WO2012039573A2 - 형광체 및 이의 제조방법 - Google Patents

형광체 및 이의 제조방법 Download PDF

Info

Publication number
WO2012039573A2
WO2012039573A2 PCT/KR2011/006929 KR2011006929W WO2012039573A2 WO 2012039573 A2 WO2012039573 A2 WO 2012039573A2 KR 2011006929 W KR2011006929 W KR 2011006929W WO 2012039573 A2 WO2012039573 A2 WO 2012039573A2
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
aluminum
clause
concentration
sialon
Prior art date
Application number
PCT/KR2011/006929
Other languages
English (en)
French (fr)
Other versions
WO2012039573A3 (ko
Inventor
김성민
원형식
민찬숙
윤철수
박윤곤
Original Assignee
삼성엘이디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엘이디 주식회사 filed Critical 삼성엘이디 주식회사
Priority to US13/825,014 priority Critical patent/US9187694B2/en
Priority to CN201180055466.6A priority patent/CN103298908B/zh
Priority to DE112011103145T priority patent/DE112011103145T5/de
Publication of WO2012039573A2 publication Critical patent/WO2012039573A2/ko
Publication of WO2012039573A3 publication Critical patent/WO2012039573A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a phosphor and a method for producing the same, and more particularly, to a ⁇ -sialon phosphor capable of improving luminance and a method for producing the same.
  • Phosphors are used in fluorescent display tubes (VFDs), field emission displays (FEDs), plasma display panels (PDPs), light emitting devices (LEDs), and the like.
  • VFDs fluorescent display tubes
  • FEDs field emission displays
  • PDPs plasma display panels
  • LEDs light emitting devices
  • the phosphor In order to make the phosphor emit light, it is necessary to supply energy to excite the phosphor to the phosphor, and the phosphor is excited by an excitation source having high energy such as vacuum ultraviolet ray, ultraviolet ray, electron beam blue light or the like.
  • an excitation source having high energy such as vacuum ultraviolet ray, ultraviolet ray, electron beam blue light or the like.
  • the luminance of the phosphor tends to decrease and deteriorate, so that a phosphor having a low luminance decrease is required.
  • sialon phosphor instead of the conventional silicate phosphor, phosphate phosphor, aluminate phosphor, sulfide phosphor, and the like, a sialon phosphor has been proposed as a phosphor having a low luminance decrease.
  • the sialon phosphor is a kind of oxynitride phosphor having elements of Si, A1, 0, and N, and ⁇ -sialon phosphors and ⁇ -sialon phosphors having different crystal structures are known.
  • the content of the ⁇ -sialon phosphor is described in Non-Patent Document 1, and the content of the ⁇ -sialon phosphor and its light emitting device is described in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4 and the like. have. Further, the content of the ⁇ -sialon phosphor is described in Patent Document 5, and relates to the ⁇ -sialon phosphor and the use of the light emitting device. The content is described in patent document 6.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-336059
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-238505
  • Patent Document 5 Japanese Patent Application Laid-Open No. 60-206889
  • ⁇ - sialon is Si 12 - such as ( ⁇ ⁇ ⁇ seed has a composition formula of a unit structure represented by a crystal structure with two pores in the crystal structure such that a relatively small pore radius in the Ca 2+ ions in the structure.
  • the general formula of ⁇ -sialon in which metal ions can be dissolved and metal ions are dissolved is M m / v Si 12- (n + n) Al (n + n) O n N 8 - n : Eu where M Silver metal ion, and V is its valence.
  • ⁇ -sialon in which Ca and Eu as an activator is dissolved is yellow as described in Non-Patent Document 1 and Patent Document 1.
  • This phosphor is used as a starting material for each powder of silicon nitride, aluminum nitride, carbon carbonate (CaC0 3 ) and europium oxide, It can be obtained by sintering at a high temperature in a nitrogen-containing atmosphere after weighing and mixing in a certain amount.
  • a high-purity material Patent Document 3
  • metal silicon Patent Document 4
  • ⁇ -sialon has a composition formula represented by the general formula ⁇ .
  • [beta] -sialon phosphors having an active substance added to [beta] -sialon are described in Patent Documents 5 and 6.
  • Patent Document 5 discloses a ⁇ -sialon phosphor having a rare earth element such as Cu, Ag, or Eu as an active substance as ⁇ -sialon.
  • Eu-activated ⁇ -sialon phosphors described in Patent Document 5 range from 410 nm to blue emission region.
  • Patent Document 6 It is a phosphor that emits light at 440 nm, and the phosphor described in Patent Document 6 is reported to be a green phosphor. As the light emission color difference of both is described in Patent Document 6, Eu-activated ⁇ -sialon of Patent Document 5 has a low sintering temperature and thus is an active material.
  • Eu-activated ⁇ -sialon phosphor of Patent Document 6 has a feature of being excited by light of blue light region in ultraviolet region by green light emission. For this reason, attention has been drawn to green light emitting phosphors for white light emitting elements composed of blue light emitting elements and phosphors or ultraviolet light emitting elements and phosphors.
  • Eu-activated ⁇ -sialon phosphors are expected to be used as green phosphors for white light-emitting devices that require color reproducibility because of their narrow spectrum width of about 55 nm and good color purity.
  • the luminance is not so high that it is necessary to further increase the luminance.
  • ⁇ -sialon phosphors are also prepared using powders of silicon nitride, aluminum nitride and active materials as starting materials, weighing and mixing the respective materials, and then sintering to a high temperature in a nitrogen-containing atmosphere.
  • a method using a nitride material such as silicon nitride or aluminum nitride, which is currently known, as a starting material has not been able to obtain ⁇ -sialon phosphors having a sufficiently high luminance.
  • the conventional method of synthesizing the ⁇ -sialon phosphor to which the rare earth is added is mixed with all oxides and nitride raw materials such as Si 3 N 4 , Si0 2 , A1N, AI2O3, Eu 2 O 3 , 1900 It was a method of synthesis in a nitrogen atmosphere of more than ° C.
  • the positive silver elements other than Si and A1 forming SiAlON act as impurities. This can inhibit the crystallinity of ⁇ -sialon. This may cause a decrease in the luminance of the phosphor.
  • a white light emitting device was realized by applying a yellow YAG phosphor to a light emitting device for the first time.
  • CRI has recently been improved by using green and red colors.
  • White light emitting devices have been developed.
  • the green phosphor to be applied silicate phosphors and sulfide phosphors were used.
  • the high temperature, thermal and chemical stability are low, phosphors using nitride phosphors have been actively studied.
  • Nitride phosphors have Si 3 N 4 and SiAlON, which are used as high-temperature structural materials, as the host material, and the phosphors are added to the active material to realize phosphors. Since the high temperature light emitting property has an advantage, it is applied to a TV backlight, an illumination lamp and the like. However, these phosphors have a level of efficiency of 70% or less compared to YAG phosphors compared to the YAG phosphors, and thus, the luminance needs to be improved.
  • One embodiment of the present invention provides a phosphor and a method of manufacturing the same.
  • a phosphor according to an embodiment of the present invention has the following formula (1):
  • X, y and z are 0.018 ⁇ X ⁇ 0.3, 0.3 ⁇ y ⁇ 0.75, 0.42 ⁇ z ⁇ .
  • Re is a rare earth element
  • z may be 0.50 to 0.75.
  • z may be 0.60 to 0.70.
  • the emission peak wavelength when the phosphor is irradiated with an excitation source, the emission peak wavelength may range from 500 to 550 nm,
  • the emission peak wavelength when the phosphor is irradiated with an exciton, the emission peak wavelength may be in the range of 535 to 545 nm.
  • the particle size of the phosphor may have a D50 value in the range of 5 to 20 i3 ⁇ 4m.
  • the excitation source may have an emission peak wavelength in the range of 300 to 480 nm.
  • the rare earth element may be selected from the group consisting of Eu and Ce.
  • the phosphor may be selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr) and barium (Ba).
  • a method of manufacturing a phosphor includes: mixing a silicon precursor, an aluminum precursor, and a precursor of an active material to generate a first mixture, oxidizing the first mixture to adjust an oxygen concentration, and Sintering the oxidized first mixture under a nitrogen atmosphere, and has the following formula (1):
  • Re is a rare earth element
  • the phosphor prepared according to the present invention may have a peak emission wavelength of 500 to 550 nm when irradiated with excitation.
  • the phosphor prepared according to the present invention may have a peak emission wavelength in the range of 535 to 545 nm when irradiated with an excitation source.
  • the step of adjusting the oxygen concentration may be performed so that the oxygen concentration satisfies the range of (aluminum concentration-0.1) ⁇ oxygen concentration ⁇ (aluminum concentration + 0.1).
  • the silicon precursor may be selected from the group consisting of metal silicon and silicon nitride.
  • the aluminum precursor may be selected from the group consisting of metal aluminum, aluminum nitride and aluminum hydroxide.
  • the precursor of the active material may be a compound containing a rare earth element.
  • the rare earth element may be selected from the group consisting of Eu and Ce.
  • the step of oxidizing the first mixture may be performed at 300 to 1300 o C under oxygen or air atmosphere.
  • the step of sintering from 1500 o C to
  • the sintering step may be performed under a pressure of nitrogen gas of 0.1 to 10 MPa.
  • the particle size of the phosphor may be in the range of 5 to 20 D50 value.
  • a phosphor manufacturing method comprising mixing silicon oxide, aluminum oxide, and precursors of an active material to produce a first mixture while controlling oxygen concentration and sintering the first mixture under a nitrogen atmosphere. And the following composition formula (1):
  • Re is a rare earth element
  • the step of adjusting the oxygen concentration may be performed so that the oxygen concentration satisfies the range of (aluminum concentration-0.1) ⁇ oxygen concentration ⁇ (aluminum concentration + 0.1).
  • the rare earth element may be selected from the group consisting of Eu and Ce.
  • the step of sintering may be performed at 1500 o C to 2200 o C.
  • Sintering in the phosphor preparation method according to one side of the present invention may be performed, under a pressure of 0.1 to 10 MPa of nitrogen gas.
  • the particle size of the phosphor may have a D50 value of 5 to 20 ⁇ range.
  • a phosphor according to an embodiment of the present invention has the following formula (1):
  • Re is a rare earth element
  • the aluminum concentration is 0.42 mol to 1.0 mol, it exhibits high luminance, and a sialon phosphor having a D50 value in the particle size range of 5 to 20 iM is obtained. to provide.
  • the phosphor according to an embodiment of the present invention in the method of manufacturing a phosphor according to an embodiment of the present invention, by adjusting the oxygen concentration, it is possible to secure excellent phosphor crystallinity and to improve luminance. As a result, the phosphor according to the embodiment of the present invention has excellent green light emission characteristics even when the aluminum concentration is high, the particle size of the phosphor is not increased, the particle size can be controlled, and the luminance can be improved.
  • Example 1 is an XRD graph of a sialon phosphor according to Example 1 and Comparative Example 1.
  • FIG. 3 is a graph showing relative PL intensities according to emission wavelengths in the sialon phosphors according to Examples 1 to 8, based on Comparative Example 1.
  • FIG. 3 is a graph showing relative PL intensities according to emission wavelengths in the sialon phosphors according to Examples 1 to 8, based on Comparative Example 1.
  • FIG. 4 is an enlarged graph of an emission wavelength of 520 to 570 nm in FIG. 3.
  • 5 is a graph showing emission peak wavelengths of sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FIG. 4 is an enlarged graph of an emission wavelength of 520 to 570 nm in FIG. 3.
  • 5 is a graph showing emission peak wavelengths of sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FIG. 6 is a graph showing the full width at half maximum (FWHM) of the sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FIG. 6 is a graph showing the full width at half maximum (FWHM) of the sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FIG. 7 is a graph showing PL intensity according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • FIG. 7 is a graph showing PL intensity according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • FIG. 8 is a graph showing emission peak wavelengths according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • FIG. 8 is a graph showing emission peak wavelengths according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • 9A is a scanning electron micrograph of a sialon phosphor particle according to Comparative Example 2; 9B shows a scanning electron micrograph of a sialon phosphor particle according to Example 11.
