WO2012039309A1 - モータ駆動システム及びモータシステム - Google Patents

モータ駆動システム及びモータシステム Download PDF

Info

Publication number
WO2012039309A1
WO2012039309A1 PCT/JP2011/070719 JP2011070719W WO2012039309A1 WO 2012039309 A1 WO2012039309 A1 WO 2012039309A1 JP 2011070719 W JP2011070719 W JP 2011070719W WO 2012039309 A1 WO2012039309 A1 WO 2012039309A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
value
opening
power supply
power
Prior art date
Application number
PCT/JP2011/070719
Other languages
English (en)
French (fr)
Inventor
伸 東山
達 八木
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/821,912 priority Critical patent/US8937450B2/en
Priority to EP11826755.8A priority patent/EP2621082A4/en
Priority to AU2011304309A priority patent/AU2011304309B2/en
Priority to CN201180044065.0A priority patent/CN103109456B/zh
Priority to KR1020137007138A priority patent/KR101437802B1/ko
Publication of WO2012039309A1 publication Critical patent/WO2012039309A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/09PWM with fixed limited number of pulses per period
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/9075Computer or microprocessor

Definitions

  • the present invention relates to a motor drive system for driving a motor, and can be applied to, for example, a technology for driving a fan of an air conditioner.
  • a technology has been proposed that suppresses power consumption in the blower motor when the air conditioner is stopped, including during standby.
  • a microcomputer unit provided in an indoor control unit outputs a rotation speed command to a PWM DC motor with a built-in motor driver. If it is determined that the rotational speed command is zero, it is determined whether or not the motor has stopped. Whether or not the motor has stopped is determined based on a feedback rotation speed signal (rotation speed return). If it is determined that the motor has stopped, power supply to the PWM DC motor is cut off.
  • the microcomputer unit itself that outputs a zero rotational speed command confirms the stop of the motor based on the rotational speed return, and then enters the power supply path to the PWM DC motor. Disconnect a relay.
  • the microcomputer unit that outputs the rotational speed command also performs determination processing for confirming the stop of the motor and processing such as so-called interruption operation for interrupting the relay. This causes problems such as a delay in processing in the microcomputer unit in terms of software and an additional signal port for disconnecting the relay in terms of hardware.
  • the present invention has been made in order to avoid such a problem, and without causing the microcomputer unit to perform processing such as determination processing for confirming the stop of the motor and processing for interrupting so-called interrupting for interrupting the relay.
  • An object of the present invention is to provide a technique for supplying unnecessary power to a drive circuit for driving a motor when the motor does not substantially rotate.
  • command value output means (6, 7, 8) for outputting an analog value (V sp ) according to the rotational speed command (V spp ), and first opening / closing means.
  • a first power line (L1, L2) having (K1, K2), and a motor (93) that is fed through the first opening / closing means and the first power line and supplies rotation based on the analog value.
  • a driving circuit (91, 92) for driving, and an opening / closing control means independent of the command value output means for making the first opening / closing means non-conductive when the analog value is less than a first predetermined value (V spb ). (10A, 10B).
  • the drive circuit includes an inverter (92) that outputs a current to the motor (93) and a driver (91) that controls the inverter, and the first power line (L1) operates to the driver.
  • This is a power supply path.
  • the drive circuit includes an inverter (92) that outputs a current to the motor (93), and the first power supply line (L2) is a feeding path of input power to the inverter.
  • the second power supply line (L2) having a second opening / closing means (K2), wherein the second power supply line is a power supply path for input power to the inverter (92), and the opening / closing means includes: The second opening / closing means is also turned off when the analog value is less than a second predetermined value.
  • a microcomputer unit (6) for outputting a pulse signal corresponding to a rotational speed command, a power line (L1) having an opening / closing means (K1), and the opening / closing means.
  • a DA converter (8) that is fed via the power supply line, D / A converts the pulse signal and outputs an analog value, and operating power is supplied via the opening / closing means and the power supply line.
  • the microcomputer unit (6) that outputs a pulse signal according to the rotation speed command, the power line (L1) having the opening / closing means (K1), the power supply via the opening / closing means and the power line, Command value output means (7, 8) for D / A converting the pulse signal to output an analog value, and operating power is supplied via the opening / closing means and the power line, and rotation based on the analog value is supplied.
  • the open / close means when the integrated value of the drive circuit (91, 92) for driving the motor (93) and the signal whose absolute value increases when the pulse signal exceeds a predetermined value is less than another predetermined value. Opening / closing control means (10D) independent from the command value output means is provided.
  • a third aspect of the motor drive system according to the present invention is the first aspect or the second aspect, wherein the pulse signal is supplied for a predetermined period after power supply to the motor unit (9) is started. Compared with the end of the predetermined period, the pulse width and the duty ratio are small.
  • a motor system includes any one of the first to third aspects of the motor drive system, and a motor unit (9) including the control circuit (91, 92) and the motor (93).
  • the open / close control means makes the open / close means non-conducting independently of the command value output means, it is determined whether or not the command value output means is less than the first predetermined value with respect to the command value output means. In addition, it is not necessary to perform processing such as an interrupt operation when it is less than the first predetermined value.
  • the command value output means determines whether the analog value is less than a predetermined value, It is not necessary to perform processing such as an interrupt operation when it is less than
  • FIG. 1 is a circuit diagram showing a configuration of a motor system according to a first embodiment of the present invention.
  • the circuit diagram which illustrates the internal configuration of a DA converter circuit.
  • the circuit diagram which illustrates the internal composition of the circuit etc. which can be adopted as a voltage detection circuit.
  • the circuit diagram which shows the case where reset IC is employ
  • the graph which shows the desirable aspect when an analog command value changes.
  • the circuit diagram which shows the structure of the motor system concerning the 4th Embodiment of this invention.
  • FIG. 1 is a circuit diagram showing a configuration of a motor system according to a first embodiment of the present invention.
  • FIG. 1 illustrates a case where the motor system is applied to an air conditioner.
  • the motor system includes a compressor motor 4 that drives a compressor (not shown) and a fan motor unit 9 that supplies rotation to a fan (not shown) that blows air to the heat exchanger.
  • the fan motor unit 9 is a motor unit, for example, a motor with a built-in driver.
  • the fan motor unit 9 includes a fan driver 91, a PWM inverter 92, and a fan motor 93.
  • the fan motor unit 9 does not necessarily include the fan driver 91 and the PWM inverter 92.
  • the fan driver 91 or the fan driver 91 and the PWM inverter 92 may be provided outside the fan motor unit 9.
