WO2012049801A1 - 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ - Google Patents
赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ Download PDFInfo
- Publication number
- WO2012049801A1 WO2012049801A1 PCT/JP2011/004898 JP2011004898W WO2012049801A1 WO 2012049801 A1 WO2012049801 A1 WO 2012049801A1 JP 2011004898 W JP2011004898 W JP 2011004898W WO 2012049801 A1 WO2012049801 A1 WO 2012049801A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- infrared sensor
- cnt
- thin film
- sensor material
- infrared
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000010409 thin film Substances 0.000 claims abstract description 67
- 238000000137 annealing Methods 0.000 claims abstract description 33
- 239000006185 dispersion Substances 0.000 claims abstract description 16
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 239000002994 raw material Substances 0.000 claims abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 22
- 239000002041 carbon nanotube Substances 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 11
- 239000002109 single walled nanotube Substances 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 claims 11
- 238000002360 preparation method Methods 0.000 claims 1
- 238000000151 deposition Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 21
- 239000000758 substrate Substances 0.000 description 16
- 239000010408 film Substances 0.000 description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000003331 infrared imaging Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- -1 acetone Chemical compound 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 238000003852 thin film production method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0853—Optical arrangements having infrared absorbers other than the usual absorber layers deposited on infrared detectors like bolometers, wherein the heat propagation between the absorber and the detecting element occurs within a solid
Definitions
- the present invention relates to a method for producing an infrared sensor material suitable for a bolometer material used in an uncooled infrared sensor, an infrared sensor material produced by this production method, an infrared sensor element using this infrared material, and using this infrared sensor element Infrared image sensor.
- All materials emit infrared rays derived from the temperature of the material.
- the element that detects the infrared rays and detects the temperature of the observation target is generally called an infrared sensor.
- Such an infrared sensor arrayed at a micro level is used for infrared imaging technology.
- infrared imaging technology By using infrared imaging technology, the temperature of the observation target can be imaged, so video can be taken even in a dark field such as at night. Therefore, infrared imaging technology has become an essential technology for security cameras and surveillance cameras. In recent years, infrared imaging technology has attracted attention as an application for discriminating people who are fever-caused by influenza.
- Infrared rays is a general term for electromagnetic waves having a longer wavelength range than visible light. Near-infrared ( ⁇ about 3 ⁇ m), mid-infrared (about 3-8 ⁇ m), far-infrared (about 8-14 ⁇ m), etc. are the wavelength ranges applied in infrared sensors.
- Far-infrared rays are particularly important as infrared sensors for observing human living environments because they are less absorbed by the atmosphere and far-infrared rays radiated by human body temperature are centered at 10 ⁇ m.
- Quantum infrared sensors using HgCdTe as a sensor material are widely used as infrared sensor materials. However, since the quantum infrared sensor needs to cool the element temperature to at least the liquid nitrogen temperature (77 K), a cooling device for cooling the device is necessary. Therefore, the quantum infrared sensor has a limitation in downsizing the device.
- a bolometer is widely used as uncooled infrared sensors.
- the bolometer is based on the principle of detecting a change in electrical resistance accompanying a temperature change of the element.
- a material in which vanadium oxide (hereinafter abbreviated as VOx), amorphous Si, or the like is formed into a thin film has been commercialized.
- TCR resistance temperature coefficient
- TCR is a negative value.
- Patent Document 1 VOx used in uncooled bolometers has a TCR exceeding about ⁇ 4% / K at room temperature.
- the product level that is mass-produced is -1.5% / K.
- Amorphous Si is advantageous in productivity because the manufacturing process can be simplified.
- SWNT thin films disclosed in Patent Document 1 include those obtained by forming CNTs dispersed in a solvent by suction filtration, and those formed by using a stainless mesh as a base material in that case. In particular, the latter has been reported to exhibit a large TCR.
- Patent Document 3 An attempt to change the properties of the CNT thin film has been presented such as annealing the CNT thin film (Patent Document 3).
