WO2012053033A1 - 3次元立体表示装置 - Google Patents

3次元立体表示装置 Download PDF

Info

Publication number
WO2012053033A1
WO2012053033A1 PCT/JP2010/006220 JP2010006220W WO2012053033A1 WO 2012053033 A1 WO2012053033 A1 WO 2012053033A1 JP 2010006220 W JP2010006220 W JP 2010006220W WO 2012053033 A1 WO2012053033 A1 WO 2012053033A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic display
screen
dimensional
image
icon
Prior art date
Application number
PCT/JP2010/006220
Other languages
English (en)
French (fr)
Inventor
下谷 光生
御厨 誠
威郎 坂入
英梨子 当麻
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/006220 priority Critical patent/WO2012053033A1/ja
Priority to US13/704,097 priority patent/US20130093860A1/en
Priority to JP2012539479A priority patent/JP5781080B2/ja
Priority to DE112010005947T priority patent/DE112010005947T5/de
Publication of WO2012053033A1 publication Critical patent/WO2012053033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/265Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network constructional aspects of navigation devices, e.g. housings, mountings, displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3664Details of the user input interface, e.g. buttons, knobs or sliders, including those provided on a touch screen; remote controllers; input using gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/172Processing image signals image signals comprising non-image signal components, e.g. headers or format information
    • H04N13/183On-screen display [OSD] information, e.g. subtitles or menus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to a 3D stereoscopic display device (3Dimensional stereoscopic display device) for displaying a 3D stereoscopic image (3Dimensional stereoscopic image) or a 3D stereoscopic image (3Dimensional stereoscopic movie).
  • 3D stereoscopic display device for displaying a 3D stereoscopic image (3Dimensional stereoscopic image) or a 3D stereoscopic image (3Dimensional stereoscopic movie).
  • the conventional stereoscopic display device disclosed in Patent Document 1 provides a three-dimensional stereoscopic image mainly used for home use.
  • This stereoscopic display device is highly convenient because it can view stereoscopic images without wearing glasses for stereoscopic viewing.
  • it is suitable as a display device for a content playback device or a rear seat RSE (Rear Seat Entertainment). It is also suitable for a control system using FA (Factory Automation) or image display.
  • Patent Document 1 when the conventional technique represented by Patent Document 1 is applied to a three-dimensional stereoscopic display of an icon or button, an apparent position space in which the icon or button is displayed by the three-dimensional stereoscopic display, and the icon or button Since the correspondence with the operation input unit that actually receives the operation on the button is not clarified, even if the user performs an operation on the icon or the like displayed three-dimensionally, the operation may not be accepted. There was a problem. In other words, the position where the icon or button is apparently displayed by the three-dimensional stereoscopic display and the hardware switch or touch panel surface that actually accepts the operation on the icon or button are in different positions or spaces, which makes the user feel uncomfortable. It will be.
  • the present invention has been made to solve the above-described problems, and can provide a three-dimensional stereoscopic display capable of providing an HMI (Human-Machine-Interface) based on a three-dimensional stereoscopic display that can be operated in accordance with the user's intuition.
  • the object is to obtain a device.
  • a three-dimensional stereoscopic display device is provided on a screen of a stereoscopic display monitor unit that three-dimensionally displays right-eye and left-eye images or videos for three-dimensional stereoscopic display of an operation screen, and a stereoscopic display monitor unit.
  • a touch panel unit that detects a relative position between the touch object and the pointing object that performs a touch operation on the operation screen that is three-dimensionally displayed on the screen of the stereoscopic display monitor unit, and an icon image that is an operation target on the operation screen.
  • FIG. 1 It is a block diagram which shows the structural example of the three-dimensional display system using the three-dimensional three-dimensional display apparatus concerning this invention. It is a figure for demonstrating the principle of the three-dimensional display in a three-dimensional display monitor. It is a block diagram which shows the structure of the vehicle-mounted information system using the three-dimensional stereoscopic display device by Embodiment 1 of this invention. It is a figure which shows the structure of a three-dimensional touch panel. It is a figure for demonstrating the screen composition process which makes the apparent display position of a planar map the back
  • FIG. 4 is a flowchart showing a flow of screen composition processing of the three-dimensional stereoscopic display device according to Embodiment 1; It is a figure for demonstrating the screen compositing process which made the apparent map display surface of a planar map into the back
  • FIG. 1 is a block diagram showing a configuration example of a stereoscopic display system using a three-dimensional stereoscopic display device according to the present invention.
  • FIG. 1A shows a stereoscopic display system 1A that displays a stereoscopic image from left and right images captured by a binocular camera.
  • the stereoscopic display system 1A includes a left-eye camera 2a, a right-eye camera 2b, a recording / photographing device 3, a screen composition processing unit 4, a video reproduction device 5, and a stereoscopic display monitor 6.
  • the left-eye camera 2 a and the right-eye camera 2 b are arranged side by side with an interval considering the binocular parallax, and the scenery A to be photographed is photographed under the control of the recording and photographing device 3.
  • the left and right video data of the landscape A photographed by the left-eye camera 2a and the right-eye camera 2b are recorded in the recording / photographing device 3.
  • the screen composition processing unit 4 subjects the left and right video data read from the recording / photographing device 3 to a three-dimensional stereoscopic video composition process unique to the present invention, and outputs the resultant to the video reproduction device 5.
  • the video reproduction device 5 reproduces the left and right video data processed by the screen composition processing unit 4 and outputs it to the stereoscopic display monitor 6.
  • the stereoscopic display monitor 6 displays the left and right video data reproduced by the video reproduction device 5 in a stereoscopic manner as viewed from the viewer.
  • a stereoscopic display system 1B shown in FIG. 1B includes a stereoscopic video content receiver 7, an image composition processing unit 4, a video reproduction device 5, and a stereoscopic display monitor 6 that communicate with an external device via an antenna 7a.
  • the stereoscopic video content receiver 7 is a receiver that receives the stereoscopic video content including the left and right video data as described above from the external device via the antenna 7a.
  • the screen composition processing unit 4 subjects the left and right video data of the stereoscopic video content received by the stereoscopic video content receiver 7 to the three-dimensional stereoscopic video synthesis processing unique to the present invention, and outputs it to the video reproduction device 5 To do.
  • the stereoscopic display monitor 6 displays the left and right video data reproduced by the video reproduction device 5 in a stereoscopic manner as viewed from the viewer.
  • a stereoscopic display system 1C shown in FIG. 1C includes a storage device 8 that stores stereoscopic display content, an image composition processing unit 4, a video reproduction device 5, and a stereoscopic display monitor 6.
  • the stereoscopic display content is content data including the left and right video data as described above.
  • the storage device 8 may be an HDD (Hard Disk Drive) or a semiconductor memory that stores stereoscopic display content. Further, it may be a drive device that reproduces a storage medium such as a CD or DVD that stores stereoscopic display content.
  • the screen composition processing unit 4 subjects the left and right video data of the stereoscopic display content read from the storage device 8 to the three-dimensional stereoscopic video composition processing unique to the present invention, and outputs it to the video reproduction device 5.
  • the stereoscopic display monitor 6 displays the left and right video data reproduced by the video reproducing device 5 in a stereoscopic manner as viewed from the viewer.
  • so-called three-dimensional data (for example, three-dimensional map data) is stored as stereoscopic display content, and the screen composition processing unit 4 calculates how the image indicated by the three-dimensional data is viewed from the left and right viewpoints.
  • left and right video data may be generated.
  • FIG. 2 is a diagram for explaining the principle of stereoscopic display on the stereoscopic display monitor, and shows an example of stereoscopic display with the naked eye.
  • the stereoscopic display monitor 6 shown in FIG. 2 includes a liquid crystal display element group 6a and a parallax barrier unit 6b.
  • the liquid crystal display element group 6a includes a right-eye liquid crystal element group that has directivity so that the right-eye image reaches the right eye, and a left-eye image that has directivity so that the left-eye image reaches the left eye.
  • the parallax barrier unit 6b is a visual field barrier that blocks light from a backlight (not shown in FIG. 2) in order to alternately display a right-eye image and a left-eye image.
  • the left and right video data played back by the video playback device 5 is displayed as a left-eye (L) video signal and a right-eye (R) video signal alternately as L, R, L, R,. 6 is input.
  • the liquid crystal display element group 6a operates the left-eye liquid crystal element group when the left-eye (L) video signal is input, and operates the right-eye liquid crystal element group when the right-eye (R) video signal is input.
  • the parallax barrier unit 6b blocks the light of the backlight that has passed through the right-eye liquid crystal display element group during the operation of the left-eye liquid crystal element group, and the left-eye liquid crystal display element during the operation of the right-eye liquid crystal element group. Block the light from the backlight that has passed through the group.
  • the right-eye video and the right-eye video are alternately displayed on the screen of the stereoscopic display monitor 6, and the stereoscopic video can be viewed from the viewpoint of the viewer shown in FIG.
  • the present invention is not limited to the stereoscopic display monitor 6 having the configuration shown in FIG. 2, and may be a monitor that realizes stereoscopic vision by another mechanism.
  • a method of obtaining a stereoscopic image by wearing glasses with different polarizing plates attached to left and right lenses as dedicated glasses may be used.
  • FIG. 3 is a block diagram showing the configuration of the in-vehicle information system using the three-dimensional stereoscopic display device according to Embodiment 1 of the present invention.
  • the in-vehicle information system 1 is a system that functions as the stereoscopic display system shown in FIG.
  • the in-vehicle information system 1 includes a main CPU (control unit) 4a, a video reproduction device 5, a stereoscopic display monitor (stereoscopic display monitor unit) 6, a GPS (Global Positioning System) receiver 9, a vehicle speed sensor 10, an internal memory 11, A CD / DVD drive device 12, an HDD 13, a radio receiver 14, a DTV receiver 15, an in-vehicle LAN_I / F unit 16, an amplifier 19, a speaker 20, and a three-dimensional touch panel 22 are provided.
  • the main CPU 4 a is a CPU that controls each component in the in-vehicle information system 1.
  • a program 13d an application program for in-vehicle information processing
  • the video reproduction device 5 is a device that reproduces the left and right video data synthesized by the screen synthesis processing unit 4 of the main CPU 4 a and outputs it to the stereoscopic display monitor 6.
  • the stereoscopic display monitor 6 is a monitor that displays the left and right video data reproduced by the video reproduction device 5 in a stereoscopic manner when viewed from the viewer.
  • the GPS receiver 9 is a receiver that receives position information of the host vehicle from GPS satellites
  • the vehicle speed sensor 10 is a sensor that detects a vehicle speed pulse for calculating the vehicle speed of the host vehicle.
  • the internal memory 11 is a memory serving as a work area when the main CPU 4a executes an application program for in-vehicle information processing.
  • the CD / DVD drive device 12 is a device that plays back an AV source stored in a storage medium 12a such as a CD or a DVD.
