WO2012043341A1 - 光学積層体、偏光板及び画像表示装置 - Google Patents

光学積層体、偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2012043341A1
WO2012043341A1 PCT/JP2011/071514 JP2011071514W WO2012043341A1 WO 2012043341 A1 WO2012043341 A1 WO 2012043341A1 JP 2011071514 W JP2011071514 W JP 2011071514W WO 2012043341 A1 WO2012043341 A1 WO 2012043341A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
hard coat
coat layer
silica fine
region
Prior art date
Application number
PCT/JP2011/071514
Other languages
English (en)
French (fr)
Inventor
智之 堀尾
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020137010949A priority Critical patent/KR20130119926A/ko
Priority to US13/876,952 priority patent/US10073195B2/en
Priority to JP2012536370A priority patent/JP5983410B2/ja
Priority to KR1020187019562A priority patent/KR102159687B1/ko
Priority to CN201180040154.8A priority patent/CN103080778B/zh
Publication of WO2012043341A1 publication Critical patent/WO2012043341A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Definitions

  • the present invention relates to an optical laminate, a polarizing plate, and an image display device.
  • Image display devices such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), field emission display (FED), touch panel, electronic paper, tablet PC, etc.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • an optical laminate composed of functional layers having various performances such as prevention performance, antistatic performance, hard coat property and antifouling property.
  • it is required to provide scratch resistance so as not to be damaged during handling.
  • an optical laminated body provided with a hard coat (HC) layer on a light-transmitting substrate, and an optical laminated body further provided with an optical function such as an antireflection function and an antiglare property
  • HC hard coat
  • an optical function such as an antireflection function and an antiglare property
  • Patent Document 1 discloses that a predetermined resin component and a predetermined amount of colloidal silica are formed on a triacetyl cellulose substrate that is a light-transmitting substrate.
  • An optical laminate having a hard coat layer contained therein is disclosed.
  • an antifouling agent or the like is added to the hard coat layer, or the upper surface of the hard coat layer.
  • another optical functional layer such as a low refractive index layer is laminated.
  • a method of increasing the amount of an antifouling agent or the like may be considered, but in this case, the problem that the added antifouling agent bleeds out, or the transparency of the hard coat layer is considered. There was a problem that the performance decreased. Further, when another optical functional layer is provided on the hard coat layer of the conventional optical laminate, there is also a problem that it is difficult to sufficiently improve the adhesion between the hard coat layer and the optical functional layer. .
  • the present invention has a hard coat layer having a high hardness and can sufficiently exert its function by adding a small amount of an antifouling agent and the like, and further has a low refractive index on the upper surface of the hard coat layer.
  • the optical laminated body can be excellent in adhesion between the optical functional layer and the hard coat layer, and has excellent interference fringe prevention properties, and the optical laminated layer
  • An object of the present invention is to provide a polarizing plate and an image display device using the body.
  • the present invention is an optical laminate in which a hard coat layer is formed on a light transmissive substrate, the hard coat layer containing reactive atypical silica fine particles and a binder resin,
  • the reactive atypical silica fine particles are unevenly distributed on the light transmissive substrate side, and the cross section in the thickness direction of the hard coat layer is divided into region (1) and region (2) from the light transmissive substrate side interface, respectively.
  • the area ratio of the reactive atypical silica fine particles in the area (1) is 30 to 90%
  • the area ratio of the reactive atypical silica fine particles in the area (2) is 25 to 80.
  • the area ratio of the reactive atypical silica fine particles in the region (3) is 10 to 35%, and the area ratio of the reactive atypical silica fine particles in the region (1) ⁇ the reactive atypical silica fine particles in the region (2) Area of > An optical laminate, wherein the area ratio of the reactive atypical silica fine particles in the region (3).
  • the reactive atypical silica fine particles are such that 3 to 20 spherical silica fine particles having an average primary particle size of 1 to 100 nm are bonded by an inorganic chemical bond and have a reactive functional group on the surface. preferable.
  • the content of the reactive atypical silica fine particles in the hard coat layer is preferably 15 to 50 parts by mass with respect to a total of 100 parts by mass of the reactive atypical silica fine particles and the binder resin.
  • the hard coat layer preferably further contains an antifouling agent. Further, it is preferable to further have a low refractive index layer on the hard coat layer.
  • the light transmissive substrate is preferably made of triacetyl cellulose.
  • This invention is also a polarizing plate provided with a polarizing element, Comprising:
  • the said polarizing plate is a polarizing plate characterized by providing the above-mentioned optical laminated body on the polarizing element surface.
  • the present invention is also an image display device including the above-described optical laminate or the above-described polarizing plate on the outermost surface. The present invention is described in detail below.
  • the inventor contains a binder resin and reactive atypical silica fine particles as a hard coat layer and is included in the hard coat layer.
  • Reactive atypical silica fine particles are distributed in a predetermined distribution, specifically, the reactive atypical silica fine particles are unevenly distributed on the light-transmitting substrate side at a specific ratio, so that high hardness and antifouling agent can be added.
  • the function can be sufficiently exerted without adding a large amount, and when an optical functional layer such as a low refractive index layer is laminated on the hard coat layer, the optical functional layer and the hard coat layer
  • an optical functional layer such as a low refractive index layer
  • the present inventors have found that it can be excellent in the adhesiveness of the present invention and have completed the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of the optical layered body of the present invention.
  • the optical laminate 10 of the present invention has a structure having a hard coat layer 12 on a light-transmitting substrate 11.
  • the hard coat layer 12 contains reactive unusual silica fine particles and a binder resin, and the reactive unusual silica fine particles are unevenly distributed on the light-transmitting substrate side 11 of the hard coat layer 12. ing.
  • a soft base material such as a triacetyl cellulose base material (TAC base material)
  • TAC base material triacetyl cellulose base material
  • the reactive atypical silica fine particles are unevenly distributed on the light transmissive substrate side of the hard coat layer, a hard region exists on the light transmissive substrate side of the hard coat layer, and The hardness (pencil hardness) is excellent.
  • the optical layered body of the present invention is particularly effective when using a thin (about 25 to 65 ⁇ m thick) TAC substrate.
  • the “reactive atypical silica fine particles are unevenly distributed on the light-transmitting substrate side of the hard coat layer” means that the cross section in the thickness direction of the hard coat layer is as shown in FIG.
  • the light transmitting base material side interface is divided into three equal parts in the thickness direction of the cross section and the light transmitting base material side interface is defined as region (1), region (2), and region (3), respectively, each region described above
  • the area ratio of the reactive atypical silica fine particles observed in (1), (2), and (3) satisfies the relationship of region (1) ⁇ region (2)> region (3).
  • the amount of the reactive atypical silica fine particles in the cross section in the thickness direction of the hard coat layer can be determined by measuring the area ratio of the reactive atypical silica fine particles in the cross section.
  • the area ratio is binarized from the cross-sectional photograph by TEM by image analysis software Win Roof (Mitani Corporation visual system part) (the abundance of reactive atypical silica fine particles is areaized) It can be obtained by measurement.
  • the area ratio of the reactive atypical silica fine particles in the region (1) is 30 to 90%. If it is less than 30%, the hardness of the hard coat layer cannot be sufficiently increased, and interference fringes tend to occur when the light-transmitting substrate is a TAC substrate. On the other hand, if it exceeds 90%, the haze increase (aggregation of particles, generation of voids between particles) of the optical laminate of the present invention, deterioration of adhesion with the light-transmitting substrate, generation of cracks during bending, etc. Cause. Further, when the light transmissive substrate is a TAC substrate described later, interference fringes may be generated from the aspect of refractive index.
  • the preferable lower limit of the area ratio of the reactive atypical silica fine particles in the region (1) is 40%, and the preferable upper limit is 80%.
  • the area ratio of the reactive atypical silica fine particles in the region (2) is 25 to 80%. If it is less than 25%, the hardness of the hard coat layer cannot be sufficiently increased, and if it exceeds 80%, the haze of the optical laminate of the present invention is increased (aggregation of particles, generation of voids between particles), during bending. Cause cracking.
  • the preferable lower limit of the area ratio of the reactive atypical silica fine particles in the region (2) is 30%, and the preferable upper limit is 70%.
  • the area ratio of the reactive atypical silica fine particles in the region (3) is 10 to 35%. If it is less than 10%, the hardness of the hard coat layer cannot be sufficiently increased. If it exceeds 35%, when a low refractive index layer or the like is provided on the upper surface of the hard coat layer, the low refractive index layer and the hard coat layer Since there are few resin components that contribute to adhesion, the adhesion between these layers becomes insufficient. Moreover, when the antifouling agent mentioned later is added to the hard coat layer, the antifouling property is hardly exhibited. This is presumably because the antifouling agent hardly appears on the surface when the resin component is small and the reactive silica fine particles are large.
  • the reactive atypical silica fine particles are likely to fall off in the saponification step during the production of the optical laminate of the present invention.
  • the hard coat layer becomes brittle.
  • the preferable lower limit of the area ratio of the reactive atypical silica fine particles in the region (3) is 15%, and the preferable upper limit is 30%.
  • the area ratio of the reactive atypical silica fine particles in the regions (1), (2) and (3) is preferably gradation.
  • the optical laminate of the present invention has a high hardness of the hard coat layer, and an antifouling agent or the like in the hard coat layer.
  • the function can be sufficiently exerted by adding a small amount, and when a low refractive index layer is provided on the hard coat layer, the adhesion between the low refractive index layer and the hard coat layer is excellent.
  • the refractive index of the reactive atypical silica fine particles is lower than that of the binder resin constituting the hard coat layer, the refractive index in the hard coat layer is set in the order of region (1) ⁇ region (2) ⁇ region (3). can do.
  • the hard coat layer has a difference in refractive index between the region (1) and a light-transmitting substrate (for example, a TAC substrate). Since the difference in refractive index between 3) and a light-transmitting substrate (for example, a TAC substrate) is smaller, it is favorable from the viewpoint of preventing the occurrence of interference fringes as will be described later.
  • the refractive index of the hard coat layer is about 1.50 to 1.53
  • the refractive index of the reactive atypical silica fine particles is about 1.42 to 1.46
  • TAC Since the refractive index of the base material is about 1.48 to 1.49, the region (1) becomes close to the refractive index of the TAC base material and the interference fringes disappear.
  • an interference fringe can be prevented suitably by making the refractive index in a hard-coat layer become gradation in order of a region (1), a region (2), and a region (3).
  • the reactive atypical silica fine particles are preferably those in which 3 to 20 spherical silica fine particles having an average primary particle diameter of 1 to 100 nm are bonded by an inorganic chemical bond and have a reactive functional group on the surface. . Since such reactive atypical silica fine particles have a reactive functional group on the surface, it becomes possible to react with a binder resin constituting the hard coat layer described later, and the hardness of the hard coat layer is excellent. . Moreover, since it has a reactive functional group on the surface, the hard coat layer containing the reactive atypical silica fine particles has excellent solvent resistance, particularly when the hard coat layer is subjected to saponification treatment (alkali treatment).
  • the reactive irregular-shaped silica fine particles are so-called irregular-shaped silica fine particles, the reactive irregular-shaped silica fine particles and the binder resin and the reactive silica fine particles are entangled with each other in the hard coat layer. It settles to the side (region (1)), and high packing of reactive silica fine particles becomes possible.
  • the reactive atypical silica fine particles that can be highly filled, and is excellent in solvent resistance, and is particularly preferable when reactive hard silica fine particles are difficult to fall off when subjected to saponification treatment (alkali treatment).
  • the reactive atypical silica fine particles are hard, and particularly have a good pencil hardness, because 3 to 20 spherical silica fine particles having an average primary particle diameter of 1 to 100 nm are bonded by an inorganic chemical bond.
  • the light-transmitting substrate is a TAC substrate
  • the reactive atypical silica fine particles have a refractive index of 1.
  • the refractive index of silica (SiO 2 ) is as low as about 1.42 to 1.46.
  • the refractive index of the hard coat layer containing about 50 to 1.53 binder resin can be brought close to the refractive index of the TAC substrate (1.48 to 1.49), and the refractive index difference between the hard coat layer and the TAC substrate can be reduced. Generation of so-called interference fringes can be prevented.
  • spherical silica fine particles constituting the reactive atypical silica fine particles “spherical” is a concept including a true spherical shape and a substantially spherical shape that can approximate a spherical shape including a spheroid and a polyhedron.
  • the spherical silica fine particles preferably have an average primary particle size of 1 to 100 nm. If it is less than 1 nm, it may not be possible to contribute to the improvement of the hardness of the hard coat layer, it is difficult to manufacture, it is easy to agglomerate, and the viscosity is high, making it difficult to handle. When it exceeds 100 nm, the transparency of the hard coat layer is lowered, and there is a concern that the transmittance is deteriorated and the haze is increased.
  • the more preferable lower limit of the average primary particle diameter of the spherical silica fine particles is 5 nm, and the more preferable upper limit is 60 nm.
  • the average particle diameter of the reactive atypical silica fine particles (that is, the average secondary particle diameter of the spherical silica fine particles) is preferably in the range of 5 to 300 nm, and more preferably in the range of 10 to 200 nm. Is preferred. If the average particle diameter of the reactive atypical silica fine particles is within the above range, it is easy to impart hardness to the hard coat layer and maintain the transparency of the hard coat layer.
  • the average primary particle size of the silica fine particles is a 50% particle size (d50 median) when the particles in the solution are measured by a dynamic light scattering method and the particle size distribution is expressed as a cumulative distribution. Diameter).
  • the average primary particle size can be measured using a Microtrac particle size analyzer manufactured by Nikkiso Co., Ltd.
  • the average secondary particle size of the silica fine particles can be determined by the same method as the average primary particle size.
  • the reactive atypical silica fine particles are preferably formed by combining 3 to 20 spherical silica fine particles, more preferably 3 to 10 with inorganic chemical bonds. If the number of spherical silica fine particles is less than 3, the effect of increasing the hardness of the hard coat layer may be insufficient. On the other hand, when the number of the spherical silica fine particles exceeds 20, the transparency of the hard coat layer is lowered, and there is a possibility that the transmittance is deteriorated and the haze is increased.
  • Such reactive atypical silica fine particles preferably have an aspect ratio, that is, a ratio of the major axis to the minor axis of 3 to 20 from the viewpoint of high effects of improving the scratch resistance and hardness of the hard coat layer. .
  • Examples of the inorganic chemical bond include an ionic bond, a metal bond, a coordination bond, and a covalent bond. Among them, even when the reactive atypical silica fine particles are added to a polar solvent, a bond in which the bonded spherical silica fine particles are not dispersed, specifically, a metal bond, a coordinate bond, and a covalent bond are preferable. A covalent bond is preferred.
  • Examples of the polar solvent include water and lower alcohols such as methanol, ethanol and isopropyl alcohol.
  • the reactive atypical silica fine particles are in a particle state of 3 to 20 spherical silica fine particles bonded by an inorganic chemical bond and agglomerated particles (aggregated particles), and 3 to 20 particles.
  • examples thereof include chain particles in which the spherical silica fine particles are bonded by an inorganic chemical bond and bonded in a chain shape.