  • FIG. 9A is a scanning electron micrograph of a sialon phosphor particle according to Comparative Example 2; 9B shows a scanning electron micrograph of a sialon phosphor particle according to Example 11.
  • Phosphor according to an embodiment of the present invention relates to a ⁇ -sialon phosphor, and can be variously represented as a phosphor, a sialon phosphor, etc., and these mean a ⁇ -sialon phosphor.
  • a phosphor according to an embodiment of the present invention has the following formula (1):
  • Re is a rare earth element
  • Phosphor according to an embodiment of the present invention is excellent in green light emission characteristics even when the concentration of aluminum is high, the particle size of the phosphor can be controlled to a small size, and the brightness can also be improved.
  • Re x of composition (1) preferably z may be 0.5 mol to 0.75 mol, more preferably z is 0.60 mol to 0,70 can be m.
  • the concentration of aluminum is 0.42 or more
  • an excitation source having an emission peak wavelength in the range of 300 to 480 nm when an excitation source having an emission peak wavelength in the range of 300 to 480 nm is irradiated, light having an emission peak wavelength in the range of 500 to 550 nm is emitted, thereby providing excellent green emission characteristics.
  • the emission peak wavelength when the excitation source is irradiated, may be in the range of 535 to 545 nm, preferably It may range from 540 to 542.5 nm.
  • the particle size of the sialon phosphor may be controlled to have a D50 value of 5 to 20 p.
  • the sialon phosphor according to the embodiment of the present invention makes the particle size small even when the aluminum concentration is 0.42 to 1.0. This can prevent the brightness from decreasing.
  • the sialon phosphor according to an embodiment of the present invention may improve luminance by more than 12.5% in a range of 0.42 mol to 1.0 when compared to the sialon phosphor having an aluminum concentration of 0.23 mold.64 mol%). Can be.
  • the luminance is improved in the above range, the light emitting device using the phosphor according to an embodiment of the present invention can achieve a high conversion efficiency.
  • the sialon phosphor according to an embodiment of the present invention has high luminescence properties and excellent thermal and chemical stability when compared to the conventional sialon phosphor having z ⁇ 0.35. Therefore, a high power / high reliability white light emitting device can be manufactured.
  • the rare earth element may be selected from the group consisting of Eu and Ce.
  • Eu is derived from Euium-containing compound europium oxide (Eu 2 0 3 )
  • Si may be derived from Si-containing compound silicon oxide (Si0 2 ) or silicon nitride (Si 3 N 4 ).
  • A1 may be derived from aluminum nitride (A1N) or aluminum oxide (A1 2 0 3 ), which is an A1-containing compound, and the concentration of oxygen may be reduced after mixing raw materials with silicon nitride and aluminum nitride. Oxidation treatment is performed, and when using silicon oxide and aluminum oxide, these By controlling the amount of material.
  • the sialon phosphor according to an embodiment of the present invention is obtained by adding aluminum nitride to the silicon nitride and europium composition to obtain a compound represented by the Si (6 ⁇ z) Al z O y N (8 - z) : Re x composition formula. .
  • X and z are selected from values satisfying the conditions of 0.018 ⁇ X ⁇ 0.3 and 0.42 ⁇ z ⁇ 1.0, respectively.
  • a sialon phosphor having a z value of 0.42 or more green emission characteristics generally decrease, and the particle size of the sialon phosphor increases.
  • the sialon phosphor according to an embodiment of the present invention is excellent in green light emission characteristics even when the concentration of aluminum is 0.42 or more, by adjusting the concentration of oxygen, Re and aluminum, the sialon phosphor
  • the particle size is not large, the particle size can be controlled, and the brightness can be improved.
  • the sialon phosphor according to an embodiment of the present invention may include an alkaline earth metal-containing compound or a manganese (Mn) -containing compound together.
  • Alkaline earth metals can be selected from the group consisting of magnesium (Mg), kale (Ca), strontium (Sr) and barium (Ba).
  • the alkaline earth metal or manganese does not substitute silicon or aluminum, which is an element constituting the host matrix, and has an empty sphere of crystal structure.
  • addition of alkaline earth metal or manganese not only changes the crystal structure of the host matrix but also contributes to the phase stabilization of the sialon phosphor without improving the reliability, thereby improving the reliability and improving the luminous efficiency. In addition to improving, it also plays a role in shortening the wavelength.
  • a method of preparing a sialon phosphor may include mixing a silicon precursor, an aluminum precursor, and a precursor of an active material to generate a first mixture, and oxidizing the first mixture to adjust oxygen concentration. And sintering the oxidized first mixture under a nitrogen atmosphere.
  • the sialon phosphor prepared according to the sialon phosphor manufacturing method according to an embodiment of the present invention has the following formula (1):
  • Re is a rare earth element
  • Re x of the formula (1) preferably z may be 0.5 to 0.75, more preferably z may be 0.60 to 0.70.
  • the sialon phosphor prepared by the sialon phosphor manufacturing method according to an embodiment of the present invention even if the aluminum concentration is 0.42 or more, 300 to
  • the excitation source having an emission peak wavelength in the range of 480 nm When the excitation source having an emission peak wavelength in the range of 480 nm is irradiated, light having an emission peak wavelength in the range of 500 to 550 nm is emitted, and thus, green emission characteristics are excellent.
  • the emission peak wavelength when the excitation source is irradiated, the emission peak wavelength may be in the range of 535 to 545 nm, preferably in the range of 540 to 542.5 nm.
  • the sialon phosphor prepared according to the embodiment of the present invention may have an improvement in brightness of 12.5% or more in the aluminum concentration range of 0.42 to 1.0 when compared to the sialon phosphor having an aluminum concentration of 0.23 m. For this reason, As a further improvement, the light emitting device using the phosphor according to the embodiment of the present invention can achieve high conversion efficiency.
  • the particle size of the sialon phosphor may be controlled to a D50 value of 5 to 20 range.
  • the silicon precursor may comprise a metal silicon or silicon compound.
  • the silicon precursor only metal silicon may be used, or it may be used together with a silicon compound.
  • the silicon compound may be silicon nitride.
  • the metal silicon is preferably a high purity metal silicon which is powdery and has a low content of impurities such as Fe.
  • the particle diameter or distribution does not directly affect the particle system of the phosphor.
  • the particle diameter or distribution of the silicon powder affects the particle diameter of the phosphor or the particle size characteristics of the round shape by the firing conditions or the raw materials to be combined. 300 [M or less is preferable.
  • the particle diameter of the metal silicon is, the higher the reactivity is. Therefore, the smaller the particle size of the metal silicon is, the more preferable from the viewpoint of reaction.
  • the particle diameter of the metal silicon does not necessarily have to be small because the raw material to be blended and the firing speed are also affected, and the shape of the metal silicon is not limited to powder.
  • the aluminum precursor may comprise a metal aluminum or an aluminum compound.
  • Metal aluminum alone may be used as the aluminum precursor, or may be used together with an aluminum compound.
  • the aluminum compound may be selected from the group consisting of aluminum nitride and aluminum hydroxide.
  • the metal When metal silicon is used as the silicon precursor, the metal must be used as the aluminum precursor. It is not necessary to use aluminum, and only aluminum compounds can be used. When metal aluminum is used, it is preferable that it is high purity metal aluminum which is powdery and contains few impurities, such as Fe. As mentioned above, the particle diameter of the metal aluminum is also preferably 300 or less. However, even in the case of metal aluminum, the particle diameter of the metal aluminum does not necessarily have to be small because the raw material to be blended and the firing speed are not necessarily limited, and the shape of the metal aluminum is not limited to powder.
  • the rare earth element that is the active material may be selected from the group consisting of Eu, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Yb.
  • the rare earth element may be Eu or Ce.
  • oxides such as Eu 2 0 3 , Sm 2 0 3l Yb 2 0 3) CeO, Pr 7 0 n and Tb 3 0 4 , Eu (N0 3 ) 3 , EuN or EuCl 3 may be used. Can be.
  • the silicon precursor, the aluminum precursor, and the precursors of the active material are each metered and mixed to form a first mixture. Then, the first mixture is oxidized to adjust the concentration of oxygen and then sintered under a nitrogen atmosphere to prepare a sialon phosphor.
  • the first mixture does not contain oxygen
  • the first mixture is oxidized at 300 to 1300 ° C. under an oxygen or air atmosphere to adjust the oxygen concentration.
  • the oxygen concentration may be adjusted to satisfy the range of (aluminum concentration-0.1) ⁇ oxygen concentration ⁇ (aluminum concentration + 0.1). In this manner, the concentration of oxygen can be uniformly supplied by performing an oxidation process after forming the first mixture containing no oxygen.
  • oxygen or oxygen gas in an air atmosphere acts as an oxygen source. do.
  • silicon, aluminum, and the active material react together before or during oxidation, a sialon phosphor having a uniform composition can be obtained.
  • the oxygen concentration is uniformly controlled in the sialon phosphor, it is not partially crystallized, but is crystallized as a whole to increase crystallinity, thereby improving luminance.
  • the oxidized first mixture is sintered at 1500 o C to 2200 o C under a pressure of nitrogen gas of 0.1 to 10 MPa.
  • This sintering step can be carried out by filling the boron nitride (BN) crucible with the classified first mixture powder.
  • BN boron nitride
  • the N 2 concentration in the nitrogen gas atmosphere containing 90% or more.
  • the sintered phosphor in order to promote the reduction of the europium oxide (Eu 2 0 3 ), the sintered phosphor may further comprise the step of heat treatment in a reducing atmosphere.
  • the reducing atmosphere it can be used combined wave the 3 ⁇ 4, CO, N3 ⁇ 4 in N 2 gas, the concentration of 3 ⁇ 4, CO, N3 ⁇ 4 is added to the N 2 gas may be from 0.1 to 10%.
  • the heat treatment in the reducing atmosphere may be performed for about 1 to 20 hours in the range of 1000 to 1700 o C.
  • the method for producing a sialon phosphor by mixing a precursor of silicon oxide, aluminum oxide and the active material to produce a first mixture while adjusting the oxygen concentration and the oxidized first trace Sintering the mixture under a nitrogen atmosphere.
  • the sialon phosphor produced by this method has the following formula (1):
  • X, y and z are 0,018 ⁇ X ⁇ 0.3, 0.3 ⁇ y ⁇ 0.75, 0.42 ⁇ z ⁇ 1.0, and Re is a rare earth element.
  • This method can be compared with controlling the concentration of oxygen by mixing and then oxidizing the precursor materials. That is, the concentration of oxygen in the first complex formation step can be controlled by using an oxide as a precursor material to control the concentration of oxygen. In this manner as well, the oxygen concentration can be uniformly supplied. Therefore, since the oxygen concentration is uniformly controlled in the sialon phosphor, it is not partially crystallized, but is crystallized as a whole to increase the crystallinity, thereby improving the luminance.
  • the method of controlling the concentration of oxygen is not limited thereto, and may be variously changed.
  • the method of mixing the silicon precursor, the aluminum precursor, and the precursor of the active material after mixing may be one of two methods, dry and wet.
  • the mixing process is carried out by inserting a ball and a solvent to assist in the mixing process and pulverization of the metered silicon precursor, the aluminum precursor and the precursor of the active material.
  • a silicon oxide (Si 3 N 4 ), alumina (A1 2 0 3 ) zirconia (Zr) material or a ball generally used in mixing raw materials may be used.
  • the solvent may be either an alcohol such as DI water, ethanol or an organic solvent such as n-hexane. That is, the container is sealed after inserting the precursor materials, the solvent, and the ball, and homogeneously for about 0.1 to 100 hours using a miller device. Can be mixed.
