WO2012039362A1 - グリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法 - Google Patents
グリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法 Download PDFInfo
- Publication number
- WO2012039362A1 WO2012039362A1 PCT/JP2011/071257 JP2011071257W WO2012039362A1 WO 2012039362 A1 WO2012039362 A1 WO 2012039362A1 JP 2011071257 W JP2011071257 W JP 2011071257W WO 2012039362 A1 WO2012039362 A1 WO 2012039362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- molded body
- honeycomb molded
- green honeycomb
- drying
- gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/241—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening using microwave heating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/247—Controlling the humidity during curing, setting or hardening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/006—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects the gas supply or exhaust being effected through hollow spaces or cores in the materials or objects, e.g. tubes, pipes, bottles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/32—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
- F26B3/34—Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
- F26B3/347—Electromagnetic heating, e.g. induction heating or heating using microwave energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2210/00—Drying processes and machines for solid objects characterised by the specific requirements of the drying good
- F26B2210/02—Ceramic articles or ceramic semi-finished articles
Definitions
- the present invention relates to a drying device for a green honeycomb molded body, a method for drying a green honeycomb molded body, and a method for manufacturing a ceramic honeycomb structure.
- a ceramic honeycomb structure having a large number of through-holes is produced by forming a green honeycomb formed body containing a ceramic raw material powder and a solvent, drying and firing.
- Patent Document 1 discloses a method using a microwave and a heated gas as a method for drying a green honeycomb molded body.
- the green honeycomb molded body may be deformed or cracked during drying.
- the present invention has been made in view of the above problems, and provides a drying apparatus and a drying method for a green honeycomb molded body that can suppress deformation and cracking of the green honeycomb molded body during drying, and a method for manufacturing a ceramic honeycomb structure. For the purpose.
- the drying device is a drying device for a green honeycomb molded body having a plurality of through holes.
- This drying apparatus includes a container, a microwave source that supplies microwaves into the container, a steam supply port that supplies steam into the container, and a plurality of through holes of the green honeycomb molded body that are disposed in the container.
- a gas dispersion plate in contact with the provided end face; and a gas source for supplying gas to the plurality of through holes of the green honeycomb molded body through the gas dispersion plate.
- the drying method according to the present invention is a method for drying a green honeycomb molded body having a plurality of through holes.
- this drying method the step of bringing the gas dispersion plate into contact with the end face provided with the openings of the plurality of through holes in the green honeycomb molded body and the contact in an atmosphere in which steam exists around the green honeycomb molded body Supplying a gas to the plurality of through holes of the green honeycomb molded body through the gas dispersion plate and irradiating the green honeycomb molded body with microwaves.
- the method for manufacturing a ceramic honeycomb structure according to the present invention is a method for manufacturing a ceramic honeycomb structure by drying a green honeycomb molded body having a plurality of through holes.
- This manufacturing method comprises a step of preparing a raw material mixture by mixing at least an inorganic compound, an organic binder, and a solvent which are ceramic raw materials, and extruding the raw material mixture from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall Cutting the length to obtain a green honeycomb molded body, contacting the gas dispersion plate with the end face of the green honeycomb molded body provided with a plurality of through-hole openings, and surrounding the green honeycomb molded body And supplying a gas to the plurality of through holes of the green honeycomb molded body through the gas dispersion plate in contact with each other and irradiating the green honeycomb molded body with microwaves in an atmosphere in which steam is present.
- a gas such as a heated gas is supplied to the plurality of through holes via the gas dispersion plate that is in contact with the end face of the green honeycomb molded body.
- the outer surface of the green honeycomb molded body may be excessively dried before the center portion by supplying a steam atmosphere such as water vapor around the green honeycomb molded body during supply of the heated gas and microwave irradiation. It is suppressed. Therefore, the unevenness of the drying rate can be reduced, the deformation of the green honeycomb molded body accompanying the drying and the cracking of the outer peripheral wall can be suppressed, and the yield can be improved.
- the gas dispersion plate is preferably a perforated plate.
- the gas dispersion plate may be a porous plate.
- the drying method or the manufacturing method may further include a step of continuously supplying water vapor around the green honeycomb molded body so as to be in an atmosphere in which steam exists around the green honeycomb molded body. .
- the output of the microwave to be irradiated may be lowered according to the progress of the drying time of the green honeycomb molded body.
- the microwave irradiation is stopped and the gas supply to the plurality of through holes is continued. Good.
- the above manufacturing method may further include a step of sealing the end portion of the green honeycomb molded body that has been dried in the step of irradiating the microwave.
- a drying device and a drying method for a green honeycomb molded body and a method for manufacturing a ceramic honeycomb structure that can suppress deformation and cracking of the green honeycomb molded body during drying are provided.
- FIG. 3 is a diagram showing temporal changes in the drying rate B and the microwave output A in Example 1.
- a preferred embodiment of a drying apparatus for a green honeycomb molded body, a drying method thereof, and a method for manufacturing a ceramic honeycomb structure will be described with reference to FIG.
- the same reference numerals are used for the same elements or elements having the same function, and a duplicate description is omitted.
- the green honeycomb molded body 70 to be dried is a column having a large number of through holes 70 a extending in the Z-axis direction.
- the external shape of the green honeycomb molded body 70 is not particularly limited. Prismatic, quadrangular, hexagonal, octagonal, etc.).
- the cross-sectional shape of each through-hole 70a is not specifically limited, For example, polygons, such as a circle, an ellipse, a square, a rectangle, a triangle, a hexagon, etc. are mentioned.
- the through holes 70a may have different diameters and different cross-sectional shapes.
- the arrangement of the through holes 70a when viewed from the end surface in the Z-axis direction of the green honeycomb molded body 70 is also not particularly limited.
- the green honeycomb molded body 70 is arranged so that the central axis of the through holes 70a is located at the apexes of the squares.
- a regular triangle arrangement in which the central axis of the through hole 70a is arranged at the apex of the regular triangle.
- the diameter of the through hole 70a is not particularly limited.
- the cross section is a square, it can be 0.8 to 2.5 mm on a side.
- the thickness of the partition wall separating the through holes 70a can be set to 0.15 to 0.76 mm, for example.
- the length of the green honeycomb molded body 70 in the direction in which the through hole 70a extends is not particularly limited, but may be, for example, 40 to 350 mm.
- the outer diameter of the green honeycomb molded body 70 is not particularly limited, but may be, for example, 100 to 320 mm.
- the green honeycomb molded body 70 is green (unfired body) that becomes ceramics by firing later, and is particularly preferably green that becomes porous ceramics.
- the green honeycomb molded body 70 includes a ceramic raw material.
- the ceramic is not particularly limited, and examples thereof include alumina, silica, mullite, cordierite, glass, oxides such as aluminum titanate, silicon carbide, silicon nitride, and metal.
- the aluminum titanate can further contain magnesium and / or silicon.
- the green honeycomb molded body 70 preferably includes an inorganic compound source powder that is a ceramic raw material, an organic binder such as methylcellulose, and an additive that is added as necessary.
- the inorganic compound source powder is aluminum source powder such as ⁇ alumina powder, titanium source powder such as anatase type or rutile type titania powder, and / or aluminum titanate powder.
- the inorganic compound source powder may further contain a magnesium source powder such as a magnesia powder or a magnesia spinel powder and / or a silicon source powder such as a silicon oxide powder or a glass frit as necessary.
- the organic binder examples include celluloses such as methylcellulose, carboxymethylcellulose, hydroxyalkylmethylcellulose, and sodium carboxymethylcellulose; alcohols such as polyvinyl alcohol; and lignin sulfonate.
