WO2012050277A1 - 셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 - Google Patents
셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 Download PDFInfo
- Publication number
- WO2012050277A1 WO2012050277A1 PCT/KR2011/002340 KR2011002340W WO2012050277A1 WO 2012050277 A1 WO2012050277 A1 WO 2012050277A1 KR 2011002340 W KR2011002340 W KR 2011002340W WO 2012050277 A1 WO2012050277 A1 WO 2012050277A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pore
- cellulose nanofibers
- cellulose
- separator
- forming resin
- Prior art date
Links
- 229920002678 cellulose Polymers 0.000 title claims abstract description 70
- 239000001913 cellulose Substances 0.000 title claims abstract description 70
- 239000002121 nanofiber Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000011347 resin Substances 0.000 claims abstract description 40
- 229920005989 resin Polymers 0.000 claims abstract description 40
- 239000011148 porous material Substances 0.000 claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 239000002202 Polyethylene glycol Substances 0.000 claims description 17
- 229920001223 polyethylene glycol Polymers 0.000 claims description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 13
- 229910052744 lithium Inorganic materials 0.000 claims description 13
- 239000012528 membrane Substances 0.000 claims description 9
- 239000002904 solvent Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 6
- -1 polypropylene Polymers 0.000 claims description 5
- 239000004743 Polypropylene Substances 0.000 claims description 4
- 229920001155 polypropylene Polymers 0.000 claims description 4
- 239000000725 suspension Substances 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 3
- 229920002749 Bacterial cellulose Polymers 0.000 claims description 3
- 239000005016 bacterial cellulose Substances 0.000 claims description 3
- 238000012258 culturing Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 239000002023 wood Substances 0.000 claims description 3
- 241000195493 Cryptophyta Species 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 230000000052 comparative effect Effects 0.000 description 19
- 238000010521 absorption reaction Methods 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 10
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 5
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical group [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 229920001046 Nanocellulose Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010294 electrolyte impregnation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0023—Organic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/003—Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0004—Organic membrane manufacture by agglomeration of particles
- B01D67/00042—Organic membrane manufacture by agglomeration of particles by deposition of fibres, nanofibres or nanofibrils
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
- H01M50/406—Moulding; Embossing; Cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/411—Organic material
- H01M50/429—Natural polymers
- H01M50/4295—Natural cotton, cellulose or wood
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/44—Fibrous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/39—Electrospinning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/52—Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/02—Diaphragms; Separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a separator (separator, separator), and more particularly to a porous cellulose nanofiber separator and a method for producing the same applicable to a separator for a lithium ion secondary battery.
- the separator is an electronic component that plays an important role in improving the stability of the battery as well as preventing the contact between the positive plates and the negative plates between the positive electrode and the negative electrode in the battery, and plays a very important role in the high performance of the battery.
- polyolefins such as polyethylene, polypropylene, or polyethylene-polypropylene composite membranes.
- polyolefm-based separators have a problem that melting occurs at about 130 degrees due to their inherent properties even though the molecular weight is increased, and there is a problem of receiving strong shrinkage resistance due to the characteristics of the porous stretched film even before the temperature.
- an increase in battery temperature due to an internal short circuit may cause ignition or explosion of the battery itself, or may act as a new ignition source, causing a high possibility of causing a fatal problem to the safety of the battery.
- the present invention is to solve the above problems, and discloses a porous cellulose nanofiber separator and a method of manufacturing the same having excellent thermal stability, dimensional stability, and impregnation with the electrolyte.
- One feature of the present invention is a first step of producing a sheet using a solution containing a cellulose nanofiber and a pore-forming resin, and a second step of removing the pore-forming resin contained in the sheet to form fine pores It relates to a porous cellulose nanofiber separator manufacturing method comprising a.
- the diameter of the nanofibers may be prepared in 10 ⁇ 1000nm or 10 ⁇ 200nm.
- cellulose nanofibers may be selected from the group of bacterial cellulose obtained by culturing cellulose nanofibers, algae nanofibers, bacteria isolated from the nano-sized wood material.