- Patent Document 3 a polymer is mixed in the CNT thin film, and the effect that the properties of the polymer change by annealing is utilized.
- the CNT thin film presented in Patent Document 3 is used as a conductive thin film, and is not mentioned as being used as an infrared sensor material.
- CNT has good dispersibility in a solvent such as dichloroethane having high volatility
- a process with relatively good productivity such as a spin coating method, a coating method, and a printing method can be used. Therefore, CNT does not necessarily require a large process facility such as a silicon process.
- VOx As a conventional infrared sensor material, materials such as VOx are prevalent. However, since the film formation of VOx is not necessarily consistent with the silicon process, it is a factor that lowers the productivity of the infrared sensor.
- amorphous silicon and the like are also widely used as infrared sensor materials.
- silicon process since it is necessary to use a silicon process, there is a problem that it is difficult to improve productivity beyond a certain level.
- the TCR of the CNT thin film shown in Patent Document 1 is highly temperature dependent, and is sufficient to obtain a sufficient TCR for the first time near the temperature of liquid nitrogen. Therefore, the CNT thin film shown in Patent Document 1 has a problem that a sufficient TCR cannot be obtained at room temperature.
- Patent Document 2 since a band gap depending on the diameter of SWNT is used, it is necessary to lower the temperature like a quantum infrared sensor such as HgCdTe. Therefore, the principle presented in Patent Document 2 is not suitable for use near room temperature.
- the present invention has been made in view of the problems as described above, and can be produced with better productivity than before by annealing a CNT thin film that can be produced with relatively good productivity at a relatively low temperature.
- a method for producing an infrared sensor material is provided.
- the method for producing the infrared sensor material of the present invention comprises producing a CNT dispersion by dispersing CNT in a solvent, forming a CNT thin film using the produced CNT dispersion as a raw material, and annealing the formed CNT thin film
- the step of setting the absolute value of the temperature coefficient of resistance at ⁇ 10 to 50 ° C. to 1% / K or more is included.
- the infrared sensor material of the present invention is manufactured by the manufacturing method of the present invention, and the absolute value of the temperature coefficient of resistance is 1% / K or more.
- the infrared sensor material of the present invention includes a CNT thin film having an absolute value of a resistance temperature coefficient at ⁇ 10 to 50 ° C. of 1% / K or more.
- the infrared sensor element of the present invention uses the infrared sensor material of the present invention.
- the infrared sensor elements of the present invention are arranged two-dimensionally.
- the process productivity can be improved because the CNTs that are relatively easy to form may be thinned.
- an infrared sensor material having a sufficiently large TCR can be obtained by annealing at a relatively low temperature of 300 ° C. or lower.
- an infrared sensor material having an absolute value of TCR at ⁇ 10 to 50 ° C. exceeding 1% / K can be obtained. Taking advantage of these advantages, it is not always necessary to use a silicon substrate. For example, it is possible to produce an infrared sensor with good productivity using a plastic substrate such as a polyimide substrate.
- FIG. 3 is a plan view of one element and a cross-sectional view taken along line AA ′ in the infrared sensor according to the embodiment of the present invention. It is a top view of an infrared sensor. It is a flow of a manufacturing process of a CNT thin film. It is a surface SEM image of a CNT thin film. It is the graph which showed the annealing temperature dependence of TCR of a CNT thin film. It is the graph which showed the annealing temperature dependence of the electrical resistance of a CNT thin film.
- a CNT dispersion is prepared by dispersing CNTs in a solvent, a CNT thin film is formed using the prepared CNT dispersion as a raw material, and the formed CNT thin film is annealed.
- the process productivity can be improved because the CNTs that are relatively easy to form may be thinned. Also, an infrared sensor material having a sufficiently large TCR can be obtained by annealing at a relatively low temperature of 300 ° C. or lower.
- an infrared sensor material having an absolute value of TCR exceeding 1% / K can be obtained.
- a silicon substrate it is not always necessary to use a silicon substrate.
- an infrared sensor can be manufactured with good productivity using a plastic substrate such as a polyimide substrate. This will be described in more detail below.