- the amount of the organic binder is preferably 20 parts by weight or less, more preferably 15 parts by weight or less, and still more preferably 6 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
- the minimum amount of an organic binder is 0.1 weight part, More preferably, it is 3 weight part.
- additives include a pore-forming agent, a lubricant and a plasticizer, a dispersant, and a solvent.
- pore-forming agents include carbon materials such as graphite; resins such as polyethylene, polypropylene and polymethyl methacrylate; plant materials such as starch, nut shells, walnut shells and corn; ice; and dry ice.
- the amount of pore-forming agent added is preferably 0 to 40 parts by weight, more preferably 0 to 25 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
- Lubricants and plasticizers include alcohols such as glycerin; higher fatty acids such as caprylic acid, lauric acid, palmitic acid, arachidic acid, oleic acid and stearic acid; metal stearates such as Al stearate, polyoxyalkylene alkyl Examples include ether.
- the addition amount of the lubricant and the plasticizer is preferably 0 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the inorganic compound source powder.
- the dispersant examples include inorganic acids such as nitric acid, hydrochloric acid and sulfuric acid; organic acids such as oxalic acid, citric acid, acetic acid, malic acid and lactic acid; alcohols such as methanol, ethanol and propanol; ammonium polycarboxylate Surfactant etc. are mentioned.
- the addition amount of the dispersant is preferably 0 to 20 parts by weight, more preferably 2 to 8 parts by weight, based on 100 parts by weight of the inorganic compound source powder.
- the solvent for example, alcohols such as methanol, ethanol, butanol and propanol; glycols such as propylene glycol, polypropylene glycol and ethylene glycol; and water can be used. Of these, water is preferable, and ion-exchanged water is more preferably used from the viewpoint of few impurities.
- the amount of the solvent used is preferably 10 to 100 parts by weight, more preferably 20 to 80 parts by weight with respect to 100 parts by weight of the inorganic compound source powder. Further, the weight of the solvent relative to the total weight of the molded body is not particularly limited, but is preferably 10 to 30% by weight, and more preferably 15 to 20% by weight.
- Such a green honeycomb molded body 70 can be manufactured, for example, as follows.
- an inorganic compound source powder, an organic binder, a solvent, and additives to be added as necessary are prepared. Then, these are mixed by a kneader or the like to obtain a raw material mixture, and the obtained raw material mixture is extruded from an extruder having an outlet opening corresponding to the cross-sectional shape of the partition wall and cut into a desired length, thereby forming a green honeycomb.
- the body 70 can be obtained.
- the drying device 100 for a green honeycomb molded body according to the present embodiment is for drying the green honeycomb molded body 70, and mainly includes a container 10, a microwave source 20 that supplies a microwave into the container 10, and a container 10. And a heating gas source 30 that supplies a heating gas to the plurality of through holes 70a of the green honeycomb molded body 70 via the gas dispersion plate 42 of the mounting table 40.
- the container 10 can accommodate the green honeycomb molded body 70, the mounting table 40, and the outlet 36 a of the pipe line 36.
- the container 10 is preferably made of metal from the viewpoint of shielding microwaves.
- the container 10 is provided with a discharge port 10b for discharging the gas in the container 10 to the outside.
- the container 10 also has a waveguide 10 a that receives the microwave supplied from the microwave source 20.
- the microwave source 20 generates a microwave for heating the green honeycomb molded body 70.
- the wavelength of the microwave is not particularly limited as long as the green honeycomb molded body 70 can be heated.
- a preferred wavelength of the microwave is 895 to 940 MHz, or 2400 to 2500 MHz. It is preferable that the microwave source 20 can reduce the microwave output as it is dried.
- the output of the microwave is not particularly limited, but may be, for example, 1 to 10 kW per green honeycomb molded body.
- the mounting table 40 is a table that is disposed in the container 10 and on which the green honeycomb molded body 70 is mounted.
- the mounting table 40 includes a gas dispersion plate 42 and a non-breathable ring member 44 surrounding the side surface of the gas dispersion plate 42.
- the green honeycomb molded body 70 is placed on the gas dispersion plate 42 so that one end surface (lower surface) 70 d provided with openings of the plurality of through holes 70 a is in contact with the upper surface of the gas dispersion plate 42.
- the size of the upper surface of the gas dispersion plate 42 is equivalent to the size of the end surface 70 d of the green honeycomb molded body 70.
- the gas dispersion plate 42 is a plate having a plurality of holes communicating with the front and back surfaces, and uniformizes the gas flow in the in-plane direction when the gas supplied from below is passed upward.
- a so-called perforated plate for example, a honeycomb lattice shape similar to a green honeycomb molded body
- a so-called porous plate can also be used.
- the material of the gas dispersion plate 42 is not particularly limited, ceramics such as alumina and cordierite can be used.
- the thickness of the gas dispersion plate 42 can be set to 10 to 100 mm, for example.
- the planar shape of the holes when the gas dispersion plate 42 is a perforated plate is not limited, and can be, for example, a square, a circle, a hexagon, or an octagon.
- the length of one side can be set to 0.7 to 10 mm.
- the wall thickness between the holes can be set to 0.03 to 3.0 mm, for example.
- the average pore diameter when the gas dispersion plate 42 is a porous plate is not particularly limited, but is preferably 0.1 to 100 ⁇ m.
- the average pore diameter can be measured by a mercury intrusion method.
- the porosity is preferably 10 to 90%.
- the porous plate comprised from the porous plate may be sufficient.
- the ring member 44 surrounds the side surface of the gas dispersion plate 42 to prevent gas leakage from the side surface.
- the heated gas source 30 includes a blower 32 disposed outside the container 10, a pipe 36 that guides the gas from the blower 32 to the lower surface of the gas dispersion plate 42, and a gas that is provided in the pipe 36 and flows through the pipe 36. And a heater 34 for heating.
- the gas heating temperature is not particularly limited, but is preferably 50 to 200 ° C, more preferably 70 to 120 ° C.
- the gas is not particularly limited, but air is preferable from the economical viewpoint.
- the amount of gas supply is not particularly limited, however, the area average gas wind speed immediately above the gas dispersion plate 42 is preferably 0.1 to 10 m / second, and preferably 0.5 to 5 m / second. It is more preferable.
- the outlet 36 a of the pipe 36 has a diameter that increases in accordance with the area of the lower surface of the gas dispersion plate 42, and is in contact with the lower surface of the ring member 44.
- a steam supply port 10 c is formed on the wall of the container 10.
- a water vapor supply source STM is connected to the water vapor supply port 10c via a water vapor supply line L1, and water vapor is supplied into the container 10, and the surroundings of the green honeycomb molded body are maintained in an atmosphere in which water vapor exists. Can do.
- the conditions for supplying water vapor are not particularly limited, but for example, the temperature is preferably 100 to 200 ° C., and the supply rate is preferably 0.1 to 5.0 kg / min.
- the green honeycomb molded body 70 is placed on the upper surface of the gas dispersion plate 42 of the container 10 so that the end face 70d is in contact therewith.
- the blower 32 is started and the heater 34 is started. Further, a microwave is supplied from the microwave source 20 into the container 10. Furthermore, water vapor is continuously supplied from the water vapor supply port 10 c into the container 10, so that the atmosphere around the green honeycomb molded body 70 is water vapor.