  • the reactive atypical silica fine particles are preferably in the form of chain particles.
  • the average number of bonds of the spherical silica fine particles is determined by observing the cross section of the hard coat layer using a TEM photograph and observing the cured reactive unusual-shaped silica fine particles. 100 are selected, the spherical silica fine particles contained in each reactive atypical silica fine particles are counted, and the average value can be obtained.
  • a method for producing such reactive atypical silica fine particles is not particularly limited as long as the spherical silica fine particles are bonded by an inorganic bond, and a conventionally known method can be appropriately selected and used. For example, it can be obtained by adjusting the concentration or pH of the monodispersed silica fine particle dispersion and performing hydrothermal treatment at a high temperature of 100 ° C. or higher. At this time, if necessary, a binder component can be added to promote the binding of the silica fine particles. Further, ions may be removed by passing the silica fine particle dispersion used through an ion exchange resin. Such ion exchange treatment can promote the binding of silica fine particles. After the hydrothermal treatment, the ion exchange treatment may be performed again.
  • the reactive atypical silica fine particles have a reactive functional group on the surface. It does not specifically limit as said reactive functional group, It selects suitably so that bridge
  • a polymerizable unsaturated group is suitably used as the reactive functional group, preferably a photocurable unsaturated group, and particularly preferably an ionizing radiation curable unsaturated group. Specific examples thereof include ethylenically unsaturated bonds such as (meth) acryloyl group, vinyl group and allyl group, and epoxy group. Of these, an ethylenically unsaturated bond is preferable.
  • the reactive functional group is preferably one having at least a part of the surface of the reactive atypical silica fine particle coated with an organic component and having a reactive functional group introduced by the organic component on the surface.
  • the organic component is a component containing carbon.
  • a compound containing an organic component such as a silane coupling agent reacts with a hydroxyl group present on the surface of the silica fine particles to cause a part of the surface
  • the organic component is bonded to a part of the surface. Examples include a mode in which an organic component is attached to a hydroxyl group present on the surface of the fine particle by an interaction such as hydrogen bonding, a mode in which silica fine particles are contained in the poly
  • the reactive atypical silica fine particles described above are preferably contained in an amount of 15 to 45 parts by mass with respect to a total of 100 parts by mass of the reactive atypical silica fine particles and a binder resin described later in the hard coat layer. If it is less than 15 parts by mass, the hard coat layer may not be sufficiently hardened, and if it exceeds 45 parts by mass, the distribution of reactive atypical silica fine particles as described below may not be maintained, When an optical functional layer such as a low refractive index layer is provided on the upper surface of the hard coat layer, the adhesion between the hard coat layer and the optical functional layer may be insufficient.
  • an optical functional layer such as a low refractive index layer
  • a transparent resin is preferably used.
  • an ionizing radiation curable resin, an ionizing radiation curable resin and a solvent which are resins cured by ultraviolet rays or electron beams.
  • examples include a mixture with a dry resin (a resin that forms a film by simply drying the solvent added to adjust the solid content during coating), or a thermosetting resin, preferably ionizing radiation curing. Mold resin.
  • resin is a concept including resin components such as monomers and oligomers.
  • Examples of the ionizing radiation curable resin include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and pentaerythritol penta (meth).
  • Acrylates dipentaerythritol hexa (meth) acrylates, trimethylolpropane tri (meth) acrylates and their ethylene oxide-modified products, propylene oxide-modified products, caprolactone-modified products, and the like.
  • (meth) acrylate refers to methacrylate and acrylate.
  • polyester resins having unsaturated double bonds polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. It can be used as an ionizing radiation curable resin.
  • the ionizing radiation curable resin can be used in combination with a solvent-drying resin.
  • a solvent-drying resin By using a solvent-drying resin in combination, coating defects on the coated surface can be effectively prevented, and thereby more excellent antiglare properties can be obtained.
  • the solvent-drying resin that can be used in combination with the ionizing radiation curable resin is not particularly limited, and a thermoplastic resin can be generally used.
  • the thermoplastic resin is not particularly limited.
  • a styrene resin a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, or a polyester resin.
  • examples thereof include resins, polyamide-based resins, cellulose derivatives, silicone-based resins, rubbers, and elastomers.
  • the thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • styrene resins (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
  • Thermosetting resins that can be used as the binder resin include phenol resin, urea resin, diallyl phthalate resin, melamine resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin. , Silicon resin, polysiloxane resin, and the like.
  • the hard coat layer forming composition preferably uses a photopolymerization initiator.
  • the photopolymerization initiator include acetophenones (for example, trade name Irgacure 184, 1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF, trade name Irgacure 907, 2-methyl-1 [4] manufactured by BASF -(Methylthio) phenyl] -2-morpholinopropan-1-one), benzophenones, thioxanthones, benzoin, benzoin methyl ether, aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin Examples thereof include sulfonic acid esters.
  • the hard coat layer preferably further contains an antifouling agent.
  • an antifouling agent As described above, since the reactive atypical silica fine particles in the hard coat layer are unevenly distributed on the light transmissive substrate side, when the hard coat layer contains an antifouling agent, the antifouling agent is: The hard coat layer is unevenly distributed on the side opposite to the light-transmitting substrate. As a result, sufficient antifouling performance can be imparted to the hard coat layer without increasing the amount of antifouling agent added.
  • the antifouling agent is not particularly limited, and examples thereof include silicone-containing and fluorine-containing, and silicone-containing / fluorine-containing antifouling agents, which may be used alone or in combination. Also good. Alternatively, an acrylic antifouling agent may be used. Specific examples of the antifouling agent include, for example, a fluorine-containing antifouling agent (trade name: OPTOOL DAC, manufactured by Daikin Industries, Ltd.). The content of the antifouling agent is preferably 0.01 to 1.0 part by weight with respect to 100 parts by weight of the binder resin.
  • the antifouling agent preferably has a weight average molecular weight of 5,000 or less, and is preferably a compound having 1 or more, more preferably 2 or more reactive functional groups in order to improve the durability of the antifouling performance. preferable.
  • the said weight average molecular weight can be calculated
  • the antifouling agent having the above-described reactivity has good antifouling performance durability (durability).
  • the above-mentioned fluorine-containing antifouling agent is less likely to have a fingerprint (not noticeable) and is wiped off.
  • the property is also good.
  • coating of the said composition for hard-coat layer formation can be lowered
  • an antifouling agent which has reactivity it can obtain as a commercial item.
  • group for example, SUA1900L10 (made by Shin-Nakamura Chemical Co., Ltd.), SUA1900L6 (new) Nakamura Chemical Co., Ltd.), Ebecryl 1360 (manufactured by Daicel Cytec Co., Ltd.), UT3971 (manufactured by Nippon Gosei Co., Ltd.), BYKUV3500 (manufactured by BYK Chemie), BYKUV3510 (manufactured by BYK Chemie), BYKUV3570 (manufactured by BYK Chemie), and the like.
  • RS71 manufactured by DIC
  • RS74 manufactured by DIC
  • Defender TF3001 manufactured by DIC
  • Defensor TF3000 manufactured by DIC
  • Defensor TF3028 manufactured by DIC
  • Light Procoat AFC3000 Kelvin
  • the hard coat layer may contain other components as necessary in addition to the components described above.
  • resins other than the binder resin thermal polymerization initiator, ultraviolet absorber, photopolymerization initiator, light stabilizer, leveling agent, crosslinking agent, curing agent, polymerization accelerator, viscosity modifier, examples thereof include an antistatic agent, an antioxidant, a slip agent, a refractive index adjuster, a dispersant, an antiblocking agent, and a colorant. These can use a well-known thing.
  • the hard coat layer is a composition for hard coat layer in which the above-described reactive atypical silica fine particles, a binder resin, and, if necessary, an antifouling agent and other optional components are dispersed in a solvent,
  • the coating film formed by coating on the substrate can be dried and cured by irradiation with ionizing radiation or heating.
  • the solvent can be selected and used according to the type and solubility of the binder resin to be used.
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • ethers dioxane, Tetrahydrofuran, etc.
  • aliphatic hydrocarbons hexane, etc.
  • alicyclic hydrocarbons cyclohexane, etc.
  • aromatic hydrocarbons toluene, xylene, etc.
  • halogenated carbons diichloromethane, dichloroethane, etc.
  • esters Metalhyl acetate, ethyl acetate, butyl acetate, etc.
  • water alcohols
  • alcohols ethanol, isopropanol, butanol, cyclohexanol, etc.
  • cellosolves methyl cellosolve, ethyl cellosolve, etc.
  • the solvent preferably contains a permeable solvent that is permeable to the triacetylcellulose substrate.
  • the “permeability” of the osmotic solvent is intended to include all concepts such as osmosis, swelling, and wettability with respect to the triacetylcellulose substrate.
  • the light transmissive substrate described later is a triacetyl cellulose substrate, such a permeable solvent swells and wets the triacetyl cellulose substrate, so that a part of the composition for forming a hard coat layer is triacetyl.
  • the osmotic solvent include ketones; acetone, methyl ethyl ketone, cyclohexanone, methyl isobutyl ketone, diacetone alcohol, esters; methyl formate, methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, nitrogen-containing compounds; nitromethane , Acetonitrile, N-methylpyrrolidone, N, N-dimethylformamide, glycols; methyl glycol, methyl glycol acetate, ethers; tetrahydrofuran, 1,4-dioxane, dioxolane, diisopropyl ether, halogenated hydrocarbons; methylene chloride, chloroform , Tetrachloroethane, glycol ethers; methyl cellosolve, ethyl cellosolve, butyl cellosolve, cellosolve acetate, dimethyl sulfon
  • the reactive atypical silica fine particles contained in the hard coat layer are unevenly distributed on the light transmissive substrate side of the hard coat layer as described above.
  • a method for forming such a hard coat layer for example, a method of appropriately adjusting the drying conditions of the above-described coating film can be mentioned.
  • a permeable solvent described later is used as a solvent used in the hard coat layer composition, and after forming a coating film on a light-transmitting substrate, the binder resin containing the coating film is The method of drying on the conditions which permeate
  • the amount of the binder resin penetrating into the light-transmitting substrate is too large, the hardness of the hard coat layer to be formed may be reduced.
  • a solvent (non-permeable solvent) other than the permeable solvent as the solvent used in the hard coat layer composition, for example, in the hard coat layer composition, the drying temperature of the coating film is increased.
  • the binder resin is infiltrated into the light-transmitting substrate by a method such as lowering the solid content and reducing the molecular weight of the binder resin (weight average molecular weight of about 450 or less) to form the hard coat layer described above. A method is mentioned.
  • a method of slowly drying the above-mentioned coating film and precipitating reactive atypical silica fine particles in the coating film by its own weight can also be mentioned.
  • the reactive atypical silica fine particles are entangled with each other, and the silica density per unit volume becomes higher than that of the spherical silica, so that it settles. And resistance of binder resin with respect to sedimentation per unit area in field (1) decreases.
  • the gradation of the area ratio of the reactive atypical silica fine particles can be more effectively applied by infiltrating the binder resin into the TAC substrate and increasing the ratio of the reactive atypical silica fine particles in the region (1).
  • convection occurs during the drying of the coating film, a difference in density of the reactive silica fine particles will occur, and therefore the drying of the coating film must be performed without causing convection (i.e., reactivity).
  • the position of the irregular-shaped silica fine particles is fixed at the initial stage of drying). It is not preferable to warm the light transmissive substrate during the drying process because convection occurs at the interface between the light transmissive substrate and the hard coat layer.
  • a film can be formed in the early stage of drying, so that convection can be suppressed and a gradation of the area ratio of the reactive atypical silica fine particles is likely to appear.
  • the light transmissive substrate preferably has smoothness and heat resistance and is excellent in mechanical strength.
  • the material for forming the light-transmitting substrate include, for example, polyester (polyethylene terephthalate, polyethylene naphthalate), acrylic, cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyester, polyamide, polyimide, and polyethersulfone.
  • Thermoplastic resins such as polysulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, or polyurethane.
  • polyester polyethylene terephthalate, polyethylene naphthalate
  • TAC cellulose triacetate
  • the light-transmitting substrate preferably uses the thermoplastic resin as a flexible film-like body, but uses a plate of these thermoplastic resins depending on the use mode in which curability is required. It is also possible, or a glass plate plate may be used.
  • examples of the light transmissive substrate include an amorphous olefin polymer (Cyclo-Olefin-Polymer: COP) film having an alicyclic structure.
  • This is a base material in which a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, and the like are used.
  • the thickness of the light-transmitting substrate is preferably 20 to 300 ⁇ m, more preferably the lower limit is 30 ⁇ m and the upper limit is 200 ⁇ m. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses.
  • an anchor agent or Application of a paint called a primer may be performed in advance. In recent years, it has been desired to reduce the thickness and weight of the display. Therefore, in the case of a TAC substrate, the thickness is preferably about 25 to 70 ⁇ m.
  • the optical layered body of the present invention is optimal for weight reduction. When the TAC base material becomes thin, the problem of hardness becomes remarkable due to the TAC base material, but the optical laminate of the present invention has the above-described region (1) in the hard coat layer. The problem can be solved preferably.
  • the optical layered body of the present invention preferably further has a low refractive index layer on the hard coat layer.
  • the hard coat layer in the optical layered body of the present invention contains the reactive atypical silica fine particles that are unevenly distributed on the light transmissive substrate side of the hard coat layer. Adhesion with the coating layer is excellent.
  • the region (3) has a lower proportion of reactive atypical silica fine particles than the region (1) (having a high refractive index), and thus becomes a lower reflection optical laminate.
  • the low refractive index layer a layer containing a low refractive index material such as silica or magnesium fluoride in a resin, a layer of a low refractive index resin such as a fluorine-based resin, or a low refractive index material in a low refractive index resin And a layer containing void-containing fine particles as a low refractive index substance in the resin.
  • the resin contained in the low refractive index layer is preferably an ultraviolet curable resin since it has excellent adhesion to the hard coat layer of the low refractive index layer.
  • Examples of the ultraviolet curable resin include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and pentaerythritol penta (meth).
  • Examples include acrylate, dipentaerythritol hexa (meth) acrylate, and trimethylolpropane tri (meth) acrylate.
  • pentaerythritol triacrylate PETA
  • dipentaerythritol hexaacrylate DPHA
  • pentaerythritol hexaacrylate PTA
  • trimethylolpropane triacrylate TMPTA
  • Polyfunctional urethane (meth) acrylate is also preferably used.
  • photopolymerization initiator examples include acetophenones (for example, trade name Irgacure 184, 1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF, trade name Irgacure 907, 2-methyl-1 [4] manufactured by BASF -(Methylthio) phenyl] -2-morpholinopropan-1-one), benzophenones, thioxanthones, benzoin, benzoin methyl ether, aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin Examples thereof include sulfonic acid esters. These may be used alone or in combination of two or more.
  • acetophenones for example, trade name Irgacure 184, 1-hydroxy-cyclohexyl-phenyl-ketone manufactured by BASF, trade name Irgacure 907, 2-methyl-1 [4] manufactured by BASF -(Methy
  • trade name Irgacure 127 (2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] -phenyl ⁇ -2-methyl-propan-1-one manufactured by BASF) 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 and 2-dimethylamino-2- (4methyl-benzyl) -1- (4-morpholin-4-yl- Phenyl) -butan-1-one can also be used in combination. Furthermore, commercially available products other than the above can also be used.
  • KAYACURE DETX-S KAYACURE CTX
  • KAYACURE BMS KAYACURE DMBI
  • Irgacure 127 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) benzyl] -phenyl ⁇ -2-methyl-propan-1-one manufactured by BASF)
  • BASF BASF