- the CNT dispersion can be obtained by dispersing CNT (SWNT) in an appropriate solvent.
- the solvent for example, 1,2-dichloroethane (hereinafter referred to as dichloroethane) is suitable.
- the solvent is not limited to those mentioned here, and those having high CNT dispersibility and high volatility are suitable.
- examples of such solvents include organic solvents such as DMF (N, N-dimethylformamide), alcohol solvents such as methanol, ethanol, and IPA (Isopropyl Alcohol), ketone solvents such as acetone, and polar substances such as water. Solvents can be used.
- a spin coating method As a thin film manufacturing method, a spin coating method, a dropping method, a printing method, or the like can be used. In forming the film, it is desirable to perform the dropping once, but the film may be dropped a plurality of times in order to obtain a predetermined film thickness.
- the film formation method is not limited to the method described here, and other methods may be used.
- the lower limit temperature some effect is observed even at 150 ° C. annealing, and the resistance temperature coefficient increases further at 200 ° C. and 240 ° C.
- the upper limit temperature if the temperature exceeds 300 ° C., the CNTs themselves are burned out. Therefore, the upper limit value is lowered corresponding to the lower limit value, thereby further limiting the range.
- the electric resistance it is expected that the electric resistance is further increased at 320 ° C. or more, and TCR is also decreasing. Therefore, 320 ° C. is finally an appropriate value at the upper limit.
- the atmosphere for the annealing treatment as described above preferably contains oxygen. In that case, an appropriate oxygen concentration is about 20%. This is because a sufficient effect can be obtained by annealing in a normal atmosphere. Further, the annealing treatment as described above is preferably completed in less than 2 hours. For example, about 30 minutes is sufficient. This is because the shorter the annealing time, the more the burning of the CNTs does not progress. However, the oxygen concentration shown here is one specific example, and does not limit the present invention. Regarding the annealing time, annealing may be performed for 2 hours or more at a relatively low temperature of 200 to 260 ° C.
- the main component of CNT constituting the CNT thin film formed as described above is preferably a single wall nanotube. This is because, as described above, as a bolometer material, a larger amount of semiconductor components is advantageous in order to increase the temperature coefficient of resistance, and single-wall nanotubes can separate a semiconductor component and a metal component. This is because it is easy to fabricate many materials.
- the CNT thin film is used as an infrared sensor material for an infrared sensor having an appropriate structure.
- the infrared sensor may be a single element or a two-dimensional array that is used for an image sensor.
- each infrared sensor element 11 has a structure in which a substrate such as a Si substrate 14 is hollow, and a CNT thin film 15 is interposed between two electrodes 12 formed on an insulating film 13. The film is formed.
- an array of infrared sensor elements 11 including the infrared sensor 10 as shown in FIG. 2 may be formed and imaged by electrical signal processing by a readout circuit. it can.
- peripheral portions such as a readout circuit are omitted.
- the structure of the infrared sensor element 11 is not limited to the configuration shown in FIG. 1.
- a hollow portion may not be provided, or a plastic substrate may be used instead of the Si substrate 14. Any structure that can capture the temperature change of the electrical resistance of the CNT thin film 15 may be used.
- the manufacturing process of the infrared sensor using the CNT thin film is different from the conventional process of manufacturing the infrared sensor using VOx as an infrared sensor material except that the conditions for forming the infrared sensor material are different.
- a fabrication process can be used. Therefore, it can be easily applied to a fine structure such as an infrared image sensor using an infrared sensor.
- an infrared sensor using a CNT thin film can be produced at a temperature lower than 300 ° C. by a film forming process and an annealing process, it can also be applied to a sensor based on a plastic such as a polyimide substrate.
- 90% or more of the single wall nanotube may be a semiconductor component. If SWNT is semiconductor, the temperature coefficient of resistance tends to be negative. If SWNT is metallic, the temperature coefficient of resistance goes in the positive direction.
- semiconductor resistance temperature coefficient is negative.