- the heated gas is supplied to the lower surface of the gas dispersion plate 42 through the pipeline 36 in a state where the surroundings of the green honeycomb molded body 70 are in a water vapor presence atmosphere, and further passes through the gas dispersion plate 42. Then, the green honeycomb molded body 70 is discharged from the upper end surface 70 u of the green honeycomb molded body 70 through each through hole 70 a. Thereafter, the discharged gas is discharged from the discharge port 10 b of the container 10. In this state, each green honeycomb molded body 70 is irradiated with microwaves.
- the solvent component of the green honeycomb molded body 70 is removed by such heating and gas supply, and drying proceeds.
- the degree of final drying of the molded body which is reached by drying by supplying heated gas and microwaves in a steam atmosphere, is not particularly limited, but when the supply of microwaves and water vapor is stopped, the drying rate of the molded body, That is, the ratio of the solvent mass removed by drying to the solvent mass before drying of the molded body is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more.
- the drying rate of the molded body That is, the ratio of the solvent mass removed by drying to the solvent mass before drying of the molded body is preferably 80% or more, more preferably 90% or more, and further preferably 95% or more.
- the nonuniformity of the quantity of the gas which flows into each through-hole 70a is reduced. Can be suppressed.
- the vicinity of the outer surface of the green honeycomb molded body 70 may be excessively dried before the center portion by supplying a steam atmosphere around the green honeycomb molded body 70 during the supply of the heated gas and the microwave irradiation. It is suppressed. Thereby, the nonuniformity of a drying rate can be reduced, therefore, the deformation
- the ceramic honeycomb structure is obtained by sealing the end portion of the through-hole 70a of the green honeycomb molded body 70 thus dried, if necessary, and then firing.
- a ceramic honeycomb structure can be used as a diesel particulate filter or a catalyst carrier for an exhaust gas treatment apparatus.
- the present invention is not limited to the above embodiment, and various modifications are possible.
- the surface of the gas dispersion plate 42 is horizontally arranged, and the green honeycomb molded body 70 is held by placing the green honeycomb molded body 70 on the upper surface of the gas dispersion plate 42.
- the surface of the gas dispersion plate 42 may be arranged vertically, and the green honeycomb molded body 70 may be held by another holding member such that the end face 70d of the green honeycomb molded body 70 is in contact with the vertical surface.
- a firing table having the same composition and through-hole structure as the green honeycomb molded body 70 which is called a torch, may be provided on the gas dispersion plate 42, and the green honeycomb molded body 70 may be placed thereon.
- the gas dispersion plate 42 and the torch function as a gas dispersion plate that integrally rectifies the gas.
- a green honeycomb molded body was obtained using the following inorganic compound source powder.
- Mixing composition of the inorganic compound source powder, alumina [Al 2 O 3], titania [TiO 2], magnesia [MgO] and silica in a molar percentage of [SiO 2] terms, [Al 2 O 3] / [TiO 2] / [MgO] / [SiO 2 ] 35.1% / 51.3% / 9.6% / 4.0%.
- the content of the silicon source powder in the total amount of the aluminum source powder, the titanium source powder, the magnesium source powder and the silicon source powder was 4.0% by weight.
- Aluminum source powder ⁇ -alumina powder having an average particle diameter shown in Table 1 24.6 parts by weight (2) Titanium source powder 42.0 parts by weight of a rutile type titania powder having an average particle diameter shown in Table 1 (3)
