light” is defined and measured as follows. The average transmittance for visible light refers to the average of the transmittance of light in the range of 380 to 780 nm, and is measured by an ultraviolet-visible spectrophotometer. The average transmittance for visible light can also be expressed by presenting the visible light transmittance of 550 nm. The transmittance for visible light changes (increases) at the time of spray coating or depending on the degree of formation of zinc oxide by heating after coating, so that the transmittance of the thin film to visible light is considered to be 80% or more. It is preferable to set the heating conditions (temperature and time) at the time of application or after application.

さらにこの製造方法により形成されるドープされた酸化亜鉛薄膜は、3B族元素をドープしたものであることから、さらに成膜方法を工夫することにより、低抵抗な膜を得られる可能性が高くなる。   Furthermore, since the doped zinc oxide thin film formed by this manufacturing method is doped with a group 3B element, the possibility of obtaining a low-resistance film is increased by further devising the film forming method. .

上記製造方法において基板として用いられるのは、例えば、透明基材フィルムであることができ、透明基材フィルムは、プラスチックフィルムであることができる。プラスチックフィルムを形成するポリマーには、ポリエステル(例えば、ポリエチレンテレフタレート(P E T)、ポリエチレンナフタレート(P E N)、ポリ(メタ)アクリル(例えば、ポリメチルメタクリレート(P M M A))、ポリカーボネート(P C)、ポリスチレン、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、環状ポリオレフィン(C O P)、エチレン−酢酸ビニル共重合体、ポリウレタン、トリアセテート、セロファンを例示することができる。これら中、P E T、P E N、P C、P M M Aが好ましい。透明基材フィルムはポリマーの種類によって無延伸フィルムであっても、延伸フィルムであってもよい。例えば、ポリエステルフィルム例えばP E T フィルムは、通常、二軸延伸フィルムであり、またP C フィルム、トリアセテートフィルム、セロファンフィルム等は、通常、無延伸フィルムである。   For example, a transparent base film can be used as the substrate in the manufacturing method, and the transparent base film can be a plastic film. Examples of the polymer forming the plastic film include polyester (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), poly (meth) acrylic (for example, polymethylmethacrylate (PMMA)), and polycarbonate. Examples thereof include (PC), polystyrene, polyvinyl alcohol, polyvinyl chloride, polyvinylidene chloride, polyethylene, cyclic polyolefin (COP), ethylene-vinyl acetate copolymer, polyurethane, triacetate, and cellophane. , P E T, P E N, P C, and P M M A. The transparent substrate film may be an unstretched film or a stretched film depending on the type of polymer, for example, a polyester film such as P ET film is usually A stretched film, also P C film, triacetate film, cellophane film, etc. is usually a non-oriented film.

以下に本発明を実施例によってさらに詳細に説明するが、これらの実施例は本発明を限定するものではない。全ての有機亜鉛化合物からの部分加水分解物を含む生成物の調製およびそれを用いた成膜は窒素ガス雰囲気下で行い、溶媒は全て脱水および脱気して使用した。   EXAMPLES The present invention will be described in more detail with reference to examples below, but these examples do not limit the present invention. Preparation of a product containing a partial hydrolyzate from all organozinc compounds and film formation using the product were performed in a nitrogen gas atmosphere, and all solvents were used after dehydration and deaeration.

[実施例1]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.2になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、トリメチルインジウムを仕込んだジエチル亜鉛に対してモル比で0.02になるよう添加した。以上のようにして得た溶液をメンブレンフィルターでろ過することにより、インジウムを含有する部分加水分解物溶液(濃度7.9質量%)を33.1g得た。真空乾燥により溶媒等を除去した後のNMR(THF−d8,ppm)測定により図2のスペクトルを得た。
[Example 1]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.2. Thereafter, the temperature was raised to room temperature (22 ° C.) and reacted at room temperature for 18 hours, and then added in a molar ratio of 0.02 with respect to diethylzinc charged with trimethylindium. The solution obtained as described above was filtered with a membrane filter to obtain 33.1 g of a partial hydrolyzate solution (concentration 7.9% by mass) containing indium. The spectrum of FIG. 2 was obtained by NMR (THF-d8, ppm) measurement after removing the solvent and the like by vacuum drying.