  • the first mixture and the balls are separated, and the solvent may be evaporated mostly through a drying process of about 1 to 30 hours in an oven.
  • the dried powder may be uniformly ground in a micrometer size condition using a sieve made of metal or polymer.
  • the dry mixing method precursors are inserted into a container without using a solvent and the precursors are homogeneously mixed using a milling machine.
  • the mixing time is about 0.1 to 1 hour, and by inserting the balls with the precursors, the mixing time can be made easier by shortening the mixing time.
  • Such a dry mixing method has an advantage of reducing the overall process time since it does not require the drying process of the solvent compared to the wet method.
  • the mixing process may be uniformly ground to a desired micrometer size condition by using a metal or polymer sieve as in the wet mixing.
  • the aluminum concentration is 0.42 mol to 1.0 mol. Even in the case of high luminance and provides a sialon phosphor having a D50 value in the range of 5 to 20 jam in particle size.
  • the phosphor according to an embodiment of the present invention by adjusting the oxygen concentration it is possible to secure excellent phosphor crystallinity to improve the brightness.
  • the sialon phosphor according to an embodiment of the present invention has excellent green emission characteristics even when the concentration of aluminum is high, the particle size of the sialon phosphor is not increased, the particle size can be controlled, and the luminance can be improved.
  • alkaline earth metal containing compounds or manganese (Mn) containing compounds may be mixed together.
  • Alkaline earth metals can be selected from the group consisting of magnesium (Mg), kale (Ca), strontium (Sr) and barium (Ba).
  • the alkaline earth metal-containing compound or the manganese (Mn) -containing compound when the alkaline earth metal-containing compound or the manganese (Mn) -containing compound is mixed together in the step of mixing the precursors, the alkaline earth metal or manganese does not substitute silicon or aluminum, which is an element constituting the host matrix, It is a form added as a dopant to an empty sphere.
  • the addition of alkaline earth metal or manganese on one side of the present invention not only alters the crystal structure of the host matrix but also does not affect it at all.
  • alkaline earth metal or manganese contributes to the phase stabilization of the sialon phosphor to improve the reliability, improve the luminous efficiency, and also serves to shorten the wavelength.
  • the amount of such alkaline earth metal or manganese added may range from 0.0001 to 10 mol.
  • the addition amount of alkaline earth metal or manganese is less than 0.1 mol, the efficiency improvement effect and the shortening effect are not divided, and when it exceeds 3 mol%, there is a problem that the efficiency is lowered rather than the phosphor to which the substance is not added.
  • the addition amount of the alkaline earth metal or manganese may range from 0.05 to 0.5 mol%.
  • the luminance is improved to a level of 10% or more than when alkaline earth metal or manganese is not added, high conversion efficiency can be achieved.
  • These phosphors have a peak wavelength of light emitted from the phosphor by excitation source irradiation.
  • the green wavelength characteristic required by standard RGB can be satisfied at a relatively high level.
  • X and y may satisfy x ⁇ 0.36 and y ⁇ 0.61, respectively, It can be effectively used as a green phosphor that can provide.
  • each of the precursors weighs a silicon precursor, an aluminum precursor, and a precursor of the active material, and is mixed with a ball mill or a mixer to prepare a first mixture. Then, the first mixture is oxidized at 300 to 1300 ° C. under an oxygen or air atmosphere, and then the first mixture is placed in a high temperature heat resistant container such as a BN crucible and placed in an electric furnace where pressure firing and vacuum firing occur. The oxidized first mixture is heated at a rate of 10 ° C./min or less under a pressurization of a gas pressure of 0.1 MPa to lOMPa in a nitrogen-containing atmosphere and heat-treated to 1000 ° C. or more to form a sialon phosphor.
  • the oxidized and sintered Examples 1 to 13 and Comparative Example 1 in which the concentration of aluminum is 0.23 m are different.
  • the phosphors are all Eu activated sialon phosphors.
  • Silicon nitride (Si 3 N 4 ) was used as the silicon precursor, and aluminum nitride (A1N) and aluminum oxide (A1 2 0 3 ) ol were used as the aluminum precursor.
  • europium oxide (Eu 2 0 3 ) was used as the active material. 179.98 g of Si 3 N 4 , 5.9418 g of A1N, A1 2 0 3 16.4493 g and Eu 2 O 3 were weighed in 3.4187 g, mixed with a mixer and a sieve, and then layered in a BN crucible and placed in a pressure resistant electric furnace. Sintering was heated to 50 CTC under vacuum and introduced N 2 gas at 500 ° C. At 500 ° C under N 2 gas atmosphere.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 186.70 g of Si 3 N 4 , 3.1655 g of Eu 2 0 3 , 8.3598 g of A1N, and 6.1066 g of A1 2 0 3 were weighed.
  • a sialon phosphor was produced in the same manner as in Example 1, except that 185.02 g of Si 3 N 4 , 3.2921 g of Eu 2 0 3 , 7.8143 g of A1N, and 8.6189 g of A1 2 0 3 were weighed.
  • a sialon phosphor was produced in the same manner as in Example 1, except that 183.34 g of Si 3 N 4 , 3.2921 g of Eu 2 0 3 , 7.2982 g of A1N, and 11.0946 g of A1 2 0 3 were measured.
  • a sialon phosphor was prepared in the same manner as in Example 1 except that 181.66 g of Si 3 N 4 , 3.0388 g of Eu 2 0 3 , 6.5463 g of AIN and 13.8636 g of Al 23 ⁇ 4 were weighed. Prepared.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 178.29 g of Si 3 N 4 , 3.4187 g of Eu 2 0 3 , 5.3668 g of AIN, and 18.9983 g of A1 2 0 3 were weighed.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 177.89 g of Si 3 N 4 , 3.8261 g of Eu 2 0 3 , 5.1235 g of AIN, and 2 3340 g of A1 2 0 3 were weighed. .
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 177.89 g of Si 3 N 4 , 3.8261 g of Eu 2 03, 5.1235 g of AIN and 21.3340 g of A1 2 0 3 were weighed.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 11,8836 g of A1N and 9.0590 g of A1 2 0 3 were weighed.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 10.1585 g of A1N and 11.2046 g of A1 2 0 3 were weighed.
  • a sialon phosphor was prepared in the same manner as in Example 1 except that 8.1460 g of A1N and 13.7078 g of A1 2 0 3 were measured.
  • a sialon phosphor was prepared in the same manner as in Example 1, except that 6.0376 g of A1N and 16.3301 g of A1 2 0 3 were weighed.
  • a sialon phosphor was prepared in the same manner as in Example 1 except that 4.2168 g of A1N and 18.5949 g of A1 2 0 3 were weighed.
  • Silicon nitride (Si 3 N 4 ) was used as the silicon precursor, and aluminum nitride (A1N) was used as the aluminum precursor.
  • europium oxide (Eu 2 0 3 ) was used as the active material.
  • 194.10 g of Si 3 N 4 , 6.7822 g of A1N, and 2.2791 g of Eu 2 0 3 were weighed, mixed with a mixer and a sieve, and then layered in a BN crucible and placed in a pressure resistant electric furnace. The sinter was heated to 500 ° C. under vacuum and introduced N 2 gas at 500 ° C.
  • N 2 at 500 o C to 2050 ° C under a gas atmosphere is raised to a minute of 10 o C, and sintered for 5 hours at a temperature of 2050 ° C and such that the gas pressure is over 1 MPa. After sintering, the mixture was cooled, the crucible was taken out of the electric furnace, and the resulting sialon phosphor was pulverized, and a 100 mesh sieve was used.
  • a sialon phosphor was produced in the same manner as in Comparative Example 1 except that 179.98 g of Si 3 N 4 , 1.3417 g of A1N, 22.1708 g of A1 2 0 3, and 3.4187 g of Eu 2 0 3 were measured.
  • Table 2 shows the luminance, emission peak wavelength, and full width at half maximum of the phosphors according to Examples 1 to 8 and Comparative Example 1. Luminance is shown as a relative value as a comparative example.
  • Phosphors prepared according to Example 1 and Comparative Example 1 were prepared by powder X-ray diffraction (XRD). Classification was performed, and the results are shown in FIG. 1. Referring to FIG. 1 and using JCPDS data, it was confirmed that the prepared phosphor was sialon phosphor.
  • FIG. 2 is a graph showing the relative PL intensity of the sialon phosphors according to Examples 1 to 8, based on Comparative Example 1.
  • 3 is a graph showing relative PL intensities according to emission wavelengths in the sialon phosphors according to Examples 1 to 8, based on Comparative Example 1.
  • FIG. 4 is an enlarged graph of an emission wavelength of 520 to 570 nm in FIG. 3.
  • the sialon phosphors of Examples 1 to 8 having an aluminum concentration of 45 to 1.0 m improved the PL intensity by 12.5% or more than the sialon phosphor of Comparative Example 1 having an aluminum concentration of 0.23 ⁇ . That is, it can be seen that Examples 1 to 8 compared to the sialon phosphor of Comparative Example 1 having an aluminum concentration of 0.23 mo had a high aluminum concentration but improved 12.5 to 20% in terms of luminance.
  • Examples 1 to 8 show higher relative PL intensities than Comparative Example 1 in the wavelength range of 540 to 542.5 nm.
  • FIG. 5 is a graph showing emission peak wavelengths of sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FIG. The sialon phosphors according to Examples 1 to 8 and Comparative Example 1 can be seen that the emission peak wavelength is stabilized to 540 to 542.5.
  • FIG. 6 is a graph showing the full width at half maximum (FWHM) of the sialon phosphors according to Examples 1 to 8 and Comparative Example 1.
  • FWHM full width at half maximum
  • FIG. 7 is oxygen in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2 It is a graph showing PL intensity according to the concentration. 8 is a graph showing emission peak wavelengths according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • FIG. 8 is a graph showing emission peak wavelengths according to oxygen concentration in the sialon phosphors according to Examples 9 to 13 and Comparative Example 2.
  • the PL strength may be changed according to the concentration of oxygen.
  • the PL strength is the highest in the region where the oxygen concentration is similar to the aluminum concentration.
  • the PL strength is high at the concentration of oxygen satisfying the range of (aluminum concentration-0.1) ⁇ oxygen concentration ⁇ (aluminum concentration + 0.1).
  • the emission peak wavelength varies according to the concentration of oxygen. As shown in FIG. 7, it can be seen that the peak emission wavelength is about 542.5 in the region where the oxygen concentration is similar to the aluminum concentration.
  • This concentration of oxygen can be controlled by oxidizing the precursors after mixing, or by using oxides as precursors. Therefore, since the oxygen concentration is uniformly controlled in the sialon phosphor, the sialon phosphor is crystallized entirely without being partially crystallized, thereby increasing the crystallinity of the sialon phosphor, thereby improving the brightness.
  • FIG. 9A shows a scanning electron micrograph of a sialon phosphor particle according to Comparative Example 2
  • FIG. 9B shows a scanning electron micrograph of a sialon phosphor particle according to Example 13.
  • the particle size of the phosphor changes depending on the concentration of oxygen.
  • the concentration of oxygen It can be seen that when the excess amount is entered, the particle size becomes large as coarse particles. That is, the oxygen concentration in Figure 9a is 5.400 mol%, where the D50 value is 25 /, the oxygen concentration in Figure 9b is 4.616 mol%, where the D50 value is 15. Therefore, it can be seen that the value of D50 is smaller when the concentration of oxygen has a value similar to that of aluminum.
  • the phosphor according to an embodiment of the present invention may have a D50 value in the range of 5 to 20 in particle size, and an average particle diameter of particles at a concentration of oxygen having the highest PL intensity may be applied to the light emitting device at about 10 (M).
  • M 10
  • the phosphor has been synthesized in size, the above description has been given based on the embodiments, which are merely illustrative and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains may have essential characteristics. It will be appreciated that various modifications and alterations are not possible without departing from the scope of the invention, for example, each component specifically illustrated in the embodiments may be modified and implemented. Differences concerning modifications and uses will be construed as being included in the scope of the invention as defined in the appended claims. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명의 일 실시예에 따른 형광체는, 본 발명의 일 실시예에 따른 형광체는, 하기의 조성식(1)을 갖는다: [조성식 1] Si(6-z)AlzOyN(8-z) :Rex 여기서, x, y 및 z는 각각 0.018≤x≤0.3, 0.3≤y≤0.75, 0.42≤z≤1.0이고, Re은 희토류 원소임. 따라서, 본 발명에서는 알루미늄 농도가 0.42 몰 내지 1.0 몰인 경우에도 높은 휘도를 나타내며, 입도에서 D50 값이 5 내지 20 ㎛ 범위인 사이알론 형광체를 제공한다. 또한, 본 발명의 일 실시예에 따른 형광체를 제조하는 방법에서는, 산소 농도를 조절함으로써 우수한 형광체 결정성을 확보하여 휘도를 향상시킬 수 있다.