  • the above-described fan is attached to the fan motor 93.
  • the AC voltage supplied from the commercial power source 1 is once rectified to a first DC voltage by the rectifier circuit 2.
  • the first DC voltage is supplied (powered) to the PWM inverter 92 via the switch K2 by the power line L2.
  • the fan motor unit 9 has a terminal 902, and the terminal 902 is connected to the high voltage side of the PWM inverter 92.
  • the power supply line L2 is connected to the terminal 902 through the switch K2.
  • the first DC voltage is converted into an AC voltage by the PWM inverter 3. Then, the AC voltage is supplied to the compressor motor 4, and the compressor motor 4 is driven.
  • the power supply circuit 5 rectifies the AC power supplied from the commercial power supply 1 and outputs a second DC voltage and a third DC voltage.
  • the second DC voltage is output to the power supply line L3, and the third DC voltage is output to the power supply line L1.
  • the MCU (microcomputer unit) 6 outputs a pulsed rotational speed command V spp for commanding the rotational speed of the fan motor 93 using the second DC voltage as its operating voltage.
  • the DA conversion circuit 8 uses the third DC voltage as its operating voltage and performs DA conversion on the rotation speed command obtained through the photocoupler 7 to perform an analog voltage value (hereinafter referred to as “analog command value”).
  • analog command value (Tentative name)
  • V sp is output.
  • the analog command value Vsp is input to the fan driver 91 via a terminal 903 included in the fan motor unit 9.
  • the MCU 6, the photocoupler 7 and the DA converter 8, can be understood as an instruction value output means for outputting an analog command value V sp at which the rotation of the fan motor 93 is based. Further, it can be understood that the fan motor 93 supplies rotation based on the analog command value Vsp .
  • Fan driver 91 a third DC voltage as an operating voltage, controls the PWM inverter 92 based on the analog command value V sp.
  • the third DC voltage is supplied (powered) to the fan driver 91 via the switch K1 by the power line L1.
  • the fan motor unit 9 has a terminal 901, and the terminal 901 is connected to the high voltage side of the fan driver 91.
  • the power supply line L1 is connected to the terminal 901 through the switch K1.
  • the PWM inverter 92 outputs a current to the motor 93 to cause the motor to rotate. Therefore, the PWM inverter 92 can be understood as a drive circuit that drives the motor 93 in combination with the fan driver 91.
  • the voltage detection circuit 10 controls the conduction / non-conduction of the switches K1 and K2. Specifically, the switches K1 and K2 are turned on when the analog command value Vsp is equal to or greater than a predetermined value, and the switches K1 and K2 are turned off when the analog command value Vsp is less than the predetermined value.
  • the voltage detection circuit 10 that controls conduction / non-conduction of the switches K1 and K2 can be grasped as an open / close control means independent of the command value output means that outputs the analog command value Vsp .
  • the switches K1 and K2 can be grasped collectively as an opening / closing means. In that case, it is understood that the drive circuit is supplied with power through the opening / closing means.
  • the voltage detection circuit 10 makes the switches K1 and K2 non-conductive, Unnecessary power is not supplied to the fan motor unit 9.
  • the voltage detection circuit 10 turns off the switches K1 and K2. Therefore, it is not necessary to cause the command value output means to perform a process for determining whether or not the command value is less than the predetermined value and an interrupt operation when the command value is less than the predetermined value.
  • FIG. 13 is a circuit diagram showing the configuration of the motor system when the voltage detection circuit 10 and the switches K1 and K2 are not provided.
  • This configuration is referred to here as a comparative example for the present embodiment.
  • power is supplied to the fan driver 91 and / or the PWM inverter 3, and unnecessary power is consumed.
  • unnecessary power consumption can be avoided.
  • the threshold values of the analog command value Vsp for controlling the conduction / non-conduction of the switches K1, K2 may be made different from each other. For example, depending on whether or not the analog command value Vsp is less than a first predetermined value, the switch K1 is made non-conductive / conductive, and depending on whether or not the analog command value Vsp is less than a second predetermined value, Each of the switches K2 may be non-conductive / conductive.
  • the ground is separated from the DA conversion circuit 8, the fan motor unit 9, and the voltage detection circuit 10 by the photocoupler 7.
  • the photodiode 7a and the MCU 6 of the photocoupler 7 have a common ground, and the ground (hereinafter referred to as “first ground”) is indicated by a triangle in the drawing.
  • the phototransistor 7b of the photocoupler 7 and the DA converter circuit 8, the fan motor unit 9 and the voltage detection circuit 10 have a common ground, and the ground (hereinafter referred to as “second ground”) in FIG. A symbol using a plurality of horizontal lines is shown.
  • the fan motor unit 9 has a terminal 904.
  • the ground side of the fan driver 91 and the ground side of the PWM inverter 92 are connected to the terminal 904.
  • Terminal 904 is connected to a second ground.
  • the low voltage side of the rectifier circuit 2 is also connected to the second ground.
  • FIG. 2 is a circuit diagram illustrating the internal configuration of the DA converter circuit 8.
  • the phototransistor 7b of the photocoupler 7 is an npn type, its emitter is connected to the second ground, and its collector is connected to the power supply line L1 through a series connection of resistors R81 and R82.
  • the resistor R81 is provided closer to the power supply line L1 than the resistor R82, and the base of the transistor Q8 is connected to the connection point between them.
  • the transistor Q8 is a pnp type, and its emitter is connected to the power supply line L1.
  • Resistors R84 and R85 are directly connected between the power line L1 and the second ground, and the resistor R84 is provided on the second ground side.
  • the collector of the transistor Q8 is connected to the connection point between the resistors R84 and R85 via the resistor R83.
  • a capacitor C83 is provided in parallel with the resistor R84, and a diode D8 is provided in parallel with the resistor R85.
  • the cathode of the diode D8 is connected to the power supply line L1.
  • the capacitor C81 is connected between the collector and emitter of the phototransistor 7b.
  • Capacitor C82 is connected between the collector of transistor Q8 and the second ground.
  • the pulsed rotational speed command output from the MCU 6 causes the phototransistor 7 b to be turned on / off in the photocoupler 7.
  • the voltage between the third DC voltage applied to the power supply line L1 and the second ground is divided by the resistors R84 and R85. Since the resistance value of the resistor R85 is set to be much larger than the resistance value of the resistor R84, the capacitor C83 is hardly charged. For example, the resistance values of the resistors R84 and R85 are set to 1 k ⁇ and 200 k ⁇ , respectively.
  • the voltage between the third DC voltage and the second ground is divided by the resistors R81 and R82.