  • the void-containing fine particles are fine particles containing gas inside or porous fine particles containing gas, and the whole fine particles are formed by the voids due to the gas with respect to the original refractive index of the fine particle solid portion.
  • Examples of such void-containing fine particles include silica fine particles disclosed in JP-A-2001-233611.
  • Examples of the void-containing fine particles include hollow polymer fine particles disclosed in JP-A No. 2002-805031, etc., in addition to inorganic substances such as silica.
  • the average particle size of the void-containing fine particles is, for example, about 5 to 300 nm.
  • the surface of the void-containing fine particles has a functional group capable of ultraviolet curing.
  • the low refractive index layer preferably has a refractive index of less than 1.450.
  • the antireflection performance of the optical laminate of the present invention becomes insufficient, and it may not be possible to cope with the high-level display quality of recent image display devices.
  • a more preferred lower limit is 1.250, and a more preferred upper limit is 1.425.
  • the low refractive index layer has the following formula (II): 120 ⁇ nAdA ⁇ 145 (II) It is preferable from the viewpoint of low reflectivity.
  • the low refractive index layer preferably has a haze value of 1% or less. If it exceeds 1%, the light transmittance of the optical layered body of the present invention is lowered, which may cause a reduction in display quality of the image display device. More preferably, it is 0.5% or less.
  • the haze value is a value obtained in accordance with JIS K7136.
  • the composition for low refractive index layer and the composition for low refractive index layer containing other components are applied to the surface of the hard coat layer.
  • the formed coating film can be dried and cured by irradiation with ionizing radiation and / or heating.
  • the method for applying the low refractive index layer composition is not particularly limited.
  • spin coating method dip method, spray method, dye coating method, bar coating method, roll coater method, meniscus coater method, flexographic printing method.
  • various methods such as a screen printing method and a pea coater method.
  • Examples of other components that may be optionally contained in the low refractive index layer composition include a leveling agent, a polymerization accelerator, a viscosity modifier, an antifouling agent, an ultraviolet absorber, an antioxidant, and a blocking agent.
  • Examples thereof include an inhibitor, a colorant, an antistatic agent, and resins other than those described above.
  • the optical layered body of the present invention may include other hard coat layers, high refractive index layers, medium refractive index layers, antistatic layers, antiglare layers different from the hard coat layers described above as optional layers as necessary. It may be provided with an antifouling layer or the like.
  • the optical layered body of the present invention has a hardness of preferably 2H or more, more preferably 3H or more, in a pencil hardness test (load 4.9 N) according to JIS K5600-5-4 (1999).
  • the surface of the optical layered body of the present invention was observed by reciprocating 10 times with a friction load of 500 g / cm 2 using # 0000 steel wool, the surface of the film was not peeled off. It is preferable not to be seen, and it is more preferable that no peeling of the surface coating is observed after 10 reciprocating frictions at 700 g / cm 2 . Most preferably, it is 1000 g / cm 2 or more and similarly 10 reciprocating frictions cause no surface coating peeling.
  • the total light transmittance of the optical laminated body of this invention is 80% or more. If it is less than 80%, color reproducibility and visibility may be impaired when it is mounted on the display surface.
  • the total light transmittance is more preferably 90% or more.
  • the optical layered body of the present invention preferably has a haze value of 1% or less. If it exceeds 1%, the light transmittance of the optical layered body of the present invention is lowered, which may cause a reduction in display quality of the image display device. More preferably, it is 0.5% or less.
  • the haze can be measured by a method based on JIS K-7136 using a haze meter (manufactured by Murakami Color Research Laboratory, product number: HM-150).
  • the optical layered body of the present invention includes a step of applying the above-described composition for hard coat layer on a light-transmitting substrate to form a hard coat layer, and if necessary, on the formed hard coat layer.
  • coating the composition for low-refractive-index layers mentioned above to a low-refractive-index layer is mentioned.
  • the method for forming the hard coat layer and the low refractive index layer is as described above.
  • the drying conditions for uneven distribution of the above-mentioned reactive atypical silica fine particles in the hard coat layer are specifically preferably, for example, drying temperature: 40 to 90 ° C., drying time: 30 to 90 seconds, At this time, the solid content of the composition for forming a hard coat layer is preferably 30 to 50%.
  • the optical layered body of the present invention can be made into a polarizing plate by providing the optical layered body according to the present invention on the surface of the polarizing element opposite to the surface where the hard coat layer is present in the optical layered body.
  • a polarizing plate is also one aspect of the present invention.
  • the polarizing element is not particularly limited, and examples thereof include a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, and an ethylene-vinyl acetate copolymer saponified film that are dyed and stretched with iodine.
  • the laminating process between the polarizing element and the optical laminate of the present invention it is preferable to saponify the light-transmitting substrate (preferably a triacetyl cellulose substrate). By the saponification treatment, the adhesiveness is improved and an antistatic effect can be obtained.
  • the present invention is also an image display device including the optical laminate or the polarizing plate on the outermost surface.
  • the image display device may be an image display device such as LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, electronic paper, touch panel, and tablet PC.
  • the LCD includes a transmissive display and a light source device that irradiates the transmissive display from the back.
  • the image display device of the present invention is an LCD
  • the optical laminate of the present invention or the polarizing plate of the present invention is formed on the surface of this transmissive display.
  • the light source of the light source device is irradiated from the lower side of the optical laminate.
  • a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the PDP has a front glass substrate (formed with an electrode on the surface) and a rear glass substrate (disposed with discharge gas sealed between the front glass substrate and the electrode and minute grooves formed on the surface). A red, green, and blue phosphor layer is formed in the groove).
  • the surface of the surface glass substrate or the front plate is provided with the optical laminate described above.
  • the above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes.
  • the antireflection film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
  • the image display apparatus of the present invention can be used for display display of a television, a computer, a word processor, or the like.
  • it can be suitably used for the surface of high-definition image displays such as CRT, liquid crystal panel, PDP, ELD, FED, electronic paper, touch panel, and tablet PC.
  • the hard coat layer contains reactive atypical silica fine particles, and the reactive atypical silica fine particles are unevenly distributed at a predetermined ratio on the light-transmitting substrate side of the hard coat layer. .
  • the hard coat layer can have high hardness, and when an antifouling agent or the like is added to the hard coat layer, its function can be sufficiently exerted by adding a small amount, and further, the upper surface of the hard coat layer.
  • an optical functional layer such as a low refractive index layer is laminated on the surface, the adhesiveness between the optical functional layer and the hard coat layer can be excellent.
  • the light-transmitting substrate is a triacetyl cellulose substrate
  • the antireflection film of the present invention is suitably applied to a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), and the like. be able to.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • composition 1 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 2 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle size 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 100 parts by weight (solid equivalent 40 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 60 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 60 parts by weight
  • composition 3 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 62 parts by weight (solid equivalent 25 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 75 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 83 parts by weight
  • composition 4 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 125 parts by weight (solid equivalent 50 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 50 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 45 parts by weight
  • composition 5 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039-1 SIV (primary average particle size 45 nm, average number of connections 4, solid content 40%, MIBK solvent)) 113 parts by weight (45 parts by weight as solid) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 55 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 52 parts by weight
  • composition 6 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039-2 SIV (primary average particle diameter 20 nm, average number of connections 8, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 7 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Pentaerythritol triacrylate (Nippon Kayaku, PET30) 70 parts by weight Photopolymerization initiator (BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 8 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (Nippon Kayaku Co., Ltd., DPHA) 40 parts by weight Polymer acrylate (Arakawa Chemical Industries, Ltd., Beam Set BS371, solid content 65%, butyl acetate solvent) 40 parts by weight (30 parts by weight in solid conversion) Antifouling agent (manufactured by DIC, RS71, reactive group-containing fluorine oligomer) Solid conversion 1 part by weight Photopolymerization initiator (BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 9 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (Nippon Kayaku, DPHA) 70 parts by weight Photopolymerization initiator (BASF, Irgacure 184) 4 parts by weight Fluorine antifouling agent (DIC, RS71) Part MIBK 75 parts by weight
  • composition 10 for hard coat layer Spherical reactive silica fine particles (manufactured by Nissan Chemical Industries, Ltd., product name MIBKSD (primary average particle size 12 nm, average number of connections 0, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 11 for hard coat layer Non-reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, Inc., primary average particle size 20 nm, average number of connections 4, solid content 40%, MIBK solvent) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 12 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle size 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 25 parts by weight (solid equivalent 10 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 90 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 105 parts by weight
  • composition 13 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 15 parts by weight
  • composition 14 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 75 parts by weight
  • composition 15 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd., product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 175 parts by weight (solid equivalent 70 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 30 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 15 parts by weight
  • composition 16 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd., product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 175 parts by weight (solid equivalent 70 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 30 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 200 parts by weight
  • composition 17 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals, product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 75 parts by weight (solid equivalent 30 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 70 parts by weight Photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight MIBK 100 parts by weight
  • composition 18 for hard coat layer Reactive atypical silica fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd., product name DP1039SIV (primary average particle diameter 20 nm, average number of connections 4, solid content 40%, MIBK solvent)) 175 parts by weight (solid equivalent 70 parts by weight) Dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., DPHA) 30 parts by weight photopolymerization initiator (manufactured by BASF, Irgacure 184) 4 parts by weight fluorinated antifouling agent (manufactured by DIC, RS71) 0.5 wt. Part MIBK 15 parts by weight
  • Examples 1 to 9, Comparative Examples 1 to 4, 6 to 9 A light-transmitting substrate (thickness 40 ⁇ m, triacetyl cellulose resin film (manufactured by FUJIFILM Corporation, TD40UL) was prepared, and each composition for forming a hard coat layer shown in Table 1 was formed on one side of the light-transmitting substrate. After coating, the coating film was dried in a heating oven at 70 ° C. for 60 seconds, the solvent in the coating film was evaporated, and ultraviolet light was irradiated so that the integrated light amount was 200 mJ. By curing the film, a hard coat layer of 13 g / m 2 (10 ⁇ m in thickness when dried) was formed to produce optical laminates according to Examples 1 to 9, Comparative Examples 1 to 4, and 6 to 9. .
  • Comparative Example 5 Comparative Example 5 was performed in the same manner as in Example 1 except that when the coating film was dried in a hot oven at a temperature of 70 ° C. for 60 seconds, the side coated with the composition for forming a hard coat layer was dried downward. The optical laminated body which concerns on was manufactured.
  • Step wool (SW) resistance The surface of the hard coat layer of the optical laminate according to Examples and Comparative Examples was subjected to 10 reciprocal frictions using # 0000 steel wool, and the highest frictional load (g / cm 2 ) in which the coating film did not peel off. was measured.
  • haze value (%) was measured according to JIS K-7136 using a haze meter (manufactured by Murakami Color Research Laboratory, product number: HM-150).
  • Interference fringes After pasting a black tape on the surface opposite to the hard coat layer of the optical laminates according to Examples and Comparative Examples, the presence or absence of interference fringes was evaluated visually under a three-wavelength fluorescent lamp. The case where the interference fringes could not be visually recognized was marked with ⁇ , the case where the interference fringes were thinly visible was marked with ⁇ , and the case where the interference fringes were visible was marked with ⁇ .
  • the optical laminate according to the example has a pencil hardness of 4H or more, and each evaluation of SW resistance, haze and adhesion is also a good result.
  • the optical laminates according to the comparative examples all had a pencil hardness of 3H or less, and none of the SW resistance, haze, and adhesion were excellent.
  • a light-transmitting substrate (thickness 40 ⁇ m, triacetyl cellulose resin film (manufactured by FUJIFILM Corporation, TD40UL) is prepared, and a hard coat layer composition 1 is applied to one side of the light-transmitting substrate to form a coating film Thereafter, the coating film was dried in a heating oven at a temperature of 70 ° C. for 60 seconds, the solvent in the coating film was evaporated, and the coating film was cured (semi-cured) by irradiating ultraviolet rays so that the integrated light intensity became 70 mJ. ) To form a hard coat layer of 13 g / m 2 when dried (10 ⁇ m in thickness when dried).
  • the composition 1 for a low refractive index layer shown below was applied to form a coating film. Thereafter, the coating film is dried in a heating oven at a temperature of 70 ° C. for 60 seconds, the solvent in the coating film is evaporated, and the coating film is cured by irradiating ultraviolet rays so that the integrated light amount becomes 200 mJ. An optical laminate including a low refractive index layer having a thickness of 100 nm was produced.
  • Composition 1 for low refractive index layer Hollow treated silica fine particles (solid content of the fine silica particles: 20% by mass solution; methyl isobutyl ketone, average particle size: 50 nm) 73 parts by mass fluorine atom-containing polymer (manufactured by JSR; Opstar TU2224, 20% solid content solvent methyl isobutyl Ketone) 2 parts by mass fluorine atom-containing monomer in terms of solid content (manufactured by Kyoeisha Chemical Co., Ltd .; LINC3A, solid content 100%) 5 parts by mass pentaerythritol triacrylate (PET) 3 parts by mass polymerization initiator (Irgacure 127; manufactured by BASF) 0.35 parts by mass Silicone / fluorine atom-containing antifouling agent (TU2225; manufactured by JSR) 0.5 parts by mass in terms of solid content Methyl isobutyl ketone (MIBK) 320 parts by mass Prop
  • the obtained optical laminate including the low refractive index layer had the same evaluation as in Example 1 in terms of area ratio, pencil hardness, haze, adhesion, and interference fringes. Therefore, the SW resistance was 400 g / cm 2 , and the reflectance was measured to find that the Y value was 0.98%. Note that the above Y value is obtained by measuring the 5 degree regular reflectance in the wavelength range of 400 to 700 nm using an optical measuring device (UV-3100PC, spectrometer) manufactured by Shimadzu Corporation, and correcting the visibility according to JIS Z8701. It is the value.
  • the optical layered body of the present invention has the hard coat layer having the above-described configuration, it is excellent in hardness and can sufficiently exhibit its function with a small amount of addition of an antifouling agent, etc., and further on the hard coat layer.
  • an optical functional layer such as a low refractive index layer
  • the adhesion between the hard coat layer and the optical functional layer is excellent. Therefore, the optical laminate of the present invention is preferably applied to a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), and the like. Can do.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