- the semiconductor component is 90% or more because it utilizes the fact that the temperature coefficient of resistance of the semiconductor is large.
- the semiconductor component is more than 50%, more preferably 90% or more.
- Example 1 10 mg of SWNT (Southwest Nanotechnologies, Inc.) was placed in 100 mg of dichloroethane and ultrasonically dispersed to prepare a CNT dispersion. Further, the produced CNT dispersion was diluted to an appropriate concentration.
- CNT thin film An appropriate amount of the above-mentioned CNT dispersion was dropped onto a SiO 2 substrate, and a CNT thin film was produced by spin coating (hereinafter, the CNT thin film formed on the SiO 2 substrate is simply referred to as a CNT thin film).
- the above-mentioned CNT thin film was dried in an oven at 80 ° C. for several tens of minutes to evaporate excess solvent. Further, the CNT thin film was heated on a hot plate at 150 ° C. for about 30 minutes. This CNT thin film was annealed in the atmosphere at 280 ° C. for 1 hour.
- the series of CNT thin film manufacturing processes shown here are summarized in FIG.
- Example 2 A CNT thin film produced in the same manner as in Example 1 was annealed at 200 ° C. for 1 hour in the atmosphere.
- Example 3 A CNT thin film produced in the same manner as in Example 1 was annealed in the atmosphere at 240 ° C. for 1 hour.
- Example 4 A CNT thin film produced in the same manner as in Example 1 was annealed in the atmosphere at 320 ° C. for 1 hour.
- CNT thin film was produced by a spin coating method (hereinafter, the CNT thin film formed on the SiO 2 substrate is simply referred to as a CNT thin film).
- the aforementioned CNT thin film was dried in an oven at 80 ° C. for several tens of minutes to evaporate excess solvent. In Comparative Example 1, no special heat treatment was applied after drying at 80 ° C.
- Comparative Example 2 A CNT thin film produced in the same manner as in Comparative Example 1 was heated on a hot plate at 150 ° C. for about 30 minutes. In Comparative Example 2, no special heat treatment was applied after heating at 150 ° C.
- Comparative Example 3 A CNT thin film produced in the same manner as in Comparative Example 1 was heated on a hot plate at 150 ° C. for about 30 minutes. In Comparative Example 3, the sample was further annealed in the atmosphere at 350 ° C. for 1 hour.
- Comparative Example 4 A CNT thin film produced in the same manner as in Comparative Example 1 was heated on a hot plate at 150 ° C. for about 30 minutes. In Comparative Example 4, annealing was further performed at 280 ° C. for 2 hours in the atmosphere.
- Comparative Example 5 A CNT thin film produced in the same manner as in Comparative Example 1 was heated on a hot plate at 150 ° C. for about 30 minutes. In Comparative Example 5, the sample was further annealed in the atmosphere at 280 ° C. for 3 hours.
- Example 1 The surface SEM image of the CNT thin film produced in Example 1 is shown in FIG. At a low magnification ( ⁇ 1000), it can be confirmed that the film is formed uniformly, and the pores appear to be formed uniformly.
- the film thickness of the CNT thin film of an Example and a comparative example was measured as follows. First, a cross section is obtained by breaking a SiO 2 substrate coated with a CNT thin film. And the film thickness of the CNT thin film was measured by observing the cross section by SEM. The film thicknesses of the CNT thin films shown in Examples and Comparative Examples were in the range of 0.5 to 1.0 ⁇ m, and the average film thickness was 0.7 to 0.8 ⁇ m. Note that the actual numerical value varies due to variations due to the CNT thin film forming conditions, partial burnout of the CNT due to annealing, and the like.
- FIG. 5 shows a temperature coefficient of resistance (TCR)
- FIG. 6 shows a change in electrical resistance depending on the annealing temperature.
- TCR temperature coefficient of resistance
- a foil-like electrode was applied to each sample surface, an optimal current value was applied to each sample, and the temperature change ( ⁇ 10 to 50 ° C.) of the voltage value was measured.
