WO2012046613A1 - 地絡検出回路及び地絡検出装置 - Google Patents

地絡検出回路及び地絡検出装置 Download PDF

Info

Publication number
WO2012046613A1
WO2012046613A1 PCT/JP2011/072340 JP2011072340W WO2012046613A1 WO 2012046613 A1 WO2012046613 A1 WO 2012046613A1 JP 2011072340 W JP2011072340 W JP 2011072340W WO 2012046613 A1 WO2012046613 A1 WO 2012046613A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground fault
fault detection
switch circuit
circuit
secondary battery
Prior art date
Application number
PCT/JP2011/072340
Other languages
English (en)
French (fr)
Inventor
健仁 井家
孝義 阿部
中井 智通
中島 武
一男 石本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010228822A external-priority patent/JP2012083175A/ja
Priority claimed from JP2011174698A external-priority patent/JP2013036915A/ja
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP11824331.0A priority Critical patent/EP2477040A4/en
Priority to US13/427,088 priority patent/US8797042B2/en
Publication of WO2012046613A1 publication Critical patent/WO2012046613A1/ja
Priority to US14/168,598 priority patent/US20140145727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment

Definitions

  • the present invention relates to a ground fault detection circuit and a ground fault detection device, and more particularly, to a ground fault detection circuit and a ground fault detection device for detecting that a positive bus or a negative bus is grounded.
  • Energy is effectively used by using power storage devices such as secondary batteries.
  • power storage devices such as secondary batteries.
  • a photovoltaic power generation system has been actively developed as environmentally friendly clean energy, but since a photoelectric conversion module that converts sunlight into electric power does not have a storage function, it is combined with a secondary battery.
  • energy is effectively used by charge / discharge control in which electric power generated by a photoelectric conversion module is once charged in a secondary battery and discharged from the secondary battery in response to a request from an external load or the like.
  • Patent Document 1 discloses a solar battery, a plurality of secondary batteries charged by the solar battery, and a secondary battery connected between each secondary battery and the solar battery.
  • a solar battery power supply device comprising: a charge switch for controlling charging of a secondary battery; a discharge switch connected between each secondary battery and a load; and a control circuit for controlling the charge switch and the discharge switch. It is disclosed.
  • the control circuit specifies the priority order of the secondary batteries to be charged by controlling a plurality of charge switches, charges the secondary battery with a higher priority before the secondary battery with a lower priority, It is disclosed that when a secondary battery having a higher rank is charged with a predetermined capacity, a secondary battery having a lower priority is charged.
  • the positive bus connected to the positive terminal of the secondary battery and the negative bus connected to the negative terminal of the secondary battery are not grounded.
  • the human body touches the positive electrode bus or the negative electrode bus when the positive electrode bus or the negative electrode bus is grounded a current loop passing through the body is formed and current flows through the human body. In order to prevent such an event, it is desirable to detect the occurrence of a ground fault.
  • An object of the present invention is to provide a ground fault detection circuit and a ground fault detection device that detect the occurrence of a ground fault.
  • a ground fault detection circuit includes a first switch for connecting or blocking a first path between a positive bus connected to a positive side of a secondary battery unit and a ground potential location via a field effect transistor having a parasitic diode.
  • a ground fault detection apparatus includes the above ground fault detection circuit and a control unit that controls execution timing of ground fault detection, and the control units are discretely arranged on a time series. A plurality of target periods are set, and the ground fault detection circuit is controlled so that the ground fault is detected in each target period.
  • the ground fault detection circuit and the ground fault detection device configured as described above, it is possible to detect that the positive bus or the negative bus is grounded based on the current of the first path or the second path.
  • FIG. 1 is a diagram illustrating a ground fault detection circuit, a control unit, and a power supply system in which a ground fault is detected by a ground fault detection circuit in a first embodiment according to the present invention.
  • FIG. 1st embodiment which concerns on this invention it is a flowchart which shows the procedure in which a ground fault is detected by a ground fault detection circuit.
  • 1st embodiment which concerns on this invention when the positive electrode bus line has a ground fault, it is a timing chart at the time of detecting that the ground fault has generate
  • 2nd embodiment which concerns on this invention, it is a schematic block diagram of an electrical storage system. It is a figure for demonstrating the state of the ground fault which can generate
  • the secondary battery is described as being a lithium ion secondary battery, but other storage batteries that can be charged and discharged may be used.
  • a nickel hydride secondary battery, a nickel cadmium storage battery, a lead storage battery, a metal lithium ion secondary battery, or the like may be used.
  • FIG. 1 is a diagram showing a power storage system 8.
  • the power storage system 8 includes a ground fault detection circuit 100, a control unit 70, and a power supply system 10 that detects a ground fault by the ground fault detection circuit 100.
  • the power supply system 10 will be described, and then the ground fault detection circuit 100 and the control unit 70 will be described.
  • the power storage system 8 of FIG. 1 includes a ground fault detection device.
  • the ground fault detection device included in the power storage system 8 includes at least the ground fault detection circuit 100 and the ground fault handling processing unit 704 as constituent elements, and may further include any other part shown in FIG. .
  • the power supply system 10 includes a solar cell module 20, breakers 25a, 25b, and 25c, secondary battery units 30a, 30b, and 30c, a switching device 40, and a load 75.
  • the solar cell module 20 is a photoelectric conversion device that converts sunlight into electric power.
  • the positive electrode side terminal of the solar cell module 20 is connected to the one side terminal 402 a of the charging switch circuit 402 by the positive electrode bus 1.
  • the negative electrode side terminal of the solar cell module 20 is connected to the negative electrode side terminals 252b, 254b, and 256b of the negative electrode side breakers 252, 254, and 256 of the breaker portions 25a, 25b, and 25c and the negative electrode side terminal of the load 75 by the negative electrode bus 2. ing.
  • the generated power generated by the solar cell module 20 is DC power.
  • the secondary battery units 30a, 30b, and 30c are each configured by connecting a plurality of secondary batteries in series.
  • Each secondary battery includes a negative electrode made of a carbon material, an electrolytic solution for moving lithium ions, and a positive electrode active material capable of reversing lithium ions.
  • the positive electrode side terminal of the secondary battery unit 30a is connected to the parallel processing circuit unit 404 via the positive electrode side breaker 251 of the breaker unit 25a, and the negative electrode side terminal is connected to the negative electrode bus 2 via the negative electrode side breaker 252 of the breaker unit 25a. It is connected to the.
  • the secondary battery part 30b and the secondary battery part 30c also have the structure similar to the secondary battery part 30a.
  • Breakers 25a, 25b, and 25c are devices that are controlled to be cut off by control unit 70 when it is necessary to protect secondary battery units 30a, 30b, and 30c.
  • the breaker unit 25 a includes a positive electrode side breaker 251 and a negative electrode side breaker 252.
  • the positive electrode side breaker 251 is a cutoff circuit in which one side terminal 251a is connected to the parallel processing circuit unit 404 and the other side terminal 251b is connected to the positive electrode side terminal of the secondary battery unit 30a.
  • the negative electrode side breaker 252 is a cutoff circuit in which one side terminal 252a is connected to the negative electrode side terminal of the secondary battery part 30a and the other side terminal 252b is connected to the negative electrode bus 2.
  • the breaker part 25b and the breaker part 25c also have the structure similar to the breaker part 25a.
  • the switching device 40 includes a charging switch circuit 402, a parallel processing circuit unit 404, and a discharging switch circuit 406.
  • the parallel processing circuit unit 404 includes switch circuits 41a, 41b, 41c and resistance elements 42a, 42b, 42c.
  • one terminal 410a is connected to the other terminal 402b of the charging switch circuit 402 and one terminal 406a of the discharging switch circuit 406, and the other terminal 411a is one terminal 251a of the positive circuit breaker 251. It is a switch connected to.
  • the switch circuit 41a can be configured by using, for example, a field effect transistor (FET). In this case, a parasitic diode in which a cathode terminal is connected to one side terminal 402a and an anode terminal is connected to the other side terminal 402b. It is formed. Further, as shown in FIG. 1, the switch circuit 41b and the switch circuit 41c have the same configuration as the switch circuit 41a.
  • FET field effect transistor
  • the resistance element 42 a has one terminal connected to the other terminal 402 b of the charging switch circuit 402 and one terminal 406 a of the discharging switch circuit 406, and the other terminal connected to the one terminal 251 a of the positive breaker 251. Is done. That is, the resistance element 42a is connected in parallel to the switch circuit 41a. Further, the resistance element 42b and the resistance element 42c have the same configuration as the resistance element 42a.
  • the switch circuits 41a, 41b, and 41c are on / off controlled by the control unit 70 in accordance with the potential difference of the voltage on the positive terminal side. Yes.
  • the on-resistance values of the switch circuits 41a, 41b, and 41c are smaller than the resistance values of the resistance elements 42a, 42b, and 42c, respectively. Therefore, when the charging switch circuit 402 is also turned on by the control unit 70, the generated power generated by the solar cell module 20 is recharged via the switch circuits 41a, 41b, and 41c, respectively. 30b and 30c are charged.
  • the control unit 70 switches off the switch circuit 41b. Thereby, the generated power generated by the solar cell module 20 is charged in the secondary battery units 30a and 30c via the switch circuits 41a and 41c, but not in the secondary battery unit 30b.
  • one terminal 402a is connected to the positive terminal of the solar cell module 20 by the positive electrode bus 1
  • the other terminal 402b is connected to the one terminal 410a, 41a, 41b, 41c of the switch circuit 41a, 41b, 41c by the positive electrode bus 1.
  • Switching control of the charging switch circuit 402 is performed under the control of the control unit 70.
  • the charging switch circuit 402 can be configured using, for example, a field effect transistor (FET).
  • FET field effect transistor
  • the anode terminal is connected to the other side terminal 402b
  • the cathode terminal is connected to the one side terminal 402a.
  • a parasitic diode is formed.
  • the discharge switch circuit 406 has one terminal 406a that is connected to the positive bus 1, and the other terminal 402b of the charge switch circuit 402, one terminal 410a, 410b, 410c of the switch circuit 41a, 41b, 41c, and the resistor elements 42a, 42b, It is a switch connected to one side terminal of 42c.
  • the discharge switch circuit 406 is a switch in which the other-side terminal 406b is connected to the load 75 by the positive bus 1. Switching control of the discharge switch circuit 406 is performed under the control of the control unit 70.
  • the discharge switch circuit 406 can be configured using, for example, a field effect transistor (FET). In this case, the cathode terminal is connected to the one-side terminal 406a, and the anode terminal is connected to the other-side terminal 406b. A parasitic diode is formed.
  • FET field effect transistor
  • the load 75 is a load device in which one side terminal is connected to the other side terminal 406b of the discharging switch circuit 406 by the positive electrode bus 1 and the other side terminal is connected to the negative electrode bus 2.
  • the load 75 is a load that operates with DC power, and for example, a personal computer or the like can be used.
  • the ground fault detection circuit 100 includes a first resistance element 80, a first switch circuit 82, a ground fault detection unit 90, a second switch circuit 84, and a second resistance element 86.
  • the first resistance element 80 is a resistance element having one terminal connected to the positive electrode bus 1 and the other terminal connected to the one terminal 82 a of the first switch circuit 82. Note that the resistance value of the first resistance element 80 is a value determined in advance in order to suppress the current value that flows when the negative electrode bus 2 is grounded.
  • the first switch circuit 82 has one terminal 82 a connected to the other terminal of the first resistance element 80, and the other terminal 82 b connected to the one terminal 84 a of the second switch circuit 84 and one terminal of the ground fault detector 90. 90a.
  • the first switch circuit 82 can be configured using, for example, a field effect transistor (FET).
  • FET field effect transistor
  • the anode terminal is connected to the one-side terminal 82a
  • the cathode terminal is connected to the other-side terminal 82b.
  • a parasitic diode is formed. Note that the switching control of the first switch circuit 82 is performed by the control unit 70.
  • the second switch circuit 84 has one terminal 84 a connected to the other terminal 82 b of the first switch circuit 82 and one terminal 90 a of the ground fault detector 90, and the other terminal 84 b being one of the second resistance elements 86. Connected to the side terminal.
  • the second switch circuit 84 can be configured using, for example, a field effect transistor (FET).
  • FET field effect transistor
  • the cathode terminal is connected to the one side terminal 84a, and the anode terminal is connected to the other side terminal 84b.
  • a parasitic diode is formed.
  • the switching control of the second switch circuit 84 is performed by the control unit 70.
  • the second resistance element 86 is a resistance element having one terminal connected to the other terminal of the second switch circuit 84 and the other terminal connected to the negative electrode bus 2.
  • the resistance value of the second resistance element 86 is a value determined in advance in order to suppress the current value that flows when the positive electrode bus 1 is grounded.
  • the ground fault detector 90 includes an I / V conversion resistance element 91, a high frequency filter 92, a full-wave rectifier circuit 93, a low frequency filter 94, a comparator 95, a reference voltage circuit 96, and a resistance element. 97, a capacitance element 98, and a determination circuit 99.
  • one terminal 90a is connected to a connection point between the first switch circuit 82 and the second switch circuit 84, and the other terminal 90b is grounded.
  • the I / V conversion resistance element 91 has one terminal connected to a connection point between the first switch circuit 82 and the second switch circuit 84 through the one terminal 90a, and the other terminal connected through the other terminal 90b. It is a resistance element that is grounded. The current flowing through the I / V conversion resistance element 91 is converted into a voltage by the resistance component.
  • the high frequency filter 92 is a filter circuit in which two input side terminals are connected to both side terminals of the I / V conversion resistance element 91 and an output side terminal is connected to the input side terminal of the full-wave rectifier circuit 93.
  • the high frequency filter 92 receives the voltage signal output from the I / V conversion resistance element 91 as an input, and functions as a filter that cuts a high frequency (for example, 15 kHz to 20 kHz) component of the voltage signal. To do.
  • the full-wave rectifier circuit 93 is a rectifier circuit whose input side terminal is connected to the output side terminal of the high frequency filter 92 and whose output side terminal is connected to the input side terminal of the low frequency filter 94.
  • the full-wave rectifier circuit 93 functions as a rectifier circuit that full-wave rectifies the voltage signal filtered by the high-frequency filter 92.
  • the low frequency filter 94 is a filter circuit in which the input side terminal is connected to the output side terminal of the full-wave rectifier circuit 93 and the output side terminal is connected to the first input side terminal of the comparator 95.
  • the low frequency filter 94 is a filter circuit that cuts a low frequency (for example, 100 Hz to 120 Hz) component of the voltage signal rectified by the full wave rectifier circuit 93.
  • the reference voltage circuit 96 is a circuit in which one terminal is connected to the second input terminal of the comparator 95 and the other terminal is grounded.
  • the reference voltage circuit 96 has a function of outputting a predetermined reference voltage value (threshold value) in order to detect that the positive bus 1 or the negative bus 2 is grounded.
  • the comparator 95 has a first input side terminal connected to the output side terminal of the low frequency filter 94, a second input side terminal connected to one side terminal of the reference voltage circuit 96, and an output side terminal connected to one side of the resistance element 97. It is a comparison circuit connected to the side terminal and the cathode terminal of the diode 97a.
  • the comparator 95 has a function of comparing the voltage signal filtered by the low frequency filter 94 with the voltage value output by the reference voltage circuit 96. The comparator 95 outputs Low when the value of the voltage signal is larger than the reference voltage value, and outputs High when the value of the voltage signal is smaller than the reference voltage value.
  • the resistance element 97 has one terminal connected to the output terminal of the comparator 95 and the cathode terminal of the diode 97a, and the other terminal connected to the one terminal of the capacitive element 98, the input terminal of the determination circuit 99, and the anode terminal of the diode 97a. It is a resistance element connected to.
  • the diode 97 a has a cathode terminal connected to one terminal of the resistor element 97 and the output terminal of the comparator 95, an anode terminal connected to the other terminal of the resistor element 97, one terminal of the capacitor element 98, and the input side of the determination circuit 99. It is a diode connected to the terminal. That is, the diode 97 a is connected in parallel to the resistance element 97.
  • the diode 97 a functions as a discharge circuit for discharging the charge accumulated in the capacitor 98.
  • the capacitive element 98 is a capacitive element having one terminal connected to the other terminal of the resistor element 97, the anode terminal of the diode 97a, and the input terminal of the determination circuit 99, and the other terminal grounded.