- the pore-forming resin may be selected from the group consisting of polyethylene glycol, polypropylpyrene alcohol, polypropylene, and hydroxy cellulose.
- Another feature of the present invention relates to a porous cellulose nanofiber separator prepared according to the above-described manufacturing method.
- a lithium secondary battery comprising a porous cellulose nanofiber separator prepared according to the above-described manufacturing method.
- the present invention has a merit that the manufacturing process of the separator is simplified to be suitable for mass production, the production cost is lowered, the price competitiveness is increased.
- Figure 2 is a photograph after the thermal stability test of the porous cellulose nanofiber separator and olefin-based separator prepared in accordance with an embodiment of the present invention
- Figure 9 is a graph of the water absorption according to the resin content for pore formation in the phase separation method in the embodiment of the invention.
- Porous cellulose nanofiber separation membrane manufacturing method is a first step of manufacturing a solution containing a cellulose nanofiber and a pore-forming resin in a sheet, and by removing the pore-forming resin contained in the sheet And a second step of forming fine pores.
- the first step is to prepare a solution containing a cellulose nanofibers and a pore-forming resin in a sheet, the cellulose nanofibers preferably have a diameter of 10 ⁇ 1000nm size.
- the diameter of the cellulose nanofibers is 10 nm or less, there is a problem in forming the cellulose fibers, and when the diameter is 1000 nm or more, the surface of the sheet is uneven and there is a problem that a lithium layer is formed when applied to a lithium secondary battery.
- the diameter of the cellulose nanofibers exceeds 200 nm, there is a problem of uneven formation of pores. More preferably, the diameter of the cellulose nanofibers is 10 nm to 200 nm.
- the cellulose nanofibers may be selected from any one or more selected from among cellulose nanofibers separated from nano-sized wood materials, seaweed cellulose nanofibers, and any one or more fiber groups selected from bacterial cellulose nanofibers obtained by culturing bacteria.
- the pore-forming resin should be able to be uniformly mixed with the cellulose nanofibers when preparing a solution, and the cellulose nanofibers are not dissolved, and selectively resins for the pore-forming resin may be dissolved, but without limitation in kind. All are applicable.
- a water-soluble polymer may be selected, and at least one selected from the group consisting of polyethylene glycol, polyvinyl alcohol, polyvinyl propylene, and hydroxy cellulose may be selected.
- a solvent in which the cellulose nanofibers and the resin for pore forming can be well dispersed may be used.
- water H 2 O
- water H 2 O
- the mixing ratio of the pore-forming resin is 8: 2 or less based on the cellulose nanofibers of the first step, there is a problem in that it cannot have sufficient pores as a separator, and if the mixing ratio of the pore-forming resin is 5: 5 or more, the pores Forming resin may interfere with the bond between the cellulose nanofibers may cause a problem that the sheet is impossible to manufacture.
- the solution dispersed in the cellulose nanofibers and the pore-forming resin may be passed through a high pressure homogenizer to prepare a cellulose nanofiber suspension, and the suspension may be manufactured in a sheet under reduced pressure.
- the cellulose nanofibers are made of a nonwoven fabric using a general paper manufacturing method as a sheet manufacturing method, but all types of manufacturing methods for manufacturing a separator of a lithium secondary battery are available.
- the thickness of the sheet is preferably to have a thickness of about 20 ⁇ 80 ⁇ m. This is because when the thickness of the sheet exceeds 80 ⁇ m, the weight and charge and discharge efficiency of the battery are greatly influenced.
- the -OH group decreases in the functional group due to the increase of hydrogen bonding, and when used as a separator of a lithium secondary battery, the reaction between the -OH group and the Li ion of the cellulose nanofiber is performed. There is an advantage that the stability does not increase.
- the pore-forming resin when the pore-forming resin is polyethylglycol, it has an -OH group at the end thereof, so that the pore-forming resin may be uniformly mixed with the cellulose nanofibers.
- the second step is a step of forming a fine pore by removing the pore-forming resin contained in the sheet, using a phase separation method.
