WO2012049890A1 - 雑音除去フィルタ - Google Patents

雑音除去フィルタ Download PDF

Info

Publication number
WO2012049890A1
WO2012049890A1 PCT/JP2011/064744 JP2011064744W WO2012049890A1 WO 2012049890 A1 WO2012049890 A1 WO 2012049890A1 JP 2011064744 W JP2011064744 W JP 2011064744W WO 2012049890 A1 WO2012049890 A1 WO 2012049890A1
Authority
WO
WIPO (PCT)
Prior art keywords
choke coil
attenuation
frequency
noise removal
removal filter
Prior art date
Application number
PCT/JP2011/064744
Other languages
English (en)
French (fr)
Inventor
新井 敏夫
強 伊藤
Original Assignee
日本アンテナ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アンテナ株式会社 filed Critical 日本アンテナ株式会社
Publication of WO2012049890A1 publication Critical patent/WO2012049890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H1/0007Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0092Inductor filters, i.e. inductors whose parasitic capacitance is of relevance to consider it as filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/48Networks for connecting several sources or loads, working on the same frequency or frequency band, to a common load or source

Definitions

  • the present invention relates to a noise removal filter that removes common mode noise on at least two electric wires.
  • This high-frequency noise flows backward from the inverter device to the solar panel side, and high-level high-frequency noise is radiated into the space using the electric wire connecting the inverter device and the solar panel as an antenna. Therefore, a measure is taken to prevent unnecessary radiation by providing a line filter in the input / output section of the inverter device to reduce high frequency noise.
  • the transmission mode is a normal mode (differential mode) corresponding to the balanced mode of the high-frequency circuit.
  • the noise component in the normal mode can be suppressed relatively easily by inserting a capacitance between the parallel wires.
  • the common mode noise component corresponding to the unbalanced mode of the high frequency circuit cannot be suppressed.
  • the parallel electric wire which sends the direct-current power made with the solar panel does not consider the high frequency, and does not consider the common mode. For this reason, when common mode noise occurs, even if a line filter is provided, the noise is radiated to the space without sufficient attenuation, resulting in noise interference.
  • common mode noise propagates on parallel wires without ground, that is, on lines that are incomplete for the common mode, unnecessary radiation is likely to occur.
  • a low-pass filter In a high-frequency circuit, at the time of unbalanced transmission corresponding to a common mode, a low-pass filter (LPF) can be used to reduce harmonic components with respect to the pass frequency.
  • a conventional basic LPF circuit is shown in FIGS.
  • the LPF circuit shown in FIG. 16A is a ⁇ type, and an inductance L201 is connected in series between the input terminal IN and the output terminal OUT, and capacitances C201 and C202 are respectively connected in parallel between both ends of the inductance L201 and the ground. It is connected. Further, the LPF circuit shown in FIG.
  • 16B is a T type, and inductances L202 and L203 are connected in series between the input terminal IN and the output terminal OUT, and are parallel between the connection point of the inductances L202 and L203 and the ground. Is connected to a capacitance C203.
  • FIGS. 16A and 16B can be used as a line filter
  • FIG. 17 shows a circuit of a conventional line filter 200 using the ⁇ -type LPF circuit shown in FIG.
  • an inductance L210 is connected in series between a first input terminal IN201 and a first output terminal OUT201, and capacitances C210 and C211 are respectively connected in parallel between both ends of the inductance L210 and the ground E. Is connected.
  • An inductance L211 is connected in series between the second input terminal IN202 and the second output terminal OUT202, and capacitances C212 and C213 are connected in parallel between both ends of the inductance L211 and the ground E, respectively.
  • FIG. 17 shows a circuit of a conventional line filter 200 using the ⁇ -type LPF circuit shown in FIG.
  • an inductance L210 is connected in series between a first input terminal IN201 and a first output terminal OUT201, and capacitances C210 and C211 are respectively connected in parallel between both ends of the inductance L210 and
  • inductances L310 and L311 are connected in series between the first input terminal IN301 and the first output terminal OUT301, and in parallel between the connection point of the inductances L310 and L311 and the ground E.
  • a capacitance C310 is connected.
  • Inductances L312 and L313 are connected in series between the second input terminal IN302 and the second output terminal OUT302, and a capacitance C311 is connected in parallel between the connection point of the inductances L312 and L313 and the ground E. .
  • the line filter 200 shown in FIG. 17 or the line filter 300 shown in FIG. 18 is connected to a parallel wire or the like.
  • a parallel wire there is no clear ground wire required in the common mode.
  • the ground E for the capacitances connected in parallel in the line filters 200 and 300 is in an incomplete state, and the original function cannot be effectively exhibited electrically.
  • the capacitance in the line filter 200 or the line filter 300 does not effectively contribute to the attenuation of the harmonic noise with respect to the common mode noise component.
  • a line filter 400 shown in FIG. 19 using only a choke coil as a line filter for suppressing a common mode current has been conventionally proposed.
  • a line filter 400 shown in FIG. 19 is connected to a modem 410 and inserted in a power line through which communication signals are transmitted.
  • a plug 413 is provided at the tip of the power line, and the plug 413 is inserted into an indoor outlet.
  • the line filter 400 is configured by connecting a first choke coil 411 and a second choke coil 412 in series, and the impedance of the first choke coil 411 provided on the modem 410 side is set to the second choke.
  • the impedance is higher than that of the coil 412. For this reason, the number of turns of the first choke coil 411 is made larger than the number of turns of the second choke coil 412.
  • the impedance of the choke coil 412 provided on the power line side is lowered in order to reduce an adverse effect due to impedance mismatch with the power line.
  • the impedance of the modem 410 is defined, the impedance in the power line is not defined, and the impedance of the power line varies greatly depending on the wiring state of the power line.
  • the impedance of the power line is generally different for each place where the line filter 400 is installed, even when the line filter 400 is inserted into the power line, high-frequency noise is not removed due to the influence of the impedance of the power line. There was a problem that there was.
  • an object of the present invention is to provide a noise removal filter that can effectively remove high-frequency noise.
  • the present invention relates to at least one first choke coil in which a conductor wire is wound around a Mn-Zn toroidal core and at least one second choke coil in which a conductor wire is wound around a Ni-Zn toroidal core. Is connected between the input terminal and the output terminal, and at least two pairs of the input terminal and the output terminal are the main feature.
  • a first choke coil in which a conductor wire is wound around a Mn-Zn toroidal core and a second choke coil in which a conductor wire is wound around a Ni-Zn toroidal core are connected in series. Since the noise removal filter is configured as described above, a stable large attenuation can be obtained in a wide frequency band from low to high.
  • FIG. 1 to FIG. 7 show the process leading to the invention of the noise removal filter according to the present invention.
  • FIG. 1 is a circuit diagram showing the configuration of a noise removal filter having no capacitance
  • FIG. 2 is a toroidal structure in which the Mn—Zn (manganese-zinc) relative permeability ⁇ s is about 5000 in the noise removal filter shown in FIG.
  • FIG. 3 is a diagram showing the frequency characteristics of attenuation when using a core, and FIG. 3 shows the attenuation when using a toroidal core having a relative magnetic permeability ⁇ s of about 5000 in the noise removal filter shown in FIG.
  • FIG. 1 is a circuit diagram showing the configuration of a noise removal filter having no capacitance
  • FIG. 2 is a toroidal structure in which the Mn—Zn (manganese-zinc) relative permeability ⁇ s is about 5000 in the noise removal filter shown in FIG.
  • FIG. 3 is a diagram showing the frequency characteristics of at
  • FIG. 4 is a diagram showing frequency characteristics of attenuation when a toroidal core having an Mn-Zn relative permeability ⁇ s of about 2500 is used in the noise removal filter shown in FIG. 5 is a diagram showing another frequency characteristic of the attenuation when the Mn—Zn relative permeability ⁇ s of about 2500 is used in the noise removal filter shown in FIG.
  • the noise reduction filter shown in FIG. FIG. 7 is a diagram showing the frequency characteristics of attenuation when a Ni-Zn (nickel / zinc) -based relative permeability ⁇ s of about 800 is used in the filter.
  • FIG. It is a figure which shows the other frequency characteristic of the amount of attenuation
  • group is about 800.
  • the noise removal filter 100 having the configuration shown in FIG. 1 is a noise removal filter when two electric wires such as a parallel electric wire and a power line are used.
  • the noise removal filter 100 includes a first choke coil CH1 connected between the first input terminal IN1 and the first output terminal OUT1, and between the second input terminal IN2 and the second output terminal OUT2. And a second choke coil CH2 connected to the.
  • the first choke coil CH1 and the second choke coil CH2 are configured by winding an electric wire around a toroidal core.
  • This electric wire may be a single wire or a stranded wire.
  • the toroidal core in this specification means a core obtained by sintering a complex ferrite such as Mn—Zn or Ni—Zn in a ring shape at a high temperature.
  • a first choke coil CH1 and a second choke coil CH2 are formed by winding an electric wire around a toroidal core having an inner diameter of about 40 mm and a relative magnetic permeability ⁇ s of about 5000 mm using this toroidal core as an Mn-Zn system.
