WO2012043591A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2012043591A1
WO2012043591A1 PCT/JP2011/072125 JP2011072125W WO2012043591A1 WO 2012043591 A1 WO2012043591 A1 WO 2012043591A1 JP 2011072125 W JP2011072125 W JP 2011072125W WO 2012043591 A1 WO2012043591 A1 WO 2012043591A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
battery
shunt resistor
pair
power supply
Prior art date
Application number
PCT/JP2011/072125
Other languages
English (en)
French (fr)
Inventor
湯郷 政樹
慎也 中野
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US13/824,024 priority Critical patent/US8970143B2/en
Priority to JP2012536492A priority patent/JP5833014B2/ja
Publication of WO2012043591A1 publication Critical patent/WO2012043591A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/364Battery terminal connectors with integrated measuring arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/108Normal resistors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power supply device in which a shunt resistor is connected in series with a battery, and a voltage induced by the shunt resistor is detected to detect a current of the battery.
  • the present invention relates to a power supply apparatus that is optimal for a power supply that is charged and discharged with a large current, such as a power supply that supplies power.
  • the power supply device includes a current sensor that detects the charging current and discharging current of the battery.
  • a power supply device including a current sensor can calculate the remaining capacity by integrating the battery current, and can control charging / discharging of the battery with the calculated remaining capacity, thereby preventing overcharging and overdischarging of the battery.
  • Batteries have the property of deteriorating significantly due to overcharging and overdischarging. By accurately detecting the remaining capacity of the battery and preventing overcharging and overdischarging, it is possible to effectively prevent deterioration and extend its life. There is. However, to achieve this, it is important to accurately detect the battery current. This is because the battery current detection error becomes the calculation error of the remaining battery capacity. In particular, since the remaining capacity of the battery is calculated from the integrated value of the current, if there is a current detection error, the detection error gradually accumulates, which has the detrimental effect of gradually increasing the remaining capacity calculation error.
  • the current sensor calculates the current from the voltage output in proportion to the electrical resistance of the shunt resistor, it is important to accurately adjust the electrical resistance of the shunt resistor in order to accurately detect the current. Further, the shunt resistor wastes power proportional to the square of the flowing current, and generates heat due to Joule heat by this power. In order to reduce the wasteful power consumption of the shunt resistor, the shunt resistor that detects a large current needs to have a small electric resistance. It is also important to increase the surface area in order to dissipate heat efficiently.
  • the shunt resistance of the metal plate is suitable for detecting a large current because it has a low electric resistance and excellent heat dissipation characteristics, and is used for a current sensor of a large current power supply device for vehicles.
  • Patent Documents 1 and 2 describe shunt resistors made of a metal plate used for a power supply device for a vehicle.
  • the shunt resistance of the metal plate described in these publications adjusts the electrical resistance by the material, thickness, width, and length of the metal plate.
  • a current conducting terminal is provided at both ends of a metal plate having a predetermined width and length, and a connection lead for connecting in series with a battery is fixed thereto.
  • voltage detection terminals for detecting an induced voltage induced in proportion to the flowing current are provided.
  • the voltage detection terminal is connected to the differential amplifier of the current sensor, and a voltage induced by the differential amplifier is amplified to detect the battery current.
  • This current sensor calculates a current from a voltage induced as the product of the electric resistance of the shunt resistor and the current.
  • the electric resistance for detecting the current is not the entire electric resistance of the shunt resistor, that is, the electric resistance between the current conducting terminals.
  • the shunt resistor having a voltage detection terminal in the middle of the metal plate outputs the product of the electrical resistance and current between the pair of voltage detection terminals as an induced voltage. A current is calculated from this induced voltage. Since the current is detected from the induced voltage between the voltage detection terminals, it is necessary for the shunt resistor to make the electrical resistance between the pair of voltage detection terminals accurately constant.
  • the electrical resistance between the voltage detection terminals can be adjusted by dimensions such as the thickness, width, and length of the metal plate between the voltage detection terminals.
  • the shunt resistor made of a metal plate can adjust the electrical resistance by changing the thickness and width between the voltage detection terminals by a method such as cutting.
  • this method has a drawback that the electrical resistance cannot be easily adjusted because the shape of the shunt resistor mass-produced is adjusted by post-processing.
  • the present invention was developed for the purpose of solving the above drawbacks.
  • An important object of the present invention is to detect the current accurately with the shunt resistance by fine-tuning the substantial electrical resistance of the voltage detection terminal, without changing the dimensions of the metal plate, very easily and accurately.
  • An object of the present invention is to provide a power supply device that can be used.
  • the power supply device of the present invention detects shunt resistors 10, 30, 40, 50 connected in series with a rechargeable battery 1 and a voltage induced by current flowing through the shunt resistors 10, 30, 40, 50.
  • current calculation circuits 20, 60, and 70 that calculate the current of the battery 1 are provided.
  • the shunt resistors 10, 30, 40, 50 have a pair of current conducting terminals 11, 31, 41, 51 connected in series with the battery 1 via connection leads 13 at two points away from the metal plate.
  • a pair of voltage detection terminals 12, 32, 42, 52 are provided between the pair of current conducting terminals 11, 31, 41, 51 and on the side of the metal plate to induce a voltage proportional to the flowing current. .
  • the shunt resistors 10, 30, 40, and 50 have a distance adjustment structure 17 that adjusts the distance (L) of the connection portion 16 where the current conducting terminals 11, 31, 41, and 51 connect the pair of connection leads 13.
  • the distance adjustment structure 17 adjusts the distance (L) of the connection portion 16 to which the pair of connection leads 13 are connected, and the voltage detection terminal 12 for the current flowing between the pair of connection portions 16,
  • the induced voltages 32, 42 and 52 are finely adjusted.
  • the above power supply device can detect current accurately with shunt resistance by finely adjusting the substantial electrical resistance of the voltage detection terminal very easily and accurately without changing the dimensions of the metal plate.
  • the shunt resistor of the power supply device described above is provided with a distance adjustment structure that adjusts the distance (L) of the connection part that connects the connection lead to the current conducting terminal connected in series with the battery. This is because the voltage induced in the voltage detection terminal is finely adjusted by adjusting the distance (L) of the connection portion connecting the pair of connection leads. That is, the current of the shunt resistor made of a metal plate is adjusted by changing the distance (L) of the connection portion of the connection lead connected to the current conducting terminal without changing the thickness, width and length between the voltage detection terminals. This is because the voltage induced at the voltage detection terminal is adjusted by controlling the distribution.
  • FIG. 1 and FIG. 2 show that, in a shunt resistor made of a metal plate, the current distribution is changed by changing the position of the connection portion 16 of the connection lead without changing the position of the voltage detection terminal and the dimension between them. It shows a state where equipotential lines generated by the current distribution change.
  • the shunt resistor 10 in FIG. 1 has a longer distance (L) of the connecting portion 16 than the shunt resistor 10 in FIG. FIG. 1 and FIG. 2 show equipotential lines that are generated by flowing the same current through a pair of current conducting terminals 11. These shunt resistors 10 cause the same current to flow between the current conducting terminals 11 and change the position of the equipotential lines even though the dimensions between the voltage detecting terminals 12 are not changed.