- the absolute value of TCR exceeds 1%, but it can be confirmed that it does not reach the sample of Example 1. Further, in the sample of Example 4, since the TCR is lowered and the electric resistance is doubled, it can be confirmed that it is inappropriate if the annealing temperature is too high.
- Comparative Example 4 the TCR was ⁇ 1.6% / K, but the electrical resistance increased to 50 M ⁇ . Further, in Comparative Example 5, the electrical resistance was remarkably increased and measurement was impossible. This is because when the annealing time is increased, the rate of disappearance of CNT in the CNT thin film increases. That is, it is desirable to set the annealing time for annealing at 280 ° C. to less than 2 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
CNT分散液は、CNT(SWNT)を適正な溶媒に分散することで得ることができる。溶媒としては、例えば、1,2-ジクロロエタン(以下、ジクロロエタン)などが適当である。
薄膜作製方法としては、スピンコート法、滴下法、印刷法などを用いることができる。成膜においては、一回の滴下で行うことが望ましいが、所定の膜厚を得るために複数回滴下してもよい。ただし、成膜方法はここであげた方法に限定はせず、その他の方法を用いてもよい。
CNT薄膜に関しては、大気中で150~350℃の範囲で行うことが適当である。より望ましくは200~340℃、さらに望ましくは240~320℃の範囲である。これは図5および図6の結果で示したとおり、280℃程度でアニールしたサンプルにおいて、抵抗温度係数が最も大きく、かつ電気抵抗も小さいため、電気抵抗と抵抗温度係数のバランスが最もよくなっている。
CNT薄膜は、適当な構造をもった赤外線センサの赤外線センサ材料として用いる。赤外線センサとしては、単素子のものであってもよく、イメージセンサに用いられるような二次元に配列したアレイ状であってもよい。
以下、実施例を示すことにより、本発明のCNT薄膜について具体的に説明する。
SWNT(Southwest Nanotechnologies,Inc社製)10mgを、ジクロロエタン100mg中に入れ、超音波分散し、CNT分散液を作製した。さらに、作製したCNT分散液を適度な濃度に希釈した。
実施例1と同様に作製したCNT薄膜を、大気中200℃で1時間アニール処理を行った。
実施例1と同様に作製したCNT薄膜を、大気中240℃で1時間アニール処理を行った。
実施例1と同様に作製したCNT薄膜を、大気中320℃で1時間アニール処理を行った。
SWNT(Southwest Nanotechnologies,Inc社製)10mgを、ジクロロエタン100mg中に入れ、超音波分散し、CNT分散液を作製した。さらに、作製したCNT分散液を適度な濃度に希釈した。
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例2では、150℃加熱後、特別な熱処理を加えなかった。
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例3では、さらに、大気中350℃で1時間アニールした。
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例4では、さらに、大気中280℃で2時間アニールした。
比較例1と同様に作製したCNT薄膜を、150℃のホットプレート上で30分程度加熱した。比較例5では、さらに、大気中280℃で3時間アニールした。
実施例1で作製したCNT薄膜の表面SEM像を、図4に示した。低倍率(×1000)では、均一に成膜されていることが確認でき、均一にポアが形成されているようにみえる。
実施例および比較例に示したCNT薄膜の膜厚は、0.5~1.0μmの範囲内にあり、平均的な膜厚は0.7~0.8μmであった。なお、CNT薄膜の製膜条件によるばらつきや、アニール処理によるCNTの一部焼失などによって、実際の数値は変動する。
Claims (11)
- CNT(Carbon NanoTube)を溶媒中に分散させてCNT分散液を調製し、
前記CNT分散液を原料としてCNT薄膜を成膜し、
前記CNT薄膜をアニール処理して、前記CNT薄膜の-10~50℃における抵抗温度係数の絶対値を1%/K以上とする工程を含む、
赤外線センサ材料の作製方法。 - 請求項1に記載の赤外線センサ材料の作製方法において、
前記アニール処理を行う雰囲気が酸素を含む、赤外線センサ材料の作製方法。 - 請求項1または2に記載の赤外線センサ材料の作製方法において、
前記アニール処理の温度が200~340℃の範囲内である、赤外線センサ材料の作製方法。 - 請求項1ないし3いずれか一項に記載の赤外線センサ材料の作製方法において、
前記アニール処理の時間が2時間未満である、赤外線センサ材料の作製方法。 - 請求項1ないし4いずれか一項に記載の赤外線センサ材料の作製方法において、
前記アニール処理によって前記CNT薄膜中に含有されるCNTのうちCNT骨格の50%以上を損傷させない、赤外線センサ材料の作製方法。 - 請求項1ないし5いずれか一項に記載の作製方法で作製され、-10~50℃における前記抵抗温度係数の絶対値が1%/K以上である、赤外線センサ材料。
- -10~50℃における抵抗温度係数の絶対値が1%/K以上であるCNT薄膜を含む、赤外線センサ材料。
- 請求項6または7に記載の赤外線センサ材料において、