  • FIG. 2 shows the frequency characteristics of the attenuation amount up to 1 MHz of the noise removal filter 100 composed of the first choke coil CH1 and the second choke coil CH2, and the frequency of the attenuation amount up to 100 MHz is changed by changing the scale. The characteristics are shown in FIG. Referring to FIG. 2, there is a peak of attenuation of about 39 dB around 0.3 MHz, and good attenuation characteristics are shown up to 1 MHz. In addition, referring to FIG.
  • the amount of attenuation decreases as the frequency increases, and the amount of attenuation at about 40 MHz decreases to about 14 dB.
  • the attenuation gradually increases at a frequency of 40 MHz or higher, and only an attenuation of about 22 dB is obtained although there is a peak at about 90 MHz.
  • the noise removal filter 100 using the toroidal core of the Mn-Zn relative permeability ⁇ s of about 5000 is excellent in the attenuation characteristic of the low band
  • the high band part is attenuated by about 14 dB around 40 MHz. It can be seen that only the amount is obtained and the attenuation characteristic is inferior in the high range.
  • FIG. 4 shows the frequency characteristics of the attenuation amount up to 1 MHz of the noise elimination filter 100 composed of the first choke coil CH1 and the second choke coil CH2, and the frequency of the attenuation amount up to 100 MHz by changing the scale. The characteristics are shown in FIG. Referring to FIG. 4, there is a peak of attenuation of about 48 dB around 0.8 MHz, and good attenuation characteristics are shown up to 1 MHz. Referring to FIG.
  • the attenuation decreases as the frequency increases, the attenuation at about 35 MHz decreases to about 17 dB, and the attenuation decreases to about 16 dB at about 70 MHz. . Then, the amount of attenuation gradually increases at a frequency of 70 MHz or higher, and only about 21 dB of attenuation is obtained although there is a peak at about 100 MHz.
  • the noise removal filter 100 using the toroidal core of Mn-Zn relative permeability ⁇ s of about 2500 is excellent in the attenuation characteristic of the low band, the high band part is attenuated by about 16 dB around 70 MHz. It can be seen that only the amount is obtained and the attenuation characteristic is inferior in the high range.
  • FIG. 6 shows the frequency characteristics of the attenuation amount up to 1 MHz of the noise removal filter 100 composed of the first choke coil CH1 and the second choke coil CH2, and the frequency of the attenuation amount up to 100 MHz is changed by changing the scale.
  • the characteristics are shown in FIG. Referring to FIG. 6, the attenuation gradually increases, but only an attenuation of about 23 dB is obtained around 1 MHz, and the attenuation characteristic is inferior to 1 MHz. Further, referring to FIG.
  • the attenuation increases as the frequency increases, and the attenuation around about 35 MHz increases to about 46 dB.
  • an attenuation of 40 dB or more can be obtained over a wide band of about 7 MHz to about 55 MHz.
  • the attenuation gradually decreases at a frequency of 60 MHz or higher, and only an attenuation of about 12 dB can be obtained at about 95 MHz.
  • the noise removal filter 100 using the toroidal core of Ni-Zn relative permeability ⁇ s of about 800 is excellent in the attenuation characteristic of the high band, the low band part has only an attenuation of about 20 dB. It can be seen that the attenuation characteristics are inferior at low frequencies.
  • the noise of the first embodiment of the present invention obtained from the knowledge that the frequency characteristics of the attenuation amount are different between the Mn-Zn toroidal core and the Ni-Zn toroidal core.
  • a circuit diagram showing the configuration of the removal filter 1 is shown in FIG.
  • the noise removal filter 1 of the first embodiment shown in FIG. 8 is a noise removal filter in the case of using two electric wires such as parallel wires and power lines.
  • the noise elimination filter 1 of the first embodiment includes a first choke coil CH1-1 configured by winding an electric wire around an Mn-Zn toroidal core having excellent low-frequency attenuation characteristics, A second choke coil CH1-2 formed by winding an electric wire around a Ni-Zn toroidal core having excellent damping characteristics is connected in series to the first input terminal IN1 and the first input terminal IN1. It is connected between the output terminal OUT1. Also, a third choke coil CH1-3 formed by winding an electric wire around an Mn-Zn toroidal core having excellent low-frequency attenuation characteristics, and Ni-- having excellent high-frequency attenuation characteristics.
  • a fourth choke coil CH1-4 formed by winding an electric wire around a Zn-based toroidal core is connected in series and connected between the second input terminal IN2 and the second output terminal OUT2. ing.
  • the electric wire wound around the first choke coil CH1-1 to the fourth choke coil CH1-4 may be a single wire or a stranded wire.
  • the first choke coil CH1-1 to the fourth choke coil CH1-4 are accommodated in the shield case 10.
  • the first input terminal IN1 and the second input terminal IN2 of the first noise removal filter 1 are connected to, for example, an inverter device. Connected to the output side, two electric wires such as a parallel electric wire and a power line are connected to the first output terminal OUT1 and the second output terminal OUT2 of the noise removal filter 1, respectively. Also, the first output terminal OUT1 and the second output terminal OUT2 of the second noise removal filter 1 are connected to, for example, the input side of the inverter device, and the first input terminal IN1 of the noise removal filter 1 Two electric wires such as parallel electric wires connected to the solar panel are connected to the second input terminal IN2.
  • the noise elimination filter 1 to the input side and the output side of the inverter device that generates noise, the high frequency noise generated in the inverter device is applied to the electric wires and inverter devices connected to the solar panel. Radiation from the connected power line can be prevented as much as possible.
  • the Mn-Zn toroidal core used in the first choke coil CH1-1 and the third choke coil CH1-3 has an inner diameter of about 31 mm, a relative permeability ⁇ s of about 2500, and an electric wire of 22
  • the first choke coil CH1-1 and the third choke coil CH1-3 are wound around the turn.
  • the Ni-Zn toroidal core used in the second choke coil CH1-2 and the fourth choke coil CH1-4 has an inner diameter of about 27 mm and a relative permeability ⁇ s of about 800. Are wound 18 turns to form a second choke coil CH1-2 and a fourth choke coil CH1-4.
  • FIG. 10 shows the frequency characteristics of the attenuation amount up to 1 MHz of the noise elimination filter 1 of the first embodiment composed of the first choke coil CH1-1 to the fourth choke coil CH1-4 configured as described above.
  • FIG. 11 shows frequency characteristics of attenuation amounts up to 100 MHz by changing the scale. Referring to FIG. 10, the attenuation gradually increases up to about 0.8 MHz, and there is a peak of attenuation of about 44 dB around 0.8 MHz, and good attenuation characteristics are shown up to 1 MHz. Referring to FIG.
  • the noise removal filter 1 has an excellent low-frequency attenuation characteristic and an excellent high-frequency attenuation characteristic, and therefore has a wide bandwidth of about 0.5 MHz to about 90 MHz. A stable large attenuation can be obtained in the frequency band. In addition, high-frequency noise in all modes can be removed regardless of common mode or normal mode noise.
  • FIG. 9 shows a circuit diagram showing the configuration of the noise removal filter 2 of the second embodiment of the present invention.
  • the noise removal filter 2 of the second embodiment shown in FIG. 9 is a noise removal filter in the case of using three electric wires including ground wires such as parallel wires and power lines.
  • the noise removal filter 2 of the second embodiment is configured by winding an electric wire around an Mn-Zn toroidal core in order to remove high-frequency noise on the ground wire in the noise removal filter 1 of the first embodiment.
  • a third input terminal IN3 connected to the ground includes a fifth choke coil CH2-1 and a sixth choke coil CH2-2 formed by winding an electric wire around a Ni-Zn toroidal core.
  • the electric wire wound around the first choke coil CH1-1 to the sixth choke coil CH2-2 may be a single wire or a stranded wire.
  • the first choke coil CH1-1 to the sixth choke coil CH2-2 are accommodated in the shield case 20.
  • the first input terminal IN1 and the second input terminal IN2 of the first noise removal filter 2 are connected to, for example, an inverter device. Connected to the output side, the third input terminal IN3 is connected to the ground of the inverter device, and the first output terminal OUT1 and the second output terminal OUT2 of the noise elimination filter 2 are connected to two wires such as parallel wires and power lines. Are connected to each other, and a ground wire is connected to the third output terminal OUT3.
  • first output terminal OUT1 and the second output terminal OUT2 of the second noise elimination filter 2 are connected to, for example, the input side of the inverter device, and the third output terminal OUT3 is connected to the ground of the inverter device.
  • Two wires such as a parallel wire connected to the solar panel are connected to the first input terminal IN1 and the second input terminal IN2 of the noise removal filter 2, respectively, and a third input is connected.
  • a ground wire is connected to the terminal IN3.
  • the noise removal filter 1 of 1st Example is connected to the input side of an inverter apparatus, and a solar panel is connected with an electric line of two lines. Just connect.
  • the Mn-Zn toroidal core used in the first choke coil CH1-1, the third choke coil CH1-3, and the fifth choke coil CH2-1 has an inner diameter of about 31 mm and a relative magnetic permeability ⁇ s. Is about 2500, and the electric wire is wound for 22 turns to form the first choke coil CH1-1, the third choke coil CH1-3, and the fifth choke coil CH2-1.
  • the Ni-Zn toroidal core used for the second choke coil CH1-2, the fourth choke coil CH1-4, and the sixth choke coil CH2-2 has an inner diameter of about 27 mm and a specific permeability.