  • the resistor element 97 and the capacitor element 98 function together as a time constant circuit, and specifically, based on the change in the output value of the comparator 95, the resistance value of the resistor element 97 and the capacitance value of the capacitor element 98. It functions as a time constant circuit that changes the value with a time constant determined by.
  • the determination circuit 99 is a circuit in which the input side terminal is connected to the other side terminal of the resistance element 97, the anode terminal of the diode 97a and the one side terminal of the capacitive element 98, and the output side terminal is connected to the control unit 70.
  • the output value of the time constant circuit formed by the resistance element 97 and the capacitance element 98 (the potential of the other side terminal of the resistance element 97 and the one side terminal of the capacitance element 98) is changed from Low to High. It is determined whether or not the changing time exceeds a predetermined determination time (for example, 2 seconds).
  • the determination circuit 99 determines that a ground fault has not occurred and outputs Low, and the change signal is the determination signal. It has a function of determining that a ground fault has occurred when the time is exceeded and outputting High.
  • the control unit 70 includes a charge / discharge processing unit 702 and a ground fault handling unit 704.
  • each structure of the control part 70 may be comprised with a hardware, and can also be comprised with software.
  • the charging / discharging processing unit 702 has a function of performing on / off control of the charging switch circuit 402 and the discharging switch circuit 406.
  • the charge / discharge processing unit 702 temporarily charges the secondary battery units 30a, 30b, and 30c with the generated power generated by the solar cell module 20, and uses the discharged power discharged from the secondary battery units 30a, 30b, and 30c.
  • the charging switch circuit 402 and the discharging switch circuit 406 are turned on.
  • the charge / discharge processing unit 702 acquires the SOC of the secondary battery units 30a, 30b, and 30c, and at least one of the SOCs of the secondary battery units 30a, 30b, and 30c is greater than a predetermined overcharge reference value.
  • the secondary battery units 30a, 30b, 30c have a function of turning off the charging switch circuit 402 in order to prevent the secondary battery units 30a, 30b, 30c from being overcharged.
  • the charge / discharge processing unit 702 acquires the SOC of the secondary battery units 30a, 30b, and 30c, and at least one of the SOCs of the secondary battery units 30a, 30b, and 30c becomes smaller than a predetermined overdischarge reference value.
  • the secondary battery units 30a, 30b, 30c have a function of turning off the discharge switch circuit 406 in order to prevent the secondary battery units 30a, 30b, 30c from being overdischarged.
  • the ground fault handling processing unit 704 has a function of controlling the first switch circuit 82, the second switch circuit 84, and the breaker units 25a, 25b, and 25c.
  • the ground fault handling processing unit 704 has a function of turning off the first switch circuit 82 and turning on the second switch circuit 84 in order to detect whether or not the positive bus 1 is grounded.
  • the positive bus 1 when the positive bus 1 is grounded, current flows from the ground side to the negative bus 2 via the I / V conversion resistance element 91, the second switch circuit 84, and the second resistance element 86. A current path is formed.
  • the ground fault detection unit 90 detects that a ground fault has occurred, and the output signal of the determination circuit 99 becomes High. At this time, the ground fault handling unit 704 determines that the positive electrode bus 1 is grounded, and shuts off the breaker units 25a, 25b, and 25c.
  • the ground fault handling processing unit 704 turns on the first switch circuit 82 and turns off the second switch circuit 84 in order to detect whether or not the negative electrode bus 2 has a ground fault.
  • a current flows from the positive electrode bus 1 side to the ground side via the first resistance element 80, the first switch circuit 82, and the I / V conversion resistance element 91. A current path is formed.
  • the ground fault detection unit 90 detects that the ground fault is detected, and the output signal of the determination circuit 99 becomes High.
  • the ground fault handling unit 704 determines that the negative electrode bus 2 is grounded, and shuts off the breaker units 25a, 25b, and 25c.
  • FIG. 2 is a flowchart showing a procedure for detecting a ground fault by the ground fault detection circuit 100.
  • the first switch circuit 82 and the second switch circuit 84 are turned off, and it is confirmed that no current flows through the I / V conversion resistance element 91 (S2).
  • This process is executed by the function of the ground fault handling processing unit 704 of the control unit 70.
  • an initial check is performed to confirm whether the ground fault detection circuit 100 is in a normal state.
  • the first switch circuit 82 is turned on (S4).
  • This process is executed by the function of the ground fault handling processing unit 704 of the control unit 70.
  • the detection of whether or not the negative electrode bus 2 is grounded is started.
  • This process is executed by the function of the ground fault handling processing unit 704 of the control unit 70.
  • step S12 after 3 seconds have passed since the first switch circuit 82 was turned off (S12), the second switch circuit 84 is turned on (S14).
  • This process is executed by the function of the ground fault handling processing unit 704 of the control unit 70. Thereby, the ground fault detection regarding the negative electrode bus line 2 is finished, and detection of whether or not the positive electrode bus line 1 is grounded is started.
  • the reason why the first switch circuit 82 is turned off and the second switch circuit 84 is turned on after 3 seconds have elapsed is immediately before the first switch circuit 82 is turned off. This is because it is necessary to determine whether or not the High signal has passed for 2 seconds or more when the output of the comparator 95 is switched from High to Low.
  • the second switch circuit 84 is turned on after 3 seconds have passed since the first switch circuit 82 was turned off.
  • the discharge function of the diode 97a is described.
  • the first switch circuit 82 may be turned off and the second switch circuit 84 may be turned on before 3 seconds have elapsed.
  • the breaker units 25a, 25b, and 25c are shut off. Accordingly, when the positive electrode bus 1 or the negative electrode bus 2 is grounded, it is possible to prevent an electric shock even if a person touches the positive electrode bus 1 or the negative electrode bus 2.
  • the first switch circuit 82 when the first switch circuit 82 is turned on and the second switch circuit 84 is turned off, the ground fault of the negative electrode bus 2 can be detected, and the first switch circuit 82 is turned on, When the second switch circuit 84 is turned on, the ground fault of the positive bus 1 can be detected.
  • the above-described positive electrode bus 1 It is detected that a ground fault has occurred in both cases of detecting a ground fault and detecting a ground fault of the negative electrode bus 2.
  • FIG. 3 is a timing chart when the occurrence of a ground fault is detected when the positive electrode bus 1 has a ground fault.
  • the first switch circuit 82 is turned on for 5 seconds to determine whether or not the negative electrode bus 2 is grounded. At this time, since the ground fault has not occurred in the negative electrode bus 2, the voltage signal that is the output signal of the low frequency filter 94 does not exceed the reference voltage value (threshold value). For this reason, the output of the comparator 95 also remains Low.
  • the second switch circuit 84 is turned on for 5 seconds to determine whether or not the positive bus 1 is grounded. At this time, a ground fault has occurred in the positive electrode bus 1, and the period in which the voltage signal of the low frequency filter 94 exceeds the threshold continues for 2 seconds or more. As a result, the determination circuit 99 determines that a ground fault has occurred, and changes the output signal to the control unit 70 from Low to High. Therefore, the control unit 70 that has received the output signal can shut off the breaker units 25a, 25b, and 25c as a countermeasure when a ground fault occurs.
  • the detection of the ground fault by the said structure is performed about once per day, for example.
  • the ground fault is preferably detected when both the charging switch circuit 402 and the discharging switch circuit 406 are on. Therefore, the ground fault detection can be retried by providing an opportunity to detect the ground fault at a predetermined interval (for example, 10 minutes). Specifically, when the ground switch can be detected when both the charging switch circuit 402 and the discharging switch circuit 406 are on, the ground fault detection for the day is terminated. When one of the charging switch circuit 402 and the discharging switch circuit 406 is on and the other is off, the ground fault is detected once in that state, and then the other The ground fault detection can be retried until the switch circuit is turned on.
  • FIG. 4 is a schematic configuration diagram of the power storage system 9.
  • the power storage system 9 includes all or part of the parts shown in FIG.
  • the power storage system 9 in FIG. 4 corresponds to the power storage system 8 in FIG. 1.
  • the detection circuit 29 and the ground fault detection control unit 39 correspond to the solar cell module 20, the load 75, the charging switch circuit 402, the discharging switch circuit 406, the ground fault detection circuit 100, and the ground fault handling processing unit 704 in FIG. I can think about it. Description of the same parts as those in the first embodiment will be omitted as necessary.
  • the secondary battery unit 11 includes one or more secondary batteries that store electric power.
  • the secondary battery forming the secondary battery unit 11 is any type of secondary battery, for example, a lithium ion battery or a nickel metal hydride battery.
  • the number of secondary batteries forming the secondary battery unit 11 may be one, in the first and second embodiments, the secondary battery unit 11 is composed of a plurality of secondary batteries connected in series. However, some or all of the secondary batteries included in the secondary battery unit 11 may be a plurality of secondary batteries connected in parallel.
  • the positive electrode of the secondary battery located on the highest potential side is connected to the positive terminal 12 and the secondary battery located on the lowest potential side.
  • the negative electrode is connected to the negative terminal 13.
  • the positive electrode side terminal 12 and the negative electrode side terminal 13 form a pair of input / output terminals in the secondary battery unit 11, and the secondary battery unit 11 is charged and discharged through the pair of input / output terminals.
  • the negative terminal 13 is connected to a reference potential point 14 having a reference potential PREF.
  • the wiring maintained at the reference potential PREF is referred to as a negative electrode bus L4.
  • discharge and charge are discharge and charge of the secondary battery unit 11 (more specifically, discharge and charge of each secondary battery in the secondary battery unit 11 unless otherwise specified). ).
  • the positive terminal 12 of the secondary battery unit 11 is connected to the switching circuit 15 via the positive bus L1, while the switching circuit 15 has one or more power blocks that output power or receive power supply. It is connected.
  • the switching circuit 15 is interposed between one or more power blocks and the secondary battery unit 11, and switches connection or disconnection between the power block and the secondary battery unit 11 under the control of the switch control unit 16.
  • the number of power blocks connected to the switching circuit 15 may be any number as long as it is 1 or more, but here, the power block PB1 that outputs power and the power block PB2 that receives power supply are connected to the switching circuit 15. Assuming that
  • the switching circuit 15 includes a charging switch circuit 21 (hereinafter also simply referred to as a first switch 21) interposed between the power block PB1 and the secondary battery unit 11, a power block PB2 and the secondary battery unit 11
  • a discharge switch circuit 22 (hereinafter also simply referred to as a second switch 22) interposed in series.
  • Each of the charging switch circuit 21, the discharging switch circuit 22, and the first switch circuit 31 and the second switch circuit 32 described later can be formed using any kind of semiconductor switching element or mechanical switching element.
  • the first switch circuit 31 and the second switch circuit 32 can be formed.
  • Each of the charging switch circuit 21 and the discharging switch circuit 22 has first and second conduction terminals, and is turned on or off under the control of the switch control unit 16.
  • the switch ON means that the first and second conduction terminals of the switch are in conduction.
  • the first and second conduction terminals of the switch are connected to each other, and the switch off means that the first and second conduction terminals of the switch become non-conductive and the first and second conduction terminals of the switch It means a state where the second conductive terminals are blocked.
  • the charging switch circuit 21 is a switch that switches connection or disconnection between the power block PB1 and the secondary battery unit 11 by being turned on or off, and the discharging switch circuit 22 is turned on or off. It is a switch that switches connection or disconnection between the power block PB2 and the secondary battery unit 11.
  • the power block PB1 outputs a DC voltage based on the reference potential PREF from its output terminal.
  • the output terminal of the power block PB1 is connected to the first conduction terminal of the charging switch circuit 21 via the wiring L2.
  • the power block PB1 is, for example, an AC / DC converter that converts an AC voltage supplied from a commercial AC power source into a DC voltage and outputs the DC voltage, or performs a power generation based on sunlight to generate a DC voltage generated by the generated power. It is a solar cell unit to output, or a combination thereof.
  • the second conduction terminal of the charging switch circuit 21 is commonly connected to the first conduction terminal of the discharging switch circuit 22 at the connection point 23, and the connection point 23 is connected via the positive bus L1. It is connected to the positive terminal 12 of the secondary battery unit 11.
  • the second conduction terminal of the discharge switch circuit 22 is connected to the input terminal of the power block PB2 via the wiring L3.
  • the power block PB2 is a DC load that is driven by using a voltage applied to its input terminal as a drive voltage with reference to the reference potential PREF.
  • the power block PB2 may include a power conversion unit that converts a voltage applied to the input terminal of the power block PB2 to another voltage (DC voltage or AC voltage) with the reference potential PREF as a reference.
  • a load driven by a voltage obtained by the conversion of the power conversion unit may be further included in the power block PB2.
  • the switch control unit 16 performs switching control to turn on or off each of the charging switch circuit 21 and the discharging switch circuit 22.
  • the switch control unit 16 turns on the charging switch circuit 21.
  • the charging switch circuit 21 is turned on, the secondary battery unit 11 can be charged by the output power of the power block PB1.
  • the switch control unit 16 can supply the discharge power of the secondary battery unit 11 to the power block PB2 by turning off the charging switch circuit 21 and turning on the discharging switch circuit 22.
  • the switch control unit 16 can also turn on both the charging switch circuit 21 and the discharging switch circuit 22.
  • the secondary battery unit 11 When both the charging switch circuit 21 and the discharging switch circuit 22 are turned on, the secondary battery unit 11 is charged with the output power of the power block PB1, and the power block PB2 is driven with the output power of the power block PB1. Is made.
  • Switch information indicating whether each of the charging switch circuit 21 and the discharging switch circuit 22 is on or off is supplied from the switch control unit 16 to the ground fault detection control unit 39 (hereinafter also simply referred to as the control unit 39). ). Based on this transmission content, the ground fault detection control unit 39 can recognize the on / off state of the charging switch circuit 21 and the discharging switch circuit 22 at an arbitrary timing.
  • the power storage system 9 is provided with a ground fault detection circuit 29.
  • the ground fault detection circuit 29 includes each part referred to by reference numerals 31 to 38.
  • the ground fault detection circuit 29 includes a series circuit of a first switch circuit 31, a resistance element 33, a resistance element 34, and a second switch circuit 32.
  • the series circuit includes the positive terminal 12 and the negative terminal of the secondary battery unit 11. 13 is connected. More specifically, the first conduction terminals of the first switch circuit 31 and the second switch circuit 32 are connected to the positive terminal 12 and the negative terminal 13, respectively.
  • the second conduction terminal of the first switch circuit 31 is connected to the second conduction terminal of the second switch circuit 32 through a series circuit of the resistance elements 33 and 34.
  • a connection point 35 between the resistance elements 33 and 34 is grounded via a resistance element 36.
  • connection point 35 is connected to the ground point 38 having the ground potential via the resistance element 36.
  • the ground point 38 and the reference potential point 14 are insulated.
  • the signal processing unit 37 performs amplification, binarization, waveform shaping, or the like of the signal of the voltage generated in the resistance element 36 (voltage drop in the resistance element 36), thereby causing a ground fault in the power storage system 9.
  • the ground fault state in the power storage system 9 includes the state of FIG. 5A and the state of FIG.
  • the state of FIG. 5A is a state in which the positive electrode bus L1 is grounded, or a state in which other wirings or electronic components connected to the positive electrode bus L1 are grounded.
  • the state of FIG. 5B is a state where the negative electrode bus L4 is grounded, or a state where other wiring or electronic components connected to the negative electrode bus L4 are grounded. If the first switch circuit 31 and the second switch circuit 32 are OFF, a current loop that passes through the secondary battery unit 11 and the ground is not formed even in the state of FIG. 5A or 5B. No current flows between the secondary battery unit 11 and the ground.
  • the power storage system 9 performs ground fault detection using the ground fault detection circuit 29.
  • ground fault detection using the ground fault detection circuit 29.
  • a signal SIG31 of a voltage generated in the resistance element 36 in a state where only the first switch circuit 31 of the first switch circuit 31 and the second switch circuit 32 is turned on is acquired.
  • the signal SIG32 of the voltage generated in the resistance element 36 in a state where only the second switch circuit 32 is turned on is obtained.
  • the ground fault detection control unit 39 On / off switching control of the first switch circuit 31 and the second switch circuit 32 is performed by the ground fault detection control unit 39, and acquisition of the signals SIG 31 and SIG 32 is performed by the signal processing unit 37.