  光透過性基材の上にハードコート層が形成された光学積層体であって、上記ハードコート層は、反応性異型シリカ微粒子とバインダー樹脂とを含有し、上記ハードコート層の上記光透過性基材側に上記反応性異型シリカ微粒子が偏在しており、上記ハードコート層の厚み方向の断面を、上記光透過性基材側界面からそれぞれ領域(1)、領域(2)及び領域(3)と3等分したとき、上記領域(1)における反応性異型シリカ微粒子の面積率が30~90%、上記領域(2)における反応性異型シリカ微粒子の面積率が25~80%、上記領域(3)における反応性異型シリカ微粒子の面積率が10~35%であり、かつ、領域(1)における反応性異型シリカ微粒子の面積率≧領域(2)における反応性異型シリカ微粒子の面積率>領域(3)における反応性異型シリカ微粒子の面積率であることを特徴とする光学積層体。

Description

光学積層体、偏光板及び画像表示装置
本発明は、光学積層体、偏光板及び画像表示装置に関する。
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー、タブレットPC等の画像表示装置においては、反射防止性能、帯電防止性能、ハードコート性や防汚性等の種々の性能を有する機能層からなる光学積層体が設けられている。画像表示装置においては、取り扱い時に傷がつかないように、耐擦傷性を付与することが要求される。
このような要求に対して、光透過性基材上にハードコート(HC)層を設けた光学積層体や、更に、反射防止機能や防眩性等の光学的機能を付与した光学積層体を利用することにより、画像表示装置の画像表示面の耐擦傷性を向上させることが一般的になされている。
このようなハードコート層を備えた光学積層体としては、例えば、特許文献1には、光透過性基材であるトリアセチルセルロース基材上に、所定の樹脂成分と所定量のコロイダルシリカとを含有するハードコート層を有する光学積層体が開示されている。
また、このようなハードコート層を備えた光学積層体として、例えば、防汚性等の機能を付与することを目的に、ハードコート層に防汚剤等を添加したり、ハードコート層の上面に低屈折率層等の他の光学的機能層を積層したりすることが行われている。
しかしながら、従来の光学積層体では、ハードコート層に防汚剤等を添加しても防汚性等の機能を充分に発揮させることが困難であった。このような機能を充分に発揮させるため、例えば、防汚剤等の添加量を多くする方法も考えられるが、この場合、添加した防汚剤がブリードアウトするといった問題や、ハードコート層の透明性が低下するといった問題があった。
更に、従来の光学積層体のハードコート層上に他の光学的機能層を設ける場合も、ハードコート層と光学的機能層との密着性を充分に高めることが困難であるという問題もあった。
特開2010-085985号公報
本発明は、上記現状に鑑みて、ハードコート層が高い硬度を有するとともに、防汚剤等を少量添加でその機能を充分に発揮させることができ、更に、ハードコート層の上面に低屈折率層等の光学的機能層を積層したときに、該光学的機能層とハードコート層との密着性に優れたものとすることができ、干渉縞防止性にも優れる光学積層体、該光学積層体を用いてなる偏光板及び画像表示装置を提供することを目的とするものである。
本発明は、光透過性基材の上にハードコート層が形成された光学積層体であって、上記ハードコート層は、反応性異型シリカ微粒子とバインダー樹脂とを含有し、上記ハードコート層の上記光透過性基材側に上記反応性異型シリカ微粒子が偏在しており、上記ハードコート層の厚み方向の断面を、上記光透過性基材側界面からそれぞれ領域(1)、領域(2)及び領域(3)と3等分したとき、上記領域(1)における反応性異型シリカ微粒子の面積率が30~90%、上記領域(2)における反応性異型シリカ微粒子の面積率が25~80%、上記領域(3)における反応性異型シリカ微粒子の面積率が10~35%であり、かつ、領域(1)における反応性異型シリカ微粒子の面積率≧領域(2)における反応性異型シリカ微粒子の面積率>領域(3)における反応性異型シリカ微粒子の面積率であることを特徴とする光学積層体である。
また、上記反応性異型シリカ微粒子は、平均1次粒径が1~100nmの球状のシリカ微粒子3~20個が無機の化学結合により結合し、表面に反応性官能基を有するものであることが好ましい。
また、上記ハードコート層中の反応性異型シリカ微粒子の含有量が、該反応性異型シリカ微粒子とバインダー樹脂との合計100質量部に対して、15~50質量部であることが好ましい。
また、上記ハードコート層は、更に防汚剤を含有することが好ましい。
また、上記ハードコート層の上に、更に低屈折率層を有することが好ましい。
また、上記光透過性基材は、トリアセチルセルロースからなることが好ましい。
本発明はまた、偏光素子を備えてなる偏光板であって、上記偏光板は、偏光素子表面に上述の光学積層体を備えることを特徴とする偏光板でもある。
本発明はまた、最表面に上述の光学積層体、又は、上述の偏光板を備えることを特徴とする画像表示装置でもある。
以下に、本発明を詳細に説明する。
本発明者は、光透過性基材上にハードコート層を有する光学積層体について鋭意検討した結果、ハードコート層としてバインダー樹脂と反応性異型シリカ微粒子とを含有するとともに、該ハードコート層に含まれる反応性異型シリカ微粒子を所定の分布、具体的には反応性異型シリカ微粒子を光透過性基材側に特定の割合で偏在するように含有させることで、高い硬度と、防汚剤等を多量に添加することなく充分にその機能を発揮させることができ、更に、ハードコート層上に低屈折率層等の光学的機能層を積層したときに、該光学的機能層とハードコート層との密着性に優れたものとすることができることを見出し、本発明を完成するに至った。
図1は、本発明の光学積層体の一例を模式的に示す断面図である。
図1に示すように、本発明の光学積層体10は、光透過性基材11の上にハードコート層12を有する構造である。
このハードコート層12は、図示しないが、反応性異型シリカ微粒子とバインダー樹脂とを含有するものであり、該反応性異型シリカ微粒子は、ハードコート層12の光透過性基材側11に偏在している。
例えば、上記光透過性基材としてトリアセチルセルロース基材(TAC基材)のように柔らかい基材を使用した場合、基材の影響を受けて光学積層体の硬度(鉛筆硬度)が低下する。これは、薄い基材(例えば、厚み40μm)において顕著である。しかしながら、上記反応性異型シリカ微粒子がハードコート層の光透過性基材側に偏在していることで、ハードコート層の光透過性基材側に硬い領域が存在することとなり、光学積層体の硬度(鉛筆硬度)が優れたものとなる。本発明の光学積層体は、特に薄い(厚み25~65μm程度)TAC基材を用いる場合に有効である。
ここで、上記「反応性異型シリカ微粒子は、ハードコート層の光透過性基材側に偏在している」とは、図1に示したように、上記ハードコート層の厚み方向の断面を、光透過性基材側界面から上記断面の厚み方向に3等分し、上記光透過性基材側界面からそれぞれ領域(1)、領域(2)及び領域(3)としたとき、上記各領域(1)、(2)、(3)において観察される反応性異型シリカ微粒子の面積率が、領域(1)≧領域(2)>領域(3)なる関係を満たす。
なお、上記ハードコート層の厚み方向の断面における反応性異型シリカ微粒子の量は、上記断面での反応性異型シリカ微粒子の面積率を測定することで判断することができる。
ここで、上記面積率は、TEMによる断面写真から、画像解析ソフトWin Roof(三谷商事社ビジュアルシステム部)によって画像の2値化(反応性異型シリカ微粒子の存在量を面積化する)を行い、測定して得ることができる。
本発明の光学積層体において、上記領域(1)における反応性異型シリカ微粒子の面積率は、30~90%である。30%未満であると、ハードコート層の硬度を充分に高くできず、また、上記光透過性基材がTAC基材である場合、干渉縞が発生しやすくなる。一方、90%を超えると、本発明の光学積層体のヘイズの上昇(粒子の凝集、粒子間の空隙の発生)、光透過性基材との密着性の悪化、曲げ時のクラック発生等の原因となる。また、光透過性基材が後述するTAC基材の場合には屈折率の面から、干渉縞が発生する恐れもある。
上記領域(1)における反応性異型シリカ微粒子の面積率の好ましい下限は40%、好ましい上限は80%である。
また、上記領域(2)における反応性異型シリカ微粒子の面積率は、25~80%である。25%未満であると、ハードコート層の硬度を充分に高くできず、80%を超えると、本発明の光学積層体のヘイズの上昇(粒子の凝集、粒子間の空隙の発生)、曲げ時のクラック発生等の原因となる。
上記領域(2)における反応性異型シリカ微粒子の面積率の好ましい下限は30%、好ましい上限は70%である。
また、上記領域(3)における反応性異型シリカ微粒子の面積率は、10~35%である。10%未満であると、ハードコート層の硬度を充分に高くできず、35%を超えると、ハードコート層の上面に低屈折率層等を設けた場合、該低屈折率層とハードコート層との密着に寄与する樹脂成分が少ないため、これらの層間の密着性が不充分となる。また、ハードコート層に後述する防汚剤を添加した場合、防汚性が発現しにくくなる。これは、樹脂成分が少なく、反応性シリカ微粒子が多いと、防汚剤が表面に出にくいためと推測される。また、光透過性基材がTAC基材である場合、本発明の光学積層体の製造時のケン化工程で反応性異型シリカ微粒子が脱落しやすくなる。更に、上記ハードコート層が脆くなり、例えば、鉛筆硬度試験を行うと、試験跡がハードコート層表面に残留し、曲げられるとクラックが発生してしまう。
上記領域(3)における反応性異型シリカ微粒子の面積率の好ましい下限は15%、好ましい上限は30%である。
本発明の光学積層体では、上記領域(1)、(2)及び(3)における反応性異型シリカ微粒子の面積率がグラデーションになっていることが好ましい。
上述した領域(1)、(2)及び(3)における面積率をそれぞれ満たすことで、本発明の光学積層体は、ハードコート層の硬度が高く、また、ハードコート層内に防汚剤等を添加する場合、少量添加でその機能を充分に発揮できるとともに、ハードコート層上に低屈折率層等を設けた場合、該低屈折率層とハードコート層との密着性が優れたものとなる。
また、反応性異型シリカ微粒子の屈折率がハードコート層を構成するバインダー樹脂よりも低いため、ハードコート層内の屈折率を、領域(1)≦領域(2)<領域(3)の順とすることができる。ハードコート層中の屈折率がこのように変化するものであると、上記ハードコート層は、領域(1)と光透過性基材(例えば、TAC基材)との屈折率差が、領域(3)と光透過性基材(例えば、TAC基材)との屈折率差より小さいので、後述するように、干渉縞の発生の防止という面からも良好となる。
なお、具体的には、本発明の光学積層体では、ハードコート層の屈折率が1.50~1.53程度、反応性異型シリカ微粒子の屈折率が1.42~1.46程度、TAC基材の屈折率が1.48~1.49程度であるので、領域(1)がTAC基材の屈折率に近くなり干渉縞が消える。
また、ハードコート層内の屈折率を、領域(1)、領域(2)、領域(3)の順にグラデーションになることで、干渉縞を好適に防止することができる。
上記反応性異型シリカ微粒子としては、平均1次粒径が1~100nmの球状のシリカ微粒子3~20個が無機の化学結合により結合し、表面に反応性官能基を有するものであることが好ましい。このような反応性異型シリカ微粒子は、表面に反応性官能基を有するので、後述するハードコート層を構成するバインダー樹脂との反応が可能となり、ハードコート層の高硬度化に優れたものとなる。また、表面に反応性官能基を有するので、上記反応性異型シリカ微粒子を含むハードコート層は、耐溶剤性にも優れ、特にハードコート層にケン化処理(アルカリ処理)をした場合に、反応性異型シリカ微粒子が脱落しにくくなるため好ましい。なお、ハードコート層から反応性異型シリカ微粒子が脱落した場合は、ヘイズの上昇、透過率の低下、硬度の低下等を招くことがあり、防汚性能の悪化も起こることがある。
また、上記反応性異型シリカ微粒子は、いわゆる異型シリカ微粒子であるため、ハードコート層中で反応性異型シリカ微粒子同士及びバインダー樹脂と反応性シリカ微粒子とが絡み合い、ハードコート層の光透過性基材側(領域(1))に沈降し、反応性シリカ微粒子の高充填化が可能となる。また、異型シリカ微粒子であり高充填化できる点からも、耐溶剤性にも優れ、特にハードコート層にケン化処理(アルカリ処理)をした場合に反応性異型シリカ微粒子が脱落しにくくなるため好ましい。
更に、上記反応性異型シリカ微粒子が、平均1次粒径が1~100nmの球状のシリカ微粒子3~20個が無機の化学結合により結合していることで、硬く、特に鉛筆硬度が良好になるという特徴もある。
更にまた、上記光透過性基材がTAC基材の場合、上記反応性異型シリカ微粒子は、シリカ(SiO)の屈折率が1.42~1.46程度と低いため、屈折率が1.50~1.53程度のバインダー樹脂を含むハードコート層の屈折率をTAC基材(1.48~1.49)の屈折率に近づけ、ハードコート層及びTAC基材の屈折率差を小さくでき、いわゆる干渉縞の発生を防止することができる。
なお、上記反応性異型シリカ微粒子を構成する球状のシリカ微粒子において、「球状」とは、真球状のほか、回転楕円や多面体等も含めた球体に近似できる略球状も含む概念である。
上記球状のシリカ微粒子は、平均1次粒径が1~100nmであることが好ましい。1nm未満であると、ハードコート層の硬度向上に寄与できないことがあり、製造的にも難しく、また、凝集もしやすく、粘度も高いため扱いにくくなってしまう。100nmを超えると、ハードコート層の透明性が低下し、透過率の悪化、ヘイズの上昇を招く恐れがある。上記球状のシリカ微粒子の平均1次粒径のより好ましい下限は5nm、より好ましい上限は60nmである。
また、上記反応性異型シリカ微粒子の平均粒径(すなわち、上記球状シリカ微粒子の平均2次粒径)は、5~300nmの範囲内であることが好ましく、更に10~200nmの範囲内であることが好ましい。当該反応性異型シリカ微粒子の平均粒径が上記範囲内であれば、ハードコート層に硬度を付与しやすくかつハードコート層の透明性を維持しやすい。
なお、本明細書において、シリカ微粒子の平均1次粒径は、溶液中の当該粒子を動的光散乱方法で測定し、粒子径分布を累積分布で表したときの50%粒子径(d50 メジアン径)を意味する。当該平均1次粒径は、日機装(株)製のMicrotrac粒度分析計を用いて測定することができる。また、上記シリカ微粒子の平均2次粒径は、平均1次粒径と同様の方法により求めることができる。