Description

【발명의 명칭】
형광체 및 이의 제조방법
【기술분야】
형광체 및 이의 제조방법에 관한 것으로, 특히 휘도를 향상시킬 수 있는 β- 사이알론 형광체 및 이의 제조방법에 관한 것이다.
【배경기술】
형광체는 형광표시관 (VFD), 필드 에미션 디스플레이 (FED), 플라즈마 디스플레이 패널 (PDP), 발광소자 (LED) 등에 이용되고 있다. 형광체를 발광시키기 위해서는, 형광체를 여기시킬 수 있는 에너지를 형광체에 공급할 필요가 있으며, 형광체는 진공 자외선, 자외선, 전자선 청색광 등의 높은 에너지를 갖는 여기원에 의하여 여기된다. 그러나, 형광체가 상기와 같은 여기원에 의해 변형되기 때문에 형광체의 휘도가 저하되고 열화되는 경향이 있어서 휘도 저하가 적은 형광체가 요구되고 있다. 이로 인해 종래의 규산염 형광체, 인산염 형광체, 알루민산염 형광체, 황화물 형광체 등의 형광체 대신에, 휘도 저하가 적은 형광체로서 사이알론 형광체가 제안되었다.
사이알론 형광체는 Si, A1, 0, N의 원소를 갖는 산질화물 형광체의 일종이며, 결정 구조가 다른 α-사이알론 형광체와 β-사이알론 형광체가 알려져 있다. α- 사이알론 형광체에 관한 내용은 비특허 문헌 1에 기재되어 있고, α-사이알론 형광체 및 그 발광소자 용도에 관한 내용은 특허 문헌 1, 특허 문헌 2, 특허 문헌 3 및 특허 문헌 4 등에 기재되어 있다. 또한, β-사이알론 형광체에 관한 내용은 특허 문헌 5에 기재되어 있고, β-사이알론 형광체 및 그 발광소자 용도에 관한 내용은 특허 문헌 6에 기재되어 있다.
〔비특허 문헌 1] Jᅳ W. H. vankrebel "On new rare earth doped MSi-Al-O-N materials ", Tu Eindhoven The Nether land, P145-161(1998)
[특허 문헌 1] 특개 2002-363554
[특허 문헌 2] 특개 2003-336059
[특허 문헌 3] 특개 2004-238505
[특허 문헌 4] 특개 2007-31201
[특허 문헌 5] 특개소 60-206889
[특허 문헌 6] 특개 2005-255895
α-사이알론은 Si12— (^씨^ ^ 로 표현되는 단위 구조의 조성식을 갖고, 이러한 구조 내에 2개의 공극이 있는 결정 구조이다. 결정 구조 내의 공극에 비교적 이온 반경이 작은 Ca2+ 등의 금속 이온이 고용될 수 있고, 금속 이온이 고용된 α-사이알론의 일반식은 Mm/vSi12-(n+n)Al(n+n)OnN8-n:Eu (여기서, M은 금속 이온이고, V는 그 원자가임)로 나타낼 수 있다. Ca와 활성물질 (activator)인 Eu가 고용되어 있는 α-사이알론은 비특허 문헌 1 및 특허 문헌 1에 기재되어 있는 바와 같이, 황색 영역의 발광을 나타내는 형광체인 것으로 알려져 있다. 이 형광체는 자외선 영역으로부터 청색 영역까지 연속하는 여기대가 있어, 자외선이나 청색광의 조사로 인해 황색으로 발광하기 때문에 백색 발광소자용의 황색 형광체로서 사용될 수 있다.
이 형광체는 시작 물질 (starting material)로서 질화 규소, 질화 알루미늄, 탄산칼슴 (CaC03) 및 산화 유로피움의 각 분말을 사용해, 각각의 전구체 물질을 일정한 양으로 계량하여 흔합한 후, 질소 함유 분위기에서 고온으로 소결하여 얻을 수 있다. 또한, 고휘도를 달성하기 위해 불순물의 양을 규정한 고순도 물질의 기재 (특허 문헌 3)이나 금속 실리콘을 사용한다는 기재 (특허 문헌 4)가 있다.
한편, β-사이알론은 일반식 ^^^^^^로 표현되는 조성식을 갖는다. β- 사이알론에 활성물질을 첨가한 β-사이알론 형광체가 특허 문헌 5 및 특허 문헌 6에 기재되어 있다. β-사이알론에 Cu 또는 Ag 등, 또는 Eu 등의 희토류 원소를 활성물질로 한 β-사이알론 형광체가 특허 문헌 5에 기재되어 있다. 그러나, 특허 문헌 5에 기재된 Eu 활성화된 β-사이알론 형광체는 청색 발광영역의 410 nm 내지
440 nm에 발광하는 형광체이며, 특허 문헌 6에 기재된 형광체는 녹색 형광체인 것으로 보고되었다. 양쪽 모두의 발광색 차이는 특허 문헌 6에 기재되어 있는 바와 같이, 특허 문헌 5의 Eu 활성화된 β-사이알론은 소결 온도가 낮아 활성물질인
Eu가 β-사이알론에 층분히 고용되어 있지 않기 때문이라고 추측된다. 특허 문헌 6의 Eu 활성화된 β-사이알론 형광체는 녹색 발광으로 자외선 영역에서 청색광 영역의 광으로 여기되는 특징올 갖고 있다. 이로 인해, 청색 발광소자와 형광체, 또는 자외선 발광소자와 형광체로부터 구성되는 백색 발광소자용의 녹색 발광 형광체로 주의를 끌고 있다. 특히, Eu 활성화된 β- 사이알론 형광체는 스펙트럼의 폭이 약 55 nm로 좁고 색순도가 좋기 때문에, 색재현성이 요구되는 백색 발광소자용의 녹색 형광체로서 기대되고 있다. 그러나, 휘도가 층분히 높지 않아서 휘도를 더욱 높게 하는 것이 필요하다. β-사이알론 형광체도 시작 물질로서 질화 규소 , 질화 알투미늄 및 활성물질의 분말을 사용하여, 각각의 물질을 계량하여 흔합한 후에 질소 함유 분위기 하에서 고온으로 소결하여 제조된다. 그러나, 현재 알려져 있는 질화 규소나 질화 알루미늄 등 질화물 물질을 시작 물질로 이용한 방법으로는 층분히 높은 휘도를 갖는 β-사이알론 형광체를 얻지 못하고 있다. 즉, 종래의 회토류가 첨가된 β-사이알론 형광체를 합성하는 방법은 Si3N4, Si02, A1N, AI2O3, Eu203 등의 산화물 및 질화물 형태의 원료물질올 흔합하고, 이를 1900°C 이상의 질소 분위기에서 합성하는 방법이었다. 그러나, β-사이알론 합성시 2가의 양이은인 활성체로 쓰이는 회토류 원소를 원료물질 흔합 단계에서 흔합하여 β- 사이알론을 합성하면 SiAlON을 형성하는 Si, A1 이외의 양이은 원소는 불순물로 작용하여 β-사이알론의 결정성을 저해할 수 있다. 이는 형광체의 휘도를 저해하는 원인이 될 수 있는 것이다.
또한, 상기에서 설명한 바와 같이, 발광소자에 최초로 황색인 YAG 형광체를 적용하여 백색 발광소자를 구현하였지만, 일반 램프에 비해 CRKColor Rendering Index) 값이 낮기 때문에 최근에 녹색과 적색을 이용하여 CRI를 개선한 백색 발광소자가 개발되었다. 이에 적용하는 녹색 형광체는 규산염 형광체, 황화물 형광체가 사용되었는데, 고온, 열적, 화학적 안정성이 낮기 때문에 최근에는 질화물 형광체를 이용한 형광체가 활발히 연구되고 있다. 질화물 형광체는 고온 구조 재료로 사용되고 있는 Si3N4, SiAlON을 호스트 물질로 하여 활성체를 첨가하여 형광체를 구현하기 때문에, 디스폴레이 용으로 색재현성 및 신뢰성이 뛰어나고, 고온발광특성이 우수한 장점을 갖기 때문에, TV용 백라이트, 조명용 램프 등에 적용되고 있다. 그러나, 이러한 형광체는 YAG 형광체와 비교할 때 효율이 YAG 형광체 대비 70% 이하의 수준을 보이고 있으므로 휘도를 개선할 필요가 있다.
【발명의 상세한 설명】
【기술적 과제】
본 발명의 일 실시예는 형광체 및 이의 제조방법을 제공한다.
【과제의 해결 수단】
본 발명의 일 실시예에 따른 형광체는, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <.
1.0이고, Re은 회토류 원소임.
본 발명의 일 측에 따른 형광체에서, z는 0.50 내지 0.75일 수 있다.
본 발명의 일 측에 따른 형광체에서, z는 0.60 내지 0.70일 수 있다.
본 발명의 일 측에 따른 형광체에서, 형광체는 여기원을 조사한 경우, 발광 피크 파장이 500 내지 550 nm 범위일 수 있다,
본 발명의 일 측에 따른 형광체에서, 형광체는 여기원올 조사한 경우, 발광 피크 파장이 535 내지 545 nm 범위일 수 있다.
본 발명의 일 측에 따른 형광체에서, 형광체의 입도는 D50 값이 5 내지 20 i¾m 범위일 수 있다.
본 발명의 일 측에 따른 형광체에서, 여기원은 300 내지 480 nm 범위의 발광 피크 파장을 가질 수 있다。 본 발명의 일 측에 따른 형광체에서, 희토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택될 수 있다。
본 발명의 일 측에 따른 형광체에서, 형광체는 마그네슘 (Mg), 칼슘 (Ca), 스트론튬 (Sr) 및 바륨 (Ba)으로 이루어진 그룹으로부터 선택될 수 있다.
본 발명의 일 측에 따른 형광체에서, 형광체는 망간 (Mn)을 더 포함할 수 있다. 본 발명의 다른 실시예에 따른 형광체 제조방법은, 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 흔합하여 제 1 흔합물을 생성하는 단계, 상기 제 1 흔합물을 산화시켜서 산소 농도를 조절하는 단계 및 상기 산화된 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함하며, 하기의 조성식 (1)을 갖는 다:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, yz는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 회토류 원소임.
본 발명의 일 측에 따른 형광체 제조방법에서, 이에 따라 제조된 형광체는 여기원올 조사한 경우, 발광 피크 파장이 500 내지 550 nm 범위일 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 이에 따라 제조된 형광체는 여기원을 조사한 경우, 발광 피크 파장이 535 내지 545 nm 범위일 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 산소 농도를 조절하는 단계는, 산소 농도가, (알루미늄 농도 - 0.1) < 산소 농도 < (알루미늄 농도 + 0.1) 범위를 만족하도록 수행될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 규소 전구체는 금속규소 및 질화규소로 이루어진 그룹으로부터 선택될 수 있다. 본 발명의 일 측에 따른 형광체 제조방법에서, 알루미늄 전구체는 금속알루미늄, 질화 알루미늄 및 수산화알루미늄으로 이루어진 그룹으로부터 선택될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 활성물질의 전구체는 희토류 원소를 포함하는 화합물일 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에세 회토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 제 1 흔합물을 산화시키는 단계는, 산소 또는 공기 분위기 하에서 300 내지 1300oC로 수행될 수 있다. 본 발명의 일 측에 따른 형광체 제조방법에서, 소결하는 단계는, 1500oC 내지
2200oC에서 수행될 수 있다. ' 본 발명의 일 측에 따른 형광체 제조방법에서, 소결하는 단계는, 0.1 내지 10 MPa의 질소 가스의 압력 하에서 수행될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 형광체의 입도는 D50 값이 5 내지 20 범위일 수 있다.
본 발명의 다른 실시예에 따른 형광체 제조방법은, 산화 규소, 산화 알루미늄 및 활성물질의 전구체를 흔합하여 산소 농도를 조절하면서 제 1 흔합물을 생성하는 단계 및 상기 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함하며, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-2)Alz0yN(8-z): ex 여기서, x, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 회토류 원소임.
본 발명의 일 측에 따른 형광체 제조방법에서, 산소 농도를 조절하는 단계는, 산소 농도가, (알루미늄 농도 - 0.1) < 산소 농도 ≤ (알루미늄 농도 + 0.1) 범위를 만족하도록 수행될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 회토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 소결하는 단계는, 1500oC 내지 2200oC에서 수행될 수 있다. 본 발명의 일 측에 따른 형광체 제조방법에서, 소결하는 단계는, 0.1 내지 10 MPa의 질소 가스의 압력 하에서' 수행될 수 있다.
본 발명의 일 측에 따른 형광체 제조방법에서, 형광체의 입도는 D50 값이 5 내지 20 ^ 범위일 수 있다.
【발명의 효과】
본 발명의 일 실시예에 따른 형광체는, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 회토류 원소임.
따라서, 본 발명에서는 알루미늄 농도가 0.42 몰 내지 1.0 몰인 경우에도 높은 휘도를 나타내며, 입도에서 D50 값이 5 내지 20 iM 범위인 사이알론 형광체를 제공한다.
또한, 본 발명의 일 실시예에 따른 형광체를 제조하는 방법에서는, 산소 농도를 조절함으로써 우수한 형광체 결정성을 확보하여 휘도를 향상시킬 수 있다. 결국, 본 발명의 일 실시예에 따른 형광체는 알루미늄의 농도가 높은 경우에도 녹색 발광 특성이 우수하며, 형광체의 입도가 커지지 않으며 입자 크기의 제어가 가능하고, 휘도도 개선시킬 수 있다.
【도면의 간단한 설명】
도 1은 실시예 1 및 비교예 1에 따른 사이알론 형광체의 XRD그래프이다.
도 2는 비교예 1을 기준으로 하여, 실시예 1 내지 8에 따른 사이알론 형광체의 상대적인 PL 강도를 나타내는 그래프이다.
도 3은 비교예 1을 기준으로 하여, 실시예 1 내지 8에 따른 사이알론 형광체에서 발광 파장에 따른 상대적인 PL 강도를 나타내는 그래프이다.
도 4는 도 3에서 발광 파장이 520 내지 570 nm인 부분을 확대한 그래프이다. 도 5는 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체의 발광 피크 파장을 나타내는 그래프이다.
도 6은 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체의 반치폭 (FWHM)을 나타내는 그래프이다.
도 7은 실시예 9 내지 13 및 비교예 2에 따른 사이알론 형광체에서 산소 농도에 따른 PL 강도를 나타내는 그래프이다.
도 8은 실시예 9 내지 13 및 비교예 2에 따른 사이알론 형광체에서 산소 농도에 따른 발광 피크 파장을 나타내는 그래프이다.
도 9a은 비교예 2에 따른 사이알론 형광체 입자의 주사전자 현미경 사진을 나타내고, 도 9b는 실시예 11에 따른 사이알론 형광체 입자의 주사전자 현미경 사진을 나타낸다.
【발명의 실시를 위한 형태】