  • the ground fault detection control unit 39 uses the signal processing unit 37 based on the acquired voltage signal SIG31 to determine whether or not the ground fault in the state of FIG. When the ground fault in the state of FIG. 5B does not occur, even if the first switch circuit 31 is turned on, a current loop passing through the secondary battery unit 11 and the ground is not formed. If the first switch circuit 31 is turned on while the ground fault in the state of FIG. 5B is occurring, the secondary battery unit 11, the first switch circuit 31, the resistance elements 33 and 36, and the ground Is formed, and a voltage of a certain value or more is generated in the resistance element 36. Therefore, the ground fault detection control unit 39 can determine whether or not the ground fault in the state of FIG. 5B has occurred based on the voltage signal SIG31.
  • the ground fault detection control unit 39 uses the signal processing unit 37 based on the acquired voltage signal SIG32 to determine whether or not the ground fault in the state of FIG. When the ground fault in the state of FIG. 5A does not occur, even if the second switch circuit 32 is turned on, a current loop passing through the secondary battery unit 11 and the ground is not formed. If the second switch circuit 32 is turned on while the ground fault in the state of FIG. 5 (a) has occurred, the secondary battery unit 11, the second switch circuit 32, the resistance elements 34 and 36, and the ground Is formed, and a voltage of a certain value or more is generated in the resistance element 36. Therefore, the ground fault detection control unit 39 can determine whether or not the ground fault in the state of FIG. 5A has occurred based on the voltage signal SIG32.
  • FIG. 6 shows an internal configuration example of the signal processing unit 37.
  • the signal processing unit 37 includes, for example, an amplifier 51 that amplifies a signal of a voltage generated by the resistance element 36, a low-pass filter 52 that removes a high-frequency component of the voltage signal amplified by the amplifier 51, and a low-pass filter 52.
  • the voltage signal obtained through the low-pass filter 52 is compared with the voltage signal obtained through the low-pass filter 52, and the signal binarized by the comparator 53 is compared with the voltage signal obtained through the low-pass filter 52.
  • the ground fault detection control unit 39 can determine whether or not the above-described ground fault has occurred based on the signal after the waveform shaping by the waveform shaping circuit 54.
  • ground fault detection consists of one or more unit ground fault detection operations.
  • the execution of ground fault detection involves power consumption due to switching of the first switch circuit 31 and the second switch circuit 32 on and off, and it is not desirable to perform it more than necessary.
  • the power storage system 9 when the power storage system 9 is not mounted on a mobile body but is installed in a house or factory and used for driving home appliances or the like, the ground fault state rarely deteriorates rapidly (second) In the embodiment, it is assumed that the power storage system 9 is installed in a house or factory and used for driving home appliances or the like).
  • the range in which the presence or absence of the ground fault can be detected even if the ground fault detection is performed when the charging switch circuit 21 and the discharging switch circuit 22 are off is for charging.
  • the ground fault detection control unit 39 performs a control operation for ground fault detection in consideration of these. This control operation will be described with reference to FIG. As shown in FIG. 7, the ground fault detection control unit 39 sets a plurality of target periods that are discretely arranged on the time axis, and the ground fault detection circuit 29 performs ground fault detection only in each target period. To control. Accordingly, there is a non-target period between two target periods that are temporally adjacent, and ground fault detection is not performed in the non-target period. The ground fault detection control unit 39 sets one or more target periods per day. For example, when one target period is set per day, the ground fault detection control unit 39 sets i target periods over i days (i is an integer).
  • the ground fault detection is realized by the cooperation of the ground fault detection control unit 39 and the ground fault detection circuit 29.
  • the ground fault detection control unit 39 is connected to the ground fault detection circuit for simplification of description.
  • Performing ground fault detection (unit ground fault detection operation) using 29 is simply expressed as performing ground fault detection (unit ground fault detection operation).
  • the ground fault detection control unit 39 has a clock or a time acquisition unit (not shown) that acquires time information from the outside, and recognizes the current time using its own clock or time acquisition unit.
  • the ground fault detection control unit 39 does not perform ground fault detection when the current time belongs to the non-target period, and starts the ground fault detection sequence when the current time reaches the start time of the target period.
  • FIG. 8 is an operation flowchart of the ground fault detection sequence.
  • the processing of each step shown in FIG. 8 is executed and controlled by the ground fault detection control unit 39.
  • the ground fault detection control unit 39 determines whether or not the secondary battery unit 11 and the power block (at least one of the power blocks PB1 and PB2 in the second embodiment) are connected.
  • the ground fault detection is performed during the period in which the secondary battery unit 11 and the power block are connected via the switching circuit 15 based on the monitoring result (in other words, the ground fault detection is performed).
  • the ground fault detection circuit 29 is controlled as described above).
  • the switching circuit 15 includes the charging switch circuit 21 and the discharging switch circuit 22
  • the ground fault detection control unit 39 includes the charging switch circuit 21 and the discharging switch circuit 22. Ground fault detection is performed during a period in which at least one of the switches is on (in other words, the ground fault detection circuit 29 is controlled so that ground fault detection is performed).
  • the ground fault detection control unit 39 ends the ground fault detection sequence when the current time reaches the end time of the target period. However, even if the current time does not reach the end time of the target period, the necessary ground fault is detected. If the detection is completed, the ground fault detection sequence can be terminated at that time.
  • a ground fault detection sequence executed in a certain target period hereinafter also referred to as a specific target period
  • step S111 the ground fault detection control unit 39 determines whether or not both the charging switch circuit 21 and the discharging switch circuit 22 are turned on.
  • step S111 when both the charging switch circuit 21 and the discharging switch circuit 22 are turned on, a transition from step S111 to step S112 occurs, and both the charging switch circuit 21 and the discharging switch circuit 22 are turned on. If not, a transition from step S111 to step S121 occurs.
  • a period in which both the charging switch circuit 21 and the discharging switch circuit 22 are on is also referred to as both on periods.
  • the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and when the unit ground fault detection operation is completed, ends the ground fault detection sequence for the specific target period. That is, in the case of reaching step S112, the ground fault detection in the specific target period is completed by executing the ground fault detection in both on periods. After the end of the ground fault detection during the specific target period, the new unit ground fault detection operation is not executed in the specific target period.
  • step S121 the ground fault detection control unit 39 determines whether or not the charging switch circuit 21 is turned on.
  • step S121 when the charging switch circuit 21 is on, a transition from step S121 to step S122 occurs, and when the charging switch circuit 21 is off, the process proceeds from step S121 to step S121. A transition to S131 occurs.
  • a period in which the charging switch circuit 21 is at least on is also referred to as a charging on period.
  • step S122 the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and then causes a transition to step S123.
  • step S123 the ground fault detection control unit 39 determines whether or not the discharge switch circuit 22 is turned on.
  • step S123 when the discharge switch circuit 22 is turned on, a transition from step S123 to step S124 occurs, and when the discharge switch circuit 22 is turned off, the process proceeds from step S123 to step S123.
  • a transition to S125 occurs.
  • the transition from step S123 to step S124 occurs, not only the discharging switch circuit 22 but also the charging switch circuit 21 may be turned on.
  • a period in which the discharging switch circuit 22 is at least on is also referred to as a discharge on period.
  • step S124 the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and when the unit ground fault detection operation is completed, ends the ground fault detection sequence for the specific target period. That is, in the case of reaching step S124, the ground fault detection during the specific target period is performed by executing the ground fault detection during the charge on period in step S122 and executing the ground fault detection during the discharge on period in step S124. Ends.
  • step S125 the ground fault detection control unit 39 determines whether or not the specific target period has expired by comparing the current time with the end time of the specific target period. In step S125, when the specific target period has not expired, the process returns from step S125 to step S123. However, when the specific target period has expired, the ground fault detection control unit 39 performs the ground fault detection sequence for the specific target period. End. Therefore, in the case where the ground fault detection sequence ends without passing through step S124 after passing through steps S121 and S122, the execution of the ground fault detection during the charging on period in step S122 is followed by the expiration of the specific target period. The ground fault detection during the specific target period ends.
  • step S131 the ground fault detection control unit 39 determines whether or not the discharge switch circuit 22 is turned on. In step S131, when the discharge switch circuit 22 is turned on, a transition from step S131 to step S132 occurs, and when the discharge switch circuit 22 is turned off, the process proceeds from step S131 to step S131. A transition to S141 occurs. In step S132, the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and then causes a transition to step S133.
  • step S133 the ground fault detection control unit 39 determines whether or not the charging switch circuit 21 is turned on.
  • step S133 when the charging switch circuit 21 is on, a transition from step S133 to step S134 occurs, and when the charging switch circuit 21 is off, the process proceeds from step S133 to step S133. A transition to S135 occurs.
  • the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and when the unit ground fault detection operation is completed, ends the ground fault detection sequence for the specific target period. That is, in the case of reaching step S134, the ground fault detection during the specific target period is performed by executing the ground fault detection during the discharge on period in step S132 and executing the ground fault detection during the charge on period in step S134. Ends.
  • step S135 the ground fault detection control unit 39 determines whether or not the specific target period has expired by comparing the current time with the end time of the specific target period. If the specific target period has not expired in step S135, the process returns from step S135 to step S133. If the specific target period has expired, the ground fault detection control unit 39 performs the ground fault detection sequence for the specific target period. End. Therefore, in the case where the ground fault detection sequence ends without passing through step S134 after passing through steps S131 and S132, the execution of the ground fault detection during the discharge ON period in step S132 causes the specific target period to expire. The ground fault detection during the specific target period ends.
  • step S141 the ground fault detection control unit 39 determines whether or not the remaining time until the expiration of the specific target period is equal to or shorter than the predetermined time. If the remaining time is equal to or shorter than the predetermined time, the process starts from step S141. A transition to step S142 is generated. If the remaining time is not less than the predetermined time, the process returns from step S141 to step S111, and the processes in steps S111 and S111 and subsequent steps are repeatedly executed.
  • step S142 the ground fault detection control unit 39 executes the unit ground fault detection operation only once, and when the unit ground fault detection operation is completed, ends the ground fault detection sequence for the specific target period.
  • the timing at which the unit ground fault detection operation is executed in step S142 is a timing based on the end timing of the specific target period, for example, a timing that is ⁇ t before the end timing of the specific target period. ⁇ t is a time required to execute one unit ground fault detection operation or a time obtained by adding a slight margin to a time required to execute one unit ground fault detection operation. Therefore, in the case of reaching step S142, the ground fault detection is performed at the timing based on the end timing of the specific target period, and then the ground fault detection during the specific target period is immediately ended.
  • the ground fault detection sequence described above with reference to FIG. 8 is executed in each target period after regarding each target period as a specific target period.
  • the ground fault detection control unit 39 can notify the user visually or audibly.
  • the ground fault detection is performed during a period in which at least one of the charging switch circuit 21 and the discharging switch circuit 22 is turned on, thereby reducing the power block (PB1 And / or ground fault detection can also be performed for the portion between PB2) and the switching circuit 15.
  • the ground fault detection is executed at least once (step S142). ).
  • the ground fault detection control unit 39 can arbitrarily determine the start time of the target period and the length of the target period. However, in order to suppress the influence of noise on ground fault detection as much as possible, it is desirable to set the start time of each target period to midnight or early morning. For example, “midnight” refers to a time zone belonging to the midnight power time zone, and “early morning” refers to a time zone immediately after the end of the midnight power time zone.
  • the midnight power time zone is one of a plurality of time zones determined by a power company that supplies commercial AC power to the area where the power storage system 9 is introduced. For example, 1:00 AM belongs to the midnight power time zone.
  • the ground fault detection control unit 39 is based on the switch information transmitted from the switch control unit 16 every day, and is a time zone in which the charging switch circuit 21 and the discharging switch circuit 22 are turned on (hereinafter, both on-time zones).
  • the charging switch circuit 21 and the discharging switch circuit 22 at least the time zone in which the charging switch circuit 21 is turned on (hereinafter referred to as the charging on time zone), or in the switches 21 and 22, at least By learning a time zone in which the discharge switch circuit 22 is turned on (hereinafter referred to as a discharge on time zone), and setting each subsequent target period (for example, the start time of each target period) based on the learning result. Good.
  • it is desirable to set one or more target periods per day that is, it is desirable that the interval between two target periods that are temporally adjacent is within 24 hours).
  • the ground fault detection control unit 39 statistically learns what time periods the both on-time periods are over a plurality of days, and has a statistically high probability of becoming both on-time periods.
  • the band may be included in each subsequent target period. Simply, for example, if it is found by learning that both on-time zones appear every day from 9 pm to 10 pm, the ground fault detection control unit 39 sets the time zone from 9 pm to 10 pm It should be included in each subsequent period.
  • both on-time zones are indefinite, but it is learned that the charge-on time zone appears every day from 5 pm to 6 pm and the discharge on-time zone appears from 10 pm to 11 pm
  • the ground fault detection control unit 39 thereafter sets two target periods in one day, includes a time period from 5 pm to 6 pm in one target period, and in the other target period. You may make it include the time slot
  • an optimum time zone in which ground fault detection can be performed for the portion between the power block (PB1 and / or PB2) and the switching circuit 15 is set for each time period. Can be included in the target period.
  • the first and second embodiments can be variously modified as appropriate within the scope of the technical idea shown in the claims.
  • the above embodiment is merely an example of the embodiment of the present invention, and the meaning of the term of the present invention or each constituent element is not limited to that described in the above embodiment.
  • the specific numerical values shown in the above description are merely examples, and as a matter of course, they can be changed to various numerical values.
  • annotations 1 to 5 are described below.
  • the contents described in each comment can be arbitrarily combined as long as there is no contradiction.
  • ground fault detection circuit 29 is merely an example, and the ground fault detection circuit can be formed by an arbitrary circuit capable of performing ground fault detection.
  • switch control unit 16 and the ground fault detection control unit 39 are shown as separate control units, but the switch control unit 16 and the ground fault detection control unit 39 form one control unit. Also good.
  • All or a part of the power storage system 9 shown in FIG. 4 can be mounted on various other systems and devices.
  • the power storage system 9 is mounted on a mobile body (electric vehicle, ship, aircraft, elevator, walking robot, etc.) or electronic device (personal computer, portable terminal, etc.) that is driven using the discharge power of the secondary battery unit 11.
  • a mobile body electric vehicle, ship, aircraft, elevator, walking robot, etc.
  • electronic device personal computer, portable terminal, etc.
  • it may be incorporated into the power system of a house or factory.
  • the switch control unit 16 and the ground fault detection control unit 39 can be configured by hardware or a combination of hardware and software.
  • a function realized using software may be described as a program, and the function may be realized by executing the program on a program execution device (for example, a computer).
  • the power storage system 9 in FIG. 4 includes a ground fault detection device.
  • the ground fault detection device included in the power storage system 9 includes at least the ground fault detection circuit 29 and the ground fault detection control unit 39 as constituent elements, and further includes any other part (for example, the switching circuit 15 shown in FIG. 4). ) May also be included as a component.