上記反応性異型シリカ微粒子は、好ましくは上記球状のシリカ微粒子が3~20個、より好ましくは3~10個、無機の化学結合によって結合してなるものである。上記球状のシリカ微粒子数が3個未満であると、ハードコート層の硬度を高める効果が不充分となることがある。一方、上記球状のシリカ微粒子数が20個を超えると、ハードコート層の透明性が低下し、透過率の悪化、ヘイズの上昇を招く恐れがある。
このような反応性異型シリカ微粒子は、アスペクト比、すなわち、長軸と短軸の比が、3~20であることが、ハードコート層の耐擦傷性及び硬度が向上する効果が高い点から好ましい。
上記無機の化学結合としては、例えば、イオン結合、金属結合、配位結合及び共有結合が挙げられる。なかでも、上記反応性異型シリカ微粒子を極性溶媒中に添加しても、結合した球状のシリカ微粒子が分散しない結合、具体的には、金属結合、配位結合、及び共有結合が好ましく、更に、共有結合が好ましい。なお、極性溶媒としては、例えば、水、並びにメタノール、エタノール、イソプロピルアルコール等の低級アルコール等が挙げられる。
また、上記反応性異型シリカ微粒子の粒子状態としては、3~20個の上記球状のシリカ微粒子が無機の化学結合により結合し、凝集した状態の粒子(凝集粒子)、及び、3~20個の上記球状のシリカ微粒子が無機の化学結合により結合し、鎖状に結合した鎖状粒子が挙げられる。特に、ハードコート層の硬度を高める観点から、当該反応性異型シリカ微粒子の粒子状態としては、鎖状粒子が好ましい。
なお、上記反応性異型シリカ微粒子が鎖状粒子の場合、上記球状のシリカ微粒子の平均結合数は、ハードコート層の断面をTEM写真を用いて観察し、観察された硬化した反応性異型シリカ微粒子を100個選び、各反応性異型シリカ微粒子中に含まれる球状のシリカ微粒子を数え、その平均値として求めることができる。
このような反応性異型シリカ微粒子の製造方法として、上記球状のシリカ微粒子が無機の結合により結合したものが得られれば特に限定されず、従来公知の方法を適宜選択して用いることができる。例えば、単分散のシリカ微粒子分散液の濃度、あるいはpHを調節し、100℃以上の高温で水熱処理することによって得ることができる。このとき、必要に応じてバインダー成分を添加してシリカ微粒子の結合を促進することもできる。
また、使用されるシリカ微粒子分散液をイオン交換樹脂に通液することで、イオンを除去してもよい。このようなイオン交換処理によってシリカ微粒子の結合を促進することができる。水熱処理後、再度イオン交換処理を行ってもよい。
上記反応性異型シリカ微粒子は、表面に反応性官能基を有する。
上記反応性官能基としては特に限定されず、後述するハードコート層を構成するバインダー樹脂との架橋が可能なように適宜選択される。
具体的には、上記反応性官能基としては、重合性不飽和基が好適に用いられ、好ましくは光硬化性不飽和基であり、特に好ましくは電離放射線硬化性不飽和基である。その具体例としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合及びエポキシ基等が挙げられる。なかでも、エチレン性不飽和結合であることが好ましい。
上記反応性官能基は、少なくとも反応性異型シリカ微粒子の表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有するものであることが好ましい。
ここで、有機成分とは、炭素を含有する成分である。また、少なくとも表面の一部に有機成分が被覆されている態様としては、例えば、シリカ微粒子の表面に存在する水酸基にシランカップリング剤等の有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様、又は、シリカ微粒子の表面に存在する水酸基にイソシアネート基を有する有機成分を含む化合物が反応して、表面の一部に有機成分が結合した態様の他、例えば、シリカ微粒子の表面に存在する水酸基に水素結合等の相互作用により有機成分を付着させた態様や、ポリマー粒子中にシリカ微粒子を含有する態様等が含まれる。
少なくとも表面の一部に有機成分が被覆され、当該有機成分により導入された反応性官能基を表面に有する反応性異型シリカ微粒子を調製する方法としては特に限定されず、従来公知の方法を用いることができる。
上述した反応性異型シリカ微粒子は、上記ハードコート層中該反応性異型シリカ微粒子と後述するバインダー樹脂との合計100質量部に対して、15~45質量部含有されていることが好ましい。15質量部未満であると、ハードコート層を充分に高硬度化することができないことがあり、45質量部を超えると、後述するような反応性異型シリカ微粒子の分布を維持できないことがあり、ハードコート層の上面に低屈折率層等の光学的機能層を設けたときに、ハードコート層と光学的機能層との密着性が不充分となることがある。
上記ハードコート層を構成するバインダー樹脂としては、透明性のものが好適に用いられ、具体的には、紫外線若しくは電子線により硬化する樹脂である電離放射線硬化型樹脂、電離放射線硬化型樹脂と溶剤乾燥型樹脂(塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)との混合物、又は、熱硬化型樹脂等が挙げられ、好ましくは電離放射線硬化型樹脂が挙げられる。なお、本明細書において、「樹脂」は、モノマー、オリゴマー等の樹脂成分も包含する概念である。
上記電離放射線硬化型樹脂としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートやこれらのエチレンオキサイド変性品、プロピレンオキサイド変性品、カプロラクトン変性品等の多官能を有するものが挙げられる。なお、本明細書において「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。
上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。
上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂と併用して使用することもできる。溶剤乾燥型樹脂を併用することによって、塗布面の被膜欠陥を有効に防止することができ、これによってより優れた防眩性を得ることができる。上記電離放射線硬化型樹脂と併用して使用することができる溶剤乾燥型樹脂としては特に限定されず、一般に、熱可塑性樹脂を使用することができる。
上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、製膜性、透明性や耐候性の観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
上記バインダー樹脂として使用できる熱硬化型樹脂としては、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
上記ハードコート層形成用組成物は、バインダー樹脂である電離放射線硬化型樹脂を紫外線硬化型樹脂として使用する場合には、光重合開始剤を用いることが好ましい。
上記光重合開始剤としては、例えば、アセトフェノン類(例えば、商品名イルガキュア184、BASF社製の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、商品名イルガキュア907、BASF社製の2-メチル-1〔4-(メチルチオ)フェニル〕-2-モリフォリノプロパン-1-オン)、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を挙げることができる。これらは、単独で使用してもよいし又は2種以上を併用してもよい。
また、商品名イルガキュア127(BASF社製の2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル〕-フェニル}-2-メチル-プロパン-1-オン)や、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1や2-ジメチルアミノ-2-(4メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オンも併用可能である。
更に、上記以外の市販品も使用でき、具体的には、BASF社製のイルガキュア369、イルガキュア379、イルガキュア819、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173、日本シイベルヘグナー社製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46、日本化薬社製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。
また、上記ハードコート層は、更に防汚剤を含有することが好ましい。
上述のように、上記ハードコート層中の反応性異型シリカ微粒子は、光透過性基材側に偏在しているため、該ハードコート層が防汚剤を含有する場合、該防汚剤は、ハードコート層の光透過性基材と反対側に偏在することとなる。その結果、防汚剤の添加量を多くすることなく、充分な防汚性能をハードコート層に付与することが可能となる。
上記防汚剤としては特に限定されず、例えば、含シリコーン系と含フッ素系、含シリコーン系/含フッ素系防汚剤が挙げられ、それぞれ単独で使用してもよく、混合して使用してもよい。または、アクリル系防汚剤でもよい。
上記防汚剤の具体例としては、例えば、含フッ素系防汚剤(商品名オプツールDAC、ダイキン工業社製)等が挙げられる。
上記防汚剤の含有量としては、上述したバインダー樹脂100質量部に対して、0.01~1.0重量部であることが好ましい。0.01重量部未満であると、ハードコート層に充分な防汚性を付与できないことがあり、1.0重量部を超えると、ハードコート層の硬度が低下する恐れがある。
また、上記防汚剤は、重量平均分子量が5000以下であることが好ましく、防汚性能の耐久性を改善するために、反応性官能基を好ましくは1以上、より好ましくは2以上有する化合物が好ましい。なお、上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算により求めることができる。
更に、上記反応性を有する防汚剤は、防汚性の性能持続性(耐久性)が良好となり、なかでも、上述した含フッ素系防汚剤は、指紋が付きにくく(目立ちにくく)、拭き取り性も良好である。更に、上記ハードコート層形成用組成物の塗工時の表面張力を下げることができるので、レベリング性がよく、形成するハードコート層の外観が良好なものとなる。
また、反応性を有する防汚剤としては、市販品として入手可能であり、上記以外の市販品としては、例えば、含シリコーン系としては、例えば、SUA1900L10(新中村化学社製)、SUA1900L6(新中村化学社製)、Ebecryl1360(ダイセルサイテック社製)、UT3971(日本合成社製)、BYKUV3500(ビックケミー社製)、BYKUV3510(ビックケミー社製)、BYKUV3570(ビックケミー社製)等が挙げられ、含フッ素系としては、例えば、RS71(DIC社製)、RS74(DIC社製)、ディフェンサTF3001(DIC社製)、ディフェンサTF3000(DIC社製)、ディフェンサTF3028(DIC社製)、ライトプロコートAFC3000(共栄社化学社製)等が挙げられる。
上記ハードコート層は、上述した成分の他に、必要に応じて、その他の成分を含んでいてもよい。上記その他の成分としては、上記バインダー樹脂以外の樹脂、熱重合開始剤、紫外線吸収剤、光重合開始剤、光安定化剤、レベリング剤、架橋剤、硬化剤、重合促進剤、粘度調整剤、帯電防止剤、酸化防止剤、スリップ剤、屈折率調整剤、分散剤、ブロッキング防止剤、着色剤等が挙げられる。これらは公知のものを使用することができる。
上記ハードコート層は、上述した反応性異型シリカ微粒子、バインダー樹脂及び必要に応じて防汚剤や、その他の任意の成分を溶剤中に分散させたハードコート層用組成物を、上記光透過性基材上に塗布し形成した塗膜を乾燥し、電離放射線照射又は加熱等により硬化させることで形成することができる。
また、上記溶剤としては、使用するバインダー樹脂の種類及び溶解性に応じて選択して使用することができ、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、水、アルコール類(エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合溶媒であってもよい。
上記溶剤は、なかでも、トリアセチルセルロース基材に対して浸透性のある浸透性溶剤を含有することが好ましい。本発明において、浸透性溶剤の「浸透性」とは、トリアセチルセルロース基材に対する浸透性、膨潤性、湿潤性等のすべての概念を包含する意である。後述する光透過性基材がトリアセチルセルロース基材であると、このような浸透性溶剤がトリアセチルセルロース基材を膨潤、湿潤することによって、ハードコート層形成用組成物の一部がトリアセチルセルロース基材まで浸透する挙動をとり、トリアセチルセルロース基材とハードコート層との界面を実質的に無くすことができ、干渉縞の発生の更なる防止、及び、トリアセチルセルロース基材とハードコート層との密着性の向上を図ることができる。
上記浸透性溶剤の具体例としては、ケトン類;アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン、ジアセトンアルコール、エステル類;蟻酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、含窒素化合物;ニトロメタン、アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、グリコール類;メチルグリコール、メチルグリコールアセテート、エーテル類;テトラヒドロフラン、1,4-ジオキサン、ジオキソラン、ジイソプロピルエーテル、ハロゲン化炭化水素;塩化メチレン、クロロホルム、テトラクロルエタン、グリコールエーテル類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、セロソルブアセテート、その他、ジメチルスルホキシド、炭酸プロピレンが挙げられ、またはこれらの混合物が挙げられ、好ましくはエステル類、ケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン等が挙げられる。その他、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルアルコール等のアルコール類や、トルエン、キシレン等の芳香族炭化水素類も、上記浸透性溶剤と混合して用いることができる。