上述のように得た部分加水分解物を含む生成物含有塗布液をスピンコート法により18mm角のコーニング1737ガラス基板表面上に塗布した。その後、基板を350℃、5分加熱することで溶媒を乾燥させると同時に酸化亜鉛を形成させた。以上の操作をさらに5回繰り返した。形成された薄膜は、表1のようになった。   The product-containing coating solution containing the partial hydrolyzate obtained as described above was applied onto the surface of an 18 mm square Corning 1737 glass substrate by spin coating. Thereafter, the substrate was heated at 350 ° C. for 5 minutes to dry the solvent and simultaneously form zinc oxide. The above operation was further repeated 5 times. The formed thin film was as shown in Table 1.

[実施例2]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.39になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、トリメチルインジウムを仕込んだジエチル亜鉛に対してモル比で0.02になるよう添加した。以上のようにして得た溶液をメンブレンフィルターでろ過することにより、インジウムを含有する部分加水分解物溶液(濃度7.9質量%)を33.3g得た。
[Example 2]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.39. Thereafter, the temperature was raised to room temperature (22 ° C.) and reacted at room temperature for 18 hours, and then added in a molar ratio of 0.02 with respect to diethylzinc charged with trimethylindium. The solution obtained as described above was filtered with a membrane filter to obtain 33.3 g of a partial hydrolyzate solution (concentration 7.9% by mass) containing indium.

上述のように得た部分加水分解物を含む生成物含有塗布液をスピンコート法により18mm角のコーニング1737ガラス基板表面上に塗布した。その後、基板を350℃、5分加熱することで溶媒を乾燥させると同時に酸化亜鉛を形成させた。以上の操作をさらに5回繰り返した。形成された薄膜は、表1のようになった。   The product-containing coating solution containing the partial hydrolyzate obtained as described above was applied onto the surface of an 18 mm square Corning 1737 glass substrate by spin coating. Thereafter, the substrate was heated at 350 ° C. for 5 minutes to dry the solvent and simultaneously form zinc oxide. The above operation was further repeated 5 times. The formed thin film was as shown in Table 1.

[実施例3]
実施例1のように得た部分加水分解物を含む生成物含有塗布液をスピンコート法により18mm角のコーニング1737ガラス基板表面上に塗布したこと以外は、実施例4と同様の方法で酸化亜鉛を形成させた。形成された薄膜は、表1のようになった。
[Example 3]
Zinc oxide was prepared in the same manner as in Example 4 except that the product-containing coating solution containing the partial hydrolyzate obtained as in Example 1 was applied onto the surface of a 18 mm square Corning 1737 glass substrate by spin coating. Formed. The formed thin film was as shown in Table 1.

[実施例4]
実施例2のように得た部分加水分解物を含む生成物含有塗布液をスピンコート法により18mm角のコーニング1737ガラス基板表面上に塗布したこと以外は、実施例4と同様の方法で酸化亜鉛を形成させた。形成された薄膜は、表1のようになった。
[Example 4]
Zinc oxide was prepared in the same manner as in Example 4 except that the product-containing coating solution containing the partial hydrolyzate obtained as in Example 2 was applied onto the surface of a 18 mm square Corning 1737 glass substrate by spin coating. Formed. The formed thin film was as shown in Table 1.

[実施例5]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.2になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、得た溶液をメンブレンフィルターでろ過することにより、部分加水分解物溶液(濃度7.9質量%)を33.1g得た。
[Example 5]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.2. Then, after heating up to room temperature (22 degreeC) and making it react at room temperature for 18 hours, 33.1g of partial hydrolyzate solutions (concentration 7.9 mass%) were obtained by filtering the obtained solution with a membrane filter. It was.