  • the shunt resistor 10 in FIG. 2 has an equipotential line between the voltage detection terminals 12 because the distance (L) of the connection portion 16 that connects the connection leads is shortened. It becomes dense and the induced voltage is high.
  • the battery 1 can be a battery that supplies power to the motor 3 that drives the vehicle.
  • the power supply device of the present invention has a lateral width (W) between the voltage detection terminals 12, 32, 42, 52 of the shunt resistors 10, 30, 40, 50 made of a metal plate, and current conducting terminals 11, 31, 41, 51.
  • the ratio W / D to the distance (D) can be made larger than 1/20. Since the shunt resistance of the power supply device described above is wide in the width (W) between the voltage detection terminals of the metal plate, the rate at which the current distribution between the voltage detection terminals changes depending on the distance (D) of the current conducting terminals. There is a feature that the voltage induced in the voltage detection terminal can be efficiently adjusted by changing the interval between the current conducting terminals.
  • the power supply device of the present invention can fix the connection lead 13 to the current conducting terminals 11, 31, 41, 51 via the set screw 15. Then, the distance adjusting structure 17 is formed as a long hole 18 that is long in the direction in which the distance between the pair of current conducting terminals 11 can be adjusted, and a set screw 15 is inserted into the long hole 18 to fix the connection lead 13 to the current conducting terminal 11. .
  • the power supply device described above has a feature that the voltage induced at the voltage detection terminal can be adjusted by changing the position where the connection lead is fixed with a set screw, so that the actual resistance of the shunt resistor can be easily finely adjusted.
  • the shunt resistors 10, 30, 40, 50 can be provided with the voltage detection terminals 12, 32, 42, 52 protruding between the pair of current conducting terminals 11, 31, 41, 51. .
  • the power supply apparatus described above has a feature that a circuit for detecting an induced voltage can be connected to a voltage detection terminal of a shunt resistor easily and accurately so that a current can be detected.
  • the current calculation circuits 20, 60, 70 detect the charge / discharge current of the battery 1 from the induced voltage of the shunt resistors 10, 30, 40, 50, and the remaining battery 1 is detected from the detected current.
  • a control circuit 5 that detects the capacity and controls the charging and discharging of the battery 1 can be provided.
  • the power supply device described above has a feature that it can detect the remaining capacity of the battery accurately and charge / discharge the battery while preventing the battery from being overcharged or overdischarged.
  • FIG. 2 is a diagram illustrating equipotential lines in a state in which the position of the connection portion of the connection lead is changed in the shunt resistor illustrated in FIG. 1.
  • FIG. 2 is a schematic block diagram of the power supply device concerning one Example of this invention. It is a disassembled perspective view which shows the connection state of the shunt resistance of the power supply device shown in FIG. It is a top view which shows another example of shunt resistance. It is a top view which shows another example of shunt resistance.
  • FIG. 3 shows a vehicle power supply device mounted on a hybrid car or a plug-in hybrid car.
  • the power supply device of the present invention can be used not only for electric vehicles such as hybrid cars, but also for all uses that are charged and discharged with a large current.
  • the power supply device shown in the figure includes a battery 1 for supplying electric power to a motor 3 for running a vehicle via a DC / AC inverter 2, a shunt resistor 10 connected in series with the battery 1, and a shunt resistor 10. And a current calculation circuit 20 that detects the induced voltage and detects the current of the battery 1.
  • a current is detected by a current detection circuit 25 including a shunt resistor 10 and a current calculation circuit 20.
  • the battery 1 has a high output voltage, for example, 100 V to 300 V, by connecting a rechargeable battery such as a lithium ion battery or a nickel hydride battery in series.
  • the charge / discharge current is controlled so as to have a predetermined remaining capacity so that the electrical performance does not deteriorate due to overcharge or overdischarge and the life of the battery is extended.
  • the remaining capacity of the battery 1 is calculated from the integrated value of the charging current and discharging current flowing through the battery 1. That is, the remaining capacity of the battery 1 is calculated by adding the integrated value of the charging current and subtracting the integrated value of the discharging current.
  • the DC / AC inverter 2 is controlled by the control circuit 5 to convert the direct current supplied from the battery 1 into a three-phase alternating current and supply it to the motor 3, and to convert the alternating current power of the generator 4 into direct current. 1 is charged.
  • the control circuit 5 controls the DC / AC inverter 2 to control the power supplied from the battery 1 to the motor 3, and also controls the power to charge the battery 1 from the generator 4 to control the battery 1 to a predetermined level. The remaining capacity is controlled.
  • a shunt resistor 10 is connected in series with the battery 1.
  • the electric resistance (R) of the shunt resistor 10 is set as small as possible.
  • the power consumed by the shunt resistor increases in proportion to the product of the square of the electric resistance (R) and the current (I).
  • the electrical resistance (R) is set small.
  • the shunt resistor 10 having a small electric resistance (R) has a small power loss, but a generated voltage with respect to a current is also small.
  • the current calculation circuit 20 shown in FIG. 3 is provided with an amplifier 21 for amplifying the voltage of the shunt resistor 10 on the input side.
  • the signal amplified by the amplifier 21 is input to the calculation unit 22.
  • the calculation unit 22 converts the signal input from the amplifier 21 into a digital signal by the A / D converter 23, and calculates the current of the battery 1 from the electric resistance of the shunt resistor 10 and the amplification factor of the amplifier 21.
  • the calculation unit 22 identifies the discharge current and the charging current by the plus or minus of the voltage output from the A / D converter 23.
  • the shunt resistor 10 for detecting the current of the battery 1 includes a pair of current conducting terminals 11 connected in series with the battery 1 and a pair of voltage detecting terminals 12 for detecting a voltage induced by the current flowing through the shunt resistor 10.
  • the pair of current conducting terminals 11 are connected to the connection lead 13 and connected in series with the battery 1 via the connection lead 13.
  • the connection lead 13 is a lead plate 13X made of a metal plate having a small electric resistance, or a lead wire provided with a connection terminal at the end.
  • the shunt resistor 10 in FIG. 3 is connected between the two sets of battery blocks 1A, and connects the two sets of battery blocks 1A in series.
  • the shunt resistor 10 is connected between the two battery blocks 1A and connected in series with the battery 1. However, the shunt resistor is connected to the output side and input side of the battery and connected in series with the battery. You can also.
  • the pair of voltage detection terminals 12 are connected to the current calculation circuit 20.
  • the current energizing terminal 11 and the voltage detecting terminal 12 are provided with through holes 11a and 12a through which set screws 15 for connecting connecting leads 13 and 14 made of lead wires or lead plates are inserted.
  • the current energizing terminal 11 and the voltage detection terminal 12 are fixed so that the connection leads 13 and 14 which are lead plates and lead wires are electrically connected by set screws 15 inserted into the through holes 11a and 12a.
  • the shunt resistor 10 of the power supply device shown in FIG. 3 is made of a metal plate having a predetermined electrical resistance, and has a pair of current conducting terminals 11 at both ends. Further, a pair of voltage detection terminals 12 are provided between the pair of current conducting terminals 11 and projecting to the side of the metal plate.
  • the shunt resistor 10 has an interval adjustment structure 17 that adjusts the interval between the connection points of the connection leads 13 connected to the pair of current conducting terminals 11, that is, the distance (L) between the pair of connection portions 16.