  • the AV source stored in the storage medium 12a includes stereoscopic display video data, it functions as the stereoscopic video content receiver 7 shown in FIG. 1B, and the in-vehicle information system 1 is shown in FIG.
  • the HDD (Hard Disk Drive Device) 13 is a large-capacity storage device mounted in the in-vehicle information system 1 and stores a map database (hereinafter abbreviated as map DB) 13a, icon data 13b, and a program 13d.
  • map DB 13a is a database in which map data used in navigation processing is registered.
  • the map data also includes POI information in which the location of POI (Point Of Interest) on the map or detailed information related thereto is described.
  • the icon data 13b is data indicating an icon to be displayed on the screen of the stereoscopic display monitor 6. There are icons for operation buttons for performing various operations on the screen.
  • the program 13d is an application program for in-vehicle information processing executed by the main CPU 4a.
  • the radio receiver 14 is a receiver that receives a radio broadcast.
  • the radio receiver 14 is tuned according to an operation of a channel selection button (not shown).
  • the DTV receiver 15 is a receiver that receives digital television broadcasts, and, like the radio receiver 14, is selected according to the operation of a channel selection button (not shown).
  • the DTV receiver 15 functions as the stereoscopic video content receiver 7 shown in FIG. It functions as the stereoscopic display system 1B shown in FIG.
  • the in-vehicle LAN_I / F unit 16 is an interface between the in-vehicle LAN (Local Area Network) 17 and the main CPU 4a, and relays data communication between the main CPU 4a and another device connected to the in-vehicle LAN 17, for example. Further, the storage device 8 shown in FIG. 1C is connected to the in-vehicle LAN 17, and the in-vehicle LAN_I / F unit 16 is configured to relay between the storage device 8 and the screen composition processing unit 4 of the main CPU 4a. When captured, the in-vehicle information system 1 functions as the stereoscopic display system 1C illustrated in FIG.
  • the audio signal reproduced by the CD / DVD drive device 12, the radio receiver 14 and the DTV receiver 15 and the audio signal from the main CPU 4a are amplified by the amplifier 19 and output through the speaker 20 as audio.
  • the voice signal from the main CPU 4a includes guidance guidance voice in navigation processing.
  • the three-dimensional touch panel 22 is a touch panel that detects that a pointing object such as a user's finger has approached within a predetermined distance from the touch surface in a non-contact manner and that the touch surface is touched by the pointing object. That is, the detection range is a three-dimensional space between the touch surface and the normal direction of the touch surface.
  • 4A and 4B are diagrams showing the configuration of the three-dimensional touch panel.
  • FIG. 4A shows a top view as seen from the touch surface side
  • FIG. 4B shows the AA line in FIG. A cross-sectional view is shown.
  • the three-dimensional touch panel 22 is provided on the display screen 22a of the stereoscopic display monitor 6, and the user presses the surface (touch surface) of the touch switch 22b with an indicator based on the display content of the display screen 22a.
  • the coordinate data of the designated location is output to the main CPU 4a.
  • a plurality of infrared LEDs 23 are arranged on two orthogonal sides of the outer periphery of the touch switch 22b, and a plurality of light receiving elements 24 that respectively receive infrared light from the plurality of infrared LEDs 23 are opposite to the infrared LED 23. It is arranged on the side. With this arrangement, the infrared light emitted from the plurality of infrared LEDs 23 has a lattice shape on the touch switch 22b as shown in FIG. With this configuration, as shown in FIG. 4B, it is possible to detect an indicator that touches the touch surface within a distance z3, and contact with the touch surface by the indicator. Can be detected.
  • the apparent display position of a planar image is viewed from the viewer, and is located in front of the touch surface of the three-dimensional touch panel 22 (the same position as the screen of the stereoscopic display monitor 6), or the back side.
  • the three-dimensional stereoscopic image is combined and displayed in three dimensions.
  • the apparent display position of the planar map is set behind the touch surface of the three-dimensional touch panel 22 (distant from the driver). In this case, it is possible to reduce the difference in focal length between the focal position at which the driver sees the scenery in front of the driver and the apparent display position of the planar map.
  • the driver who was looking in front of the vehicle has a small focal distance when the line of sight moves to the touch surface of the three-dimensional touch panel 22 in the vehicle, and the map can be viewed without a sense of incongruity. By doing in this way, it becomes easy to see the map displayed in three dimensions, and as a result, it is possible to improve the safety when viewing the map display.
  • FIG. 5 is a diagram for explaining a screen composition process in which the apparent display position of the planar map is set behind the touch surface of the three-dimensional touch panel.
  • FIG. 6 is a diagram showing a data flow in the screen composition process of FIG.
  • the main CPU 4a reads map data from the map DB 13a stored in the HDD 13, and generates planar map data Pic_plane according to a predetermined map drawing algorithm.
  • the planar map data Pic_plane is, for example, a planar map as described on the left side of FIG.
  • the planar map indicated by the planar map data Pic_plane is displayed on the apparent map display surface P behind the touch surface of the three-dimensional touch panel 22.
  • the distance from the driver's eye position to the touch surface of the three-dimensional touch panel 22 is Z0
  • the distance from the driver's eye position to the apparent map display surface P is z.
  • the position of the right eye of the driver is the point Or (xr, yr, 0)
  • the position of the left eye is the point Ol (xl, yl, 0)
  • the distance between the left and right eyes is d. That is,
  • d.
  • the right-eye image data Pic_R (x, y) of the planar map includes an apparent point p (x, y, z) on the map display surface P and a point Or (xr, yr, 0) that is the position of the right eye. Is represented by a set of points pr that intersect with the touch surface of the three-dimensional touch panel 22.
  • the left-eye image data Pic_L (x, y) of the planar map includes the point p (x, y, z) on the apparent map display surface P and the point Ol (xl, yl, 0) is represented by a set of points pl that intersect the touch surface of the three-dimensional touch panel 22.
  • the screen composition processing unit 4 uses the plane map data Pic_plane and the parameters Z0, z, d to make the points pr, p, p so that the distance between the apparent map display surface P and the left and right eyes of the driver is z. pl is calculated, right-eye image data Pic_R (x, y) and left-eye image data Pic_L (x, y) are generated and output to the video reproduction device 5.
  • the video reproduction device 5 reproduces the right-eye image data Pic_R (x, y) and the left-eye image data Pic_L (x, y) generated by the screen composition processing unit 4 and outputs them to the stereoscopic display monitor 6.
  • the planar map is stereoscopically displayed using the right-eye image data Pic_R (x, y) and the left-eye image data Pic_L (x, y) reproduced by the video reproduction device 5. At this time, it seems to the driver that the planar map is displayed on the apparent map display surface P behind the touch surface of the three-dimensional touch panel 22 by stereoscopic viewing.
  • planar map when displaying a planar map with an in-vehicle navigation device, if the apparent map display screen P of the planar map is placed in front of the touch surface of the three-dimensional touch panel 22 (near the driver), the driver It seems that the planar map is displayed from the touch surface of the three-dimensional touch panel 22 by stereoscopic viewing.
  • the present invention is not limited to the in-vehicle use, and display and operation such as FA, panel computer, guidance display system, etc. Is applicable to all systems that require
  • control may be performed so that z> Z0 when the host vehicle is traveling and z ⁇ Z0 when the vehicle is stopped.
  • FIG. 7 is a flowchart showing a flow of screen composition processing of the three-dimensional stereoscopic display device according to the first embodiment.
  • the apparent map display surface P of the planar map is set behind the touch surface of the three-dimensional touch panel 22, and the apparent display surface R of the icon is more than the touch surface of the three-dimensional touch panel 22. It is a figure for demonstrating the screen compositing process carried out to this side.
  • FIG. 9 is a diagram showing a data flow in the screen composition process of FIG.
  • the main CPU 4a reads map data from the map DB 13a stored in the HDD 13, and generates planar map data Pic_plane according to a predetermined map drawing algorithm.
  • the planar map data Pic_plane represents, for example, the planar map described on the left side of FIG.
  • the main CPU 4a reads icon data of an icon to be superimposed and displayed on the planar map indicated by the planar map data Pic_plane from the icon data 13b stored in the HDD 13.
  • planar map indicated by the planar map data Pic_plane is displayed on the apparent map display surface P behind the touch surface of the three-dimensional touch panel 22, and the enter button and the return button are displayed on the touch surface of the three-dimensional touch panel 22. It is displayed on the apparent display surface R in front of it.
  • the distance between the touch surface of the three-dimensional touch panel 22 and the icon display surface R is z1. That is, from the driver, each icon of the determination button and the return button is seen floating from the touch surface of the three-dimensional touch panel 22 by a distance dz by stereoscopic vision.
  • the distance Z0 from the position of the driver's eyes to the touch surface of the three-dimensional touch panel 22 (the same position as the screen Q of the stereoscopic display monitor 6) and the position of the driver's eyes are apparent.
  • the relationship with the distance z to the map display surface P is a relationship of z> Z0.
  • the right-eye image data Pic_R (x, y) of the planar map is the point p (x, y, z) on the apparent map display surface P or the point p (x, y, Z0-z1) on the display surface R.
  • a straight line (vector Vr) that connects the point Or (xr, yr, 0) that is the position of the right eye is represented by a set of points pr that intersect the screen Q of the stereoscopic display monitor 6.
  • the left-eye image data Pic_L (x, y) of the planar map is the point p (x, y, z) on the apparent map display surface P or the point p (x, y, Z0 on the display surface R.
  • each icon of the determination button and the return button is represented by a set of points pr on the right-eye image in the right-eye image on the planar map, and on the left-eye image in the left-eye image on the planar map. It is expressed as a set of points pl.
  • the screen composition processing unit 4 inputs the plane map data Pic_plane generated by the main CPU 4a (step ST1). Next, the screen composition processing unit 4 inputs the icon data of the determination button and the return button read from the HDD 13 by the main CPU 4a (step ST2). Next, the screen composition processing unit 4 inputs parameters Z0, z, d, and z1 from the internal memory 11 (step ST3).
  • the screen composition processing unit 4 uses the planar map data Pic_plane, parameters Z0, z, d, z1 and icon data in the same manner as in the first embodiment, and the apparent map display surface P and the driver.
  • the points pr and pl are calculated so that the distance from the eye position is z, and the distance between the icon display surface R and the driver's eye position is (Z0-z1).
  • Pic_R (x, y) and left-eye image data Pic_L (x, y) are generated (step ST4).
  • the screen composition processing unit 4 outputs the generated right-eye image data Pic_R (x, y) and left-eye image data Pic_L (x, y) to the video reproduction device 5 (step ST5).
  • the video reproduction device 5 reproduces the right-eye image data Pic_R (x, y) and the left-eye image data Pic_L (x, y) generated by the screen composition processing unit 4 and outputs them to the stereoscopic display monitor 6.
  • the stereoscopic display monitor 6 uses the right-eye image data Pic_R (x, y) and the left-eye image data Pic_L (x, y) reproduced by the video reproduction device 5 to stereoscopically display the planar map and the icons (steps). ST6). At this time, it appears to the driver that the decision button and the return button are raised on the touch surface of the three-dimensional touch panel 22 by stereoscopic viewing.