上述のようにして得た塗布液を、図1のスプレー製膜装置中スプレーボトルに充填した。18mm角のコーニング1737ガラス基板を基板ホルダに設置した。窒素ガス雰囲気下で、ガラス基板を200℃に加熱した。その後、スプレーノズルより塗布液を4ml/minで8分間噴霧した。形成された薄膜は、表1のようになった。また、薄膜のXRDスペクトルは図3のようになり、酸化亜鉛の形成が確認された。   The coating solution obtained as described above was filled in a spray bottle in the spray film forming apparatus of FIG. An 18 mm square Corning 1737 glass substrate was placed on the substrate holder. The glass substrate was heated to 200 ° C. in a nitrogen gas atmosphere. Thereafter, the coating solution was sprayed at 4 ml / min for 8 minutes from the spray nozzle. The formed thin film was as shown in Table 1. Further, the XRD spectrum of the thin film was as shown in FIG. 3, and the formation of zinc oxide was confirmed.

[実施例6]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.39になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、得た溶液をメンブレンフィルターでろ過することにより、部分加水分解物溶液(濃度7.9質量%)を33.1g得た。真空乾燥により溶媒等を除去した後のNMR(THF−d8,ppm)測定により図2と同様のスペクトルを得た。
[Example 6]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.39. Then, after heating up to room temperature (22 degreeC) and making it react at room temperature for 18 hours, 33.1g of partial hydrolyzate solutions (concentration 7.9 mass%) were obtained by filtering the obtained solution with a membrane filter. It was. A spectrum similar to FIG. 2 was obtained by NMR (THF-d8, ppm) measurement after removing the solvent and the like by vacuum drying.

上述のようにして得た塗布液を、図1のスプレー製膜装置中スプレーボトルに充填した。18mm角のコーニング1737ガラス基板を基板ホルダに設置した。窒素ガス雰囲気下で、ガラス基板を200℃に加熱した。その後、スプレーノズルより塗布液を4ml/minで8分間噴霧した。形成された薄膜は、表1のようになった。   The coating solution obtained as described above was filled in a spray bottle in the spray film forming apparatus of FIG. An 18 mm square Corning 1737 glass substrate was placed on the substrate holder. The glass substrate was heated to 200 ° C. in a nitrogen gas atmosphere. Thereafter, the coating solution was sprayed at 4 ml / min for 8 minutes from the spray nozzle. The formed thin film was as shown in Table 1.

[実施例7]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.2になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、トリメチルインジウムを仕込んだジエチル亜鉛に対してモル比で0.02になるよう添加した。以上のようにして得た溶液をメンブレンフィルターでろ過することにより、インジウムを含有する部分加水分解物溶液(濃度7.9質量%)を33.1g得た。
[Example 7]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.2. Thereafter, the temperature was raised to room temperature (22 ° C.) and reacted at room temperature for 18 hours, and then added in a molar ratio of 0.02 with respect to diethylzinc charged with trimethylindium. The solution obtained as described above was filtered with a membrane filter to obtain 33.1 g of a partial hydrolyzate solution (concentration 7.9% by mass) containing indium.

上述のようにして得た塗布液を、図1のスプレー製膜装置中スプレーボトルに充填した。18mm角のコーニング1737ガラス基板を基板ホルダに設置した。窒素ガス雰囲気下で、ガラス基板を200℃に加熱した。その後、スプレーノズルより塗布液を4ml/minで8分間噴霧した。形成された薄膜は、表1のようになった。   The coating solution obtained as described above was filled in a spray bottle in the spray film forming apparatus of FIG. An 18 mm square Corning 1737 glass substrate was placed on the substrate holder. The glass substrate was heated to 200 ° C. in a nitrogen gas atmosphere. Thereafter, the coating solution was sprayed at 4 ml / min for 8 minutes from the spray nozzle. The formed thin film was as shown in Table 1.