  • the current conducting terminal 11 has a distance adjusting structure 17 to adjust the distance (L) of the connecting portion 16 that connects the pair of connecting leads 13, and a pair of voltage detection terminals for the current flowing between the pair of connecting portions 16. 12 finely adjust the voltage induced in 12.
  • the shunt resistor 10 of the metal plate can adjust the distribution of current flowing through the metal plate by changing the distance (L) of the connection portion 16. When the current distribution is changed, the voltage induced in the voltage detection terminal 12 provided on the side of the metal plate changes. This is because the voltage detection terminal 12 outputs a voltage induced on the side of the metal plate.
  • the shunt resistor 10 shown in FIGS. 3 and 4 has a connection lead 13 fixed to a current conducting terminal 11 via a set screw 15.
  • the set screw 15 is inserted into both the shunt resistor 10 and the connection lead 13, and a nut 19 is screwed into the tip portion to fix the connection lead 13 to the current conducting terminal 11 of the shunt resistor 10.
  • the shunt resistor 10 has a long and narrow elongated hole 18 in a direction in which the distance (L) of the connection portion 16 of the connection lead 13 can be adjusted, thereby forming the interval adjustment structure 17.
  • the set screw 15 is inserted into the through hole 13 a of the connection lead 13 and the long hole 18 of the shunt resistor 10, and the connection lead 13 is fixed to the current conducting terminal 11.
  • the long hole 18 adjusts the distance (L) of the connecting portion 16 by adjusting the position through which the set screw 15 is inserted in the longitudinal direction.
  • the distance adjusting structure 17 can adjust the distance (L) of the connecting portion 16 with a simple structure.
  • the present invention does not specify the interval adjusting structure for the long hole provided in the shunt resistor. This is because it is possible to adjust the position where the connection lead is connected to the current conducting terminal by providing a long hole in the connection lead and adjusting the position of the set screw inserted through the long hole.
  • the shunt resistor 10 that finely adjusts the voltage induced in the voltage detection terminal 12 by changing the distance (L) of the connection portion 16 of the connection lead 13 is guided to the voltage detection terminal 12 with a wide width (W). Can be adjusted more effectively.
  • the shunt resistor 10, which is a metal plate can increase the change in current distribution on the side with respect to the distance (L) of the connecting portion 16 by increasing the width (W). Therefore, the shunt resistor 10 made of a metal plate has a ratio W / D between the width (W) and the distance (D) between the pair of current conducting terminals 11 of, for example, greater than 1/20, preferably 1/15. Larger, more preferably larger than 1/10.
  • the distance (D) between the pair of current conducting terminals 11 means the distance (D) between the centers of the long holes 18 that are the through holes 11a.
  • the distance of the center line M is defined as the distance (D) between the centers of the through holes 31a and 41a provided in the current conducting terminals 31 and 41.
  • the distance (L) of the connection portion 16 also means the distance of the center line M as shown in FIGS. It shall be.
  • the shunt resistors 30 and 40 shown in these figures are the directions in which the distance (L) of the connecting portion 16 can be adjusted in the through holes 31a and 41a provided in the current conducting terminals 31 and 41, that is, the centers indicated by the one-dot chain lines in the figures.
  • the gap adjusting structure 17 is a long hole 18 elongated in the line direction. 5 and 6, 32 and 42 indicate voltage detection terminals, and 32a and 42a indicate through holes provided in the voltage detection terminals, respectively.
  • the shunt resistor 10 is provided with a voltage detection terminal 12 on one side of a metal plate having a predetermined width and length. Further, the shunt resistor 50 of FIGS. 7 and 8 is provided with voltage detection terminals 52 on both sides of the metal plate.
  • the shunt resistor 50 is provided with a pair of voltage detection terminals 52A on one side edge of the metal plate and a pair of voltage detection terminals 52B on the other side edge.
  • the shunt resistor 50 is provided with a pair of voltage detection terminals 52A and 52B at opposite positions of both sides of a metal plate having a predetermined width, and the electric resistance between the pair of voltage detection terminals 52A and 52B provided on both sides is the same. It is said.
  • the shunt resistor 50 provided with the voltage detection terminals 52 on both sides is provided with voltage detection terminals 52A and 52B symmetrically on both sides with respect to the center line M.
  • the shunt resistor 50 is provided with the current calculation circuits 60 and 70 for detecting the voltage induced at the voltage detection terminals 52 on both sides, so that even if one fails, the current of the battery 1 can be detected on the other.
  • These power supply devices also detect current with current detection circuits 65 and 75 including a shunt resistor 50 and current calculation circuits 60 and 70.
  • the shunt resistor 50 provided with the voltage detection terminals 52 symmetrically on both sides adjusts the distance (L) of the connection portion 16 connected to the current conducting terminal 51, and the voltage induced in both voltage detection terminals 52. Can be fine-tuned in the same way. For this reason, the voltage induced in each voltage detection terminal 52 can be adjusted together without adjusting individually, and the current of the battery 1 can be accurately detected by both voltage detection terminals 52. For this reason, even if it becomes a state which cannot detect the voltage of one voltage detection terminal 52, there exists the characteristic which can detect the voltage of the battery 1 correctly with the voltage induced
  • the current calculation circuit 60 of FIG. 7 includes a plurality of amplifiers 61.
  • the first amplifier 61 ⁇ / b> A the negative and positive input terminals are connected to a voltage detection terminal 52 ⁇ / b> A provided on one side edge of the shunt resistor 50.
  • the second amplifier 61B the negative and positive input terminals are connected to a voltage detection terminal 52B provided on the other side edge of the shunt resistor 50.
  • the current calculation circuit 60 detects the current of the battery 1 with a signal output from the first amplifier 61A, and is output from the second amplifier 61B when the circuit connecting the first amplifier 61A fails.
  • the current of the battery 1 is detected by the signal.
  • the failure of the circuit to which the first amplifier 61A is connected may be caused by, for example, calculating the current even though the control circuit 5 controls the DC / AC inverter 2 to supply power from the battery 1 to the motor 3.
  • the determination can be made in a state where the circuit 60 does not detect the current, that is, in a state where the detected current is 0A.
  • the current calculation circuit 70 of FIG. 8 is provided with a changeover switch 74 on the input side of the calculation unit 72, and switches the connection with the voltage detection terminals 52 ⁇ / b> A and 52 ⁇ / b> B of the shunt resistor 50 with the changeover switch 74. Yes.
  • Two sets of voltage detection terminals 52 on both sides of the shunt resistor 50 are connected to the ground line from the voltage detection terminal 52 on one current conduction terminal 51 side, and the voltage detection terminal 52 on the other current conduction terminal 51 side is It is connected to the input side of the calculation unit 72 via a changeover switch 74.
  • the current calculation circuit 70 includes an amplifier 71 on the input side of the calculation unit 72, and a signal amplified by the amplifier 71 is converted into a digital signal by the A / D converter 73 to calculate a current.
  • the current calculation circuit 70 turns on the first changeover switch 74A, turns off the second changeover switch 74B, detects the current of the battery 1 by a signal input from the first changeover switch 74A to the calculation unit 72, When the circuit connected to the first changeover switch 74A fails, the first changeover switch 74A is turned off, the second changeover switch 74B is turned on, and the signal input from the second changeover switch 74B to the computing unit 72 To detect the current of the battery 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】金属板の寸法を変更することなく、極めて簡単に、しかも正確に、電圧検出端子の実質的な電気抵抗を微調整して、シャント抵抗で電流を正確に検出する。 【解決手段】電源装置は、電池1と直列に接続してなるシャント抵抗10と、このシャント抵抗10に誘導される電圧を検出して、電池1の電流を演算する電流演算回路20とを備える。シャント抵抗10は、金属板の離れた2点に、接続リード13を介して電池1に接続される一対の電流通電端子11を有し、一対の電流通電端子11の間の側部に、一対の電圧検出端子12を設けている。さらに、シャント抵抗10は、電流通電端子11が、一対の接続リード13を接続する接続部16の距離(L)を調整する間隔調整構造17を有しており、この間隔調整構造17で接続部16の距離(L)を調整して、一対の接続部16の間に流れる電流に対する電圧検出端子12の誘導電圧を微調整している。