  • the main CPU 4a determines whether or not the user's finger has approached the touch surface of the three-dimensional touch panel 22 based on the detection signal from the three-dimensional touch panel 22 (step ST7). For example, when the user's finger moves on the three-dimensional touch panel 22 and enters the detection range by the infrared LED 23 and the light receiving element 24 defined by z3, the three-dimensional touch panel 22 displays the coordinates of the finger as a point (x, Detect as y, z3). When the user's finger touches the touch surface, the three-dimensional touch panel 22 detects the finger coordinates as (x, y, 0) and outputs the detection signal to the main CPU 4a. In the configuration of FIG.
  • an infrared switch composed of the infrared LED 23 and the light receiving element 24.
  • a plurality of infrared switches are provided in parallel to the touch surface. By providing, the distance between the pointing object and the touch surface can be detected in multiple stages.
  • step ST7; YES When it is determined that the user's finger has approached the touch surface of the three-dimensional touch panel 22 (step ST7; YES), the main CPU 4a executes predetermined processing and screen transition when the finger touches the icon (step ST7). ST8). For example, when the user's finger approaches the “return button”, it is assumed that the “return button” has been pressed, and after proceeding to step ST8 and executing a predetermined operation, the process returns to step ST1. In this way, the user can execute a function corresponding to the operation only by operating the stereoscopic image icon that appears to be raised by stereoscopic viewing in a non-contact manner. On the other hand, when it is determined that the user's finger is not approaching the touch surface of the three-dimensional touch panel 22 (step ST7; NO), the process returns to step ST1.
  • the three-dimensional stereoscopic image may be generated so that the distance z1 at which the icon image is raised from the touch surface of the three-dimensional touch panel 22 by the stereoscopic view coincides with the detection distance z3 of the indicator on the three-dimensional touch panel 22.
  • parameters such as z and z1 may be set in the screen composition processing unit 4 by a user operation, or values already set may be changed by a user operation.
  • the user can freely set the distance z ⁇ b> 1 that causes the icon image to be raised from the touch surface of the three-dimensional touch panel 22 by stereoscopic drag processing on the z-axis (normal direction of the touch surface) of the three-dimensional touch panel 22.
  • a predetermined distance may be set depending on the state of the vehicle on which the device is mounted or held.
  • the stereoscopic display monitor 6 that displays the right-eye and left-eye images or video for three-dimensional stereoscopic display of the operation screen in three-dimensional stereoscopic display, and the screen of the stereoscopic display monitor 6
  • a right- and left-eye image or video for three-dimensional stereoscopic display is generated by setting an apparent display surface R for displaying a three-dimensional stereoscopic icon image at a position before the screen Q of the stereoscopic display monitor 6.
  • a main CPU 4a that determines that the icon image is operated when an instruction to touch the icon image is detected by the three-dimensional touch panel 22. That. With this configuration, it is possible to provide an HMI based on a three-dimensional stereoscopic display that can be operated in accordance with the user's intuition.
  • a stereoscopic image icon may be displayed as follows according to a user operation.
  • FIG. 10 is a diagram illustrating a display example 1 of the stereoscopic image icon according to the user operation.
  • the screen Q of the stereoscopic display monitor 6, the apparent map display surface P of the planar map, and the touch surface of the three-dimensional touch panel 22 are at the same position, and the stereoscopic image icon of the enter button and the return button.
  • the apparent display surface R At this time, it appears to the user that the decision button and the return button are raised from the touch surface of the three-dimensional touch panel 22 in stereoscopic view.
  • the processing unit 4 When the user's finger approaches the “return button” and the user's finger apparently touches the “return button” from the display state of FIG. As shown in FIG. 10B, the processing unit 4 generates a three-dimensional stereoscopic image in which the color of the stereoscopic image icon of the “return button” is changed, and the “return button” whose color is changed on the stereoscopic display monitor 6. Is displayed. Thereby, the user can visually recognize that the “return button” is focused by the operation.
  • the three-dimensional touch panel 22 detects the movement distance of the finger by the gesture and outputs it to the screen composition processing unit 4.
  • the screen composition processing unit 4 changes the distance z1 between the apparent display surface R and the touch surface for displaying the 3D image icon of the “return button” based on the movement distance of the finger by the gesture, thereby changing FIG.
  • the “return button” stereoscopic image icon is displayed so as to be retracted in accordance with a gesture pressed with a finger.
  • the focus is indicated by a change in the color, shape, vibration, or touch of the stereoscopic image icon
  • the operation may be indicated by a change in the color, shape, vibration, or touch of a predetermined stereoscopic image icon.
  • the finger if the user's finger operation can be identified by the main CPU 4a using the detection information of the three-dimensional touch panel 22 that is an indicator detection unit, the finger writes a circle. Or a V-shaped motion for checking, or a motion of shaking a finger up and down or left and right.
  • the user's finger operation may be selected from preset patterns, or a gesture registration mode is prepared, and the user stores his / her own gesture in the system, and the above operation is performed according to the registered gesture. You can go.
  • control may be performed so that the icon focus position by stereoscopic vision is not changed even if a user operation is detected.
  • an icon of a function that is not permitted to be operated due to the state of the vehicle includes an icon that does not accept an operation assigned to the icon due to an operation restriction when the vehicle is traveling.
  • the color or shape of the icon may be displayed in a different color or shape from the icon of the function that is permitted to operate while the vehicle is running. You can make a message.
  • the color of an icon that cannot be operated may be gray, made translucent, or set to a low degree of appearing in a stereoscopic view.
  • FIG. 11 is a diagram showing a display example 2 of a stereoscopic image icon corresponding to a user operation, and shows a case where a place name input screen 6A including a software keyboard for inputting place names is displayed in a three-dimensional manner.
  • 11A and 11B are top views of the place name input screen 6A
  • FIG. 11C shows the positions of the apparent buttons on the touch surface of the three-dimensional touch panel of FIG. 11A. Showing the relationship.
  • FIG. 11D shows the positional relationship of the apparent buttons with respect to the touch surface of the three-dimensional touch panel of FIG.
  • the screen Q of the stereoscopic display monitor 6, the touch surface of the three-dimensional touch panel 22, and the apparent display surface P of the planar image are at the same position. Shall.
  • the place name input screen 6 ⁇ / b> A is displayed stereoscopically before the place name input operation by the user from the character key button 50 a and the confirm button 52 on the 50-sound keyboard 50.
  • the search button 53, the correction buttons 54 and 55, and the stop button 56 appear to be raised from the screen including the input character display field 51.
  • the three-dimensional touch panel 22 is surrounded by a broken line in FIG. And the coordinate data of the character key button 50a adjacent thereto are output to the screen composition processing unit 4.
  • the screen composition processing unit 4 uses the coordinate data input from the three-dimensional touch panel 22 to identify the character key button 50a that the user's finger has approached and the character key button 50a adjacent to the character key button 50a. Then, a three-dimensional stereoscopic image that is displayed in a predetermined size larger than the other character key buttons 50a and the various buttons 52 to 56 is generated and displayed on the stereoscopic display monitor 6 via the video reproduction device 5. As a result, as shown in FIGS. 11B and 11D, the “te” button that the user's finger has approached and the “nu”, “tsu”, “su”, “ne” adjacent to this button. , “SE”, “NO”, “TO”, “SO” buttons are displayed large. By doing so, it is possible to provide a user-friendly character input screen that is easy for the user to see.
  • FIG. 12 is a diagram illustrating a display example 3 of a stereoscopic image icon corresponding to a user operation, and another 3D stereoscopic display example when the user's finger approaches the place name input screen 6A illustrated in FIG. Show.
  • FIG. 12A when the user's finger approaches the “te” character key button of the 50-sound keyboard 50, the “te” character key button and the character key button 50a adjacent thereto are displayed in a large size.
  • the icons indicating the other buttons have a low degree of appearance in a stereoscopic view.
  • buttons by moving the apparent icon display surface R to the distance of the user, the user can more easily view the stereoscopic button than the “te” character key button and the adjacent character key button 50a. It is displayed so that it is in focus at a distant position. As a result, the display of the button to be operated and the surrounding buttons is emphasized from the user, so that it is easy to see and the input operation is facilitated.
  • the degree to which the user's finger approaches and the character key button 50a adjacent to the character key button appears to protrude.
  • the character key button close to the user's finger and the character key button 50a adjacent to the character key button are displayed so as to protrude to a position closer to the user as viewed from the user.
  • an icon image may be displayed so as to extend from the icon display surface R of other buttons. That is, the character key button close to the user's finger and the character key button 50a adjacent thereto are displayed on the icon display surface R1 closer to the user than the apparent icon display surface R of the icons indicating the other buttons.
  • the icon image is changed to an image that appears to extend from the icon display surface R. Even in this case, the display of the button to be operated and the surrounding buttons is emphasized from the user, so that it is easy to see and the input operation becomes easy.
  • the planar map is displayed in a three-dimensional manner.
  • it is applied to the display of the AV system menu screen, vehicle information, safety information, and the like. It doesn't matter. For example, you may use for the display of the icon for control of an air-conditioner, the meter panel of a dashboard, the fuel consumption of a vehicle, preventive safety information, VICS (trademark) information, etc.
  • the stereoscopic display that is stereoscopically viewed with the naked eye is shown, but a stereoscopic display system that obtains a stereoscopic image using polarized glasses may be used.
  • a stereoscopic display system that obtains a stereoscopic image using polarized glasses may be used.
  • the three-dimensional touch panel an optical type and a three-dimensional touch panel that detects that a finger or an indicator is close to a distance of z3 is used.
  • a capacitive touch panel that can continuously detect the normal distance z in an analog manner may be used.
  • the present invention is not limited to the above method as long as the position of the finger or the indicator in the three-dimensional space can be detected.
  • the position of a finger or an indicator may be detected by image processing.
  • the present invention can be applied to all display devices having a stereoscopic display monitor as described above.
  • the present invention may be applied not only to an in-vehicle navigation device but also to a display device of a mobile phone terminal or a personal digital assistant (PDA).
  • PDA personal digital assistant
  • the present invention may be applied to a display device such as a PND (Portable Navigation Device) that is carried and used by a person on a moving body such as a vehicle, a railway, a ship, or an aircraft.
  • PND Portable Navigation Device
  • the present invention is not limited to the configuration described in the first embodiment. That is, within the scope of the present invention, the components shown in the first embodiment can be freely combined, modified, or omitted.
  • the 3D stereoscopic display device is suitable for a display device of an in-vehicle information system because it can provide an HMI by 3D stereoscopic display that can be operated in accordance with the intuition of 3 users.