  • the divided voltage is applied as a bias voltage to the base of the transistor Q8.
  • the resistance values of the resistors R81 and 82 are set to be approximately equal to each other and set to 10 k ⁇ .
  • the transistor Q8 When a bias voltage is applied to the base of the transistor Q8, the transistor Q8 becomes conductive.
  • the voltage between the third DC voltage and the second ground is divided by the parallel connection of the resistor R83 and the resistor R85 and the resistor R84.
  • the resistance values of the resistors R83 and R84 are set to be approximately equal to each other, and the resistance value of the resistor R85 is set to several times the resistance value of the resistor R83.
  • the resistance values of the resistors R85, R84, and R83 are set to 200 k ⁇ , 1 k ⁇ , and 750 ⁇ , respectively. Therefore, the voltage divided by the resistors R83 and R84 is a voltage on the same order as the third DC voltage, and the capacitor C83 is charged.
  • the voltage across the capacitor C83 is outputted as an analog instruction value V sp. Since the medium is the ground and the fan ground are both second ground of the motor unit 9 of the DA converter 8, the analog command value V sp can be employed potential of the high-voltage side of the capacitor C83. Therefore, in FIG. 2, the connection point between the resistors R83, R84, and R85 is connected to the terminal 903.
  • Capacitor C83 as described above to function as an integrator for obtaining an analog command value V sp for example a capacitance value of approximately 100 ⁇ F is employed.
  • the capacitors C81 and C82 are provided for noise removal, for example, a capacitance value of about 1000 pF is employed.
  • the diode D8 does not charge the capacitor C83 directly from the power line L1, and thus functions as input protection for the terminal 903 of the fan motor unit 9.
  • FIG. 3 is a circuit diagram illustrating the internal configuration of the circuit 10A and the switch K1 (or switch K2) that can be employed as the voltage detection circuit 10.
  • the circuit 10A has resistors R101 and R102 connected in series between the power supply line L1 and the second ground.
  • the voltage divided by the resistors R101 and R102 is adopted as a predetermined value V Spb that is a reference for comparison with the analog command value V sp .
  • the circuit 10A further includes a comparator G10.
  • Comparator G10 depending on whether the comparison result analog command value V sp is above the predetermined value V spb above, and outputs the high potential / low potential. Specifically, the analog command value Vsp is input to the non-inverting input terminal of the comparator G10, and the predetermined value Vspb is input to the inverting input terminal of the comparator G10.
  • the circuit 10A further includes an npn transistor Q10 and a resistor R103.
  • the output of the comparator G10 is given to the base of the npn transistor Q10 via the resistor R103.
  • the emitter of the npn transistor Q10 is connected to the second ground and forms an open collector type output stage.
  • the switch K1 has a pnp transistor Q1 and resistors R1 and R2.
  • the emitter of the transistor Q1 is connected to the power supply line L1.
  • a resistor R2 is connected between the emitter and base of the transistor Q1, and one end of the resistor R1 is connected to the base of the transistor Q1.
  • the transistor Q1 forms an open collector type output stage, and the collector of the transistor Q1 is connected to the terminal 901.
  • the other end of the resistor R1 of the switch K1 is connected to the collector of the transistor Q10 of the circuit 10A.
  • a voltage between the third DC voltage and the second ground is applied between the collector and the emitter of the transistor Q10 via the series connection of the resistors R1 and R2.
  • the output of the comparator G10 is if a high potential (that is, if the analog command value V sp is the predetermined value V spb higher), the base of the transistor Q10 is a high potential via the resistor R103 is applied, the transistor Q10 is rendered conductive The base potential of the transistor Q1 is lowered and the transistor Q1 becomes conductive. As a result, the power supply line L1 is connected to the terminal 901.
  • the output of the comparator G10 is a low potential (that is, less than the analog command value V sp is the predetermined value V spb)
  • the low potential via a resistor R103 to the base of the transistor Q10 is applied, the transistor Q10 is nonconductive It becomes. Accordingly, the base potential of the transistor Q1 is in a floating state, and the transistor Q1 is turned off. As a result, the terminal 901 is disconnected from the power supply line L1.
  • FIG. 4 is a circuit diagram when a circuit 10 ⁇ / b> Z commonly called a reset IC is adopted as the voltage detection circuit 10.
  • a predetermined value V spb can be set in the reset IC 10Z, and the switch K1 is controlled based on a comparison result between the predetermined value V spb and the analog command value V sp .
  • the power supply line L1 is replaced with the power supply line L2
  • the switch K1 is replaced with the switch K2, whereby the first DC voltage is supplied to the fan motor unit 9 and stopped.
  • a configuration for performing can be obtained.
  • Figure 5 is a graph showing a desirable embodiments when transitioning analog command value V sp is to a value V sp 1, V sp 2, V sp 3 beyond this from less than a predetermined value V spb.
  • V sp 1 ⁇ V sp 2 ⁇ V sp 3 was set.
  • the value V sp 0 is the lowest analog command value V sp at which the fan motor 93 substantially rotates.
  • FIG. 5 illustrates a case where a pulsed rotational speed command starts to be output from the MCU 6 at time t0.
  • the predetermined value V spb or more analog command value V sp is time t1.
  • the pulse width and the duty ratio thereof are small, so that the increase speed becomes slow when the analog command value Vsp increases to some extent. This is because, for example, the capacitor C83 (FIG. 2) of the DA converter circuit 8 is discharged through the resistor R84 when the transistor Q8 is off.
  • analog command value V sp is the predetermined value V spb over at time t1, rising until the time t3 slow, or a flat (Fig. 5 illustrates this case). Therefore, it is possible to earn time until power is supplied to the fan driver 91 and / or the PWM inverter 92 and these functions operate normally.
  • the fan driver 91 and / or Alternatively the rotation of the fan motor 93 can be avoided when the operation of the PWM inverter 92 is unstable.
  • FIG. 5 schematically shows a case where the analog command value V sp transitions to V sp 3 as a pulse waveform of the transitional speed command.
  • the reset IC 10Z illustrated in FIG. This is because the reset IC normally activates the output after a predetermined period of time has elapsed after an input having a size necessary for the output to become active is obtained.
  • a first predetermined value to be compared with the analog command value V sp for conducting the switch K1, K2 from a non-conductive state is compared with the analog command value V sp for disconnecting from a conductive state the switch K1, K2
  • the second predetermined value to be used may be different from each other.
  • the fan motor 93 drives a fan that blows air to the heat exchanger. When a certain amount of air is blown after the air blow to the heat exchanger is moderated, a request to maintain the low-speed rotation is generated.