- a mixture comprising an aluminum source powder, a titanium source powder, a magnesium source powder and a silicon source powder, 14.3 parts by weight of corn starch having an average particle diameter shown in Table 1 as a pore-forming agent and methyl cellulose as an organic binder (trade name: 5.5 parts by weight of Metroze 90SH-30000), 4.6 parts by weight of polyoxyethylene polyoxypropylene butyl ether (trade name: Unilube 50MB-72, viscosity at 20 ° C.
- the green honeycomb molded body 70 has a cylindrical shape, a diameter of 163 mm, and a length of 240 mm.
- the cross-sectional shape of the through hole 70a is a square having a side of 1.43 mm, and the square shape is arranged in a matrix so that the partition wall thickness is 0.32 mm.
- Drying conditions were as follows. Specs of the gas dispersion plate 42: Material: Alumina, thickness: 40 mm, the planar shape of the hole is a square with a side of 5.2 mm, and a wall thickness of 1.1 mm
- the microwave frequency is 2.45 GHz, and the microwave output is 10 kW from 0 to 7.5 minutes drying time, 6 kW from 7.5 to 10.5 minutes, and 3 kW from 10.5 to 13.0 minutes. After 13 minutes, it was set to 0 kW.
- the drying rate is a value based on weight.
- the supply gas was air, and the heating temperature of the supply gas was 90 ° C.
- the gas supply amount was set such that the area average gas wind speed immediately above the gas dispersion plate 42 was 1 m / sec.
- the temperature of water vapor was 120 ° C., and the supply rate was 0.5 kg / min.
- the microwave irradiation time was from time 0 to 13 minutes, the water vapor supply time was from time 0 to 13 minutes, and the heated gas was supplied from time 0 to 25 minutes.
- the time change of microwave output and drying rate are shown in A and B of FIG.
- Line A in FIG. 2 shows the time change of the microwave output
- line B shows the time change of the drying rate of the green honeycomb molded body.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Drying Of Solid Materials (AREA)
Abstract
乾燥装置100は、複数の貫通孔70aを有するグリーンハニカム成形体70を乾燥する装置である。乾燥装置100は、容器10と、容器10内にマイクロ波を供給するマイクロ波源20と、容器10内に水蒸気を供給する水蒸気供給口10bと、容器10内に配置されグリーンハニカム成形体70の複数の貫通孔70aの開口が設けられた端面70dに接触する気体分散板42と、気体分散板42を介してグリーンハニカム成形体70の複数の貫通孔70aに加熱気体を供給する加熱気体源30と、を備える。
Description
本発明は、グリーンハニカム成形体の乾燥装置及びグリーンハニカム成形体の乾燥方法、並びにセラミクスハニカム構造体の製造方法に関する。
多数の貫通孔を有するセラミクスハニカム構造体は、セラミクス原料粉及び溶媒を含むグリーンハニカム成形体を成形し、乾燥し、焼成することにより製造される。
そして、グリーンハニカム成形体の乾燥方法として、マイクロ波及び加熱気体を用いる方法が例えば特許文献1に開示されている。
しかしながら、従来の乾燥方法では、乾燥時にグリーンハニカム成形体が変形したり割れたりすることがあった。
本発明は上記課題に鑑みてなされたものであり、乾燥時のグリーンハニカム成形体の変形や割れを抑制できるグリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法を提供することを目的とする。
本発明にかかる乾燥装置は、複数の貫通孔を有するグリーンハニカム成形体の乾燥装置である。この乾燥装置は、容器と、容器内にマイクロ波を供給するマイクロ波源と、容器内に蒸気を供給する蒸気供給口と、容器内に配置され、グリーンハニカム成形体の複数の貫通孔の開口が設けられた端面に接触する気体分散板と、気体分散板を介してグリーンハニカム成形体の複数の貫通孔に気体を供給する気体源と、を備える。
本発明にかかる乾燥方法は、複数の貫通孔を有するグリーンハニカム成形体の乾燥方法である。この乾燥方法は、グリーンハニカム成形体における複数の貫通孔の開口が設けられた端面に対して気体分散板を接触させる工程と、グリーンハニカム成形体の周りに蒸気が存在する雰囲気下で、接触した気体分散板を介してグリーンハニカム成形体の複数の貫通孔に気体を供給すると共にグリーンハニカム成形体にマイクロ波を照射する工程と、を備える。
本発明に係るセラミクスハニカム構造体の製造方法は、複数の貫通孔を有するグリーンハニカム成形体を乾燥させてセラミクスハニカム構造体を製造する製造方法である。この製造方法は、セラミクス原料である無機化合物、有機バインダ及び溶媒を少なくとも混合して原料混合物を用意する工程と、原料混合物を隔壁の断面形状に対応する出口開口を有する押出機から押し出すと共に所定の長さに切断してグリーンハニカム成形体を取得する工程と、グリーンハニカム成形体における複数の貫通孔の開口が設けられた端面に対して気体分散板を接触させる工程と、グリーンハニカム成形体の周りに蒸気が存在する雰囲気下で、接触した気体分散板を介してグリーンハニカム成形体の複数の貫通孔に気体を供給すると共にグリーンハニカム成形体にマイクロ波を照射する工程と、を備える。
本発明によれば、グリーンハニカム成形体の端面と接触する気体分散板を介して複数の貫通孔に加熱気体などの気体が供給される。これにより、各貫通孔に流れる気体の量の不均一性を抑制できる。また、加熱気体の供給及びマイクロ波の照射中にグリーンハニカム成形体の周りが水蒸気などの蒸気雰囲気とされることにより、グリーンハニカム成形体の外面が中央部よりも先に過度に乾燥することが抑制される。したがって、乾燥速度のムラを低減でき、乾燥に伴うグリーンハニカム成形体の変形や、外周壁の割れを抑制し、歩留まりを向上できる。
ここで、気体分散板は、多孔板であることが好ましい。また、気体分散板は、多孔質板であってもよい。
上記の乾燥方法又は製造方法では、グリーンハニカム成形体の周りに蒸気が存在する雰囲気下となるように、グリーンハニカム成形体の周りに水蒸気を連続的に供給する工程を更に備えるようにしてもよい。
上記の乾燥方法又は製造方法では、マイクロ波を照射する工程において、グリーンハニカム成形体の乾燥時間の進行に応じて、照射するマイクロ波の出力を下げるようにしてもよい。
上記の乾燥方法又は製造方法では、マイクロ波を照射する工程において、所定の乾燥時間が経過した後、マイクロ波の照射を停止すると共に複数の貫通孔への気体の供給を継続するようにしてもよい。
上記の製造方法では、マイクロ波を照射する工程で乾燥が行われたグリーンハニカム成形体の端部を封口する工程を更に備えるようにしてもよい。
本発明によれば、乾燥時のグリーンハニカム成形体の変形や割れを抑制できるグリーンハニカム成形体の乾燥装置及び乾燥方法並びにセラミクスハニカム構造体の製造方法が提供される。
グリーンハニカム成形体の乾燥装置及びその乾燥方法、並びにセラミクスハニカム構造体の製造方法の好適な実施形態について、図1を参照して説明する。なお、説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
(グリーンハニカム成形体)