Description

電源装置
 本発明は、電池と直列にシャント抵抗を接続して、このシャント抵抗に誘導される電圧を検出して電池の電流を検出するようにしてなる電源装置に関し、とくに、車両を走行させるモータに電力を供給する電源のように大電流で充放電される電源に最適な電源装置に関する。
 電源装置は、電池の充電電流と放電電流を検出する電流センサを備えている。電流センサを備える電源装置は、電池の電流を積算して残容量を演算し、演算させる残容量で電池の充放電をコントロールして、電池の過充電や過放電を防止できる。電池は過充電や過放電で著しく劣化する特性があるので、電池の残容量を正確に検出して、過充電や過放電を防止することで、劣化を有効に阻止して寿命を長くできる特徴がある。ただ、このことを実現するには、電池の電流を正確に検出することが大切である。電池の電流の検出誤差が電池の残容量の演算誤差となるからである。とくに、電池の残容量は、電流の積算値から演算されるので、電流の検出誤差があると、次第に検出誤差が累積して、残容量の演算誤差を次第に大きくする弊害がある。
 電流センサは、シャント抵抗の電気抵抗に比例して出力される電圧から電流を演算するので、電流を正確に検出するにはシャント抵抗の電気抵抗を正確に調整することが大切である。さらに、シャント抵抗は、流れる電流の二乗に比例する電力を無駄に消費し、またこの電力によってジュール熱で発熱する。シャント抵抗の無駄な電力消費を少なくするために、大電流を検出するシャント抵抗は電気抵抗を小さくする必要がある。また、熱を効率よく放熱するために、表面積を大きくすることも大切である。
 金属板のシャント抵抗は、電気抵抗を小さくして放熱特性に優れることから、大電流の検出に適しており、車両用等の大電流の電源装置の電流センサに使用される。車両用の電源装置に使用される金属板からなるシャント抵抗は、特許文献1及び2に記載される。
特開2004-117045号公報 特開2008-48506号公報
 これらの公報に記載される金属板のシャント抵抗は、金属板の材質と、厚さと、幅と、長さで電気抵抗を調整している。このシャント抵抗は、所定の幅と長さの金属板の両端に電流通電端子を設けて、ここに電池と直列に接続するための接続リードを固定している。電流通電端子の間の2点には、流れる電流に比例して誘導される誘導電圧を検出する電圧検出端子を設けている。電圧検出端子は電流センサの差動アンプに接続され、差動アンプで誘導される電圧を増幅して電池の電流が検出される。この電流センサは、シャント抵抗の電気抵抗と電流の積として誘導される電圧から電流を演算する。電流を検出するための電気抵抗は、シャント抵抗の全体の電気抵抗、すなわち電流通電端子間の電気抵抗ではない。金属板の中間に電圧検出端子を設けているシャント抵抗は、一対の電圧検出端子の間の電気抵抗と電流との積を誘導電圧として出力する。この誘導電圧から電流が演算される。電圧検出端子の間の誘導電圧から電流を検出するので、シャント抵抗は、一対の電圧検出端子の間の電気抵抗を正確に一定の値とする必要がある。電圧検出端子の間の電気抵抗は、電圧検出端子の間の金属板の厚さ、横幅、長さ等の寸法で調整できる。ただ、この間の寸法が一定となるように金属板を加工しても、加工誤差によって電気抵抗に誤差が発生する。加工誤差による電気抵抗の誤差は、誘導電圧の誤差となり、検出される電流の誤差となる。金属板で製作されたシャント抵抗は、電圧検出端子の間の厚さや幅を、たとえば切削する等の方法で変更して電気抵抗を調整することはできる。ただ、この方法は多量生産されたシャント抵抗の形状を、後加工で調整するので、簡単に電気抵抗を調整できない欠点がある。
 本発明は、以上の欠点を解決することを目的に開発されたものである。本発明の重要な目的は、金属板の寸法を変更することなく、極めて簡単に、しかも正確に、電圧検出端子の実質的な電気抵抗を微調整して、シャント抵抗でもって電流を正確に検出できる電源装置を提供することにある。
課題を解決するための手段及び発明の効果
 本発明の電源装置は、充電できる電池1と直列に接続してなるシャント抵抗10、30、40、50と、このシャント抵抗10、30、40、50に電流が流れて誘導される電圧を検出して、電池1の電流を演算する電流演算回路20、60、70とを備えている。シャント抵抗10、30、40、50は、金属板の離れた2点に、接続リード13を介して電池1と直列に接続される一対の電流通電端子11、31、41、51を有し、一対の電流通電端子11、31、41、51の間であって金属板の側部に、流れる電流に比例する電圧が誘導される一対の電圧検出端子12、32、42、52を設けている。さらに、シャント抵抗10、30、40、50は、電流通電端子11、31、41、51が、一対の接続リード13を接続する接続部16の距離(L)を調整する間隔調整構造17を有しており、この間隔調整構造17でもって、一対の接続リード13が接続される接続部16の距離(L)を調整して、一対の接続部16の間に流れる電流に対する電圧検出端子12、32、42、52の誘導電圧を微調整している。
 以上の電源装置は、金属板の寸法を変更することなく、極めて簡単に、しかも正確に、電圧検出端子の実質的な電気抵抗を微調整して、シャント抵抗でもって電流を正確に検出できる特徴がある。それは、以上の電源装置のシャント抵抗が、電池と直列に接続する電流通電端子に、接続リードを接続する接続部の距離(L)を調整する間隔調整構造を設けており、この間隔調整構造で一対の接続リードを接続する接続部の距離(L)を調整して、電圧検出端子に誘導される電圧を微調整するからである。すなわち、電圧検出端子間の厚さ、横幅、長さを変更することなく、電流通電端子に接続される接続リードの接続部の距離(L)を調整して、金属板からなるシャント抵抗の電流分布をコントロールして、電圧検出端子に誘導される電圧を調整するからである。
 図1と図2は、金属板からなるシャント抵抗において、電圧検出端子の位置やこの間の寸法を変更することなく、接続リードの接続部16の位置を変更して、電流分布が変化し、この電流分布によってできる等電位線が変化する状態を示している。図1のシャント抵抗10は、図2のシャント抵抗10よりも接続部16の距離(L)を長くしている。図1と図2は、一対の電流通電端子11に同じ電流を流してできる等電位線を示している。これらのシャント抵抗10は、電流通電端子11の間に同じ電流を流し、電圧検出端子12の間の寸法を変更しないにもかかわらず、等電位線の位置が変化することで、電圧検出端子12に誘導される電圧に差ができる。すなわち、図1のシャント抵抗10に比較して、図2のシャント抵抗10は、接続リードを接続する接続部16の距離(L)が短くなることで、電圧検出端子12間の等電位線が密になり、誘導される電圧が高くなる。ここで、実際の電流値Iが一緒になるということを想定すれば、誘導される電圧Vが高くなるということは、電圧検出端子間の実質的な抵抗値Rが大きくなる(V=IR)ことに等しい。したがって、電圧検出端子12の間の実質的な抵抗値Rは、接続部16の距離(L)を短くして大きく調整できる。また、誘導される電圧Vが高くなるということは、電流値Iの演算に用いられる既知の抵抗値Reが一定であるため、電圧Vと比例関係にある演算電流値Ieは、実際の電流値Iより高めに出力される。これはシャント抵抗の実際の抵抗値Rを変化させた結果として捉えることができる。
 本発明の電源装置は、電池1を、車両を走行させるモータ3に電力を供給する電池とすることができる。
 本発明の電源装置は、金属板からなるシャント抵抗10、30、40、50の電圧検出端子12、32、42、52の間における横幅(W)と、電流通電端子11、31、41、51の距離(D)との比率W/Dを1/20よりも大きくすることができる。
 以上の電源装置のシャント抵抗は、金属板の電圧検出端子の間の横幅(W)を広くしているので、電流通電端子の距離(D)によって、電圧検出端子間の電流分布が変更する割合が大きく、電流通電端子の間隔を変更して電圧検出端子に誘導される電圧を効率よく調整できる特徴がある。