Abstract

操作画面の3次元立体表示用の右目用及び左目用の画像又は映像を3次元立体表示する立体表示モニタ6と、立体表示モニタ6の画面上に設けられ、当該立体表示モニタ6の画面に3次元立体表示された操作画面に対するタッチ操作を行う指示物とタッチ面との相対位置を検出する3次元タッチパネル22と、操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面を、立体表示モニタ6の画面よりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成する画面合成処理部4と、3次元タッチパネル22によりアイコン画像をタッチ操作する指示物が検出されると、当該アイコン画像が操作されたと判定するメインCPU4aとを備える。

Description

3次元立体表示装置
 この発明は、3次元立体画像(3Dimension stereoscopic image)又は3次元立体映像(3Dimension stereoscopic movie)を表示する3次元立体表示装置(3Dimension stereoscopic display device)に関する。
 特許文献1に開示される従来の立体表示装置は、主に家庭用に使用される3次元立体画像を提供する。この立体表示装置では、立体視用の眼鏡をかけることなく、立体映像を視聴できるため、利便性が高い。
 例えば、コンテンツ再生装置又は後席用のRSE(Rear Seat Entertainment)の表示装置として好適である。また、FA(Factory Automation)又は画像表示を利用した制御システムにも好適である。
特開2005-175566号公報
 しかしながら、特許文献1に代表される従来の技術を、アイコン又はボタンの3次元立体表示に適用した場合、3次元立体表示によりアイコン又はボタンが表示されている見かけ上の位置空間と、このアイコン又はボタンに対する操作を実際に受け付ける操作入力部との対応が明確にされていないので、3次元立体表示されたアイコン等に対してユーザが操作を施しても、この操作が受け入れられない可能性があるという課題があった。
 つまり、3次元立体表示によってアイコン又はボタンが見かけ上表示されている位置と、アイコン又はボタンに対する操作を実際に受け付けるハードウェアスイッチ又はタッチパネル面とが異なる位置又は空間にあるため、ユーザに違和感を与えることとなる。
 この発明は、上記のような課題を解決するためになされたもので、ユーザの直感に合致した操作が可能な3次元立体表示によるHMI(Human Machine Interface)を提供することができる3次元立体表示装置を得ることを目的とする。
 この発明に係る3次元立体表示装置は、操作画面の3次元立体表示用の右目用及び左目用の画像又は映像を3次元立体表示する立体表示モニタ部と、立体表示モニタ部の画面上に設けられ、当該立体表示モニタ部の画面に3次元立体表示された操作画面に対するタッチ操作を行う指示物とタッチ面との相対位置を検出するタッチパネル部と、操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面を、立体表示モニタ部の画面よりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成する画面合成処理部と、タッチパネル部によりアイコン画像をタッチ操作する指示物が検出されると、当該アイコン画像が操作されたと判定する制御部とを備える。
 この発明によれば、ユーザの直感に合致した操作が可能な3次元立体表示によるHMIを提供することができるという効果がある。
この発明に係る3次元立体表示装置を用いた立体表示システムの構成例を示すブロック図である。 立体表示モニタにおける立体表示の原理を説明するための図である。 この発明の実施の形態1による3次元立体表示装置を用いた車載情報システムの構成を示すブロック図である。 3次元タッチパネルの構成を示す図である。 平面地図の見かけ上の表示位置を、3次元タッチパネルのタッチ面よりも奥側にする画面合成処理を説明するための図である。 図5の画面合成処理におけるデータの流れを示す図である。 実施の形態1による3次元立体表示装置の画面合成処理の流れを示すフローチャートである。 平面地図の見かけ上の地図表示面をタッチ面よりも奥側とし、アイコンの見かけ上の表示面をタッチ面よりも手前にした画面合成処理を説明するための図である。 図8の画面合成処理におけるデータの流れを示す図である。 ユーザ操作に応じた立体画像アイコンの表示例1を示す図である。 ユーザ操作に応じた立体画像アイコンの表示例2を示す図である。 ユーザ操作に応じた立体画像アイコンの表示例3を示す図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明に係る3次元立体表示装置を用いた立体表示システムの構成例を示すブロック図である。図1(a)は、両眼用のカメラで撮影された左右映像から立体映像を表示する立体表示システム1Aを示している。図1(a)において、立体表示システム1Aは、左目用カメラ2a、右目用カメラ2b、記録・撮影装置3、画面合成処理部4、映像再生装置5及び立体表示モニタ6を備える。
 左目用カメラ2aと右目用カメラ2bは、両眼の視差を考慮した間隔で並べて配置されており、記録・撮影装置3の制御によって、撮影対象の風景Aを撮影する。左目用カメラ2aと右目用カメラ2bに撮影された風景Aの左右映像データは、記録・撮影装置3に記録される。画面合成処理部4は、記録・撮影装置3から読み出した左右映像データに対して、本発明に特有な3次元立体映像の合成処理を施して映像再生装置5へ出力する。
 映像再生装置5は、画面合成処理部4で処理された左右映像データを再生して立体表示モニタ6へ出力する。立体表示モニタ6は、映像再生装置5に再生された左右映像データを、視聴者から見て立体的に表示する。
 図1(b)に示す立体表示システム1Bは、アンテナ7aを介して外部装置と通信する立体映像用コンテンツ受信機7、画像合成処理部4、映像再生装置5及び立体表示モニタ6を備える。立体映像用コンテンツ受信機7は、アンテナ7aを介して、上述したような左右映像データを含む立体映像用コンテンツを外部装置から受信する受信機である。
 画面合成処理部4は、立体映像用コンテンツ受信機7が受信した立体映像用コンテンツの左右映像データに対して、本発明に特有な3次元立体映像の合成処理を施して映像再生装置5へ出力する。図1(a)と同様にして、立体表示モニタ6が、映像再生装置5に再生された左右映像データを、視聴者から見て立体的に表示する。
 図1(c)に示す立体表示システム1Cは、立体表示用コンテンツを記憶する記憶装置8、画像合成処理部4、映像再生装置5及び立体表示モニタ6を備える。立体表示用コンテンツは、上述したような左右映像データを含むコンテンツデータである。記憶装置8としては、立体表示用コンテンツを記憶するHDD(Hard Disk Drive)や半導体メモリが考えられる。また、立体表示用コンテンツを記憶したCDやDVDのような記憶メディアを再生するドライブ装置であってもかまわない。
 画面合成処理部4は、記憶装置8から読み出した立体表示用コンテンツの左右映像データに対して、本発明に特有な3次元立体映像の合成処理を施して映像再生装置5へ出力する。図1(a)と同様にして、立体表示モニタ6が、映像再生装置5に再生された左右映像データを視聴者から見て立体的に表示する。
 なお、立体表示用コンテンツとして、いわゆる3次元データ(例えば3次元地図データ等)を格納しておき、画面合成処理部4が、この3次元データが示す画像について左右の視点での見え方を演算して左右映像データを生成してもよい。
 図2は、立体表示モニタにおける立体表示の原理を説明するための図であり、裸眼での立体表示の一例を示している。図2に示す立体表示モニタ6は、液晶表示素子群6a及びパララックスバリア部6bを備える。液晶表示素子群6aは、右目用の映像が右目に到達するように指向性を持たせた右目用液晶素子群と、左目用の映像が左目に到達するように指向性を持たせた左目用液晶素子群とを有する。パララックスバリア部6bは、右目用の映像と左目用の映像とを交互に表示するためにバックライト(図2において不図示)からの光を遮断する視野バリアである。
 映像再生装置5で再生された左右の映像データは、左目用(L)の映像信号及び右目用(R)の映像信号として、L、R、L、R、・・・と交互に立体表示モニタ6に入力される。液晶表示素子群6aは、左目用(L)の映像信号を入力すると、左目用液晶素子群を動作させ、右目用(R)の映像信号を入力すると、右目用液晶素子群を動作させる。このとき、パララックスバリア部6bが、左目用液晶素子群の動作時は右目用液晶表示素子群を通過したバックライトの光を遮断し、右目用液晶素子群の動作時は左目用液晶表示素子群を通過したバックライトの光を遮断する。これにより、立体表示モニタ6の画面には、右目用の映像と右目用の映像とが交互に表示され、図2に示す視聴者の視点で立体映像を視聴することができる。
 なお、本発明は、図2に示す構成の立体表示モニタ6に限定されるものではなく、別の機構で立体視を実現するモニタであってもよい。例えば、専用眼鏡として左右のレンズに互いに異なる偏光板を取り付けた眼鏡を掛けることで立体画像を得る方式であってもかまわない。
 図3は、この発明の実施の形態1による3次元立体表示装置を用いた車載情報システムの構成を示すブロック図である。図3において、車載情報システム1は、地図などの画像や映像の表示に関して、図1に示した立体表示システムとして機能するシステムである。また、車載情報システム1は、メインCPU(制御部)4a、映像再生装置5、立体表示モニタ(立体表示モニタ部)6、GPS(Global Positioning System)受信機9、車速センサ10、内部メモリ11、CD/DVDドライブ装置12、HDD13、ラジオ受信機14、DTV受信機15、車内LAN_I/F部16、アンプ19、スピーカ20、及び3次元タッチパネル22を備える。
 メインCPU4aは、車載情報システム1内の各構成部を制御するCPUである。このメインCPU4aが、HDD13に記憶されるプログラム13d(車載情報処理用のアプリケーションプログラム)を実行することにより、図1に示した画面合成処理部4としての機能を発揮する。映像再生装置5は、メインCPU4aの画面合成処理部4で合成処理された左右映像データを再生して立体表示モニタ6へ出力する装置である。また、立体表示モニタ6は、映像再生装置5に再生された左右映像データを、視聴者から見て立体的に表示するモニタである。
 GPS受信機9は、GPS衛星から自車両の位置情報を受信する受信機であり、車速センサ10は、自車両の車速を計算するための車速パルスを検出するセンサである。内部メモリ11は、メインCPU4aが車載情報処理用のアプリケーションプログラムを実行する際の作業領域となるメモリである。CD/DVDドライブ装置12は、CD又はDVD等の記憶メディア12aに記憶されたAVソースを再生する装置である。なお、記憶メディア12aに記憶されたAVソースに立体表示映像データが含まれる場合、図1(b)で示した立体映像用コンテンツ受信機7として機能し、車載情報システム1は、図1(b)で示した立体表示システム1Bとして機能する。
 HDD(ハードディスクドライブ装置)13は、車載情報システム1に搭載された大容量記憶装置であり、地図データベース(以下、地図DBと略す)13a、アイコンデータ13b及びプログラム13dを記憶する。
 地図DB13aは、ナビゲーション処理で利用される地図データが登録されたデータベースである。地図データには、地図上のPOI(Point Of Interest)の所在地又はこれに関連する詳細情報が記述されたPOI情報も含まれる。
 アイコンデータ13bは、立体表示モニタ6の画面上に表示するアイコンを示すデータである。画面上で各種の操作を行うための操作ボタンのアイコンなどがある。
 プログラム13dは、メインCPU4aが実行する車載情報処理用のアプリケーションプログラムである。例えば、画面合成処理部4の機能を実現するプログラムモジュールを含む地図表示用のアプリケーションプログラムがある。
 ラジオ受信機14は、ラジオ放送を受信する受信機であり、例えば不図示の選局ボタンの操作に応じて選局がなされる。
 DTV受信機15は、デジタルテレビ放送を受信する受信機であり、ラジオ受信機14と同様に、不図示の選局ボタンの操作に応じて選局がなされる。また、DTV受信機15は、受信したデジタルテレビ放送に3次元立体表示映像データが含まれる場合、図1(b)で示した立体映像用コンテンツ受信機7として機能し、車載情報システム1は、図1(b)で示した立体表示システム1Bとして機能する。