이하에서는 하기의 도면을 참조하여 본 발명의 일 실시예에 따른 형광체 및 이의 제조방법을 설명한다. 본 발명의 일 실시예에 따른 형광체는 β-사이알론 형광체에 관한 것으로서, 본 명세서상에서 형광체, 사이알론 형광체 등으로 다양하게 표기될 수 있으며, 이들은 β-사이알론 형광체를 의미한다. 본 발명의 일 실시예에 따른 형광체는, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-z)Alz0yN(8-z): ex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 회토류 원소임.
본 발명의 일 실시예에 따른 형광체는 알루미늄의 농도가 높은 경우에도 녹색 발광 특성이 우수하며, 형광체의 입도를 작은 크기로 제어할 수 있으며, 휘도도 개선시킬 수 있다.
조성식 (1)인 Si(6-z)AIz0yN(8-z):Rex에서, 바람직하게 z는 0.5 mol 내지 0.75 mol일 수 있으며, 더 바람직하게 z는 0.60 mol 내지 0,70 m 일 수 있다.
이와 같이 알루미늄의 농도가 0.42 이상인 경우에도, 300 내지 480 nm 범위의 발광 피크 파장을 갖는 여기원을 조사하였을 때 500 내지 550 nm 범위의 발광 피크 파장을 갖는 광을 방출하므로, 녹색 발광 특성이 우수하다. 또한, 상기 여기원을 조사한 경우 발광 피크 파장이 535 내지 545 nm 범위일 수 있으며, 바람직하게는 540 내지 542.5 nm 범위일 수 있다.
또한, 알루미늄의 농도가 0.42 mol 내지 1.0 π )1의 범위에서도 사이알론 형광체의 입도는 D50 값이 5 내지 20 p 범위로 제어될 수 있다. 즉, 알루미늄의 농도가 높은 경우에는 입도의 커지기 때문에 공극률이 더 높아져서 휘도가 감소하는 문제가 있으나, 본 발명의 일 실시예에 따른 사이알론 형광체는 알루미늄 농도가 0.42 내지 1.0의 범위에서도 입도를 작게 만들 수 있어서 휘도가 감소하는 것을 방지할수 있다.
그리고, 본 발명의 일 실시예에 따른 사이알론 형광체는, 알루미늄의 농도가 0.23 mold.64 mol%)인 사이알론 형광체와 비교할 때 알루미늄 농도가 0.42 mol 내지 1.0 인 범위에서 휘도가 12.5% 이상 개선될 수 있다. 이로 인해, 휘도가 상기와 같은 범위로 개선되므로, 본 발명의 일 실시예에 따른 형광체를 사용한 발광소자는 높은 변환효율을 달성할 수 있다.
따라서, 본 발명의 일 실시예에 따른 사이알론 형광체는 z < 0.35인 종래의 사이알론 형광체와 비교할 때, 높은 발광 특성과 우수한 열적, 화학적 안정성을 갖는다. 따라서, 고출력 /고신뢰성의 백색 발광소자를 제조할 수 있다.
본 발명의 일 실시예에 따른 사이알론 형광체에서, 희토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택될 수 있다. Eu는 Eu-함유 화합물인 산화 유로피움 (Eu203)으로부터 유래되며, Si는 Si-함유 화합물인 산화규소 (Si02) 또는 질화규소 (Si3N4)로부터 유래될 수 있다. 또한, A1은 A1-함유 화합물인 질화알투미늄 (A1N) 또는 산화알루미늄 (A1203)로부터 유래될 수 있으며, 산소의 농도는, 질화규소 및 질화알루미늄을 사용하는 경우에는 원료물질을 흔합한 후에 산화처리하여 조절하고, 산화규소 및 산화알루미늄을 사용하는 경우에는 이들 물질의 양을 조절함으로써 조절한다.
본 발명의 일 실시예에 따른 사이알론 형광체는 질화규소 및 산화유로피움 조성에 질화알루미늄을 첨가하여 Si(6z)AlzOyN(8-z):Rex 조성식으로 표현되는 화합물을 얻는다. 이때, X 및 z는 각각 0.018 < X < 0.3, 0.42 < z < 1.0의 조건을 만족하는 값으로부터 선택된다. 특히, z 값이 0.42 이상의 농도인 사이알론 형광체에서는 일반적으로 녹색 발광 특성이 감소하며, 사이알론 형광체의 입도가 커지는 문제가 있다고 알려져 있다. 그러나, 상기에서 살펴본 바와 같이, 본 발명의 일 실시예에 따른 사이알론 형광체는 산소, Re 및 알루미늄의 농도를 조절함으로써, 알루미늄의 농도가 0.42 이상인 경우에도 녹색 발광 특성이 우수하며, 사이알론 형광체의 입도가 커지지 않으며 입자 크기의 제어가 가능하고, 휘도도 개선시킬 수 있다.
나아가, 본 발명의 일 실시예에 따른 사이알론 형광체는 알칼리 토금속 함유 화합물 또는 망간 (Mn) 함유 화합물을 함께 포함할 수 있다. 알칼리 토금속은 마그네슘 (Mg), 칼슴 (Ca), 스트론튬 (Sr) 및 바륨 (Ba)으로 이루어진 그룹으로부터 선택될 수 있다.
이와 같이, 알칼리 토금속 함유 화합물 또는 망간 (Mn) 함유 화합물을 포함하는 사이알론 형광체의 경우, 알칼리 토금속 또는 망간은 호스트 매트릭스를 구성하는 원소인 규소 또는 알루미늄을 치환하지 않고, 결정 구조의 공극 (empty sphere)에 도편트로서 첨가되는 형태이다. 결국, 본 발명의 일 측에서 알칼리 토금속 또는 망간의 첨가는 호스트 매트릭스의 결정구조를 변경하지 않을 뿐만 아니라 전혀 영향을 주지 않으면서, 사이알론 형광체의 상안정화에 기여하여 신뢰성을 향상시키고, 발광효율을 개선할 뿐만 아니라, 단파장화하는 역할을 한다. 이하에서는 본 발명의 일 실시예에 따른 사이알론 형광체 제조방법을 설명한다 . 본 발명의 일 실시예에 따른 사이알론 형광체 제조방법은, 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 흔합하여 제 1 흔합물을 생성하는 단계, 상기 제 1 흔합물을 산화시켜서 산소 농도를 조절하는 단계 및 상기 산화된 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함한다.
본 발명의 일 실시예에 따른 사이알론 형광체 제조방법에 따라 제조된 사이알론 형광체는, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 회토류 원소임.
상기 조성식 (1)인 Si(6-z)AlzOyN(8-z):Rex에서, 바람직하게 z는 0.5 내지 0.75일 수 있으며, 더 바람직하게 z는 0.60 내지 0.70일 수 있다.
이와 같이, 본 발명의 일 실시예에 따른 사이알론 형광체 제조방법에 의해 제조된 사이알론 형광체는, 알루미늄의 농도가 0.42 이상인 경우에도, 300 내지
480 nm 범위의 발광 피크 파장을 갖는 여기원을 조사하였을 때 500 내지 550 nm 범위의 발광 피크 파장을 갖는 광을 방출하므로, 녹색 발광 특성이 우수하다. 또한, 상기 여기원을 조사한 경우, 발광 피크 파장이 535 내지 545 nm 범위일 수 있으며, 바람직하게는 540 내지 542.5 nm 범위일 수 있다.
또한, 본 발명의 일 실시예에 따라 제조된 사이알론 형광체는, 알루미늄의 농도가 0.23 m 인 사이알론 형광체와 비교할 때 알루미늄 농도가 0.42 내지 1.0인 범위에서 휘도가 12.5% 이상 개선될 수 있다. 이로 인해, 상기와 같은 휘도의 개선으로, 본 발명의 일 실시예에 따른 형광체를 사용한 발광소자는 높은 변환효율을 달성할 수 있다.
또한, 알루미늄의 농도가 0.42 내지 1.0의 범위에서도 사이알론 형광체의 입도는 D50 값이 5 내지 20 범위로 제어될 수 있다.
규소 전구체는 금속규소 또는 규소 화합물을 포함할 수 있다. 규소 전구체로 금속규소만을 사용하거나, 규소 화합물과 함께 사용할 수 있다. 규소 화합물은 질화규소일 수 있다.
금속규소는 분말상이면서 Fe와 같은 불순물의 함유량이 적은 고순도 금속규소인 것이 바람직하다. 금속규소분말은, 입자 직경 또는 분포가 직접 형광체의 입자계에 영향을 미치지는 않는다. 그러나, 소성 조건이나 조합하는 원재료에 의해 규소 분말의 입자 직경 또는 분포가 형광체의 입자 직경 또는 형상 둥의 입도 특성에 영향을 미치고, 나아가 형광체의 발광 특성에도 영향을 주기 때문에 금속규소 분말의 입자 직경은 300 [M 이하가 바람직하다.
금속규소의 입자 직경이 작을수록 반응성이 높기 때문에, 반웅성의 관점에서 보면 금속규소의 입자는 작을수록 바람직하다. 다만, 배합되는 원료나 소성 속도에도 영향을 받기 때문에 반드시 금속규소의 입자 직경이 작을 필요는 없으며, 금속규소의 형태가 분말상인 것에 한정되지 않는다.
알루미늄 전구체는 금속알루미늄 또는 알루미늄 화합물올 포함할 수 있다. 알루미늄 전구체로 금속알루미늄만을 사용하거나, 알루미늄 화합물과 함께 사용할 수 있다. 알루미늄 화합물은 질화 알루미늄 및 수산화알루미늄으로 이루어진 그룹으로부터 선택될 수 있다.
규소 전구체로 금속규소를 사용하는 경우에, 알루미늄 전구체로 반드시 금속 알루미늄을 사용할 필요는 없고, 알루미늄 화합물만을 사용할 수 있다. 금속알루미늄을 사용하는 경우, 분말상이면서 Fe와 같은 블순물의 함유량이 적은 고순도 금속알루미늄인 것이 바람직하다. 상기에서 언급한 바와 같이, 금속알루미늄의 입자 직경도 300 이하가 바람직하다. 다만, 금속알루미늄의 경우에도 배합되는 원료나 소성 속도에 영향을 받기 때문에, 반드시 금속알루미늄의 입자 직경이 작을 필요는 없으며, 금속알루미늄의 형태가 분말상인 것에 한정되지 않는다.
활성물질인 희토류 원소는 Eu, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm 및 Yb로 이루어진 그룹으로부터 선택될 수 있다. 바람직하게, 상기 희토류 원소는 Eu 또는 Ce일 수 있다. 활성물질의 전구체로는 Eu203, Sm203l Yb203) CeO, Pr70n 및 Tb304와 같은 산화물이나, Eu(N03)3, EuN 또는 EuCl3 등이 사용될 수 있다.
상술한 바와 같이, 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 각각 계량하고 흔합하여 제 1 흔합물을 형성한다. 그런 다음, 제 1 흔합물을 산화시켜서 산소의 농도를 조절한 다음 질소 분위기 하에서 소결하여 사이알론 형광체를 제조한다.
제 1 흔합물은 산소를 포함하고 있지 않기 때문에, 상기 제 1 흔합물을 산소 또는 공기 분위기 하에서 300 내지 1300°C에서 산화시켜서 산소 농도를 조절한다. 이때, 산소 농도는 (알루미늄 농도 - 0.1) ≤ 산소 농도 ≤ (알루미늄 농도 + 0.1) 범위를 만족할 수 있도록 조절될 수 있다. 이와 같이, 산소를 포함하지 않는 제 1 흔합물을 형성한 후에 산화과정을 거침으로써 산소의 농도를 균일하게 공급할 수 있다.
즉, 산소 또는 공기 분위기 하에서의 산소가스가 산소 공급원의 역할을 하게 된다. 이때, 규소, 알루미늄 및 활성물질은 산화 전 또는 산화 중 함께 반웅하기 때문에 균일한 조성의 사이알론 형광체를 얻을 수 있다. 결국, 사이알론 형광체 내에서 산소 농도가 균일하게 조절되기 때문에 부분적으로 결정화되지 않고, 전체적으로 결정화되어 결정성을 높일 수 있으며, 이로 인해 휘도를 향상시킬 수 있다.
산화된 제 1 흔합물은 1500oC 내지 2200oC에서, 0.1 내지 10 MPa의 질소 가스의 압력 하에서 소결된다. 이러한 소결 단계는 분급된 제 1 흔합물 분말을 질화붕소 (BN) 도가니에 충진시켜서 진행될 수 있다. 여기서, 질소 함유 분위기 가스의 N2 농도가 90% 이상인 것이 바람직하다. 질소 분위기를 형성하기 위하여 진공상태로 만든 후 질소 함유 분위기 가스를 도입할 수 있는데, 이와 달리 진공 상태로 만들지 않고 질소 함유 분위기 가스를 도입할 수 있고, 가스 도입은 불연속적으로 수행하는 것도 가능하다.
본 발명의 일 측에 따른 형광체 제조방법에서는, 산화유로피움 (Eu203)의 환원을 촉진하기 위해, 소결된 형광체를 환원 분위기에서 열처리하는 과정을 더 포함할 수 있다. 상기 환원 분위기에서는 N2 가스에 ¾, CO, N¾를 흔합하여 사용할 수 있으며, 상기 N2 가스에 첨가되는 ¾, CO, N¾의 농도는 0.1 내지 10%일 수 있다. 상기 환원 분위기에서의 열처리는 1000 내지 1700oC 범위에서 1 내지 20 시간 정도 수행될 수 있다.
다르게, 본 발명의 일 실시예에 따른 사이알론 형광체 제조방법은, 산화 규소, 산화 알루미늄 및 활성물질의 전구체를 흔합하여 산소 농도를 조절하면서 제 1 흔합물을 생성하는 단계 및 상기 산화된 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함한다. 이와 같은 방법으로 제조된 사이알론 형광체는, 하기의 조성식 (1)을 갖는다:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, y 및 z는 각각 0,018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z < 1.0이고, Re은 회토류 원소임.
이러한 방법은, 전구체 물질들을 흔합한 후 산화시켜서 산소의 농도를 조절하는 것과 대웅될 수 있다. 즉, 산소의 농도를 조절하기 위해 전구체 물질로 산화물을 사용함으로써 제 1 흔합물 형성 단계에서 산소의 농도를 조절할 수 있다. 이와 같은 방법으로도 산소의 농도를 균일하게 공급할 수 있다. 따라서, 사이알론 형광체 내에서 산소 농도가 균일하게 조절되기 때문에 부분적으로 결정화되지 않고, 전체적으로 결정화되어 결정성을 높일 수 있으며, 이로 인해 휘도를 향상시킬 수 있다. 또한, 산소의 농도를 조절하는 방법에 이에 제한되지 않고, 다양하게 변경될 수 있다.
규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 계량한 후에 흔합하는 방법은 건식과 습식 두 가지 방법 중 하나를 사용할수 있다.
먼저, 습식 흔합 방식에 따르면, 계량된 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체의 흔합과정 및 분쇄를 도와주는 볼 (ball), 그리고 용매를 삽입하여 흔합한다. 이때 볼은 산화규소 (Si3N4), 알루미나 (A1203) 지르코니아 (Zr ) 재질 또는 일반적으로 원료 흔합시에 사용되는 볼을 사용할 수 있다. 용매는 탈이온수 (DI water), 에탄올 등의 알콜류 또는 n-핵산 (n-hexane) 등의 유기 용매 모두 사용 가능하다. 즉, 전구체 물질들, 용매 및 볼올 삽입한 후 용기를 밀폐시키고, 밀러 (miller) 둥의 장치를 이용하여 0.1 내지 100 시간 정도 균질하게 흔합할 수 있다. 흔합 과정이 완료된 후, 흔합된 제 1 흔합물과 볼을 분리하고, 오븐 (oven)에서 1 내지 30 시간 정도의 건조 과정을 통하여 용매를 대부분 증발시킬 수 있다. 건조가 완료된 분말을 금속 또는 폴리머 재질의 체 (sieve)를 이용하여 마이크로미터 사이즈 (micrometer size) 조건으로 균일하게 분쇄과정을 거칠 수 있다.