Abstract

地絡検出回路100は、寄生ダイオードを有する電界効果トランジスタを介して二次電池部30a,30b,30cの正極側に接続される正極母線1と接地電位箇所との第1経路を接続/遮断する第1スイッチ回路82と、二次電池部30a,30b,30cの負極側に接続される負極母線2と接地電位箇所との第2経路を接続/遮断する第2スイッチ回路84と、第1経路又は第2経路の電流に基づいて正極母線1又は負極母線2が地絡していることを検出する地絡検出部90と、を備える。

Description

地絡検出回路及び地絡検出装置
 本発明は、地絡検出回路及び地絡検出装置に係り、特に、正極母線または負極母線が地絡されたことを検出する地絡検出回路及び地絡検出装置に関する。
 二次電池等の蓄電装置を利用することで、エネルギの有効活用がなされている。例えば、近年、環境に優しいクリーンエネルギとして太陽光発電システムの開発が盛んに行なわれているが、太陽光を電力に変換する光電変換モジュールは蓄電機能を備えていないため、二次電池と組み合わせて使用されることがある。例えば、光電変換モジュールにより発電された電力を一旦二次電池に充電して、外部負荷の要求等に応じて二次電池から放電する充放電制御によってエネルギの有効活用が行なわれている。
 本発明に関連する技術として、例えば、特許文献1には、太陽電池と、この太陽電池で充電される複数の二次電池と、各々の二次電池と太陽電池との間に接続されて二次電池の充電を制御する充電スイッチと、各々の二次電池と負荷との間に接続してなる放電スイッチと、充電スイッチと放電スイッチとを制御する制御回路とを備える太陽電池の電源装置が開示されている。ここでは、制御回路が、複数の充電スイッチを制御して充電する二次電池の優先順位を特定し、優先順位の高い二次電池を優先順位の低い二次電池よりも先に充電し、優先順位の高い二次電池が所定容量充電されると、優先順位の低い二次電池を充電するようにしてなることが開示されている。
特開2003-111301号公報
 ところで、二次電池の正極側端子に接続される正極母線及び二次電池の負極側端子に接続される負極母線が、接地(アース)されていない電力供給システムがある。この場合に、正極母線または負極母線が地絡したときに、人体が正極母線または負極母線に触れると、体内を経由する電流ループが形成され人体に電流が流れる。このような事象を未然に防ぐため、地絡の発生を検出することが望まれる。
 本発明の目的は、地絡の発生を検出する地絡検出回路及び地絡検出装置を提供することである。
 本発明に係る地絡検出回路は、寄生ダイオードを有する電界効果トランジスタを介して二次電池部の正極側に接続される正極母線と接地電位箇所との第1経路を接続又は遮断する第1スイッチ回路と、二次電池部の負極側に接続される負極母線と接地電位箇所との第2経路を接続又は遮断する第2スイッチ回路と、第1経路又は第2経路の電流に基づいて正極母線又は負極母線が地絡していることを検出する地絡検出部と、を備えることを特徴とする。
 また、本発明に係る地絡検出装置は、上記の地絡検出回路と、地絡の検出の実行タイミングを制御する制御部と、を備え、制御部は、時系列上において離散的に配置された複数の対象期間を設定し、各対象期間に地絡の検出が行われるように地絡検出回路を制御することを特徴とする。
 上記構成の地絡検出回路及び地絡検出装置によれば、第1経路又は第2経路の電流に基づいて正極母線又は負極母線が地絡していることを検出することができる。
本発明に係る第一実施形態において、地絡検出回路と、制御部と、地絡検出 回路によって地絡検出される電力供給システムとを示す図である。 本発明に係る第一実施形態において、地絡検出回路によって地絡検出される手順を示すフローチャートである。 本発明に係る第一実施形態において、正極母線が地絡している場合に、地絡が発生していることが検知される際のタイミングチャートである。 本発明に係る第二実施形態において、蓄電システムの概略構成図である。 図4の蓄電システムにて発生しうる地絡の状態を説明するための図である。 図4の地絡発生回路の内部構成例を示す図である。 本発明に係る第二実施形態において、複数の対象期間のイメージ図である。 本発明に係る第二実施形態において、地絡検出シーケンスの動作フローチャートである。
 以下に図面を用いて、本発明に係る実施の形態を詳細に説明する。以下では、二次電池は、リチウムイオン二次電池であるものとして説明するが、これ以外の充放電可能な蓄電池であってもよい。例えば、ニッケル水素二次電池、ニッケルカドミウム蓄電池、鉛蓄電池、金属リチウムイオン二次電池等であってもよい。
 また、以下では、全ての図面において、同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
(第一実施形態)
 図1は、蓄電システム8を示す図である。蓄電システム8は、地絡検出回路100と、制御部70と、地絡検出回路100によって地絡検出される電力供給システム10とを備える。最初に、電力供給システム10について説明し、その後に地絡検出回路100、制御部70について説明する。なお、図1の蓄電システム8には、地絡検出装置が含まれていると考えることができる。蓄電システム8に内包される地絡検出装置は、少なくとも地絡検出回路100及び地絡対応処理部704を構成要素として含み、更に、図1に示される他の任意の部位も構成要素として含みうる。
 電力供給システム10は、太陽電池モジュール20と、ブレーカ部25a,25b,25cと、二次電池部30a,30b,30cと、切替装置40と、負荷75とを含んで構成される。
 太陽電池モジュール20は、太陽光を電力に変換する光電変換装置である。太陽電池モジュール20の正極側端子は、正極母線1によって充電用スイッチ回路402の一方側端子402aに接続されている。太陽電池モジュール20の負極側端子は、負極母線2によってブレーカ部25a,25b,25cの負極側ブレーカ252,254,256の負極側端子252b,254b,256bと、負荷75の負極側端子に接続されている。なお、太陽電池モジュール20によって発電された発電電力は直流電力である。
 二次電池部30a,30b,30cは、それぞれ複数の二次電池を直列に接続して構成されている。なお、各二次電池は、炭素物質で構成された負極と、リチウムイオンが移動するための電解液と、リチウムイオンを可逆的に出し入れできる正極活物質とを含んで構成される。
 二次電池部30aの正極側端子は、ブレーカ部25aの正極側ブレーカ251を介して並列処理回路部404に接続され、負極側端子は、ブレーカ部25aの負極側ブレーカ252を介して負極母線2に接続されている。また、図1に示されるように、二次電池部30b及び二次電池部30cも二次電池部30aと同様の構成を有する。
 ブレーカ部25a,25b,25cは、二次電池部30a,30b,30cを保護する必要がある時に、制御部70によって遮断制御される装置である。
 ブレーカ部25aは、正極側ブレーカ251と負極側ブレーカ252とを含んで構成される。正極側ブレーカ251は、一方側端子251aが並列処理回路部404に接続され、他方側端子251bが二次電池部30aの正極側端子に接続される遮断回路である。負極側ブレーカ252は、一方側端子252aが二次電池部30aの負極側端子に接続され、他方側端子252bが負極母線2に接続される遮断回路である。また、図1に示されるように、ブレーカ部25b及びブレーカ部25cもブレーカ部25aと同様の構成を有する。
 切替装置40は、充電用スイッチ回路402と、並列処理回路部404と、放電用スイッチ回路406とを含んで構成される。
 並列処理回路部404は、スイッチ回路41a,41b,41cと、抵抗素子42a,42b,42cと、を含んで構成される。
 スイッチ回路41aは、一方側端子410aが充電用スイッチ回路402の他方側端子402bと放電用スイッチ回路406の一方側端子406aとに接続され、他方側端子411aが正極側ブレーカ251の一方側端子251aと接続されるスイッチである。スイッチ回路41aは、例えば、電界効果トランジスタ(FET)を用いて構成することができ、この場合、一方側端子402aにカソード端子が接続され、他方側端子402bにアノード端子が接続される寄生ダイオードが形成される。また、図1に示されるように、スイッチ回路41b及びスイッチ回路41cもスイッチ回路41aと同様の構成を有する。
 抵抗素子42aは、一方側端子が充電用スイッチ回路402の他方側端子402bと放電用スイッチ回路406の一方側端子406aとに接続され、他方側端子が正極側ブレーカ251の一方側端子251aと接続される。つまり、抵抗素子42aは、スイッチ回路41aに対して並列に接続されている。また、抵抗素子42b及び抵抗素子42cも抵抗素子42aと同様の構成を有する。
 ここで、並列処理回路部404の作用について述べると、通常動作時は、スイッチ回路41a,41b,41cは、制御部70により、正極側端子側の電圧の電位差に応じてオン/オフ制御されている。また、スイッチ回路41a,41b,41cのオン抵抗値は、それぞれ抵抗素子42a,42b,42cの抵抗値に比べて小さい。したがって、制御部70によって充電用スイッチ回路402もオンに制御されている場合には、太陽電池モジュール20によって発電された発電電力がスイッチ回路41a,41b,41cを介してそれぞれ二次電池部30a,30b,30cに充電される。
 そして、例えば、二次電池部30bを交換した場合、正極側ブレーカ253の一方側端子253aと正極側ブレーカ251,255の一方側端子251a,255aとの間で電圧差ができ、このとき制御部70によって、スイッチ回路41bはオフに制御される。これにより、太陽電池モジュール20によって発電された発電電力は、スイッチ回路41a,41cを介して二次電池部30a,30cには充電されるが二次電池部30bには充電されないこととなる。そして、二次電池部30bの電圧が二次電池部30a、30cの電圧よりも小さい場合、正極側ブレーカ251,255の一方側端子251a,255aと正極側ブレーカ253の一方側端子253aとの間で電圧差が発生するため、抵抗素子42a及び抵抗素子42b、あるいは、抵抗素子42c及び抵抗素子42bを介して正極側ブレーカ253側に向かって電流が流れ、上記電圧差が小さくなる。
 充電用スイッチ回路402は、一方側端子402aが正極母線1によって太陽電池モジュール20の正極側端子に接続され、他方側端子402bが正極母線1によってスイッチ回路41a,41b,41cの一方側端子410a,410b,410c及び抵抗素子42a,42b,42cの一方側端子と放電用スイッチ回路406の一方側端子406aとに接続されるスイッチである。充電用スイッチ回路402のスイッチング制御は、制御部70の制御によってなされる。なお、充電用スイッチ回路402は、例えば、電界効果トランジスタ(FET)を用いて構成することができ、この場合、他方側端子402bにアノード端子が接続され、一方側端子402aにカソード端子が接続される寄生ダイオードが形成される。
 放電用スイッチ回路406は、一方側端子406aが正極母線1によって充電用スイッチ回路402の他方側端子402bとスイッチ回路41a,41b,41cの一方側端子410a,410b,410c及び抵抗素子42a,42b,42cの一方側端子に接続されるスイッチである。また、放電用スイッチ回路406は、他方側端子406bが正極母線1によって負荷75に接続されるスイッチである。放電用スイッチ回路406のスイッチング制御は、制御部70の制御によってなされる。なお、放電用スイッチ回路406は、例えば、電界効果トランジスタ(FET)を用いて構成することができ、この場合、一方側端子406aにカソード端子が接続され、他方側端子406bにアノード端子が接続される寄生ダイオードが形成される。
 負荷75は、一方側端子が正極母線1によって放電用スイッチ回路406の他方側端子406bと接続され、他方側端子が負極母線2に接続される負荷装置である。ここでは、負荷75は、直流電力で動作する負荷であり、例えば、パーソナルコンピュータ等を用いることができる。
 次に、地絡検出回路100について説明する。地絡検出回路100は、第1抵抗素子80と、第1スイッチ回路82と、地絡検出部90と、第2スイッチ回路84と、第2抵抗素子86とを含んで構成される。
 第1抵抗素子80は、一方側端子が正極母線1と接続され、他方側端子が第1スイッチ回路82の一方側端子82aと接続される抵抗素子である。なお、第1抵抗素子80の抵抗値は、負極母線2が地絡した際に流れる電流値を抑制するために予め定められた値である。
 第1スイッチ回路82は、一方側端子82aが第1抵抗素子80の他方側端子と接続され、他方側端子82bが第2スイッチ回路84の一方側端子84aと地絡検出部90の一方側端子90aとに接続される。また、第1スイッチ回路82は、例えば、電界効果トランジスタ(FET)を用いて構成することができ、この場合、一方側端子82aにアノード端子が接続され、他方側端子82bにカソード端子が接続される寄生ダイオードが形成される。なお、第1スイッチ回路82のスイッチング制御は、制御部70によってなされる。
 第2スイッチ回路84は、一方側端子84aが第1スイッチ回路82の他方側端子82bと地絡検出部90の一方側端子90aとに接続され、他方側端子84bが第2抵抗素子86の一方側端子に接続される。また、第2スイッチ回路84は、例えば、電界効果トランジスタ(FET)を用いて構成することができ、この場合、一方側端子84aにカソード端子が接続され、他方側端子84bにアノード端子が接続される寄生ダイオードが形成される。なお、第2スイッチ回路84のスイッチング制御は、制御部70によってなされる。
 第2抵抗素子86は、一方側端子が第2スイッチ回路84の他方側端子と接続され、他方側端子が負極母線2と接続される抵抗素子である。なお、第2抵抗素子86の抵抗値は、正極母線1が地絡した際に流れる電流値を抑制するために予め定められた値である。
 地絡検出部90は、I/V変換用抵抗素子91と、高周波数用フィルタ92と、全波整流回路93と、低周波数用フィルタ94と、コンパレータ95と、基準電圧回路96と、抵抗素子97、容量素子98と、判定回路99とを含んで構成される。地絡検出部90は、一方側端子90aが第1スイッチ回路82と第2スイッチ回路84の接続点に接続され、他方側端子90bが接地される。
 I/V変換用抵抗素子91は、一方側端子が一方側端子90aを介して第1スイッチ回路82と第2スイッチ回路84との接続点に接続され、他方側端子が他方側端子90bを介して接地される抵抗素子である。そして、I/V変換用抵抗素子91を流れる電流は、その抵抗成分によって電圧に変換される。