 車内LAN_I/F部16は、車内LAN(Local Area Network)17とメインCPU4aとの間のインタフェースであり、例えば、車内LAN17に接続している他の機器とメインCPU4aとのデータ通信を中継する。また、図1(c)で示した記憶装置8が車内LAN17に接続しており、この記憶装置8とメインCPU4aの画面合成処理部4との間を中継する構成として車内LAN_I/F部16を捉えた場合、車載情報システム1は、図1(c)で示した立体表示システム1Cとして機能する。
 なお、CD/DVDドライブ装置12、ラジオ受信機14及びDTV受信機15で再生された音声信号やメインCPU4aからの音声信号は、アンプ19で増幅され、スピーカ20を介して音声出力される。メインCPU4aからの音声信号としては、ナビゲーション処理における誘導案内音声などがある。
 3次元タッチパネル22は、非接触でタッチ面から所定の距離内にユーザの指等の指示物が近づいたこと及び指示物によるタッチ面の接触を検出するタッチパネルである。すなわち、タッチ面とタッチ面の法線方向との3次元空間を検出範囲とする。
 図4は、3次元タッチパネルの構成を示す図であり、図4(a)はタッチ面側から見た上面図を示し、図4(b)は図4(a)中のA-A線における断面図を示している。3次元タッチパネル22は、立体表示モニタ6の表示画面22a上に設けられ、ユーザが表示画面22aの表示内容に基づいて、タッチスイッチ22bの表面(タッチ面)を指示物で押下することにより、押された箇所の座標データをメインCPU4aへ出力する。
 タッチスイッチ22bの外周のうち直交する2辺には、複数の赤外線LED23が配置されており、複数の赤外線LED23からの赤外光をそれぞれ受光する複数の受光素子24は、赤外線LED23と対向する2辺に配置されている。この配置により、複数の赤外線LED23から発光される赤外光は、図4(a)に示すようにタッチスイッチ22b上で格子状になる。このように構成することで、図4(b)に示すように距離z3の間で、タッチ面をタッチしようとする指示物を検出することが可能であり、また指示物によるタッチ面への接触を検出することができる。
 次に動作について説明する。
(1)平面地図の表示
 平面画像の見かけ上の表示位置を、視聴者から見て、3次元タッチパネル22のタッチ面(立体表示モニタ6の画面と同一位置とする)より手前にしたり、奥側にした3次元立体画像を合成して立体表示する。例えば、車載用ナビゲーション装置の地図表示において、平面地図を表示する場合、平面地図の見かけ上の表示位置を、3次元タッチパネル22のタッチ面よりも奥側(運転者の遠方)にする。この場合、運転者が運転中に前方の風景を見る焦点位置と平面地図の見かけ上の表示位置との焦点距離の差を少なくすることができる。すなわち、車両前方を見ていた運転者が、車両内の3次元タッチパネル22のタッチ面に視線を移動した際の焦点移動距離が少なく、当該地図を違和感なく見ることができる。このようにすることにより、立体表示された地図が見やすくなり、ひいては地図表示を見る際の安全性を高めることが可能となる。
 図5は、平面地図の見かけ上の表示位置を、3次元タッチパネルのタッチ面よりも奥側にする画面合成処理を説明するための図である。図6は、図5の画面合成処理におけるデータの流れを示す図である。
 先ず、メインCPU4aが、図6に示すように、HDD13に格納される地図DB13aから地図データを読み込んで、所定の地図描画アルゴリズムに従い、平面地図データPic_planeを生成する。平面地図データPic_planeは、例えば、図5の左側に記載したような平面地図であるものとする。
 図5の例では、平面地図データPic_planeが示す平面地図を、3次元タッチパネル22のタッチ面より奥側の見かけ上の地図表示面Pに表示している。ここで、運転者の目の位置から3次元タッチパネル22のタッチ面までの距離をZ0、運転者の目の位置から見かけ上の地図表示面Pまでの距離をzとする。ただし、図5では、z>Z0の関係にある。
 また、運転者の右目の位置を点Or(xr,yr,0)、左目の位置を点Ol(xl,yl,0)、左右の目の間隔をdとする。つまり、|xr-xl|=dである。
 平面地図データPic_planeが示す平面地図上の点p(x,y)を、見かけ上の地図表示面Pに投影すると、地図表示面P上の点p(x,y,z)となる。
 平面地図の右目用画像データPic_R(x,y)は、見かけ上の地図表示面P上の点p(x,y,z)と、右目の位置である点Or(xr,yr,0)とを結ぶ直線(ベクトルVr)が、3次元タッチパネル22のタッチ面と交わる点prの集合で表される。
 同様に、平面地図の左目用画像データPic_L(x,y)は、見かけ上の地図表示面P上の点p(x,y,z)と、左目の位置である点Ol(xl,yl,0)とを結ぶ直線(ベクトルVl)が、3次元タッチパネル22のタッチ面と交わる点plの集合で表される。
 画面合成処理部4は、平面地図データPic_plane及びパラメータZ0,z,dを用いて、見かけ上の地図表示面Pと運転者の左右の目の位置との距離がzとなるように点pr,plを計算して右目用画像データPic_R(x,y)及び左目用画像データPic_L(x,y)を生成し、映像再生装置5へ出力する。
 映像再生装置5は、画面合成処理部4により生成された右目用画像データPic_R(x,y)と左目用画像データPic_L(x,y)とを再生して立体表示モニタ6へ出力する。立体表示モニタ6では、映像再生装置5により再生された右目用画像データPic_R(x,y)と左目用画像データPic_L(x,y)とを用いて、平面地図を立体表示する。このとき、運転者からは、立体視によって、平面地図が、3次元タッチパネル22のタッチ面よりも奥側の見かけ上の地図表示面Pに表示されているように見える。
 また、車載用のナビゲーション装置で平面地図を表示するにあたり、平面地図の見かけ上の地図表示画面Pを3次元タッチパネル22のタッチ面よりも手前(運転者の近く)にすると、運転者からは、立体視によって3次元タッチパネル22のタッチ面から平面地図が浮き出たように表示されているように見える。
 なお、z<Z0であると、運転者からは、立体視によって、平面地図データPic_planeが示す平面地図が、3次元タッチパネル22のタッチ面よりも手前の見かけ上の地図表示面Pに表示されているように見える。
 また、z=Z0の関係で画面合成処理を行えば、平面地図は、見かけ上の地図表示面Pと3次元タッチパネル22のタッチ面とが一致し、画面Q上に表示されて見える。
 z>Z0の関係で画面合成処理を行うと、立体視により、運転者からは、平面地図が、3次元タッチパネル22のタッチ面よりも奥側(運転者の遠方)の見かけ上の地図表示面Pに表示されているように見える。
 上述の説明では、本発明を車載情報システム1に適用した場合を示したが、本発明は、車載用に用途を限定するものではなく、FAやパネルコンピュータ、案内用表示システム等、表示及び操作が必要な全てのシステムに適用可能である。
 また、z>Z0の場合は、見かけ上の地図表示面Pを、3次元タッチパネル22のタッチ面よりも遠方に表示する場合、上述したように、運転者が地図表示を見る際の安全性を高めることができ、z<Z0の場合には、表示画面が近くに浮き出して表示されて画面が見やすいという効果がある。そこで、自車両が走行中である場合にz>Z0とし、停車中にはz<Z0となるように制御してもよい。
(2)平面地図及びアイコンの表示
 上記説明では、平面地図を見かけ上の地図表示面Pに表示する場合を示したが、アイコン等の操作入力用のソフトウェアボタンについて、見かけ上の地図表示面Pと平行な別の見かけ上の表示面に立体表示する場合を述べる。
 図7は、実施の形態1による3次元立体表示装置の画面合成処理の流れを示すフローチャートである。また、図8は、平面地図の見かけ上の地図表示面Pを、3次元タッチパネル22のタッチ面よりも奥側とし、アイコンの見かけ上の表示面Rを、3次元タッチパネル22のタッチ面よりも手前にした画面合成処理を説明するための図である。図9は、図8の画面合成処理におけるデータの流れを示す図である。
 先ず、メインCPU4aが、図9に示すように、HDD13に格納される地図DB13aから地図データを読み込んで、所定の地図描画アルゴリズムに従い、平面地図データPic_planeを生成する。平面地図データPic_planeは、例えば、図8の左側に記載した平面地図を表している。また、メインCPU4aは、HDD13に格納されるアイコンデータ13bから、平面地図データPic_planeが示す平面地図に重畳表示するアイコンのアイコンデータを読み込む。
 ここでは、平面地図データPic_planeが示す平面地図を、3次元タッチパネル22のタッチ面よりも奥側の見かけ上の地図表示面Pに表示し、決定ボタン及び戻るボタンを、3次元タッチパネル22のタッチ面よりも手前の見かけ上の表示面Rに表示する。ここで、3次元タッチパネル22のタッチ面とアイコンの表示面Rとの距離をz1とする。すなわち、運転者からは、立体視により決定ボタン及び戻るボタンの各アイコンが、3次元タッチパネル22のタッチ面から距離dzだけ浮かんで見える。
 なお、図8において、運転者の目の位置から3次元タッチパネル22のタッチ面(立体表示モニタ6の画面Qと同一位置とする)までの距離Z0と、運転者の目の位置から見かけ上の地図表示面Pまでの距離zとの関係は、z>Z0の関係である。
 平面地図の右目用画像データPic_R(x,y)は、見かけ上の地図表示面P上の点p(x,y,z)又は表示面R上の点p(x,y,Z0-z1)と、右目の位置である点Or(xr,yr,0)とを結ぶ直線(ベクトルVr)が、立体表示モニタ6の画面Qと交わる点prの集合で表現される。
 同様に、平面地図の左目用画像データPic_L(x,y)は、見かけ上の地図表示面P上の点p(x,y,z)又は表示面R上の点p(x,y,Z0-z1)と、左目の位置である点Ol(xl,yl,0)とを結ぶ直線(ベクトルVl)が、立体表示モニタ6の画面Qと交わる点pl(xl,yl,Z0)の集合で表現される。
 一方、決定ボタン及び戻るボタンの各アイコンは、平面地図の右目用画像においては、当該右目用画像上の点prの集合で表現され、平面地図の左目用画像においては、当該左目用画像上で点plの集合で表現される。
 画面合成処理部4は、メインCPU4aにより生成された平面地図データPic_planeを入力する(ステップST1)。次に、画面合成処理部4は、メインCPU4aがHDD13から読み出した決定ボタン及び戻るボタンのアイコンデータを入力する(ステップST2)。次いで、画面合成処理部4は、内部メモリ11からパラメータZ0,z,d,z1を入力する(ステップST3)。
 続いて、画面合成処理部4は、平面地図データPic_plane、パラメータZ0,z,d,z1及びアイコンデータを用いて、上記実施の形態1と同様にして、見かけ上の地図表示面Pと運転者の目の位置との距離がzとなり、さらにアイコンの表示面Rと運転者の目の位置との距離が(Z0-z1)となるように点pr,plを計算して、右目用画像データPic_R(x,y)及び左目用画像データPic_L(x,y)を生成する(ステップST4)。この後、画面合成処理部4は、生成した右目用画像データPic_R(x,y)及び左目用画像データPic_L(x,y)を映像再生装置5へ出力する(ステップST5)。
 映像再生装置5は、画面合成処理部4により生成された右目用画像データPic_R(x,y)と左目用画像データPic_L(x,y)とを再生して立体表示モニタ6へ出力する。立体表示モニタ6では、映像再生装置5により再生された右目用画像データPic_R(x,y)と左目用画像データPic_L(x,y)とを用いて、平面地図とアイコンを立体表示する(ステップST6)。このとき、運転者からは、立体視によって、決定ボタン及び戻るボタンが3次元タッチパネル22のタッチ面上に浮き出たように見える。
 上述した表示状態において、メインCPU4aは、3次元タッチパネル22からの検出信号に基づいて、3次元タッチパネル22のタッチ面に、ユーザの指が近づいたか否かを判定する(ステップST7)。
 例えば、3次元タッチパネル22において、ユーザの指が移動して、z3で規定される赤外線LED23及び受光素子24による検出範囲内に入ると、3次元タッチパネル22は、この指の座標を点(x,y,z3)として検出する。
 また、ユーザの指がタッチ面に触れると、3次元タッチパネル22は、指の座標を(x,y,0)として検出して、その検出信号をメインCPU4aへ出力する。
 なお、図4の構成では、赤外線LED23と受光素子24とからなる赤外線スイッチによって、指示物が距離z3に達したか否かを検出することができるが、タッチ面に平行に赤外線スイッチを複数段設けることにより、多段階で指示物とタッチ面との距離を検出することができる。