  • the magnetic susceptibility ⁇ s is about 800, and the second choke coil CH1-2, the fourth choke coil CH1-4, and the sixth choke coil CH2-2 are formed by winding the electric wire for 18 turns.
  • the noise removal filter 2 according to the second embodiment of the present invention configured as described above also has excellent low-frequency attenuation characteristics and excellent high-frequency attenuation characteristics. Therefore, the noise removal filter according to the first embodiment Similar to 1, a large stable attenuation can be obtained in a wide frequency band of about 0.5 MHz to about 90 MHz. In addition, high-frequency noise in all modes can be removed regardless of common mode or normal mode noise.
  • FIG. 12 shows a circuit diagram showing the configuration of the noise removal filter 3 of the third embodiment of the present invention.
  • the noise removal filter 3 of the third embodiment shown in FIG. 12 is a noise removal filter when two electric wires such as a parallel electric wire and a power line are used.
  • the noise removal filter 3 according to the third embodiment is the same as the noise removal filter 1 according to the first embodiment, but has a first low relative permeability that is excellent in low-frequency attenuation characteristics in series before the first choke coil CH1-1.
  • a fifth choke coil CH3-1 formed by winding an electric wire around an Mn-Zn toroidal core different from the choke coil CH1-1 is connected to the front of the third choke coil CH1-3.
  • a sixth choke coil CH3 constructed by winding an electric wire around a Mn-Zn toroidal core having a low low-frequency damping characteristic in series and having a relative permeability different from that of the third choke coil CH1-3. -2 is added, and the other configuration is the same as the noise removal filter 1 of the first embodiment.
  • the electric wire wound around the first choke coil CH1-1 to the sixth choke coil CH3-2 may be a single wire or a stranded wire.
  • the first choke coil CH 1-1 to the sixth choke coil CH 3-2 are accommodated in the shield case 30.
  • the method of using the noise removal filter 3 of the third embodiment described above is the same as that of the noise removal filter 1 of the first embodiment described above. Although detailed explanation is omitted, by connecting the noise removal filter 3 to the input side and the output side of the inverter device that generates noise, the high-frequency noise generated in the inverter device is connected to the solar panel. And radiation from a power line connected to the inverter device can be prevented as much as possible.
  • an example of a specific configuration of the noise removal filter 3 of the third embodiment will be described.
  • the Mn-Zn toroidal core used in the first choke coil CH1-1 and the third choke coil CH1-3 has an inner diameter of about 31 mm, a relative permeability ⁇ s of about 2500, and an electric wire of 22
  • the first choke coil CH1-1 and the third choke coil CH1-3 are wound around the turn.
  • the Ni-Zn toroidal core used in the second choke coil CH1-2 and the fourth choke coil CH1-4 has an inner diameter of about 27 mm and a relative permeability ⁇ s of about 800. Are wound 18 turns to form a second choke coil CH1-2 and a fourth choke coil CH1-4.
  • the Mn-Zn toroidal core used for the fifth choke coil CH3-1 and the sixth choke coil CH3-2 has an inner diameter of about 40 mm and a relative permeability ⁇ s of about 5000. Are wound 24 turns to form a fifth choke coil CH3-1 and a sixth choke coil CH3-2.
  • FIG. 14 shows the frequency characteristics of the attenuation amount up to 1 MHz of the noise elimination filter 3 of the third embodiment comprising the first choke coil CH1-1 to the sixth choke coil CH3-2 constructed as described above.
  • FIG. 15 shows frequency characteristics of attenuation amounts up to 100 MHz by changing the scale. Referring to FIG. 14, the amount of attenuation increases rapidly up to about 0.2 MHz, and an amount of attenuation of about 40 dB is obtained around 0.2 MHz. Further, as the frequency becomes higher, the amount of attenuation increases, and there is a peak of attenuation of about 51 dB around 0.8 MHz, showing good attenuation characteristics up to 1 MHz. Further, referring to FIG.
  • the noise removal filter 3 is excellent in low-frequency attenuation characteristics and excellent in high-frequency attenuation characteristics, and therefore has a wide band of about 0.2 MHz to about 100 MHz. A stable large attenuation can be obtained in the frequency band. In addition, high-frequency noise in all modes can be removed regardless of common mode or normal mode noise.
  • FIG. 13 shows a circuit diagram showing the configuration of the noise removal filter 4 of the fourth embodiment of the present invention.
  • the noise removal filter 4 of the second embodiment shown in FIG. 13 is a noise removal filter in the case of using three electric wires including ground wires such as parallel wires and power wires.
  • the noise removal filter 4 of the fourth embodiment is the same as the noise removal filter 2 of the second embodiment, but has a first low relative permeability with excellent low-frequency attenuation characteristics in series before the first choke coil CH1-1.
  • a seventh choke coil CH3-1 formed by winding an electric wire around an Mn-Zn toroidal core different from the choke coil CH1-1 is connected in front of the third choke coil CH1-3.
  • An eighth choke coil CH3 constructed by winding an electric wire around a Mn-Zn toroidal core having a low low-frequency damping characteristic in series and having a relative permeability different from that of the third choke coil CH1-3. -2 is connected, and the Mn-Zn toroidal core is different from the fifth choke coil CH2-1 in that the relative permeability is excellent in series with the low choke coil in front of the fifth choke coil CH2-1.
  • a choke coil CH3-3 ninth are added constructed Ri, other configurations are the same as the noise removal filter 2 of the second embodiment.
  • the electric wire wound around the first choke coil CH1-1 to the ninth choke coil CH3-3 may be a single wire or a stranded wire.
  • the first choke coil CH1-1 to the ninth choke coil CH3-3 are accommodated in the shield case 40.
  • the method of using the noise removal filter 4 of the fourth embodiment described above is the same as that of the noise removal filter 2 of the second embodiment described above. Although detailed description is omitted, by connecting the noise removal filter 4 to the input side and the output side of the inverter device that generates noise, high-frequency noise generated in the inverter device is connected to the solar panel. And radiation from a power line connected to the inverter device can be prevented as much as possible.
  • the noise removal filter 3 of the third embodiment is connected to the input side of the inverter device and the solar panel is connected with the two wires. Just connect.
  • the Mn-Zn toroidal core used in the first choke coil CH1-1, the third choke coil CH1-3, and the fifth choke coil CH2-1 has an inner diameter of about 31 mm and a relative magnetic permeability ⁇ s. Is about 2500, and the electric wire is wound for 22 turns to form the first choke coil CH1-1, the third choke coil CH1-3, and the fifth choke coil CH2-1.
  • the Ni-Zn toroidal core used for the second choke coil CH1-2, the fourth choke coil CH1-4, and the sixth choke coil CH2-2 has an inner diameter of about 27 mm and a specific permeability.
  • the magnetic susceptibility ⁇ s is about 800, and the second choke coil CH1-2, the fourth choke coil CH1-4, and the sixth choke coil CH2-2 are formed by winding the electric wire for 18 turns. Further, the Mn-Zn toroidal core used in the seventh choke coil CH3-1, the eighth choke coil CH3-2, and the ninth choke coil CH3-3 has an inner diameter of about 40 mm and a relative permeability.
  • the magnetic permeability ⁇ s is about 5000, and the electric wire is wound for 24 turns to form the seventh choke coil CH3-1, the eighth choke coil CH3-2, and the ninth choke coil CH3-3.
  • the noise removal filter 4 according to the fourth embodiment of the present invention configured as described above also has excellent low-frequency attenuation characteristics and excellent high-frequency attenuation characteristics.
  • the noise removal filter according to the third embodiment As in the case of 3, a large amount of attenuation that is stable in a wide frequency band of about 0.2 MHz to about 100 MHz can be obtained. In addition, high-frequency noise in all modes can be removed regardless of common mode or normal mode noise.
  • the specific resistance of the Mn-Zn ferrite is as small as 10 to several hundred ⁇ ⁇ cm.
  • the wire wound around the Mn-Zn toroidal core should be a wire with an insulating coating.
  • the specific resistance of Ni-Zn ferrite is as high as 10 5 ⁇ ⁇ cm or more, but in order to prevent short-circuiting between wound wires, the wire wound around the Ni-Zn toroidal core It is preferable to use an electric wire having a structure with an insulating coating.
  • a ring-shaped toroidal core is used.
  • the present invention is not limited to this, and a ring-shaped core having an elliptical or rectangular cross-sectional shape can be used.
  • the shape and dimension of the toroidal core and the number of turns of the electric wire described above are examples, and the present invention may be applied to the shape and size of another toroidal core and the number of turns of the electric wire.
  • the number of choke coils connected in series between the input / output terminals may be four or more.
  • at least one choke coil capable of obtaining an excellent attenuation in the high frequency region and at least one choke coil capable of obtaining an excellent attenuation in the low frequency region are connected in series.
  • it can be set as the common mode filter which removes only the noise of a common mode by winding a parallel wire around the toroidal core which shares the 1st and 2nd input / output terminals.
  • 1 noise removal filter 1 noise removal filter, 2 noise removal filter, 3 noise removal filter, 4 noise removal filter, 10 shield case, 20 shield case, 30 shield case, 40 shield case, 100 noise removal filter, 200 line filter, 300 line filter, 400 Line filter, 410 modem, 411 first choke coil, 412 second choke coil, 413 plug