  • FIG. 6 is a graph illustrating a case where the second predetermined value V spa is smaller than the first predetermined value V spb .
  • Analog command value V sp at time t on has reached a value less than the first predetermined value V spb the first predetermined value V spb, from the values analog command value V sp exceeds a second predetermined value V spb at time t off The case where the second predetermined value V spa is reached is illustrated.
  • the switches K1, K2 transition from non-conduction (OFF) to conduction (ON), and at time t off , the switches K1, K2 transition from conduction to non-conduction.
  • Such a predetermined value to be compared with the analog command value V sp an embodiment having a so-called hysteresis can be realized by employing the above-described reset IC10Z.
  • FIG. 7 is a circuit diagram illustrating the internal configuration of the circuit 10B and the switch K1 (or switch K2) that can be employed as the voltage detection circuit 10.
  • the circuit 10B has a configuration in which resistors R104 and R105 are added to the circuit 10A.
  • the resistor R104 is connected between the connection point between the resistors R101 and R102 and the inverting input terminal of the comparator G10.
  • the resistor R105 is connected between the inverting input terminal and the output terminal of the comparator G10. Since the technique itself for providing hysteresis to the input sensitivity by the resistors R104 and R105 is well known, the description thereof is omitted here.
  • FIG. 8 is a circuit diagram showing a configuration of a motor system according to the fourth embodiment of the present invention.
  • the switch K1 is provided on the power supply line L1 and closer to the power supply circuit 5 than the DA conversion circuit 8.
  • the power consumption not only for the fan motor unit 9 but also for the DA converter circuit 8 can be reduced. This is because there is no need to operate the DA conversion circuit 8 when the fan motor 93 is not substantially rotated.
  • opening / closing of the switch K1 or the switches K1 and K2 is controlled based on the rotation speed command V spp rather than based on the analog command value V sp .
  • the rotation speed command V spp output from the MCU 6 is input to the voltage detection circuit 10. Since the MCU 6 is connected to the first ground, the voltage detection circuit 10 is also connected to the first ground instead of the second ground. Accordingly, the voltage detection circuit 10 uses the second DC voltage as its operating voltage, and not the power supply line L1 but the power supply line L3 is connected to the voltage detection circuit 10. Since the rotation speed command V spp is in the form of a pulse, the voltage detection circuit 10 is provided with means for integrating it.
  • FIG. 9 is a circuit diagram illustrating a circuit 10C employed as the voltage detection circuit 10 in the present embodiment.
  • the configuration of the circuit 10C can be realized by adding a capacitor C101 to the circuit illustrated in FIG.
  • the capacitor C101 is provided between the non-inverting input terminal of the comparator G10 and the first ground.
  • the voltage obtained by integrating the rotation speed command V spp with the capacitor C101 is compared with the predetermined value V spb .
  • relay switches are employed as the switches K1 and K2.
  • the voltage detection circuit 10 is supplied with the second DC voltage from the power supply line L3 as its operating voltage, while the fan motor unit 9 is supplied with the third DC voltage or the first DC voltage from the power supply line L1 or the power supply line L2. Because it is done.
  • FIG. 10 is a circuit diagram illustrating another circuit 10D employed as the voltage detection circuit 10 in the present embodiment. Also in this case, relay switches are employed as the switches K1 and K2.
  • the configuration of the circuit 10D can be realized by adding a capacitor C102 to the circuit illustrated in FIG.
  • the capacitor C102 is provided between the output terminal of the comparator G10 and the emitter of the transistor Q10 (here, the emitter of the transistor Q10 is connected to the first ground).
  • a voltage obtained by integrating the signal resulting from the comparison between the rotation speed command V spp and the predetermined value V spb by the capacitor C102 is applied to the base of the transistor Q10.
  • the integration time constant is determined by the resistor R103 and the capacitor C102.
  • the transistor Q10 If the voltage obtained by the integration functions as the base bias of the transistor Q10, the transistor Q10 is turned on and the switch K1 (K2) is also turned on. If the voltage does not function as a base bias, the transistor Q10 is turned off and the switch K1 (K2) is also turned off.
  • the circuit 10D employs an npn transistor as the transistor Q10, but other conductivity type transistors may be employed. Therefore, the output of the comparator G10 can be grasped as a signal whose absolute value increases when the rotational speed command V spp exceeds the predetermined value V spb . Then, depending on whether or not the integral value of the signal functions as the base bias of the transistor Q10, the switch K1 (K2) is turned on / off, respectively. Whether or not the integral value of the signal functions as a base bias of the transistor Q10 can be grasped as whether or not the integral value is equal to or greater than another predetermined value.
  • the circuit 10D is more preferable than the circuit 10C in terms of reducing the load applied to the output stage of the MCU 6.
  • FIG. 11 shows a case where the switch K1 is provided on the power supply line 5 and closer to the power supply circuit 5 than the DA conversion circuit 8.