 ユーザの指が3次元タッチパネル22のタッチ面に近づいたと判定されると(ステップST7;YES)、メインCPU4aが、指が近づいたアイコンをタッチした場合の所定の処理と画面遷移を実行する(ステップST8)。例えば、ユーザの指が“戻るボタン”に近づいた場合に、“戻るボタン”が押下されたものとして、ステップST8に移行して所定の動作を実行した後、ステップST1の処理に戻る。
 このように、ユーザは、立体視により浮き出して見える立体画像アイコンを非接触で操作するだけで、操作に応じた機能を実行することができる。一方、ユーザの指が、3次元タッチパネル22のタッチ面に近づいていない判定された場合には(ステップST7;NO)、ステップST1の処理に戻る。
 また、立体視によりアイコン画像を3次元タッチパネル22のタッチ面から浮き出させる距離z1と、3次元タッチパネル22の指示物の検出距離z3とが一致するように3次元立体画像を生成してもよい。このようにすることで、アイコンの表示位置と3次元タッチパネル22の感度領域とが一致して使いやすい操作画面を実現できる。
 さらに、上述の説明では、平面地図の見かけ上の地図表示面Pを、3次元タッチパネル22のタッチ面よりも奥側とした場合を示したが、地図表示面Pを3次元タッチパネル22のタッチ面と一致させると(z=Z0)、立体視により立体画像アイコンのみがタッチ面から浮き出して見えるため、デザイン性がよく、操作も容易である。
 さらに、z,z1等のパラメータは、ユーザ操作によって画面合成処理部4に設定したり、また既に設定された値をユーザ操作で変更できるようにしてもよい。例えば、立体視によりアイコン画像を3次元タッチパネル22のタッチ面から浮き出させる距離z1を、3次元タッチパネル22のz軸上(タッチ面の法線方向)におけるドラッグ処理で、ユーザが自由に設定できるようにする。
 さらに、z,z1等のパラメータには、自装置を搭載又は保持する車両の状態により予め定められた距離を設定してもよい。なお、自装置を搭載又は保持する車両の状態により予め定められた距離とは、車両速度に応じて予め定められた距離が挙げられる。つまり、地図表示面Pや、3次元タッチパネル22のタッチ面とアイコンの表示面Rとの距離z1は、車両速度に応じて画面合成処理部4に予め設定された値を設定してもよい。例えば、走行中はz>Z0、停車中はz=Z0とする。また、走行中は停車中に比べてz1を小さな値にしてもよい。
 以上のように、この実施の形態1によれば、操作画面の3次元立体表示用の右目用及び左目用の画像又は映像を3次元立体表示する立体表示モニタ6と、立体表示モニタ6の画面上に設けられ、当該立体表示モニタ6の画面に3次元立体表示された操作画面に対するタッチ操作を行う指示物とタッチ面との相対位置を検出する3次元タッチパネル22と、操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面Rを、立体表示モニタ6の画面Qよりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成する画面合成処理部4と、3次元タッチパネル22によりアイコン画像をタッチ操作する指示物が検出されると、当該アイコン画像が操作されたと判定するメインCPU4aとを備える。このように構成することで、ユーザの直感に合致した操作が可能な3次元立体表示によるHMIを提供することができる。
 また、上記実施の形態1において、ユーザ操作に応じて、下記のように立体画像アイコンを表示してもよい。
 図10は、ユーザ操作に応じた立体画像アイコンの表示例1を示す図である。図10(a)の例では、立体表示モニタ6の画面Q、平面地図の見かけ上の地図表示面P及び3次元タッチパネル22のタッチ面が同一位置にあり、決定ボタン及び戻るボタンの立体画像アイコンのみが見かけ上の表示面Rに表示されている。このとき、ユーザからは、決定ボタン及び戻るボタンが、立体視により3次元タッチパネル22のタッチ面から浮き出るように見える。
 図10(a)の表示状態から、ユーザの指が“戻るボタン”に近づいて、ユーザの指が“戻るボタン”に見かけ上接触した状態で一定時間(例えば1秒間)が経過すると、画面合成処理部4は、図10(b)に示すように“戻るボタン”の立体画像アイコンの色を変えた3次元立体画像を生成して、立体表示モニタ6に色の変更された“戻るボタン”を表示させる。これにより、ユーザは、操作により“戻るボタン”がフォーカスされたことを視認できる。
 次いで、ユーザが、“戻るボタン”の立体画像アイコンをさらに押すジェスチャーを行うと、3次元タッチパネル22が、当該ジェスチャーによる指の移動距離を検出して、画面合成処理部4へ出力する。画面合成処理部4は、当該ジェスチャーによる指の移動距離に基づいて、“戻るボタン”の立体画像アイコンを表示する見かけ上の表示面Rとタッチ面との距離z1を変更することにより、図10(c)に示すように、指で押すジェスチャーに応じて“戻るボタン”の立体画像アイコンが引っ込むように表示させる。
 このようにすることで、ユーザの直感に合致した操作が可能なHMIを提供することができる。また、フォーカスされたことは、立体画像アイコンの色や形状、振動、触覚の変化で示し、操作されたことも所定の立体画像アイコンの色や形状、振動、触覚の変化で示してもよい。
 なお、上記実施の形態1において、ユーザの指の操作は、指示物検出部である3次元タッチパネル22の検出情報を用いて、メインCPU4aが識別できるものならば、指が円を書くような動作やチェックするV字動作、指を上下又は左右に振るような動作であってもよい。
 また、ユーザの指の操作は、予め設定されたパターンの中から選択してもよいし、ジェスチャー登録モードを用意して、ユーザが独自のジェスチャーをシステムに記憶し、登録されたジェスチャーによって上記操作を行ってもかまわない。
 さらに、自装置を搭載又は保持する車両の状態により操作が許可されていない機能のアイコンについては、ユーザ操作を検出しても、立体視によるアイコン焦点位置を変化させないように制御してもよい。例えば、上記車両の状態により操作が許可されていない機能のアイコンとしては、当該車両の走行時の操作制限により当該アイコンに割り付けられた操作を受け付けないアイコンが挙げられる。この場合、当該アイコンの色や形を、車両の走行中でも操作が許可されている機能のアイコンとは別の色や形に変えて表示してもよいし、当該アイコンを操作すると、警告音やメッセージを出すようにしてもかまわない。また、操作できないアイコンの色をグレーにしたり、半透明にしたり、立体視により突出して見える度合いを低く設定してもよい。
 また、上記実施の形態1において、ユーザの指がアイコンに近づいた際に、指の周りの一定範囲のアイコンを大きく表示して操作しやすくしてもよい。
 図11は、ユーザ操作に応じた立体画像アイコンの表示例2を示す図であり、地名入力用の50音のソフトウェアキーボードを含む地名入力用画面6Aを3次元立体表示した場合を示している。図11(a)及び図11(b)は地名入力用画面6Aの上面図であり、図11(c)は、図11(a)の3次元タッチパネルのタッチ面に対する見かけ上の各ボタンの位置関係を示している。また、図11(d)は、図11(b)の3次元タッチパネルのタッチ面に対する見かけ上の各ボタンの位置関係を示している。なお、図11において、立体表示モニタ6の画面Q、3次元タッチパネル22のタッチ面及び平面画像(ベースとなる入力文字表示欄51を含む画面)の見かけ上の表示面Pは、同一位置にあるものとする。
 図11(a)及び図11(c)に示すように、地名入力用画面6Aは、地名入力操作前において、立体視により、ユーザからは、50音キーボード50における文字キーボタン50a、確定ボタン52、検索ボタン53、修正ボタン54,55及び中止ボタン56が入力文字表示欄51を含む画面から浮き出したように表示されて見える。
 ユーザの指が50音キーボード50の「て」のボタンに近づいて、3次元タッチパネル22の検出範囲内に入ると、3次元タッチパネル22は、図11(a)中に破線で囲った「て」の文字キーボタン及びこれに隣接する文字キーボタン50aの座標データを画面合成処理部4に出力する。
 画面合成処理部4は、3次元タッチパネル22から入力した座標データを用いて、ユーザの指が近づいた文字キーボタン50a及びこれに隣接する文字キーボタン50aを特定すると、これらの文字キーボタン50aを、他の文字キーボタン50a及び各種のボタン52~56よりも所定のサイズだけ大きく表示する3次元立体画像を生成し、映像再生装置5を介して立体表示モニタ6に表示させる。これにより、図11(b)及び図11(d)に示すように、ユーザの指が近づいた「て」のボタンとこれに隣接する「ぬ」、「つ」、「す」、「ね」、「せ」、「の」、「と」、「そ」のボタンが大きく表示される。このようにすることで、ユーザから見やすく、使い勝手のいい文字入力画面を提供することができる。
 図12は、ユーザ操作に応じた立体画像アイコンの表示例3を示す図であり、図11で示した地名入力用画面6Aについて、ユーザの指が近づいた際の他の3次元立体表示例を示している。図12(a)の例では、ユーザの指が50音キーボード50の「て」の文字キーボタンに近づくと、「て」の文字キーボタン及びこれに隣接する文字キーボタン50aを大きく表示するとともに、その他のボタンを示すアイコンは立体視により突出して見える度合いを低くする。すなわち、その他のボタンについては、見かけ上のアイコン表示面Rをユーザの遠方に移動させることで、立体視により、「て」の文字キーボタン及びこれに隣接する文字キーボタン50aよりも、ユーザから見て遠い位置で焦点が合うように表示される。これにより、ユーザからは、操作しようとしたボタン及びその周辺のボタンの表示が強調され、見やすく、入力操作が容易になる。
 また、ユーザの指が文字キーボタンに近づくと、図12(b)に示すように、ユーザの指が近づいた文字キーボタン及びこれに隣接する文字キーボタン50aの立体視により突出して見える度合いを高くする。すなわち、ユーザの指が近づいた文字キーボタンとこれに隣接する文字キーボタン50aが、立体視によって、ユーザから見てさらに近い位置に浮き出すように表示される。このとき、図12(b)に示すように、他のボタンのアイコン表示面Rから延びるようにアイコン画像を表示してもよい。つまり、ユーザの指が近づいた文字キーボタン及びこれに隣接する文字キーボタン50aを、その他のボタンを示すアイコンの見かけ上のアイコン表示面Rよりもユーザに近い位置のアイコン表示面R1に表示するとともに、アイコン画像をアイコン表示面Rから延びたように見える画像に変更する。このようにしても、ユーザからは、操作しようとしたボタン及びその周辺のボタンの表示が強調され、見やすく、入力操作が容易になる。
 また、上記実施の形態1では、平面地図を立体表示する場合を示したが、車載情報システムに一般的に表示するものならば、AVシステムのメニュー画面や車両情報、安全情報等の表示に適用してもかまわない。例えば、エアコンの制御用のアイコン、ダッシュボードのメータパネル、車両の燃費、予防安全情報、VICS(登録商標)情報等の表示に利用してもよい。
 さらに、上記実施の形態1では、裸眼で立体視する立体表示を示したが、偏光眼鏡を用いて立体画像を得る立体表示方式でもかまわない。
 また、実施の形態1では、図4のように、3次元タッチパネルとして、光学式でかつ、z3の距離に指又は指示物が近接することを検出する3次元タッチパネルを用いたが、容量式で法線距離zをアナログ的に連続的に検出できる静電容量式のタッチパネルを用いてもよい。なお、本発明は、指又は指示物の3次元空間内における位置を検出できれば、上記の方式に限定されるものではない。例えば、画像処理で指又は指示物の位置を検出してもかまわない。
 上記実施の形態1では、この発明に係る3次元立体表示装置を車載情報システムに適用した場合を示したが、上述したような立体表示モニタを有する全ての表示装置に適用することが可能である。例えば、車載用のナビゲーション装置のみならず、携帯電話端末又は携帯情報端末(PDA;Personal Digital Assistance)の表示装置に適用してもよい。また、車両、鉄道、船舶又は航空機等の移動体に、人が携帯して持ち込んで使用するPND(Portable Navigation Device)等の表示装置に適用してもかまわない。
 なお、この発明は、上記実施の形態1で説明した構成に限定されるものではない。つまり、この発明の範囲内において、上記実施の形態1で示した各構成を自由に組み合わせたり、変形、省略することが可能である。
 この発明に係る3次元立体表示装置は、3ユーザの直感に合致した操作が可能な3次元立体表示によるHMIを提供することができることから、車載情報システムの表示装置に好適である。