- the polyethylene glycol may be removed from the sheet by immersing the sheet in a container containing dichloromethane.
- the pore-forming resin is polyethylglycol
- the pore is uniformly mixed with the cellulose nanofibers because it has a -OH group at the end thereof, and thus the voids are uniformly formed in the sheet.
- the present invention also provides a nano cellulose separator for a lithium secondary battery prepared by the above method.
- the present invention provides a lithium secondary battery comprising a porous cellulose nanofiber separator prepared by the above method.
- the structure of the lithium secondary battery according to the present invention is not particularly limited, and examples thereof include a square, cylindrical, pouch, and coin type batteries.
- the lithium secondary battery may include a positive electrode, a negative electrode, and an electrolyte, and the positive electrode and the negative electrode may use an electrode active material.
- the positive electrode active material of the electrode active material is not particularly limited as long as it is a material capable of occluding and releasing lithium.
- Comparative Example 1 An olefinic separator was purchased and used.
- the olefinic separator may be a crystalline lamellar as a crack inducing material in such a manner that the crack attracting material present therein generates fine cracks at the interface of the film as the extruded film is stretched at a low temperature.
- Example 1 and 2 are photographs before and after exposure to Comparative Example 1 (oliffin-based separator) and Example 1 at 200 °C and 30 minutes.
- Comparative Example 1 In the case of Comparative Example 1, the melting point is low, and when exposed to a temperature of 200 °C, the frame of the separator is completely removed. Therefore, when Comparative Example 1 is used as a separator of a lithium ion secondary battery, reliability cannot be guaranteed.
- Example 1 it can be seen that by maintaining the thermal stability up to 250 °C suitable for the separator of the lithium ion secondary battery in the numerical stability and thermal contraction rate.
- FIG. 3 is a graph of tensile strength according to the number of homogenizer cycles, which is a tensile strength according to the number of homogenizer passes, and has a value of 127.5 MPa or more, which is the tensile strength of the olefin-based separator at 8 cycles or more.
- the voids are uniformly formed between the cellulose nanofibers as shown in FIG. 5.
- an ultraviolet spectrophotometer analysis of the cellulose nanofiber sheet and cellulose according to the present invention shows that -OH peak (3300 ⁇ 3600cm ⁇ 1 ) is reduced in the -OH group in the cellulose nanofiber sheet.
- This cellulose nanofiber separator plays a role of enhancing the stability as an ion battery by hydrogen bonding.
- Comparative Examples 2 and 3 and Examples 1 to 3 were uniformly cut into 2 ⁇ 2 cm, and then impregnated with propylene carbonate for 2 hours before and after The weight was measured and multiplied by the density of the impregnated solution to determine the porosity of the porous cellulose nanofiber separator as a function of volume, as shown in FIG. 7.
- Example 2 In Examples 2 (P3) and Example 3 (P4) it can be confirmed that the porosity is 35% or more, higher than the porosity of Comparative Example 1 30%, the porosity increases as the content of the pore-forming resin increases. Able to know.
- Comparative Example 1 and Example 1 were prepared, and after 2 seconds after dropping propylene carbonate drop by drop in Comparative Example 1 and Example 1 using a micro syringe. The results are shown in FIG.
- Comparative Example 1 was not impregnated at all, and in Example 1 was impregnated at the moment of dropping.
- Example 1 is suitable as a separator of the lithium secondary battery.
- Comparative Example 2 (P0), Comparative Example 3 (P1) and Examples 1 to 3 (P2 to P4) for 2 hours after uniformly cutting to 2 ⁇ 2 cm
- the weight was measured before and after impregnation with propylene carbonate and the weight of the absorbed propylene carbonate was shown in FIG. 9 in terms of percentage.
- the absorption rate is 30% or less, but the absorption rate of Example 1 (P2) is about 45%, Example 2 (P3) is about 60%, and the absorption rate of Example 3 (P4) is about It can be seen that it has an excellent absorption rate of 65%.