 本発明の電源装置は、電流通電端子11、31、41、51に止ネジ15を介して接続リード13を固定することができる。そして、間隔調整構造17を一対の電流通電端子11の間隔を調整できる方向に長い長孔18として、この長孔18に止ネジ15を挿通して、接続リード13を電流通電端子11に固定する。
 以上の電源装置は、止ネジで接続リードを固定する位置を変更して、電圧検出端子に誘導される電圧を調整できるので、簡単にシャント抵抗の実質抵抗を微調整できる特徴がある。
 本発明の電源装置は、シャント抵抗10、30、40、50が、一対の電流通電端子11、31、41、51の間に電圧検出端子12、32、42、52を突出して設けることができる。
 以上の電源装置は、シャント抵抗の電圧検出端子に、簡単に、しかも電流を正確に検出できるように誘導電圧を検出する回路を接続できる特徴がある。
 本発明の電源装置は、電流演算回路20、60、70がシャント抵抗10、30、40、50の誘導電圧から電池1の充放電の電流を検出すると共に、検出された電流から電池1の残容量を検出して電池1の充放電をコントロールする制御回路5を有することができる。
 以上の電源装置は、電池の残容量を正確に検出して、電池の過充電や過放電を防止しながら充放電して寿命を長くできる特徴がある。
本発明の一実施例にかかる電源装置のシャント抵抗において、電流分布によってできる等電位線を示す図である。 図1に示すシャント抵抗において、接続リードの接続部の位置を変更する状態における等電位線を示す図である。 本発明の一実施例にかかる電源装置の概略構成図である。 図3に示す電源装置のシャント抵抗の接続状態を示す分解斜視図である。 シャント抵抗の他の一例を示す平面図である。 シャント抵抗の他の一例を示す平面図である。 本発明の他の実施例にかかる電源装置の概略構成図である。 本発明の他の実施例にかかる電源装置の概略構成図である。
 以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための電源装置を例示するものであって、本発明は電源装置を以下のものに特定しない。さらに、この明細書は、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
 図3は、ハイブリッドカーやプラグインハイブリッドカーに搭載される車両用の電源装置を示す。ただ、本発明の電源装置は、ハイブリッドカー等の電動車両のみでなく、大電流で充放電される全ての用途に使用できる。図に示す電源装置は、車両を走行させるモータ3にDC/ACインバータ2を介して電力を供給する電池1と、この電池1と直列に接続しているシャント抵抗10と、このシャント抵抗10に誘導される電圧を検出して電池1の電流を検出する電流演算回路20とを備える。この電源装置は、シャント抵抗10と電流演算回路20とからなる電流検出回路25で電流を検している。
 電池1は、充電できる電池、たとえばリチウムイオン電池やニッケル水素電池などの充電できる電池を直列に接続して出力電圧を高く、たとえば100Vないし300Vとしている。電池1は、過充電や過放電によって電気性能が低下しないように、また電池の寿命を長くするために、所定の残容量となるように充放電の電流が制御される。電池1の残容量は、電池1に流れる充電電流と放電電流の積算値から演算される。すなわち、充電電流の積算値を加算し、放電電流の積算値を減算して変動する電池1の残容量が演算される。
 DC/ACインバータ2は、制御回路5に制御されて、電池1から供給される直流を三相交流に変換してモータ3に供給し、また発電機4の交流電力を直流に変換して電池1を充電する。制御回路5は、DC/ACインバータ2を制御して、電池1からモータ3に供給する電力をコントロールし、また、発電機4から電池1を充電する電力をコントロールして、電池1を所定の残容量となるように制御する。
 電池1に流れる充放電の電流を検出するために、電池1と直列にシャント抵抗10を接続している。シャント抵抗10は、図4に示すように、所定の電気抵抗を有する金属板で、電池1の電流に比例して電圧を発生する。すなわち、シャント抵抗10に発生する電圧降下(E)は、シャント抵抗10の電気抵抗(R)と流れる電流(I)から以下の式で特定される。
   E=R×I
 この式から、シャント抵抗10の電圧降下を検出して電池1の電流が演算される。シャント抵抗10の電気抵抗(R)は、できるかぎり小さく設定される。それは、シャント抵抗が消費する電力が、電気抵抗(R)と電流(I)の二乗の積に比例して大きくなるからである。また、消費電力が大きくなるシャント抵抗は発熱量も大きくなることから、電気抵抗(R)を小さく設定している。電気抵抗(R)の小さいシャント抵抗10は、電力損失は小さいが、電流に対する発生電圧も小さくなる。
 シャント抵抗10の小さい電圧を増幅するために、図3に示す電流演算回路20は、シャント抵抗10の電圧を増幅するアンプ21を入力側に設けている。アンプ21で増幅された信号は、演算部22に入力される。演算部22は、アンプ21から入力される信号をA/Dコンバータ23でデジタル信号に変換して、シャント抵抗10の電気抵抗とアンプ21の増幅率から電池1の電流を演算する。たとえば、A/Dコンバータ23から出力される電圧をE、アンプ21の増幅率をA、シャント抵抗10の電気抵抗をR、とするとき、演算部22は以下の式で電流Iを演算する。
  I=E/(A×R)
 さらに、演算部22は、A/Dコンバータ23から出力される電圧のプラスマイナスで放電電流と充電電流を識別する。
 電池1の電流を検出するシャント抵抗10は、電池1と直列に接続される一対の電流通電端子11と、シャント抵抗10に流れる電流で誘導される電圧を検出する一対の電圧検出端子12とを備える。
 一対の電流通電端子11は、接続リード13に接続されて、接続リード13を介して電池1と直列に接続される。接続リード13は、電気抵抗の小さい金属板からなるリード板13Xや、端部に接続端子を設けているリード線である。図3のシャント抵抗10は、2組の電池ブロック1Aの間に接続されて、2組の電池ブロック1Aを直列に接続している。このシャント抵抗10は、2組の電池ブロック1Aの間に接続されて電池1と直列に接続しているが、シャント抵抗は電池の出力側や入力側に接続されて電池と直列に接続することもできる。
 一対の電圧検出端子12は電流演算回路20に接続される。電流通電端子11と電圧検出端子12は、リード線やリード板からなる接続リード13、14を接続する止ネジ15を挿通する貫通孔11a、12aを設けている。電流通電端子11と電圧検出端子12は、貫通孔11a、12aに挿入される止ネジ15でもって、リード板やリード線である接続リード13、14を電気接続するように固定する。
 図3に示す電源装置のシャント抵抗10は、図4に示すように、所定の電気抵抗の金属板からなり、両端部に一対の電流通電端子11を設けている。さらに、一対の電流通電端子11間であって、金属板の側部に突出して、一対の電圧検出端子12を設けている。
 シャント抵抗10は、一対の電流通電端子11に接続される接続リード13の接続点の間隔、すなわち一対の接続部16の距離(L)を調整する間隔調整構造17を有する。電流通電端子11は、間隔調整構造17でもって、一対の接続リード13を接続する接続部16の距離(L)を調整して、一対の接続部16の間に流れる電流に対する一対の電圧検出端子12に誘導される電圧を微調整する。金属板のシャント抵抗10は、接続部16の距離(L)を変更することで、金属板に流れる電流分布を調整できる。電流分布が変更されると、金属板の側部に設けている電圧検出端子12に誘導される電圧は変化する。電圧検出端子12が、金属板の側部に誘導される電圧を出力するからである。