Abstract

 低域の減衰特性が優れているMn-Zn系のトロイダルコアに電線を巻回した第1のチョークコイルCH1-1と、高域の減衰特性が優れているNi-Zn系のトロイダルコアに電線を巻回した第2のチョークコイルCH1-2とが、第1の入力端子IN1と第1の出力端子OUT1との間に直列接続されている。また、第1のトロイダルコイルCH1-1と同様の第3のチョークコイルCH1-3と、第2のトロイダルコイルCH1-2と同様の第4のチョークコイルCH1-4とが、第2の入力端子IN2と第2の出力端子OUT2との間に直列接続されている。これにより、低域から高域の広帯域の周波数帯域において安定した大きな減衰量を得ることができるので、高周波ノイズを効果的に除去することができるようになる。

Description

雑音除去フィルタ
 本発明は、少なくとも2本の電線上のコモンモードノイズを除去する雑音除去フィルタに関する。
 近年、ソーラーパネルが普及し、家庭内や工場内で消費する電力の補完や売電を目的とした利用が盛んに行われている。その際、ソーラーパネルによって発電される電力は直流であることから、これを商用電源と同じ電圧の交流電源に変換する目的で、パワーコンディショナと称するインバータ装置が設置されている。
 ところが、インバータ装置は直流をチョッパ回路で断続することにより、擬似的な正弦波を作り直流を交流に変換しているため、このチョッパ回路における直流の断続に伴い激しい高調波ノイズが発生する。この高周波ノイズは、インバータ装置からソーラーパネル側にも逆流し、インバータ装置とソーラーパネル間とを接続している電線をアンテナとして、空間に高レベルの高周波ノイズが輻射されてしまうようになる。そこで、インバータ装置の入出力部にラインフィルタを設けて高周波ノイズを低減することにより、不要輻射を防止する処置がとられている。
 ところで、一般的に電源線としては平行電線が使用されるので、その伝送モードは高周波回路の平衡モードに相当するノーマルモード(ディファレンシャルモード)となる。この場合、ノーマルモードの雑音成分に対しては、平行する電線間にキャパシタンスを挿入することにより比較的容易に雑音成分を抑圧することができる。しかし、高周波回路の不平衡モードに相当するコモンモードの雑音成分は抑圧することができない。また、ソーラーパネルで作られた直流電力を送る平行電線は高周波に対する考慮がされておらず、コモンモードに対しての考慮がされていない。このため、コモンモードのノイズが発生すると、ラインフィルタを設けても充分な減衰なしに空間へ放射され、雑音障害が生じていた。このように、コモンモードのノイズがアースの存在しない平行電線上、すなわちコモンモードにとっては不完全な線路上を伝搬するので、不要輻射が発生し易い状況となってしまっていた。
 高周波回路においてはコモンモードに相当する不平衡伝送時には、低域通過型フィルタ(LPF)を用いて通過周波数に対する高調波成分を低減させることができる。従来の基本的なLPF回路を図16(a)(b)に示す。図16(a)に示すLPF回路はπ型とされ、入力端子INと出力端子OUT間に直列にインダクタンスL201が接続され、インダクタンスL201の両端とアースとの間にそれぞれ並列にキャパシタンスC201,C202が接続されている。また、図16(b)に示すLPF回路はT型とされ、入力端子INと出力端子OUT間に直列にインダクタンスL202,L203が接続され、インダクタンスL202,L203の接続点とアースとの間に並列にキャパシタンスC203が接続されている。
 図16(a)(b)に示すLPF回路は、ラインフィルタとして用いることができ、図16(a)に示すπ型のLPF回路を用いた従来のラインフィルタ200の回路を図17に示す。図17に示すラインフィルタ200は、第1入力端子IN201と第1出力端子OUT201との間に直列にインダクタンスL210が接続され、インダクタンスL210の両端とアースEとの間にそれぞれ並列にキャパシタンスC210,C211が接続されている。また、第2入力端子IN202と第2出力端子OUT202との間に直列にインダクタンスL211が接続され、インダクタンスL211の両端とアースEとの間にそれぞれ並列にキャパシタンスC212,C213が接続されている。
 次に、図16(b)に示すT型のLPF回路を用いた従来のラインフィルタ300の回路を図18に示す。図18に示すラインフィルタ300は、第1入力端子IN301と第1出力端子OUT301との間に直列にインダクタンスL310,L311が接続され、インダクタンスL310,L311の接続点とアースEとの間に並列にキャパシタンスC310が接続されている。また、第2入力端子IN302と第2出力端子OUT302との間に直列にインダクタンスL312,L313が接続され、インダクタンスL312,L313の接続点とアースEとの間に並列にキャパシタンスC311が接続されている。
 図17に示すラインフィルタ200あるいは図18に示すラインフィルタ300は、平行電線等に接続されるが、平行電線の場合、コモンモードで必要となる明確なアース線が存在しないので、大地との間の浮遊容量等を介してのあいまいなアースが存在する事となる。このため、ラインフィルタ200,300において並列接続されているキャパシタンスにとってのアースEは不完全な状態となり、電気的に本来の機能を効果的に発揮出来ない状態となる。このため、コモンモードのノイズ成分に対してラインフィルタ200あるいはラインフィルタ300におけるキャパシタンスは効果的に高調波ノイズの減衰に寄与しないことになる。このため、ソーラーパネルとインバータ装置とを接続している平行電線に、ラインフィルタ200あるいはラインフィルタ300を接続してもインバータ装置から発せられた高調波ノイズが除去されずに、住宅に近接して主に短波帯域を用いて通信を行っているアマチュア無線局やAM・短波・FM帯のラジオ放送波等に対して電波障害が起こす事例が多発している。
 そこで、コモンモード電流を抑制するラインフィルタにおいて、チョークコイルのみを用いた図19に示すラインフィルタ400が従来提案されている。図19に示すラインフィルタ400は、モデム410に接続されて通信信号が伝送される電力線に挿入されている。この電力線の先端にはプラグ413が設けられており、プラグ413は屋内のコンセントに差し込まれる。ラインフィルタ400は、第1のチョークコイル411と第2のチョークコイル412が直列に接続されて構成されており、モデム410側に設けられている第1のチョークコイル411のインピーダンスを第2のチョークコイル412のインピーダンスより高くしている。このために、第1のチョークコイル411の巻き数を第2のチョークコイル412の巻き数より多くしている。
特開2006-166015号公報
 図19に示す従来のチョークコイルのみを用いたラインフィルタ400において、電力線側に設けたチョークコイル412のインピーダンスを低くしているのは、電力線とのインピーダンス不整合による悪影響を低減するためである。しかしながら、モデム410のインピーダンスは規定されていても、電力線におけるインピーダンスは規定されておらず、電力線のインピーダンスは電力線の配線状況によって大きく異なるようになる。このように、ラインフィルタ400を設置する場所毎に電力線のインピーダンスが異なることが一般的であることから、ラインフィルタ400を電力線に挿入しても電力線のインピーダンスの影響により、高周波ノイズが除去されない場合があるという問題点があった。
 また、ソーラーパネルおよびインバータ装置のインピーダンスも規定されていないことから、図19に示す従来のラインフィルタ400をソーラーパネルとインバータ装置とを接続する平行電線やインバータ装置の出力部に設けても、上記した理由により高周波ノイズを効果的に除去することができないという問題点があった。
 そこで、本発明は、高周波ノイズを効果的に除去することができる雑音除去フィルタを提供することを目的としている。
 本発明は、Mn-Zn系のトロイダルコアに導体線を巻回した少なくとも1つの第1のチョークコイルと、Ni-Zn系のトロイダルコアに導体線を巻回した少なくとも1つの第2のチョークコイルとの直列接続回路が入力端子と出力端子との間に接続されており、前記入力端子と前記出力端子との対が少なくとも2対とされていることを最も主要な特徴としている。
 本発明によれば、Mn-Zn系のトロイダルコアに導体線を巻回した第1のチョークコイルと、Ni-Zn系のトロイダルコアに導体線を巻回した第2のチョークコイルとを直列接続して雑音除去フィルタを構成したことから、低域から高域までの広帯域の周波数帯域において安定した大きな減衰量を得ることができる。