- Example 3 the ion conductivity was measured to be reduced, but this may be due to the residual thickness of the polyethylene glycol and the thickness of the sheet was about 90 ⁇ m, and the ion conductivity is expected to increase further when all polyethylene glycol is removed. do.
- 11 is a value measured by a cell for a lithium ion secondary battery after the initial charge and discharge test, it can be seen that in the case of Examples 2 and 3 has a value of 15 mAh.
- Figure 12 is a data on the charge-discharge cycle of the lithium ion secondary battery can be seen that there is almost no change in capacity for 10 times as a separator of the secondary battery.
- cellulose powder After dispersing the cellulose powder in a solvent, it was prepared through a homogenizer and then made into a constant mold. Polyethylene glycol was added during preparation to form voids.
- the porous cellulose nanofiber separator is characterized by 30% porosity, 46% absorption, and 1.56 mS / cm ionic conductivity, and the cathode is graphite and the anode is lithium cobalt oxide. The initial charge and discharge characteristics were observed by adding an electrolyte.
- cellulose powder After dispersing the cellulose powder in a solvent, it was prepared through a homogenizer and then made into a constant mold. Polyethylene glycol was added during preparation to form voids.
- the porous cellulose nanofiber separation membrane has a porosity of 33%, an absorption rate of 57%, and an ion conductivity of 2.66 mS / cm, and the anode is made of graphite and the anode is made of lithium cobalt oxide. After desorption, the electrolyte was added to observe initial charge and discharge characteristics.
- It has an initial charge / discharge capacity of about 14 mAh, and also has a constant value of about 14 mAh for discharge characteristics for cycle characteristics.
- cellulose powder After dispersing the cellulose powder in a solvent, it was prepared through a homogenizer and then made into a constant mold. Polyethylene glycol was added during preparation to form voids.
- the porous cellulose nanofiber separator is characterized by 32% porosity, 62% absorption, 0.6 mS / cm ionic conductivity, and the cathode is graphite and the anode is lithium cobalt oxide.
- the initial charge and discharge characteristics were analyzed by adding an electrolyte.
- It has an initial charge / discharge capacity of about 16 mAh, and also has a constant value of about 13 to 15 mAh in discharge characteristics for cycle characteristics.
- cellulose powder After dispersing the cellulose powder in a solvent, it was prepared through a homogenizer and then made into a constant mold. Polyethylene glycol was added during preparation to form voids.
- the porous cellulose nanofiber separator is characterized by 11% porosity, 12% absorption, and 0.22 mS / cm ion conductivity, and the cathode is graphite and the anode is lithium cobalt oxide.
- the initial charge and discharge characteristics were observed by adding an electrolyte. It did not have initial charge and discharge characteristics.
- cellulose powder After dispersing the cellulose powder in a solvent, it was prepared through a homogenizer and then made into a constant mold. Polyethylene glycol was added during preparation to form voids.
- the porous cellulose nanofiber separator is characterized by a porosity of 23%, an absorption rate of 31%, and an ion conductivity of 0.42 mS / cm, and the cathode is graphite and the anode is lithium cobalt oxide.