本発明の光学積層体において、上記ハードコート層に含まれる反応性異型シリカ微粒子は、上述したように該ハードコート層の光透過性基材側に偏在している。このようなハードコート層の形成方法としては、例えば、上述した塗膜の乾燥条件を適宜調整する方法が挙げられる。
具体的には、例えば、上記ハードコート層用組成物に用いられる溶剤として後述する浸透性溶剤を用い、光透過性基材上に塗膜を形成した後、該塗膜を含まれるバインダー樹脂が光透過性基材中に少しだけ浸透するような条件で乾燥させる方法が挙げられる。なお、このとき、上記バインダー樹脂が光透過性基材中に浸透する量が多くなりすぎると、形成するハードコート層の硬度低下を招くことがある。
また、上記ハードコート層用組成物に用いられる溶剤として浸透性溶剤以外の溶剤(非浸透性溶剤)を用いる場合、例えば、上記塗膜の乾燥温度を高くする、上記ハードコート層用組成物における固形分を下げる、バインダー樹脂の分子量を小さなものとする(重量平均分子量で450以下程度)、といった方法により、上記バインダー樹脂を光透過性基材中に浸透させ、上述したハードコート層を形成する方法が挙げられる。
更に、上記ハードコート層用組成物に非浸透性溶剤を用いる場合、上述した塗膜をゆっくりと乾燥させて、該塗膜中で反応性異型シリカ微粒子を自重により沈降させる方法も挙げられる。この場合、バインダー樹脂として粘度の低いものを選択して用いることが好ましい。これは、領域(1)では、反応性異型シリカ微粒子同士は絡み合って、単位体積あたりのシリカ密度が、球状シリカと比べて高くなるため沈降する。そして、領域(1)における単位面積当たりの沈降に対するバインダー樹脂の抵抗が減る。更に、TAC基材にバインダー樹脂を浸透させて、領域(1)の反応性異型シリカ微粒子の割合を上げることで、より効果的に反応性異型シリカ微粒子の面積率のグラデーションを付けることができる。
他に、上記塗膜の乾燥中に対流を起こすと、反応性シリカ微粒子の濃淡差がでてしまうため、上記塗膜の乾燥は対流を起こさずに行うことが必要である(すなわち、反応性異型シリカ微粒子の存在位置を乾燥初期に固定させる)。
上記乾燥過程で、光透過性基材から暖めると、光透過性基材とハードコート層の界面で対流が起こるので好ましくない。一方、ハードコート層側から乾燥させると、乾燥初期に被膜ができるため対流を抑制でき、上記反応性異型シリカ微粒子の面積率のグラデーションが発現しやすい。
上記光透過性基材は、平滑性、耐熱性を備え、機械的強度に優れたものが好ましい。光透過性基材を形成する材料の具体例としては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、アクリル、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。好ましくは、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート(TAC)が挙げられる。
本発明の光学積層体では、上記光透過性基材の材料としては、なかでもTACが特に好ましい。本発明の上述した効果を出しやすく、また、上述した反応性異型シリカ微粒子の面積率のグラデーションをつけやすいためである。
上記光透過性基材は、上記熱可塑性樹脂を柔軟性に富んだフィルム状体として使用することが好ましいが、硬化性が要求される使用態様に応じて、これら熱可塑性樹脂の板を使用することも可能であり、又は、ガラス板の板状体のものを使用してもよい。
その他、上記光透過性基材としては、脂環構造を有した非晶質オレフィンポリマー(Cyclo-Olefin-Polymer:COP)フィルムが挙げられる。これは、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体等が用いられる基材で、例えば、日本ゼオン社製のゼオネックスやゼオノア(ノルボルネン系樹脂)、住友ベークライト社製のスミライトFS-1700、JSR社製のアートン(変性ノルボルネン系樹脂)、三井化学社製のアペル(環状オレフィン共重合体)、Ticona社製のTopas(環状オレフィン共重合体)、日立化成社製のオプトレッツOZ-1000シリーズ(脂環式アクリル樹脂)等が挙げられる。
また、トリアセチルセルロースの代替基材として旭化成ケミカルズ社製のFVシリーズ(低複屈折率、低光弾性率フィルム)も好ましい。
上記光透過性基材の厚さはとしては、20~300μmであることが好ましく、より好ましくは下限が30μmであり、上限が200μmである。光透過性基材が板状体の場合には、これらの厚さを超える厚さであってもよい。上記光透過性基材は、その上に上記ハードコート層等を形成するのに際して、接着性向上のために、コロナ放電処理、酸化処理等の物理的又は化学的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布が予め行われていてもよい。近年、ディスプレイの薄化、軽量化が望まれているため、TAC基材の場合は、25~70μm程度の厚みであることが好ましい。本発明の光学積層体は、軽量化に最適である。TAC基材が薄くなると、該TAC基材が原因で硬度の問題が顕著になるが、本発明の光学積層体は、ハードコート層に上述した領域(1)を有するため、このような硬度の問題を好適に解決することができる。
本発明の光学積層体は、上記ハードコート層の上に、更に低屈折率層を有することが好ましい。
上述したように、本発明の光学積層体におけるハードコート層は、含有する反応性異型シリカ微粒子が該ハードコート層の光透過性基材側に偏在しているため、上記低屈折率層とハードコート層との密着性が優れたものとなる。また、上記領域(3)は、領域(1)よりも反応性異型シリカ微粒子の割合が少ない(屈折率が高い)ので、より低反射の光学積層体となる。
上記低屈折率層としては、シリカやフッ化マグネシウム等の低屈折率物質を樹脂中に含有させた層、フッ素系樹脂等の低屈折率樹脂の層、低屈折率物質を低屈折率樹脂中に含有させた層、或いは、低屈折率物質として空隙含有微粒子を樹脂中に含有させた層等が挙げられる。上記低屈折率層に含まれる樹脂は、該低屈折率層のハードコート層との密着性に優れることから、紫外線硬化型樹脂であることが好ましい。
上記紫外線硬化型樹脂としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。なかでも、ペンタエリスリトールトリアクリレート(PETA)、ジペンタエリスリトールヘキサアクリレート(DPHA)、ペンタエリスリトールヘキサアクリレート(PETTA)、トリメチロールプロパントリアクリレート(TMPTA)が好適に用いられる。また、多官能ウレタン(メタ)アクリレートも好適に用いられる。
上記紫外線硬化型樹脂を用いる場合、光重合開始剤を併用することが好ましい。上記光重合開始剤としては、例えば、アセトフェノン類(例えば、商品名イルガキュア184、BASF社製の1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、商品名イルガキュア907、BASF社製の2-メチル-1〔4-(メチルチオ)フェニル〕-2-モリフォリノプロパン-1-オン)、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を挙げることができる。これらは、単独で使用してもよいし又は2種以上を併用してもよい。
また、商品名イルガキュア127(BASF社製の2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル〕-フェニル}-2-メチル-プロパン-1-オン)や、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1や2-ジメチルアミノ-2-(4メチル-ベンジル)-1-(4-モリフォリン-4-イル-フェニル)-ブタン-1-オンも併用可能である。
更に、上記以外の市販品も使用でき、具体的には、BASF社製のイルガキュア369、イルガキュア379、イルガキュア819、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173、日本シイベルヘグナー社製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46、日本化薬社製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。
なかでも、商品名イルガキュア127(BASF社製の2-ヒドロキシ-1-{4-〔4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル〕-フェニル}-2-メチル-プロパン-1-オン)が好適に用いられる。
なお、上記空隙含有微粒子とは、内部に気体を含む微粒子や、気体を含む多孔質構造の微粒子のことであり、微粒子固体部分の本来の屈折率に対して、該気体による空隙によって微粒子全体としては、見かけ上屈折率が低下した微粒子を意味する。このような空隙含有微粒子としては、例えば、特開2001-233611号公報に開示のシリカ微粒子等が挙げられる。また、空隙含有微粒子としては、シリカのような無機物以外に、特開2002-805031号公報等に開示の中空ポリマー微粒子も挙げられる。
なお、空隙含有微粒子の平均粒径は、例えば、5~300nm程度である。また、上記空隙含有微粒子の表面には紫外線硬化のできる官能基を有することが好ましい。
本発明の光学積層体において、上記低屈折率層は、屈折率が1.450未満であることが好ましい。1.450以上であると、本発明の光学積層体の反射防止性能が不充分となり、近年の画像表示装置の高レベルな表示品質に対応することができないことがある。より好ましい下限は1.250、より好ましい上限は1.425である。
上記低屈折率層の膜厚(nm)dAは、下記式(I):
dA=mλ/(4nA) (I)
(上記式中、
nAは低屈折率層の屈折率を表し、
mは正の奇数を表し、好ましくは1を表し、
λは波長であり、好ましくは480~580nmの範囲の値である)
を満たすものが好ましい。
また、本発明にあっては、低屈折率層は下記数式(II):
120<nAdA<145 (II)
を満たすことが低反射率化の点で好ましい。
また、上記低屈折率層は、ヘイズ値が1%以下であることが好ましい。1%を超えると、本発明の光学積層体の光透過性が低下し、画像表示装置の表示品質低下の原因となることがある。より好ましくは0.5%以下である。なお、本明細書において、ヘイズ値とはJIS K7136に準拠して求められた値である。
このような低屈折率層の形成方法としては、上述した低屈折率層を構成する材料及び更にその他の成分を含む低屈折率層用組成物を用いて、上記ハードコート層の表面に塗布し形成した塗膜を乾燥し、電離放射線の照射及び/又は加熱により塗膜を硬化させることにより形成することができる。
上記低屈折率層用組成物を塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイドコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の各種方法が挙げられる。
上記低屈折率層用組成物に必要に応じて含んでいてもよいその他の成分としては、例えば、レベリング剤、重合促進剤、粘度調整剤、防汚剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、着色剤、帯電防止剤、上述した以外の樹脂等が挙げられる。
また、本発明の光学積層体は、必要に応じて任意の層として、上述したハードコート層とは異なる他のハードコート層、高屈折率層、中屈折率層、帯電防止層、防眩層、防汚層等を備えてなるものであってよい。
本発明の光学積層体は、硬度が、JIS K5600-5-4(1999)による鉛筆硬度試験(荷重4.9N)において、2H以上であることが好ましく、3H以上であることがより好ましい。
また、本発明の光学積層体は、表面を、#0000番のスチールウールを用いて、摩擦荷重500g/cmで10往復摩擦した後に上記表面を観察した場合、上記表面の塗膜の剥がれが見られないことが好ましく、700g/cmで同様に10往復摩擦した後に、表面塗膜の剥がれが見られないことがより好ましい。最も好ましくは1000g/cm以上で同様に10往復摩擦して表面塗膜の剥がれが見られないことである。
また、本発明の光学積層体の全光線透過率は、80%以上であることが好ましい。80%未満であると、ディスプレイ表面に装着した場合において、色再現性や視認性を損なうおそれがある。上記全光線透過率は、90%以上であることがより好ましい。
本発明の光学積層体は、ヘイズ値が1%以下であることが好ましい。1%を超えると、本発明の光学積層体の光透過性が低下し、画像表示装置の表示品質低下の原因となることがある。より好ましくは0.5%以下である。
なお、上記ヘイズは、ヘイズメーター(村上色彩技術研究所製、製品番号;HM-150)を用いてJIS K-7136に準拠した方法により測定することができる。
本発明の光学積層体は、光透過性基材上に、上述したハードコート層用組成物を塗布してハードコート層を形成する工程、及び、必要に応じて、更に形成したハードコート層上に上述した低屈折率層用組成物を塗布して低屈折率層を形成する工程を有する方法が挙げられる。
上記ハードコート層及び低屈折率層を形成する方法としては、上述したとおりである。
また、上記ハードコート層に上述した反応性異型シリカ微粒子を偏在させる乾燥条件としては、具体的には、例えば、乾燥温度:40~90℃、乾燥時間:30~90秒であることが好ましく、このとき、ハードコート層形成用組成物の固形分は30~50%であることが好ましい。
本発明の光学積層体は、偏光素子の表面に、本発明による光学積層体を該光学積層体におけるハードコート層が存在する面と反対の面に設けることによって、偏光板とすることができる。このような偏光板も、本発明の一つである。
上記偏光素子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等が挙げられる。
上記偏光素子と本発明の光学積層体とのラミネート処理においては、光透過性基材(好ましくは、トリアセチルセルロース基材)にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。
本発明は、最表面に上記光学積層体又は上記偏光板を備えてなる画像表示装置でもある。
上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、電子ペーパー、タッチパネル、タブレットPC等の画像表示装置であってもよい。