まず、乾燥対象となるグリーンハニカム成形体70について説明する。本実施形態に係るグリーンハニカム成形体70は、図1に示すように、それぞれ、Z軸方向に延びる多数の貫通孔70aを有する柱体である。グリーンハニカム成形体70の外形形状は特に限定されないが、例えば、円柱、楕円柱、角柱(例えば、正三角柱、正方形柱、正六角柱、正八角柱等の正多角柱や、正多角柱以外の、3角柱、4角柱、6角柱、8角柱等)等である。また、各貫通孔70aの断面形状も特に限定されず、例えば、円形、楕円形、正方形、長方形、三角形、六角形等の多角形等が挙げられる。貫通孔70aには、径の異なるもの、断面形状の異なるものが混在してもよい。
まず、乾燥対象となるグリーンハニカム成形体70について説明する。本実施形態に係るグリーンハニカム成形体70は、図1に示すように、それぞれ、Z軸方向に延びる多数の貫通孔70aを有する柱体である。グリーンハニカム成形体70の外形形状は特に限定されないが、例えば、円柱、楕円柱、角柱(例えば、正三角柱、正方形柱、正六角柱、正八角柱等の正多角柱や、正多角柱以外の、3角柱、4角柱、6角柱、8角柱等)等である。また、各貫通孔70aの断面形状も特に限定されず、例えば、円形、楕円形、正方形、長方形、三角形、六角形等の多角形等が挙げられる。貫通孔70aには、径の異なるもの、断面形状の異なるものが混在してもよい。
グリーンハニカム成形体70のZ軸方向の端面から見た場合の、貫通孔70aの配置の形態も特に限定されず、たとえば、貫通孔70aの中心軸が正方形の頂点にそれぞれ位置するように配置されている正方形配置、貫通孔70aの中心軸が正三角形の頂点に配置される正三角形配置等が挙げられる。貫通孔70aの径も特に限定されず、例えば、断面が正方形の場合、一辺0.8~2.5mmとすることができる。貫通孔70a同士を隔てる隔壁の厚みは、例えば、0.15~0.76mmとすることができる。
また、グリーンハニカム成形体70の貫通孔70aが延びる方向の長さ(Z方向の全長)は特に限定されないが、例えば、40~350mmとすることができる。また、グリーンハニカム成形体70の外径も特に限定されないが、例えば、100~320mmとすることできる。
グリーンハニカム成形体70は、後で焼成することによりセラミクスとなるグリーン(未焼成体)であり、特に、多孔性セラミクスとなるグリーンであることが好ましい。具体的には、グリーンハニカム成形体70は、セラミクス原料を含む。セラミクスは特に限定されないが、例えば、アルミナ、シリカ、ムライト、コーディエライト、ガラス、チタン酸アルミニウム等の酸化物、シリコンカーバイド、窒化珪素、金属等が挙げられる。なお、チタン酸アルミニウムは、さらに、マグネシウム及び/又はケイ素を含むことができる。
グリーンハニカム成形体70は、好ましくは、セラミクス原料である無機化合物源粉末、及び、メチルセルロース等の有機バインダ、及び、必要に応じて添加される添加剤を含む。
例えば、セラミクスがチタン酸アルミニウムの場合、無機化合物源粉末は、αアルミナ粉等のアルミニウム源粉末、及び、アナターゼ型やルチル型のチタニア粉末等のチタニウム源粉末、及び/又は、チタン酸アルミニウム粉末を含む。無機化合物源粉末は、必要に応じて、さらに、マグネシア粉末やマグネシアスピネル粉末等のマグネシウム源粉末、及び/又は、酸化ケイ素粉末やガラスフリット等のケイ素源粉末を含むことができる。
有機バインダとしては、メチルセルロース、カルボキシルメチルセルロース、ヒドロキシアルキルメチルセルロース、ナトリウムカルボキシルメチルセルロースなどのセルロース類;ポリビニルアルコールなどのアルコール類;リグニンスルホン酸塩を例示できる。有機バインダの量は、無機化合物源粉末の100重量部に対して、20重量部以下であることが好ましく、より好ましくは15重量部以下、さらに好ましくは6重量部である。また、有機バインダの下限量は、0.1重量部であることが好ましく、より好ましくは3重量部である。
添加物としては、例えば、造孔剤、潤滑剤および可塑剤、分散剤、溶媒が挙げられる。
造孔剤としては、グラファイト等の炭素材;ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル等の樹脂類;でんぷん、ナッツ殻、クルミ殻、コーンなどの植物材料;氷;およびドライアイス等などが挙げられる。造孔剤の添加量は、無機化合物源粉末の100重量部に対して、0~40重量部であることが好ましく、より好ましくは0~25重量部である。
潤滑剤および可塑剤としては、グリセリンなどのアルコール類;カプリル酸、ラウリン酸、パルミチン酸、アラキジン酸、オレイン酸、ステアリン酸などの高級脂肪酸;ステアリン酸Alなどのステアリン酸金属塩、ポリオキシアルキレンアルキルエーテルなどが挙げられる。潤滑剤及び可塑剤の添加量は、無機化合物源粉末の100重量部に対して、0~10重量部であることが好ましく、より好ましくは0.1~5重量部である。
分散剤としては、たとえば、硝酸、塩酸、硫酸などの無機酸;シュウ酸、クエン酸、酢酸、リンゴ酸、乳酸などの有機酸;メタノール、エタノール、プロパノールなどのアルコール類;ポリカルボン酸アンモニウムなどの界面活性剤などが挙げられる。分散剤の添加量は、無機化合物源粉末の100重量部に対して、0~20重量部であることが好ましく、より好ましくは2~8重量部である。
溶媒としては、たとえば、メタノール、エタノール、ブタノール、プロパノールなどのアルコール類;プロピレングリコール、ポリプロピレングリコール、エチレングリコールなどのグリコール類;および水などを用いることができる。なかでも、水が好ましく、不純物が少ない点で、より好ましくはイオン交換水が用いられる。溶媒の使用量は、無機化合物源粉末の100重量部に対して、10重量部~100重量部であることが好ましく、より好ましくは20重量部~80重量部である。また、成形体全体の重量に対する溶媒の重量は特に限定されないが、10~30重量%が好ましく、15~20重量%がより好ましい。
このようなグリーンハニカム成形体70は、例えば以下のようにして製造することができる。
まず、無機化合物源粉末と、有機バインダと、溶媒と、必要に応じて添加される添加物を用意する。そして、これらを混練機等により混合して原料混合物を得、得られた原料混合物を隔壁の断面形状に対応する出口開口を有する押出機から押し出し、所望の長さに切ることにより、グリーンハニカム成形体70を得ることができる。
(乾燥装置)
次に、グリーンハニカム成形体70を乾燥させる乾燥装置100について説明する。本実施形態にかかるグリーンハニカム成形体の乾燥装置100は、グリーンハニカム成形体70を乾燥させるものであり、主として、容器10と、容器10内にマイクロ波を供給するマイクロ波源20と、容器10内に配置された載置台40と、載置台40の気体分散板42を介してグリーンハニカム成形体70の複数の貫通孔70aに加熱気体を供給する加熱気体源30と、を備える。
次に、グリーンハニカム成形体70を乾燥させる乾燥装置100について説明する。本実施形態にかかるグリーンハニカム成形体の乾燥装置100は、グリーンハニカム成形体70を乾燥させるものであり、主として、容器10と、容器10内にマイクロ波を供給するマイクロ波源20と、容器10内に配置された載置台40と、載置台40の気体分散板42を介してグリーンハニカム成形体70の複数の貫通孔70aに加熱気体を供給する加熱気体源30と、を備える。
(容器)
容器10は、グリーンハニカム成形体70、載置台40、及び、管路36の出口36aを収容可能である。容器10は、マイクロ波を遮蔽する観点から、金属製が好ましい。容器10には、容器10内の気体を外部に排出する排出口10bが設けられている。また、容器10は、マイクロ波源20から供給されるマイクロ波を受け入れる導波管10aを有する。
容器10は、グリーンハニカム成形体70、載置台40、及び、管路36の出口36aを収容可能である。容器10は、マイクロ波を遮蔽する観点から、金属製が好ましい。容器10には、容器10内の気体を外部に排出する排出口10bが設けられている。また、容器10は、マイクロ波源20から供給されるマイクロ波を受け入れる導波管10aを有する。
(マイクロ波源)
マイクロ波源20は、グリーンハニカム成形体70中を加熱するためのマイクロ波を発生する。マイクロ波の波長は、グリーンハニカム成形体70を加熱できるものであれば特に限定されない。マイクロ波の好ましい波長は、895~940MHz、又は、2400~2500MHzである。マイクロ波源20は、マイクロ波の出力を、乾燥にしたがって低下させることができるものであることが好ましい。マイクロ波の出力は特に限定されないが、グリーンハニカム成形体1個あたり、例えば、1~10kWとすることができる。
マイクロ波源20は、グリーンハニカム成形体70中を加熱するためのマイクロ波を発生する。マイクロ波の波長は、グリーンハニカム成形体70を加熱できるものであれば特に限定されない。マイクロ波の好ましい波長は、895~940MHz、又は、2400~2500MHzである。マイクロ波源20は、マイクロ波の出力を、乾燥にしたがって低下させることができるものであることが好ましい。マイクロ波の出力は特に限定されないが、グリーンハニカム成形体1個あたり、例えば、1~10kWとすることができる。
(載置台)