 高周波数用フィルタ92は、2つの入力側端子がI/V変換用抵抗素子91の両側端子に接続され、出力側端子が全波整流回路93の入力側端子に接続されるフィルタ回路である。そして、高周波数用フィルタ92は、I/V変換用抵抗素子91から出力される電圧信号を入力として受け取り、当該電圧信号のうち、高周波数(例えば、15kHz~20kHz)成分をカットするフィルタとして機能する。
 全波整流回路93は、入力側端子が高周波数用フィルタ92の出力側端子と接続され、出力側端子が低周波数用フィルタ94の入力側端子と接続される整流回路である。そして、全波整流回路93は、高周波数用フィルタ92によってフィルタリングされた電圧信号を全波整流する整流回路として機能する。
 低周波数用フィルタ94は、入力側端子が全波整流回路93の出力側端子と接続され、出力側端子がコンパレータ95の第1入力側端子に接続されるフィルタ回路である。そして、低周波数用フィルタ94は、全波整流回路93によって整流された電圧信号のうち、低周波数(例えば、100Hz~120Hz)成分をカットするフィルタ回路である。
 基準電圧回路96は、一方側端子がコンパレータ95の第2入力側端子と接続され、他方側端子が接地される回路である。そして、基準電圧回路96は、正極母線1または負極母線2が地絡したことを検出するために予め定められた基準電圧値(閾値)を出力する機能を有する。
 コンパレータ95は、第1入力側端子が低周波数用フィルタ94の出力側端子と接続され、第2入力側端子が基準電圧回路96の一方側端子と接続され、出力側端子が抵抗素子97の一方側端子とダイオード97aのカソード端子と接続される比較回路である。そして、コンパレータ95は、低周波数用フィルタ94によってフィルタリングされた電圧信号と、基準電圧回路96によって出力される電圧値とを比較する機能を有する。また、コンパレータ95は、当該電圧信号の値が基準電圧値よりも大きいときにはLowを出力し、当該電圧信号の値が基準電圧値よりも小さいときにはHighを出力する。
 抵抗素子97は、一方側端子がコンパレータ95の出力側端子とダイオード97aのカソード端子と接続され、他方側端子が容量素子98の一方側端子と判定回路99の入力側端子とダイオード97aのアノード端子と接続される抵抗素子である。
 ダイオード97aは、カソード端子が抵抗素子97の一方側端子とコンパレータ95の出力端子とに接続され、アノード端子が抵抗素子97の他方側端子と容量素子98の一方側端子と判定回路99の入力側端子とに接続されるダイオードである。つまり、ダイオード97aは抵抗素子97に対して並列に接続されている。ここで、ダイオード97aは容量素子98に蓄積された電荷を放電するための放電回路として機能する。
 容量素子98は、一方側端子が抵抗素子97の他方側端子、ダイオード97aのアノード端子及び判定回路99の入力側端子と接続され、他方側端子が接地される容量素子である。ここで、抵抗素子97と容量素子98とを併せて時定数回路として機能し、具体的には、コンパレータ95の出力値の変化に基づいて、抵抗素子97の抵抗値と容量素子98の容量値により定まる時定数で値を変化させる時定数回路として機能する。
 判定回路99は、入力側端子は抵抗素子97の他方側端子、ダイオード97aのアノード端子及び容量素子98の一方側端子と接続され、出力側端子が制御部70と接続される回路である。また、判定回路99は、抵抗素子97と容量素子98により形成される時定数回路の出力値(抵抗素子97の他方側端子と容量素子98の一方側端子の電位)がLowからHighに向かって変化している時間が予め定められた判定時間(例えば、2秒)を超えているか否かを判断する。そして、判定回路99は、上述した時定数回路の出力値の変化信号が当該判定時間を超えていない場合は地絡が発生していないと判定してLowを出力し、当該変化信号が当該判定時間を超えている場合に地絡が発生していると判定してHighを出力する機能を有する。
 次に、制御部70について説明する。制御部70は、充放電処理部702と地絡対応処理部704とを含んで構成される。なお、制御部70の各構成は、ハードウェアで構成してもよく、ソフトウェアで構成することも可能である。
 充放電処理部702は、充電用スイッチ回路402、放電用スイッチ回路406のオンオフ制御を行う機能を有する。また、充放電処理部702は、太陽電池モジュール20によって発電された発電電力を一旦二次電池部30a,30b,30cに充電し、二次電池部30a,30b,30cから放電された放電電力を負荷75に供給するために、充電用スイッチ回路402及び放電用スイッチ回路406をオンする機能を有する。
 さらに、充放電処理部702は、二次電池部30a,30b,30cのSOCを取得し、二次電池部30a,30b,30cのSOCのうち少なくとも1つが所定の過充電基準値よりも大きくなったときに、二次電池部30a,30b,30cが過充電状態となることを防止するために、充電用スイッチ回路402をオフする機能を有する。
 また、充放電処理部702は、二次電池部30a,30b,30cのSOCを取得し、二次電池部30a,30b,30cのSOCのうち少なくとも1つが所定の過放電基準値よりも小さくなったときに、二次電池部30a,30b,30cが過放電状態となることを防止するために、放電用スイッチ回路406をオフする機能を有する。
 地絡対応処理部704は、第1スイッチ回路82、第2スイッチ回路84、ブレーカ部25a,25b,25cを制御する機能を有する。
 また、地絡対応処理部704は、正極母線1が地絡しているか否かを検知するために、第1スイッチ回路82をオフし、第2スイッチ回路84をオンする機能を有する。ここで、正極母線1が地絡している場合には、接地側からI/V変換用抵抗素子91、第2スイッチ回路84、第2抵抗素子86を介して負極母線2側に電流が流れる電流パスが形成される。そして、正極母線1が地絡している場合には、地絡検出部90によって地絡していることが検知され、判定回路99の出力信号がHighとなる。このとき地絡対応処理部704は、正極母線1が地絡していると判断し、ブレーカ部25a,25b,25cを遮断する。
 さらに、地絡対応処理部704は、負極母線2が地絡しているか否かを検知するために、第1スイッチ回路82をオンし、第2スイッチ回路84をオフする。ここで、負極母線2が地絡している場合には、正極母線1側から第1抵抗素子80、第1スイッチ回路82、I/V変換用抵抗素子91を介して接地側に電流が流れる電流パスが形成される。そして、負極母線2が地絡している場合には、地絡検出部90によって地絡していることが検知され、判定回路99の出力信号がHighとなる。このとき地絡対応処理部704は、負極母線2が地絡していると判断し、ブレーカ部25a,25b,25cを遮断する。
 続いて、上記構成の作用について、図2を用いて説明する。図2は、地絡検出回路100によって地絡検出される手順を示すフローチャートである。まず、最初に、第1スイッチ回路82及び第2スイッチ回路84をオフし、I/V変換用抵抗素子91に電流が流れていないことを確認する(S2)。この工程は、制御部70の地絡対応処理部704の機能によって実行される。これにより、地絡検出回路100が正常な状態にあるかどうかを確認する初期チェックを行う。
 次に、第1スイッチ回路82をオンする(S4)。この工程は、制御部70の地絡対応処理部704の機能によって実行される。これにより、負極母線2が地絡しているか否かの検知を開始する。次に、負極母線2の地絡検出が開始されてから5秒が経過したか否かを判断する(S6)。この工程は、制御部70の地絡対応処理部704の機能によって実行される。負極母線2の地絡検出が開始されてから5秒が経過したと判断したときは、S12へと進む。
 負極母線2の地絡検出が開始されてから5秒が経過していないと判断したときは、判定回路99の出力信号がHighであるか否かを判断する(S8)。この工程は、制御部70の地絡対応処理部704の機能により実行される。判定回路99の出力信号がLowのときは、再びS6へと戻る。
 判定回路99の出力信号がHighのときは、負極母線2が地絡していると判断し、ブレーカ部25a,25b,25cを遮断する(S10)。この工程は、制御部70の地絡対応処理部704の機能により実行される。
 S12の工程において、第1スイッチ回路82をオフにてから3秒経過させた後(S12)、第2スイッチ回路84をオンにする(S14)。この工程は、制御部70の地絡対応処理部704の機能により実行される。これにより、負極母線2に関する地絡検出を終えて、正極母線1が地絡しているか否かの検知を開始する。なお、第1スイッチ回路82をオフにし、3秒経過してから第2スイッチ回路84をオンにしているのは、第1スイッチ回路82がオフに切り替わる直前で負極母線2が地絡していると検知され、コンパレータ95の出力がHighからLowに切り替わった際に、そのHigh信号が2秒以上経過しているか否かを判断する必要があることを考慮したことによる。なお、上記のようにS12及びS14の工程では、第1スイッチ回路82をオフにてから3秒経過させた後に、第2スイッチ回路84をオンにするものとして説明したが、ダイオード97aの放電機能により、コンパレータ95の出力がHighからLowに切り替わるのに要する時間が短縮できる場合は、第1スイッチ回路82をオフにし、3秒経過する前に第2スイッチ回路84をオンしてもよい。
 次に、正極母線1の地絡検出が開始されてから5秒が経過したか否かを判断する(S16)。この工程は、制御部70の地絡対応処理部704の機能によって実行される。正極母線1の地絡検出が開始されてから5秒が経過したと判断したときは、END処理へと進む。
 正極母線1の地絡検出が開始されてから5秒が経過していないと判断したときは、判定回路99の出力信号がHighであるか否かを判断する(S18)。この工程は、制御部70の地絡対応処理部704の機能により実行される。判定回路99の出力信号がLowのときは、再びS16へと戻る。
 判定回路99の出力信号がHighのときは、正極母線1が地絡していると判断し、ブレーカ部25a,25b,25cを遮断する(S20)。この工程は、制御部70の地絡対応処理部704の機能により実行される。
 上記構成によれば、地絡検出回路100によって地絡検出された結果に基づいて、地絡が発生しているときに、ブレーカ部25a,25b,25cが遮断される。これにより、正極母線1または負極母線2が地絡したときに、万一、人が当該正極母線1または負極母線2に触った場合であっても感電することを防止することができる。
 また、上記構成によれば、第1スイッチ回路82をオンして、第2スイッチ回路84をオフしたときに、負極母線2の地絡を検出できるとともに、第1スイッチ回路82をオンして、第2スイッチ回路84をオンしたときに、正極母線1の地絡を検出することができる。また、正極母線1または負極母線2ではなく、二次電池部30a,30b,30cにおいて、それぞれ直列接続された複数の二次電池の間で地絡が発生したときは、上記の正極母線1の地絡の検出の際及び負極母線2の地絡の検出の際のいずれの場合にも地絡が発生していると検出される。これにより、複数の二次電池の間で地絡が発生している場合であってもブレーカ部25a,25b,25cが遮断されるため、万一、人が当該正極母線1または負極母線2に触った場合であっても感電することを防止することができる。
 なお、上記構成によって、電力供給システム10において、地絡が発生していることが検出される一例について、図3を用いて説明する。図3は、正極母線1が地絡している場合に、その地絡の発生が検知されるときのタイミングチャートである。
 まず、第1スイッチ回路82を5秒間オンして、負極母線2が地絡しているか否かを判定する。このとき、負極母線2では地絡が発生していないため、低周波数用フィルタ94の出力信号である電圧信号は基準電圧値(閾値)を超えていない。このため、コンパレータ95の出力もLowのままである。
 そして、第1スイッチ回路82をオフしてから3秒経過させた後に、第2スイッチ回路84を5秒間オンして、正極母線1が地絡しているか否かを判定する。このとき、正極母線1で地絡が発生しており、低周波数用フィルタ94の電圧信号が閾値を超える期間は2秒以上継続する。これにより、判定回路99は、地絡が発生していると判定し、制御部70に対する出力信号をLowからHighへと変化させている。したがって、上記出力信号を受け取った制御部70は、地絡が発生している際の対応として、ブレーカ部25a,25b,25cの遮断を行うことができる。
 なお、上記構成による地絡の検出は、例えば1日において1回程度行われる。この場合、地絡の検出は、充電用スイッチ回路402及び放電用スイッチ回路406がいずれもオン状態となっているときに行われることが好ましい。そのために、所定の間隔(例えば、10分)で地絡の検出を行う機会を設けて地絡検出をリトライさせるものとすることができる。具体的には、充電用スイッチ回路402及び放電用スイッチ回路406がいずれもオン状態となっている場合で地絡検出が行なえたときは、その日の地絡検出を終了させる。そして、充電用スイッチ回路402及び放電用スイッチ回路406のうち、いずれか一方のスイッチ回路がオン状態で他方がオフ状態となっている場合は、その状態で一旦地絡検出を行った後に、他方のスイッチ回路がオン状態となるまで地絡検出をリトライさせるようにすることができる。
(第二実施形態)
 図4は、蓄電システム9の概略構成図である。蓄電システム9は、図4に示される部位の全て又は一部を備えている。なお、図4の蓄電システム9は、図1の蓄電システム8に対応するものであり、例えば、図4における電力ブロックPB1、電力ブロックPB2、充電用スイッチ回路21、放電用スイッチ回路22、地絡検出回路29及び地絡検出制御部39は、それぞれ図1における太陽電池モジュール20、負荷75、充電用スイッチ回路402、放電用スイッチ回路406、地絡検出回路100及び地絡対応処理部704に対応付けて考えることができる。第一実施形態と同様の部分については、必要に応じて説明を省略する。
 二次電池部11は、電力を蓄積する1以上の二次電池から成る。二次電池部11を形成する二次電池は、任意の種類の二次電池であり、例えば、リチウムイオン電池、ニッケル水素電池である。二次電池部11を形成する二次電池の個数は1でも良いが、第一及び第二実施形態では、二次電池部11が直列接続された複数の二次電池から成るものとする。但し、二次電池部11に含まれる二次電池の一部又は全部は、並列接続された複数の二次電池であっても良い。二次電池部11において、直列接続された複数の二次電池の内、最も高電位側に位置する二次電池の正極は正極側端子12に接続され、最も低電位側に位置する二次電池の負極は負極側端子13に接続される。正極側端子12及び負極側端子13は、二次電池部11における一対の入出力端子を形成し、該一対の入出力端子を介して、二次電池部11の充電及び放電が成される。負極側端子13は、基準電位PREFを有する基準電位点14に接続されている。蓄電システム9において、基準電位PREFに保たれた配線を負極母線L4と呼ぶ。尚、第一及び第二実施形態において、放電及び充電とは、特に記述なき限り二次電池部11の放電及び充電(より詳細には二次電池部11内の各二次電池の放電及び充電)を意味する。