한편, 건식흔합 방식에 따르면, 용매를 사용하지 않고 용기에 전구체들올 삽입하고 밀링 머신 (mil ling machine)을 이용하여 상기 전구체들을 균질하게 흔합한다. 흔합 시간은 0.1 내지 1 시간 정도이며, 이때 볼을 전구체들과 같이 삽입하여, 흔합을 좀 더 용이하게 하여 흔합시간을 단축할 수 있다. 이러한 건식 흔합 방식은 습식에 비해 용매의 건조과정이 필요없는 관계로 전체 공정시간을 줄일 수 있는 장점이 있다. 전구체들의 흔합이 완료되면, 습식 흔합과 마찬가지로 흔합과정이 완료된 분말을 금속 또는 폴리머 재질의 체를 이용하여 원하는 마이크로미터 사이즈 조건으로 균일하게 분쇄과정을 거칠 수 있다.
따라서, 본 발명에서는 알루미늄 농도가 0.42 mol 내지 1.0 mol인. 경우에도 높은 휘도를 나타내며, 입도에서 D50 값이 5 내지 20 jam 범위인 사이알론 형광체를 제공한다.
또한, 본 발명의 일 실시예에 따른 형광체를 제조하는 방법에서, 산소 농도를 조절함으로써 우수한 형광체 결정성을 확보하여 휘도를 향상시킬 수 있다.
결국, 본 발명의 일 실시예에 따른 사이알론 형광체는 알루미늄의 농도가 높은 경우에도 녹색 발광 특성이 우수하며, 사이알론 형광체의 입도가 커지지 않으며 입자 크기의 제어가 가능하고, 휘도도 개선시킬 수 있다.
나아가, 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 흔합하는 단계에서, 알칼리 토금속 함유 화합물 또는 망간 (Mn) 함유 화합물을 함께 흔합할 수 있다. 알칼리 토금속은 마그네습 (Mg), 칼슴 (Ca), 스트론튬 (Sr) 및 바륨 (Ba)으로 이루어진 그룹으로부터 선택될 수 있다.
이와 같이, 상기 전구체들을 흔합하는 단계에서 알칼리 토금속 함유 화합물 또는 망간 (Mn) 함유 화합물을 함께 흔합하는 경우, 알칼리 토금속 또는 망간은 호스트 매트릭스를 구성하는 원소인 규소 또는 알루미늄을 치환하지 않고, 결정 구조의 공극 (empty sphere)에 도펀트로서 첨가되는 형태이다. 결국, 본 발명의 일 측에서 알칼리 토금속 또는 망간의 첨가는 호스트 매트릭스의 결정구조를 변경하지 않을 뿐만 아니라 전혀 영향을 주지 않는다。
또한, 알칼리 토금속 또는 망간은 사이알론 형광체의 상안정화에 기여하여 신뢰성을 향상시키고, 발광효율을 개선할 뿐만 아니라, 단파장화하는 역할올 한다. 이러한 알칼리 토금속 또는 망간의 첨가량은 0.0001 내지 10 mol 범위일 수 있다. 알칼리 토금속 또는 망간의 첨가량이 0.1 mol 미만인 경우에 효율개선 효과 및 단파장화 효과가 층분하지 않으며, 3 mol%를 초과하는 경우에는 상기 물질을 첨가하지 않은 형광체보다 오히려 효율이 저하되는 문제가 있다. 바람직하게, 상기 알칼리 토금속 또는 망간의 첨가량은 0.05 내지 0.5 mol% 범위일 수 있다.
특히, 알칼리 토금속 또는 망간을 첨가하지 않은 경우보다 휘도는 10% 이상의 수준으로 개선되므로, 높은 변환효율을 달성할 수 있다.
이러한 형광체는 여기원 조사에 의해 형광체에서 방출되는 광의 피크 파장이
535 nm 내지 545 nm으로 상대적으로 단파장화되는 경향을 나타낼 수 있다. 따라서 , 표준 RGB에서 요구하는 녹색의 파장 특성을 비교적 높은 수준으로 만족시킬 수 있다. 즉, 상기 여기원 조사에 의해 상기 형광체에서 방출되는 광이 CIE 1931 색도좌표에서 (X, y) 값으로 표현될 때, X와 y는 각각 x≤0.36, y≥0.61을 만족할 수 있으므로, 선명한 백색광을 제공할 수 있는 녹색 형광체로 유효하게 사용될 수 있다.
이하, 본 발명의 다양한 실시예들을 설명하나, 본 발명의 기술적 사상이 하기의 실시예들에 제한되는 것은 아니다.
이하의 실시예들에서 각각의 전구체들은 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 계량해, 볼 밀이나 흔합기로 흔합하여 제 1 흔합물을 제조한다. 그런 다음, 제 1 흔합물을 산소 또는 공기 분위기 하에서 300 내지 1300oC에서 산화시킨 후, 상기 제 1 흔합물을 BN 도가니 등 고온 내열성의 용기에 넣고 가압 소성과 진공 소성이 생기는 전기로에 넣는다. 이와 같이 산화된 제 1 흔합물을 질소 함유 분위기 중 가스압 0.1 MPa 내지 lOMPa의 가압하에서 10°C/분 이하의 속도로온도를 상승시켜 1000oC 이상으로 열처리하여 사이알론 형광체를 형성한다. 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체의 배합비를 변화시켜 제조한 후, 산화 및 소결한 실시예 1 내지 실시예 13와 알루미늄의 농도가 0.23 m이인 비교예 1, 산소 농도가 다른 비교예 2의 형광체는 모두 Eu 활성화된 사이알론 형광체이다.
[실시예 1]
규소 전구체로서 질화 규소 (Si3N4)를 사용하고, 알루미늄 전구체로서 질화알루미늄 (A1N) 및 산화알루미늄 (A1203)올 사용하였다. 또한, 활성물질로 산화 유로피움 (Eu203)을 사용하였다. Si3N4를 179.98 g, A1N을 5.9418 g, A1203를 16.4493 g, Eu203를 3.4187 g 계량하고, 흔합기와 체를 사용하여 흔합한 후, BN 도가니에 층전해, 내압제 전기로에 넣어 세트하였다. 소결은 진공하에서 50CTC까지 가열하고, 500°C에서 N2 가스를 도입하였다. N2 가스 분위기하에서 500°C에서
2050°C까지 매분 10oC로 상승시키고, 가스압이 1 MPa 이상이 되도록 하면서 2050oC의 온도에서 5시간 소결하였다. 소결 후 냉각시키고, 전기로로부터 도가니를 꺼내 생성된 사이알론 형광체를 분쇄하고, 100 메쉬 (mesh)의 체를 사용하였다.
[실시예 2]
Si3N4를 186.70 g, Eu203를 3.1655 g, A1N을 8.3598 g, A1203를 6.1066 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 3]
Si3N4를 185.02 g, Eu203를 3.2921 g, A1N을 7.8143 g, A1203를 8.6189 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 4]
Si3N4를 183.34 g, Eu203를 3.2921 g, A1N을 7.2982 g, A1203를 11.0946 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 5]
Si3N4를 181.66 g, Eu203를 3.0388 g, AIN을 6.5463 g, Al2¾를 13.8636 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 6]
Si3N4를 178.29 g, Eu203를 3.4187 g, AIN을 5.3668 g, A1203를 18.9983 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 7]
Si3N4를 177.89 g, Eu203를 3.8261 g, AIN을 5.1235 g, A1203를 2 3340 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 8]
Si3N4를 177.89 g, Eu203를 3.8261 g, AIN을 5.1235 g, A1203를 21.3340 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
[실시예 9]
A1N을 11,8836 g, A1203를 9.0590 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을사용하여 사이알론 형광체를 제조하였다.
[실시예 10]
A1N을 10.1585 g, A1203를 11.2046 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을사용하여 사이알론 형광체를 제조하였다.
[실시예 11]
A1N을 8.1460 g, A1203를 13.7078 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을사용하여 사이알론 형광체를 제조하였다. [실시예 12]
A1N을 6.0376 g, A1203를 16.3301 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을사용하여 사이알론 형광체를 제조하였다.
[실시예 13]
A1N을 4.2168 g, A1203를 18.5949 g 계량한 것을 제외하고는 실시예 1과 동일한 방법을사용하여 사이알론 형광체를 제조하였다.
[비교예 1]
규소 전구체로서 질화 규소 (Si3N4)를 사용하고, 알루미늄 전구체로서 질화알투미늄 (A1N)을 사용하였다. 또한, 활성물질로 산화 유로피움 (Eu203)을 사용하였다. Si3N4를 194.10 g, A1N을 6.7822 g, Eu203를 2.2791 g 계량하고, 흔합기와 체를 사용하여 흔합한 후, BN 도가니에 층전해, 내압제 전기로에 넣어 세트하였다. 소결은 진공하에서 500°C까지 가열하고, 500°C에서 N2 가스를 도입하였다. N2 가스 분위기하에서 500oC에서 2050°C까지 매분 10oC로 상승시키고, 가스압이 1 MPa 이상이 되도록 하면서 2050°C의 온도에서 5시간 소결하였다. 소결 후 냉각시키고, 전기로로부터 도가니를 꺼내 생성된 사이알론 형광체를 분쇄하고, 100 메쉬 (mesh)의 체를 사용하였다.
[비교예 2]
Si3N4를 179.98 g, A1N을 1.3417 g, A1203를 22.1708 g, Eu203를 3.4187 g 계량한 것을 제외하고는 비교예 1과 동일한 방법을 사용하여 사이알론 형광체를 제조하였다.
상기에서 언급된 실시예 1 내지 8 및 비교예 1에 사용된 원료물질의 배합비를 표 1에 나타낸다.
【표 1】
Figure imgf000026_0001
또한, 상기의 실시예 1 내지 8 및 비교예 1에 따른 형광체의 휘도, 발광 피크 파장, 반치폭을 표 2에 나타낸다. 휘도는 비교예 하여 상대적인 값으로 나타낸다.
【표 2]
Figure imgf000026_0002
또한, 실시예 9내지 13 및 비교예 2에 사용된 원료물질의 배합비 및 산소 농도를 표 3에 나타낸다.
【표 3
Figure imgf000026_0003
실시예 1 및 비교예 1에 따라 제조된 형광체는 분말 X선 회절 (XRD)에 의한 분류를 실시하였는데 그 결과를 도 1에 나타내었다. 도 1을 참조하고 JCPDS 데이터를 이용하여, 제조된 형광체가사이알론 형광체임을 확인하였다.
도 2는 비교예 1을 기준으로 하여, 실시예 1 내지 8에 따른 사이알론 형광체의 상대적인 PL 강도를 나타내는 그래프이다. 도 3은 비교예 1을 기준으로 하여, 실시예 1 내지 8에 따른 사이알론 형광체에서 발광 파장에 따른 상대적인 PL 강도를 나타내는 그래프이다. 도 4는 도 3에서 발광 파장이 520 내지 570 nm인 부분을 확대한 그래프이다.
도 2를 참고하면, 알루미늄 농도가 으 45 내지 1.0 m 인 실시예 1 내지 8의 사이알론 형광체는, 알루미늄 농도가 0.23 ηωΐ인 비교예 1의 사이알론 형광체보다 PL 강도가 12.5% 이상 개선되었다. 즉, 알루미늄 농도가 0.23 mo인 비교예 1의 사이알론 형광체 대비 실시예 1 내지 8은 알루미늄의 농도가 높지만 휘도 면에서 12.5 내지 20% 개선되었음을 알 수 있다. 발광 파장에 따른 상대적인 PL 강도를 나타내는 도 3 및 도 4을 참고하면, 실시예 1 내지 8은 540 내지 542.5 nm 범위의 파장에서 비교예 1보다 상대적인 PL 강도가 높음을 알 수 있다.
도 5는 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체의 발광 피크 파장을 나타내는 그래프이다. 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체는 발광 피크 파장이 540 내지 542.5로 안정화됨을 알 수 있다.
도 6은 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체의 반치폭 (FWHM)을 나타내는 그래프이다. 실시예 1 내지 8 및 비교예 1에 따른 사이알론 형광체는, 알루미늄 농도가 0.42 이상인 영역에서 반치폭이 52 내지 53.5로 안정화됨을 알 수 있다.
도 7은 실시예 9 내지 13 및 비교예 2에 따른 사이알론 형광체에서 산소 농도에 따른 PL 강도를 나타내는 그래프이다. 도 8은 실시예 9 내지 13 및 비교예 2에 따른 사이알론 형광체에서 산소 농도에 따른 발광 피크 파장을 나타내는 그래프이다.
도 7을 참고하면, 알루미늄 농도가 0.65 mol, 유로피움 농도가 0.027 mol인 조성에서, 산소의 농도에 따라 PL 강도가 변하는 것을 볼 수 있다. 또한, 산소의 농도가 알루미늄 농도와 비슷한 영역에서 PL 강도가 가장 높음을 알 수 있다. 즉,
(알루미늄 농도 - 0.1) < 산소 농도 < (알루미늄 농도 + 0.1) 범위를 만족하는 산소의 농도에서 PL강도가높음을 알 수 있다.
또한, 도 8을 참고하면, 알루미늄 농도가 0.65 mol, 유로피움 농도가 0.027 mol인 조성에서, 산소의 농도에 따라 발광 피크 파장이 달라짐을 알 수 있다. 도 7에서와 같이, 산소의 농도가 알루미늄 농도와 비슷한 영역에서 발광 피크 파장이 542.5정도로 가장 높음을 알수 있다.
이러한 산소의 농도는 전구체들올 흔합한 후에 산화시키거나, 전구체들로 산화물을 사용함으로써 조절할 수 있다. 따라서, 사이알론 형광체 내에서 산소 농도가 균일하게 조절되기 때문에, 사이알론 형광체가 부분적으로 결정화되지 않고 전체적으로 결정화되어, 사이알론 형광체의 결정성을 높일 수 있으며, 이로 인해 휘도를 향상시킬 수 있다.
도 9a은 비교예 2에 따른 사이알론 형광체 입자의 주사전자 현미경 사진을 나타내고, 도 9b는 실시예 13에 따른 사이알론 형광체 입자의 주사전자 현미경 사진을 나타낸다.
또한, 도 9a 및 도 9b에서 보는 바와 같이 , 산소의 농도에 따라서 형광체의 입도가 바뀌는 것을 알 수 있다. 도 9a 및 도 9b를 참고하면, 산소의 농도가 과량으로 들어가면 입도가 조대 입자로 커짐을 알 수 있다. 즉, 도 9a에서의 산소 농도는 5.400 mol%이며, 이때 D50 값은 25 / 이나, 도 9b에서의 산소 농도는 4.616 mol%이며, 이때 D50 값은 15 이다. 따라서, 산소의 농도가 알루미늄의 농도와 비슷한 값을 가질 경우에 D50 값이 더 작음을 알 수 있다.
결국, 본 발명의 일 실시예에 따른 형광체는 입도에서 D50 값이 5 내지 20 범위일 수 있으며, PL 강도가 가장 높은 산소의 농도에서 입자의 평균 입경이 10 (M 정도로 발광소자에 적용할 수 있는 크기로 형광체가 합성되었음을 알 수 있다. 이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 웅용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성요소는 변형하여 실시할 수 있는 것이다. 그리'고 이러한 변형과 웅용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims

【청구범위】
1. 하기의 조성식 (1)을 갖는 형광체:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, χ, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z < ¬고, Re은 회토류 원소임.
2. 제 1항에 있어서,
상기 z는 0.50 내지 0.75인 형광체.
3. 제 2항에 있어서,
상기 z는 0.60 내지 0.70인 형광체, '
4. 제 1항에 있어서,
여기원을 조사한 경우, 발광 피크 파장이 500 내지 550 nm 범위인 형광체.
5. 제 4항에 있어서,
상기 발광 피크 파장이 535 내지 545 nm 범위인 형광체.
6. 제 1항에 있어서,
상기 형광체의 입도는 D50 값이 5 내지 20 범위인 형광체.
7. 제 4항 또는 제 5항에 있어서 ,
상기 여기원은 300 내지 480 nm 범위의 발광 피크 파장을 갖는 형광체.
8. 제 1항에 있어서,
상기 회토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택되는 형광체.
9. 제 1항에 있어서, 상기 형광체는 마그네슘 (Mg), 칼슘 (Ca), 스트론튬 (Sr) 및 바륨 (Ba)으로 이루어진 그룹으로부터 선택되는 알칼리 토금속을 더 포함하는 형광체 .
10. 제 1항에 있어서,
상기 형광체는 망간 (Mn)올 더 포함하는 형광체.
11. 규소 전구체, 알루미늄 전구체 및 활성물질의 전구체를 흔합하여 거 U 흔합물을 생성하는 단계 ;
상기 제 1 흔합물을 산화시켜서 산소 농도를 조절하는 단계; 및
상기 산화된 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함하며, 하기의 조성식 (1)을 갖는 형광체 제조방법:
[조성식 1]
Si(6-z)Alz0yN(8— z):Rex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
1.0이고, Re은 희토류 원소임.
12. 제 11항에 있어서,
여기원을 조사한 경우, 발광 피크 파장이 500 내지 550 nm 범위인 형광체 제조방법.
13. 제 12항에 있어서,
상기 발광 피크 파장이 535 내지 545 nm 범위인 형광체 제조방법.
14. 제 11항에 있어서,
상기 산소 농도를 조절하는 단계는,
산소 농도가, (알루미늄 농도 一 0.1) < 산소 농도 < (알루미늄 농도 + 0.1) 범위를 만족하도록 수행되는 형광체 제조방법.
.
15. 제 11항에 있어서,
상기 규소 전구체는 금속규소 및 질화규소로 이루어진 그룹으로부터 선택되는 형광체 제조방법 .
16. 제 11항에 있어서,
상기 알루미늄 전구체는 금속알루미늄, 질화 알루미늄 및 수산화알루미늄으로 이루어진 그룹으로부터 선택되는 형광체 제조방법.
17. 제 11항에 있어서,
상기 활성물질의 전구체는 회토류 원소를 포함하는 화합물인 형광체 제조방법.
18. 제 17항에 있어서,
상기 희토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택되는 형광체 제조방법.
19. 제 11항에 있어서,
상기 제 1 흔합물을 산화시키는 단계는, 산소 또는 공기 분위기 하에서 300 내지 1300oC로 수행되는 형광체 제조방법 .
20. 제 11항에 있어서,
상기 소결하는 단계는, 1500°C 내지 2200°C에서 수행되는 형광체 제조방법.
21. 제 11항에 있어서,
상기 소결하는 단계는, 0.1 내지 10 MPa의 질소 가스의 압력 하에서 수행되는 형광체 제조방법.
22. · 제 11항에 있어서,
상기 형광체의 입도는 D50 값이 5 내지 20 범위인 형광체 제조방법.
23. 산화 규소, 산화 알루미늄 및 활성물질의 전구체를 흔합하여 산소 농도를 조절하면서 제 1 흔합물을 생성하는 단계; 및
상기 제 1 흔합물을 질소 분위기 하에서 소결하는 단계를 포함하며,
하기의 조성식 (1)을 갖는 형광체 제조방법:
[조성식 1]
Si(6-z)Alz0yN(8-z):Rex
여기서, X, y 및 z는 각각 0.018 < X < 0.3, 0.3 < y < 0.75, 0.42 < z <
: L0이고, Re은 회토류 원소임.
24. 제 23항에 있어서,
상기 산소 농도를 조절하는 단계는,
산소 농도가, (알루미늄 농도 - 0.1) < 산소 농도 < (알루미늄 농도 + 0.1) 범위를 만족하도록 수행되는 형광체 제조방법.
25. 제 23항에 있어서,
상기 희토류 원소는 Eu 및 Ce으로 이루어진 그룹으로부터 선택되는 형광체 제조방법.
26. 제 23항에 있어서,
상기 소결하는 단계는, 1500oC 내지 2200oC에서 수행되는 형광체 제조방법.
27. 제 23항에 있어서,
상기 소결하는 단계는, 0.1 내지 10 MPa의 질소 가스의 압력 하에서 수행되는 형광체 제조방법 .
28. 제 23항에 있어서,
상기 형광체의 입도는 D50 값이 5 내지 20 i¾m 범위인 형광체 제조방법.
PCT/KR2011/006929 2010-09-20 2011-09-20 형광체 및 이의 제조방법 WO2012039573A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/825,014 US9187694B2 (en) 2010-09-20 2011-09-20 Phosphor and method for preparing same
CN201180055466.6A CN103298908B (zh) 2010-09-20 2011-09-20 磷光体及其制备方法
DE112011103145T DE112011103145T5 (de) 2010-09-20 2011-09-20 Leuchtstoff und Verfahren zum Herstellen desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100092636A KR101214236B1 (ko) 2010-09-20 2010-09-20 형광체 및 이의 제조방법
KR10-2010-0092636 2010-09-20