上記LCDは、透過性表示体と、該透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の光学積層体又は本発明の偏光板が形成されてなるものである。
本発明が上記光学積層体を有する液晶表示装置の場合、光源装置の光源は光学積層体の下側から照射される。なお、STN型の液晶表示装置には、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。
上記PDPは、表面ガラス基板(表面に電極を形成)と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板(電極及び、微小な溝を表面に形成し、溝内に赤、緑、青の蛍光体層を形成)とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又は、その前面板(ガラス基板又はフィルム基板)に上述した光学積層体を備えるものでもある。
上記画像表示装置は、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した反射防止フィルムを備えるものである。
本発明の画像表示装置は、いずれの場合も、テレビジョン、コンピュータ、ワードプロセッサなどのディスプレイ表示に使用することができる。特に、CRT、液晶パネル、PDP、ELD、FED、電子ペーパー、タッチパネル、タブレットPCなどの高精細画像用ディスプレイの表面に好適に使用することができる。
本発明の反射防止フィルムは、ハードコート層が反応性異型シリカ微粒子を含有するものであり、該反応性異型シリカ微粒子がハードコート層の光透過性基材側に所定の割合で偏在している。このため、ハードコート層を高硬度とすることができるとともに、防汚剤等をハードコート層に添加した場合、少量添加で充分にその機能を発揮させることができ、更に、ハードコート層の上面に低屈折率層等の光学的機能層を積層したときに、該光学的機能層とハードコート層との密着性に優れたものとすることができる。
更に、光透過性基材がトリアセチルセルロース基材である場合、ハードコート層とトリアセチルセルロース基材との界面で干渉縞が発生することも好適に防止することができる。このため、本発明の反射防止フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等に好適に適用することができる。
本発明の光学積層体の一例を模式的に示す断面図である。
本発明の内容を下記の実施例により説明するが、本発明の内容はこれらの実施態様に限定して解釈されるものではない。特別に断りの無い限り、「部」及び「%」は質量基準である。更に、特に断りの無い限り、各成分量は固形分量である。
下記成分を配合してハードコート層用組成物1~18を調製した。
(ハードコート層用組成物1)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物2)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 100重量部(固形換算40重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 60重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 60重量部
(ハードコート層用組成物3)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 62重量部(固形換算25重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 75重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 83重量部
(ハードコート層用組成物4)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 125重量部(固形換算50重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 50重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 45重量部
(ハードコート層用組成物5)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039-1 SIV(1次平均粒径45nm、平均連結個数4、固形分40%、MIBK溶剤)) 113重量部(固形換算45重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 55重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 52重量部
(ハードコート層用組成物6)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039-2 SIV(1次平均粒径20nm、平均連結個数8、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物7)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ペンタエリスリトールトリアクリレート(日本化薬社製、PET30) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物8)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 40重量部
ポリマーアクリレート(荒川化学工業社製、ビームセットBS371、固形分65%、酢酸ブチル溶剤) 40重量部(固形換算で30重量部)
防汚剤(DIC社製、RS71、反応基含有フッ素オリゴマー) 固形換算1重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物9)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
フッ素系防汚剤(DIC社製、RS71) 固形換算0.5重量部
MIBK 75重量部
(ハードコート層用組成物10)
球状反応性シリカ微粒子(日産化学工業社製、製品名MIBKSD(1次平均粒径12nm、平均連結個数0、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物11)
非反応性異型シリカ微粒子(日揮触媒化成社製、1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物12)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 25重量部(固形換算10重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 90重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 105重量部
(ハードコート層用組成物13)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 15重量部
(ハードコート層用組成物14)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 75重量部
(ハードコート層用組成物15)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 175重量部(固形換算70重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 30重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 15重量部
(ハードコート層用組成物16)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 175重量部(固形換算70重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 30重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 200重量部
(ハードコート層用組成物17)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 75重量部(固形換算30重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 70重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
MIBK 100重量部
(ハードコート層用組成物18)
反応性異型シリカ微粒子(日揮触媒化成社製、製品名DP1039SIV(1次平均粒径20nm、平均連結個数4、固形分40%、MIBK溶剤)) 175重量部(固形換算70重量部)
ジペンタエリスリトールヘキサアクリレート(日本化薬社製、DPHA) 30重量部
光重合開始剤(BASF社製、イルガキュア184) 4重量部
フッ素系防汚剤(DIC社製、RS71) 固形換算0.5重量部
MIBK 15重量部
(実施例1~9、比較例1~4、6~9)
光透過性基材(厚み40μm、トリアセチルセルロース樹脂フィルム(富士フイルム社製、TD40UL)を準備し、該光透過性基材の片面に、表1に示した各ハードコート層形成用組成物を塗布し塗膜を形成した。その後、該塗膜を温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量が200mJになるように照射して塗膜を硬化させることにより、13g/m(乾燥時、厚み10μm)のハードコート層を形成させて、実施例1~9、比較例1~4、6~9に係る光学積層体を製造した。
(比較例5)
塗膜を温度70℃の熱オーブン中で60秒間乾燥させる際、ハードコート層形成用組成物を塗布した側が、下向きになるように乾燥させた以外は、実施例1と同様にして比較例5に係る光学積層体を製造した。
実施例及び比較例で得られた光学積層体を以下の方法により評価した。結果を表1に示した。
(鉛筆硬度)
鉛筆引っ掻き試験の硬度は、作製した実施例及び比較例に係る光学積層体を温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(500g荷重)を行い、傷がつかなかった最も高い硬度を測定した。
(耐スチールウール(SW)性)
実施例及び比較例に係る光学積層体のハードコート層の表面を、#0000番のスチールウールを用いて10往復摩擦し、塗膜の剥がれが生じなかった最も高い摩擦荷重(g/cm)を測定した。
(ヘイズ)
ヘイズメーター(村上色彩技術研究所製、製品番号;HM-150)を用いてJIS K-7136に従い、ヘイズ値(%)を測定した。
(密着性)
JIS K 5600に基づき、実施例及び比較例に係る光学積層体のハードコート層に、1mm角で合計100目の碁盤目を入れ、ニチバン社製工業用24mmセロテープ(登録商標)を用いて5回連続剥離試験を行い、残っているマス目の数量を計測した。
なお、表1には、(剥がれなかったマス目の数)/(合計のマス目数100)を表した。
(干渉縞)
実施例及び比較例に係る光学積層体のハードコート層と反対側の面に黒色のテープを貼合した後、三波長管蛍光灯下にて目視にて干渉縞の有無の評価を行った。干渉縞が視認できない場合を○とし、薄く視認出来た場合を△とし、視認できた場合を×とした。
Figure JPOXMLDOC01-appb-T000001
表1に示したように、実施例に係る光学積層体は、鉛筆硬度は4H以上であり、耐SW性、ヘイズ及び密着性の各評価も良好な結果である。
一方、比較例に係る光学積層体は、いずれも鉛筆硬度が3H以下であり、耐SW性、ヘイズ及び密着性のいずれにも優れたものはなかった。
(参考例1)
光透過性基材(厚み40μm、トリアセチルセルロース樹脂フィルム(富士フイルム社製、TD40UL)を準備し、該光透過性基材の片面に、ハードコート層用組成物1を塗布し塗膜を形成した。その後、該塗膜を温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量が70mJになるように照射して塗膜を硬化(半硬化)させることにより、乾燥時13g/m(乾燥時、厚み10μm)のハードコート層を形成させた。
更にハードコート層の上に、下記に示した低屈折率層用組成物1を塗布して塗膜を形成した。その後、該塗膜を温度70℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量が200mJになるように照射して、塗膜を硬化させることにより、厚みが100nmの低屈折率層を備えた光学積層を作製した。
低屈折率層用組成物1
中空状処理シリカ微粒子(該シリカ微粒子の固形分:20質量%溶液;メチルイソブチルケトン、平均粒径:50nm) 73質量部
フッ素原子含有ポリマー(JSR社製;オプスターTU2224、固形分20%溶剤メチルイソブチルケトン) 固形分換算で2質量部
フッ素原子含有モノマー(共栄社化学社製;LINC3A、固形分100%) 5質量部
ペンタエリスリトールトリアクリレート(PETA) 3質量部
重合開始剤(イルガキュア127;BASF社製) 0.35質量部
シリコーン・フッ素原子含有防汚剤(TU2225;JSR社製) 固形分換算で0.5質量部
メチルイソブチルケトン(MIBK) 320質量部
プロピレングリコールモノメチルエーテル(PGME) 161質量部
この結果、得られた低屈折率層を備えた光学積層体は、面積率、鉛筆硬度、ヘイズ、密着性及び干渉縞の各評価は、実施例1と同様であったが、低屈折率層を有するため、耐SW性は、400g/cmであり、反射率を測定したところ、Y値が0.98%であった。なお、上記Y値とは、島津製作所製の光学測定装置(UV-3100PC、分光計)を使用し、波長領域400~700nmの範囲の5度正反射率を測定し、JIS Z8701に従って視感度補正した値である。
本発明の光学積層体は、上述した構成からなるハードコート層を有するため、硬度に優れ、防汚剤等の少量添加で充分にその機能を発揮させることができ、更に、ハードコート層上に低屈折率層等の光学的機能層を設けた場合、ハードコート層と光学的機能層との密着性に優れたものとなる。
そのため、本発明の光学積層体は、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等に好適に適用することができる。
10 光学積層体
11 光透過性基材
12 ハードコート層
 