- the initial charge and discharge characteristics were observed by adding an electrolyte. At 13%, it did not have initial charge and discharge characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Cell Separators (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
셀룰로오스 나노섬유 : 폴리에틸렌글리콜 | 두께(㎛) | |
비교예 2 | 100:0 | 20 ~ 70 |
비교예 3 | 87:13 | 20 ~ 70 |
실시예 1 | 76:24 | 20 ~ 70 |
실시예 2 | 60:40 | 20 ~ 70 |
실시예 3 | 50:50 | 20 ~ 70 |
Claims (11)
- 셀룰로오스 나노섬유와 기공형성용 수지를 포함하는 용액을 이용하여 시트를 제조하는 제1단계; 및상기 시트 내에 포함된 기공형성용 수지를 제거하여 미세 다공을 형성하는 제2단계;를 포함하는 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 셀룰로오스 나노섬유의 직경은 10 ~ 1000nm인 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 셀룰로오스 나노섬유의 직경은 10 ~ 200nm인 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 셀룰로오스 나노섬유는 목질 재료로부터 분리된 셀룰로오스 나노섬유, 해조류 셀룰로오스 나노섬유, 및 균을 배양하여 얻은 박테리아 셀룰로오스 나노섬유 등으로부터 이루어진 그룹에서 선택된 어느 하나 이상인 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 기공형성용 수지는 폴리에틸렌글리콜, 폴리프로필렌알콜, 및 폴리비닐프로필렌 등으로부터 이루어진 그룹 중에서 선택된 어느 하나 이상인 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 제1단계에서는, 상기 셀룰로오스 나노섬유와 기공형성용 수지를 포함하는 용액을 호모지나이저(homogenizer)에 통과시켜 현탁액을 제조하고, 상기 현탁액을 감압하여 시트로 제조하는 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제6항에 있어서, 상기 제1단계에서는, 상기 셀룰로오스 나노섬유와 기공형성용 수지를 포함하는 용액을 8 싸이클(cycle) 이상 상기 호모지나이저(homogenizer)에 통과시키는 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 셀룰로오스 나노섬유와 기공형성용 수지의 혼합비율은 8: 2 ~ 5: 5인 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 있어서, 상기 제2단계에서는, 상기 시트를 기공형성용 수지가 용해되는 용매에 침지하여 상기 시트에서 상기 기공형성용 수지를 제거하는 다공성의 셀룰로오스 나노섬유 분리막 제조방법.
- 제1항에 의해 제조된 다공성의 셀룰로오스 나노섬유 분리막.
- 제10항에 따른 다공성의 셀룰로오스 나노섬유 분리막을 포함하는 리튬 이차전지.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11832664.4A EP2629355B1 (en) | 2010-10-11 | 2011-04-05 | Porous separator using cellulose nanofibers, and method for preparing same |
JP2013533756A JP5612217B2 (ja) | 2010-10-11 | 2011-04-05 | セルロースナノ繊維を利用した多孔性分離膜及びその製造方法 |
US13/878,470 US20130251890A1 (en) | 2010-10-11 | 2011-04-05 | Porous Separator Using Cellulose Nanofibrils and Method for Preparing the Same |
CN201180049256.6A CN103270639B (zh) | 2010-10-11 | 2011-04-05 | 使用纤维素纳米纤丝的多孔分离器及其制备方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0098886 | 2010-10-11 | ||
KR1020100098886A KR101040572B1 (ko) | 2010-10-11 | 2010-10-11 | 셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012050277A1 true WO2012050277A1 (ko) | 2012-04-19 |
Family
ID=44405388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002340 WO2012050277A1 (ko) | 2010-10-11 | 2011-04-05 | 셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130251890A1 (ko) |
EP (1) | EP2629355B1 (ko) |
JP (1) | JP5612217B2 (ko) |
KR (1) | KR101040572B1 (ko) |
CN (1) | CN103270639B (ko) |