  • FIG. 12 shows a case where the switch K1 is provided on the power supply line L1 and closer to the fan motor unit 9 than the DA conversion circuit 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

 モータの停止を確認する判断処理や、リレーを遮断するためのいわば割り込み動作などの処理をマイクロコンピュータユニットに担わせることなく、ドライバ内蔵型モータが実質的に回転しないときに、不要な電力をドライバ内蔵型モータに供給しない。ファンモータユニット9に内蔵されたファンドライバ91には、スイッチK1が設けられた電源線L1を介して給電される。回転速度指令Vsppに応じたアナログ指令値VspがDA変換回路8から出力される。アナログ指令値Vspが所定値Vspb未満のときに、電圧制御回路10はスイッチK1を非導通とする。

Description

モータ駆動システム及びモータシステム
 この発明はモータを駆動するモータ駆動システムに関し、例えば空気調和機のファンを駆動する技術に適用できる。
 待機時を含めた空気調和機の停止時に、送風機用モータにおける消費電力を抑制する技術が提案されている。
 例えば下掲の特許文献1では、モータドライバを内蔵したPWM直流モータに対して、室内制御部に備えられるマイクロコンピュータユニットが、回転数指令を出力する。そして回転数指令が零であると判断されれば、モータが停止したか否かが判断される。モータが停止したか否かはフィードバック回転数信号(回転数リターン)に基づいて判断される。モータが停止したと判断されれば、PWM直流モータへの給電を遮断する。
特許第4153586号公報
 しかしながら、特許文献1に記載された技術では、零の回転数指令を出力するマイクロコンピュータユニット自身が、回転数リターンに基づいてモータの停止を確認してから、PWM直流モータへの給電経路中にあるリレーを遮断する。このような制御では、回転数指令を出力するマイクロコンピュータユニットが、モータの停止を確認する判断処理や、リレーを遮断するためのいわば割り込み動作などの処理をも行うことになる。これはソフトウェア的にはマイクロコンピュータユニットにおける処理の遅延、そしてハードウェア的にはリレーを遮断するための信号ポートの増設が必要、という問題を招く。
 本発明はかかる問題を回避するためになされたものであって、モータの停止を確認する判断処理や、リレーを遮断するためのいわば割り込み動作などの処理をマイクロコンピュータユニットに担わせることなく、モータが実質的に回転しないときに、モータを駆動する駆動回路へ不要な電力を供給しない技術を提供することを目的としている。
 この発明にかかるモータ駆動システムの第1の態様は、回転速度指令(Vspp)に応じたアナログ値(Vsp)を出力する指令値出力手段(6,7,8)と、第1開閉手段(K1,K2)を有する第1電源線(L1,L2)と、前記第1開閉手段及び前記第1電源線を介して給電され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、前記アナログ値が第1所定値未満(Vspb)のときに前記第1開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10A,10B)とを備える。
 望ましくは、前記駆動回路は前記モータ(93)に電流を出力するインバータ(92)及び前記インバータを制御するドライバ(91)を有し、前記第1電源線(L1)は、前記ドライバへの動作電源の給電経路である。
 望ましくは、前記駆動回路は前記モータ(93)に電流を出力するインバータ(92)を有し、前記第1電源線(L2)は、前記インバータへの入力電力の給電経路である。
 望ましくは、第2開閉手段(K2)を有する第2電源線(L2)を更に備え、前記第2電源線は、前記インバータ(92)への入力電力の給電経路であり、前記開閉手段は、前記アナログ値が第2所定値未満のときに前記第2開閉手段をも非導通とする。
 この発明にかかるモータ駆動システムの第2の態様は、回転速度指令に応じたパルス信号を出力するマイクロコンピュータユニット(6)と、開閉手段(K1)を有する電源線(L1)と、前記開閉手段及び前記電源線を介して給電され、前記パルス信号をD/A変換してアナログ値を出力するDAコンバータ(8)と、前記開閉手段及び前記電源線を介して動作電源が供給され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、前記パルス信号の積分値が所定値未満のときに前記開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10C)とを備える。
 望ましくは、回転速度指令に応じたパルス信号を出力するマイクロコンピュータユニット(6)と、開閉手段(K1)を有する電源線(L1)と、前記開閉手段及び前記電源線を介して給電され、前記パルス信号をD/A変換してアナログ値を出力する指令値出力手段(7,8)と、前記開閉手段及び前記電源線を介して動作電源が供給され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、前記パルス信号が所定値を越えることで絶対値が増加する信号の積分値が他の所定値未満のときに前記開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10D)とを備える。
 この発明にかかるモータ駆動システムの第3の態様は、その第1の態様又は第2の態様であって、前記パルス信号は、前記モータユニット(9)へと給電が開始されてから所定期間では、前記所定期間終了後と比較して、パルス幅及びデューティ比が小さい。
 この発明にかかるモータシステムは、上記モータ駆動システムの第1乃至第3の態様のいずれかと、前記制御回路(91,92)及び前記モータ(93)を内蔵するモータユニット(9)とを備える。
 この発明にかかるモータ駆動システムの第1の態様によれば、モータが実質的に回転しないときに、不要な電力を駆動回路に供給しない。しかも指令値出力手段とは独立して、開閉制御手段が開閉手段を非導通とするので、指令値出力手段に対して、指令値出力手段が第1所定値未満であるか否かの判断処理や、第1所定値未満であるときに割り込み動作などの処理を行わせる必要がない。
 この発明にかかるモータ駆動システムの第2の態様によれば、モータが実質的に回転しないときに、不要な電力を駆動回路や、指令値出力手段に供給しない。しかも指令値出力手段とは独立して、開閉制御手段が開閉手段を非導通とするので、指令値出力手段に対して、アナログ値が所定値未満であるか否かの判断処理や、所定値未満であるときに割り込み動作などの処理を行わせる必要がない。
 この発明にかかるモータ駆動システムの第3の態様によれば、駆動回路が給電されてその機能が正常に動作するまでの間の時間稼ぎを行うことができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
本発明の第1の実施の形態にかかるモータシステムの構成を示す回路図。 DA変換回路の内部構成を例示する回路図。 電圧検出回路として採用できる回路等の内部構成を例示する回路図。 電圧検出回路としてリセットICを採用した場合を示す回路図。 アナログ指令値が遷移するときの望ましい態様を示すグラフ。 第1所定値よりも第2所定値が小さい場合を例示するグラフ。 電圧検出回路として採用できる回路等の内部構成を例示する回路図。 本発明の第4の実施の形態にかかるモータシステムの構成を示す回路図。 本発明の第4の実施の形態において電圧検出回路として採用される回路を例示する回路図。 本発明の第4の実施の形態において電圧検出回路として採用される他の回路を例示する回路図。 本発明の第5の実施の形態にかかるモータシステムの構成を示す回路図。 本発明の第5の実施の形態にかかるモータシステムの構成を示す回路図。 電圧検出回路及びスイッチを設けない場合のモータシステムの構成を示す回路図。
 第1の実施の形態.