 二次電池部11の正極側端子12は、正極母線L1を介してスイッチング回路15に接続され、一方で、スイッチング回路15には、電力を出力する又は電力の供給を受ける1以上の電力ブロックが接続されている。スイッチング回路15は、1以上の電力ブロックと二次電池部11との間に介在し、スイッチ制御部16の制御の下で電力ブロック及び二次電池部11間の接続又は遮断を切り替える。スイッチング回路15に接続される電力ブロックの個数は1以上であれば幾つでもよいが、ここでは、スイッチング回路15に、電力を出力する電力ブロックPB1と電力の供給を受ける電力ブロックPB2が接続されていることを想定する。
 スイッチング回路15は、電力ブロックPB1と二次電池部11との間に直列に介在する充電用スイッチ回路21(以下、単に第1スイッチ21とも言う)と、電力ブロックPB2と二次電池部11との間に直列に介在する放電用スイッチ回路22(以下、単に第2スイッチ22とも言う)とを備える。充電用スイッチ回路21及び放電用スイッチ回路22並びに後述の第1スイッチ回路31及び第2スイッチ回路32の夫々を、任意の種類の半導体スイッチング素子又は機械式スイッチング素子を用いて形成することができる。例えば、金属酸化膜型電界効果トランジスタ(Metal-Oxide-Semiconductor Field-Effect Transistor)又は絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor)を用いて、充電用スイッチ回路21及び放電用スイッチ回路22並びに後述の第1スイッチ回路31及び第2スイッチ回路32を形成することができる。
 充電用スイッチ回路21及び放電用スイッチ回路22の夫々は、第1及び第2導通端子を有し、スイッチ制御部16の制御の下でオン又はオフとされる。充電用スイッチ回路21及び放電用スイッチ回路22並びに後述の第1スイッチ回路31及び第2スイッチ回路32を含む任意のスイッチにおいて、スイッチのオンとは、当該スイッチの第1及び第2導通端子が導通して当該スイッチの第1及び第2導通端子間が接続される状態を意味し、スイッチのオフとは、当該スイッチの第1及び第2導通端子が非導通となって当該スイッチの第1及び第2導通端子間が遮断される状態を意味する。従って、充電用スイッチ回路21は、オン又はオフされることによって電力ブロックPB1及び二次電池部11間の接続又は遮断を切り替えるスイッチであり、放電用スイッチ回路22は、オン又はオフされることによって電力ブロックPB2及び二次電池部11間の接続又は遮断を切り替えるスイッチである。
 電力ブロックPB1は、基準電位PREFを基準とした直流電圧を自身の出力端子から出力する。電力ブロックPB1の出力端子は、配線L2を介して充電用スイッチ回路21の第1導通端子に接続されている。電力ブロックPB1は、例えば、商用交流電源から供給される交流電圧を直流電圧に変換して該直流電圧を出力するAC/DCコンバータ、若しくは、太陽光に基づく発電を行って発電電力による直流電圧を出力する太陽電池ユニット、又は、それらの組み合わせである。
 スイッチング回路15内において、充電用スイッチ回路21の第2導通端子は放電用スイッチ回路22の第1導通端子と接続点23にて共通接続されており、接続点23は、正極母線L1を介して二次電池部11の正極側端子12に接続されている。
 放電用スイッチ回路22の第2導通端子は、配線L3を介して電力ブロックPB2の入力端子に接続されている。電力ブロックPB2は、基準電位PREFを基準として自身の入力端子に印加される電圧を、駆動電圧として用いて駆動する直流負荷である。或いは、基準電位PREFを基準として電力ブロックPB2の入力端子に印加される電圧を他の電圧(直流電圧又は交流電圧)に変換する電力変換部が、電力ブロックPB2に含まれていても良く、該電力変換部の変換によって得られた電圧にて駆動する負荷が電力ブロックPB2に更に含まれていても良い。
 スイッチ制御部16は、充電用スイッチ回路21及び放電用スイッチ回路22の夫々のオン又はオフを切り替え制御する。二次電池部11の充電が必要な場合、スイッチ制御部16は、充電用スイッチ回路21をオンにする。充電用スイッチ回路21がオンになると、電力ブロックPB1の出力電力による二次電池部11の充電が可能となる。また、スイッチ制御部16は、充電用スイッチ回路21をオフ且つ放電用スイッチ回路22がオンにすることにより、二次電池部11の放電電力を電力ブロックPB2に供給させることができる。また、スイッチ制御部16は、充電用スイッチ回路21及び放電用スイッチ回路22を共にオンにすることもできる。充電用スイッチ回路21及び放電用スイッチ回路22が共にオンとされると、電力ブロックPB1の出力電力にて二次電池部11が充電されると共に電力ブロックPB1の出力電力にて電力ブロックPB2の駆動が成される。充電用スイッチ回路21及び放電用スイッチ回路22の夫々の状態がオン又はオフのどちらであるかを示すスイッチ情報が、スイッチ制御部16から地絡検出制御部39(以下、単に制御部39とも言う)に逐次伝達されている。この伝達内容に基づき、地絡検出制御部39は、任意のタイミングにおける充電用スイッチ回路21及び放電用スイッチ回路22のオン又はオフ状態を認識可能である。
 蓄電システム9には、地絡検出回路29が備えられている。地絡検出回路29は、符号31~38によって参照される各部位を備える。地絡検出回路29は、第1スイッチ回路31、抵抗素子33、抵抗素子34及び第2スイッチ回路32の直列回路を備え、該直列回路は二次電池部11の正極側端子12及び負極側端子13間に接続される。より具体的には、第1スイッチ回路31及び第2スイッチ回路32の第1導通端子はそれぞれ正極側端子12及び負極側端子13に接続される。第1スイッチ回路31の第2導通端子は、抵抗素子33及び34の直列回路を介して第2スイッチ回路32の第2導通端子に接続される。抵抗素子33及び34間の接続点35は抵抗素子36を介して接地されている。即ち、接続点35は、抵抗素子36を介して接地電位を有する接地点38に接続されている。蓄電システム9において地絡が発生していない限り、接地点38と基準電位点14は絶縁されている。信号処理部37は、抵抗素子36にて発生した電圧(抵抗素子36における電圧降下)の信号の増幅、二値化、波形成形等を行うことにより、蓄電システム9において地絡が発生しているか否かを判断する。尚、この判断自体を信号処理部37又は地絡検出制御部39にて行うことが可能であるが、以下では、地絡検出制御部39が、地絡が発生しているか否かを判断すると考える。
 蓄電システム9における地絡の状態には、図5(a)の状態と図5(b)の状態がある。図5(a)の状態は、正極母線L1が接地されている状態、又は、正極母線L1に接続されている他の配線若しくは電子部品等が接地されている状態である。図5(b)の状態は、負極母線L4が接地されている状態、又は、負極母線L4に接続されている他の配線若しくは電子部品等が接地されている状態である。第1スイッチ回路31及び第2スイッチ回路32がオフであるならば、図5(a)又は図5(b)の状態においても二次電池部11と地面とを経由する電流ループは形成されないため、二次電池部11及び地面間に電流は流れない。但し例えば、図5(a)の状態において人体(接地された人体)が負極母線L4に触れたならば、又は、図5(b)の状態において人体(接地された人体)が正極母線L1に触れたならば、体内を経由する電流ループが形成されて人体に電流が流れる。このような事象を未然に防ぐために、蓄電システム9では、地絡検出回路29を用いて地絡検出を行う。
 地絡検出回路29を用いた地絡検出の動作を説明する。地絡検出では、まず、第1スイッチ回路31及び第2スイッチ回路32の内、第1スイッチ回路31のみをオンにした状態で抵抗素子36に発生した電圧の信号SIG31を取得し、次に、第1スイッチ回路31及び第2スイッチ回路32の内、第2スイッチ回路32のみをオンにした状態で抵抗素子36に発生した電圧の信号SIG32を取得する。第1スイッチ回路31及び第2スイッチ回路32のオン又はオフの切り替え制御は、地絡検出制御部39によって行われ、信号SIG31及びSIG32の取得は、信号処理部37にて行われる。
 地絡検出制御部39は、取得された電圧信号SIG31に基づき信号処理部37を用いて、図5(b)の状態の地絡が発生しているか否かを判断する。図5(b)の状態の地絡が発生していないときには、第1スイッチ回路31をオンにしても、二次電池部11及び地面を経由する電流ループが形成されないため抵抗素子36に電圧は発生しないが、図5(b)の状態の地絡が発生しているときに第1スイッチ回路31をオンにすると、二次電池部11、第1スイッチ回路31、抵抗素子33及び36並びに地面を経由する電流ループが形成され、抵抗素子36に一定値以上の電圧が発生する。従って、地絡検出制御部39は、電圧信号SIG31に基づき図5(b)の状態の地絡が発生しているか否かを判断することができる。
 地絡検出制御部39は、取得された電圧信号SIG32に基づき信号処理部37を用いて、図5(a)の状態の地絡が発生しているか否かを判断する。図5(a)の状態の地絡が発生していないときには、第2スイッチ回路32をオンにしても、二次電池部11及び地面を経由する電流ループが形成されないため抵抗素子36に電圧は発生しないが、図5(a)の状態の地絡が発生しているときに第2スイッチ回路32をオンにすると、二次電池部11、第2スイッチ回路32、抵抗素子34及び36並びに地面を経由する電流ループが形成され、抵抗素子36に一定値以上の電圧が発生する。従って、地絡検出制御部39は、電圧信号SIG32に基づき図5(a)の状態の地絡が発生しているか否かを判断することができる。
 図6に、信号処理部37の内部構成例を示す。信号処理部37は、例えば、抵抗素子36での発生電圧の信号を増幅する増幅器51と、増幅器51にて増幅された電圧信号の高域周波数成分を除去するローパスフィルタ52と、ローパスフィルタ52を介して得られた電圧信号を所定電圧値の電圧信号と比較することにより、ローパスフィルタ52を介して得られた電圧信号の二値化を行うコンパレータ53と、コンパレータ53によって二値化された信号の波形成形を行う波形成形回路54とを備え、地絡検出制御部39は、波形成形回路54による波形成形後の信号に基づき、上述した地絡の発生有無を判断することができる。
 第1スイッチ回路31及び第2スイッチ回路32の内、第1スイッチ回路31のみをオンにして信号SIG31を取得し、信号SIG31に基づき図5(b)の状態の地絡が発生しているか否かを判断する処理と、第1スイッチ回路31及び第2スイッチ回路32の内、第2スイッチ回路32のみをオンにして信号SIG32を取得し、信号SIG32に基づき図5(a)の状態の地絡が発生しているか否かを判断する処理とを、夫々1回ずつ行う動作を、特に単位地絡検出動作と呼ぶ。地絡検出は、1以上の単位地絡検出動作から成る。
 ところで、地絡検出の実行は、第1スイッチ回路31及び第2スイッチ回路32のオン又はオフ切り替えによる電力消費を伴うため、必要以上に行うことは望ましくない。特に、蓄電システム9が、移動体に搭載されるのではなく、家屋や工場に設置されて家電製品等の駆動に利用される場合、地絡状態が急激に悪化するといったことは少ない(第二実施形態では、蓄電システム9が家屋や工場に設置されて家電製品等の駆動に利用されることを想定する)。他方、図4に示されるような蓄電システム9において、充電用スイッチ回路21及び放電用スイッチ回路22がオフのときに地絡検出を行っても地絡の発生有無を検出可能な範囲が充電用スイッチ回路21及び放電用スイッチ回路22を経由しない部分までに限られる。電力ブロックPB1、配線L2、配線L3又は電力ブロックPB2においても地絡は発生しうるので、電力ブロックPB1及びPB2とスイッチング回路15との間の部分に対しても、地絡検出が行われた方が望ましい。
 地絡検出制御部39は、これらを考慮した地絡検出用の制御動作を行う。図7等を参照して、この制御動作を説明する。図7に示す如く、地絡検出制御部39は、時間軸上に離散的に配置された複数の対象期間を設定し、各対象期間においてのみ地絡検出が行われるように地絡検出回路29を制御する。従って、時間的に隣接する2つの対象期間の間には非対象期間が存在し、非対象期間には地絡検出が行われない。地絡検出制御部39は、1日に1以上の対象期間を設定する。例えば、1日に1つの対象期間を設定する場合、地絡検出制御部39は、i個の対象期間をi日に亘って設定することになる(iは整数)。尚、地絡検出は地絡検出制御部39と地絡検出回路29が協働して実現されるのであるが、以下では、記述の簡略化上、地絡検出制御部39が地絡検出回路29を用いて地絡検出(単位地絡検出動作)を行うことを、単に、地絡検出(単位地絡検出動作)を行うとも表現する。
 地絡検出制御部39は、時計、又は、外部から時刻情報を取得する時刻取得部(不図示)を有しており、自身の時計又は時刻取得部を用いて現在時刻を認識する。地絡検出制御部39は、現在時刻が非対象期間に属しているときには地絡検出を行わず、現在時刻が対象期間の開始時刻に至ると地絡検出シーケンスを開始させる。
 図8は、地絡検出シーケンスの動作フローチャートである。図8に示す各ステップの処理は、地絡検出制御部39によって実行及び制御される。端的に言うと、地絡検出制御部39は、二次電池部11と電力ブロック(第二実施形態において、電力ブロックPB1及びPB2の内、少なくとも一方)とが接続されているか否かをスイッチ情報を用いて監視し、監視結果に基づき、二次電池部11及び電力ブロック間がスイッチング回路15を介して接続されている期間中において地絡検出を行う(換言すれば、地絡検出が行われるように地絡検出回路29を制御する)。第二実施形態では、スイッチング回路15に充電用スイッチ回路21及び放電用スイッチ回路22が含まれているため、地絡検出制御部39は、充電用スイッチ回路21及び放電用スイッチ回路22の内、少なくとも一方がオンとされている期間中において、地絡検出を行う(換言すれば、地絡検出が行われるように地絡検出回路29を制御する)。
 地絡検出制御部39は、原則として現在時刻が対象期間の終了時刻に至った時点で地絡検出シーケンスを終了させるが、現在時刻が対象期間の終了時刻に至らなくても、必要な地絡検出が完了すれば、その時点で地絡検出シーケンスを終了させることもできる。図8を参照して、或る1つの対象期間(以下、特定対象期間とも言う)において実行される地絡検出シーケンスを説明する。
 地絡検出シーケンスでは、まず、ステップS111において、地絡検出制御部39により充電用スイッチ回路21及び放電用スイッチ回路22が共にオンとされているか否かが判断される。