WO (1) | WO2012050277A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10164230B2 (en) | 2015-05-27 | 2018-12-25 | Samsung Electronics Co., Ltd. | Separator including microbial cellulose, method of producing the separator, and use of the separator |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103329310B (zh) * | 2011-10-13 | 2016-09-21 | 特种东海制纸株式会社 | 微多孔膜及其制造方法 |
KR101331481B1 (ko) | 2011-10-13 | 2013-11-20 | 도쿠슈 도카이 세이시 가부시키가이샤 | 전기 화학 소자용 세퍼레이터 및 그 제조 방법 |
WO2013054879A1 (ja) * | 2011-10-13 | 2013-04-18 | 特種東海製紙株式会社 | 微多孔膜及びその製造方法 |
WO2013054884A1 (ja) | 2011-10-13 | 2013-04-18 | 特種東海製紙株式会社 | 微多孔膜及びその製造方法 |
RU2013134483A (ru) | 2011-10-13 | 2015-01-27 | Токусю Токай Пейпер Ко., Лтд. | Пористая мембрана и способ ее получения |
KR101164650B1 (ko) * | 2011-11-30 | 2012-07-27 | 대한민국 | 셀룰로오스 나노섬유를 포함하는 이차전지용 다공성 분리막 및 그 제조방법 |
KR101632696B1 (ko) * | 2012-08-28 | 2016-06-22 | 주식회사 엘지화학 | 기계적 물성이 개선된 전기화학소자용 분리막 및 그의 제조방법 |
KR20140062690A (ko) * | 2012-11-14 | 2014-05-26 | 류수선 | 폴리올레핀 미세 다공막의 제조방법 |
KR101522657B1 (ko) * | 2012-11-30 | 2015-05-22 | 주식회사 엘지화학 | 전기화학소자용 분리막 및 그의 제조방법 |
WO2014084684A1 (ko) * | 2012-11-30 | 2014-06-05 | 주식회사 엘지화학 | 전기화학소자용 분리막 및 그의 제조방법 |
KR101423296B1 (ko) | 2012-12-05 | 2014-07-24 | 대한민국 | 셀룰로오스 섬유와 실리카를 포함하는 이차전지용 다공성 분리막 및 그 제조방법 |
JP6370154B2 (ja) * | 2013-10-29 | 2018-08-08 | パナソニック株式会社 | 非水電解質二次電池用セパレータ及び非水電解質二次電池 |
JP6491467B2 (ja) | 2014-10-14 | 2019-03-27 | 花王株式会社 | 三次元造形用可溶性材料 |
JP5972335B2 (ja) * | 2014-10-14 | 2016-08-17 | 花王株式会社 | 三次元造形用可溶性材料 |
KR101894134B1 (ko) * | 2015-03-30 | 2018-09-04 | 주식회사 엘지화학 | 셀룰로오스계 다층 분리막 |
WO2016159658A1 (ko) * | 2015-03-30 | 2016-10-06 | 주식회사 엘지화학 | 셀룰로오스계 다층 분리막 |
KR20170068304A (ko) | 2015-12-09 | 2017-06-19 | 삼성전자주식회사 | 대장균 및 코마가타에이박터 속 세포에서 복제가능한 벡터, 그를 포함한 세포, 및 그를 이용하는 방법 |
CA3009811A1 (en) * | 2016-01-11 | 2017-07-20 | Dreamweaver International, Inc. | Lithium ion battery and method of manufacturing |
KR20170130175A (ko) * | 2016-05-18 | 2017-11-28 | 삼성전자주식회사 | 셀룰로스 분리막을 제조하는 방법, 그에 의하여 제조된 셀룰로스 분리막 및 그를 포함하는 이차이온전지 |
JP6443696B2 (ja) * | 2016-09-27 | 2018-12-26 | トヨタ自動車株式会社 | 二次電池 |
KR102155272B1 (ko) * | 2018-02-06 | 2020-09-11 | 세종대학교산학협력단 | 투습성 멤브레인 및 이의 제조방법 |
KR101971890B1 (ko) * | 2018-03-20 | 2019-04-24 | 충남대학교 산학협력단 | 홍조류 나노셀룰로오스를 이용한 마스크팩용 시트의 제조방법 및 이로부터 제조된 마스크팩용 시트 |
JP2020111843A (ja) * | 2019-01-09 | 2020-07-27 | 旭化成株式会社 | 多孔質シート |
KR102469425B1 (ko) * | 2021-01-25 | 2022-11-22 | 경북대학교 산학협력단 | 수해리성 필름의 제조방법 및 수해리성 필름 |
WO2022203410A1 (ko) * | 2021-03-23 | 2022-09-29 | 한양대학교 에리카산학협력단 | 알루미늄 공기 이차 전지, 및 그 제조 방법 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470314B1 (ko) * | 2003-06-17 | 2005-02-07 | (주)삼신크리에이션 | 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자 |
WO2007088974A1 (ja) * | 2006-02-02 | 2007-08-09 | Kyushu University, National University Corporation | セルロースナノ繊維を用いる撥水性と耐油性の付与方法 |
KR100890594B1 (ko) * | 2007-07-31 | 2009-03-25 | 주식회사 에이엠오 | 공기투과도가 높은 전기화학소자용 분리막 및 그의제조방법 |