 図1は本発明の第1の実施の形態にかかるモータシステムの構成を示す回路図である。図1には当該モータシステムが空気調和機に適用される場合が例示される。当該モータシステムは、圧縮機(図示省略)を駆動する圧縮機用モータ4と、熱交換機に送風するファン(いずれも図示省略)に回転を供給するファンモータユニット9を有している。
 ファンモータユニット9はモータユニットであって、例えばドライバ内蔵型モータである。ファンモータユニット9はファンドライバ91、PWMインバータ92及びファンモータ93を内蔵する。但しファンモータユニット9は、必ずしもファンドライバ91及びPWMインバータ92を内蔵している必要はない。ファンドライバ91が、あるいはファンドライバ91及びPWMインバータ92が、ファンモータユニット9の外部に設けられてもよい。上述のファンはファンモータ93に取り付けられる。
 商用電源1から供給される交流電圧は整流回路2によって一旦は第1の直流電圧に整流される。第1の直流電圧は電源線L2によってスイッチK2を介してPWMインバータ92に供給(給電)される。具体的にはファンモータユニット9は端子902を有しており、端子902はPWMインバータ92の高圧側に接続される。そして電源線L2はスイッチK2を介して端子902に接続される。
 第1直流電圧はPWMインバータ3によって交流電圧に変換される。そして当該交流電圧が圧縮機用モータ4に供給され、圧縮機用モータ4が駆動される。
 電源回路5は商用電源1から供給される交流電力を整流し、第2の直流電圧と、第3の直流電圧とを出力する。第2の直流電圧は電源線L3に、第3の直流電圧は電源線L1に、それぞれ出力される。
 MCU(マイクロコンピュータユニット)6は、第2の直流電圧をその動作電圧として、ファンモータ93の回転速度を指令するパルス状の回転速度指令Vsppを出力する。
 DA変換回路8は、第3の直流電圧をその動作電圧として、フォトカプラ7を介して回転速度指令を得た回転速度指令にDA変換を施してアナログの電圧値(以下「アナログ指令値」と仮称)Vspを出力する。アナログ指令値Vspは、ファンモータユニット9が有する端子903を介してファンドライバ91に入力する。
 MCU6、フォトカプラ7及びDA変換回路8は、ファンモータ93の回転が基づくところのアナログ指令値Vspを出力する指令値出力手段として把握できる。更に、ファンモータ93はアナログ指令値Vspに基づいた回転を供給する、と把握できる。
 ファンドライバ91は、第3の直流電圧をその動作電圧として、アナログ指令値Vspに基づいてPWMインバータ92を制御する。第3の直流電圧は電源線L1によってスイッチK1を介してファンドライバ91に供給(給電)される。具体的にはファンモータユニット9は端子901を有しており、端子901はファンドライバ91の高圧側に接続される。そして電源線L1はスイッチK1を介して端子901に接続される。PWMインバータ92はモータ93に電流を出力してモータに回転動作をさせる。よってPWMインバータ92はファンドライバ91と相まって、モータ93を駆動する駆動回路と把握することができる。
 スイッチK1,K2が導通状態にあれば、それぞれを介して第3の直流電圧及び第1の直流電圧がファンモータユニット9へ給電される。かかるスイッチK1,K2の導通/非導通の制御は電圧検出回路10によって行われる。具体的には、アナログ指令値Vspが所定値以上であればスイッチK1,K2を導通させ、アナログ指令値Vspが所定値未満であればスイッチK1,K2を非導通とする。このように、スイッチK1,K2の導通/非導通を制御する電圧検出回路10は、アナログ指令値Vspを出力する指令値出力手段とは、独立した開閉制御手段と把握できる。スイッチK1,K2をまとめて開閉手段として把握することができる。その場合には、上記駆動回路は当該開閉手段を介して給電される、と把握される。
 そしてアナログ指令値Vspが第1所定値未満であってファンモータユニット9が実質的に回転しないときことを意味する場合に、電圧検出回路10はスイッチK1,K2を非導通とすることで、不要な電力をファンモータユニット9に供給しない。しかも指令値出力手段とは独立して、電圧検出回路10はスイッチK1,K2を非導通とする。よって指令値出力手段に、所定値未満であるか否かの判断処理や、所定値未満であるときの割り込み動作などの処理を行わせる必要がない。
 図13は電圧検出回路10及びスイッチK1,K2を設けない場合のモータシステムの構成を示す回路図である。当該構成は、本実施の形態に対する比較例としてここに参照される。このような構成では、ファンモータユニット9が実質的に駆動されないときにも、ファンドライバ91又は/及びPWMインバータ3に給電されることになり、不要な電力を消費してしまう。これに対して本実施の形態では、かかる不要な電力消費を回避できる。
 もちろん、スイッチK1,K2のいずれか一方のみを設けてもよい。あるいはスイッチK1,K2の導通/非導通の制御を行うための、アナログ指令値Vspの閾値を相互に異ならせてもよい。例えばアナログ指令値Vspが第1所定値未満であるか否かに応じてそれぞれスイッチK1を非導通/導通とし、アナログ指令値Vspが第2所定値未満であるか否かに応じて、それぞれスイッチK2を非導通/導通としてもよい。
 MCU6は、フォトカプラ7によって、DA変換回路8、ファンモータユニット9及び電圧検出回路10と、接地が分離されている。具体的にはフォトカプラ7のフォトダイオード7aとMCU6とは接地が共通しており、図中では当該接地(以下「第1接地」と仮称)を三角形で示している。他方、フォトカプラ7のフォトトランジスタ7bとDA変換回路8、ファンモータユニット9及び電圧検出回路10はそれぞれの接地が共通しており、図中では当該接地(以下「第2接地」と仮称)を複数の横線を用いた記号で示している。
 ファンモータユニット9は端子904を有している。ファンモータユニット9の内部においてファンドライバ91の接地側と、PWMインバータ92の接地側とが、端子904に接続されている。端子904は第2接地に接続されている。整流回路2の低圧側もまた第2接地に接続されている。
 図2はDA変換回路8の内部構成を例示する回路図である。フォトカプラ7のフォトトランジスタ7bはnpn型であり、そのエミッタは第2接地に接続され、そのコレクタは抵抗R81,R82の直列接続を介して電源線L1に接続される。抵抗R81は抵抗R82よりも電源線L1側に設けられ、両者同士の接続点にはトランジスタQ8のベースが接続される。トランジスタQ8はpnp型であり、そのエミッタは電源線L1に接続される。
 電源線L1と第2接地との間には抵抗R84,R85が直接に接続され、抵抗R84は第2接地側に設けられる。抵抗R84,R85同士の接続点には抵抗R83を介してトランジスタQ8のコレクタが接続されている。また、抵抗R84には並列にコンデンサC83が設けられ、抵抗R85には並列にダイオードD8が設けられている。ダイオードD8のカソードが電源線L1に接続される。
 コンデンサC81はフォトトランジスタ7bのコレクタ-エミッタ間に接続される。コンデンサC82はトランジスタQ8のコレクタと第2接地との間に接続される。
 MCU6が出力したパルス状の回転速度指令は、フォトカプラ7において、フォトトランジスタ7bを導通/非導通させる。
 フォトトランジスタ7bが非導通のときには、電源線L1に印加される第3の直流電圧と第2接地との間の電圧が、抵抗R84,R85で分圧される。抵抗R85の抵抗値は抵抗R84の抵抗値よりも非常に大きく設定されるため、コンデンサC83はほとんど充電されない。例えば抵抗R84,R85の抵抗値はそれぞれ1kΩ,200kΩに設定される。