 ステップS111において、充電用スイッチ回路21及び放電用スイッチ回路22が共にオンとされている場合、ステップS111からステップS112への遷移が発生し、充電用スイッチ回路21及び放電用スイッチ回路22が共にオンとされていない場合にはステップS111からステップS121への遷移が発生する。充電用スイッチ回路21及び放電用スイッチ回路22が共にオンとされている期間を特に両オン期間とも言う。ステップS112において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、単位地絡検出動作が完了すれば、特定対象期間に対する地絡検出シーケンスを終了させる。即ち、ステップS112に至るケースでは、両オン期間の地絡検出の実行を以って特定対象期間中の地絡検出が終了する。特定対象期間中の地絡検出の終了後、新たな単位地絡検出動作は特定対象期間において実行されない。
 ステップS121において、地絡検出制御部39は、充電用スイッチ回路21がオンになっているか否かを判断する。ステップS121において、充電用スイッチ回路21がオンになっている場合には、ステップS121からステップS122への遷移が発生し、充電用スイッチ回路21がオフになっている場合には、ステップS121からステップS131への遷移が発生する。充電用スイッチ回路21及び放電用スイッチ回路22の内、充電用スイッチ回路21が少なくともオンになっている期間を特に充電オン期間とも言う。ステップS122において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、その後、ステップS123への遷移を発生させる。
 ステップS123において、地絡検出制御部39は、放電用スイッチ回路22がオンになっているか否かを判断する。ステップS123において、放電用スイッチ回路22がオンになっている場合には、ステップS123からステップS124への遷移が発生し、放電用スイッチ回路22がオフになっている場合には、ステップS123からステップS125への遷移が発生する。ステップS123からステップS124への遷移が発生する際、放電用スイッチ回路22だけでなく充電用スイッチ回路21も更にオンになっていてもよい。充電用スイッチ回路21及び放電用スイッチ回路22の内、放電用スイッチ回路22が少なくともオンになっている期間を特に放電オン期間とも言う。ステップS124において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、単位地絡検出動作が完了すれば、特定対象期間に対する地絡検出シーケンスを終了させる。即ち、ステップS124に至るケースでは、ステップS122における充電オン期間中の地絡検出の実行とステップS124における放電オン期間中の地絡検出の実行とを以って、特定対象期間中の地絡検出が終了する。
 ステップS125において、地絡検出制御部39は、現在時刻と特定対象期間の終了時刻とを比較することで特定対象期間が満了したか否かを判断する。ステップS125において、特定対象期間が満了していない場合にはステップS125からステップS123へ戻るが、特定対象期間が満了している場合、地絡検出制御部39は、特定対象期間に対する地絡検出シーケンスを終了させる。従って、ステップS121及びS122を経た後、ステップS124を経ることなく地絡検出シーケンスが終了するケースでは、ステップS122における充電オン期間中の地絡検出の実行後、特定対象期間の満了を以って特定対象期間中の地絡検出が終了することになる。
 ステップS131において、地絡検出制御部39は、放電用スイッチ回路22がオンになっているか否かを判断する。ステップS131において、放電用スイッチ回路22がオンになっている場合には、ステップS131からステップS132への遷移が発生し、放電用スイッチ回路22がオフになっている場合には、ステップS131からステップS141への遷移が発生する。ステップS132において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、その後、ステップS133への遷移を発生させる。
 ステップS133において、地絡検出制御部39は、充電用スイッチ回路21がオンになっているか否かを判断する。ステップS133において、充電用スイッチ回路21がオンになっている場合には、ステップS133からステップS134への遷移が発生し、充電用スイッチ回路21がオフになっている場合には、ステップS133からステップS135への遷移が発生する。ステップS133からステップS134への遷移が発生する際、充電用スイッチ回路21だけでなく放電用スイッチ回路22も更にオンになっていてもよい。ステップS134において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、単位地絡検出動作が完了すれば、特定対象期間に対する地絡検出シーケンスを終了させる。即ち、ステップS134に至るケースでは、ステップS132における放電オン期間中の地絡検出の実行とステップS134における充電オン期間中の地絡検出の実行とを以って、特定対象期間中の地絡検出が終了する。
 ステップS135において、地絡検出制御部39は、現在時刻と特定対象期間の終了時刻とを比較することで特定対象期間が満了したか否かを判断する。ステップS135において、特定対象期間が満了していない場合にはステップS135からステップS133へ戻るが、特定対象期間が満了している場合、地絡検出制御部39は、特定対象期間に対する地絡検出シーケンスを終了させる。従って、ステップS131及びS132を経た後、ステップS134を経ることなく地絡検出シーケンスが終了するケースでは、ステップS132における放電オン期間中の地絡検出の実行後、特定対象期間の満了を以って、特定対象期間中の地絡検出が終了することになる。
 ステップS141において、地絡検出制御部39は、特定対象期間の満了までの残り時間が所定時間以下であるか否かを判断し、該残り時間が該所定時間以下である場合にはステップS141からステップS142への遷移を発生させる。該残り時間が該所定時間以下でない場合、ステップS141からステップS111へ戻り、上述のステップS111及びステップS111以降の処理が繰り返し実行される。
 ステップS142において、地絡検出制御部39は、単位地絡検出動作を1回だけ実行し、単位地絡検出動作が完了すれば、特定対象期間に対する地絡検出シーケンスを終了させる。ステップS142にて単位地絡検出動作が実行されるタイミングは、特定対象期間の終了タイミングを基準としたタイミングであり、例えば、特定対象期間の終了タイミングからΔtだけ前のタイミングである。Δtは、1回分の単位地絡検出動作の実行に必要な時間、又は、1回分の単位地絡検出動作の実行に必要な時間に対し若干のマージンを加算した時間である。従って、ステップS142に至るケースでは、特定対象期間の終了タイミングを基準としたタイミングにおいて地絡検出が行われ、その後、速やかに特定対象期間中の地絡検出が終了することになる。
 図8を参照して上述した地絡検出シーケンスは、各対象期間を特定対象期間と捉えた上で、各対象期間において実行される。地絡検出制御部39は、地絡検出シーケンスにおいて地絡の発生を検出した場合、その旨を視覚的又は聴覚的にユーザに知らしめることができる。
 上述の如く、離散的に対象期間を設定することにより、第1スイッチ回路31及び第2スイッチ回路32の交互オンを常時行うようなシステムと比べて、地絡検出用の電力消費を抑制することができる。各対象期間において、充電用スイッチ回路21及び放電用スイッチ回路22の内の少なくとも一方がオンになっている期間中に地絡検出を行うようにすることで、少ない電力消費で、電力ブロック(PB1及び/又はPB2)とスイッチング回路15との間の部分に対しても地絡検出を行うことができる。対象期間の時間帯によっては充電用スイッチ回路21も放電用スイッチ回路22もオンとされない状態が継続することがあるが、そのような場合でも、少なくとも一回は地絡検出を実行する(ステップS142)。これにより、各対象期間において、二次電池部11からスイッチング回路15までの部分に対しての地絡検出は確保される。
 尚、地絡検出制御部39は、対象期間の開始時刻及び対象期間の長さを任意に定めることができる。但し、地絡検出に対するノイズの影響をなるだけ抑制するために、各対象期間の開始時刻を深夜又は早朝に設定することが望ましい。深夜とは、例えば、深夜電力時間帯に属する時間帯であり、早朝とは、深夜電力時間帯の終了直後の時間帯を指す。深夜電力時間帯は、蓄電システム9が導入される地区に商用交流電力を供給する電力会社が定めた複数の時間帯の1つであり、例えば、午前1時は深夜電力時間帯に属する。
 また、地絡検出制御部39は、日々、スイッチ制御部16から伝達されるスイッチ情報に基づき、充電用スイッチ回路21及び放電用スイッチ回路22がオンとされる時間帯(以下、両オン時間帯という)、充電用スイッチ回路21及び放電用スイッチ回路22の内、少なくとも充電用スイッチ回路21がオンとされる時間帯(以下、充電オン時間帯という)、又は、スイッチ21及び22の内、少なくとも放電用スイッチ回路22がオンとされる時間帯(以下、放電オン時間帯という)を学習し、学習結果に基づき以後の各対象期間(例えば、各対象期間の開始時刻)を設定するようにするとよい。この際も、1日に1以上の対象期間が設定されるようにすることが望ましい(即ち、時間的に隣接する2つの対象期間の間隔を24時間以内にすることが望ましい)。
 例えば、地絡検出制御部39は、複数の日に亘って、両オン時間帯がどのような時間帯であるのかを統計的に学習し、両オン時間帯になる確率が統計的に高い時間帯を、以後の各対象期間に含めるようにするとよい。単純には例えば、毎日、午後9時から午後10時までに両オン時間帯が現われることが学習によって判明した場合、地絡検出制御部39は、午後9時から午後10時までの時間帯を以後の各対象期間に含めるようにするとよい。
 また例えば、両オン時間帯は不定であるが、毎日、午後5時から午後6時までに充電オン時間帯が現われること及び午後10時から午後11時までに放電オン時間帯が現われることが学習によって判明した場合、地絡検出制御部39は、以後、1日に2つの対象期間を設定し、一方の対象期間に午後5時から午後6時までの時間帯を含め且つ他方の対象期間に午後10時から午後11時までの時間帯を含めるようにしてもよい。
 このような学習を介して対象期間を設定することにより、電力ブロック(PB1及び/又はPB2)とスイッチング回路15との間の部分に対しても地絡検出を行いうる、最適な時間帯を各対象期間に含めることができる。
 <<変形等>>
 第一及び第二実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。以上の実施形態は、あくまでも、本発明の実施形態の例であって、本発明ないし各構成要件の用語の意義は、以上の実施形態に記載されたものに制限されるものではない。上述の説明文中に示した具体的な数値は、単なる例示であって、当然の如く、それらを様々な数値に変更することができる。上述の実施形態に適用可能な注釈事項として、以下に、注釈1~注釈5を記す。各注釈に記載した内容は、矛盾なき限り、任意に組み合わせることが可能である。
[注釈1]
 上述の地絡検出回路29の構成は例示であり、地絡検出回路を、地絡検出を行いうる任意の回路にて形成することが可能である。例えば、零相変流器(Zero Phase CurrentTransformer)を用いて地絡検出装置を形成してもよい。
[注釈2]
 図4では、スイッチ制御部16と地絡検出制御部39が別々の制御部として示されているが、スイッチ制御部16と地絡検出制御部39とによって、1つの制御部が形成されていても良い。
[注釈3]
 図4に示される蓄電システム9の全部又は一部を、様々な他のシステム、機器などに搭載することができる。例えば、蓄電システム9を、二次電池部11の放電電力を用いて駆動する移動体(電動車両、船、航空機、エレベータ、歩行ロボット等)又は電子機器(パーソナルコンピュータ、携帯端末等)に搭載しても良いし、家屋や工場の電力システムに組み込んでも良い。
[注釈4]
 スイッチ制御部16及び地絡検出制御部39を、ハードウェア、或いは、ハードウェアとソフトウェアの組み合わせによって構成することができる。ソフトウェアを用いて実現される機能をプログラムとして記述し、該プログラムをプログラム実行装置(例えばコンピュータ)上で実行することによって、その機能を実現するようにしてもよい。
[注釈5]
 図4の蓄電システム9には、地絡検出装置が含まれていると考えることができる。蓄電システム9に内包される地絡検出装置は、少なくとも地絡検出回路29及び地絡検出制御部39を構成要素として含み、更に、図4に示される他の任意の部位(例えば、スイッチング回路15)も構成要素として含みうる。
 1 正極母線、2 負極母線、8,9 蓄電システム、10 電力供給システム、11二次電池部、12 正極側端子、13 負極側端子、14 基準電位点、15 スイッチング回路、16 スイッチ制御部、20 太陽電池モジュール、21 充電用スイッチ回路、22 放電用スイッチ回路、23 接続点、25a,25b,25c ブレーカ部、29 地絡検出回路、30a,30b,30c 二次電池部、31 第1スイッチ回路、32 第2スイッチ回路、33 抵抗素子、34 抵抗素子、35 接続点、36 抵抗素子、37 信号処理部、38 接地点、39 地絡検出制御部、40 切替装置、41a,41b,41c      スイッチ回路、42a,42b,42c 抵抗素子、51 増幅器、52 ローパスフィルタ、53 コンパレータ、54 波形成形回路、70 制御部、75 負荷、80 抵抗素子、82 第1スイッチ回路、82a 一方側端子、82b 他方側端子、84 第2スイッチ回路、84a 一方側端子、84b 他方側端子、86 抵抗素子、90 地絡検出部、90a 一方側端子、90b 他方側端子、91 I/V変換用抵抗素子、92 高周波数用フィルタ、93 全波整流回路、94 低周波数用フィルタ、95 コンパレータ、96 基準電圧回路、97 抵抗素子、98 容量素子、99 判定回路、100 地絡検出回路、251,255 正極側ブレーカ、251a,255a 一方側端子、251b 他方側端子、252,254,256 負極側ブレーカ、252a 一方側端子、252b,254b,256b 負極側端子、253 正極側ブレーカ、253a 一方側端子、402 充電用スイッチ回路、402a 一方側端子、402b 他方側端子、404 並列処理回路部、406 放電用スイッチ回路、406a 一方側端子、406b 他方側端子、410a,410b,410c 一方側端子、411a 他方側端子、702 充放電処理部、704 地絡対応処理部。