前記CNT薄膜を構成するCNTの主成分がシングルウォールナノチューブである、赤外線センサ材料。 - 請求項8に記載の赤外線センサ材料において、
前記シングルウォールナノチューブの90%以上が半導体成分である、赤外線センサ材料。 - 請求項6ないし9のいずれか一項に記載の赤外線センサ材料を利用する赤外線センサ素子。
- 請求項10に記載の赤外線センサ素子が二次元状に配列されている赤外線イメージセンサ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2011800494970A CN103153850A (zh) | 2010-10-13 | 2011-09-01 | 制造红外传感器材料的方法、红外传感器材料、红外传感器元件和红外图像传感器 |
US13/821,826 US20130216469A1 (en) | 2010-10-13 | 2011-09-01 | Method of manufacturing infrared sensor material, infrared sensor material, infrared sensor device and infrared image sensor |
JP2012538554A JPWO2012049801A1 (ja) | 2010-10-13 | 2011-09-01 | 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-230225 | 2010-10-13 | ||
JP2010230225 | 2010-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012049801A1 true WO2012049801A1 (ja) | 2012-04-19 |
Family
ID=45938044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/004898 WO2012049801A1 (ja) | 2010-10-13 | 2011-09-01 | 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130216469A1 (ja) |
JP (1) | JPWO2012049801A1 (ja) |
CN (1) | CN103153850A (ja) |
WO (1) | WO2012049801A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014239092A (ja) * | 2013-06-06 | 2014-12-18 | 公立大学法人首都大学東京 | 熱電変換材料及び熱電変換素子 |
WO2015005340A1 (ja) * | 2013-07-08 | 2015-01-15 | 富士フイルム株式会社 | 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源 |
WO2020158455A1 (ja) * | 2019-01-29 | 2020-08-06 | 日本電気株式会社 | カーボンナノチューブを用いた赤外線センサー及びその製造方法 |
JPWO2020235636A1 (ja) * | 2019-05-23 | 2020-11-26 | ||
JP2021007161A (ja) * | 2015-07-08 | 2021-01-21 | パナソニックIpマネジメント株式会社 | 撮像装置 |
US11650104B2 (en) | 2020-07-28 | 2023-05-16 | Nec Corporation | Bolometer and method for manufacturing same |
US11719581B2 (en) | 2021-05-12 | 2023-08-08 | Nec Corporation | Bolometer and method for manufacturing same |
US12013288B2 (en) | 2021-05-12 | 2024-06-18 | Nec Corporation | Bolometer and method for manufacturing same |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10908025B2 (en) | 2016-12-07 | 2021-02-02 | Carbon Solutions, Inc. | Patterned focal plane arrays of carbon nanotube thin film bolometers with high temperature coefficient of resistance and improved detectivity for infrared imaging |
CN115849346B (zh) * | 2022-11-25 | 2024-08-13 | 深圳大学 | 一种mwcnt多孔气凝胶薄膜及其制备方法与应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005059135A (ja) * | 2003-08-11 | 2005-03-10 | Canon Inc | カーボンナノチューブを用いたデバイス及びその製造方法 |
JP2008523254A (ja) * | 2004-11-09 | 2008-07-03 | ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム | ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用 |
JP2009122104A (ja) * | 2007-11-12 | 2009-06-04 | Commissariat A L'energie Atomique | ナノワイヤ接続を有する電磁放射検出器およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6706402B2 (en) * | 2001-07-25 | 2004-03-16 | Nantero, Inc. | Nanotube films and articles |