Claims (9)

  1.  操作画面の3次元立体表示用の右目用及び左目用の画像又は映像を3次元立体表示する立体表示モニタ部と、
     前記立体表示モニタ部の画面上に設けられ、当該立体表示モニタ部の画面に3次元立体表示された前記操作画面に対するタッチ操作を行う指示物とタッチ面との相対位置を検出するタッチパネル部と、
     前記操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面を、前記立体表示モニタ部の画面よりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成する画面合成処理部と、
     前記タッチパネル部により前記アイコン画像をタッチ操作する指示物が検出されると、当該アイコン画像が操作されたと判定する制御部とを備えた3次元立体表示装置。
  2.  前記制御部は、前記タッチパネル部により前記アイコン画像上の当該タッチパネル部の検出空間内に前記指示物が所定の時間存在したことが検出されるか又は前記検出空間及びその近傍で前記指示物が所定の動作を行ったことが検出されると、当該アイコン画像が操作されたと判定することを特徴とする請求項1記載の3次元立体表示装置。
  3.  前記所定の動作は、前記指示物がタッチ面を押す動作、前記指示物が所定の形状の軌跡を描く動作、及び、前記指示物を上下又は左右に振る動作のうち、少なくとも1つであることを特徴とする請求項2記載の3次元立体表示装置。
  4.  前記制御部は、前記タッチパネル部により前記アイコン画像上の当該タッチパネル部の検出空間内に前記指示物が存在していることが検出されるか、前記検出空間内に前記指示物が所定の時間存在したことが検出されるか又は前記検出空間及びその近傍で前記指示物が前記所定の動作を行ったことが検出されると、前記指示物で当該アイコン画像が操作されようとしていると判定し、
     前記画面合成処理部は、前記制御部により前記指示物で操作されようとしていると判定された前記アイコン画像の表示内容を変更した3次元立体表示用の右目用及び左目用の画像又は映像を生成することを特徴とする請求項2記載の3次元立体表示装置。
  5.  前記画面合成処理部は、前記アイコン画像の色、形状及び前記アイコン画像を3次元立体表示する見かけ上の表示面の位置のうちの少なくとも1つを変更することを特徴とする請求項4記載の3次元立体表示装置。
  6.  前記画面合成処理部は、前記制御部により前記指示物で操作されようとしていると判定された前記アイコン画像及び当該アイコン画像を含む所定の範囲内に存在するアイコン画像を拡大するか、又は前記アイコン画像を3次元立体表示する見かけ上の表示面の位置を変更した3次元立体表示用の右目用及び左目用の画像又は映像を生成することを特徴とする請求項4記載の3次元立体表示装置。
  7.  前記画面合成処理部は、前記操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面を、ユーザに設定された距離だけ、前記立体表示モニタ部の画面よりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成することを特徴とする請求項1記載の3次元立体表示装置。
  8.  前記画面合成処理部は、前記操作画面上の操作対象となるアイコン画像を3次元立体表示する見かけ上の表示面を、自装置を搭載又は保持する移動体の状態により予め定められた距離だけ、前記立体表示モニタ部の画面よりも手前の位置に設定した3次元立体表示用の右目用及び左目用の画像又は映像を生成することを特徴とする請求項1記載の3次元立体表示装置。
  9.  前記自装置を搭載又は保持する移動体の状態により予め定められた距離とは、当該移動体の移動速度に応じて予め定められた距離であることを特徴とする請求項8記載の3次元立体表示装置。
PCT/JP2010/006220 2010-10-20 2010-10-20 3次元立体表示装置 WO2012053033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2010/006220 WO2012053033A1 (ja) 2010-10-20 2010-10-20 3次元立体表示装置
US13/704,097 US20130093860A1 (en) 2010-10-20 2010-10-20 3dimension stereoscopic display device
JP2012539479A JP5781080B2 (ja) 2010-10-20 2010-10-20 3次元立体表示装置および3次元立体表示処理装置
DE112010005947T DE112010005947T5 (de) 2010-10-20 2010-10-20 Stereoskopische Dreidimensionen-Anzeigevorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006220 WO2012053033A1 (ja) 2010-10-20 2010-10-20 3次元立体表示装置