本発明にかかる雑音除去フィルタを発明するに至った経過を示すキャパシタンスを備えていない雑音除去フィルタの構成を示す回路図である。 図1に示す雑音除去フィルタにおいてMn-Zn系のトロイダルコアを用いたときの減衰量の周波数特性を示す図である。 図1に示す雑音除去フィルタにおいてMn-Zn系のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図である。 図1に示す雑音除去フィルタにおいてMn-Zn系の他の比透磁率のトロイダルコアを用いたときの減衰量の周波数特性を示す図である。 図1に示す雑音除去フィルタにおいてMn-Zn系の他の比透磁率のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図である。 図1に示す雑音除去フィルタにおいてNi-Zn系のトロイダルコアを用いたときの減衰量の周波数特性を示す図である。 図1に示す雑音除去フィルタにおいてNi-Zn系のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図である。 本発明の第1実施例の雑音除去フィルタの構成を示す回路図である。 本発明の第2実施例の雑音除去フィルタの構成を示す回路図である。 本発明の第1実施例の雑音除去フィルタの減衰量の周波数特性を示す図である。 本発明の第1実施例の雑音除去フィルタの減衰量の他の周波数特性を示す図である。 本発明の第3実施例の雑音除去フィルタの構成を示す回路図である。 本発明の第4実施例の雑音除去フィルタの構成を示す回路図である。 本発明の第3実施例の雑音除去フィルタの減衰量の周波数特性を示す図である。 本発明の第3実施例の雑音除去フィルタの減衰量の他の周波数特性を示す図である。 従来の基本的なLPF回路の構成を示す回路図である。 π型のLPF回路を用いた従来のラインフィルタの構成を示す回路図である。 T型のLPF回路を用いた従来のラインフィルタの構成を示す回路図である。 チョークコイルのみを用いた従来のラインフィルタの構成を示す回路図である。
 本発明にかかる雑音除去フィルタを発明するに至った経過を図1ないし図7に示す。図1はキャパシタンスを備えていない雑音除去フィルタの構成を示す回路図であり、図2は図1に示す雑音除去フィルタにおいてMn-Zn(マンガン・亜鉛)系の比透磁率μsが約5000のトロイダルコアを用いたときの減衰量の周波数特性を示す図であり、図3は図1に示す雑音除去フィルタにおいてMn-Zn系の比透磁率μsが約5000のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図であり、図4は図1に示す雑音除去フィルタにおいてMn-Zn系の比透磁率μsが約2500のトロイダルコアを用いたときの減衰量の周波数特性を示す図であり、図5は図1に示す雑音除去フィルタにおいてMn-Zn系の比透磁率μsが約2500のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図であり、図6は図1に示す雑音除去フィルタにおいてNi-Zn(ニッケル・亜鉛)系の比透磁率μsが約800のトロイダルコアを用いたときの減衰量の周波数特性を示す図であり、図7は図1に示す雑音除去フィルタにおいてNi-Zn系の比透磁率μsが約800のトロイダルコアを用いたときの減衰量の他の周波数特性を示す図である。
 図1に示す構成の雑音除去フィルタ100は、平行電線や電力線等の2本の電線を用いる場合の雑音除去フィルタとされている。雑音除去フィルタ100は、第1の入力端子IN1と第1の出力端子OUT1との間に接続された第1のチョークコイルCH1と、第2の入力端子IN2と第2の出力端子OUT2との間に接続された第2のチョークコイルCH2とから構成されている。第1のチョークコイルCH1および第2のチョークコイルCH2とはトロイダルコアに電線を巻回することにより構成されている。この電線は単線でも撚り線でも良い。この明細書で云うトロイダルコアとは、Mn-Zn系やNi-Zn系等の複合フェライトを高温でリング状に焼結したコアを意味している。
 このトロイダルコアをMn-Zn系として内径が約40ミリ、比透磁率μsが約5000のトロイダルコアに、電線を24ターン巻回して第1のチョークコイルCH1および第2のチョークコイルCH2を構成する。この第1のチョークコイルCH1および第2のチョークコイルCH2とからなる雑音除去フィルタ100の1MHzまでの減衰量の周波数特性が図2に示されており、スケールを変えて100MHzまでの減衰量の周波数特性が図3に示されている。図2を参照すると、0.3MHz周辺に約39dBの減衰量のピークがあり、1MHzまでは良好な減衰特性を示している。また、図3を参照すると、周波数が高くなるにつれて減衰量が低下していき、約40MHzにおける減衰量は約14dBまで低下するようになる。そして、40MHz以上の周波数においては次第に減衰量が増加して、約90MHzにおいてピークがあるものの約22dBの減衰量しか得られていない。このように、Mn-Zn系の比透磁率μsが約5000のトロイダルコアを用いた雑音除去フィルタ100は、低域の減衰特性に優れているものの、高域部は40MHz辺りで約14dBの減衰量しか得られず、高域において減衰特性が劣っていることが分かる。
 次に、トロイダルコアをMn-Zn系として内径が約31ミリ、比透磁率μsが約2500のトロイダルコアに、電線を22ターン巻回して第1のチョークコイルCH1および第2のチョークコイルCH2とを構成する。この第1のチョークコイルCH1および第2のチョークコイルCH2とからなる雑音除去フィルタ100の1MHzまでの減衰量の周波数特性が図4に示されており、スケールを変えて100MHzまでの減衰量の周波数特性が図5に示されている。図4を参照すると、0.8MHz周辺に約48dBの減衰量のピークがあり、1MHzまでは良好な減衰特性を示している。また、図5を参照すると、周波数が高くなるにつれて減衰量が低下していき、約35MHzにおける減衰量は約17dBまで低下し、約70MHzにおいても約16dBまで減衰量は低下してしまうようになる。そして、70MHz以上の周波数において次第に減衰量が増加して、約100MHzにおいてピークがあるものの約21dBの減衰量しか得られない。このように、Mn-Zn系の比透磁率μsが約2500のトロイダルコアを用いた雑音除去フィルタ100は、低域の減衰特性に優れているものの、高域部は70MHz辺りで約16dBの減衰量しか得られず、高域において減衰特性が劣っていることが分かる。
 次に、トロイダルコアをNi-Zn系として内径が約27ミリ、比透磁率μsが約800のトロイダルコアに、電線を18ターン巻回して第1のチョークコイルCH1および第2のチョークコイルCH2とを構成する。この第1のチョークコイルCH1および第2のチョークコイルCH2とからなる雑音除去フィルタ100の1MHzまでの減衰量の周波数特性が図6に示されており、スケールを変えて100MHzまでの減衰量の周波数特性が図7に示されている。図6を参照すると、次第に減衰量が増加するが、1MHz周辺において約23dBの減衰量しか得られておらず、1MHzまで減衰特性は劣っている。また、図7を参照すると、周波数が高くなるにつれて減衰量が増加していき、約35MHz周辺における減衰量は約46dBまで増加する。この場合、約7MHzないし約55MHzの広帯域に渡り40dB以上の減衰量が得られるようになる。そして、60MHz以上の周波数において次第に減衰量は低下して、約95MHzにおいて約12dBの減衰量しか得られないようになる。このように、Ni-Zn系の比透磁率μsが約800のトロイダルコアを用いた雑音除去フィルタ100は、高域の減衰特性に優れているものの、低域部は約20dB前後の減衰量しか得られず、低域において減衰特性が劣っていることが分かる。
 以上のように、Mn-Zn系のトロイダルコアとNi-Zn系のトロイダルコアとでは、減衰量の周波数特性が異なることの知見を得たことからなし得た本発明の第1実施例の雑音除去フィルタ1の構成を示す回路図を図8に示す。