 図3と図4のシャント抵抗10は、電流通電端子11に、止ネジ15を介して接続リード13を固定している。止ネジ15は、シャント抵抗10と接続リード13の両方に挿通され、先端部にナット19をねじ込んで、接続リード13をシャント抵抗10の電流通電端子11に固定する。このシャント抵抗10は、接続リード13の接続部16の距離(L)を調整できる方向に細長い長孔18を設けて間隔調整構造17としている。止ネジ15が接続リード13の貫通孔13aとシャント抵抗10の長孔18に挿通されて、接続リード13が電流通電端子11に固定される。長孔18は、止ネジ15を挿通する位置を長手方向に調整して、接続部16の距離(L)を調整する。この間隔調整構造17は、簡単な構造で、接続部16の距離(L)を調整できる。ただし、本発明は、間隔調整構造をシャント抵抗に設けた長孔には特定しない。接続リードに長孔を設け、この長孔に挿通する止ネジの位置を調整して、接続リードを電流通電端子に接続する位置を調整できるからである。
 接続リード13の接続部16の距離(L)を変更して、電圧検出端子12に誘導される電圧を微調整するシャント抵抗10は、横幅(W)を広くして電圧検出端子12に誘導される電圧をより効果的に調整できる。金属板であるシャント抵抗10は、横幅(W)を広くすることで、接続部16の距離(L)に対する側部の電流分布の変化を大きくできるからである。したがって、金属板からなるシャント抵抗10は、横幅(W)と、一対の電流通電端子11間の距離(D)との比率W/Dを、たとえば1/20よりも大きく、好ましくは1/15よりも大きく、さらに好ましくは1/10よりも大きくする。ただし、この明細書において、一対の電流通電端子11の距離(D)は、貫通孔11aである長孔18の中心間の距離(D)を意味するものとする。
 さらに、図5と図6に示すように、一対の電流通電端子31、41の間を折曲している金属板のシャント抵抗30、40にあっては、図の一点鎖線で示すように、中心線Mの距離を電流通電端子31、41に設けた貫通孔31a、41aの中心間の距離(D)とする。さらに、電流通電端子31、41の間が曲がったシャント抵抗30、40にあっては、接続部16の距離(L)も、図5と図6に示すように、中心線Mの距離を意味するものとする。これらの図に示すシャント抵抗30、40は、電流通電端子31、41に設けた貫通孔31a、41aを、接続部16の距離(L)を調整できる方向、すなわち、図の一点鎖線で示す中心線方向に細長い長孔18として間隔調整構造17としている。なお、図5と図6において、32、42は電圧検出端子を、32a、42aは電圧検出端子に設けた貫通孔をそれぞれ示している。
 図3と図4シャント抵抗10は、所定の幅と長さを有する金属板の一辺に電圧検出端子12を設けている。さらに、図7と図8のシャント抵抗50は、金属板の両辺に電圧検出端子52を設けている。このシャント抵抗50は、金属板の一方の側縁に一対の電圧検出端子52Aを設けると共に、他方の側縁にも一対の電圧検出端子52Bを設けている。このシャント抵抗50は、所定の幅の金属板の両辺の対向する位置に一対の電圧検出端子52A、52Bを設けて、両辺に設けている一対の電圧検出端子52A、52B間の電気抵抗を同じとしている。両辺に電圧検出端子52を設けているシャント抵抗50は、中心線Mに対して両側に対称に電圧検出端子52A、52Bを設けている。このシャント抵抗50は、両側の電圧検出端子52に誘導される電圧を検出する電流演算回路60、70を設けることで、一方が故障しても他方で電池1の電流を検出できる。これらの電源装置も、シャント抵抗50と電流演算回路60、70とからなる電流検出回路65、75で電流を検している。
 さらに、両辺に対称に電圧検出端子52を設けているシャント抵抗50は、電流通電端子51に接続する接続部16の距離(L)を調整して、両方の電圧検出端子52に誘導される電圧を同じように微調整できる。このため、各々の電圧検出端子52に誘導される電圧を個別に調整することなく一緒に調整して、両方の電圧検出端子52で電池1の電流を正確に検出できる。このため、一方の電圧検出端子52の電圧を検出できない状態となっても、他方の電圧検出端子52に誘導される電圧で電池1の電圧を正確に検出できる特徴がある。
 図7と図8のシャント抵抗50は、1組の回路故障において、電池1の電流が検出できるように複数組の電圧を検出する電圧検出端子52を備えている。複数組の電圧検出端子52に発生する電圧降下を検出するために、図7の電流演算回路60は、複数のアンプ61を備えている。第1のアンプ61Aは、マイナス側とプラス側の入力端子を、シャント抵抗50の一方の側縁に設けた電圧検出端子52Aに接続している。第2のアンプ61Bは、マイナス側とプラス側の入力端子を、シャント抵抗50の他方の側縁に設けた電圧検出端子52Bに接続している。この電流演算回路60は、第1のアンプ61Aから出力される信号で電池1の電流を検出し、第1のアンプ61Aを接続している回路が故障すると、第2のアンプ61Bから出力される信号で電池1の電流を検出する。第1のアンプ61Aを接続している回路の故障は、たとえば、制御回路5がDC/ACインバータ2を制御して電池1からモータ3に電力を供給する状態としているにも関わらず、電流演算回路60が電流を検出しない状態、すなわち検出電流を0Aとする状態で判定できる。
 図8の電流演算回路70は、演算部72の入力側に切換スイッチ74を設けて、切換スイッチ74でシャント抵抗50の電圧検出端子52A、52Bとの接続を切り換えて演算部72に入力している。シャント抵抗50の両辺にある2組の電圧検出端子52は、一方の電流通電端子51側の電圧検出端子52をアースラインに接続して、他方の電流通電端子51側の電圧検出端子52を、切換スイッチ74を介して演算部72の入力側に接続している。この電流演算回路70は、演算部72の入力側にアンプ71を備え、アンプ71で増幅した信号をA/Dコンバータ73でデジタル信号に変換して、電流を演算する。
 この電流演算回路70は、第1の切換スイッチ74Aをオン、第2の切換スイッチ74Bをオフとして、第1の切換スイッチ74Aから演算部72に入力される信号で電池1の電流を検出し、第1の切換スイッチ74Aを接続している回路が故障すると、第1の切換スイッチ74Aをオフ、第2の切換スイッチ74Bをオンとし、第2の切換スイッチ74Bから演算部72に入力される信号で電池1の電流を検出する。
  1…電池              1A…電池ブロック
  2…DC/ACインバータ
  3…モータ
  4…発電機
  5…制御回路
 10…シャント抵抗
 11…電流通電端子         11a…貫通孔
 12…電圧検出端子         12a…貫通孔
 13…接続リード          13X…リード板
                   13a…貫通孔
 14…接続リード
 15…止ネジ
 16…接続部
 17…間隔調整構造
 18…長孔
 19…ナット
 20…電流演算回路
 21…アンプ
 22…演算部
 23…A/Dコンバータ
 25…電流検出回路
 30…シャント抵抗
 31…電流通電端子         31a…貫通孔
 32…電圧検出端子         32a…貫通孔
 40…シャント抵抗
 41…電流通電端子         41a…貫通孔
 42…電圧検出端子         42a…貫通孔
 50…シャント抵抗
 51…電流通電端子
 52…電圧検出端子         52A…電圧検出端子
                   52B…電圧検出端子
 60…電流演算回路
 61…アンプ            61A…第1のアンプ
                   61B…第1のアンプ
 65…電流検出回路
 70…電流演算回路
 71…アンプ
 72…演算部
 73…A/Dコンバータ
 74…切換スイッチ         74A…第1の切換スイッチ
                   74B…第1の切換スイッチ
 75…電流検出回路
M…中心線