Publications (1)

Publication Number Publication Date
WO2012053033A1 true WO2012053033A1 (ja) 2012-04-26

Family

ID=45974773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006220 WO2012053033A1 (ja) 2010-10-20 2010-10-20 3次元立体表示装置

Country Status (4)

Country Link
US (1) US20130093860A1 (ja)
JP (1) JP5781080B2 (ja)
DE (1) DE112010005947T5 (ja)
WO (1) WO2012053033A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013239089A (ja) * 2012-05-16 2013-11-28 Yahoo Japan Corp 表示制御装置、表示制御方法、情報表示システム、およびプログラム。
JP2014196089A (ja) * 2013-03-29 2014-10-16 富士重工業株式会社 車両用表示装置
JP2014196088A (ja) * 2013-03-29 2014-10-16 富士重工業株式会社 車両用表示装置
JPWO2013005586A1 (ja) * 2011-07-04 2015-02-23 Necカシオモバイルコミュニケーションズ株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
WO2016031152A1 (ja) * 2014-08-29 2016-03-03 株式会社デンソー 車両用入力インターフェイス
JPWO2015083264A1 (ja) * 2013-12-05 2017-03-16 三菱電機株式会社 表示制御装置及び表示制御方法
JP2017513418A (ja) * 2015-01-29 2017-05-25 シャオミ・インコーポレイテッド リモートコントロール方法、装置、プログラム及び記録媒体
WO2018003862A1 (ja) * 2016-06-28 2018-01-04 株式会社ニコン 制御装置、表示装置、プログラムおよび検出方法
CN108415675A (zh) * 2017-02-10 2018-08-17 富士施乐株式会社 信息处理设备、信息处理系统和信息处理方法
US10067726B2 (en) 2013-03-29 2018-09-04 Subaru Corporation Display device for vehicle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248066A (ja) * 2011-05-30 2012-12-13 Canon Inc 画像処理装置、その制御方法、および制御プログラム、並びに撮像装置
US8509986B1 (en) * 2012-04-27 2013-08-13 Innova Electronics, Inc. Automotive diagnostic tool with projection display and virtual input
KR101560224B1 (ko) * 2014-10-27 2015-10-14 현대자동차주식회사 센터페시아 통합 인터페이스 제공 방법 및 장치
US10345991B2 (en) * 2015-06-16 2019-07-09 International Business Machines Corporation Adjusting appearance of icons in an electronic device
CN107948632A (zh) * 2017-12-26 2018-04-20 郑州胜龙信息技术股份有限公司 一种三维虚拟显示系统
WO2021241822A1 (ko) * 2020-05-27 2021-12-02 (주)지티티 비접촉식 터치 패널 시스템 및 그 제어방법 그리고 기존의 터치스크린에 장착 가능한 비접촉식 입력장치
JP2022539483A (ja) 2020-05-27 2022-09-12 ジーティーティー カンパニー リミテッド 非接触式タッチパネルシステム及びその制御方法、並びに既存のタッチスクリーンに装着可能な非接触式入力装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962179A (ja) * 1995-08-25 1997-03-07 Hitachi Ltd 移動体ナビゲーション装置
JP2007200307A (ja) * 2005-12-27 2007-08-09 Namco Bandai Games Inc 画像生成装置、プログラム及び情報記憶媒体
JP2010107685A (ja) * 2008-10-30 2010-05-13 Fujifilm Corp 3次元表示装置および方法並びにプログラム
WO2010098159A1 (ja) * 2009-02-24 2010-09-02 シャープ株式会社 立体表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3375258B2 (ja) * 1996-11-07 2003-02-10 株式会社日立製作所 地図表示方法及び装置並びにその装置を備えたナビゲーション装置
JPH10223102A (ja) * 1997-02-05 1998-08-21 Tietech Co Ltd 立体視画像によるタッチレススイッチ
JP2003280812A (ja) * 2002-03-20 2003-10-02 Hitachi Ltd タッチパネル付きディスプレイ装置及び表示方法
JP2004272354A (ja) * 2003-03-05 2004-09-30 Sanyo Electric Co Ltd 立体表示型操作パネル
JP2004280496A (ja) * 2003-03-17 2004-10-07 Kyocera Mita Corp 操作パネル装置
JP3795026B2 (ja) * 2003-03-20 2006-07-12 株式会社ソフィア 遊技機
JP2005175566A (ja) 2003-12-08 2005-06-30 Shinichi Hirabayashi 立体表示システム
JP3939709B2 (ja) * 2004-04-30 2007-07-04 日本電信電話株式会社 情報入力方法および情報入出力装置
JP4076090B2 (ja) * 2005-04-14 2008-04-16 日本電信電話株式会社 画像表示システム
US20100066662A1 (en) * 2006-10-02 2010-03-18 Pioneer Corporation Image display device
WO2008062586A1 (fr) * 2006-11-22 2008-05-29 Sharp Kabushiki Kaisha Dispositif d'affichage, procédé d'affichage, programme d'affichage, et support d'enregistrement
US8970501B2 (en) * 2007-01-03 2015-03-03 Apple Inc. Proximity and multi-touch sensor detection and demodulation
US8094189B2 (en) * 2007-01-30 2012-01-10 Toyota Jidosha Kabushiki Kaisha Operating device
JP2011081480A (ja) * 2009-10-05 2011-04-21 Seiko Epson Corp 画像入力システム
US8913056B2 (en) * 2010-08-04 2014-12-16 Apple Inc. Three dimensional user interface effects on a display by using properties of motion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0962179A (ja) * 1995-08-25 1997-03-07 Hitachi Ltd 移動体ナビゲーション装置
JP2007200307A (ja) * 2005-12-27 2007-08-09 Namco Bandai Games Inc 画像生成装置、プログラム及び情報記憶媒体
JP2010107685A (ja) * 2008-10-30 2010-05-13 Fujifilm Corp 3次元表示装置および方法並びにプログラム
WO2010098159A1 (ja) * 2009-02-24 2010-09-02 シャープ株式会社 立体表示装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013005586A1 (ja) * 2011-07-04 2015-02-23 Necカシオモバイルコミュニケーションズ株式会社 画像処理装置、画像処理方法、及び画像処理プログラム
US9591296B2 (en) 2011-07-04 2017-03-07 Nec Corporation Image processing device, image processing method, and image processing program that links three-dimensional protrusion intensity setting value and user interface spatial recognition sensitivity setting value
JP2013239089A (ja) * 2012-05-16 2013-11-28 Yahoo Japan Corp 表示制御装置、表示制御方法、情報表示システム、およびプログラム。
US10067726B2 (en) 2013-03-29 2018-09-04 Subaru Corporation Display device for vehicle
JP2014196089A (ja) * 2013-03-29 2014-10-16 富士重工業株式会社 車両用表示装置
JP2014196088A (ja) * 2013-03-29 2014-10-16 富士重工業株式会社 車両用表示装置
US10613810B2 (en) 2013-03-29 2020-04-07 Subaru Corporation Display device for vehicle
JPWO2015083264A1 (ja) * 2013-12-05 2017-03-16 三菱電機株式会社 表示制御装置及び表示制御方法
WO2016031152A1 (ja) * 2014-08-29 2016-03-03 株式会社デンソー 車両用入力インターフェイス
JP2017513418A (ja) * 2015-01-29 2017-05-25 シャオミ・インコーポレイテッド リモートコントロール方法、装置、プログラム及び記録媒体
WO2018003862A1 (ja) * 2016-06-28 2018-01-04 株式会社ニコン 制御装置、表示装置、プログラムおよび検出方法
JPWO2018003862A1 (ja) * 2016-06-28 2019-05-16 株式会社ニコン 制御装置、表示装置、プログラムおよび検出方法
US11635827B2 (en) 2016-06-28 2023-04-25 Nikon Corporation Control device, display device, program, and detection method
CN108415675A (zh) * 2017-02-10 2018-08-17 富士施乐株式会社 信息处理设备、信息处理系统和信息处理方法
CN108415675B (zh) * 2017-02-10 2023-06-09 富士胶片商业创新有限公司 信息处理设备、信息处理系统和信息处理方法

Also Published As

Publication number Publication date
JPWO2012053033A1 (ja) 2014-02-24
DE112010005947T5 (de) 2013-08-08
US20130093860A1 (en) 2013-04-18
JP5781080B2 (ja) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5781080B2 (ja) 3次元立体表示装置および3次元立体表示処理装置
US9030465B2 (en) Vehicle user interface unit for a vehicle electronic device
JP5709886B2 (ja) 3次元立体表示装置および3次元立体表示信号生成装置
JP5726201B2 (ja) 3次元立体視表示装置、3次元立体視表示制御装置、およびlsi回路
EP2672459B1 (en) Apparatus and method for providing augmented reality information using three dimension map
KR101830966B1 (ko) 전자 기기 및 전자 기기의 컨텐츠 생성 방법
US20090271732A1 (en) Image processing apparatus, image processing method, program, and recording medium
CN111050189B (zh) 直播方法、装置、设备和存储介质
WO2019135895A1 (en) Real-world portals for virtual reality displays
CN106067833B (zh) 移动终端及其控制方法
JP5465334B2 (ja) 3次元立体表示装置
JP5941620B2 (ja) 情報処理プログラム、情報処理装置、情報処理方法、及び情報処理システム
US11443487B2 (en) Methods, apparatus, systems, computer programs for enabling consumption of virtual content for mediated reality
KR20130137074A (ko) 3차원 지도를 이용한 증강 정보 제공 장치 및 방법
WO2012099194A1 (ja) 撮影装置、撮影装置を制御するための方法およびネットワークシステム
JP5955373B2 (ja) 3次元立体表示装置および3次元立体表示信号生成装置
KR101678447B1 (ko) 이동 단말기 및 이동 단말기의 영상 표시 방법
KR101864698B1 (ko) 전자 기기 및 전자 기기의 제어 방법
JP2020042449A (ja) 車載ユーザーインターフェース装置
KR20120022352A (ko) 이동 단말기 및 그 제어방법
KR20130052783A (ko) 전자 기기 및 전자 기기의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858591

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539479

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13704097

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010005947

Country of ref document: DE

Ref document number: 1120100059470

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858591

Country of ref document: EP

Kind code of ref document: A1