 図8に示す第1実施例の雑音除去フィルタ1は、平行電線や電力線等の2本の電線を用いる場合の雑音除去フィルタとされている。第1実施例の雑音除去フィルタ1は、低域の減衰特性が優れているMn-Zn系のトロイダルコアに電線を巻回することにより構成された第1のチョークコイルCH1-1と、高域の減衰特性が優れているNi-Zn系のトロイダルコアに電線を巻回することにより構成された第2のチョークコイルCH1-2とが直列に接続されて第1の入力端子IN1と第1の出力端子OUT1との間に接続されている。また、低域の減衰特性が優れているMn-Zn系のトロイダルコアに電線を巻回することにより構成された第3のチョークコイルCH1-3と、高域の減衰特性が優れているNi-Zn系のトロイダルコアに電線を巻回することにより構成された第4のチョークコイルCH1-4とが直列に接続されて第2の入力端子IN2と第2の出力端子OUT2との間に接続されている。第1のチョークコイルCH1-1ないし第4のチョークコイルCH1-4に巻回されている電線は、単線でも撚り線でも良い。この第1のチョークコイルCH1-1ないし第4のチョークコイルCH1-4はシールドケース10内に収納されている。
 上記説明した第1実施例の雑音除去フィルタ1の使用方法の一例を説明すると、1台目の雑音除去フィルタ1の第1の入力端子IN1と第2の入力端子IN2とが、例えばインバータ装置の出力側に接続され、この雑音除去フィルタ1の第1の出力端子OUT1と第2の出力端子OUT2に平行電線や電力線等の2本の電線がそれぞれ接続される。また、2台目の雑音除去フィルタ1の第1の出力端子OUT1と第2の出力端子OUT2とが、例えばインバータ装置の入力側に接続され、この雑音除去フィルタ1の第1の入力端子IN1と第2の入力端子IN2に、ソーラーパネルに接続されている平行電線等の2本の電線がそれぞれ接続される。このように、雑音を発生するインバータ装置の入力側と出力側にそれぞれ雑音除去フィルタ1を接続することにより、インバータ装置において発生された高周波雑音が、ソーラーパネルに接続されている電線やインバータ装置に接続されている電力線から放射されることを極力防止することができる。
 ここで、第1実施例の雑音除去フィルタ1の具体的構成の一例を説明する。第1のチョークコイルCH1-1および第3のチョークコイルCH1-3に使用されているMn-Zn系のトロイダルコアは、内径が約31ミリ、比透磁率μsが約2500であり、電線を22ターン巻回して第1のチョークコイルCH1-1および第3のチョークコイルCH1-3を構成する。また、第2のチョークコイルCH1-2および第4のチョークコイルCH1-4に使用されているNi-Zn系のトロイダルコアは、内径が約27ミリ、比透磁率μsが約800であり、電線を18ターン巻回して第2のチョークコイルCH1-2および第4のチョークコイルCH1-4を構成する。
 このように構成した第1のチョークコイルCH1-1ないし第4のチョークコイルCH1-4からなる第1実施例の雑音除去フィルタ1の1MHzまでの減衰量の周波数特性が図10に示されており、スケールを変えて100MHzまでの減衰量の周波数特性が図11に示されている。図10を参照すると、約0.8MHzまでは次第に減衰量が増加していき、0.8MHz周辺に約44dBの減衰量のピークがあり、1MHzまでは良好な減衰特性を示している。また、図11を参照すると、2,3MHz近辺において減衰量は約35dBまで低下するものの、それ以上の周波数において減衰量は増加していき約35MHz周辺における減衰量は約58dBまで増加する。この場合、約4MHzないし約75MHzの広帯域に渡り40dB以上の減衰量が得られるようになる。そして、80MHz以上の周波数において次第に減衰量は低下して、約95MHzにおいて約25dBの減衰量まで低下するようになる。このように、本発明の第1実施例の雑音除去フィルタ1は、低域の減衰特性が優れていると共に、高域の減衰特性も優れていることから、約0.5MHz~約90MHzの広帯域の周波数帯域において安定した大きな減衰量を得ることができる。また、コモンモードやノーマルモードの雑音によらず、全てのモードの高周波雑音を除去することができる。
 次に、本発明の第2実施例の雑音除去フィルタ2の構成を示す回路図を図9に示す。
 図9に示す第2実施例の雑音除去フィルタ2は、平行電線や電力線等のアース線を含む3本の電線を用いる場合の雑音除去フィルタとされている。第2実施例の雑音除去フィルタ2は、第1実施例の雑音除去フィルタ1に、アース線上の高周波雑音を除去するためにMn-Zn系のトロイダルコアに電線を巻回することにより構成された第5のチョークコイルCH2-1と、Ni-Zn系のトロイダルコアに電線を巻回することにより構成された第6のチョークコイルCH2-2とを、アースに接続される第3の入力端子IN3と第3の出力端子OUT3との間に直列接続した構成が付加されており、他の構成は第1実施例の雑音除去フィルタ1と同様とされている。第1のチョークコイルCH1-1ないし第6のチョークコイルCH2-2に巻回されている電線は、単線でも撚り線でも良い。この第1のチョークコイルCH1-1ないし第6のチョークコイルCH2-2はシールドケース20内に収納されている。
 上記説明した第2実施例の雑音除去フィルタ2の使用方法の一例を説明すると、1台目の雑音除去フィルタ2の第1の入力端子IN1と第2の入力端子IN2とが、例えばインバータ装置の出力側に接続されると共に第3の入力端子IN3がインバータ装置のアースに接続され、この雑音除去フィルタ2の第1の出力端子OUT1と第2の出力端子OUT2に平行電線や電力線等の2本の電線がそれぞれ接続されると共に、第3の出力端子OUT3にアース線が接続される。また、2台目の雑音除去フィルタ2の第1の出力端子OUT1と第2の出力端子OUT2とが、例えばインバータ装置の入力側に接続されると共に第3の出力端子OUT3がインバータ装置のアースに接続され、この雑音除去フィルタ2の第1の入力端子IN1と第2の入力端子IN2に、ソーラーパネルに接続されている平行電線等の2本の電線がそれぞれ接続されると共に、第3の入力端子IN3にアース線が接続される。このように、雑音を発生するインバータ装置の入力側と出力側にそれぞれ雑音除去フィルタ2を接続することにより、インバータ装置において発生された高周波雑音が、ソーラーパネルに接続されている電線やインバータ装置に接続されている電力線から放射されることを極力防止することができる。なお、ソーラーパネルとインバータ装置とを接続する電線が2線でアース線がない場合は、インバータ装置の入力側に第1実施例の雑音除去フィルタ1を接続して2線の電線でソーラーパネルと接続すればよい。
 ここで、第2実施例の雑音除去フィルタ2の具体的構成の一例を説明する。第1のチョークコイルCH1-1、第3のチョークコイルCH1-3および第5のチョークコイルCH2-1に使用されているMn-Zn系のトロイダルコアは、内径が約31ミリ、比透磁率μsが約2500であり、電線を22ターン巻回して第1のチョークコイルCH1-1、第3のチョークコイルCH1-3および第5のチョークコイルCH2-1を構成する。また、第2のチョークコイルCH1-2、第4のチョークコイルCH1-4および第6のチョークコイルCH2-2に使用されているNi-Zn系のトロイダルコアは、内径が約27ミリ、比透磁率μsが約800であり、電線を18ターン巻回して第2のチョークコイルCH1-2、第4のチョークコイルCH1-4および第6のチョークコイルCH2-2を構成する。
 このように構成した本発明の第2実施例の雑音除去フィルタ2も、低域の減衰特性が優れていると共に、高域の減衰特性も優れていることから、第1実施例の雑音除去フィルタ1と同様に、約0.5MHz~約90MHzの広帯域の周波数帯域において安定した大きな減衰量を得ることができる。また、コモンモードやノーマルモードの雑音によらず、全てのモードの高周波雑音を除去することができる。
 次に、本発明の第3実施例の雑音除去フィルタ3の構成を示す回路図を図12に示す。
 図12に示す第3実施例の雑音除去フィルタ3は、平行電線や電力線等の2本の電線を用いる場合の雑音除去フィルタとされている。第3実施例の雑音除去フィルタ3は、第1実施例の雑音除去フィルタ1において、第1のチョークコイルCH1-1の前に直列に低域の減衰特性が優れている比透磁率が第1のチョークコイルCH1-1とは異なるMn-Zn系のトロイダルコアに電線を巻回することにより構成された第5のチョークコイルCH3-1を接続し、第3のチョークコイルCH1-3の前に直列に低域の減衰特性が優れている比透磁率が第3のチョークコイルCH1-3とは異なるMn-Zn系のトロイダルコアに電線を巻回することにより構成された第6のチョークコイルCH3-2を接続した構成が付加されており、他の構成は第1実施例の雑音除去フィルタ1と同様とされている。なお、第1のチョークコイルCH1-1ないし第6のチョークコイルCH3-2に巻回されている電線は、単線でも撚り線でも良い。この第1のチョークコイルCH1-1ないし第6のチョークコイルCH3-2はシールドケース30内に収納されている。