Claims (6)

  1.  充電できる電池と直列に接続してなるシャント抵抗と、このシャント抵抗に電流が流れて誘導される電圧を検出して、電池の電流を演算する電流演算回路とを備える電源装置であって、
     前記シャント抵抗が金属板の離れた2点に、接続リードを介して電池と直列に接続される一対の電流通電端子を有し、一対の電流通電端子の間であって金属板の側部に、流れる電流に比例する電圧が誘導される一対の電圧検出端子を設けており、
     さらに、前記電流通電端子が、一対の接続リードを接続する接続部の距離(L)を調整する間隔調整構造を有し、この間隔調整構造でもって、一対の接続リードが接続される接続部の距離(L)が調整されて、一対の接続部の間に流れる電流に対する電圧検出端子の誘導電圧を微調整するようにしてなるシャント抵抗を有する電源装置。
  2.  前記電池が車両を走行させるモータに電力を供給する電池である請求項1に記載される電源装置。
  3.  前記金属板からなるシャント抵抗の横幅(W)と、一対の電流通電端子間の距離(D)との比率W/Dが1/20よりも大きい請求項1に記載される電源装置。
  4.  前記電流通電端子に、止ネジを介して接続リードが固定され、前記間隔調整構造が、前記接続部の距離(L)を調整できる方向に長い長孔であり、この長孔に止ネジが挿通されて、前記接続リードを電流通電端子に固定してなる請求項1ないし3のいずれかに記載される電源装置。
  5.  前記シャント抵抗が、一対の電流通電端子の間に電圧検出端子を突出して設けてなる請求項1ないし4のいずれかに記載される電源装置。
  6.  前記電流演算回路が前記シャント抵抗の誘導電圧から電池の充放電の電流を演算し、検出された電流から電池の残容量を演算して電池の充放電をコントロールする制御回路を有する請求項1ないし5のいずれかに記載される電源装置。
PCT/JP2011/072125 2010-09-30 2011-09-27 電源装置 WO2012043591A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/824,024 US8970143B2 (en) 2010-09-30 2011-09-27 Power source apparatus
JP2012536492A JP5833014B2 (ja) 2010-09-30 2011-09-27 電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-223159 2010-09-30
JP2010223159 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043591A1 true WO2012043591A1 (ja) 2012-04-05

Family

ID=45893030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072125 WO2012043591A1 (ja) 2010-09-30 2011-09-27 電源装置

Country Status (3)

Country Link
US (1) US8970143B2 (ja)
JP (1) JP5833014B2 (ja)
WO (1) WO2012043591A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135451A1 (de) * 2013-03-05 2014-09-12 Continental Automotive Gmbh Einstückig ausgebildete stromsensorvorrichtung
JP2016038232A (ja) * 2014-08-06 2016-03-22 Koa株式会社 抵抗値測定用導電材、導電材の抵抗値測定装置、および電流検出装置
CN106505261A (zh) * 2016-11-30 2017-03-15 北京新能源汽车股份有限公司 一种电池模组的电压采样控制电路及控制方法
JP2018189384A (ja) * 2017-04-28 2018-11-29 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ
WO2019031140A1 (ja) * 2017-08-10 2019-02-14 Koa株式会社 電流測定装置
JP2020193845A (ja) * 2019-05-27 2020-12-03 矢崎総業株式会社 センサおよびシャント抵抗