US7723684B1 (en) * | 2007-01-30 | 2010-05-25 | The Regents Of The University Of California | Carbon nanotube based detector |
WO2008112764A1 (en) * | 2007-03-12 | 2008-09-18 | Nantero, Inc. | Electromagnetic and thermal sensors using carbon nanotubes and methods of making same |
KR101833071B1 (ko) * | 2009-06-09 | 2018-02-27 | 라메쉬 시바라잔 | 연료 전지내 쌍극판 상의 용액계 나노구조 탄소 재료(ncm) 코팅 |
CN101871818B (zh) * | 2010-06-25 | 2012-05-23 | 清华大学 | 红外探测器 |
-
2011
- 2011-09-01 JP JP2012538554A patent/JPWO2012049801A1/ja not_active Withdrawn
- 2011-09-01 WO PCT/JP2011/004898 patent/WO2012049801A1/ja active Application Filing
- 2011-09-01 US US13/821,826 patent/US20130216469A1/en not_active Abandoned
- 2011-09-01 CN CN2011800494970A patent/CN103153850A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005059135A (ja) * | 2003-08-11 | 2005-03-10 | Canon Inc | カーボンナノチューブを用いたデバイス及びその製造方法 |
JP2008523254A (ja) * | 2004-11-09 | 2008-07-03 | ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム | ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用 |
JP2009122104A (ja) * | 2007-11-12 | 2009-06-04 | Commissariat A L'energie Atomique | ナノワイヤ接続を有する電磁放射検出器およびその製造方法 |
Non-Patent Citations (3)
Title |
---|
J.CECH ET AL.: "Fabrication of freestanding SWCNT networks for fast microbolometric focal plane array sensor", PROC. OF SPIE, vol. 7679, 12 August 2010 (2010-08-12), pages 76792N.1 - 76792N.7 * |
M.E.ITKIS ET AL.: "Bolometric Infrared Photoresponse of Suspended Single-Walled Carbon Nanotube Films", SCIENCE, vol. 312, no. 5772, 21 April 2006 (2006-04-21), pages 413 - 416, XP055093680, DOI: doi:10.1126/science.1125695 * |
R.LU ET AL.: "Effects of thermal annealing on noise property and temperature coefficient of resistance of single-walled carbon nanotubes films", APPLIED PHYSICS LETTERS, vol. 93, no. 21, 24 November 2008 (2008-11-24), pages 213101.1 - 213101.3, XP012112628, DOI: doi:10.1063/1.3035848 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014239092A (ja) * | 2013-06-06 | 2014-12-18 | 公立大学法人首都大学東京 | 熱電変換材料及び熱電変換素子 |
WO2015005340A1 (ja) * | 2013-07-08 | 2015-01-15 | 富士フイルム株式会社 | 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源 |
JP2015035599A (ja) * | 2013-07-08 | 2015-02-19 | 富士フイルム株式会社 | 熱電変換材料、熱電変換素子ならびにこれを用いた熱電発電用物品およびセンサー用電源 |
JP2021007161A (ja) * | 2015-07-08 | 2021-01-21 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP7199039B2 (ja) | 2015-07-08 | 2023-01-05 | パナソニックIpマネジメント株式会社 | 撮像装置 |
WO2020158455A1 (ja) * | 2019-01-29 | 2020-08-06 | 日本電気株式会社 | カーボンナノチューブを用いた赤外線センサー及びその製造方法 |
JPWO2020158455A1 (ja) * | 2019-01-29 | 2021-12-02 | 日本電気株式会社 | カーボンナノチューブを用いた赤外線センサー及びその製造方法 |
JP7255612B2 (ja) | 2019-01-29 | 2023-04-11 | 日本電気株式会社 | カーボンナノチューブを用いた赤外線センサー及びその製造方法 |
WO2020235636A1 (ja) * | 2019-05-23 | 2020-11-26 | 日本電気株式会社 | カーボンナノチューブの配向層を有するボロメータ及びその製造方法 |
JPWO2020235636A1 (ja) * | 2019-05-23 | 2020-11-26 | ||