 他方、フォトトランジスタ7bが導通するときには、第3の直流電圧と第2接地との間の電圧が、抵抗R81,R82によって分圧される。分圧された電圧はトランジスタQ8のベースにバイアス電圧として印加される。例えば抵抗R81,82の抵抗値は互いに同程度に設定され、10kΩに設定される。
 トランジスタQ8のベースにバイアス電圧が印加されると、トランジスタQ8は導通する。トランジスタQ8が導通すると、第3の直流電圧と第2接地との間の電圧は、抵抗R83と抵抗R85との並列接続と、抵抗R84とで分圧される。抵抗R83,R84の抵抗値は互いに同程度に設定され、抵抗R85の抵抗値は抵抗R83の抵抗値の数倍程度に設定される。例えば抵抗R85,R84,R83のそれぞれの抵抗値は、200kΩ,1kΩ,750Ωに設定される。よって抵抗R83,R84で分圧された電圧は第3の直流電圧と同程度のオーダーの電圧であり、コンデンサC83が充電される。
 コンデンサC83の両端電圧はアナログ指令値Vspとして出力される。ここではDA変換回路8の接地とファンモータユニット9の接地がいずれも第2接地であるので、アナログ指令値VspとしてはコンデンサC83の高圧側の電位を採用することができる。よって図2では抵抗R83,R84,R85同士の接続点を端子903に接続している。
 上述のようにコンデンサC83はアナログ指令値Vspを得るための積分器として機能するため、例えば100μF程度の容量値が採用される。他方、コンデンサC81,C82はノイズ除去のために設けられるので、例えば1000pF程度の容量値が採用される。
 ダイオードD8は電源線L1から直接にコンデンサC83へと充電させず、以てファンモータユニット9の端子903についての入力保護として機能する。
 図3は電圧検出回路10として採用できる回路10A及びスイッチK1(あるいはスイッチK2)の内部構成を例示する回路図である。回路10Aは電源線L1と第2接地の間で直列接続された抵抗R101,R102を有する。抵抗R101,R102によって分圧された電圧が、アナログ指令値Vspとの比較基準である所定値VSpbとして採用される。
 回路10AはコンパレータG10を更に有する。コンパレータG10はアナログ指令値Vspが上記の所定値Vspb以上であるか否かの比較結果に応じて、高電位/低電位をそれぞれ出力する。具体的にはアナログ指令値VspがコンパレータG10の非反転入力端に、所定値VspbがコンパレータG10の反転入力端に、それぞれ入力する。
 回路10Aは更にnpnトランジスタQ10及び抵抗R103を有する。npnトランジスタQ10のベースには抵抗R103を介してコンパレータG10の出力が与えられる。npnトランジスタQ10のエミッタは第2接地に接続され、オープンコレクタ型の出力段を形成している。
 スイッチK1はpnp型トランジスタQ1及び抵抗R1,R2を有している。トランジスタQ1のエミッタは電源線L1に接続されている。トランジスタQ1のエミッタとベースの間には抵抗R2が接続され、トランジスタQ1のベースには抵抗R1の一端が接続されている。トランジスタQ1はオープンコレクタ型の出力段を形成し、トランジスタQ1のコレクタは端901に接続される。
 そしてスイッチK1の抵抗R1の他端は、回路10AのトランジスタQ10のコレクタに接続される。これにより、トランジスタQ10のコレクタ-エミッタ間には抵抗R1,R2の直列接続を介して、第3の直流電圧と第2の接地との間の電圧が印加されることになる。
 コンパレータG10の出力が高電位であれば(つまりアナログ指令値Vspが所定値Vspb以上であれば)、トランジスタQ10のベースには抵抗R103を介して高電位が印加され、トランジスタQ10が導通し、トランジスタQ1のベース電位は低下し、トランジスタQ1が導通する。これにより、端子901には電源線L1が接続されることになる。
 コンパレータG10の出力が低電位であれば(つまりアナログ指令値Vspが所定値Vspb未満であれば)、トランジスタQ10のベースには抵抗R103を介して低電位が印加され、トランジスタQ10が非導通となる。よってトランジスタQ1のベース電位がフローティング状態となり、トランジスタQ1は非導通となる。これにより、端子901と電源線L1との間は遮断される。
 図4はリセットICと通称される回路10Zを電圧検出回路10として採用する場合の回路図である。リセットIC10Zには所定値Vspbが設定可能であり、これとアナログ指令値Vspとの比較結果によってスイッチK1を制御する。
 図3及び図4のいずれの回路においても、電源線L1を電源線L2に、スイッチK1をスイッチK2に、それぞれ読み替えることにより、第1の直流電圧のファンモータユニット9への給電及びその停止を行うための構成を得ることができる。
 第2の実施の形態.
 さて、上述のように構成することにより、ファンモータユニット9が実質的に停止している状況では、ファンドライバ91及び/又はPWMインバータ92には給電が停止されている。かかる状況からファンモータユニット9を駆動する場合、アナログ指令値Vspが所定値Vspb以上となって直ちにファンドライバ91及び/又はPWMインバータ92に給電されても、これらの機能が直ちには正常に動作しないことが考えられる。従って、アナログ指令値Vspが所定値Vspb未満からこれを越えた値へと遷移するとき、その遷移が経時的に緩慢であることが望ましい。
 図5はアナログ指令値Vspが所定値Vspb未満からこれを越えた値Vsp1,Vsp2,Vsp3へと遷移するときの望ましい態様を示すグラフである。但しここではVsp1<Vsp2<Vsp3とした。また、値Vsp0はファンモータ93が実質的に回転する最低のアナログ指令値Vspである。
 図5では時刻t0においてMCU6からパルス状の回転速度指令が出力され始める場合が例示されている。これによりアナログ指令値Vspは時刻t1で所定値Vspb以上となる。回転速度指令は初めの内(図5では時刻t1~t3)は、パルス幅及びそのデューティ比が小さく、よってアナログ指令値Vspはある程度上昇すると、上昇速度が緩慢となる。これは例えばDA変換回路8のコンデンサC83(図2)が、トランジスタQ8がオフしている時に抵抗R84を介して放電することなどが原因である。
 このようにアナログ指令値Vspは時刻t1で所定値Vspb以上となった後、時刻t3までは上昇が緩慢、若しくは平坦(図5はこの場合を例示している)となる。よってファンドライバ91及び/又はPWMインバータ92に給電されて、これらの機能が正常に動作するまでの間の時間稼ぎを行うことができる。しかもこのようにアナログ指令値Vspの上昇が緩慢、若しくは平坦となっている状態で、当該アナログ指令値Vspが取る値を値Vsp0よりも小さく設定することで、ファンドライバ91及び/又はPWMインバータ92の動作が不安定な状況でファンモータ93が回転することは回避される。
 時刻t3の後、回転速度指令のパルス幅は大きく、かつそのデューティ比が大きくなり、アナログ指令値Vspは値Vsp1,Vsp2,Vsp3へと急激に上昇する。換言すれば、回転速度指令のパルス幅及びデューティ比は、ファンモータユニット9に給電が開始されてから所定期間(t1~t3)では、当該所定期間終了後と比較して小さい。図5では遷移する回転速度指令のパルス波形としてアナログ指令値VspがVsp3へと遷移する場合を模式的に示した。
 あるいは、図4に例示したリセットIC10Zを採用することも望ましい。通常、リセットICはその出力がアクティブとなるのに必要な大きさの入力が得られて所定期間が経過してから、出力をアクティブにするからである。
 第3実施の形態.