Claims (14)

  1.  寄生ダイオードを有する電界効果トランジスタを介して二次電池部の正極側に接続される正極母線と接地電位箇所との第1経路を接続又は遮断する第1スイッチ回路と、
     前記二次電池部の負極側に接続される負極母線と前記接地電位箇所との第2経路を接続又は遮断する第2スイッチ回路と、
     前記第1経路又は前記第2経路の電流に基づいて前記正極母線又は前記負極母線が地絡していることを検出する地絡検出部と、を備えることを特徴とする地絡検出回路。
  2.  請求項1に記載の地絡検出回路であって、
     前記地絡検出部は、前記第1経路又は前記第2経路のいずれか一方のみが接続されている状態において、前記電流に基づいて前記地絡を検出することを特徴とする地絡検出回路。
  3.  請求項2に記載の地絡検出回路であって、
     前記二次電池部は、複数の二次電池が直列接続されており、
     前記地絡検出部は、
     前記第1経路が接続されている状態における前記第1経路の電流と、前記第2経路が接続されている状態における前記第2経路の電流と、に基づいて前記複数の二次電池の間が地絡していることを検出することを特徴とする地絡検出回路。
  4.  請求項1から請求項3のいずれか1に記載の地絡検出回路において、
     前記地絡検出部は、
     地絡を検出したときに、前記二次電池部と直列に接続される遮断回路を遮断させるための信号を出力することを特徴とする地絡検出回路。
  5.  請求項1から請求項4のいずれか1に記載の地絡検出回路において、
     前記地絡検出部は、
     前記第1経路の電流又は前記第2経路の電流を電圧値に変換するI/V変換部と、
     前記I/V変換部の出力値と前記所定の閾値とを比較する比較部と、
     前記I/V変換部の出力値が前記所定の閾値を超えている時間が所定時間継続しているときに、地絡が発生していると判定する判定部と、
     を含むことを特徴とする地絡検出回路。
  6.  請求項1に記載の地絡検出回路と、
     前記地絡の検出の実行タイミングを制御する制御部と、を備え、
     前記制御部は、時系列上において離散的に配置された複数の対象期間を設定し、各対象期間に前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  7.  請求項6に記載の地絡検出装置において、
     前記二次電池部と、電力を出力する又は電力の供給を受ける電力ブロックとの間に、前記二次電池部及び前記電力ブロック間の接続又は遮断を切り替えるスイッチング回路が介在し、
     前記制御部は、各対象期間において、前記二次電池部及び前記電力ブロック間が接続される期間中に前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  8.  請求項7に記載の地絡検出装置において、
     前記電力ブロックは、電力を出力する第1電力ブロック及び電力の供給を受ける第2電力ブロックを含み、
     前記スイッチング回路は、前記第1電力ブロックと前記二次電池部との間に介在し、オン又はオフされることによって前記第1電力ブロック及び前記二次電池部間の接続又は遮断を切り替える第1スイッチと、前記第2電力ブロックと前記二次電池部との間に介在し、オン又はオフされることによって前記第2電力ブロック及び前記二次電池部間の接続又は遮断を切り替える第2スイッチと、を含み、
     前記制御部は、各対象期間において、前記第1及び第2スイッチの内の少なくとも一方がオンとされている期間中に前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  9.  請求項8に記載の地絡検出装置において、
     前記複数の対象期間に含まれる何れかの対象期間である特定対象期間に、前記第1及び
    第2スイッチがともにオンとされている両オン期間が含まれている場合、
     前記制御部は、前記両オン期間において前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  10.  請求項8または請求項9に記載の地絡検出装置において、
     前記複数の対象期間に含まれる何れかの対象期間である特定対象期間に、前記第1スイッチがオンとされている第1オン期間及び前記第2スイッチがオンとされている第2オン期間が含まれている場合、
     前記制御部は、前記第1及び第2オン期間の夫々において前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  11.  請求項8または請求項9に記載の地絡検出装置において、
     前記複数の対象期間に含まれる何れかの対象期間である特定対象期間に、前記第1スイッチがオンとされている第1オン期間又は前記第2スイッチがオンとされている第2オン期間が含まれている場合、
     前記制御部は、前記特定対象期間に含まれる前記第1又は第2オン期間において前記地絡の検出が行われるように前記地絡検出回路を制御することを特徴とする地絡検出装置。
  12.  請求項8または請求項9に記載の地絡検出装置において、
     前記複数の対象期間に含まれる何れかの対象期間である特定対象期間に、前記第1及び第2スイッチの何れもがオンとされない場合、
     前記制御部は、前記特定対象期間の終了タイミングを基準としたタイミングにおいて前記地絡検出回路に前記地絡の検出を行わせ、その後、前記特定対象期間中の前記地絡検出を終了することを特徴とする地絡検出装置。
  13.  請求項7から請求項12のいずれか1に記載の地絡検出装置において、
     前記制御部は、前記二次電池部及び前記電力ブロック間が接続される時間帯の学習し、学習結果に基づき各対象期間を設定することを特徴とする地絡検出装置。
  14.  請求項6から請求項13のいずれか1に記載の地絡検出装置において、
     前記制御部は、各日に対して1以上の対象期間が設定されるように、前記複数の対象期間を複数の日に亘って設定することを特徴とする地絡検出装置。
PCT/JP2011/072340 2010-10-08 2011-09-29 地絡検出回路及び地絡検出装置 WO2012046613A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11824331.0A EP2477040A4 (en) 2010-10-08 2011-09-29 GROUND FAULT DETECTION CIRCUIT, AND GROUND FAULT DETECTION DEVICE
US13/427,088 US8797042B2 (en) 2010-10-08 2012-03-22 Ground fault detection circuit and ground fault detection apparatus
US14/168,598 US20140145727A1 (en) 2010-10-08 2014-01-30 Ground fault detection circuit and ground fault detection apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010228822A JP2012083175A (ja) 2010-10-08 2010-10-08 地絡検出装置
JP2010-228822 2010-10-08
JP2011-174698 2011-08-10
JP2011174698A JP2013036915A (ja) 2011-08-10 2011-08-10 地絡検出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/427,088 Continuation US8797042B2 (en) 2010-10-08 2012-03-22 Ground fault detection circuit and ground fault detection apparatus

Publications (1)

Publication Number Publication Date
WO2012046613A1 true WO2012046613A1 (ja) 2012-04-12

Family

ID=45927608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072340 WO2012046613A1 (ja) 2010-10-08 2011-09-29 地絡検出回路及び地絡検出装置

Country Status (3)

Country Link
US (2) US8797042B2 (ja)
EP (1) EP2477040A4 (ja)
WO (1) WO2012046613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625000A (zh) * 2020-05-28 2020-09-04 北京海益同展信息科技有限公司 机器人、用于机器人的避障方法和装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508939A (ja) * 2011-03-04 2014-04-10 パセコ コーポレイション 太陽電池アレイの構成可変太陽電池パネルの絶縁抵抗の測定
CN104620117B (zh) * 2012-08-14 2017-05-03 日产自动车株式会社 电源装置
FR3000315B1 (fr) * 2012-12-20 2015-01-16 Renault Sa Procede de commande d'un chargeur de batterie de vehicule automobile et chargeur associe.
CN103901315B (zh) * 2014-04-21 2017-12-22 阳光电源股份有限公司 一种单极接地系统、接地保护及故障监测装置和方法
WO2016037667A1 (en) * 2014-09-12 2016-03-17 Otis Elevator Company Ground fault detector and method for detecting ground faults
KR102296132B1 (ko) * 2015-02-16 2021-08-31 삼성에스디아이 주식회사 배터리 팩 및 그의 구동방법
KR101896316B1 (ko) * 2015-11-09 2018-09-07 현대자동차 주식회사 연료전지의 성능 검사장치
JP6597371B2 (ja) * 2016-02-17 2019-10-30 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置および車載用電源装置
JP6651941B2 (ja) * 2016-03-30 2020-02-19 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置および制御装置
JP6662178B2 (ja) * 2016-04-25 2020-03-11 株式会社オートネットワーク技術研究所 車載電源用のスイッチ装置
KR101737072B1 (ko) * 2016-07-13 2017-05-18 선광엘티아이(주) 접지라인의 저항 및 전류 관측 시스템
JP6926708B2 (ja) * 2017-06-14 2021-08-25 住友電気工業株式会社 車載通信システム、スイッチ装置、通信制御方法および通信制御プログラム
US10627447B2 (en) * 2017-10-03 2020-04-21 Te Connectiviy Corporation Switch failure detection system
GB2571299B (en) * 2018-02-23 2020-09-02 Siemens Ag Ground fault detection
US11204396B2 (en) * 2018-06-12 2021-12-21 Eaton Intelligent Power Limited Electrical system
DE202018104044U1 (de) * 2018-07-13 2019-10-15 Wago Verwaltungsgesellschaft Mbh Erdleiter-Überwachung
CN109521303B (zh) * 2018-12-07 2020-09-18 武汉纳思系统技术有限公司 一种模块化无线多路通及方法
EP3713029A1 (de) * 2019-03-18 2020-09-23 Siemens Aktiengesellschaft Orten eines erdschlusses in einem gleichstromnetz mit mehreren lastzonen
US11866139B2 (en) * 2021-02-01 2024-01-09 Brunswick Corporation Marine battery system with bypass and safe mode
US11777334B2 (en) * 2021-11-11 2023-10-03 Beta Air, Llc System for charging multiple power sources and monitoring diode currents for faults

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732427A (en) * 1980-08-07 1982-02-22 Ricoh Co Ltd Camera circuit
JPS63124732A (ja) * 1986-11-14 1988-05-28 株式会社デンソー 車両用充放電装置
JPH0412616A (ja) * 1990-05-02 1992-01-17 Kandenko Co Ltd 直流回路の地絡検出装置
JP2006158195A (ja) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd バッテリパックの保護回路
JP2009113554A (ja) * 2007-11-02 2009-05-28 Toyota Motor Corp 短絡検出システム
JP2010187513A (ja) * 2009-02-13 2010-08-26 Daihen Corp 直流地絡検出装置、この直流地絡検出装置を備えた系統連系インバータシステム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1513510C3 (de) * 1965-08-12 1974-07-04 Siemens Ag, 1000 Berlin Und 8000 Muenchen Schaltungsanordnung zur Erdschlußüberwachung
CA938674A (en) * 1970-12-22 1973-12-18 K. G. Stelter Manfred Ground fault detector
JP3056946B2 (ja) * 1994-05-31 2000-06-26 東京電力株式会社 電力貯蔵用二次電池の地絡位置検出方法及びその装置
JP2003111301A (ja) 2001-09-28 2003-04-11 Sanyo Electric Co Ltd 太陽電池の電源装置
US20080223842A1 (en) * 2002-02-11 2008-09-18 The Trustees Of Dartmouth College Systems And Methods For Windshield Deicing
JP3655295B2 (ja) * 2002-07-22 2005-06-02 富士通株式会社 インバータの電流検出方法、その電流検出回路、その異常検出方法、その異常検出回路、表示装置及び情報処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5732427A (en) * 1980-08-07 1982-02-22 Ricoh Co Ltd Camera circuit
JPS63124732A (ja) * 1986-11-14 1988-05-28 株式会社デンソー 車両用充放電装置
JPH0412616A (ja) * 1990-05-02 1992-01-17 Kandenko Co Ltd 直流回路の地絡検出装置
JP2006158195A (ja) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd バッテリパックの保護回路
JP2009113554A (ja) * 2007-11-02 2009-05-28 Toyota Motor Corp 短絡検出システム
JP2010187513A (ja) * 2009-02-13 2010-08-26 Daihen Corp 直流地絡検出装置、この直流地絡検出装置を備えた系統連系インバータシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2477040A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111625000A (zh) * 2020-05-28 2020-09-04 北京海益同展信息科技有限公司 机器人、用于机器人的避障方法和装置
CN111625000B (zh) * 2020-05-28 2023-12-05 京东科技信息技术有限公司 机器人、用于机器人的避障方法和装置

Also Published As

Publication number Publication date
EP2477040A1 (en) 2012-07-18
US8797042B2 (en) 2014-08-05
US20140145727A1 (en) 2014-05-29
EP2477040A4 (en) 2014-08-13
US20120182024A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
WO2012046613A1 (ja) 地絡検出回路及び地絡検出装置
JP5974500B2 (ja) 保護機能付き充電制御装置および電池パック
WO2013042517A1 (ja) スイッチ装置及びブレーカ制御方法
US8945735B2 (en) Built-in charge circuit for secondary battery and secondary battery with the built-in charge circuit
JP5866063B2 (ja) 電圧センサの故障検出装置
JP5954788B2 (ja) 電子部品、受電装置、及び給電システム
EP2429070A2 (en) DC-DC converter with improved efficiency in a dual voltage network of a vehicle
US20140225573A1 (en) Rechargeable electrical device
WO2013108336A1 (ja) 二次電池保護回路、電池パック及び電子機器
JP2008182809A (ja) 電池回路、電池パック、及び電池システム
KR102615295B1 (ko) 에너지 하베스터용 부하 연결 장치
TW201822423A (zh) 能量採集系統與能量採集系統的控制方法
JP2016072091A (ja) 内部短絡検出装置
JP5977658B2 (ja) 充電制御装置
US20110273145A1 (en) Charge control circuit
US9236747B2 (en) Electronic device
JP2014045551A (ja) パック電池及びパック電池の放電制御方法
JP2014140295A (ja) 地絡検出装置
JP2005130663A (ja) 電池パック
US9583976B2 (en) Power supply unit
JP2012054900A (ja) 電気回路、充電制御装置、充電システム、および制御方法
JP2013036915A (ja) 地絡検出装置
CN116418328B (zh) 关断控制电路、电池管理系统以及电池包
KR102467527B1 (ko) 에너지 하베스터를 위한 정류 장치
CN115997327A (zh) 车辆用的备份装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011824331

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE