WO2012049712A1 - 有機発光パネルとその製造方法、および有機表示装置 - Google Patents

有機発光パネルとその製造方法、および有機表示装置 Download PDF

Info

Publication number
WO2012049712A1
WO2012049712A1 PCT/JP2010/006125 JP2010006125W WO2012049712A1 WO 2012049712 A1 WO2012049712 A1 WO 2012049712A1 JP 2010006125 W JP2010006125 W JP 2010006125W WO 2012049712 A1 WO2012049712 A1 WO 2012049712A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic light
inclination angle
partition
emitting unit
Prior art date
Application number
PCT/JP2010/006125
Other languages
English (en)
French (fr)
Inventor
松島 英晃
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080067617.5A priority Critical patent/CN102960067B/zh
Priority to JP2012538479A priority patent/JP5677448B2/ja
Priority to PCT/JP2010/006125 priority patent/WO2012049712A1/ja
Publication of WO2012049712A1 publication Critical patent/WO2012049712A1/ja
Priority to US13/717,930 priority patent/US8901546B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present invention relates to an organic light emitting panel, a manufacturing method thereof, and an organic display device.
  • each pixel portion includes an anode electrode and a cathode electrode, and an organic light emitting layer interposed therebetween.
  • driving the display device holes are injected from the anode electrode, electrons are injected from the cathode electrode, and light is emitted by recombination of holes and electrons in the organic light emitting layer.
  • the organic light emitting layers of adjacent pixel portions are partitioned by a partition (bank) made of an insulating material.
  • the organic light emitting layer is formed, for example, by dropping ink containing an organic light emitting material in each region partitioned by the partition walls and drying the ink.
  • Patent Document 1 describes a technique in which a convex portion is provided on the surface portion of the partition wall, thereby controlling the pinning position of the ink with respect to the surface portion of the partition wall. ing. That is, by adopting the technique proposed in Patent Document 1, the pinning position when the ink in one pixel portion is dropped can be pinned to the convex portion formed on the surface portion, thereby The film thickness uniformity can be ensured.
  • the technique proposed by the said patent document 1 is employ
  • the present invention has been made to solve the above-described problems, and provides a display device with less inhomogeneous luminance in the surface and a method of manufacturing the same, by making the film thickness of the organic light emitting layer uniform over the entire surface of the panel. For the purpose.
  • the organic light-emitting panel according to one embodiment of the present invention is characterized by adopting the following configuration.
  • An organic light-emitting panel is an organic light-emitting panel in which a plurality of pixel units are arranged, and each pixel unit of the plurality of pixel units has a different emission color and is arranged in order. It has a light emitting part.
  • Each light emitting unit includes a base layer including a first electrode, an organic light emitting layer provided opposite to the base layer, and formed by applying an ink containing an organic light emitting material corresponding to each emission color, and an organic light emitting layer And a second electrode formed on the side opposite to the base layer.
  • the plurality of light-emitting portions in the same pixel portion are sequentially coated with ink corresponding to each light emission color from one side to the other side, whereby the organic light-emitting layer Formed on the one side and corresponding ink is applied on the first round, and the second light emitting portion is provided on the center side and the corresponding ink is applied on the second round. It has at least a light emitting part and a third light emitting part that is located on the other side and to which the corresponding ink is applied in the third round, and is adjacent to one of the light emitting parts above the base layer.
  • a plurality of partition walls that divide the light emitting portions and define each light emitting portion are provided.
  • the inclination angles of the opposing surface portions in the two adjacent partition walls defining the first light-emitting portion are the same among the plurality of pixel portions, and the second light-emitting portion is defined.
  • the two adjacent partition walls have different inclination angles of the opposing surface portions, and the inclination angle of the surface portion of the partition wall located on the third light emitting unit side is greater than the inclination angle of the surface portion of the partition wall positioned on the first light emitting unit side. It is characterized by including a pixel portion that satisfies the relationship of large.
  • the first light-emitting portion is formed by forming the organic light-emitting layer by applying the corresponding ink in the first round. In the region adjacent to the light emitting part, no ink is applied, and the vapor concentration of the ink is “0” and equal on one end side and the other end side of the first light emitting part, and the film thickness of the organic light emitting layer is biased. There is no. Therefore, with respect to the first light emitting part, by making the inclination angles of the opposing surface parts in the adjacent partition walls equal, it is possible to prevent the film thickness from being biased and to obtain good light emission characteristics.
  • the corresponding ink is applied in the second round to form the organic light emitting layer. Therefore, when the second light emitting unit is formed, the ink in the region adjacent to the second light emitting unit is formed.
  • the vapor concentration will be different. That is, in the second light emitting unit, the vapor concentration of the ink is higher at one end side which is the first light emitting unit side than at the other end side which is the third light emitting unit side. For this reason, in the second light emitting unit, the thickness of the light emitting layer on the other end side that is the third light emitting unit side in the organic light emitting layer is larger than the film thickness of the light emitting layer on the one end side that is the first light emitting unit side. Thus, the film thickness tends to be biased.
  • the inclination angle of the surface portion of the partition located on the third light emitting unit side of the opposing surface portion in the two adjacent partitions defining the second light emitting unit is the first angle. Since the inclination angle of the surface portion of the partition located on the light emitting portion side is larger, the ink pinning position on the partition located on the third light emitting portion side is relative to the ink pinning position on the partition located on the first light emitting portion side. Become expensive. Thereby, the film thickness of the organic light emitting layer on the third light emitting part side can be suppressed, and the deviation of the film thickness between the one end part and the other end part of the second light emitting part can be prevented.
  • the organic light-emitting panel according to one embodiment of the present invention, it is possible to prevent a deviation in the thickness of the organic light-emitting layer with respect to the light-emitting portions in the same pixel portion, and good light-emitting characteristics in the same pixel portion can be obtained.
  • FIG. 1 is a block diagram showing a schematic configuration of an organic display device 1 according to Embodiment 1.
  • FIG. 3 is a schematic cross-sectional view showing some subpixels 100 in the display panel 10.
  • FIG. 3 is a schematic plan view showing a bank 105 in the display panel 10.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of subpixels 100a to 100c and banks 105a to 105d that partition the subpixels 100a to 100c in the display panel 10.
  • (A) is a schematic cross-sectional view showing the pinning position when the taper angle of the bank side surface portion is small
  • (b) is a schematic cross-sectional view showing the pinning position when the taper angle of the bank side surface portion is large
  • (C) is a schematic cross-sectional view showing the state of the organic light emitting layer after drying when the taper angle of the bank side surface is small
  • (d) is the organic after drying when the taper angle of the bank side surface is large. It is a schematic cross section which shows the state of a light emitting layer.
  • FIG. 6 is a diagram showing the film thickness distribution of organic light emitting layers in Samples 1 to 3. It is a figure which shows the film thickness distribution of the organic light emitting layer in the samples 4 and 5.
  • FIG. (A)-(c) is a schematic cross section which shows the principal part process in the manufacturing method of the display panel 10 in order.
  • (A)-(c) is a schematic cross section which shows the principal part process in the manufacturing method of the display panel 10 in order.
  • FIG. (A), (b) is a schematic cross section which shows the principal part process in the manufacturing method of the display panel 10 in order.
  • (A) is a schematic flow diagram showing a process order related to application and drying of inks 1060a to 1060c
  • (b) is a schematic flow chart showing another process order related to application and drying of inks 1060a to 1060c. is there.
  • 10 is a schematic cross-sectional view showing main processes in a manufacturing method according to Modification 1.
  • FIG. (A), (b) is a schematic cross section which shows the principal part process in the manufacturing method which concerns on the modification 2 in order.
  • (A), (b) is a schematic cross section which shows the principal part process in the manufacturing method which concerns on the modification 2 in order.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of subpixels 300a to 300c and non-pixel portions 300d and 300e and banks 305a to 305e in a display panel included in the organic display device according to Embodiment 2.
  • (A)-(c) is a schematic cross section which shows the process of apply
  • (A), (b) is a schematic cross section for demonstrating the definition of a taper angle. 4 is a schematic plan view for explaining regions 10a1, 10a2, and 10b in the display panel 10.
  • FIG. 2 is an external perspective view showing an example of an external appearance of a set including the organic display device 1.
  • FIG. 14 is a schematic plan view showing a configuration of a bank 805 included in a display panel 80 according to Modification 3.
  • FIG. (A), (b) is a schematic cross section which shows the biased state of the film thickness distribution of the organic light emitting layer for every adjacent sub pixel in a display panel.
  • (A) to (c) are schematic cross-sectional views showing the vapor concentration distribution during the formation of the organic light emitting layer and the state of uneven film shape in the ink drying process.
  • An organic light-emitting panel is an organic light-emitting panel in which a plurality of pixel units are arranged, and each pixel unit of the plurality of pixel units has a different emission color and is arranged in order. It has a light emitting part.
  • Each light emitting unit includes a base layer including a first electrode, an organic light emitting layer provided opposite to the base layer, and formed by applying an ink containing an organic light emitting material corresponding to each emission color, and an organic light emitting layer And a second electrode formed on the side opposite to the base layer.
  • the plurality of light-emitting portions in the same pixel portion are sequentially coated with ink corresponding to each light emission color from one side to the other side, whereby the organic light-emitting layer Formed on the one side and corresponding ink is applied on the first round, and the second light emitting portion is provided on the center side and the corresponding ink is applied on the second round. It has at least a light emitting part and a third light emitting part that is located on the other side and to which the corresponding ink is applied in the third round, and is adjacent to one of the light emitting parts above the base layer.
  • a plurality of partition walls that divide the light emitting portions and define each light emitting portion are provided.
  • the inclination angles of the opposing surface portions in the two adjacent partition walls defining the first light-emitting portion are the same among the plurality of pixel portions, and the second light-emitting portion is defined.
  • the two adjacent partition walls have different inclination angles of the opposing surface portions, and the inclination angle of the surface portion of the partition wall located on the third light emitting unit side is greater than the inclination angle of the surface portion of the partition wall positioned on the first light emitting unit side. It is characterized by including a pixel portion that satisfies the relationship of large.
  • the first light-emitting portion is formed by forming the organic light-emitting layer by applying the corresponding ink in the first round. In the region adjacent to the light emitting part, no ink is applied, and the vapor concentration of the ink is “0” and equal on one end side and the other end side of the first light emitting part, and the film thickness of the organic light emitting layer is biased. There is no. Therefore, with respect to the first light emitting part, by making the inclination angles of the opposing surface parts in the adjacent partition walls equal, it is possible to prevent the film thickness from being biased and to obtain good light emission characteristics.
  • the corresponding ink is applied in the second round to form the organic light emitting layer. Therefore, when the second light emitting unit is formed, the ink in the region adjacent to the second light emitting unit is formed.
  • the vapor concentration will be different. That is, in the second light emitting unit, the vapor concentration of the ink is higher at one end side which is the first light emitting unit side than at the other end side which is the third light emitting unit side. For this reason, in the second light emitting unit, the thickness of the light emitting layer on the other end side that is the third light emitting unit side in the organic light emitting layer is larger than the film thickness of the light emitting layer on the one end side that is the first light emitting unit side. Thus, the film thickness tends to be biased.
  • the inclination angle of the surface portion of the partition located on the third light emitting unit side of the opposing surface portion in the two adjacent partitions defining the second light emitting unit is the first angle. Since the inclination angle of the surface portion of the partition located on the light emitting portion side is larger, the ink pinning position on the partition located on the third light emitting portion side is relative to the ink pinning position on the partition located on the first light emitting portion side. Become expensive. Thereby, the film thickness of the organic light emitting layer on the third light emitting part side can be suppressed, and the deviation of the film thickness between the one end part and the other end part of the second light emitting part can be prevented.
  • the organic light-emitting panel according to one embodiment of the present invention, it is possible to prevent a deviation in the thickness of the organic light-emitting layer with respect to the light-emitting portions in the same pixel portion, and good light-emitting characteristics in the same pixel portion can be obtained.
  • the “inclination angle” means each side surface portion of the bank and the underlying layer on which the bank is provided (the first electrode, the hole injection layer, the hole transport layer, and the hole injection transport layer) The angle formed by the top surface of
  • the plurality of pixel portions are formed so as to be adjacent to each other, and the opposing surface portions of the two adjacent partition walls that define the third light-emitting portion are formed.
  • a configuration in which the inclination angles are equal can be employed.
  • the inclination angle of the opposing surface portions in the two adjacent partition walls that define the third light emitting portion is made equal so that the unevenness of the film thickness does not occur during manufacturing.
  • the three light emitting portions it is possible to prevent the unevenness of the film thickness of the organic light emitting layer and to obtain good light emitting characteristics.
  • good light emission characteristics can be obtained in the plurality of pixel portions.
  • the inclination angle of the facing surface portion of the partition located on the first light-emitting portion side is the first angle. It is possible to adopt a configuration that is equal to the inclination angle of the opposing surface portions in two adjacent partition walls that define the light emitting portion.
  • the ink application has already been performed on the first light emitting portion in the first round.
  • the vapor concentration of the ink on one end side that is the first light emitting unit side is higher than the other end side that is the third light emitting unit side, but in the two adjacent partitions that define the second light emitting unit,
  • the organic light emitting layer formed The uneven thickness can be suppressed.
  • the inclination angle of the facing surface portion of the partition located on the first light-emitting portion side in the two adjacent partitions defining the second light-emitting portion is the third angle. It is possible to adopt a configuration that is equal to the inclination angle of the opposing surface portions in two adjacent partition walls that define the light emitting portion.
  • the ink application has already been performed on the first light emitting portion in the first round.
  • the vapor concentration of the ink on one end side that is the first light emitting unit side is higher than the other end side that is the third light emitting unit side, but in the two adjacent partitions that define the second light emitting unit,
  • the organic light emitting layer formed The uneven thickness can be suppressed.
  • the adjacent pixel portion and the pixel portion are formed continuously, and there is no non-pixel portion for disposing the bus bar between them, so that ink is applied to the third light emitting portion.
  • the inclination angles of the opposing surface portions in the two adjacent partitions defining the third light emitting portion are set to be equal to each other.
  • the inclination angle of the surface portion of each partition wall can be specifically set within the following range.
  • the inclination angle of the opposing surface part of the partition located on the third light emitting part side can be set to 35 [°] or more and 45 [°] or less. .
  • the inclination angle of the opposing surface part of the partition located on the first light emitting part side can be set to 25 [°] or more and 35 [°] or less.
  • the inclination angle of the opposing surface portions in the two adjacent partition walls defining the first light emitting portion can be set to 25 [°] or more and 35 [°] or less.
  • the inclination angle of the opposing surface portions in the two adjacent partitions defining the third light emitting portion can be set to 25 [°] or more and 35 [°] or less.
  • a non-pixel portion is formed between adjacent pixel portions of the plurality of pixel portions, and the pixel portion and the non-pixel portion are arranged between the pixel portion and the non-pixel portion.
  • a partition wall for partitioning the non-pixel part is formed, and in each pixel part, the inclined angle of the opposing surface part in the two adjacent partition walls defining the third light emitting part is different, and the surface part of the partition wall located on the non-pixel part side It is possible to adopt a configuration in which the inclination angle is larger than the inclination angle of the surface portion of the partition wall located on the second light emitting portion side.
  • the vapor concentration is different from the second light emitting portion side.
  • the inclination angles of the opposing surface parts in the adjacent two partition walls defining the third light emitting part are different, and the surface part of the partition part located on the non-pixel part side is different.
  • the non-pixel portion includes a second electrode and the same material as the first electrode without including an organic light-emitting layer.
  • a configuration in which the second electrode and the third electrode are electrically connected can be employed.
  • a light transmissive material for example, ITO, IZO, etc.
  • ITO indium gallium oxide
  • IZO indium gallium oxide
  • the second electrode and the third electrode are connected to reduce the electrical resistance, and even when the panel size is large, a voltage drop hardly occurs and high light emission characteristics can be secured.
  • the third electrode is, for example, a bus bar.
  • the inclination angle of the facing surface portion of the barrier rib located on the third light-emitting portion side is the first angle.
  • the inclination angle of the opposing surface portion of the partition located on the light emitting portion side is larger than the inclination angle of the opposing surface portion of the partition located on the non-pixel portion side in two adjacent partitions defining the third light emitting portion. It is possible to adopt a configuration that is larger than the inclination angle of the facing surface portions of the partition located on the second light emitting portion side.
  • the inclination angle of the surface portion of the partition located on the third light emitting unit side among the opposing surface portions of the two adjacent partitions defining the second light emitting unit is set on the first light emitting unit side.
  • the pinning position of the ink applied to the second light emitting part is set to be larger than the inclination angle of the surface part of the partition wall positioned, and the first light emitting part side is closer to the corresponding surface part of the partition on the third light emitting part side. Therefore, the unevenness of the film thickness of the formed organic light emitting layer can be suppressed.
  • the organic light-emitting panel in the above configuration, in the two adjacent barrier ribs defining the second light-emitting portion, the inclination angle of the facing surface portion of the barrier rib located on the third light-emitting portion side, and the third It is possible to employ a configuration in which two adjacent partition walls defining the light emitting portion have the same inclination angle of the opposing surface portions of the partition wall located on the non-pixel portion side.
  • the non-pixel portion is arranged adjacent to the third light emitting portion, and therefore, when applying ink to the third light emitting portion, from the second light emitting portion side.
  • the vapor concentration is low on the non-pixel portion side
  • the inclination angle of the opposing surface portion of the partition located on the non-pixel portion side in the two adjacent partitions defining the third light emitting portion as described above is Similar to the second light emitting unit, the organic light emitting layer in the third light emitting unit is made to be equal to the inclination angle of the opposing surface part of the partition located on the third light emitting unit side in the two adjacent partitions defining the light emitting unit. Can be suppressed.
  • the inclination angle of the facing surface portion of the partition located on the first light-emitting portion side is the first angle. It is possible to adopt a configuration that is equal to the inclination angle of the opposing surface portions in two adjacent partition walls that define the light emitting portion.
  • the vapor concentration on the first light emitting unit side is the third light emission.
  • the vapor concentration on the part side is higher and the thickness of the organic light emitting layer tends to be thicker on the third light emitting part side, but such tendency is less on the first light emitting part side. . Therefore, in the case of adopting the above configuration, it is possible to suppress the relative thickness deviation of the organic light emitting layer of the second light emitting unit by defining the inclination angle in the surface part of the partition wall by the above relationship.
  • the inclination angle of the facing surface portion of the partition located on the second light-emitting portion side is the first angle. It is possible to adopt a configuration that is equal to the inclination angle of the opposing surface portions in two adjacent partition walls that define the light emitting portion.
  • the organic light emitting layer tends to be thicker on the non-pixel part side due to the uneven vapor concentration, but on the second light emitting part side, There is little tendency. Therefore, in the case of adopting the above configuration, it is possible to suppress the relative thickness deviation of the organic light emitting layer of the third light emitting unit by defining the inclination angle in the surface portion of the partition wall by the above relationship.
  • the inclination angle of the surface portion of each partition wall in the configuration in which the non-pixel portion is arranged between the adjacent pixel portions, can be specifically set within the following range. it can.
  • the inclination angle of the opposing surface part of the partition located on the third light emitting part side can be set to 35 [°] or more and 45 [°] or less. .
  • the inclination angle of the opposing surface portion of the partition located on the non-pixel portion side can be set to 35 [°] or more and 45 [°] or less.
  • the inclination angle of the opposing surface portion of the partition located on the first light emitting unit side can be set to 25 [°] or more and 35 [°] or less.
  • the inclination angle of the opposing surface of the partition located on the second light emitting unit side can be set to 25 [°] or more and 35 [°] or less. .
  • the inclination angle of the opposing surface portions in the two adjacent partitions defining the first light emitting portion can be set to 25 [°] or more and 35 [°] or less.
  • the inclination angle is defined as an angle formed by each of the facing surface portions of the partition and the upper surface of the base layer on which the partition is formed. Can do.
  • the base layer includes a TFT (thin film transistor) layer formed below the first electrode, and in each pixel portion, the first electrode is the TFT.
  • TFT thin film transistor
  • An organic display device includes any one of the organic light-emitting panels described above. For this reason, the organic display device according to one embodiment of the present invention has the same effect as the organic display panel according to one embodiment of the present invention.
  • the method for manufacturing an organic light emitting panel according to an aspect of the present invention is a method for manufacturing an organic light emitting panel in which a plurality of pixel portions are arranged, and includes the following steps.
  • a photosensitive resist material is laminated on the underlayer.
  • a plurality of openings corresponding to a plurality of light emitting portions are formed for each pixel portion by patterning by exposing the laminated photosensitive resist material to a mask and partitioning adjacent light emitting portions.
  • a plurality of partition walls defining each light emitting portion are formed.
  • a 2nd electrode is formed above an organic light emitting layer.
  • a first opening corresponding to the first light emitting portion located on one side and a first opening located on the center side Forming a second opening corresponding to the two light-emitting portions and a third opening corresponding to the third light-emitting portion located on the other side, and further, the opposing surface portions of the two adjacent partition walls defining the first light-emitting portion
  • the inclination angle is formed equally.
  • the manufacturing method of the organic light emitting panel which concerns on 1 aspect of this invention, in the said 3rd process, opposing in the adjacent 2 partition which prescribes
  • the slope angle of the surface portion to be made is different, and the slope angle of the surface portion of the partition wall located on the third light emitting portion side is made larger than the tilt angle of the surface portion of the partition wall located on the first light emitting portion side.
  • the ink corresponding to each light emission color is applied to each pixel portion in the first opening, the second opening, and the third opening. It drops in order and forms an organic light emitting layer, It is characterized by the above-mentioned.
  • the manufacturing method which concerns on 1 aspect of this invention is employ
  • the third light-emitting portion in two adjacent partition walls that define the second light-emitting portion is related to exposure of the photosensitive resist material.
  • the second light emitting part is defined by making the exposure amount to the part corresponding to the surface part of the partition located on the side larger than the exposure amount to the part corresponding to the surface part of the partition located on the first light emitting part side. It is possible to adopt a configuration in which the inclination angle of the surface portion of the partition located on the third light emitting unit side in the two adjacent partitions is larger than the inclination angle of the surface portion of the partition located on the first light emitting unit side. .
  • the third light-emitting portion in two adjacent partition walls that define the second light-emitting portion is related to exposure of the photosensitive resist material.
  • the transmittance of light to the portion corresponding to the surface portion of the partition located on the side is smaller than the transmittance of light to the portion corresponding to the surface portion of the partition located on the first light emitting portion side.
  • the third step after exposing and developing the photosensitive resist material, in two adjacent partitions defining the second light-emitting portion, By performing an additional exposure process on the portion corresponding to the surface portion of the partition located on the third light emitting unit side, the two adjacent partition walls defining the second light emitting unit are located on the third light emitting unit side.
  • a configuration in which the inclination angle of the surface portion of the partition wall is made larger than the inclination angle of the surface portion of the partition wall located on the first light emitting unit side can be employed.
  • An organic display device includes an organic light-emitting panel obtained by any of the manufacturing methods described above.
  • the organic display device thus obtained has the same effect as the organic light emitting panel obtained by the above manufacturing method.
  • an anode electrode 902 and an electrode coating layer 903 covering the anode electrode 902 are provided on a substrate 901 for each of the subpixels 900a, 900b, and 900c. Then, a hole injection layer 904 is formed so as to cover the electrode coating layer 902 and the surface of the substrate 901.
  • organic light emitting layers 906a, 906a, 906a, 906a, 906a, 906a, 906b and 906c are stacked.
  • the organic light emitting layers 906a, 906b, and 906c are partitioned by banks 905a to 905d provided upright on the hole injection layer 904.
  • the organic light emitting layer 906b of the subpixel 900b arranged in the center in the arrangement order may cause a deviation in film thickness.
  • the height of the location C 3 in the bank 905 c of the organic light emitting layer 906 b is the height of the location C 2 in the bank 905 b and the location C on the bank 905 b side of the organic light emitting layer 906 a in the subpixel 900 a. The phenomenon that it becomes higher than the height of 1 occurs.
  • the heights of the respective locations C 12 and C 14 on the banks 955c and 955d side of the organic light emitting layers 956b and 956c in the subpixels 950b and 950c are as follows.
  • a phenomenon occurs in which the height of each of the organic light emitting layers 956b and 956c is higher than the height of the respective portions C 11 and C 13 on the banks 955b and 955c side.
  • the height of the portion on the bank 955a side and the height of the portion on the bank 955b side are substantially equal, resulting in a large deviation in film thickness. Absent.
  • the present inventor presumed that the decrease in film thickness uniformity in the organic light-emitting layer was caused by non-uniform vapor concentration distribution during ink drying, as will be described below. did.
  • FIG. 24A a state is assumed in which ink 9060b for forming an organic light emitting layer is applied to a region defined between the banks 905b and 905c.
  • the vapor concentration distribution is lower on the right side than on the left side of FIG. 24A as indicated by a two-dot chain line, it is considered that the thickness of the organic light emitting layer is biased due to the following relationship. .
  • surface profile L 90 of ink 9060B has a shape which raised the central portion of the sub-pixels.
  • fast evaporation rate at low vapor concentrations side since slower at high vapor concentrations side, the changes to the surface profile L 91 It can be considered formally.
  • the solvent moves as indicated by the broken line arrow L 92 inside the ink 9061b in the middle of drying.
  • the solvent moves so as to compensate for the evaporated amount (moves so as to minimize the surface free energy), and the solute (organic light emitting material) moves as the solvent moves.
  • FIG. 24C when the vapor concentration distribution is biased, an organic light emitting layer 906b having a surface profile L 93 that rises toward the right side is formed.
  • the present inventor has obtained an inference regarding the organic light emitting panel that the uniformity of the thickness of the formed organic light emitting layer is reduced due to the nonuniformity of the vapor concentration distribution when the ink is dried. .
  • the present inventor changes the pinning position of the bank side surface portion of the ink by changing the inclination angle of the surface portion of the bank in the panel surface. As a result, the film thickness of the organic light emitting layer is made uniform. I found a technical feature.
  • a display device (organic display device) 1 includes a display panel (organic light emitting panel) unit 10 and a drive control unit 20 connected thereto.
  • the display panel unit 10 is an organic light emitting panel using an electroluminescence phenomenon of an organic material, and a plurality of pixel units are two-dimensionally arranged in the XY plane direction.
  • the drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25.
  • the arrangement of the drive control unit 20 with respect to the display panel unit 10 is not limited to this.
  • the configuration of the display panel 10 will be described with reference to FIG. Note that the display panel 10 according to the present embodiment employs a top emission type organic light emitting panel as an example, and emits organic light having one of red (R), green (G), and blue (B). A plurality of pixel portions including layers are arranged and configured in a matrix. In FIG. 2, one subpixel 100 in one pixel portion is extracted and drawn.
  • the display panel 10 includes an anode electrode 102 formed on a TFT substrate 101 (hereinafter simply referred to as “substrate”) 101, and an electrode coating layer on the anode electrode 102. 103 and a hole injecting and transporting layer 104 are sequentially laminated. Note that the anode electrode 102 and the electrode coating layer 103 are formed in a state of being separated for each subpixel 100.
  • a bank (partition wall) 105 made of an insulating material and partitioning between the sub-pixels 100 is erected.
  • An organic light emitting layer 106 is formed in a region partitioned by the bank 105 in each subpixel 100, and an electron injection layer 107, a cathode electrode 108, and a sealing layer 109 are sequentially stacked thereon. .
  • the substrate 101 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, silicone resin. Or an insulating material such as alumina.
  • the substrate 101 includes a TFT layer, a passivation film, an interlayer insulating film, and the like that are stacked.
  • the anode electrode 102 is composed of a single layer made of a conductive material or a laminated body formed by laminating a plurality of layers.
  • a conductive material for example, Al (aluminum), an alloy containing the same, Ag (silver), APC (silver) , Palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy), and the like.
  • Al aluminum
  • an alloy containing the same For example, Al (aluminum), an alloy containing the same, Ag (silver), APC (silver) , Palladium, copper alloy), ARA (silver, rubidium, gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy), and the like.
  • MoCr molybdenum and chromium alloy
  • NiCr nickel and
  • Electrode coating layer 103 is formed using, for example, ITO (indium tin oxide), and covers at least a part of the surface of the anode electrode 102 at the upper part in the Z-axis direction.
  • ITO indium tin oxide
  • the hole injecting and transporting layer 104 is made of, for example, an oxide such as silver (Ag), molybdenum (Mo), chromium (Cr), vanadium (V), tungsten (W), nickel (Ni), iridium (Ir), or It is a layer made of a conductive polymer material such as PEDOT (mixture of polythiophene and polystyrene sulfonic acid).
  • an oxide such as silver (Ag), molybdenum (Mo), chromium (Cr), vanadium (V), tungsten (W), nickel (Ni), iridium (Ir), or It is a layer made of a conductive polymer material such as PEDOT (mixture of polythiophene and polystyrene sulfonic acid).
  • PEDOT mixture of polythiophene and polystyrene sulfonic acid
  • the hole injection / transport layer 104 is made of an oxide of a transition metal, a plurality of levels can be obtained by taking a plurality of oxidation numbers. As a result, hole injection is facilitated and driven. The voltage can be reduced.
  • the bank (partition wall) 105 is made of an organic material such as resin and has an insulating property.
  • the organic material used for forming the bank 105 include acrylic resin, polyimide resin, and novolac type phenol resin.
  • the bank 105 preferably has organic solvent resistance.
  • the bank 105 is formed by an etching process, a baking process, or the like, it is preferable that the bank 105 be formed of a highly resistant material that does not excessively deform or alter the process.
  • the side surface portion can be treated with fluorine.
  • a material having a resistivity of 10 5 [ ⁇ ⁇ cm] or more and having water repellency can be used as the insulating material used for forming the bank 105. This is because when a material having a resistivity of 10 5 [ ⁇ ⁇ cm] or less is used, a leakage current between the anode electrode 102 and the cathode electrode 108 or a leakage current between adjacent subpixels 100 is generated. This is because various problems such as an increase in power consumption are caused.
  • the bank 105 when the bank 105 is formed using a hydrophilic material, the difference in lyophilicity / liquid repellency between the side surface of the bank 105 and the surface of the hole injecting and transporting layer 104 is reduced, and the organic light emitting layer 106 is formed. This is because it becomes difficult to selectively hold the ink containing an organic substance in the opening of the bank 105 in order to form the ink.
  • the structure of the bank 105 not only a single layer structure as shown in FIG. 2 but also a multilayer structure of two or more layers can be adopted.
  • the above materials can be combined for each layer, and an inorganic material and an organic material can be used for each layer.
  • Organic light emitting layer 106 has a function of emitting light by generating an excited state by recombination of holes injected from the anode electrode 102 and electrons injected from the cathode electrode 108.
  • As a material used for forming the organic light emitting layer 106 it is necessary to use a light emitting organic material that can be formed by a wet printing method.
  • Electron injection layer 107 has a function of transporting electrons injected from the cathode electrode 108 to the organic light emitting layer 106, and is preferably formed of, for example, barium, phthalocyanine, lithium fluoride, or a combination thereof.
  • the cathode electrode 108 is made of, for example, ITO or IZO (indium zinc oxide). In the case of the top emission type display panel 10, it is preferably formed of a light transmissive material. About light transmittance, it is preferable that the transmittance
  • the cathode electrode 108 As a material used for forming the cathode electrode 108, in addition to the above, for example, a structure in which a layer containing an alkali metal, an alkaline earth metal, or a halide thereof and a layer containing silver are laminated in this order is used. You can also.
  • the layer containing silver may be formed of silver alone, or may be formed of a silver alloy.
  • a highly transparent refractive index adjusting layer can be provided on the silver-containing layer.
  • the sealing layer 109 has a function of suppressing exposure of the organic light emitting layer 106 or the like to moisture or air, and is made of, for example, a material such as SiN (silicon nitride) or SiON (silicon oxynitride). It is formed using. In the case of the top emission type display panel 10, it is preferably formed of a light transmissive material.
  • the display panel 10 employs a line bank 105 as an example. Specifically, each of the banks 105 extends in the Y-axis direction, and partitions between adjacent pixel units 100 in the X-axis direction.
  • the sub-pixel 100 is formed so that the emission color is different for each area partitioned by the bank 105.
  • the sub-pixel 100 has 3 emission colors of red (R), green (G), and blue (B).
  • R red
  • G green
  • B blue
  • One pixel portion is configured by a combination of two subpixels.
  • FIG. 4 is a cross-sectional end view in which the display panel 10 in FIG. 1 is cut along the AA ′ cross section and a part thereof is schematically shown.
  • a subpixel 100a, a subpixel 100b, and a subpixel 100c are sequentially arranged in this order from the left side in the X-axis direction.
  • the pixel portion and the pixel portion are arranged so as to be adjacent to each other.
  • the subpixel 100a is defined by the bank 105a and the bank 105b
  • the subpixel 100b is defined by the bank 105b and the bank 105c
  • the subpixel 100c is defined by the bank 105b and the bank 105d.
  • the surface portions 105aa, 105ba, 105bb, 105cb, 105cc, and 105dc and the surface of the hole injecting and transporting layer 104, which is the base layer have angles ⁇ aa, ⁇ ba, ⁇ bb, ⁇ cb, ⁇ cc and ⁇ dc are formed.
  • angles ⁇ aa, ⁇ ba, ⁇ bb, ⁇ cb, ⁇ cc, and ⁇ dc satisfy the relationships shown by the following equations.
  • FIG. 5 schematically illustrates the structure of one subpixel.
  • the angle of inclination of the surface portion of the bank 105x (the angle formed by the surface portion of the bank 105x and the surface of the hole injecting and transporting layer 104) is the angle ⁇ x
  • the inclination angle of the surface portion of the bank 105y (the angle formed by the surface portion of the bank 105y and the surface of the hole injection transport layer 104) is the angle ⁇ y.
  • the angle ⁇ x and the angle ⁇ y satisfy the following relationship.
  • Hy> Hx As shown in FIG. 5C, when the ink 1060x is dried, the central portion of the sub-pixel is formed in the organic light emitting layer 106x to be formed due to the relatively low height Hx of the pinning position Px. The thickness rises and the film thickness becomes the thickness Tx.
  • the thickness Tx and the thickness Ty satisfy the following relationship.
  • the pinning position is higher in Sample 3 and Sample 4 where the taper angle is larger than the thickness distribution of Sample 2.
  • the horizontal axis indicates the horizontal direction
  • the vertical axis indicates the height direction.
  • Sample 5 in which the taper angle (inclination angle) at the bank surface portion was increased to 50 [°] was less uniform in film thickness than Sample 2.
  • the anode electrode 102 and the electrode covering layer 103 are sequentially stacked on the upper surface in the Z-axis direction of the substrate 101 so as to correspond to the respective subpixel planned areas 1000a, 1000b, and 1000c. .
  • a hole injecting and transporting layer 104 is laminated and formed so as to cover the entire surface.
  • the anode electrode 102 is formed by, for example, forming a thin film made of Al or an alloy thereof or an Ag thin film using a sputtering method or a vacuum deposition method, and then patterning the thin film using a photolithography method.
  • the electrode coating layer 103 is formed, for example, by forming an ITO thin film on the surface of the anode electrode 102 using a sputtering method and patterning the ITO thin film using a photolithography method or the like.
  • a metal film is formed on the surface of the substrate 101 including the surface of the electrode coating layer 103 by using a sputtering method or the like. Thereafter, the formed metal film is oxidized to form the hole injecting and transporting layer 104.
  • a bank material layer 1050 is formed so as to cover the hole injection transport layer 104 by using, for example, a spin coat method.
  • a photosensitive resist material is used for the formation of the bank material layer 1050.
  • an insulating organic material such as an acrylic resin, a polyimide resin, or a novolac phenol resin is used. it can.
  • a mask 501 provided with openings 501a, 501b, 501c, and 501d is provided above the bank material layer 1050 at a location where a bank is to be formed. In this state, exposure is performed through the openings 501a, 501b, 501c, and 501d of the mask 501.
  • the opening 501a of the mask 501 located on the left side of the planned subpixel area 1000a has a width Wa of the surface portion 105aa of the bank 105a to be formed. 4)) at the lower end points Pa1 and Pa2.
  • the opening 501c of the mask 501 located between the sub-pixel 1000b and the sub-pixel 1000c has a width Wc1 of the point Pc1 at the upper end of the surface portion 105cb (see FIG. 4) of the bank 105c to be formed and the surface portion 105cc. (Refer to FIG. 4) and the point Pc2 of the skirt portion.
  • a mask 502 having an opening 502c provided at a position corresponding to the surface portion 105cb (see FIG. 4) of the bank 105c is disposed above the bank material layer 1050.
  • the second exposure is executed through the opening 502c of the mask 502.
  • the width Wc2 of the opening 502c in the mask 502 is defined by the lower end point Pc3 and the upper end point Pc1 of the surface portion 105cb of the bank 105c to be formed.
  • the surface portion 105cb of the bank 105c on the subpixel planned area 1000b side is more than the surface portion 105aa, 105ba, 105bb, 105dc of the banks 105a, 105b, and 105d and the surface portion 105cc of the bank 105c on the subpixel planned area 1000c side.
  • the inclination angle increases.
  • an ink 1060a containing an organic light emitting material is applied to the opening (subpixel planned area 1000a) partitioned by the bank 105a and the bank 105b using an ink jet method or the like.
  • an ink 1060b containing an organic light emitting material is applied to the opening (sub-pixel planned region 1000b) partitioned by the bank 105b and the bank 105c, similarly using an inkjet method or the like.
  • the pinning position Qcb of the ink 1060b with respect to the surface portion 105cb of the bank 105c is another pinning position. The position is higher than Qaa, Qba, and Qbb.
  • ink 1060c containing an organic light emitting material is applied to the opening (subpixel planned region 1000c) partitioned by the bank 105c and the bank 105d using the same ink jet method or the like.
  • the ink 1060c is applied to both sides in the X-axis direction. There is no difference in the vapor concentration, and the thickness of the organic light emitting layer is not biased even if the inclination angle of the bank surface is not adjusted. This is clear from the above.
  • red ink (ink 1060a) is applied (step S1)
  • green ink (ink 1060b)
  • blue ink (ink) is applied.
  • 1060c) is applied (step S3), and then the ink drying process (step S4) is collectively performed.
  • step S11 application (step S11) of red ink (ink 1060a) and drying (step S12) are performed, and then application of green ink (ink 1060b) is performed.
  • the execution of (Step S21) and its drying (Step S22) and the application of the blue ink (ink 1060c) (Step S31) and its drying (Step S32) may be performed sequentially.
  • the relationship between the inclination angles of the surface portions 105aa, 105ba, 105bb, 105cb, 105cc, and 105dc of the banks 105a, 105b, 105c, and 105d can be the same as described above. Also in this case, the uneven thickness of the formed organic light emitting layer 106 can be suppressed.
  • the inclination angle ⁇ cb of the surface portion 105cb on the subpixel 100c side in the bank 105c is set to the other surface portions 105aa, 105ba, 105bb, 105cc,
  • the inclination angles ⁇ aa, ⁇ ba, ⁇ bb, ⁇ cc, and ⁇ dc of 105 dc are set large. For this reason, as shown in FIG. 11A, when the ink 1060b is applied to the planned sub-pixel area 1000b, the pinning position Qcb becomes higher than the other pinning positions Qaa, Qba, Qbb.
  • the inclination angles ⁇ aa, ⁇ ba, ⁇ bb, ⁇ cc, ⁇ dc of the surface portions 105aa, 105ba, 105bb, 105cc, 105dc are equal to each other.
  • the display panel 10 has an effect that the thickness of the organic light emitting layer 106 after drying is uniform in the subpixels 100a, 100b, and 100c, and luminance unevenness is small.
  • the display apparatus 1 which has the said effect is manufactureable.
  • “equal” does not mean that the numerical values are completely equal, but considers a dimensional error in manufacturing the display device 1. Specifically, in the display panel 10, it means that the inclination angles are made equal within a practically allowable range of the difference in luminance efficiency (luminance unevenness) of the subpixels 100 a, 100 b, and 100 c belonging to each.
  • Modification 1 of the method for manufacturing the display device 1 will be described with reference to FIG.
  • FIG. 13 shows a step corresponding to the step shown in FIG. 9C to FIG.
  • a mask 503 is disposed thereon.
  • the mask 503 is provided with light transmitting portions 503a, 503b, 503c1, 503c2, and 503d.
  • Each of the light transmitting portions 503a, 503b, 503c1, 503c2, and 503d is provided corresponding to a location where the banks 105a, 105b, 105c, and 105d are to be formed.
  • the width Wa of the light transmitting portion 503a in the region corresponding to the left side of the planned subpixel region 1000a is the surface portion 105aa of the bank 105a to be formed (FIG. 4). )) At the lower end points Pa1 and Pa2.
  • the width Wc2 of the light transmitting portion 503c1 in the region corresponding to between the subpixel 1000b and the subpixel 1000c depends on the lower end point Pc2 and the upper end point Pc1 of the bank 105c (see FIG. 4) to be formed. It is prescribed.
  • the light transmitting portion 503c2 is defined by the upper and lower end points Pc3 and Pc1 of the surface portion 105cb (see FIG. 4) of the bank 105c to be formed.
  • the mask 503 is configured using a mask such as a halftone, and the light transmittances of the light transmitting portions 503a, 503b, 503c1, and 503d and the light transmitting portion 503c2 are different. Specifically, the light transmittance of the light transmitting portion 503c2 is larger than the light transmittance of the light transmitting portions 503a, 503b, 503c1, and 503d.
  • Banks 105a, 105b, 105c, and 105d as shown in FIG. 10B are formed by performing exposure / development in a state where the mask 503 having the above-described configuration is arranged and then baking. Can do. That is, the relationship expressed by the above [Equation 1] is higher in the portion exposed through the light transmitting portion 503c2 where the light transmittance is set higher than in the portion exposed through the other light transmitting portions 503a, 503b, 503c1, and 503d. As described above, the inclination angle of the side wall surface is increased.
  • the display device 1 can also be manufactured by the manufacturing method as described above.
  • a mask 504 is disposed thereon.
  • the mask 504 is provided with openings 504a, 504c, and 504d corresponding to the respective locations where the bank 105 is to be formed.
  • the openings 504a, 504b, and 504d are formed with the same width as the opening 501a of the mask 501 used in the manufacturing method of the above embodiment.
  • the width Wc3 of the opening 504c provided at the location where the bank 105c (see FIG. 4) to be formed between the planned subpixel region 1000b and the planned subpixel region 1000c is to be formed is shown in FIG.
  • the width is set to be larger than the width defined by the upper and lower points Pc2 and Pc3 of the surface portion 105cb (see FIG. 4) of the bank 105c. .
  • the width is increased at a location where the inclination angle is to be increased.
  • bank material layers 1051a, 1051b, 1051c, and 1051d remain at locations corresponding to the openings 504a, 504b, 504c, and 504d, respectively.
  • the inclination angles of the respective surface portions of the bank material layers 1051a, 1051b, 1051c, and 1051d are uniform.
  • baking is not performed at this time.
  • a mask 505 is disposed thereabove.
  • the mask 505 is provided with an opening 505c only in a portion (surface portion 105cb of the bank 105c) where the inclination angle is to be increased among portions corresponding to the surface portions of the banks 105a, 105b, 105c, and 105d to be formed. .
  • Banks 105a, 105b, 105c, and 105d as shown in FIG. 15B can be formed by performing the second exposure / development with the mask 505 disposed and then baking.
  • the display device 1 can be manufactured by performing the same steps as in the above-described embodiment and the like.
  • the inclination angle of the bank side surface formed increases as the exposure amount increases. Specifically, when the exposure amount is 200 [mJ] and the exposure / development is performed, the inclination angle of the bank side surface portion is 23 [°], whereas the exposure amount is 300 [mJ]. The inclination angle of the bank side surface formed when developed is 38 [°]. This result is also shown in AFM (Atomic Force Microscope) shown in FIG.
  • the inclination angle of the bank side surface portion to be formed is 50 [°]. This corresponds to the manufacturing method according to the second modification and is considered to be effective for increasing the inclination angle of the bank side surface.
  • a horizontal axis shows a horizontal direction and a vertical axis
  • shaft shows a height direction.
  • Embodiment 2 The configuration of the display device according to Embodiment 2 will be described with reference to FIGS.
  • the display panel 30 is formed on a TFT substrate (hereinafter simply referred to as “substrate”) 101, similarly to the display panel 10 according to the first embodiment.
  • An anode electrode 102 is formed corresponding to each of the subpixels 300 a, 300 b, and 300 c, and an electrode coating layer 103 and a hole injection / transport layer 104 are sequentially stacked on the anode electrode 102.
  • each subpixel 300a, 300b, and 300c an organic light emitting layer, an electron injection layer, a cathode electrode, and a sealing layer are sequentially stacked in a region partitioned by the banks 305a, 305b, 305c, and 305d. (The illustration is omitted in FIG. 17).
  • the display panel 30 according to the present embodiment is the same as the display panel 10 according to the first embodiment in that one pixel unit is configured by combining the sub-pixels 300a, 300b, and 300c. However, in the display panel 30 according to the present embodiment, the non-pixel portions 300d and 300e are provided between the adjacent pixel portions.
  • an electrode (bus bar) 302 made of the same material as the anode electrode 102 and an electrode coating layer 303 covering the same are provided in the non-pixel portions 300d and 300e.
  • a hole injecting and transporting layer 104 is extended on the electrode covering layer 303, and the cathode electrode 108 is formed on the hole injecting and transporting layer 104.
  • the electrode 302 and the cathode electrode 108 are electrically connected. Connected.
  • the organic light emitting layer 106 is not formed in the non-pixel portions 300d and 300e. By adopting such a configuration, it is possible to reduce the electrical resistance of the cathode electrode 108 made of ITO or the like, and to suppress a voltage drop.
  • the surface 104 forms angles ⁇ 3aa, ⁇ 3ba, ⁇ 3bb, ⁇ 3cb, ⁇ 3cc, and ⁇ 3dc, respectively.
  • angles ⁇ 3aa, ⁇ 3ba, ⁇ 3bb, ⁇ 3cb, ⁇ 3cc, and ⁇ 3dc satisfy the relationship represented by the following equations.
  • an ink 3060a containing an organic light-emitting material is applied to the opening (sub-pixel planned region 3000a) partitioned by the bank 305a and the bank 305b using an inkjet method or the like.
  • the ink concentration is not applied to the left side of the bank 305a and the right side of the bank 305b, so the vapor concentration distribution is substantially uniform.
  • ink 3060b containing an organic light-emitting material is applied to the opening (sub-pixel planned region 3000b) partitioned by the bank 305b and the bank 305c, using the inkjet method or the like.
  • the inclination angle ⁇ 3cb (see FIG. 17) of the surface portion 305cb in the bank 305c is set so as to satisfy the relationship of [Expression 7] (relatively large). Therefore, the pinning position Q3cb of the ink 3060b with respect to the surface portion 305cb of the bank 305c is higher than the other pinning positions Q3aa, Q3ba, Q3bb.
  • the ink 3060c containing the organic light emitting material is applied to the opening (subpixel planned region 3000c) partitioned by the bank 305c and the bank 305d using the same ink jet method or the like.
  • the non-pixel portion 3000d to which ink is not applied exists on the right side of the sub-pixel planned area 3000c, the vapor concentration on the right side of the sub-pixel 3000c is lower than that on the left side. Therefore, also for the bank 305d, the inclination angle ⁇ 3dc (see FIG. 17) of the surface portion 305dc on the side of the planned sub-pixel region 3000c (see FIG.
  • the ink is dried, and then the display panel 30 is formed by sequentially stacking an electron injection layer, a cathode electrode, a sealing layer, and the like.
  • the organic light-emitting layers in all the subpixels 300a, 300b, and 300c are provided.
  • the uneven thickness can be suppressed, and the display panel 30 having high light emission characteristics can be obtained.
  • the bank 105, 105a to 105d, 105x, 105y, and 305a to 305e are schematically shown as being flat. May not necessarily be a plane.
  • FIG. 19 (a) when the bank 605, and the surface between the point P 61 to a point P 62, and the surface between the point P 62 to a point P 63, intersects It will be.
  • pinning position Qy1 during inking resides on the surface between the point P 62 to a point P 63.
  • the inclination angle ⁇ y2 face portion which is formed when subtracting the imaginary straight line L 1 which passes through the point P 62 is important in relation to the pinning position.
  • the angle ⁇ y1 in the formation of the bank 605, by controlling the angle ⁇ y1 the surface and forms between the point P 61 of the hole injection transport layer 104 and the bank 605 is an underlying layer to the point P 62, the angle ⁇ y2 also controlled Therefore, it is possible to obtain the above effect by controlling the inclination angle ⁇ y1 substantially. That is, when the relative angle ⁇ y1 shown in FIG. 19 (a), to form the bank 705 angle ⁇ y11 large surface between the point P 71 to a point P 72 is (FIG. 19 (b)), 19 (b), the angle ⁇ y12 the surface between the point P 72 to a point P 73 with respect to the virtual straight line L 2 also increases with respect to the angle ⁇ y2 in FIG 19 (a).
  • the application area of the above configuration in the display panels 10 and 30 is not limited, but the above configuration is applied to the entire area in the display panel.
  • the above configuration can also be applied to a limited area.
  • the display panel 10 in the direction along the surface, the display panel 10 can be formally divided into a region 10a disposed in the center and a region 10b disposed in the vicinity thereof.
  • the region 10a is connected to the source electrode or drain electrode of the TFT layer in which the anode electrode is formed, and contributes to light emission.
  • the region 10b has the anode electrode below it.
  • the region including the peripheral region 10a2 and the region 10b may be a pixel portion of about 0.5 [%] to several [%] (for example, 1 [%]) of the outer peripheral portion of the panel. This is because the film thickness variation of the organic light emitting layer in the case of not adjusting the tilt angle in the bank surface portion is taken into consideration.
  • each configuration as an example is adopted in order to easily understand the configuration, operation, and effect of the present invention.
  • it is not limited to the said form.
  • the configuration in which the anode electrode 102 is disposed on the lower side in the Z-axis direction with respect to the organic light emitting layer 106 is adopted as an example.
  • a configuration in which the cathode electrode 108 is disposed on the lower side in the Z-axis direction may be employed.
  • the cathode electrode 108 When the cathode electrode 108 is arranged on the lower side in the Z-axis direction with respect to the organic light emitting layer 106, a top emission structure is formed. Therefore, the cathode electrode 108 is used as a reflective electrode layer, and the electrode coating layer 103 is formed thereon. The structure which forms is adopted.
  • the specific appearance of the display device 1 is not shown. However, for example, a part of the system shown in FIG. 21 can be used.
  • the organic EL display device does not require a backlight like a liquid crystal display device, and is therefore suitable for thinning, and exhibits excellent characteristics from the viewpoint of system design.
  • the banks 105, 105a to 105d, 105x, 105y, 305a to 305e, 605, and 705 are so-called line banks as shown in FIG.
  • the display panel 80 may be configured using a pixel bank 805 including a bank element 805a extending in the Y-axis direction and a bank element 805b extending in the X-axis direction as shown in FIG. it can.
  • the adjustment of the inclination angle of the bank surface portion adopted in the first and second embodiments and the first and second modifications is based on the vapor concentration distribution in the ink application process and the drying process related to the formation of the organic light emitting layer at the time of manufacture. It can be appropriately changed according to individual. For example, due to the structure of the drying device, etc., when the flow of vapor during drying of the ink is in the direction from the outer periphery of the panel toward the center of the panel, it corresponds to the location where the film thickness of the organic light emitting layer increases. Then, the inclination angle of the bank side surface portion may be increased. Thereby, the film thickness of an organic light emitting layer can be made uniform, and the brightness nonuniformity in the whole panel can be reduced.
  • Embodiments 1 and 2 and Modifications 1 and 2 there is no distinction in the setting of the inclination angle in the bank surface portion for each emission color (red, green, and blue), but organic light emission is performed according to the emission color. Since it is conceivable that the characteristics of the ink including the material change, in this case, the inclination angle of the surface portion of the corresponding bank can be defined according to the ink characteristics of each emission color.
  • the present invention is useful for realizing an organic light-emitting panel and an organic display device having little luminance unevenness and high image quality performance.
  • Subpixel planned areas 1050, 1051a, 1051b, 1051e, 1051f. Bank material layers 1060a to 1060c, 1060x, 1060y, 3060a to 3060c. Ink 3000d, 3000e.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 画素部は、3つのサブピクセル100a~100cを含み構成されている。サブピクセル100aはバンク105a,105bで規定され、サブピクセル10bは、バンク105b,105cで規定され、サブピクセル100cは、バンク105c,105dで規定されている。サブピクセル100a,100b,100cの各有機発光層は、当該サブピクセル100a,100b,100cの順に塗布され乾燥されることにより形成されている。ここで、バンク105aの面部105aa、バンク105bの面部105ba,105bb、およびバンク105cの面部105cbは、傾斜角度θaaと傾斜角度θbaが等しく、傾斜角度θcdが傾斜角度θbbよりも大きくなるように設定されている。

Description

有機発光パネルとその製造方法、および有機表示装置
 本発明は、有機発光パネルとその製造方法、および有機表示装置に関する。
 近年、有機材料の電界発光現象を利用した表示装置の研究・開発が進められている。この表示装置では、各画素部が、アノード電極およびカソード電極と、その間に介挿された有機発光層とを有し構成されている。そして、表示装置の駆動においては、アノード電極からホール注入し、カソード電極から電子注入し、有機発光層内でホールと電子とが再結合することにより発光する。
 隣接する画素部の有機発光層同士の間は、絶縁材料から構成された隔壁(バンク)により区画されている。有機発光層の形成は、例えば、隔壁で区画された領域ごとに、有機発光材料を含むインクを滴下し、これを乾燥させることによりなされる。
 ところで、上記のとおり形成された有機発光層の膜厚は、均一にすることが困難であるという問題がある。
 ここで、有機発光層の膜厚を均一にするため、例えば、特許文献1では、隔壁の面部に凸状部を設け、これにより隔壁の面部に対するインクのピンニング位置を制御するという技術が記載されている。即ち、特許文献1で提案されている技術を採用することにより、一の画素部におけるインクを滴下した際のピンニング位置を、面部に形成した凸状部にピンニングすることができ、これにより、ある程度の膜厚均一性を確保することができる。
特開2007-311235号公報
 ところで、表示装置における有機発光パネルについて、上記特許文献1により提案された技術を採用し、予め有機発光層の膜厚の偏りを把握し、これに基づいて領域毎、あるいは隔壁の対応面部毎に高い精度で微細な凸状部を形成することは、困難と考えられる。このため、有機発光パネルの領域全体において、有機発光層の膜厚を均一にすることは容易ではない。
 本発明は、上記課題の解決を図ろうとなされたものであって、パネル全面での有機発光層の膜厚の均一化を図り、面内における輝度ムラの少ない表示装置およびその製造方法を提供することを目的とする。
 そこで、本発明の一態様に係る有機発光パネルは、次の構成を採用することを特徴とする。
 本発明の一態様に係る有機発光パネルは、複数の画素部が配列されてなる有機発光パネルであって、複数の画素部の各画素部が、互いに発光色が異なり、順に配列された複数の発光部を有する。各発光部は、第1電極を含む下地層と、下地層に対向して設けられ、発光色ごとに対応した有機発光材料を含むインクが塗布されて形成された有機発光層と、有機発光層に対して下地層と反対側に形成された第2電極とを含む。
 また、本発明の一態様に係る有機発光パネルでは、同一画素部内における複数の発光部が、一方側から他方側に向け、各発光色に対応するインクが順番に塗布され、これにより有機発光層が形成されてなり、一方側に位置し、対応するインクが第1巡目に塗布される第1発光部と、中央側に位置し,対応するインクが第2巡目に塗布される第2発光部と、他方側に位置し、対応するインクが第3巡目に塗布される第3発光部とを少なくとも有し、また、下地層の上方には、複数の発光部のうちの隣り合う発光部を区画し、各発光部を規定する複数の隔壁が設けられている。そして、本発明の一態様に係る有機発光パネルでは、複数の画素部の内に、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が等しく、第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、且つ、第3発光部側に位置する隔壁の面部の傾斜角度が、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きい、という関係を満たす画素部を含むことを特徴とする。
 本発明の一態様に係る有機発光パネルでは、第1発光部が、対応するインクが第1巡目に塗布されて有機発光層が形成されるため、第1発光部の形成の際、第1発光部に隣り合う領域において、インクが塗布されておらず、第1発光部の一端側と他端側においてインクの蒸気濃度は“0”であって等しく、有機発光層の膜厚が偏ることがない。よって、第1発光部について、隣り合う隔壁における対向する面部の傾斜角度を等しくすることにより、膜厚の偏りを防止でき、良好な発光特性が得られる。
 一方、第2発光部は、対応するインクが第2巡目に塗布されて有機発光層が形成されるため、第2発光部の形成の際、第2発光部に隣り合う領域において、インクの蒸気濃度が異なることになる。即ち、第2発光部において、インクの蒸気濃度は、第1発光部側である一端側が第3発光部側である他端側よりも高くなっている。このため、第2発光部は、有機発光層における第3発光部側である他端側における発光層の膜厚が、第1発光部側である一端側における発光層の膜厚よりも大きくなって、膜厚に偏りが生じようとする。
 しかし、本発明の一態様に係る上記構成によれば、第2発光部を規定する隣り合う2つの隔壁における対向する面部の第3発光部側に位置する隔壁の面部の傾斜角度が、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きいため、第3発光部側に位置する隔壁におけるインクのピンニング位置が、第1発光部側に位置する隔壁におけるインクのピンニング位置よりも相対的に高くなる。これより、第3発光部側における有機発光層の膜厚を抑えることができ、第2発光部の一端部と他端部における膜厚の偏りを防止できる。
 以上の通り、本発明の一態様に係る有機発光パネルでは、同一の画素部における発光部に関して、有機発光層の膜厚の偏りを防止でき、同一画素部における良好な発光特性が得られる。
実施の形態1に係る有機表示装置1の概略構成を示すブロック図である。 表示パネル10における一部のサブピクセル100を示す模式断面図である。 表示パネル10におけるバンク105を示す模式平面図である。 表示パネル10におけるサブピクセル100a~100cと、各サブピクセル100a~100c間を区画するバンク105a~105dの構成を示す模式断面図である。 (a)は、バンク側面部のテーパ角が小さい場合のピンニング位置を示す模式断面図であり、(b)は、バンク側面部のテーパ角が大きい場合のピンニング位置を示す模式断面図であり、(c)は、バンク側面部のテーパ角が小さい場合における乾燥後の有機発光層の状態を示す模式断面図であり、(d)は、バンク側面部のテーパ角が大きい場合における乾燥後の有機発光層の状態を示す模式断面図である。 バンクの面部における傾斜角度(テーパ角)θと、ピンニング位置の高さHおよび有機発光層の膜厚Tとの関係を纏めて示す図である。 サンプル1~3における有機発光層の膜厚分布を示す図である。 サンプル4,5における有機発光層の膜厚分布を示す図である。 (a)~(c)は、表示パネル10の製造方法における要部工程を順に示す模式断面図である。 (a)~(c)は、表示パネル10の製造方法における要部工程を順に示す模式断面図である。 (a),(b)は、表示パネル10の製造方法における要部工程を順に示す模式断面図である。 (a)は、インク1060a~1060cの塗布および乾燥に係る工程順を示す模式フロー図であり、(b)は、インク1060a~1060cの塗布および乾燥に係る別の工程順を示す模式フロー図である。 変形例1に係る製造方法における要部工程を示す模式断面図である。 (a),(b)は、変形例2に係る製造方法における要部工程を順に示す模式断面図である。 (a),(b)は、変形例2に係る製造方法における要部工程を順に示す模式断面図である。 (a)は、露光・現像処理とバンクのテーパ角との関係を示す図であり、(b)は、形成されたバンクの形状を示すAFMである。 実施の形態2に係る有機表示装置が備える表示パネルにおけるサブピクセル300a~300cおよび非画素部300d,300eと、バンク305a~305eの構成を示す模式断面図である。 (a)~(c)は、インク3060a~3060cを順に塗布する工程を示す模式断面図である。 (a),(b)は、テーパ角の定義を説明するための模式断面図である。 表示パネル10における領域10a1,10a2,10bを説明するための模式平面図である。 有機表示装置1を含むセットの外観の一例を示す外観斜視図である。 変形例3に係る表示パネル80が備えるバンク805の構成を示す模式平面図である。 (a),(b)は、表示パネルにおける隣接サブピクセル毎の有機発光層の膜厚分布の偏り状態を示す模式断面図である。 (a)~(c)は、有機発光層の形成時における蒸気濃度分布と、インク乾燥工程での膜形状の偏りの状態を示す模式断面図である。
 [本発明の一態様の概要]
 本発明の一態様に係る有機発光パネルは、複数の画素部が配列されてなる有機発光パネルであって、複数の画素部の各画素部が、互いに発光色が異なり、順に配列された複数の発光部を有する。各発光部は、第1電極を含む下地層と、下地層に対向して設けられ、発光色ごとに対応した有機発光材料を含むインクが塗布されて形成された有機発光層と、有機発光層に対して下地層と反対側に形成された第2電極とを含む。
 また、本発明の一態様に係る有機発光パネルでは、同一画素部内における複数の発光部が、一方側から他方側に向け、各発光色に対応するインクが順番に塗布され、これにより有機発光層が形成されてなり、一方側に位置し、対応するインクが第1巡目に塗布される第1発光部と、中央側に位置し,対応するインクが第2巡目に塗布される第2発光部と、他方側に位置し、対応するインクが第3巡目に塗布される第3発光部とを少なくとも有し、また、下地層の上方には、複数の発光部のうちの隣り合う発光部を区画し、各発光部を規定する複数の隔壁が設けられている。そして、本発明の一態様に係る有機発光パネルでは、複数の画素部の内に、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が等しく、第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、且つ、第3発光部側に位置する隔壁の面部の傾斜角度が、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きい、という関係を満たす画素部を含むことを特徴とする。
 本発明の一態様に係る有機発光パネルでは、第1発光部が、対応するインクが第1巡目に塗布されて有機発光層が形成されるため、第1発光部の形成の際、第1発光部に隣り合う領域において、インクが塗布されておらず、第1発光部の一端側と他端側においてインクの蒸気濃度は“0”であって等しく、有機発光層の膜厚が偏ることがない。よって、第1発光部について、隣り合う隔壁における対向する面部の傾斜角度を等しくすることにより、膜厚の偏りを防止でき、良好な発光特性が得られる。
 一方、第2発光部は、対応するインクが第2巡目に塗布されて有機発光層が形成されるため、第2発光部の形成の際、第2発光部に隣り合う領域において、インクの蒸気濃度が異なることになる。即ち、第2発光部において、インクの蒸気濃度は、第1発光部側である一端側が第3発光部側である他端側よりも高くなっている。このため、第2発光部は、有機発光層における第3発光部側である他端側における発光層の膜厚が、第1発光部側である一端側における発光層の膜厚よりも大きくなって、膜厚に偏りが生じようとする。
 しかし、本発明の一態様に係る上記構成によれば、第2発光部を規定する隣り合う2つの隔壁における対向する面部の第3発光部側に位置する隔壁の面部の傾斜角度が、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きいため、第3発光部側に位置する隔壁におけるインクのピンニング位置が、第1発光部側に位置する隔壁におけるインクのピンニング位置よりも相対的に高くなる。これより、第3発光部側における有機発光層の膜厚を抑えることができ、第2発光部の一端部と他端部における膜厚の偏りを防止できる。
 以上の通り、本発明の一態様に係る有機発光パネルでは、同一の画素部における発光部に関して、有機発光層の膜厚の偏りを防止でき、同一画素部における良好な発光特性が得られる。
 なお、上記において、「傾斜角度」とは、バンクにおける各側面部と、バンクが設けられている下地層(第1電極あるいはホール注入層やホール輸送層、さらにはホール注入輸送層がこれに該当する。)の上面と、がなす角度である。
 本発明の一態様に係る有機発光パネルでは、上記構成において、複数の画素部が連続して隣り合うように形成されており、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が等しい、という構成を採用することができる。
 上記構成を採用する場合には、上記効果に加えて、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を等しくすることにより、製造時に膜厚の偏りが発生しない第3発光部について、有機発光層の膜厚の偏りを防止することができ、良好な発光特性を得ることができる。これより、複数の画素部において、良好な発光特性が得られる。
 なお、上記における「等しい」とは、必ずしも数値面で完全に等しいことを意味するのではなく、有機発光パネルの製造における寸法誤差などを考慮したものである。具体的には、パネルの中央部と外周部とにおいて、それぞれに属する画素部の発光効率の差異(輝度ムラ)が実用上許容できる範囲で、傾斜角度を等しくするということを意味する。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度が、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、という構成を採用することができる。
 上記構成を採用する場合には、インクが第2巡目に塗布される第2発光部において、既に第1巡目で第1発光部に対してインク塗布が行われていることに起因して、第1発光部側である一端側でのインクの蒸気濃度が、第3発光部側である他端側よりも高くなっているが、第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度を、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しくすることにより、形成される有機発光層の膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度が、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、という構成を採用することができる。
 上記構成を採用する場合には、インクが第2巡目に塗布される第2発光部において、既に第1巡目で第1発光部に対してインク塗布が行われていることに起因して、第1発光部側である一端側でのインクの蒸気濃度が、第3発光部側である他端側よりも高くなっているが、第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度を、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しくすることにより、形成される有機発光層の膜厚の偏りを抑えることができる。
 なお、上記構成においては、隣り合う画素部と画素部とが連続して形成されており、その間にバスバーを配設するための非画素部が設けられていないので、第3発光部にインクを塗布する場合には、両側の蒸気濃度に差異がなく、このため、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度は、互いに等しく設定されている。
 本発明の一態様に係る有機発光パネルでは、上記画素部同士が連続して隣り合う構成において、各隔壁の面部の傾斜角度を、具体的に次の範囲内で設定することができる。
 (a1) 第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の対向する面部の傾斜角度を、35[°]以上45[°]以下とすることができる。
 (a2) 第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 (a3) 第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 (a4) 第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、複数の画素部の隣り合う画素部の各間に非画素部が形成され、画素部と非画素部との間に、画素部と非画素部を区画する隔壁が形成されており、各画素部において、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、非画素部側に位置する隔壁の面部の傾斜角度が、第2発光部側に位置する隔壁の面部の傾斜角度よりも大きい、という構成を採用することができる。
 このように隣り合う画素部の各間に非画素部が形成されている構成の場合、第3巡目にインクが塗布される第3発光部においては、蒸気濃度が第2発光部側と非画素部側とで相違することになるが、上記に様に、第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、非画素部側に位置する隔壁の面部の傾斜角度が、第2発光部側に位置する隔壁の面部の傾斜角度よりも大きい、という構成を採用することにより、インクのピンニング位置の相対的調整により有機発光層の膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、非画素部が、有機発光層を含むことなく、第2電極と、上記第1電極と同じ材料を以って構成された第3電極とを含み、第2電極と第3電極とが電気的に接続される、という構成を採用することができる。
 例えば、トップエミッション型の有機発光パネルでは、有機発光層よりも上方(光取出し側)に配される第2電極として、光透過性を有する材料(例えば、ITOやIZOなど)が用いられることが通常であるが、これらの材料は電気抵抗が大きい。このため、非画素部において、第2電極と第3電極とを接続して電気抵抗の低減を図り、パネルサイズの大きな場合にも電圧降下を生じ難い、高い発光特性を確保することができる。第3電極は、例えば、バスバーである。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の対向する面部の傾斜角度が、第1発光部側に位置する隔壁の対向する面部の傾斜角度よりも大きく、また、第3発光部を規定する隣り合う2つの隔壁における、非画素部側に位置する隔壁の対向する面部の傾斜角度が、第2発光部側に位置する隔壁の対向する面部の傾斜角度よりも大きい、という構成を採用することができる。
 この構成を採用する場合には、第2発光部を規定する隣り合う2つの隔壁の対向する面部の内、第3発光部側に位置する隔壁の面部の傾斜角度を、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくすることにより、第2発光部に対して塗布されるインクのピンニング位置を、第3発光部側の隔壁の該当面部に対する方が、第1発光部側の隔壁の該当面部に対する方より相対的に高くすることができ、形成される有機発光層の膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の対向する面部の傾斜角度と、第3発光部を規定する隣り合う2つの隔壁における、非画素部側に位置する隔壁の対向する面部の傾斜角度とが等しい、という構成を採用することができる。
 この構成を採用する場合には、第3発光部に対して非画素部が隣り合って配置されていることに起因して、第3発光部へのインク塗布に際しては、第2発光部側よりも非画素部側で蒸気濃度が低くなるが、上記のように第3発光部を規定する隣り合う2つの隔壁における、非画素部側に位置する隔壁の対向する面部の傾斜角度を、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の対向する面部の傾斜角度と等しくすることにより、第2発光部と同様に、第3発光部における有機発光層の膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度が、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、という構成を採用することができる。
 第2発光部へのインク塗布に際しては、第2発光部に対して隣り合う第1発光部へのインク塗布がすでになされている状態であるので、第1発光部側の蒸気濃度が第3発光部側の蒸気濃度よりも高い状態にあり、有機発光層の膜厚が第3発光部側の方が厚くなろうとする傾向にあるが、第1発光部側については、そのような傾向が少ない。よって、上記構成を採用する場合には、隔壁の面部における傾斜角度を、上記関係で規定することによって、第2発光部の有機発光層の相対的な膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、第3発光部を規定する隣り合う2つの隔壁における、第2発光部側に位置する隔壁の対向する面部の傾斜角度が、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、という構成を採用することができる。
 第3発光部へのインク塗布に際しても、蒸気濃度の偏りに起因して、有機発光層の膜厚について、非画素部側で厚くなろうとする傾向にあるが、第2発光部側では、そのような傾向が少ない。よって、上記構成を採用する場合には、隔壁の面部における傾斜角度を、上記関係で規定することによって、第3発光部の有機発光層の相対的な膜厚の偏りを抑えることができる。
 本発明の一態様に係る有機発光パネルでは、上記隣り合う画素部間に非画素部が配される構成において、各隔壁の面部の傾斜角度を、具体的に次の範囲内で設定することができる。
 (b1) 第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の対向する面部の傾斜角度を、35[°]以上45[°]以下とすることができる。
 (b2) 第3発光部を規定する隣り合う2つの隔壁における、非画素部側に位置する隔壁の対向する面部の傾斜角度を、35[°]以上45[°]以下とすることができる。
 (b3) 第2発光部を規定する隣り合う2つの隔壁における、第1発光部側に位置する隔壁の対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 (b4) 第3発光部を規定する隣り合う2つの隔壁における、第2発光部側に位置する隔壁の対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 (b5) 第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を、25[°]以上35[°]以下とすることができる。
 本発明の一態様に係る有機発光パネルでは、上記構成において、傾斜角度を、隔壁における上記対向する各面部と、隔壁が形成されている下地層の上面とがなす角度である、と定義することができる。
 なお、本発明の一態様に係る有機発光パネルでは、下地層の中に、第1電極よりも下方に形成されたTFT(薄膜トランジスタ)層が含まれ、各画素部においては、第1電極がTFT層に対して電気的に接続されている、という構成を採用することができる。
 本発明に係る有機表示装置は、上記の何れかに記載の有機発光パネルを備えた、ことを特徴とする。このため、本発明の一態様に係る有機表示装置は、上記本発明の一態様に係る有機表示パネルが有する効果をそのまま有する。
 本発明の一態様に係る有機発光パネルの製造方法は、複数の画素部が配列されてなる有機発光パネルを製造する方法であって、以下の工程を有する。
 (第1工程) 基板上に、第1電極を含む下地層を形成する。
 (第2工程) 下地層の上に、感光性レジスト材料を積層する。
 (第3工程) 積層された感光性レジスト材料をマスク露光してパターニングすることにより、各画素部ごとに複数の発光部に対応する複数の開口を形成するとともに、隣接する発光部を区画して各発光部を規定する複数の隔壁を形成する。
 (第4工程) 複数の開口のそれぞれに対して、有機発光材料を含むインクを滴下して乾燥させ、有機発光層を形成する。
 (第5工程) 有機発光層の上方に、第2電極を形成する。
 本発明の一態様に係る有機発光パネルの製造方法では、上記第3工程において、各画素部ごとに、一方側に位置する第1発光部に対応する第1開口と、中央側に位置する第2発光部に対応する第2開口と、他方側に位置する第3発光部に対応する第3開口とを形成し、さらに、第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を等しく形成する。
 また、本発明の一態様に係る有機発光パネルの製造方法では、上記第3工程において、第2発光部および第3発光部のうち、少なくとも第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を異ならせ、且つ、第3発光部側に位置する隔壁の面部の傾斜角度を第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくなるように形成する。
 さらに、本発明の一態様に係る有機発光パネルの製造方法では、上記第4工程において、画素部ごとに、各発光色に対応する前記インクを、第1開口、第2開口、第3開口の順番に滴下し、有機発光層を形成する、ことを特徴とする。
 本発明の一態様に係る製造方法を採用すれば、少なくとも第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を異ならせ、且つ、第3発光部側に位置する隔壁の面部の傾斜角度を第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくなるように形成する、という構成を実現することができ、インクの滴下(塗布)から乾燥までにおける蒸気濃度の偏りに起因する有機発光層の膜厚の偏りを抑えることができる。よって、本発明の一態様に係る製造方法を採用すれば、良好な発光特性を有する有機発光パネルを製造することができる。
 本発明の一態様に係る有機発光パネルの製造方法では、上記構成において、第3工程では、感光性レジスト材料の露光に関し、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部に相当する部分への露光量を、第1発光部側に位置する隔壁の面部に相当する部分への露光量よりも大きくすることにより、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部の傾斜角度を、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、という構成を採用することができる。
 この構成を採用する場合には、露光量の調整により、隔壁の面部における傾斜角度を箇所に応じて変えることができ、これによりインク滴下時におけるピンニング位置を調整することができる。よって、良好な発光特性を有する有機発光パネルを製造することができる。
 本発明の一態様に係る有機発光パネルの製造方法では、上記構成において、第3工程では、感光性レジスト材料の露光に関し、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部に相当する部分への光の透過率が、前記第1発光部側に位置する隔壁の面部に相当する部分への光の透過率よりも小さくなるように、それぞれの面部に相当する部分に対して互いに異なるマスクを用いることにより、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部の傾斜角度を、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、という構成を採用することができる。
 この構成を採用する場合には、マスクにおける光の透過率を調整することにより、隔壁の面部における傾斜角度を箇所に応じて変えることができ、これによりインク滴下時におけるピンニング位置を調整することができる。よって、良好な発光特性を有する有機発光パネルを製造することができる。
 本発明の一態様に係る有機発光パネルの製造方法では、上記構成において、第3工程では、感光性レジスト材料を露光して現像した後、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部に相当する部分に対し、露光処理を追加して行うことにより、第2発光部を規定する隣り合う2つの隔壁における、第3発光部側に位置する隔壁の面部の傾斜角度を、第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、という構成を採用することができる。
 この構成を採用する場合には、露光処理を追加して実行する箇所と追加しない箇所とを設けることにより、隔壁の面部における傾斜角度を箇所に応じて変えることができ、これによりインク滴下時におけるピンニング位置を調整することができる。よって、良好な発光特性を有する有機発光パネルを製造することができる。
 本発明の一態様に係る有機表示装置は、上記の何れかに記載の製造方法により得られた有機発光パネルを備えた、ことを特徴とする。
 このように得られた有機表示装置では、上記製造方法により得られる有機発光パネルが有する効果をそのまま有する。
 [実施の形態]
 以下では、本発明を実施するための形態の一例について、図面を参酌しながら説明する。
 なお、以下の説明で用いる形態は、本発明の構成および作用・効果を分かりやすく説明するために用いる例であって、本発明は、その本質的な特徴部分以外に何ら以下の形態に限定を受けるものではない。
 (本発明に係る実施の形態を得るに至った経緯)
 本発明者は、[背景技術]において記載した有機発光パネルおよびこれを備える有機表示装置に関し、鋭意研究の結果、次のような知見を得た。
 通常、図23(a)に示すように、基板901の上に、アノード電極902およびこれを覆う電極被覆層903が、サブピクセル900a,900b,900c毎に設けられている。そして、電極被覆層902および基板901の表面を覆うように、ホール注入層904が形成され、ホール注入層904の上に、サブピクセル900a,900b,900c毎に発光色が異なる有機発光層906a,906b,906cが積層形成されている。有機発光層906a,906b,906cは、ホール注入層904の上に立設されたバンク905a~905dにより区画されている。
 図23(a)に示すように、従来技術に係る有機発光パネルでは、配列順で中央部に配されているサブピクセル900bの有機発光層906bが、膜厚に偏りを生じてしまうことがある。具体的には、有機発光層906bのバンク905cでの箇所C3の高さが、バンク905bでの箇所C2の高さ、およびサブピクセル900aにおける有機発光層906aのバンク905b側での箇所C1の高さよりも、高くなるという現象が生じる。
 また、別の例として、図23(b)に示すように、サブピクセル950b,950cにおける各有機発光層956b,956cのバンク955c,955d側のそれぞれの箇所C12,C14の高さが、各有機発光層956b,956cのバンク955b,955c側のそれぞれの箇所C11,C13の高さよりも高くなるという現象が生じる。なお、図23(b)に示すように、サブピクセル950aにおける有機発光層956aは、バンク955a側の箇所の高さとバンク955b側の箇所の高さとが略等しく、膜厚に大きな偏りを生じていない。
 上記現象に関し、本発明者は検討を重ねた末、有機発光層における膜厚の均一性の低下は、以下に説明するように、インク乾燥時における蒸気濃度分布の不均一に起因するものと推定した。具体的には、図24(a)に示すように、バンク905bとバンク905cとの間に規定される領域に、有機発光層形成のためのインク9060bを塗布した状態を想定し、その際の蒸気濃度分布が、二点鎖線で示すように、図24(a)の左側に比べて右側で低いとしたときに、次のような関係で有機発光層の膜厚に偏りを生じると考えられる。
 図24(a)に示すように、インク9060bの滴下直後において、インク9060bの表面プロファイルL90は、サブピクセルの中央部分が盛り上がった形状となっている。これを乾燥させる場合には、上記のような蒸気濃度の分布に起因して、蒸気濃度の低い側で蒸発速度が速く、蒸気濃度の高い側で遅くなるので、表面プロファイルL91へと変化すると形式的には考えられる。
 しかし、図24(b)に示すように、乾燥途中のインク9061bの内部では、破線矢印L92で示すような溶剤の移動を生じる。これは、蒸発した分を補うように溶剤が移動する(表面自由エネルギを最小にするように移動する)ものであり、溶剤の移動に伴い溶質(有機発光材料)も移動する。このため、図24(c)に示すように、蒸気濃度分布に偏りを有する場合には、表面プロファイルL93が右側ほど盛り上がった有機発光層906bが形成されることになる。
 以上のようにして、本発明者は、有機発光パネルに関し、インク乾燥時の蒸気濃度分布の不均一に起因し、形成された有機発光層の膜厚の均一性が低下するという推論を得た。
 そして、本発明者は、パネル面内において、バンクにおける面部の傾斜角度を異ならせることにより、インクのバンク側面部におけるピンニング位置を異ならせ、この結果、有機発光層の膜厚の均一化を図るという技術的特徴を見出した。
 [実施の形態1]
 1.表示装置1の概略構成
 本実施の形態に係る表示装置1の全体構成について、図1を用い説明する。
 図1に示すように、表示装置(有機表示装置)1は、表示パネル(有機発光パネル)部10と、これに接続された駆動制御部20とを有し構成されている。表示パネル部10は、有機材料の電界発光現象を利用した有機発光パネルであり、複数の画素部がX-Y面方向に2次元配列されている。
 また、駆動制御部20は、4つの駆動回路21~24と制御回路25とから構成されている。
 なお、実際の表示装置1では、表示パネル部10に対する駆動制御部20の配置については、これに限られない。
 2.表示パネル10の構成
 表示パネル10の構成について、図2を用い説明する。なお、本実施の形態に係る表示パネル10は、一例として、トップエミッション型の有機発光パネルを採用し、赤(R)、緑(G)、青(B)の何れか発光色を有する有機発光層を備える複数の画素部がマトリクス状に配置され構成されているが、図2では、一の画素部における一つのサブピクセル100を抜き出して描いている。
 図2に示すように、表示パネル10は、TFT基板(以下では、単に「基板」と記載する。)101上には、アノード電極102が形成されており、アノード電極102上に、電極被覆層103およびホール注入輸送層104が順に積層形成されている。なお、アノード電極102および電極被覆層103は、サブピクセル100毎に分離された状態で形成されている。
 ホール注入輸送層104の上には、絶縁材料からなり、サブピクセル100同士の間を区画するバンク(隔壁)105が立設されている。各サブピクセル100におけるバンク105で区画された領域には、有機発光層106が形成され、その上には、電子注入層107、カソード電極108、および封止層109が、順に積層形成されている。
 a)基板101
 基板101は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料をベースとして形成されている。そして、基板101には、図示を省略しているが、TFT層およびパッシベーション膜、さらには、層間絶縁膜などが積層形成されている。
 b)アノード電極102
 アノード電極102は、導電性材料からなる単層、あるいは複数の層が積層されてなる積層体から構成されており、例えば、Al(アルミニウム)やこれを含む合金、Ag(銀)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などを用い形成されている。なお、本実施の形態のように、トップエミッション型の場合には、高反射性の材料で形成されていることが好ましい。