載置台40は、容器10内に配置され、その上面にグリーンハニカム成形体70を載せ置く台である。載置台40は、気体分散板42と、気体分散板42の側面を取り囲む通気性のないリング部材44とを備える。グリーンハニカム成形体70は、その複数の貫通孔70aの開口が設けられた一端面(下面)70dが、気体分散板42の上面と接触するように気体分散板42上に載置される。気体分散板42の上面の大きさは、グリーンハニカム成形体70の端面70dの大きさと同等とされている。
載置台40は、容器10内に配置され、その上面にグリーンハニカム成形体70を載せ置く台である。載置台40は、気体分散板42と、気体分散板42の側面を取り囲む通気性のないリング部材44とを備える。グリーンハニカム成形体70は、その複数の貫通孔70aの開口が設けられた一端面(下面)70dが、気体分散板42の上面と接触するように気体分散板42上に載置される。気体分散板42の上面の大きさは、グリーンハニカム成形体70の端面70dの大きさと同等とされている。
気体分散板42は、表裏に連通する複数の孔を有する板であり、下方から供給される気体を、上方に通過させる際に、面内方向における気体の流れを均一化する。
気体分散板42としては、表裏を直線的に貫く孔が多数形成されたいわゆる多孔板(例えばグリーンハニカム成形体と同様のハニカム格子形状)がよいが、表裏を連通しかつ屈曲した細孔を多数有するいわゆる多孔質板でも実施可能である。
気体分散板42の材質も特に限定されないが、アルミナ、コージェライト等のセラミクスが挙げられる。気体分散板42の厚みは、たとえば、10~100mmとすることができる。
気体分散板42が多孔板の場合の孔の平面形状も限定されず、例えば、正方形、円形、六角形、八角形とすることができる。孔の径は、例えば、形状が正方形の場合、例えば、一辺の長さ0.7~10mmとすることができる。また、孔間の壁の厚みは、例えば、0.03~3.0mmとすることができる。一方、気体分散板42が多孔質板の場合の平均細孔径は特に限定されないが、0.1~100μmが好ましい。平均細孔径は、水銀圧入法により測定できる。また、気孔率は、10~90%が好ましい。なお、多孔質板から構成された多孔板でもよい。
リング部材44は、気体分散板42の側面を取り囲んでおり、側面からの気体の漏れを防いでいる。
(加熱気体源)
加熱気体源30は、容器10の外に配置されたブロア32と、ブロア32からの気体を気体分散板42の下面に導く管路36と、管路36に設けられて管路36を流れる気体を加熱するヒータ34とを備える。気体の加熱温度は特に限定されないが、50~200℃が好ましく、70~120℃がより好ましい。気体も特に限定されないが、経済的観点から、空気が好ましい。気体の供給量も特に限定されないが、気体分散板42直上での気体分散板の面積平均の気体の風速が0.1~10m/秒であることが好ましく、0.5~5m/秒であることがより好ましい。
加熱気体源30は、容器10の外に配置されたブロア32と、ブロア32からの気体を気体分散板42の下面に導く管路36と、管路36に設けられて管路36を流れる気体を加熱するヒータ34とを備える。気体の加熱温度は特に限定されないが、50~200℃が好ましく、70~120℃がより好ましい。気体も特に限定されないが、経済的観点から、空気が好ましい。気体の供給量も特に限定されないが、気体分散板42直上での気体分散板の面積平均の気体の風速が0.1~10m/秒であることが好ましく、0.5~5m/秒であることがより好ましい。
管路36の出口36aは、気体分散板42の下面の面積にあわせて径が広がっており、リング部材44の下面と接触している。
(水蒸気供給口)
容器10の壁には、水蒸気供給口10cが形成されている。水蒸気供給口10cには、水蒸気供給ラインL1を介して水蒸気供給源STMが接続されており、容器10内に水蒸気を供給し、グリーンハニカム成形体の周りを水蒸気が存在する雰囲気下に維持することができる。水蒸気の供給条件も特に限定されないが、例えば、温度は100~200℃、供給量は0.1~5.0kg/分とすることが好ましい。
容器10の壁には、水蒸気供給口10cが形成されている。水蒸気供給口10cには、水蒸気供給ラインL1を介して水蒸気供給源STMが接続されており、容器10内に水蒸気を供給し、グリーンハニカム成形体の周りを水蒸気が存在する雰囲気下に維持することができる。水蒸気の供給条件も特に限定されないが、例えば、温度は100~200℃、供給量は0.1~5.0kg/分とすることが好ましい。
(乾燥方法)
続いて、本実施形態にかかるグリーンハニカム成形体の乾燥方法について説明する。
続いて、本実施形態にかかるグリーンハニカム成形体の乾燥方法について説明する。
まず、容器10の気体分散板42の上面に、端面70dが接触するようにグリーンハニカム成形体70を載せる。
続いて、ブロア32を起動するとともに、ヒータ34を起動する。さらに、マイクロ波源20からマイクロ波を容器10内に供給する。さらに、水蒸気供給口10cから容器10内に水蒸気を連続的に供給し、グリーンハニカム成形体70の周りを水蒸気が存在する雰囲気とする。
これにより、グリーンハニカム成形体70の周りが水蒸気存在雰囲気とされた状態で、加熱された気体が、管路36を通って気体分散板42の下面に供給され、さらに、気体分散板42を通過して、グリーンハニカム成形体70の各貫通孔70aを通過してグリーンハニカム成形体70の上端面70uから排出される。その後、排出された気体は、容器10の排出口10bから排出される。また、この状態で、各グリーンハニカム成形体70にマイクロ波が照射される。
このような加熱及び気体の供給により、グリーンハニカム成形体70の溶媒成分が除去され、乾燥が進む。ここで、乾燥が進むにつれて、マイクロ波源20から供給するマイクロ波の出力を下げることが好ましい。これにより、過乾燥による局所的な温度上昇による暴走(発火)を抑制するという効果がある。
水蒸気雰囲気下での加熱気体及びマイクロ波の供給による乾燥により到達する、成形体の最終的な乾燥の程度は特に限定されないが、マイクロ波及び水蒸気の供給を止める時点で、成形体の乾燥率、すなわち、成形体の乾燥前の溶媒質量に対する乾燥により除去された溶媒質量の比を80%以上とすることが好ましく、90%以上とすることがより好ましく、95%以上とすることがさらに好ましい。なお、マイクロ波及び水蒸気の供給を止めた後に、加熱気体のみを流すことによって、より乾燥をすすめることも好ましい。
そして、本実施形態によれば、気体分散板42を介して加熱気体をグリーンハニカム成形体70の各貫通孔70aに供給しているので、各貫通孔70aに流れる気体の量の不均一性を抑制できる。また、加熱気体の供給及びマイクロ波の照射中にグリーンハニカム成形体70の周りが水蒸気雰囲気とされることにより、グリーンハニカム成形体70の外面近傍が中央部よりも先に過度に乾燥することが抑制される。これにより、乾燥速度のムラを低減でき、従って、乾燥に伴うグリーンハニカム成形体70の変形や外周壁の割れを抑制し、歩留まりを向上できる。なお、乾燥の抑制のために水蒸気を用いることが好ましい態様のひとつであるが、グリーンハニカム成形体70の乾燥を抑制できるのであれば、水蒸気に代えて、その他の蒸気を用いて、グリーンハニカム成形体70の周りをその蒸気雰囲気として、上述した乾燥を行ってもよい。また、乾燥に用いる気体は、加熱気体が好ましい態様のひとつではあるが、加熱気体に限定されるわけではなく、常温の気体をそのまま用いてもよい。
このようにして乾燥したグリーンハニカム成形体70の貫通孔70aの端部を必要に応じて封口し、その後、焼成することにより、セラミクスハニカム構造体が得られる。このようなセラミクスハニカム構造体は、ディーゼルパティキュレートフィルタや、排ガス処理装置の触媒担体として利用可能である。
本発明は上記実施形態に限定されず、様々な変形態様が可能である。たとえば、上記実施形態では、気体分散板42の表面が水平に配置されており、気体分散板42の上面にグリーンハニカム成形体70を載せることでグリーンハニカム成形体70が保持されるが、これには限定されない。たとえば、気体分散板42の表面を垂直に配置し、グリーンハニカム成形体70の端面70dがこの垂直表面に接触するように、他の保持部材によりグリーンハニカム成形体70を保持してもよい。
また、気体分散板42上にトチと呼ばれる、グリーンハニカム成形体70と同一の組成および貫通孔構造を有する焼成台を設け、その上にグリーンハニカム成形体70を載せてもよい。この場合には、気体分散板42およびトチが、一体となって気体を整流する気体分散板として機能する。
以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は、上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
(ハニカム成形体の製造方法)
無機化合物源粉末として以下のものを用いて、グリーンハニカム成形体を得た。無機化合物源粉末の仕込み組成は、アルミナ〔Al2O3〕、チタニア〔TiO2〕、マグネシア〔MgO〕およびシリカ〔SiO2〕換算のモル百分率で、〔Al2O3〕/〔TiO2〕/〔MgO〕/〔SiO2〕=35.1%/51.3%/9.6%/4.0%であった。
無機化合物源粉末として以下のものを用いて、グリーンハニカム成形体を得た。無機化合物源粉末の仕込み組成は、アルミナ〔Al2O3〕、チタニア〔TiO2〕、マグネシア〔MgO〕およびシリカ〔SiO2〕換算のモル百分率で、〔Al2O3〕/〔TiO2〕/〔MgO〕/〔SiO2〕=35.1%/51.3%/9.6%/4.0%であった。
アルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末の合計量中のケイ素源粉末の含有率は、4.0重量%であった。
(1)アルミニウム源粉末
表1に示される平均粒子径を有するα-アルミナ粉末 24.6重量部
(2)チタニウム源粉末
表1に示される平均粒子径を有するルチル型チタニア粉末 42.0重量部(3)マグネシウム源粉末
表1に示される平均粒子径を有するマグネシアスピネル粉末 15.7重量部(4)ケイ素源粉末
表1に示される平均粒子径を有するガラスフリット(タカラスタンダード社製「CK0832」) 3.4重量部
(1)アルミニウム源粉末
表1に示される平均粒子径を有するα-アルミナ粉末 24.6重量部
(2)チタニウム源粉末
表1に示される平均粒子径を有するルチル型チタニア粉末 42.0重量部(3)マグネシウム源粉末
表1に示される平均粒子径を有するマグネシアスピネル粉末 15.7重量部(4)ケイ素源粉末
表1に示される平均粒子径を有するガラスフリット(タカラスタンダード社製「CK0832」) 3.4重量部
アルミニウム源粉末、チタニウム源粉末、マグネシウム源粉末およびケイ素源粉末からなる混合物に、造孔剤として表1に示される平均粒子径を有するコーンスターチを14.3重量部、有機バインダとしてメチルセルロース(商品名:メトローズ 90SH-30000)5.5重量部、可塑剤としてポリオキシエチレンポリオキシプロピレンブチルエーテル(商品名:ユニルーブ50MB-72、20℃における粘度が1020mPa・s)4.6重量部、ならびに、潤滑剤としてグリセリン0.3重量部を加え、さらに、分散媒(溶媒)として水27重量部を加えた後、混練機を用いて25℃で混練することにより、坏土(成形用原料混合物)を調製した。
ついで、この坏土を押出成形することにより、グリーンハニカム成形体を4つ作製した。グリーンハニカム成形体70は円柱状であり、直径は163mm、長さは240mmとした。貫通孔70aの断面形状は一辺1.43mmの正方形であり、隔壁の厚みが0.32mmとなるようにマトリクス状に正方形配置した。
これらのグリーンハニカム成形体を、上述の図1のような乾燥装置で乾燥させた。
乾燥条件は以下のようにした。
気体分散板42のスペック:材料:アルミナ、厚み:40mm、孔の平面形状は1辺5.2mmの正方形、壁の厚み1.1mm
マイクロ波の周波数は、2.45GHz、マイクロ波の出力は、乾燥時間0~7.5分まで10kW、7.5~10.5分まで6kW、10.5~13.0分まで3kWとし、13分以降は0kWとした。なお、乾燥率は、重量基準の値である。
気体分散板42のスペック:材料:アルミナ、厚み:40mm、孔の平面形状は1辺5.2mmの正方形、壁の厚み1.1mm
マイクロ波の周波数は、2.45GHz、マイクロ波の出力は、乾燥時間0~7.5分まで10kW、7.5~10.5分まで6kW、10.5~13.0分まで3kWとし、13分以降は0kWとした。なお、乾燥率は、重量基準の値である。
供給気体は空気、供給気体の加熱温度は90℃とした。気体の供給量は、気体分散板42直上での気体分散板の面積平均の気体の風速が1m/秒となるように設定した。水蒸気の温度は120℃、供給量は0.5kg/分とした。マイクロ波の照射時間は時刻0~13分まで、水蒸気の供給時間は時刻0~13分まで、加熱気体の供給は時刻0~25分まで行った。
マイクロ波出力および乾燥率の時間変化をそれぞれ図2のA,Bに示す。図2における線Aは、マイクロ波の出力の時間変化を示し、線Bは、グリーンハニカム成形体の乾燥率の時間変化を示す。
(比較例)
気体分散板42を用いず、端面70dになにも接触しない状態で加熱気体を供給する以外は実施例と同様にした。
気体分散板42を用いず、端面70dになにも接触しない状態で加熱気体を供給する以外は実施例と同様にした。
実施例のグリーンハニカム成形体に変形や割れは見られなかったが、比較例のグリーンハニカム成形体には変形や割れが見られた。
10…容器、10c…水蒸気供給口、20…マイクロ波源、30…加熱気体源、42…気体分散板、70…グリーンハニカム成形体、70a…貫通孔、70d…端面、100…乾燥装置。
Claims (13)
- 複数の貫通孔を有するグリーンハニカム成形体の乾燥装置であって、
容器と、
前記容器内にマイクロ波を供給するマイクロ波源と、
前記容器内に蒸気を供給する蒸気供給口と、
前記容器内に配置され、前記グリーンハニカム成形体の前記複数の貫通孔の開口が設けられた端面に接触する気体分散板と、
前記気体分散板を介して前記グリーンハニカム成形体の前記複数の貫通孔に気体を供給する気体源と、
を備える乾燥装置。 - 前記気体分散板は、多孔板又は多孔質板である、請求項1に記載の乾燥装置。
- 複数の貫通孔を有するグリーンハニカム成形体の乾燥方法であって、
前記グリーンハニカム成形体における前記複数の貫通孔の開口が設けられた端面に対して気体分散板を接触させる工程と、
前記グリーンハニカム成形体の周りに蒸気が存在する雰囲気下で、前記接触した気体分散板を介して前記グリーンハニカム成形体の前記複数の貫通孔に気体を供給すると共に前記グリーンハニカム成形体にマイクロ波を照射する工程と、
を備える乾燥方法。 - 前記グリーンハニカム成形体の周りに蒸気が存在する雰囲気下となるように、前記グリーンハニカム成形体の周りに水蒸気を連続的に供給する工程を更に備える、請求項3に記載の乾燥方法。
- 前記マイクロ波を照射する工程において、前記グリーンハニカム成形体の乾燥時間の進行に応じて、前記照射するマイクロ波の出力を下げる、請求項3又は4に記載の乾燥方法。
- 前記マイクロ波を照射する工程において、所定の乾燥時間が経過した後、前記マイクロ波の照射を停止すると共に前記複数の貫通孔への気体の供給を継続する、請求項3~5の何れか一項に記載の乾燥方法。
- 前記気体分散板は、多孔板又は多孔質板である、請求項3~6の何れか一項に記載の乾燥方法。
- 複数の貫通孔を有するグリーンハニカム成形体を乾燥させてセラミクスハニカム構造体を製造する製造方法であって、
セラミクス原料である無機化合物、有機バインダ及び溶媒を少なくとも混合して原料混合物を用意する工程と、
前記原料混合物を隔壁の断面形状に対応する出口開口を有する押出機から押し出すと共に所定の長さに切断して前記グリーンハニカム成形体を取得する工程と、
前記グリーンハニカム成形体における前記複数の貫通孔の開口が設けられた端面に対して気体分散板を接触させる工程と、
前記グリーンハニカム成形体の周りに蒸気が存在する雰囲気下で、前記接触した気体分散板を介して前記グリーンハニカム成形体の前記複数の貫通孔に気体を供給すると共に前記グリーンハニカム成形体にマイクロ波を照射する工程と、
を備える、セラミクスハニカム構造体の製造方法。 - 前記グリーンハニカム成形体の周りに蒸気が存在する雰囲気下となるように、前記グリーンハニカム成形体の周りに水蒸気を連続的に供給する工程を更に備えた、請求項8に記載のセラミクスハニカム構造体の製造方法。
- 前記マイクロ波を照射する工程において、前記グリーンハニカム成形体の乾燥時間の進行に応じて、前記照射するマイクロ波の出力を下げる、請求項8又は9に記載のセラミクスハニカム構造体の製造方法。
- 前記マイクロ波を照射する工程において、所定の乾燥時間が経過した後、前記マイクロ波の照射を停止し、前記複数の貫通孔への気体の供給を継続する、請求項8~10の何れか一項に記載のセラミクスハニカム構造体の製造方法。
- 前記マイクロ波を照射する工程で乾燥が行われた前記グリーンハニカム成形体の端部を封口する工程を更に備える、請求項8~11の何れか一項に記載のセラミクスハニカム構造体の製造方法。
- 前記気体分散板は、多孔板又は多孔質板である、請求項8~12の何れか一項に記載のセラミクスハニカム構造体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-211063 | 2010-09-21 | ||
JP2010211063 | 2010-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012039362A1 true WO2012039362A1 (ja) | 2012-03-29 |
Family
ID=45873849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/071257 WO2012039362A1 (ja) | 2010-09-21 | 2011-09-16 | グリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2012086559A (ja) |
WO (1) | WO2012039362A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104924438A (zh) * | 2015-06-02 | 2015-09-23 | 深圳大学 | 一种混凝土试块养护箱 |
CN107388739A (zh) * | 2017-07-05 | 2017-11-24 | 芜湖纯元光电设备技术有限公司 | 一种基于数控的微波真空干燥机自行走装置 |