Publications (2)

Publication Number Publication Date
WO2012039573A2 true WO2012039573A2 (ko) 2012-03-29
WO2012039573A3 WO2012039573A3 (ko) 2012-05-18

Family

ID=45874247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006929 WO2012039573A2 (ko) 2010-09-20 2011-09-20 형광체 및 이의 제조방법

Country Status (5)

Country Link
US (1) US9187694B2 (ko)
KR (1) KR101214236B1 (ko)
CN (1) CN103298908B (ko)
DE (1) DE112011103145T5 (ko)
WO (1) WO2012039573A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101534326B1 (ko) * 2013-01-03 2015-07-07 한국기계연구원 향상된 발광 특성을 갖는 알파 사이알론 형광체 합성 방법
KR102477353B1 (ko) * 2015-08-06 2022-12-16 삼성전자주식회사 적색 형광체, 백색 발광장치 및 조명 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (ja) * 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
WO2006121083A1 (ja) * 2005-05-12 2006-11-16 National Institute For Materials Science β型サイアロン蛍光体
US20100213820A1 (en) * 2007-10-10 2010-08-26 Ube Industries, Ltd. Beta-sialon phosphor powder and production method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8400660A (nl) 1984-03-01 1985-10-01 Philips Nv Luminescerend scherm.
JP3726131B2 (ja) 2002-05-23 2005-12-14 独立行政法人物質・材料研究機構 サイアロン系蛍光体
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
JP4052136B2 (ja) 2003-02-06 2008-02-27 宇部興産株式会社 サイアロン系酸窒化物蛍光体およびその製造方法
JP4674348B2 (ja) 2004-09-22 2011-04-20 独立行政法人物質・材料研究機構 蛍光体とその製造方法および発光器具
JP4756261B2 (ja) * 2005-01-27 2011-08-24 独立行政法人物質・材料研究機構 蛍光体とその製造方法および発光器具
JP4494306B2 (ja) 2005-07-27 2010-06-30 電気化学工業株式会社 α型サイアロン粉末の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255895A (ja) * 2004-03-12 2005-09-22 National Institute For Materials Science 蛍光体とその製造方法
WO2006121083A1 (ja) * 2005-05-12 2006-11-16 National Institute For Materials Science β型サイアロン蛍光体
US20100213820A1 (en) * 2007-10-10 2010-08-26 Ube Industries, Ltd. Beta-sialon phosphor powder and production method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RYU, J. H. ET AL.: 'Luminescence Properties of Eu2+-Doped beta-Si6-zAlzOzNB-z Microcrystals Fabricated by Gas Pressured Reaction' JOURNAL OF CRYSTAL GROWTH vol. 311, no. 3, 15 January 2009, ISSN 0022-0248 pages 878 - 882 *
XIE, R.-J. ET AL.: 'Synthesis and Photoluminescence Properties of beta-sialon: Eu2+(Si6- zAlzOzN8-z:Eu2+)' JOURNAL OF THE ELECTROCHEMICAL SOCIETY vol. 154, no. 10, 15 August 2007, ISSN 1945-7111 pages J314 - J319 *
YOO, D. S. ET AL.: 'Atomic and Electronic Structure Investigation and Luminescence Property of Eu2+-Doped beta-SiAlON Green Phosphor: Ab initio Calculations' JAPANESE JOURNAL OF APPLIED PHYSICS vol. 49, no. 6, 21 June 2010, ISSN 1347-4065 page 06GJ07 *

Also Published As

Publication number Publication date
US9187694B2 (en) 2015-11-17
KR101214236B1 (ko) 2012-12-20
CN103298908A (zh) 2013-09-11
WO2012039573A3 (ko) 2012-05-18
CN103298908B (zh) 2016-01-20
DE112011103145T5 (de) 2013-08-01
US20130256597A1 (en) 2013-10-03
KR20120030842A (ko) 2012-03-29

Similar Documents

Publication Publication Date Title
US20220056339A1 (en) Phosphor and light-emitting equipment using phosphor
JP5910498B2 (ja) 珪窒化物蛍光体用窒化珪素粉末並びにそれを用いたCaAlSiN3系蛍光体、Sr2Si5N8系蛍光体、(Sr,Ca)AlSiN3系蛍光体及びLa3Si6N11系蛍光体、及びその製造方法
JP5046223B2 (ja) 蛍光体及びその利用
KR101215342B1 (ko) 사이알론 형광체, 그 제조방법 및 이를 이용한 발광소자 패키지
JP2006016413A (ja) 蛍光体と発光器具
JP2010043242A (ja) β−サイアロン蛍光体の製造方法。
WO2013147066A1 (ja) 酸窒化物蛍光体粉末
JP2011140664A (ja) 蛍光体の製造方法
JP2004277663A (ja) サイアロン蛍光体とその製造方法
US9120973B2 (en) Fluorescent substance and a production method therefor
KR101214236B1 (ko) 형광체 및 이의 제조방법
KR20100099012A (ko) 할로인산염계 형광체 및 이의 제조 방법
JP2008285678A (ja) サイアロン蛍光体およびそれを用いた白色発光ダイオード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827001

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 112011103145

Country of ref document: DE

Ref document number: 1120111031459

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13825014

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11827001

Country of ref document: EP

Kind code of ref document: A2