Claims (8)

  1. 光透過性基材の上にハードコート層が形成された光学積層体であって、
    前記ハードコート層は、反応性異型シリカ微粒子とバインダー樹脂とを含有し、
    前記ハードコート層の前記光透過性基材側に前記反応性異型シリカ微粒子が偏在しており、
    前記ハードコート層の厚み方向の断面を、前記光透過性基材側界面からそれぞれ領域(1)、領域(2)及び領域(3)と3等分したとき、
    前記領域(1)における反応性異型シリカ微粒子の面積率が30~90%、
    前記領域(2)における反応性異型シリカ微粒子の面積率が25~80%、
    前記領域(3)における反応性異型シリカ微粒子の面積率が10~35%であって、かつ、
    領域(1)における反応性異型シリカ微粒子の面積率≧領域(2)における反応性異型シリカ微粒子の面積率>領域(3)における反応性異型シリカ微粒子の面積率
    である
    ことを特徴とする光学積層体。
  2. 反応性異型シリカ微粒子は、平均1次粒径が1~100nmの球状のシリカ微粒子3~20個が無機の化学結合により結合し、表面に反応性官能基を有するものである請求項1記載の光学積層体。
  3. ハードコート層中の反応性異型シリカ微粒子の含有量が、前記反応性異型シリカ微粒子とバインダー樹脂との合計100質量部に対し、15~50質量部である請求項1又は2記載の光学積層体。
  4. ハードコート層は、更に防汚剤を含有する請求項1、2又は3記載の光学積層体。
  5. ハードコート層の上に、更に低屈折率層を有する請求項1、2、3又は4記載の光学積層体。
  6. 光透過性基材は、トリアセチルセルロースからなる請求項1、2、3、4又は5記載の光学積層体。
  7. 偏光素子を備えてなる偏光板であって、
    前記偏光板は、偏光素子表面に請求項1、2、3、4、5又は6記載の光学積層体を備えることを特徴とする偏光板。
  8. 最表面に請求項1、2、3、4、5若しくは6記載の光学積層体、又は、請求項7記載の偏光板を備えることを特徴とする画像表示装置。
     
     
PCT/JP2011/071514 2010-09-30 2011-09-21 光学積層体、偏光板及び画像表示装置 WO2012043341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137010949A KR20130119926A (ko) 2010-09-30 2011-09-21 광학 적층체, 편광판 및 화상 표시 장치
US13/876,952 US10073195B2 (en) 2010-09-30 2011-09-21 Optical layered body, polarizer and image display device
JP2012536370A JP5983410B2 (ja) 2010-09-30 2011-09-21 光学積層体、偏光板及び画像表示装置
KR1020187019562A KR102159687B1 (ko) 2010-09-30 2011-09-21 광학 적층체, 편광판 및 화상 표시 장치
CN201180040154.8A CN103080778B (zh) 2010-09-30 2011-09-21 光学层叠体、偏振片和图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-221389 2010-09-30
JP2010221389 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012043341A1 true WO2012043341A1 (ja) 2012-04-05

Family

ID=45892799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071514 WO2012043341A1 (ja) 2010-09-30 2011-09-21 光学積層体、偏光板及び画像表示装置

Country Status (6)

Country Link
US (1) US10073195B2 (ja)
JP (1) JP5983410B2 (ja)
KR (2) KR20130119926A (ja)
CN (1) CN103080778B (ja)
TW (1) TWI513587B (ja)
WO (1) WO2012043341A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
KR20210037751A (ko) * 2013-05-07 2021-04-06 코닝 인코포레이티드 구배층을 갖는 내-스크래치 제품
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
JP7115657B1 (ja) * 2021-06-11 2022-08-09 大日本印刷株式会社 機能性フィルム及びその製造方法
US11535777B2 (en) 2017-03-23 2022-12-27 Mitsubishi Chemical Corporation Double-sided pressure-sensitive adhesive sheet, laminate comprising component member for image display device, kit for laminate formation, and use of double-sided pressure-sensitive adhesive sheet
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103620449B (zh) * 2011-07-26 2015-12-23 大日本印刷株式会社 防眩性膜、偏振片和图像显示装置
CN104808277A (zh) * 2015-05-11 2015-07-29 武汉华星光电技术有限公司 偏振光片和包含其的液晶显示装置
CN109753192A (zh) * 2017-11-03 2019-05-14 张家港康得新光电材料有限公司 透明导电膜、其制备方法、电容式触控组件及电容式触摸屏
US10976474B2 (en) * 2017-11-06 2021-04-13 Motorola Mobility Llc Anti-static lens coatings
CN108089246A (zh) * 2017-12-04 2018-05-29 张家港康得新光电材料有限公司 一种光学膜及触控屏及光学膜的制备方法
CN108205166A (zh) * 2017-12-04 2018-06-26 张家港康得新光电材料有限公司 一种光学膜及触控屏
CN108169826A (zh) * 2017-12-04 2018-06-15 张家港康得新光电材料有限公司 一种光学膜、ito膜及触控屏
EP3730292B1 (en) * 2018-06-29 2023-04-19 Lg Chem, Ltd. Optical laminate and display device
TWI763976B (zh) * 2018-07-25 2022-05-11 日商日東電工股份有限公司 易接著薄膜及其製造方法、偏光板、以及影像顯示裝置
EP3925773A4 (en) * 2019-02-13 2022-11-16 Sekisui Chemical Co., Ltd. LAMINATED SHEET
US20210341649A1 (en) * 2020-04-29 2021-11-04 Samsung Display Co., Ltd. Anti-reflective film and display device including the same
TWI817160B (zh) * 2020-07-13 2023-10-01 日商日東電工股份有限公司 附防汙層之光學膜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085983A (ja) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2010102123A (ja) * 2008-10-23 2010-05-06 Dainippon Printing Co Ltd ハードコートフィルム
JP2010120991A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
JP2010122325A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd 光学シート及び光学シートの製造方法
JP2010131771A (ja) * 2008-12-02 2010-06-17 Dainippon Printing Co Ltd ハードコートフィルム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135232B2 (ja) * 1998-10-29 2008-08-20 凸版印刷株式会社 ハードコートフィルムもしくはシート
KR101224621B1 (ko) 2005-12-14 2013-01-22 도레이첨단소재 주식회사 도전성/자성 입자를 함유한 하드코트 및 방현성 반사 방지필름의 제조방법
JP5186834B2 (ja) 2007-08-10 2013-04-24 大日本印刷株式会社 ハードコートフィルム
JP5203741B2 (ja) 2008-02-19 2013-06-05 富士フイルム株式会社 多層膜フィルム及びその製造方法
JP5659471B2 (ja) 2008-09-04 2015-01-28 大日本印刷株式会社 光学積層体、その製造方法、偏光板及び画像表示装置
CN101722691B (zh) 2008-10-23 2014-04-16 大日本印刷株式会社 硬涂膜及硬涂层用固化性树脂组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085983A (ja) * 2008-09-05 2010-04-15 Dainippon Printing Co Ltd 光学積層体、偏光板及び画像表示装置
JP2010102123A (ja) * 2008-10-23 2010-05-06 Dainippon Printing Co Ltd ハードコートフィルム
JP2010120991A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
JP2010122325A (ja) * 2008-11-17 2010-06-03 Dainippon Printing Co Ltd 光学シート及び光学シートの製造方法
JP2010131771A (ja) * 2008-12-02 2010-06-17 Dainippon Printing Co Ltd ハードコートフィルム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11667565B2 (en) 2013-05-07 2023-06-06 Corning Incorporated Scratch-resistant laminates with retained optical properties
US11714213B2 (en) 2013-05-07 2023-08-01 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
KR20210037751A (ko) * 2013-05-07 2021-04-06 코닝 인코포레이티드 구배층을 갖는 내-스크래치 제품
KR102382056B1 (ko) * 2013-05-07 2022-04-01 코닝 인코포레이티드 구배층을 갖는 내-스크래치 제품
US11231526B2 (en) 2013-05-07 2022-01-25 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US10995404B2 (en) 2014-08-01 2021-05-04 Corning Incorporated Scratch-resistant materials and articles including the same
US11698475B2 (en) 2015-09-14 2023-07-11 Corning Incorporated Scratch-resistant anti-reflective articles
US11002885B2 (en) 2015-09-14 2021-05-11 Corning Incorporated Scratch-resistant anti-reflective articles
US11535777B2 (en) 2017-03-23 2022-12-27 Mitsubishi Chemical Corporation Double-sided pressure-sensitive adhesive sheet, laminate comprising component member for image display device, kit for laminate formation, and use of double-sided pressure-sensitive adhesive sheet
US11567237B2 (en) 2018-08-17 2023-01-31 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US10948629B2 (en) 2018-08-17 2021-03-16 Corning Incorporated Inorganic oxide articles with thin, durable anti-reflective structures
US11906699B2 (en) 2018-08-17 2024-02-20 Corning Incorporated Inorganic oxide articles with thin, durable anti reflective structures
JP7115657B1 (ja) * 2021-06-11 2022-08-09 大日本印刷株式会社 機能性フィルム及びその製造方法
WO2022260182A1 (ja) * 2021-06-11 2022-12-15 大日本印刷株式会社 機能性フィルム及びその製造方法
JP7169564B1 (ja) * 2021-06-11 2022-11-11 大日本印刷株式会社 機能性フィルムの製造方法

Also Published As

Publication number Publication date
TW201213138A (en) 2012-04-01
JPWO2012043341A1 (ja) 2014-02-06
KR20180082631A (ko) 2018-07-18
CN103080778B (zh) 2016-07-06
JP5983410B2 (ja) 2016-08-31
US20130273354A1 (en) 2013-10-17
CN103080778A (zh) 2013-05-01
TWI513587B (zh) 2015-12-21
KR20130119926A (ko) 2013-11-01
US10073195B2 (en) 2018-09-11
KR102159687B1 (ko) 2020-09-24

Similar Documents

Publication Publication Date Title
JP5983410B2 (ja) 光学積層体、偏光板及び画像表示装置
US8795823B2 (en) Optical layered body, polarizer and image display device
JP5531509B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6011527B2 (ja) 反射防止フィルム、偏光板及び画像表示装置
JP6070195B2 (ja) 反射防止フィルム、反射防止フィルムの製造方法、偏光板及び画像表示装置
JP6317256B2 (ja) 感光性樹脂組成物及び反射防止フィルム
JP5933353B2 (ja) 反射防止フィルム、その製造方法、偏光板、及び画像表示装置
JP2017182080A (ja) 光学フィルム、偏光板および画像表示装置
JP2008165205A (ja) 光学フィルム、反射防止フィルム、それを用いた偏光板およびディスプレイ装置
JP2009098658A (ja) 光学フィルム、偏光板、及び画像表示装置
JP4961238B2 (ja) 光学フィルム、偏光板及び画像表示装置
JP2010061044A (ja) 反射防止フィルム、偏光板および画像表示装置
JP2012063687A (ja) 反射防止フィルム、反射防止性偏光板、及び透過型液晶ディスプレイ
JP5753285B2 (ja) 光学積層体
JP2010083047A (ja) 光学積層体、偏光板及び画像表示装置
JP4962192B2 (ja) 光学積層体、偏光板、及び、画像表示装置
JP6589425B2 (ja) 光学積層体
JP5426329B2 (ja) 光学積層体
JP2008292987A (ja) 光学積層体
JP5707432B2 (ja) 反射防止フィルム、偏光板、及び画像表示装置
JP2011069913A (ja) 防眩フィルム、偏光板、及び画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040154.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012536370

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137010949

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13876952

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11828898

Country of ref document: EP

Kind code of ref document: A1