 c)電極被覆層103
 電極被覆層103は、例えば、ITO(酸化インジウムスズ)を用い形成されており、アノード電極102のZ軸方向上部の表面の少なくとも一部を被覆する。
 d)ホール注入輸送層104
 ホール注入輸送層104は、例えば、銀(Ag)、モリブデン(Mo)、クロム(Cr)、バナジウム(V)、タングステン(W)、ニッケル(Ni)、イリジウム(Ir)などの酸化物、あるいは、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料からなる層である。上記の内、酸化金属からなるホール注入輸送層104は、ホールを安定的に、またはホールの生成を補助して、有機発光層106に対しホールを注入および輸送する機能を有し、大きな仕事関数を有する。
 ここで、ホール注入輸送層104を遷移金属の酸化物から構成する場合には、複数の酸化数をとるためこれにより複数の準位をとることができ、その結果、ホール注入が容易になり駆動電圧を低減することができる。
 e)バンク105
 バンク(隔壁)105は、樹脂等の有機材料で形成されており絶縁性を有する。バンク105の形成に用いる有機材料の例としては、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等があげられる。そして、バンク105は、有機溶剤耐性を有することが好ましい。
 さらに、バンク105の形成においては、エッチング処理およびベーク処理などが施されるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。また、撥水性をもたせるために、側面部をフッ素処理することもできる。
 なお、バンク105の形成に用いる絶縁材料については、上記の各材料をはじめ、特に抵抗率が105[Ω・cm]以上であって、撥水性を有する材料を用いることができる。これは、抵抗率が105[Ω・cm]以下の材料を用いた場合には、アノード電極102とカソード電極108との間でのリーク電流、あるいは隣接サブピクセル100間でのリーク電流の発生の原因となり、消費電力の増加などの種々の問題を生じることになるためである。
 また、バンク105を親水性の材料を用い形成した場合には、バンク105の側面部とホール注入輸送層104の表面との親液性/撥液性の差異が小さくなり、有機発光層106を形成するために有機物質を含んだインクを、バンク105の開口部に選択的に保持させることが困難となってしまうためである。
 さらに、バンク105の構造については、図2に示すような一層構造だけでなく、二層以上の多層構造を採用することもできる。この場合には、層毎に上記材料を組み合わせることもできるし、層毎に無機材料と有機材料とを用いることもできる。
 f)有機発光層106
 有機発光層106は、アノード電極102から注入されたホールと、カソード電極108から注入された電子とが再結合されることにより励起状態が生成され発光する機能を有する。有機発光層106の形成に用いる材料は、湿式印刷法を用い製膜できる発光性の有機材料を用いることが必要である。
 具体的には、例えば、特許公開公報(特開平5-163488号公報)に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体などの蛍光物質で形成されることが好ましい。
 g)電子注入層107
 電子注入層107は、カソード電極108から注入された電子を有機発光層106へ輸送する機能を有し、例えば、バリウム、フタロシアニン、フッ化リチウム、あるいはこれらの組み合わせで形成されることが好ましい。
 h)カソード電極108
 カソード電極108は、例えば、ITO、IZO(酸化インジウム亜鉛)などで形成される。トップエミッション型の表示パネル10の場合においては、光透過性の材料で形成されることが好ましい。光透過性については、透過率が80[%]以上とすることが好ましい。
 カソード電極108の形成に用いる材料としては、上記の他に、例えば、アルカリ金属、アルカリ土類金属、またはそれらのハロゲン化物を含む層と銀を含む層とをこの順で積層した構造を用いることもできる。上記において、銀を含む層は、銀単独で形成されていてもよいし、銀合金で形成されていてもよい。また、光取出し効率の向上を図るためには、当該銀を含む層の上から透明度の高い屈折率調整層を設けることもできる。
 i)封止層109
 封止層109は、有機発光層106などが水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiN(窒化シリコン)、SiON(酸窒化シリコン)などの材料を用い形成される。トップエミッション型の表示パネル10の場合においては、光透過性の材料で形成されることが好ましい。
 3.バンク105の構成
 図3に示すように、本実施の形態に係る表示パネル10では、一例としてライン状のバンク105を採用している。具体的には、バンク105は、各々がY軸方向に延伸形成され、X軸方向において隣接する画素部100間を区画している。そして、サブピクセル100は、バンク105により区画された領域ごとに、発光色が異なるように形成されており、例えば、赤色(R)、緑色(G)、青色(B)の各発光色の3つのサブピクセルの組み合わせを以って、一つの画素部が構成されている。
 4.領域ごとのバンク105の構成
 領域ごとのバンク105の構成について、図4を用い説明する。なお、図4は、図1における表示パネル10をA-A'断面で切断し、その一部を模式化した断面端面図である。
 図4に示すように、画素部において、X軸方向左側から順に、サブピクセル100a、サブピクセル100b、サブピクセル100cが連続して配置されている。なお、本実施の形態に係る表示パネル10では、画素部と画素部とが連続して隣り合うように配されている。
 サブピクセル100aは、バンク105aとバンク105bとにより規定され、サブピクセル100bは、バンク105bとバンク105cとにより規定され、サブピクセル100cは、バンク105bとバンク105dとにより規定されている。バンク105a,105b,105c,105dの各々では、その面部105aa,105ba,105bb,105cb,105cc,105dcと下地層であるホール注入輸送層104の表面とが、それぞれ角度θaa,θba,θbb,θcb,θcc,θdcをなす。
 ここで、本実施の形態において、角度θaa,θba,θbb,θcb,θcc,θdcは、次の各式で示す関係を満足する。
 [数1]  θcb>θaa=θba=θbb=θcc=θdc
 なお、本実施の形態では、それぞれの角度θaa,θba,θbb,θcb,θcc,θdcを、上記[数1]の関係を満たし、且つ、次のような範囲で設定することが望ましい。
 [数2] 25[°]<θaa=θba=θbb=θcc=θdc<35[°]
 [数3] 35[°]<θcb<45[°]
 5.バンク105における側面部の傾斜角度θと有機発光層106の膜厚との関係
 バンク105における面部の傾斜角度θと有機発光層106の膜厚との関係について、図5および図6を用い説明する。なお、図5では、一つのサブピクセルの構造を模式的に描いている。
 図5(a)に示すように、バンク105xの面部の傾斜角度(バンク105xの面部とホール注入輸送層104の表面とがなす角度)が角度θxであり、図5(b)に示すように、バンク105yの面部の傾斜角度(バンク105yの面部とホール注入輸送層104の表面とがなす角度)が角度θyである。角度θxと角度θyとは、次の関係を満たす。
 [数4] θy>θx
 各バンク105x,105yで区画された開口部に有機発光材料を含むインク1060x,1060yを滴下(塗布)すると、各ピンニング位置Px,Pyの高さHx,Hyが次のような関係となる。
 [数5] Hy>Hx
 図5(c)に示すように、インク1060xを乾燥させると、ピンニング位置Pxの高さHxが相対的に低いことに起因して、形成される有機発光層106xでは、サブピクセルの中央部分が盛り上がり、その膜厚が厚みTxとなる。
 一方、図5(d)に示すように、インク1060yを乾燥させると、ピンニング位置Pyの高さHyが相対的に高いことに起因して、形成される有機発光層106yでは、サブピクセルの中央部分が凹み、その膜厚が厚みTyとなる。
 厚みTxと厚みTyとは、次の関係を満たす。
 [数6] Tx>Ty
 上記の関係を図6に纏めて示す。図6に示すように、バンク105の面部における傾斜角度(テーパ角)θを小さくすれば、ピンニング位置の高さHが低くなり、結果的に得られる有機発光層106の膜厚Tが厚くなる。逆に、バンク105の面部における傾斜角度(テーパ角)θを大きくすれば、ピンニング位置の高さHが高くなり、結果的に得られる有機発光層106の膜厚Tが薄くなる。
 以上の事項について、5つのサンプルを作成して評価した。結果を図7および図8に示す。
 図7および図8に示すように、サンプル2の膜厚分布に対し、テーパ角を大きくしたサンプル3およびサンプル4では、ピンニング位置が高くなっている。なお、図7および図8では、横軸が横方向を示し、縦軸が高さ方向を示す。
 ただし、バンクの面部におけるテーパ角(傾斜角度)を50[°]まで大きくしたサンプル5では、サンプル2よりも膜厚の均一性が低下した。
 6.表示パネル10の製造方法
 本実施の形態に係る表示パネル10の製造方法について、図9、図10および図11を用い、特徴となる部分を説明する。なお、以下で説明を省略する製造工程については、従来技術として提案されている種々の工程を採用することが可能である。
 先ず、図9(a)に示すように、基板101におけるZ軸方向上面に、各サブピクセル予定領域1000a,1000b,1000cに対応して、アノード電極102と電極被覆層103とを順に積層形成する。そして、その上から、表面全体を覆うように、ホール注入輸送層104を積層形成する。アノード電極102の形成は、例えば、スパッタリング法や真空蒸着法を用いAl若しくはその合金からなる薄膜、あるいは、Ag薄膜を製膜した後、当該薄膜をフォトリソグラフィ法を用いパターニングすることによりなされる。
 また、電極被覆層103の形成は、例えば、アノード電極102の表面に対し、スパッタリング法などを用いITO薄膜を製膜し、当該ITO薄膜をフォトリソグラフィ法などを用いパターニングすることでなされる。そして、ホール注入輸送層104の形成では、先ず、電極被覆層103の表面を含む基板101の表面に対し、スパッタリング法などを用い金属膜を製膜する。その後、形成された金属膜を酸化し、ホール注入輸送層104が形成される。
 次に、図9(b)に示すように、例えば、スピンコート法などを用い、ホール注入輸送層104の上を覆うように、バンク材料層1050を形成する。バンク材料層1050の形成には、感光性レジスト材料を用い、具体的には、上述のように、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂などの絶縁性を有する有機材料を用いることができる。
 次に、図9(c)に示すように、バンク材料層1050の上方に、バンクを形成しようとする箇所に開口501a,501b,501c,501dが設けられたマスク501を配する。この状態でマスク501の開口501a,501b,501c,501dを通して、露光を実行する。
 なお、図9(c)に示すように、サブピクセル予定領域1000aに対して左側に位置するマスク501の開口501aは、その幅Waが、形成しようとするバンク105aの面部105aa,・・(図4を参照)の下端のポイントPa1,Pa2により規定されている。
 一方、サブピクセル1000bとサブピクセル1000cとの間に位置するマスク501の開口501cは、その幅Wc1が、形成しようとするバンク105cの面部105cb(図4を参照)の上端のポイントPc1と面部105cc(図4を参照)の裾部分のポイントPc2とにより規定されている。
 次に、図10(a)に示すように、バンク材料層1050の上方に、バンク105cの面部105cb(図4を参照)に対応する箇所に開口502cが設けられたマスク502を配する。そして、この状態でマスク502の開口502cを通して、2回目の露光を実行する。
 なお、図10(a)に示すように、マスク502における開口502cの幅Wc2は、形成しようとするバンク105cの面部105cbの下端のポイントPc3と上端のポイントPc1とにより規定されている。
 次に、図10(b)に示すように、現像およびベークを施すことによって、バンク105a,105b,105c,105dが形成される。バンク105cにおけるサブピクセル予定領域1000b側の面部105cbは、上述のように、バンク105a,105b、105dの各面部105aa,105ba,105bb,105dcおよびバンク105cのサブピクセル予定領域1000c側の面部105ccよりも傾斜角度が大きくなる。
 その後、図10(c)に示すように、インクジェット法などを用い、バンク105aとバンク105bで区画された開口部(サブピクセル予定領域1000a)に対し、有機発光材料を含むインク1060aを塗布する。
 続いて、図11(a)に示すように、同じくインクジェット法などを用い、バンク105bとバンク105cで区画された開口部(サブピクセル予定領域1000b)に対し、有機発光材料を含むインク1060bを塗布する。ここで、上述のように、バンク105cにおける面部105cbの傾斜角度を、他の面部の傾斜角度よりも大きくしているので、バンク105cの面部105cbに対するインク1060bのピンニング位置Qcbは、他のピンニング位置Qaa,Qba,Qbbよりも高い位置となる。
 そして、図11(b)に示すように、同じくインクジェット法などを用い、バンク105cとバンク105dで区画された開口部(サブピクセル予定領域1000c)に対し、有機発光材料を含むインク1060cを塗布する。ここで、バンク105dの右側に隣接するサブピクセル予定領域には、隣の画素部におけるサブピクセル予定領域へのインク塗布がすでになされているので、インク1060cについては、X軸方向において、両側での蒸気濃度に差異がなく、バンクの面部の傾斜角度の調整をしなくても、有機発光層の膜厚に偏りを生じない。これは、上述より明らかである。
 なお、図示を省略しているが、この後に、インクの乾燥を実行し、その後、電子注入層107,カソード電極108および封止層109などを順に積層形成することで表示パネル10が形成される。
 7.インクの塗布工程と乾燥工程
 インクの塗布工程と乾燥工程との関係について、図12を用い説明する。
 図12(a)に示すように、本実施の形態では、赤色インク(インク1060a)を塗布し(ステップS1)、続いて、緑色インク(インク1060b)を塗布(ステップS2)、青色インク(インク1060c)を塗布(ステップS3)した後、纏めてインク乾燥工程(ステップS4)を実行することとした。
 これに対して、図12(b)に示すように、赤色インク(インク1060a)の塗布(ステップS11)とその乾燥(ステップS12)とを実行し、続いて、緑色インク(インク1060b)の塗布(ステップS21)とその乾燥(ステップS22)の実行、および青色インク(インク1060c)の塗布(ステップS31)とその乾燥(ステップS32)の実行を順次行うこととすることもできる。この場合においても、バンク105a,105b,105c,105dの各面部105aa,105ba,105bb,105cb,105cc,105dcの各傾斜角度の関係は上記同様とすることができる。この場合にも、形成された有機発光層106の膜厚の偏りを抑えることができる。
 8.効果
 図4に示すように、本実施の形態に係る表示装置1の表示パネル10では、バンク105cにおけるサブピクセル100c側の面部105cbの傾斜角度θcbが、他の面部105aa,105ba,105bb,105cc,105dcの各傾斜角度θaa,θba,θbb,θcc,θdc大きく設定されている。このため、図11(a)に示すように、サブピクセル予定領域1000bにインク1060bを塗布した際に、そのピンニング位置Qcbが、他のピンニング位置Qaa,Qba,Qbbよりも高くなる。
 逆に、面部105aa,105ba,105bb,105cc,105dcの各傾斜角度θaa,θba,θbb,θcc,θdcは、互いに等しくなっている。
 従って、表示パネル10では、乾燥後における有機発光層106の膜厚が、サブピクセル100a,100b,100cで均一となり、輝度ムラが小さいという効果を有する。
 なお、図9、図10および図11を用い説明した本実施の形態に係る表示装置1の製造方法を用いれば、上記効果を有する表示装置1の製造が可能である。
 また、上記のように、「等しく」とは、数値面で完全に等しくするということを意味するのではなく、表示装置1の製造における寸法誤差などを考慮したものである。具体的には、表示パネル10において、それぞれに属するサブピクセル100a,100b,100cの発光効率の差異(輝度ムラ)が実用上許容できる範囲で、傾斜角度を等しくするということを意味する。
 [変形例1]
 次に、図13を用い、表示装置1の製造方法の変形例1について説明する。図13は、図9(c)から図10(a)に示す工程に対応する工程を示す。
 図13に示すように、ホール注入輸送層104の上にバンク材料層1050を積層形成した後、その上方にマスク503を配する。マスク503には、光透過部503a,503b,503c1,503c2,503dが設けられている。各光透過部503a,503b,503c1,503c2,503dは、バンク105a,105b,105c,105dを形成しようとする箇所に対応して設けられている。
 本変形例1に係る表示装置1の製造方法では、サブピクセル予定領域1000aの左側に対応した領域の光透過部503aの幅Waが、形成しようとするバンク105aの面部105aa,・・(図4を参照。)の下端のポイントPa1,Pa2により規定されている。