 上記説明した第3実施例の雑音除去フィルタ3の使用方法は、上記した第1実施例の雑音除去フィルタ1と同様とされる。詳細な説明は省略するが、雑音を発生するインバータ装置の入力側と出力側にそれぞれ雑音除去フィルタ3を接続することにより、インバータ装置において発生された高周波雑音が、ソーラーパネルに接続されている電線やインバータ装置に接続されている電力線から放射されることを極力防止することができる。
 ここで、第3実施例の雑音除去フィルタ3の具体的構成の一例を説明する。第1のチョークコイルCH1-1および第3のチョークコイルCH1-3に使用されているMn-Zn系のトロイダルコアは、内径が約31ミリ、比透磁率μsが約2500であり、電線を22ターン巻回して第1のチョークコイルCH1-1および第3のチョークコイルCH1-3を構成する。また、第2のチョークコイルCH1-2および第4のチョークコイルCH1-4に使用されているNi-Zn系のトロイダルコアは、内径が約27ミリ、比透磁率μsが約800であり、電線を18ターン巻回して第2のチョークコイルCH1-2および第4のチョークコイルCH1-4を構成する。さらに、第5のチョークコイルCH3-1および第6のチョークコイルCH3-2に使用されているMn-Zn系のトロイダルコアは、内径が約40ミリ、比透磁率μsが約5000であり、電線を24ターン巻回して第5のチョークコイルCH3-1および第6のチョークコイルCH3-2を構成する。
 このように構成した第1のチョークコイルCH1-1ないし第6のチョークコイルCH3-2からなる第3実施例の雑音除去フィルタ3の1MHzまでの減衰量の周波数特性が図14に示されており、スケールを変えて100MHzまでの減衰量の周波数特性が図15に示されている。図14を参照すると、約0.2MHzまでは急激に減衰量が増加していき、0.2MHz周辺において約40dBの減衰量が得られている。さらに周波数が高くなるにつれて減衰量は増加していき、0.8MHz周辺に約51dBの減衰量のピークがあり、1MHzまでは良好な減衰特性を示している。また、図14を参照すると、2,3MHz近辺において減衰量は約42dBまで低下するものの、それ以上の周波数において減衰量は増加していき約30MHz周辺における減衰量は約70dBまで増加する。30MHzを超えると減衰量は緩やかに低下していくが、100MHzまでは約49dB以上の減衰量が得られている。そして、約0.2MHzないし約100MHzの広帯域に渡り40dB以上の減衰量が得られるようになる。このように、本発明の第3実施例の雑音除去フィルタ3は、低域の減衰特性が優れていると共に、高域の減衰特性も優れていることから、約0.2MHz~約100MHzの広帯域の周波数帯域において安定した大きな減衰量を得ることができる。また、コモンモードやノーマルモードの雑音によらず、全てのモードの高周波雑音を除去することができる。
 次に、本発明の第4実施例の雑音除去フィルタ4の構成を示す回路図を図13に示す。
 図13に示す第2実施例の雑音除去フィルタ4は、平行電線や電力線等のアース線を含む3本の電線を用いる場合の雑音除去フィルタとされている。第4実施例の雑音除去フィルタ4は、第2実施例の雑音除去フィルタ2において、第1のチョークコイルCH1-1の前に直列に低域の減衰特性が優れている比透磁率が第1のチョークコイルCH1-1とは異なるMn-Zn系のトロイダルコアに電線を巻回することにより構成された第7のチョークコイルCH3-1を接続し、第3のチョークコイルCH1-3の前に直列に低域の減衰特性が優れている比透磁率が第3のチョークコイルCH1-3とは異なるMn-Zn系のトロイダルコアに電線を巻回することにより構成された第8のチョークコイルCH3-2を接続し、第5のチョークコイルCH2-1の前に直列に低域の減衰特性が優れている比透磁率が第5のチョークコイルCH2-1とは異なるMn-Zn系のトロイダルコアに電線を巻回することにより構成された第9のチョークコイルCH3-3を接続した構成が付加されており、他の構成は第2実施例の雑音除去フィルタ2と同様とされている。なお、第1のチョークコイルCH1-1ないし第9のチョークコイルCH3-3に巻回されている電線は、単線でも撚り線でも良い。この第1のチョークコイルCH1-1ないし第9のチョークコイルCH3-3はシールドケース40内に収納されている。
 上記説明した第4実施例の雑音除去フィルタ4の使用方法は、上記した第2実施例の雑音除去フィルタ2と同様とされる。詳細な説明は省略するが、雑音を発生するインバータ装置の入力側と出力側にそれぞれ雑音除去フィルタ4を接続することにより、インバータ装置において発生された高周波雑音が、ソーラーパネルに接続されている電線やインバータ装置に接続されている電力線から放射されることを極力防止することができる。なお、ソーラーパネルとインバータ装置とを接続する電線が2線でアース線がない場合は、インバータ装置の入力側に第3実施例の雑音除去フィルタ3を接続して2線の電線でソーラーパネルと接続すればよい。
 ここで、第4実施例の雑音除去フィルタ4の具体的構成の一例を説明する。第1のチョークコイルCH1-1、第3のチョークコイルCH1-3および第5のチョークコイルCH2-1に使用されているMn-Zn系のトロイダルコアは、内径が約31ミリ、比透磁率μsが約2500であり、電線を22ターン巻回して第1のチョークコイルCH1-1、第3のチョークコイルCH1-3および第5のチョークコイルCH2-1を構成する。また、第2のチョークコイルCH1-2、第4のチョークコイルCH1-4および第6のチョークコイルCH2-2に使用されているNi-Zn系のトロイダルコアは、内径が約27ミリ、比透磁率μsが約800であり、電線を18ターン巻回して第2のチョークコイルCH1-2、第4のチョークコイルCH1-4および第6のチョークコイルCH2-2を構成する。さらに、第7のチョークコイルCH3-1、第8のチョークコイルCH3-2および第9のチョークコイルCH3-3に使用されているMn-Zn系のトロイダルコアは、内径が約40ミリ、比透磁率μsが約5000であり、電線を24ターン巻回して第7のチョークコイルCH3-1、第8のチョークコイルCH3-2および第9のチョークコイルCH3-3を構成する。
 このように構成した本発明の第4実施例の雑音除去フィルタ4も、低域の減衰特性が優れていると共に、高域の減衰特性も優れていることから、第3実施例の雑音除去フィルタ3と同様に、約0.2MHz~約100MHzの広帯域の周波数帯域において安定した大きな減衰量を得ることができる。また、コモンモードやノーマルモードの雑音によらず、全てのモードの高周波雑音を除去することができる。
 以上説明した本発明にかかる雑音除去フィルタにおいて、Mn-Zn系のトロイダルコアに電線を巻回する場合は、Mn-Zn系のフェライトの比抵抗が10~数百Ω・cmと小さいことから、Mn-Zn系のトロイダルコアに巻回する電線には絶縁被覆を施した構造の電線を用いるようにする。また、Ni-Zn系のフェライトの比抵抗は10Ω・cm以上と非常に高いが、巻回した電線同士の短絡を防止するためにNi-Zn系のトロイダルコアに巻回する電線には、絶縁被覆を施した構造の電線を用いることが好適とされる。
 さらに、上記の説明ではリング状のトロイダルコアを用いるようにしたが、本発明はこれに限ることはなく、断面形状が楕円形や矩形のリング状のコアを用いることができる。また、上記説明したトロイダルコアの形状や寸法、及び電線の巻き数は一例であり、本発明は他のトロイダルコアの形状や寸法、及び電線の巻き数としても良い。さらに、入出力端子間に直列接続するチョークコイルの数を4以上としても良い。この場合、高域において優れた減衰量を得ることができるチョークコイルを少なくとも一つと、低域において優れた減衰量を得ることができるチョークコイルを少なくとも一つを直列接続する。
 なお、平行電線を第1,2の入出力端子共用のトロイダルコアに巻回することにより、コモンモードの雑音のみを除去するコモンモードフィルタとすることができる。
1 雑音除去フィルタ、2 雑音除去フィルタ、3 雑音除去フィルタ、4 雑音除去フィルタ、10 シールドケース、20 シールドケース、30 シールドケース、40 シールドケース、100 雑音除去フィルタ、200 ラインフィルタ、300 ラインフィルタ、400 ラインフィルタ、410 モデム、411 第1のチョークコイル、412 第2のチョークコイル、413 プラグ