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9945886B2 (en) * 2014-09-25 2018-04-17 Sanyo Electric Co., Ltd. Electrical current detection device equipped with shunt resistor, and power supply device
JP6894181B2 (ja) * 2015-06-17 2021-06-30 ダイキン工業株式会社 インバータ装置
JP6815772B2 (ja) * 2016-07-13 2021-01-20 Koa株式会社 電流測定装置
KR101959734B1 (ko) * 2017-09-11 2019-03-20 (주)유양디앤유 사이클러용 션트 저항 및 이의 제조방법
KR102312445B1 (ko) * 2018-03-28 2021-10-12 주식회사 엘지에너지솔루션 션트 저항 및 이를 포함하는 전류 검출 장치
EP3671151B1 (de) * 2018-12-20 2024-07-17 Continental Automotive Technologies GmbH Batteriesensor und verfahren zum betrieb eines batteriesensors
DE102019200062A1 (de) * 2018-12-20 2020-06-25 Continental Automotive Gmbh Batteriesensor und Verfahren zum Betrieb eines Batteriesensors
DE102021102217A1 (de) 2021-02-01 2022-08-04 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Bestimmung eines elektrischen Stroms sowie Batterie

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524046A (en) * 1975-06-27 1977-01-12 Westinghouse Electric Corp Resistor and method of producing same
JPH03190103A (ja) * 1989-12-19 1991-08-20 Matsushita Electric Ind Co Ltd 厚膜抵抗
JP2009204531A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2009244065A (ja) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The シャント抵抗およびシャント抵抗への端子取付け方法
JP2009266977A (ja) * 2008-04-24 2009-11-12 Koa Corp 金属板抵抗器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028793A (en) 1975-06-27 1977-06-14 Westinghouse Electric Corporation Method of assembling helical resistor
JP3100834B2 (ja) * 1994-06-30 2000-10-23 三菱電機株式会社 電動式パワーステアリング回路装置
US6184660B1 (en) * 1998-03-26 2001-02-06 Micro International, Ltd. High-side current-sensing smart battery charger
AU5186699A (en) * 1998-08-06 2000-02-28 Dennis Goldman A current shunt
JP2004117045A (ja) 2002-09-24 2004-04-15 Honda Elesys Co Ltd シャント抵抗器
JP2008048506A (ja) 2006-08-11 2008-02-28 Valeo Thermal Systems Japan Corp センサレス・ブラシレスモータの駆動制御方法及びその装置
JP2009020453A (ja) * 2007-07-13 2009-01-29 Fujifilm Corp 感光性組成物、硬化性組成物、カラーフィルタ用硬化性組成物、カラーフィルタ及びその製造方法、並びに、平版印刷版原版
JP2009231559A (ja) * 2008-03-24 2009-10-08 Denso Corp 抵抗体の組み付け方法
JP4696291B2 (ja) * 2009-06-04 2011-06-08 三菱自動車工業株式会社 二次電池異常検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524046A (en) * 1975-06-27 1977-01-12 Westinghouse Electric Corp Resistor and method of producing same
JPH03190103A (ja) * 1989-12-19 1991-08-20 Matsushita Electric Ind Co Ltd 厚膜抵抗
JP2009204531A (ja) * 2008-02-28 2009-09-10 Sanyo Electric Co Ltd シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2009244065A (ja) * 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The シャント抵抗およびシャント抵抗への端子取付け方法
JP2009266977A (ja) * 2008-04-24 2009-11-12 Koa Corp 金属板抵抗器

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135451A1 (de) * 2013-03-05 2014-09-12 Continental Automotive Gmbh Einstückig ausgebildete stromsensorvorrichtung
CN105008947A (zh) * 2013-03-05 2015-10-28 大陆汽车有限责任公司 具有集成的夹紧装置和接地元件的电流传感器设备
US10677847B2 (en) 2013-03-05 2020-06-09 Continental Automotive Gmbh Current sensor apparatus comprising an integrated clamping device and a grounding element
JP2016038232A (ja) * 2014-08-06 2016-03-22 Koa株式会社 抵抗値測定用導電材、導電材の抵抗値測定装置、および電流検出装置
CN106505261A (zh) * 2016-11-30 2017-03-15 北京新能源汽车股份有限公司 一种电池模组的电压采样控制电路及控制方法
CN106505261B (zh) * 2016-11-30 2019-03-01 北京新能源汽车股份有限公司 一种电池模组的电压采样控制电路及控制方法
JP2018189384A (ja) * 2017-04-28 2018-11-29 株式会社Gsユアサ 電流検出装置、管理装置、エンジン始動用のバッテリ
US11493013B2 (en) 2017-04-28 2022-11-08 Gs Yuasa International Ltd. Current detector, management device, battery for starting engine
WO2019031140A1 (ja) * 2017-08-10 2019-02-14 Koa株式会社 電流測定装置
JP2019035610A (ja) * 2017-08-10 2019-03-07 Koa株式会社 電流測定装置
JP2020193845A (ja) * 2019-05-27 2020-12-03 矢崎総業株式会社 センサおよびシャント抵抗
JP7074722B2 (ja) 2019-05-27 2022-05-24 矢崎総業株式会社 センサ

Also Published As

Publication number Publication date
US8970143B2 (en) 2015-03-03
JPWO2012043591A1 (ja) 2014-02-24
US20130187575A1 (en) 2013-07-25
JP5833014B2 (ja) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5833014B2 (ja) 電源装置
US10670637B2 (en) Current measuring circuit, battery and motor vehicle
JP5349021B2 (ja) バッテリシステム
JP5178154B2 (ja) 組電池ユニットと複数の組電池ユニットを備える電池電源システム
JP4922419B2 (ja) 二次電池
US9627896B2 (en) Battery system including a voltage detecting circuit for detecting voltages of plural battery cells through voltage detecting lines having different lengths
JP5537867B2 (ja) シャント抵抗及びシャント抵抗を備える車両用の電源装置並びに車両
JP2008220167A (ja) 直列接続されたエネルギー蓄積装置のための等化システムおよび方法
JP2009204531A (ja) シャント抵抗とこのシャント抵抗を備える車両用の電源装置
JP2009286292A (ja) 車両用の電源装置
JP5602353B2 (ja) 車両用の電源装置
JP3572793B2 (ja) 電池パックおよび該電池パックの製造方法
KR20110109801A (ko) 전원 장치 및 이 전원 장치를 구비하는 차량
WO2014045567A1 (ja) 電源装置及びこの電源装置を備える電動車両並びに蓄電装置
EP2402773A2 (en) Power supply device capable of detecting disconnection of ground line
JP2018536166A (ja) シャント抵抗を用いた電流測定装置
JP2015154711A (ja) バッテリー管理システム
US10298030B2 (en) Battery pack
JP2019138706A (ja) 電池の電流検出器と電流検出器を備える電動車両及び蓄電装置
WO2018230187A1 (ja) 電池監視装置
JP2011028987A (ja) バッテリシステムおよび電動車両
JP5188370B2 (ja) バッテリシステム
WO2019092794A1 (ja) 複合電池、それを備えた自動車及び鉄道回生電力貯蔵装置
JP2011217604A (ja) 車両用の電源装置
JP5219653B2 (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829144

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13824024

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012536492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11829144

Country of ref document: EP

Kind code of ref document: A1