[実施例8]
1,2−ジエトキシエタン30.0gにジエチル亜鉛2.60gを加えた。十分攪拌した後、12℃まで冷却した。5.0%水を含有したテトラヒドロフラン溶液を、水のジエチル亜鉛に対するモル比が0.39になるように滴下した。その後、室温(22℃)まで昇温し室温で18時間反応させた後、トリメチルインジウムを仕込んだジエチル亜鉛に対してモル比で0.02になるよう添加した。以上のようにして得た溶液をメンブレンフィルターでろ過することにより、インジウムを含有する部分加水分解物溶液(濃度7.9質量%)を33.3g得た。
[Example 8]
2.60 g of diethyl zinc was added to 30.0 g of 1,2-diethoxyethane. After sufficiently stirring, it was cooled to 12 ° C. A tetrahydrofuran solution containing 5.0% water was added dropwise so that the molar ratio of water to diethylzinc was 0.39. Thereafter, the temperature was raised to room temperature (22 ° C.) and reacted at room temperature for 18 hours, and then added in a molar ratio of 0.02 with respect to diethylzinc charged with trimethylindium. The solution obtained as described above was filtered with a membrane filter to obtain 33.3 g of a partial hydrolyzate solution (concentration 7.9% by mass) containing indium.

上述のようにして得た塗布液を、図1のスプレー製膜装置中スプレーボトルに充填した。18mm角のコーニング1737ガラス基板を基板ホルダに設置した。窒素ガス雰囲気下で、ガラス基板を200℃に加熱した。その後、スプレーノズルより塗布液を4ml/minで8分間噴霧した。形成された薄膜は、表1のようになった。また、薄膜のXRDスペクトルは図4のようになり、酸化亜鉛の形成が確認された。   The coating solution obtained as described above was filled in a spray bottle in the spray film forming apparatus of FIG. An 18 mm square Corning 1737 glass substrate was placed on the substrate holder. The glass substrate was heated to 200 ° C. in a nitrogen gas atmosphere. Thereafter, the coating solution was sprayed at 4 ml / min for 8 minutes from the spray nozzle. The formed thin film was as shown in Table 1. Further, the XRD spectrum of the thin film was as shown in FIG. 4, and the formation of zinc oxide was confirmed.

TMI=トリメチルインジウム TMI = trimethylindium

[比較例1]
2−メトキシエタノール24.12gに、酢酸亜鉛二水和物1.23gと助剤としてエタノールアミン0.34g、さらに、トリスアセチルアセナトアルミニウムを酢酸亜鉛二水和物に対してモル比0.02の割合で加え、十分攪拌することでアルミニウムを含有する塗布液を得た。
[Comparative Example 1]
2-methoxyethanol (24.12 g), zinc acetate dihydrate (1.23 g), ethanolamine (0.34 g) as an auxiliary agent, and trisacetylacetonatoaluminum in a molar ratio of 0.02 to zinc acetate dihydrate The coating solution containing aluminum was obtained by adding sufficiently and stirring sufficiently.

そのように得た塗布液を空気中にて用いた以外実施例1と同様な操作を実施して薄膜を得た。550nmの可視光透過率は75%であり、透過率80%以下の不透明な薄膜しか得られなかった。さらに、膜は不均一であり、XRDからは酸化亜鉛由来のピークは確認されなかった(図示せず)。   A thin film was obtained by carrying out the same operation as in Example 1 except that the coating solution thus obtained was used in the air. The visible light transmittance at 550 nm was 75%, and only an opaque thin film having a transmittance of 80% or less was obtained. Further, the film was non-uniform, and no peak derived from zinc oxide was observed from XRD (not shown).

[比較例2]
トリスアセチルアセナトアルミニウムを塩化ガリウムに変更した以外は、比較例1と同様にしてガリウムを含有する塗布液を得た。
[Comparative Example 2]
A coating solution containing gallium was obtained in the same manner as in Comparative Example 1 except that trisacetylacetonatoaluminum was changed to gallium chloride.

そのように得た塗布液を比較例1と同様な操作を実施して薄膜を得た。また、550nmの可視光透過率は66%であり、透過率80%以下の不透明な薄膜しか得られなかった。さらに、膜は不均一であり、XRDからは酸化亜鉛由来のピークは確認されなかった(図示せず)。   The coating solution thus obtained was subjected to the same operation as in Comparative Example 1 to obtain a thin film. Further, the visible light transmittance at 550 nm was 66%, and only an opaque thin film having a transmittance of 80% or less was obtained. Further, the film was non-uniform, and no peak derived from zinc oxide was observed from XRD (not shown).