 一方、サブピクセル1000bとサブピクセル1000cとの間に対応した領域の光透過部503c1の幅Wc2は、形成しようとするバンク105c(図4を参照。)の下端のポイントPc2および上端のポイントPc1により規定されている。また、光透過部503c2は、形成しようとするバンク105cの面部105cb(図4を参照。)の上端および下端のポイントPc3,Pc1により規定されている。
 ここで、マスク503は、ハーフトーンなどのマスクを用い構成されており、光透過部503a,503b,503c1,503dと光透過部503c2との光の透過率が異なっている。具体的には、光透過部503c2の光の透過率は、光透過部503a,503b,503c1,503dの光の透過率よりも大きい。
 以上のような構成を有するマスク503を配した状態で、露光・現像を実行した後、ベークすることにより、図10(b)に示すような、バンク105a,105b,105c,105dを形成することができる。即ち、光の透過率が大きく設定された光透過部503c2を通して露光された箇所では、他の光透過部503a,503b,503c1,503dを通して露光された箇所よりも、上記[数1]で示す関係のように、側壁面の傾斜角度が大きくなる。
 なお、この後の工程は、上記実施の形態などと同様である。
 以上のような製造方法によっても、表示装置1を製造することができる。
 [変形例2]
 次に、図14および図15を用い、表示装置1の製造方法の変形例2について説明する。図14および図15は、図9(c)から図10(b)に示す工程に対応する工程を示す。
 図14(a)に示すように、ホール注入輸送層104の上にバンク材料層1050を積層形成した後、その上方にマスク504を配する。マスク504には、バンク105を形成しようとする各箇所に対応して、開口504a,504c,504dが設けられている。
 開口504a,504b,504dは、上記実施の形態の製造方法で用いたマスク501の開口501aと同じ幅を以って形成されている。
 一方、サブピクセル予定領域1000bとサブピクセル予定領域1000cとの間に形成しようとするバンク105c(図4を参照。)を形成しようとする箇所に設けられた開口504cの幅Wc3は、図14(a)の二点鎖線で囲んだ部分に示すように、バンク105cの面部105cb(図4を参照)の上端および下端のポイントPc2,Pc3で規定される幅よりも大きくなるように設定されている。具体的には、傾斜角度を大きくしようとする箇所で、幅を大きくしている。
 図14(a)に示す形態のマスク504を配した状態で、1回目の露光・現像を実行する。これにより、図14(b)に示すように、開口504a,504b,504c,504dのそれぞれに対応する箇所にバンク材料層1051a,1051b,1051c,1051dが残る。
 なお、図14(b)に示すように、1回目の露光・現像を実行した状態では、バンク材料層1051a,1051b,1051c,1051dの各面部の傾斜角度は、均一である。また、本変形例2においては、この時点でのベークを行わない。
 図15(a)に示すように、バンク材料層1051a,1051b,1051c,1051dが形成された状態で、その上方に、マスク505を配する。マスク505には、形成しようとするバンク105a,105b,105c,105dの面部に対応する箇所の内、傾斜角度を大きくしようとする箇所(バンク105cの面部105cb)にだけ開口505cが設けられている。
 マスク505を配した状態で、2回目の露光・現像を行った後、ベークをすることにより、図15(b)に示すようなバンク105a,105b,105c,105dが形成できる。
 この後、上記実施の形態などと同様の工程を実行することにより、表示装置1を製造することができる。
 [製造方法の検証]
 上記実施の形態および変形例1,2に係る各製造方法について、具体例を以って形成後のバンク形状について検証を行った。その結果について、図16を用い説明する。
 図16(a)に示すように、露光量を増やすほど、形成されるバンク側面部の傾斜角度が大きくなる。具体的には、露光量を200[mJ]として露光・現像した場合に形成されるバンク側面部の傾斜角度は、23[°]であるのに対して、露光量を300[mJ]として露光・現像した場合に形成されるバンク側面部の傾斜角度は、38[°]である。この結果については、図16(b)に示すAFM(Atomic Force Microscope)にも示されている。
 さらに、図16(a)および図16(b)に示すように、露光量を200[mJ]として1回目の露光・現像を行った後、露光量を100[mJ]として2回目の露光・現像を行った場合には、形成されるバンク側面部の傾斜角度が50[°]となる。これは、上記変形例2に係る製造方法に対応するものであり、バンク側面部の傾斜角度を大きくするのに有効であると考えられる。
 なお、図16(b)において、横軸は横方向を示し、縦軸は高さ方向を示す。
 [実施の形態2]
 実施の形態2に係る表示装置の構成について、図17および図18を用い説明する。
 1.表示パネル30の構成
 図17に示すように、表示パネル30は、上記実施の形態1に係る表示パネル10と同様に、TFT基板(以下では、単に「基板」と記載する。)101上に、サブピクセル300a,300b,300cの各々に対応して、アノード電極102が形成されており、アノード電極102上に、電極被覆層103およびホール注入輸送層104が順に積層形成されている。
 ホール注入輸送層104の上には、絶縁材料からなり、サブピクセル300a,300b,300cをそれぞれ規定するバンク305a,305b,305c,305dが立設されている。なお、各サブピクセル300a,300b,300cにおけるバンク305a,305b,305c,305dで区画された領域には、有機発光層、電子注入層、カソード電極、および封止層が、順に積層形成されている(図17では、図示を省略)。
 本実施の形態に係る表示パネル30では、サブピクセル300a,300b,300cの組み合わせを以って一の画素部が構成されている点は、上記実施の形態1に係る表示パネル10と同じであるが、本実施の形態に係る表示パネル30では、隣り合う画素部と画素部との間に非画素部300d,300eが設けられている。
 具体的には、図17に示すように、非画素部300d,300eでは、アノード電極102と同じ材料から構成された電極(バスバー)302と、これを被覆する電極被覆層303が設けられている。そして、電極被覆層303の上には、ホール注入輸送層104が延設されており、図示を省略しているが、この上にカソード電極108が形成されて、電極302とカソード電極108が電気的に接続される。なお、非画素部300d,300eでは、有機発光層106は形成されない。このような構成をとることにより、ITOなどからなるカソード電極108の電気抵抗の低減を図ることができ、電圧降下を抑えることが可能となる。
 図17に示すように、本実施の形態に係る表示パネル30では、バンク305a,305b,305c,305dの各々の面部305aa,305ba,305bb,305cb,305cc,305dcと下地層であるホール注入輸送層104の表面とが、それぞれ角度θ3aa,θ3ba,θ3bb,θ3cb,θ3cc,θ3dcをなす。
 ここで、本実施の形態において、角度θ3aa,θ3ba,θ3bb,θ3cb,θ3cc,θ3dcは、次の各式で示す関係を満足する。
 [数7]  θ3cb>θ3aa=θ3ba=θ3bb=θ3cc
 [数8] θ3dc>θ3aa=θ3ba=θ3bb=θ3cc
 なお、本実施の形態では、それぞれの角度θ3aa,θ3ba,θ3bb,θ3cb,θ3cc,θ3dcを次のような範囲で設定することが望ましい。
 [数9] 25[°]<θ3aa=θ3ba=θ3bb=θ3cc<35[°]
 [数10] 35[°]<θ3cb<45[°]
 [数11] 35[°]<θ3dc<45[°]
 上記[数7]、[数8]、[数9]、[数10]、[数11]の関係でバンク305a,305b,305c,305dの各々の面部305aa,305ba,305bb,305cb,305cc,305dcの傾斜角度θ3aa,θ3ba,θ3bb,θ3cb,θ3cc,θ3dcを規定するのは、隣り合う画素部と画素部との間に非画素部300d,300eを配することによるものである。これについて、インク3060a,3060b,3060cの塗布との関係を交えながら次に説明する。
 2.表示パネル30の製造方法
 表示パネル30の製造方法について、特徴となる工程を抜き出して、図18を用い説明する。なお、図18に示す工程以外の工程については、上記実施の形態1と同様である。
 図18(a)に示すように、インクジェット法などを用い、バンク305aとバンク305bで区画された開口部(サブピクセル予定領域3000a)に対し、有機発光材料を含むインク3060aを塗布する。インク3060aの塗布時においては、バンク305aの左側、およびバンク305bの右側にはインクが未塗布であるため、蒸気濃度の分布は略一様である。
 続いて、図18(b)に示すように、同じくインクジェット法などを用い、バンク305bとバンク305cで区画された開口部(サブピクセル予定領域3000b)に対し、有機発光材料を含むインク3060bを塗布する。ここで、上述のように、バンク305cにおける面部305cbの傾斜角度θ3cb(図17を参照)を、上記[数7]の関係を満足するように設定している(相対的に大きくしている)ので、バンク305cの面部305cbに対するインク3060bのピンニング位置Q3cbは、他のピンニング位置Q3aa,Q3ba,Q3bbよりも高い位置となる。
 そして、図18(c)に示すように、同じくインクジェット法などを用い、バンク305cとバンク305dで区画された開口部(サブピクセル予定領域3000c)に対し、有機発光材料を含むインク3060cを塗布する。ここで、本実施の形態では、サブピクセル予定領域3000cの右側にインク塗布のなされない非画素部3000dが存するため、サブピクセル3000cの右側の蒸気濃度が、左側に比べて低くなる。このため、バンク305dについても、そのサブピクセル予定領域3000c側の面部305dcの傾斜角度θ3dc(図17を参照)を、バンク305cの面部305cbの傾斜角度θ3cdと同様に、上記[数7]、[数8]の関係を満足するようにしている(相対的に大きくしている)。これより、バンク305dの面部305dcに対するインク3060cのピンニング位置Q3dcも、インク3060bのピンニング位置Q3cbと同様に、高くなる。
 なお、図示を省略しているが、この後に、インクの乾燥を実行し、その後、電子注入層,カソード電極および封止層などを順に積層形成することで表示パネル30が形成される。
 以上のような構成を採用することにより、隣り合う画素部と画素部との間に非画素部300d,300eが設けられる場合においても、全てのサブピクセル300a,300b,300cでの有機発光層の膜厚の偏りを抑えることができ、高い発光特性の表示パネル30とすることができる。
 なお、本実施の形態で説明を省略した事項については、上記実施の形態1と同様の構成を採用することができる。
 [その他の事項]
 先ず、上記実施の形態1,2および変形例1,2では、バンク105,105a~105d,105x,105y,305a~305eの各面部が平面であると模式的に示したが、バンクの面部については、必ずしも平面でなくてもよい。例えば、図19(a)に示すように、バンク605の場合には、ポイントP61からポイントP62までの間の面と、ポイントP62からポイントP63までの間の面とが、交差することになる。この場合、インク塗布時におけるピンニング位置Qy1は、ポイントP62からポイントP63までの間の面に存する。そして、ポイントP62を通る仮想直線L1を引いたときに形成される面部の傾斜角度θy2が、ピンニング位置との関係で重要となる。
 しかし、バンク605の形成においては、下地層であるホール注入輸送層104とバンク605のポイントP61からポイントP62までの間の面とがなす角度θy1を制御することにより、角度θy2も制御されることになるので、実質的に、傾斜角度θy1を制御することで、上記のような効果を得ることが可能である。即ち、図19(a)に示す角度θy1に対して、ポイントP71からポイントP72までの間の面の角度θy11が大きいバンク705を形成した場合には(図19(b))、図19(b)に示すように、ポイントP72からポイントP73までの間の面が仮想直線L2に対してなす角度θy12も、図19(a)の角度θy2に対して大きくなる。
 次に、上記実施の形態1,2および変形例1,2では、表示パネル10,30における上記構成の適用領域を限定しなかったが、表示パネルにおける全領域に対して上記構成を適用することもできる氏、一部の領域に限定して上記構成を適用することもできる。図20に示すように、表示パネル10を、その面に沿った方向において、形式的に、中央部に配された領域10aと、その周辺に配された領域10bとに区分けすることができる。ここで、領域10aは、アノード電極がその下部に形成されたTFT層のソース電極またはドレイン電極に接続されており、発光に寄与する領域であり、対して、領域10bは、アノード電極がその下部に形成されたTFT層のソース電極およびレイン電極の何れにも接続されておらず、発光に寄与しない領域である。そして、領域10aを、さらに中央領域10a1と周辺領域10a2とに形成期的に分けた場合、インク塗布時における蒸気濃度の分布状態から、周辺領域10a2でサブピクセル内における有機発光層の膜厚の偏りが、より顕著に生ずるものと考えられる。
 なお、周辺領域10a2と領域10bとを合わせた領域は、パネルにおける外周部の0.5[%]~数[%]程度(例えば、1[%])の画素部とすることが考えられる。これは、バンクの面部における傾斜角度の調整を行わない場合における有機発光層の膜厚バラツキを考慮することによるものである。
 上記実施の形態1,2および変形例1,2では、本発明の構成および作用・効果を分かりやすく説明するために一例としての各構成を採用するものであり、本発明は、本質的な部分を除き、上記形態に限定されるものではない。例えば、上記実施の形態では、図2に示すように、有機発光層106に対し、そのZ軸方向下側にアノード電極102が配されている構成を一例として採用したが、本発明は、これに限らず有機発光層106に対し、そのZ軸方向下側にカソード電極108が配されているような構成を採用することもできる。
 有機発光層106に対し、そのZ軸方向下側にカソード電極108を配する構成とする場合には、トップエミッション構造となるので、カソード電極108を反射電極層とし、その上に電極被覆層103を形成する構成を採用することになる。
 また、上記実施の形態1,2などでは、表示装置1の具体的な外観形状を示さなかったが、例えば、図21に示すようなシステム一部とすることができる。なお、有機EL表示装置は、液晶表示装置のようなバックライトを必要としないので、薄型化に適しており、システムデザインという観点から優れた特性を発揮する。
 また、上記実施の形態1,2および変形例1,2では、バンク105,105a~105d,105x,105y,305a~305e,605,705の形態として、図3に示すような、所謂、ラインバンク構造を採用したが、図22に示すような、Y軸方向に延伸するバンク要素805aとX軸方向に延伸するバンク要素805bとからなるピクセルバンク805を採用して表示パネル80を構成することもできる。
 図22に示すように、ピクセルバンク805を採用する場合には、各サブピクセル800a,800b,800cを規定するバンク805に対し、そのX軸方向およびY軸方向の各外側となる側壁部の傾斜角度を大きくすることで、上記同様の効果を得ることができる。具体的には、矢印B1,B2,B3,B4で指し示す面部の傾斜角度を、適宜調整することで上記効果を得ることが可能である。
 また、上記実施の形態1,2および変形例1,2で採用したバンクの面部の傾斜角度の調整は、製造時の有機発光層の形成に係るインク塗布工程および乾燥工程での蒸気濃度分布に個別的に応じて適宜変更することができる。例えば、乾燥装置の構造などで、インクの乾燥時における蒸気の流れが、パネル外周部からパネル中央部に向けた方向であるような場合には、有機発光層の膜厚が厚くなる箇所に対応して、バンク側面部の傾斜角度を大きくすればよい。これにより、有機発光層の膜厚を均一化することができ、パネル全体における輝度ムラを低減することができる。
 また、上記実施の形態1,2および変形例1,2では、発光色(赤色、緑色、青色)毎で、バンクの面部における傾斜角度の設定に区別はないが、発光色に応じて有機発光材料を含むインクの特性が変化することが考えられるので、この場合、各発光色のインク特性に応じて、対応するバンクの面部の傾斜角度を規定することができる。
 本発明は、輝度ムラが少なく、高い画質性能を有する有機発光パネルおよび有機表示装置を実現するに有用である。
   1.表示装置
  10,30,80.表示パネル
  10a1.発光中央領域
  10a2.発光周辺領域
  10b.ダミー領域
  20.駆動制御部
  21~24.駆動回路
  25.制御回路
 100,100a~100c,300a~300c.サブピクセル
 101.基板
 102.アノード電極
 103.電極被覆層
 104.ホール注入層
 105,105a~105d,105x,105y,305a~305e,605,705,805.バンク
 106,106a,106c,106x,106y.有機発光層
 107.電子注入層
 108.カソード電極
 109.封止層
 300d,300e.非画素部
 501~505.マスク
1000a~1000c,3000a~3000c.サブピクセル予定領域
1050,1051a,1051b,1051e,1051f.バンク材料層
1060a~1060c,1060x,1060y,3060a~3060c.インク
3000d,3000e.非画素予定領域