CN107421241A (zh) * | 2017-07-05 | 2017-12-01 | 芜湖纯元光电设备技术有限公司 | 一种微波真空干燥机的自控储存系统 |
CN113566517A (zh) * | 2021-07-30 | 2021-10-29 | 江苏友顺节能科技有限公司 | 一种用于建筑节能复合材料保温模板加工的保温养护装置 |
CN116067133A (zh) * | 2022-12-30 | 2023-05-05 | 台宜陶瓷(宜兴)有限公司 | 一种连续竖向陶瓷烧成炉群系统及烧成方法 |
CN116222181A (zh) * | 2023-04-25 | 2023-06-06 | 江苏万德环保科技有限公司 | 一种蜂窝式scr脱硝催化剂烘干机构 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140006937A (ko) | 2011-03-07 | 2014-01-16 | 스미또모 가가꾸 가부시끼가이샤 | 그린 허니컴 성형체의 건조 방법 및 건조 장치 |
CN107120919A (zh) * | 2017-05-05 | 2017-09-01 | 佛山市东方智柏纳米材料科技有限公司 | 一种陶瓷生产用成品干燥除湿装置 |
CN110671919B (zh) * | 2019-10-28 | 2023-12-19 | 杭州而然科技有限公司 | 一种金属氧化物陶瓷材料的微波干燥设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005131800A (ja) * | 2003-10-28 | 2005-05-26 | Hitachi Metals Ltd | 多孔質セラミックハニカム構造体の製造方法 |
JP2008110541A (ja) * | 2006-10-31 | 2008-05-15 | Denso Corp | ハニカム成形体の製造方法および乾燥装置 |
JP2008134036A (ja) * | 2006-03-17 | 2008-06-12 | Ibiden Co Ltd | 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法 |
JP2010101282A (ja) * | 2008-10-27 | 2010-05-06 | Ngk Insulators Ltd | 目封止ハニカム構造体及びその製造方法 |
-
2011
- 2011-09-16 JP JP2011203367A patent/JP2012086559A/ja not_active Withdrawn
- 2011-09-16 WO PCT/JP2011/071257 patent/WO2012039362A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005131800A (ja) * | 2003-10-28 | 2005-05-26 | Hitachi Metals Ltd | 多孔質セラミックハニカム構造体の製造方法 |
JP2008134036A (ja) * | 2006-03-17 | 2008-06-12 | Ibiden Co Ltd | 乾燥装置、セラミック成形体の乾燥方法及びハニカム構造体の製造方法 |
JP2008110541A (ja) * | 2006-10-31 | 2008-05-15 | Denso Corp | ハニカム成形体の製造方法および乾燥装置 |
JP2010101282A (ja) * | 2008-10-27 | 2010-05-06 | Ngk Insulators Ltd | 目封止ハニカム構造体及びその製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104924438A (zh) * | 2015-06-02 | 2015-09-23 | 深圳大学 | 一种混凝土试块养护箱 |
CN107388739A (zh) * | 2017-07-05 | 2017-11-24 | 芜湖纯元光电设备技术有限公司 | 一种基于数控的微波真空干燥机自行走装置 |
CN107421241A (zh) * | 2017-07-05 | 2017-12-01 | 芜湖纯元光电设备技术有限公司 | 一种微波真空干燥机的自控储存系统 |
CN113566517A (zh) * | 2021-07-30 | 2021-10-29 | 江苏友顺节能科技有限公司 | 一种用于建筑节能复合材料保温模板加工的保温养护装置 |
CN113566517B (zh) * | 2021-07-30 | 2022-05-27 | 江苏友顺节能科技有限公司 | 一种用于建筑节能复合材料保温模板加工的保温养护装置 |
CN116067133A (zh) * | 2022-12-30 | 2023-05-05 | 台宜陶瓷(宜兴)有限公司 | 一种连续竖向陶瓷烧成炉群系统及烧成方法 |
CN116067133B (zh) * | 2022-12-30 | 2023-12-26 | 台宜陶瓷(宜兴)有限公司 | 一种连续竖向陶瓷烧成炉群系统及烧成方法 |
CN116222181A (zh) * | 2023-04-25 | 2023-06-06 | 江苏万德环保科技有限公司 | 一种蜂窝式scr脱硝催化剂烘干机构 |
CN116222181B (zh) * | 2023-04-25 | 2023-09-19 | 江苏万德环保科技有限公司 | 一种蜂窝式scr脱硝催化剂烘干机构 |
Also Published As
Publication number | Publication date |
---|---|
JP2012086559A (ja) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012039362A1 (ja) | グリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法 | |
JP5856877B2 (ja) | グリーンハニカム成形体の乾燥方法及び乾燥装置 | |
US9789633B2 (en) | Method and system for crack-free drying of high strength skin on a porous ceramic body | |
US20130269303A1 (en) | Green formed body, and process for production of honeycomb structure | |
JPWO2008143225A1 (ja) | セラミックハニカム構造体の製造方法及びセラミックハニカム構造体 | |
JP5847509B2 (ja) | グリーンハニカム成形体の乾燥装置及び乾燥方法、並びにセラミクスハニカム構造体の製造方法 | |
WO2012056905A1 (ja) | 封口材及びセラミックスハニカム焼成体の製造方法 | |
JP6618479B2 (ja) | セラミックハニカム本体の外皮形成 | |
JP2012066404A (ja) | グリーンハニカム成形体の乾燥装置及びグリーンハニカム成形体の乾燥方法 | |
US8419988B2 (en) | Method of producing honeycomb structure | |
WO2013125525A1 (ja) | グリーンハニカム成形体の乾燥方法及び乾燥装置 | |
JP2018027541A (ja) | ハニカム構造体、及びその製造方法 | |
JP2018034112A (ja) | ハニカムフィルタ | |
WO2017090687A1 (ja) | グリーン体を乾燥する方法およびハニカム構造体の製造方法 | |
JP5827909B2 (ja) | グリーンハニカム成形体の乾燥方法 | |
WO2017033774A1 (ja) | ハニカムフィルタの製造方法 | |
JP2009242134A (ja) | ハニカム構造体の製造方法 | |
JP2012091948A (ja) | グリーンハニカム成形体の乾燥方法 | |
JP2013146687A (ja) | ハニカム構造体の封口方法及びハニカムフィルタの製造方法 | |
JP2015144983A (ja) | ハニカム構造体、及びその製造方法 | |
JP5476331B2 (ja) | ハニカム構造体の製造方法 | |
JP2008303133A (ja) | 炭化ケイ素焼成用原料の製造方法、及び、ハニカム構造体の製造方法 | |
JP2010214230A (ja) | ハニカムフィルタの製造方法 | |
JP2014205594A (ja) | ディーゼル粒子フィルタの製造方法、及びグリーン成形体用の台座 | |
JP2012091350A (ja) | グリーンハニカム成形体、グリーンハニカム成形体の製造方法、及び、ハニカム構造体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11826807 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11826807 Country of ref document: EP Kind code of ref document: A1 |