[比較例3]
トリスアセチルアセナトアルミニウムを塩化インジウム四水和物に変更した以外は、比較例1と同様にしてインジウムを含有する塗布液を得た。
[Comparative Example 3]
A coating solution containing indium was obtained in the same manner as in Comparative Example 1 except that trisacetylacetonatoaluminum was changed to indium chloride tetrahydrate.

そのように得た塗布液を比較例1と同様な操作を実施して薄膜を得た。また、550nmの可視光透過率は71%であり、透過率80%以下の不透明な薄膜しか得られなかった。さらに、膜は不均一であり、XRDからは酸化亜鉛由来のピークは確認されなかった(図示せず)。   The coating solution thus obtained was subjected to the same operation as in Comparative Example 1 to obtain a thin film. Further, the visible light transmittance at 550 nm was 71%, and only an opaque thin film having a transmittance of 80% or less was obtained. Further, the film was non-uniform, and no peak derived from zinc oxide was observed from XRD (not shown).

本発明は、酸化亜鉛薄膜およびドープ酸化亜鉛薄膜の製造分野に有用である。   The present invention is useful in the field of manufacturing zinc oxide thin films and doped zinc oxide thin films.

Claims (8)

一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒(アルコール溶媒を除く)に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解することにより得られる生成物を含み、かつ前記水の添加量は、前記有機亜鉛化合物に対するモル比が0.05以上〜0.4未満の範囲である、酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
By adding water to a solution in which the organic zinc compound represented by the general formula (1) is dissolved in an electron-donating organic solvent (excluding an alcohol solvent) , and hydrolyzing the organic zinc compound at least partially. The composition for producing a zinc oxide thin film, comprising a product to be obtained, and having an amount of water added such that a molar ratio to the organozinc compound is in a range of 0.05 to less than 0.4.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
下記一般式(1)で表される有機亜鉛化合物と、下記一般式(2)または下記一般式(3)で表される3B族元素化合物の少なくとも1種とを電子供与性有機溶媒(アルコール溶媒を除く)に溶解した溶液に、水を添加して、少なくとも前記有機亜鉛化合物を少なくとも部分的に加水分解して得られる生成物を含み、前記3B族元素化合物は、前記有機亜鉛化合物に対するモル比が0.005〜0.3の割合であり、かつ前記水の添加量は、前記有機亜鉛化合物および3B族元素化合物の合計量に対するモル比が0.05以上〜0.4未満の範囲である、ドープ酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
cd・aH2O (2)
(式中、Mは3B族元素であり、Xは、ハロゲン原子、硝酸または硫酸であり、Xがハロゲン原子または硝酸の場合、cは1、dは3、Xが硫酸の場合、cは2、dは3、aは0〜9の整数である。)
(式中、Mは3B族元素であり、R2、R3、R4は独立に、水素、炭素数1〜7の直鎖もしくは分岐したアルキル基、炭素数1〜7の直鎖もしくは分岐したアルコキシル基、カルボン酸基、またはアセチルアセトナート基であり、さらにLは窒素、酸素またはリンを含有した配位性有機化合物であり、nは0〜9の整数である。)
An electron-donating organic solvent (alcohol solvent ) containing an organozinc compound represented by the following general formula (1) and at least one group 3B element compound represented by the following general formula (2) or the following general formula (3) And a solution obtained by adding water to at least partially hydrolyzing the organozinc compound, and the group 3B element compound has a molar ratio to the organozinc compound. Is 0.005 to 0.3, and the amount of water added is such that the molar ratio to the total amount of the organozinc compound and the group 3B element compound is 0.05 to less than 0.4. A composition for producing a doped zinc oxide thin film.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
M c X d · aH 2 O (2)
(Wherein M is a group 3B element, X is a halogen atom, nitric acid or sulfuric acid, c is 1, when d is a halogen atom or nitric acid, d is 3, and when X is sulfuric acid, c is 2 D is 3, and a is an integer of 0 to 9.)
(In the formula, M is a group 3B element, R 2 , R 3 , and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 7 carbon atoms, or a linear or branched group having 1 to 7 carbon atoms. An alkoxyl group, a carboxylic acid group, or an acetylacetonate group, L is a coordinating organic compound containing nitrogen, oxygen or phosphorus, and n is an integer of 0 to 9.)