Claims (19)

  1.  複数の画素部が配列されてなる有機発光パネルであって、
     前記複数の画素部の各画素部は、互いに発光色が異なり、順に配列された複数の発光部を有し、
     各発光部は、第1電極を含む下地層と、前記下地層に対向して設けられ、発光色ごとに対応した有機発光材料を含むインクが塗布されて形成された有機発光層と、前記有機発光層に対して前記下地層と反対側に形成された第2電極とを含み、
     同一画素部内における前記複数の発光部は、一方側から他方側に向け、各発光色に対応する前記インクが順番に塗布され、前記有機発光層が形成されてなり、一方側に位置し,対応するインクが第1巡目に塗布される第1発光部と、中央側に位置し,対応するインクが第2巡目に塗布される第2発光部と、他方側に位置し,対応するインクが第3巡目に塗布される第3発光部とを少なくとも有し、
     前記下地層の上方には、前記複数の発光部のうちの隣り合う発光部を区画し、各発光部を規定する複数の隔壁が設けられ、
     前記複数の画素部は、
     前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が等しく、
     前記第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、かつ、前記第3発光部側に位置する隔壁の面部の傾斜角度が、前記第1発光部側に位置する隔壁の面部の傾斜角度よりも大きい、
     画素部を含む
     ことを特徴とする有機発光パネル。
  2.  前記複数の画素部は、連続して隣り合うように形成されており、
     前記第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が等しい、
     請求項1記載の有機発光パネル。
  3.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度は、前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、
     請求項2記載の有機発光パネル。
  4.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度は、前記第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、
     請求項3記載の有機発光パネル。
  5.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の対向する面部の傾斜角度は、35度以上45度以下であり、
     前記第2発光部を規定する隣り合う2つの隔壁における、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度は、25度以上35度以下であり、
     前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度は、25度以上35度以下であり、
     前記第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度は、25度以上35度以下である、
     ことを特徴とする請求項4記載の有機発光パネル。
  6.  前記複数の画素部の隣り合う画素部の各間には、非画素部が形成され、
     前記画素部と前記非画素部との間には、画素部と非画素部を区画する隔壁が形成されており、
     各画素部では、
     前記第3発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度が異なり、前記非画素部側に位置する隔壁の面部の傾斜角度が、前記第2発光部側に位置する隔壁の面部の傾斜角度よりも大きい、
     請求項1記載の有機発光パネル。
  7.  前記非画素部は、前記有機発光層を含むことなく、前記第2電極と、前記第1電極と同じ材料を以って構成された第3電極とを含み、前記第2電極と前記第3電極とが電気的に接続される、
     請求項6記載の有機発光パネル。
  8.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の対向する面部の傾斜角度が、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度よりも大きく、
     前記第3発光部を規定する隣り合う2つの隔壁における、前記非画素部側に位置する隔壁の対向する面部の傾斜角度が、前記第2発光部側に位置する隔壁の対向する面部の傾斜角度よりも大きい、
     請求項6記載の有機発光パネル。
  9.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の対向する面部の傾斜角度と、
     前記第3発光部を規定する隣り合う2つの隔壁における、前記非画素部側に位置する隔壁の対向する面部の傾斜角度とが等しい、
     請求項8記載の有機発光パネル。
  10.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度は、前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、
     請求項6記載の有機発光パネル。
  11.  前記第3発光部を規定する隣り合う2つの隔壁における、前記第2発光部側に位置する隔壁の対向する面部の傾斜角度は、前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度と等しい、
     請求項10記載の有機発光パネル。
  12.  前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の対向する面部の傾斜角度は、35度以上45度以下であり、
     前記第3発光部を規定する隣り合う2つの隔壁における、前記非画素部側に位置する隔壁の対向する面部の傾斜角度は、35度以上45度以下であり、
     前記第2発光部を規定する隣り合う2つの隔壁における、前記第1発光部側に位置する隔壁の対向する面部の傾斜角度は、25度以上35度以下であり、
     前記第3発光部を規定する隣り合う2つの隔壁における、前記第2発光部側に位置する隔壁の対向する面部の傾斜角度は、25度以上35度以下であり、
     前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度は、25度以上35度以下である、
     請求項11記載の有機発光パネル。
  13. 前記傾斜角度は、前記隔壁における前記対向する各面部と、前記隔壁が形成されている前記下地層の上面とがなす角度である、請求項1記載の有機発光パネル。
  14. 請求項1から請求項13の何れかに記載の有機発光パネルを備えた有機表示装置。
  15.  複数の画素部が配列されてなる有機発光パネルの製造方法であって、
     基板上に、第1電極を含む下地層を形成する第1工程と、
     前記下地層の上に、感光性レジスト材料を積層する第2工程と、
     前記積層された感光性レジスト材料をマスク露光してパターニングすることにより、各画素部ごとに複数の発光部に対応する複数の開口を形成するとともに、隣接する前記発光部を区画して各発光部を規定する複数の隔壁を形成する第3工程と、
     前記複数の開口のそれぞれに対して、有機発光材料を含むインクを滴下して乾燥させ、有機発光層を形成する第4工程と、
     前記有機発光層の上方に、第2電極を形成する第5工程と、
    を有し、
     前記第3工程では、
     各画素部ごとに、一方側に位置する第1発光部に対応する第1開口と、中央側に位置する第2発光部に対応する第2開口と、他方側に位置する第3発光部に対応する第3開口とを形成し、
     さらに、
     前記第1発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を等しく形成するとともに、
     前記第2発光部および前記第3発光部のうち、少なくとも前記第2発光部を規定する隣り合う2つの隔壁における対向する面部の傾斜角度を異ならせ、且つ、前記第3発光部側に位置する隔壁の面部の傾斜角度を前記第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくなるように形成し、
     前記第4工程では、
     各画素部ごとに、各発光色に対応する前記インクを、前記第1開口、前記第2開口、前記第3開口の順番に滴下し、前記有機発光層を形成する、
     ことを特徴とする有機発光パネルの製造方法。
  16.  前記第3工程では、
     前記感光性レジスト材料の露光に関し、前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部に相当する部分への露光量を、前記第1発光部側に位置する隔壁の面部に相当する部分への露光量よりも大きくすることにより、
     前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部の傾斜角度を、前記第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、
     請求項15記載の有機発光パネルの製造方法。
  17.  前記第3工程では、
     前記感光性レジスト材料の露光に関し、前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部に相当する部分への光の透過率が、前記第1発光部側に位置する隔壁の面部に相当する部分への光の透過率よりも小さくなるように、それぞれの面部に相当する部分に対して互いに異なるマスクを用いることにより、
     前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部の傾斜角度を、前記第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、
     請求項15記載の有機発光パネルの製造方法。
  18.  前記第3工程では、
     前記感光性レジスト材料を露光して現像した後、前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部に相当する部分に対し、露光処理を追加して行うことにより、
     前記第2発光部を規定する隣り合う2つの隔壁における、前記第3発光部側に位置する隔壁の面部の傾斜角度を、前記第1発光部側に位置する隔壁の面部の傾斜角度よりも大きくする、
     請求項15記載の有機発光パネルの製造方法。
  19.  請求項15から請求項18の何れかに記載の製造方法により得られた有機発光パネルを備えた有機表示装置。
PCT/JP2010/006125 2010-10-15 2010-10-15 有機発光パネルとその製造方法、および有機表示装置 WO2012049712A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080067617.5A CN102960067B (zh) 2010-10-15 2010-10-15 有机发光面板及其制造方法以及有机显示装置
JP2012538479A JP5677448B2 (ja) 2010-10-15 2010-10-15 有機発光パネルとその製造方法、および有機表示装置
PCT/JP2010/006125 WO2012049712A1 (ja) 2010-10-15 2010-10-15 有機発光パネルとその製造方法、および有機表示装置
US13/717,930 US8901546B2 (en) 2010-10-15 2012-12-18 Organic light-emitting panel, manufacturing method thereof, and organic display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006125 WO2012049712A1 (ja) 2010-10-15 2010-10-15 有機発光パネルとその製造方法、および有機表示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/717,930 Continuation US8901546B2 (en) 2010-10-15 2012-12-18 Organic light-emitting panel, manufacturing method thereof, and organic display device

Publications (1)

Publication Number Publication Date
WO2012049712A1 true WO2012049712A1 (ja) 2012-04-19

Family

ID=45937967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006125 WO2012049712A1 (ja) 2010-10-15 2010-10-15 有機発光パネルとその製造方法、および有機表示装置

Country Status (4)

Country Link
US (1) US8901546B2 (ja)
JP (1) JP5677448B2 (ja)
CN (1) CN102960067B (ja)
WO (1) WO2012049712A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532044A (ja) * 2017-08-24 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 表示基板および表示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018136A1 (ja) 2011-08-03 2013-02-07 パナソニック株式会社 表示パネルおよびその製造方法
WO2013118196A1 (ja) 2012-02-10 2013-08-15 パナソニック株式会社 有機elパネルとその製造方法
JP6519911B2 (ja) 2012-08-02 2019-05-29 株式会社Joled 有機el表示パネルとその製造方法
WO2014030354A1 (ja) 2012-08-23 2014-02-27 パナソニック株式会社 有機電子デバイスの製造方法および有機elデバイスの製造方法
KR102111974B1 (ko) * 2013-07-03 2020-05-19 삼성디스플레이 주식회사 유기발광 표시 장치 및 이의 제조 방법
KR101504117B1 (ko) * 2013-11-14 2015-03-19 코닝정밀소재 주식회사 유기발광 디스플레이 장치
JP2016091942A (ja) * 2014-11-10 2016-05-23 株式会社Joled 表示装置とその製造方法
JP6458525B2 (ja) * 2015-02-10 2019-01-30 富士電機株式会社 炭化珪素半導体装置の製造方法
JP6685675B2 (ja) 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
US10304813B2 (en) * 2015-11-05 2019-05-28 Innolux Corporation Display device having a plurality of bank structures
JP2019525446A (ja) * 2016-08-26 2019-09-05 ナンジン テクノロジー コーポレーション リミテッド 発光素子の製造方法、発光素子及びハイブリッド発光素子
CN109148379B (zh) * 2018-08-13 2020-08-25 武汉天马微电子有限公司 有机发光显示面板和显示装置
KR20200096367A (ko) * 2019-02-01 2020-08-12 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222695A (ja) * 2000-11-27 2002-08-09 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法および有機エレクトロルミネッセンス装置並びに電子機器
JP2007310156A (ja) * 2006-05-18 2007-11-29 Seiko Epson Corp 膜形成方法、電気光学基板の製造方法、及び電気光学装置の製造方法、並びに機能膜、電気光学基板、電気光学装置、及び電子機器
WO2008105153A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 表示装置
JP2009277578A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 発光装置の製造方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
KR100367573B1 (ko) 1992-08-27 2003-03-08 가부시끼가이샤 히다치 세이사꾸쇼 경사추정장치및경사대응차량제어장치및방법및이들을사용한차량
JP4050347B2 (ja) 1996-10-31 2008-02-20 セイコーエプソン株式会社 カラーフィルター、液晶表示装置およびその製造方法
JP3633229B2 (ja) 1997-09-01 2005-03-30 セイコーエプソン株式会社 発光素子の製造方法および多色表示装置の製造方法
JP3328297B2 (ja) 1998-03-17 2002-09-24 セイコーエプソン株式会社 表示装置の製造方法
TW471011B (en) 1999-10-13 2002-01-01 Semiconductor Energy Lab Thin film forming apparatus
US6762552B1 (en) 1999-11-29 2004-07-13 Koninklijke Philips Electronics N.V. Organic electroluminescent device and a method of manufacturing thereof
EP1153445B1 (en) 1999-11-29 2012-05-02 TPO Displays Corp. Method of manufacturing an organic electroluminescent device
TW461228B (en) * 2000-04-26 2001-10-21 Ritdisplay Corp Method to manufacture the non-photosensitive polyimide pixel definition layer of organic electro-luminescent display panel
TWI257496B (en) 2001-04-20 2006-07-01 Toshiba Corp Display device and method of manufacturing the same
JP4651860B2 (ja) 2001-06-01 2011-03-16 本田技研工業株式会社 燃料電池スタック
EP1300430B1 (en) * 2001-09-29 2010-07-07 MERCK PATENT GmbH Mono-, oligo- and polymers of benzo(b)thiophene and 2,2'-bisbenzo(b)thiophene and their use as charge transport materials
JP2003280600A (ja) 2002-03-20 2003-10-02 Hitachi Ltd 表示装置およびその駆動方法
US7307381B2 (en) 2002-07-31 2007-12-11 Dai Nippon Printing Co., Ltd. Electroluminescent display and process for producing the same
JP2004192935A (ja) 2002-12-11 2004-07-08 Hitachi Displays Ltd 有機el表示装置
JP2005267984A (ja) 2004-03-17 2005-09-29 Sanyo Electric Co Ltd 有機el表示装置
JP4225237B2 (ja) 2004-04-21 2009-02-18 セイコーエプソン株式会社 有機el装置及び有機el装置の製造方法並びに電子機器
JP4812627B2 (ja) 2004-10-28 2011-11-09 シャープ株式会社 有機エレクトロルミネセンスパネル及びその製造方法、並びに、カラーフィルタ基板及びその製造方法
JP2006140205A (ja) 2004-11-10 2006-06-01 Toppan Printing Co Ltd 電磁波遮蔽材およびその製造方法、ならびにディスプレイ用フィルム
JP2006185869A (ja) 2004-12-28 2006-07-13 Asahi Glass Co Ltd 有機電界発光素子及びその製造方法
EP1831909A4 (en) * 2004-12-30 2010-09-08 Du Pont CONTENT STRUCTURE FOR AN ELECTRONIC EQUIPMENT
TWI356736B (en) 2004-12-30 2012-01-21 Du Pont Containment structure for an electronic device
CN101223156A (zh) * 2005-06-24 2008-07-16 出光兴产株式会社 苯并噻吩衍生物及使用它的有机电致发光元件
US7994711B2 (en) 2005-08-08 2011-08-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
JP2007073499A (ja) 2005-08-08 2007-03-22 Semiconductor Energy Lab Co Ltd 発光装置およびその作製方法
GB0517195D0 (en) 2005-08-23 2005-09-28 Cambridge Display Tech Ltd Molecular electronic device structures and fabrication methods
JP2007165167A (ja) 2005-12-15 2007-06-28 Optrex Corp 有機el表示パネルおよびその製造方法
JP2007287354A (ja) 2006-04-12 2007-11-01 Hitachi Displays Ltd 有機el表示装置
JP2007311235A (ja) 2006-05-19 2007-11-29 Seiko Epson Corp デバイス、膜形成方法、及びデバイスの製造方法
WO2008146470A1 (ja) 2007-05-28 2008-12-04 Panasonic Corporation 有機elデバイス及び表示装置
JP4967926B2 (ja) 2007-08-23 2012-07-04 大日本印刷株式会社 有機エレクトロルミネッセンス素子およびその製造方法
US8083956B2 (en) * 2007-10-11 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
JP4678421B2 (ja) 2008-05-16 2011-04-27 ソニー株式会社 表示装置
JP2010225515A (ja) 2009-03-25 2010-10-07 Toppan Printing Co Ltd 有機エレクトロルミネッセンスディスプレイ及びその製造方法
EP2429263B1 (en) 2009-04-09 2018-07-18 Joled Inc. Organic electroluminescent display device
JP5574113B2 (ja) 2009-12-22 2014-08-20 パナソニック株式会社 表示装置とその製造方法
KR101643009B1 (ko) * 2009-12-22 2016-07-27 가부시키가이샤 제이올레드 표시 장치와 그 제조 방법
JP5574114B2 (ja) * 2009-12-22 2014-08-20 パナソニック株式会社 表示装置とその製造方法
CN102577614B (zh) * 2010-10-15 2015-11-25 株式会社日本有机雷特显示器 有机发光面板及其制造方法以及有机显示装置
JP5677315B2 (ja) * 2010-10-15 2015-02-25 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置
KR20130073012A (ko) * 2010-10-15 2013-07-02 파나소닉 주식회사 유기 발광 패널과 그 제조 방법, 및 유기 표시 장치
WO2012049719A1 (ja) * 2010-10-15 2012-04-19 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置
WO2012049718A1 (ja) * 2010-10-15 2012-04-19 パナソニック株式会社 有機発光パネルとその製造方法、および有機表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222695A (ja) * 2000-11-27 2002-08-09 Seiko Epson Corp 有機エレクトロルミネッセンス装置の製造方法および有機エレクトロルミネッセンス装置並びに電子機器
JP2007310156A (ja) * 2006-05-18 2007-11-29 Seiko Epson Corp 膜形成方法、電気光学基板の製造方法、及び電気光学装置の製造方法、並びに機能膜、電気光学基板、電気光学装置、及び電子機器
WO2008105153A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 表示装置
JP2009277578A (ja) * 2008-05-16 2009-11-26 Panasonic Corp 発光装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020532044A (ja) * 2017-08-24 2020-11-05 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. 表示基板および表示装置

Also Published As

Publication number Publication date
JPWO2012049712A1 (ja) 2014-02-24
CN102960067A (zh) 2013-03-06
CN102960067B (zh) 2016-03-09
US8901546B2 (en) 2014-12-02
US20130126839A1 (en) 2013-05-23
JP5677448B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5735527B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5197882B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5677448B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5720005B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5574112B2 (ja) 表示装置とその製造方法
JP5677316B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5677317B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP5574114B2 (ja) 表示装置とその製造方法
JP5574113B2 (ja) 表示装置とその製造方法
JP5677315B2 (ja) 有機発光パネルとその製造方法、および有機表示装置
JP6032659B2 (ja) 有機発光パネルおよび有機表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080067617.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858341

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012538479

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858341

Country of ref document: EP

Kind code of ref document: A1