US20090241496A1 (en) * | 2006-04-26 | 2009-10-01 | Bruno Pintault | Process for Producing a Nanoporous Layer of Nanoparticles and Layer Thus Obtained |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1771082B1 (de) * | 1968-03-30 | 1970-10-08 | Varta Gmbh | Separationsschicht fuer galvanische Primaerelemente mit waessrigem Elektrolyten aus einer Mischung zumindest zweier Kunststoffe,von denen der eine als Porenbildner herausloesbar ist |
JPS51117184A (en) * | 1975-04-08 | 1976-10-15 | Nitto Electric Ind Co Ltd | A method of manufacturing membrane of homogeneous pore size |
IL78169A0 (en) * | 1986-03-17 | 1986-07-31 | Weizmann Kiryat Membrane Prod | Novel membranes and process for making them |
US4963304A (en) * | 1988-09-26 | 1990-10-16 | The Dow Chemical Company | Process for preparing microporous membranes |
US6905798B2 (en) * | 2000-05-29 | 2005-06-14 | Mitsubishi Paper Mills Limited | Separator for electrochemical device and method for producing the same |
US6835311B2 (en) * | 2002-01-31 | 2004-12-28 | Koslow Technologies Corporation | Microporous filter media, filtration systems containing same, and methods of making and using |
WO2004112183A1 (en) * | 2003-06-17 | 2004-12-23 | Samshin Creation Co., Ltd. | A complex membrane for electrochemical device, manufacturing method and electrochemical device having the same |
US8025960B2 (en) * | 2004-02-02 | 2011-09-27 | Nanosys, Inc. | Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production |
JP5032748B2 (ja) * | 2005-02-25 | 2012-09-26 | 株式会社クラレ | アルカリ電池用セパレータ及びアルカリ一次電池 |
US7112389B1 (en) * | 2005-09-30 | 2006-09-26 | E. I. Du Pont De Nemours And Company | Batteries including improved fine fiber separators |
US9166250B2 (en) * | 2006-09-07 | 2015-10-20 | Hitachi Maxell, Ltd. | Separator for battery, method for manufacturing the same, and lithium secondary battery |
JP4985271B2 (ja) * | 2006-09-29 | 2012-07-25 | 東レ株式会社 | 多孔質膜およびその製造方法 |
JP2008274525A (ja) * | 2007-04-06 | 2008-11-13 | Asahi Kasei Corp | 低目付セルロース不織布 |
JP5268673B2 (ja) * | 2009-01-21 | 2013-08-21 | 日立マクセル株式会社 | 非水電解質二次電池の製造方法 |
JP2010202856A (ja) * | 2009-02-06 | 2010-09-16 | Kao Corp | セルロース繊維の懸濁液とその製造方法 |
-
2010
- 2010-10-11 KR KR1020100098886A patent/KR101040572B1/ko active IP Right Grant
-
2011
- 2011-04-05 EP EP11832664.4A patent/EP2629355B1/en active Active
- 2011-04-05 CN CN201180049256.6A patent/CN103270639B/zh active Active
- 2011-04-05 JP JP2013533756A patent/JP5612217B2/ja not_active Expired - Fee Related
- 2011-04-05 US US13/878,470 patent/US20130251890A1/en not_active Abandoned
- 2011-04-05 WO PCT/KR2011/002340 patent/WO2012050277A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100470314B1 (ko) * | 2003-06-17 | 2005-02-07 | (주)삼신크리에이션 | 전기화학소자용 복합막, 그 제조방법 및 이를 구비한전기화학소자 |
WO2007088974A1 (ja) * | 2006-02-02 | 2007-08-09 | Kyushu University, National University Corporation | セルロースナノ繊維を用いる撥水性と耐油性の付与方法 |