前記生成物は、前記3B族元素化合物の加水分解物を含む請求項2に記載の組成物。 The composition according to claim 2, wherein the product includes a hydrolyzate of the group 3B element compound. 一般式(1)で表される有機亜鉛化合物を電子供与性有機溶媒(アルコール溶媒を除く)に溶解した溶液に、水を添加して、前記有機亜鉛化合物を少なくとも部分的に加水分解した後、一般式(2)または一般式(3)で表される3B族元素化合物の少なくとも1種を、前記有機亜鉛化合物に対するモル比が0.005〜0.3の割合になるよう添加することにより得られる生成物を含み、かつ前記水の添加量は、前記有機亜鉛化合物に対するモル比が0.05以上〜0.4未満の範囲である、ドープ酸化亜鉛薄膜製造用組成物。
1−Zn−R1 (1)
(式中、R1は炭素数1〜7の直鎖または分岐したアルキル基である)
cd・aH2O (2)
(式中、Mは3B族元素であり、Xは、ハロゲン原子、硝酸または硫酸であり、Xがハロゲン原子または硝酸の場合、cは1、dは3、Xが硫酸の場合、cは2、dは3、aは0〜9の整数である。)
(式中、Mは3B族元素であり、R2、R3、R4は独立に、水素、炭素数1〜7の直鎖もしくは分岐したアルキル基、炭素数1〜7の直鎖もしくは分岐したアルコキシル基、カルボン酸基、またはアセチルアセトナート基であり、さらにLは窒素、酸素またはリンを含有した配位性有機化合物であり、nは0〜9の整数である。)
After adding water to a solution in which the organic zinc compound represented by the general formula (1) is dissolved in an electron-donating organic solvent (excluding an alcohol solvent) to hydrolyze the organic zinc compound at least partially, Obtained by adding at least one group 3B element compound represented by the general formula (2) or the general formula (3) so that the molar ratio to the organozinc compound is 0.005 to 0.3. The composition for manufacturing a doped zinc oxide thin film, wherein the molar amount ratio of the water to the organic zinc compound is in the range of 0.05 to less than 0.4.
R 1 —Zn—R 1 (1)
(In the formula, R 1 is a linear or branched alkyl group having 1 to 7 carbon atoms)
M c X d · aH 2 O (2)
(Wherein M is a group 3B element, X is a halogen atom, nitric acid or sulfuric acid, c is 1, when d is a halogen atom or nitric acid, d is 3, and when X is sulfuric acid, c is 2 D is 3, and a is an integer of 0 to 9.)
(In the formula, M is a group 3B element, R 2 , R 3 , and R 4 are independently hydrogen, a linear or branched alkyl group having 1 to 7 carbon atoms, or a linear or branched group having 1 to 7 carbon atoms. An alkoxyl group, a carboxylic acid group, or an acetylacetonate group, L is a coordinating organic compound containing nitrogen, oxygen or phosphorus, and n is an integer of 0 to 9.)
前記生成物は、前記3B族元素化合物の加水分解物を実質的に含まない請求項4に記載の組成物。 The composition according to claim 4, wherein the product is substantially free of a hydrolyzate of the group 3B element compound. 前記生成物の濃度が1〜30質量%の範囲である請求項1〜5のいずれかに記載の組成物。 The composition according to any one of claims 1 to 5, wherein the concentration of the product is in the range of 1 to 30% by mass. 前記有機亜鉛化合物は、R1が炭素数1、2、3、4、5、または6のアルキル基である化合物である請求項1〜6のいずれかに記載の組成物。 The composition according to any one of claims 1 to 6, wherein the organic zinc compound is a compound in which R 1 is an alkyl group having 1, 2, 3, 4, 5, or 6 carbon atoms. 前記有機亜鉛化合物がジエチル亜鉛である請求項1〜7のいずれかに記載の組成物。 The composition according to claim 1, wherein the organic zinc compound is diethyl zinc.
JP2010235478A 2010-10-20 2010-10-20 Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film Active JP5756272B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010235478A JP5756272B2 (en) 2010-10-20 2010-10-20 Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
PCT/JP2011/074022 WO2012053542A1 (en) 2010-10-20 2011-10-19 Composition for production of oxide thin films and method for producing oxide thin films by using said composition
CN201180050611.1A CN103153865B (en) 2010-10-20 2011-10-19 The preparation method of the sull of sull preparation compositions and use said composition
KR1020137012716A KR101861394B1 (en) 2010-10-20 2011-10-19 Composition for production of oxide thin films and method for producing oxide thin films by using said composition
TW100138140A TWI543940B (en) 2010-10-20 2011-10-20 A composition for producing an oxide film, and an oxide thin film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010235478A JP5756272B2 (en) 2010-10-20 2010-10-20 Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film