Claims (2)

  1.  Mn-Zn系のトロイダルコアに導体線を巻回した少なくとも1つの第1のチョークコイルと、Ni-Zn系のトロイダルコアに導体線を巻回した少なくとも1つの第2のチョークコイルとの直列接続回路が入力端子と出力端子との間に接続されており、
     前記入力端子と前記出力端子との対が少なくとも2対とされていることを特徴とする雑音除去フィルタ。
  2.  Mn-Zn系の比透磁率が相互に異なる2つのトロイダルコアにそれぞれ導体線を巻回した2つの第1のチョークコイルと、Ni-Zn系のトロイダルコアに導体線を巻回した第2のチョークコイルとの直列接続回路が、入力端子と出力端子との間に接続されており、
     前記入力端子と前記出力端子との対が少なくとも2対とされていることを特徴とする雑音除去フィルタ。
PCT/JP2011/064744 2010-10-15 2011-06-28 雑音除去フィルタ WO2012049890A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-232647 2010-10-15
JP2010232647A JP2012089924A (ja) 2010-10-15 2010-10-15 雑音除去フィルタ

Publications (1)

Publication Number Publication Date
WO2012049890A1 true WO2012049890A1 (ja) 2012-04-19

Family

ID=45938126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064744 WO2012049890A1 (ja) 2010-10-15 2011-06-28 雑音除去フィルタ

Country Status (3)

Country Link
JP (1) JP2012089924A (ja)
TW (1) TW201230672A (ja)
WO (1) WO2012049890A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027374B2 (ja) * 2012-09-12 2016-11-16 東京エレクトロン株式会社 プラズマ処理装置及びフィルタユニット
JP2014160704A (ja) * 2013-02-19 2014-09-04 Honda Motor Co Ltd コイル構造および電子機器
US9780974B2 (en) * 2014-04-09 2017-10-03 Linear Technology Corporation Broadband power coupling/decoupling network for PoDL
JP2017005572A (ja) * 2015-06-12 2017-01-05 Necトーキン株式会社 ノイズフィルタ、多段接続lcフィルタ及び医療用機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229514A (ja) * 1984-04-27 1985-11-14 Nippon Ferrite Ltd ラインフイルタ
JPS61187409A (ja) * 1985-02-15 1986-08-21 Nippon Ferrite Ltd ノイズフイルタ
JPH0577921U (ja) * 1992-03-26 1993-10-22 株式会社トーキン ノイズ防止用チョークコイル

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230417A (ja) * 1985-04-03 1986-10-14 Nippon Ferrite Ltd ノイズフイルタ
JPH06233521A (ja) * 1993-01-29 1994-08-19 Yokogawa Electric Corp ノイズフィルタ回路
JPH06236822A (ja) * 1993-02-09 1994-08-23 Yokogawa Electric Corp ノイズフィルタ回路
JP3163853B2 (ja) * 1993-06-30 2001-05-08 三菱電機株式会社 ノイズフィルター
JP2006100465A (ja) * 2004-09-29 2006-04-13 Tdk Corp コイル及びこれを用いたフィルタ回路
JP2009238895A (ja) * 2008-03-26 2009-10-15 Hitachi Metals Ltd コモンモードフィルタ
JP2010074020A (ja) * 2008-09-22 2010-04-02 Nec Tokin Corp インダクタンス素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60229514A (ja) * 1984-04-27 1985-11-14 Nippon Ferrite Ltd ラインフイルタ
JPS61187409A (ja) * 1985-02-15 1986-08-21 Nippon Ferrite Ltd ノイズフイルタ
JPH0577921U (ja) * 1992-03-26 1993-10-22 株式会社トーキン ノイズ防止用チョークコイル

Also Published As

Publication number Publication date
TW201230672A (en) 2012-07-16
JP2012089924A (ja) 2012-05-10

Similar Documents

Publication Publication Date Title
US7199692B2 (en) Noise suppressor
US7459995B2 (en) Noise suppression circuit
WO2014034373A1 (ja) フィルタ装置
JP5697238B2 (ja) ワイヤハーネス
WO2012049890A1 (ja) 雑音除去フィルタ
JP2014160704A (ja) コイル構造および電子機器
TW200404419A (en) Common-mode signal suppressing circuit and normal-mode signal suppressing circuit
JP2011071710A (ja) コモンモードフィルタ
JP4729455B2 (ja) フィルタ回路
US11949536B2 (en) Transferring digital subscriber connection signals via a coaxial cable
KR101360917B1 (ko) 고주파 저역통과여파기
JP6210464B2 (ja) 電気回路
CN101677232B (zh) 可消除谐波的带阻滤波器及其相关卫星信号接收机
US9048547B2 (en) Air loop antenna for shared AM/FM
TWM612524U (zh) 混成式電感裝置
JP2007104205A (ja) 電力線通信装置
CN203968115U (zh) 一种emc辅助测试电路及emc测试系统
JP6071294B2 (ja) 差動伝送回路およびプリント回路板
JP3185317U (ja) ネットワーク信号のカップリング及び電磁干渉防止回路
JP2005073208A (ja) 電力線通信ユニットおよびカプラ回路
RU99258U1 (ru) Фильтр нижних частот коротковолнового передатчика
CN216437057U (zh) 一种能对电力线进行信息泄漏抑制的电源滤波电路
JP2013157708A (ja) 電力線通信用インターフェイス回路
TWI749890B (zh) 混成式電感裝置
KR20170109484A (ko) 네트워크 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832332

Country of ref document: EP

Kind code of ref document: A1