JP7259948B2 (ja) | 2019-05-23 | 2023-04-18 | 日本電気株式会社 | カーボンナノチューブの配向層を有するボロメータ及びその製造方法 |
US11650104B2 (en) | 2020-07-28 | 2023-05-16 | Nec Corporation | Bolometer and method for manufacturing same |
US11719581B2 (en) | 2021-05-12 | 2023-08-08 | Nec Corporation | Bolometer and method for manufacturing same |
US12013288B2 (en) | 2021-05-12 | 2024-06-18 | Nec Corporation | Bolometer and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
CN103153850A (zh) | 2013-06-12 |
JPWO2012049801A1 (ja) | 2014-02-24 |
US20130216469A1 (en) | 2013-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012049801A1 (ja) | 赤外線センサ材料の作製方法、赤外線センサ材料、赤外線センサ素子、赤外線イメージセンサ | |
CN102426060A (zh) | 一种太赫兹或红外微测辐射热计及其制作方法 | |
CN101900607B (zh) | 一种用于红外探测器的氧化钒薄膜及其制作方法 | |
KR101498522B1 (ko) | 마이크로 볼로미터용 고특성 산화물 박막 제조방법 | |
Huang et al. | Improved performance of flexible graphene heater based on repeated laser writing | |
WO2018058450A1 (zh) | 一种非制冷红外焦平面探测器像元及其制备方法 | |
Ma et al. | Infrared micro-detectors with high sensitivity and high response speed using VO 2-coated helical carbon nanocoils | |
KR101092865B1 (ko) | 가스센서 및 그 제조방법 | |
Wu et al. | Quick response PZT/P (VDF-TrFE) composite film pyroelectric infrared sensor with patterned polyimide thermal isolation layer | |
Nam et al. | Electrical properties of vanadium tungsten oxide thin films | |
Whatmore et al. | Pyroelectric ceramics and thin films for applications in uncooled infra-red sensor arrays | |
JP5423234B2 (ja) | ボロメータ材料の製造方法 | |
KR20070029219A (ko) | 서미스터 박막 및 그 형성 방법 | |
García-Valdivieso et al. | High sensitivity bolometers from thymine functionalized multi-walled carbon nanotubes | |
US11054311B1 (en) | Thermal radiation detectors with carbon-nanotube-based optical absorbers | |
JP4304272B2 (ja) | 熱電変換材料薄膜とセンサ素子及びその製造方法 | |
JP2018082022A (ja) | 光電変換素子、固体撮像素子および電子装置 | |
WO2011135975A1 (ja) | SiGe積層薄膜それを用いた赤外線センサ | |
Shen et al. | A low-cost infrared absorbing structure for an uncooled infrared detector in a standard CMOS process | |
Raman et al. | Influence of Annealing Temperature on ZrO 2 Nanoparticles for Improved Photodetection | |
JP2006003301A (ja) | 赤外線検出素子、赤外線検出装置および固体撮像装置、および赤外線検出装置の製造方法 | |
CA3087748C (en) | Thermal radiation detectors with carbon-nanotube-based optical absorbers | |
JP2002118004A (ja) | 感温抵抗変化膜およびその製造方法並びに感温抵抗変化膜を用いた赤外線センサ | |
Fu et al. | Conformal Broad‐Spectra Laser Sensing Array from Ferroelectric Polymer Composites | |
TWI433337B (zh) | 光感測元件之製備方法以及使用該方法所製得之光感測元件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180049497.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11832247 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012538554 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13821826 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11832247 Country of ref document: EP Kind code of ref document: A1 |