US20090241496A1 (en) * | 2006-04-26 | 2009-10-01 | Bruno Pintault | Process for Producing a Nanoporous Layer of Nanoparticles and Layer Thus Obtained |
KR100890594B1 (ko) * | 2007-07-31 | 2009-03-25 | 주식회사 에이엠오 | 공기투과도가 높은 전기화학소자용 분리막 및 그의제조방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2629355A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10164230B2 (en) | 2015-05-27 | 2018-12-25 | Samsung Electronics Co., Ltd. | Separator including microbial cellulose, method of producing the separator, and use of the separator |
Also Published As
Publication number | Publication date |
---|---|
JP5612217B2 (ja) | 2014-10-22 |
JP2013542069A (ja) | 2013-11-21 |
EP2629355B1 (en) | 2019-02-13 |
KR101040572B1 (ko) | 2011-06-16 |
CN103270639A (zh) | 2013-08-28 |
US20130251890A1 (en) | 2013-09-26 |
EP2629355A1 (en) | 2013-08-21 |
CN103270639B (zh) | 2016-05-04 |
EP2629355A4 (en) | 2016-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012050277A1 (ko) | 셀룰로오스 나노섬유를 이용한 다공성 분리막 및 그 제조방법 | |
WO2014088151A1 (ko) | 셀룰로오스 섬유와 실리카를 포함하는 이차전지용 다공성 분리막 및 그 제조방법 | |
JP6173328B2 (ja) | 耐熱性及び安定性に優れたポリオレフィン系複合微多孔膜 | |
WO2017010780A1 (ko) | 세퍼레이터 및 이를 포함하는 전기화학소자 | |
US8900740B2 (en) | Multilayer porous film | |
JP2018170287A (ja) | リチウムイオン電池用改良型隔離板および関連する方法 | |
KR100977345B1 (ko) | 폴리올레핀제 미다공막 | |
WO2013154253A1 (ko) | 다공성 코팅층을 포함하는 전극, 상기 전극의 제조방법 및 상기 전극을 포함하는 전기화학소자 | |
WO2018038584A1 (ko) | 전기화학소자용 분리막 및 상기 분리막을 포함하는 전기화학소자 | |
WO2011062460A2 (ko) | 다공성 코팅층을 구비한 분리막의 제조방법, 이로부터 형성된 분리막 및 이를 구비한 전기화학소자 | |
CN104409674B (zh) | 复合隔膜材料及其制备方法与应用 | |
WO2014073937A1 (ko) | 세퍼레이터의 제조방법, 그에 의해 제조된 세퍼레이터 및 그를 포함하는 전기화학소자 | |
WO2011105866A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
WO2011040704A2 (ko) | 세퍼레이터의 제조방법, 이로부터 형성된 세퍼레이터 및 이를 포함하는 전기화학소자의 제조방법 | |
TW201530861A (zh) | 電化學裝置用分離器與電化學裝置 | |
WO2013081228A1 (ko) | 셀룰로오스 나노섬유를 포함하는 이차전지용 다공성 분리막 및 그 제조방법 | |
TW201530862A (zh) | 用於電化學裝置的隔板與電化學裝置 | |
US20210135315A1 (en) | Coating slurries for preparing separators, separators for electrochemical devices and preparation methods therefor | |
EP2260523A2 (en) | Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature | |
KR20060043693A (ko) | 전자부품용 세퍼레이터 및 그 제조 방법 | |
KR102264032B1 (ko) | 폴리올레핀 미다공막 및 폴리올레핀 미다공막의 제조 방법 | |
WO2014209021A1 (ko) | 나노증기를 이용한 이차 전지용 다공성 분리막의 제조 방법, 이를 이용해 제조된 분리막, 및 이차 전지 | |
WO2015076571A1 (ko) | 분리막 코팅제 조성물, 상기 코팅제 조성물로 형성된 분리막 및 이를 이용한 전지 | |
WO2021033795A1 (ko) | 그래핀을 포함하는 2차원소재 코팅 조성물과 이를 이용한 이차전지 분리막 및 그 제조방법 | |
WO2019135510A1 (ko) | 유리전이온도가 다른 바인더를 포함하는 분리막 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180049256.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832664 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013533756 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011832664 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13878470 Country of ref document: US |