Publications (2)

Publication Number Publication Date
JP2012087014A JP2012087014A (en) 2012-05-10
JP5756272B2 true JP5756272B2 (en) 2015-07-29

Family

ID=46259060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010235478A Active JP5756272B2 (en) 2010-10-20 2010-10-20 Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film

Country Status (1)

Country Link
JP (1) JP5756272B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182939A (en) * 1993-12-22 1995-07-21 Mitsubishi Materials Corp Transparent conducting film forming composition and transparent conducting film forming method
US7491575B2 (en) * 2006-08-02 2009-02-17 Xerox Corporation Fabricating zinc oxide semiconductor using hydrolysis
JP5288464B2 (en) * 2008-11-27 2013-09-11 東ソー・ファインケム株式会社 Method for producing zinc oxide thin film

Also Published As

Publication number Publication date
JP2012087014A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2010123030A1 (en) Composition for forming doped or non-doped zinc oxide thin film, and method for producing zinc oxide thin film using same
WO2013161735A1 (en) Composition for producing compound oxide thin film, method for producing thin film using composition, and compound oxide thin film
WO2012053542A1 (en) Composition for production of oxide thin films and method for producing oxide thin films by using said composition
JP5674186B2 (en) Zinc oxide thin film production method, and antistatic thin film, ultraviolet cut thin film, transparent electrode thin film produced by this method
JP5641717B2 (en) Composition for producing doped zinc oxide thin film and method for producing doped zinc oxide thin film using the same
JP5546154B2 (en) Composition for producing zinc oxide thin film and method for producing zinc oxide thin film using the same
JP5822449B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
WO2010131621A1 (en) Composition for production of doped zinc oxide thin film, process for production of zinc oxide thin film, antistatic thin film, ultraviolet ray blocking thin film, and transparent electrode thin film
JP5756273B2 (en) Zinc oxide thin film production composition and zinc oxide thin film production method using doped zinc oxide thin film production composition, and antistatic thin film, UV cut thin film, transparent electrode thin film produced by this method
JP6440409B2 (en) Aluminum oxide film coating composition, method for producing article having aluminum oxide film, and article having aluminum oxide film
JP5688225B2 (en) Composition for producing zinc oxide thin film
JP5756272B2 (en) Composition for producing zinc oxide thin film and composition for producing doped zinc oxide thin film
TWI743025B (en) Composition for manufacturing zinc oxide thin film containing group 2 elements and manufacturing method thereof
JP5515144B2 (en) Composition for forming doped zinc oxide thin film and method for producing doped zinc oxide thin film
JP5892641B2 (en) Zinc oxide thin film production method, and antistatic thin film, ultraviolet cut thin film, transparent electrode thin film produced by this method
JP5702258B2 (en) Composition for producing complex oxide thin film
JP5702259B2 (en) Thin film production method using composite oxide thin film production composition
TWI465401B (en) "dope or undoped zinc oxide thin film manufacturing method and a method for producing the zinc oxide thin film using the same
JP2015163560A (en) Composition for producing porous zinc oxide thin film and composition for producing porous doped zinc oxide thin film
JP2015163561A (en) Method for producing porous zinc oxide thin film, porous zinc oxide thin film formed by the method, and porous zinc oxide functional thin film using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150529

R150 Certificate of patent or registration of utility model

Ref document number: 5756272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250