 スイッチK1,K2を非導通状態から導通させるためのアナログ指令値Vspと比較されるべき第1所定値と、スイッチK1,K2を導通状態から非導通させるためのアナログ指令値Vspと比較されるべき第2所定値と、を相互に異ならせても良い。特に、第2所定値を第1所定値よりも小さくすることは、ファンモータ93を減速してから低速回転を維持させる場合に望ましい。例えばファンモータ93は熱交換機に送風するファンを駆動する。熱交換機への送風を緩やかにした後、ある程度の送風を行う場合、上記の低速回転を維持する要求が発生する。
 図6は第1所定値Vspbよりも第2所定値Vspaが小さい場合を例示するグラフである。時刻tonにおいてアナログ指令値Vspが第1所定値Vspb未満の値から第1所定値Vspbに達し、時刻toffにおいてアナログ指令値Vspが第2所定値Vspbを越えた値から第2所定値Vspaに達した場合が例示されている。時刻tonでスイッチK1,K2が非導通(OFF)から導通(ON)へと遷移し、時刻toffでスイッチK1,K2が導通から非導通へと遷移する。
 このような、アナログ指令値Vspと比較されるべき所定値が、いわゆるヒステリシスを有する態様は、上述のリセットIC10Zを採用することで実現できる。
 あるいはコンパレータG10に抵抗を追加して入力感度にヒステリシスを与えることもできる。図7は電圧検出回路10として採用できる回路10B及びスイッチK1(あるいはスイッチK2)の内部構成を例示する回路図である。回路10Bは回路10Aに抵抗R104,R105を追加した構成となっている。抵抗R104は抵抗R101,R102同士の接続点と、コンパレータG10の反転入力端との間に接続される。抵抗R105はコンパレータG10の反転入力端と出力端との間に接続される。かかる抵抗R104,R105によって入力感度にヒステリシスを与える技術自体は周知であるので、ここでは説明を割愛する。
 第4実施の形態.
 図8は本発明の第4の実施の形態にかかるモータシステムの構成を示す回路図である。本実施の形態ではスイッチK1を、電源線L1上であってDA変換回路8よりも電源回路5側に設ける。これにより、ファンモータユニット9のみならず、DA変換回路8についての電力消費を低減することができる。実質的にファンモータ93を回転させない場合にはDA変換回路8を作動させる必要性もないからである。
 但し、アナログ指令値Vspに基づいてDA変換回路8への給電の開始/停止を制御すると、一旦停止した後にDA変換回路8へ再び給電することができない。よって本実施の形態ではアナログ指令値Vspに基づいてではなく、回転速度指令Vsppに基づいてスイッチK1、あるいはスイッチK1,K2の開閉を制御する。
 具体的には電圧検出回路10にはMCU6が出力する回転速度指令Vsppが入力される。MCU6は第1接地に接続されるので、電圧検出回路10も第2接地ではなく、第1接地に接続される。これに伴い、電圧検出回路10は第2の直流電圧をその動作電圧とすることになり、電源線L1ではなく電源線L3が電圧検出回路10に接続される。回転速度指令Vsppはパルス状であるので、電圧検出回路10はこれを積分する手段が設けられる。
 図9は本実施の形態において電圧検出回路10として採用される回路10Cを例示する回路図である。回路10Cの構成は、図3に例示された回路に対してコンデンサC101を追加して実現できる。コンデンサC101はコンパレータG10の非反転入力端と第1接地との間に設けられる。この構成では回転速度指令VsppがコンデンサC101で積分された電圧が、所定値Vspbと比較されることになる。図9に示されるようにスイッチK1,K2にはリレースイッチが採用される。電圧検出回路10にはその動作電圧として電源線L3から第2直流電圧が供給される一方で、ファンモータユニット9には電源線L1あるいは電源線L2から第3直流電圧若しくは第1直流電圧が供給されるからである。
 図10は本実施の形態において電圧検出回路10として採用される他の回路10Dを例示する回路図である。この場合にも、スイッチK1,K2としてリレースイッチが採用される。回路10Dの構成は、図3に例示された回路に対してコンデンサC102を追加して実現できる。コンデンサC102はコンパレータG10の出力端とトランジスタQ10のエミッタ(ここではトランジスタQ10のエミッタが第1接地に接続されている)との間に設けられる。この構成では回転速度指令Vsppと所定値Vspbとが比較された結果となる信号をコンデンサC102で積分した電圧が、トランジスタQ10のベースに印加される。当該積分の時定数は、抵抗R103とコンデンサC102とで決定される。積分して得られた電圧がトランジスタQ10のベースバイアスとして機能すればトランジスタQ10はオンし、スイッチK1(K2)もオンする。当該電圧がベースバイアスとして機能しなければトランジスタQ10はオフし、スイッチK1(K2)もオフする。
 回路10DはトランジスタQ10としてnpnトランジスタを採用しているが、他の導電型のトランジスタを採用することもできる。よってコンパレータG10の出力は、回転速度指令Vsppが所定値Vspbを越えることで絶対値が増加する信号として把握できる。そして、当該信号の積分値がトランジスタQ10のベースバイアスとして機能するか否かに応じて、それぞれスイッチK1(K2)が導通/非導通となる。当該信号の積分値がトランジスタQ10のベースバイアスとして機能するか否かということは、当該積分値が他の所定値以上であるか他の所定値未満であるかということとして把握することができる。
 回路10Dの方が、回路10Cよりも、MCU6の出力段にかかる負荷が低減される観点で望ましい。
 第5の実施の形態.
 MCU6が第1接地ではなく第2接地に接続される場合には、フォトカプラ7による接地の分離は不要である。よってDA変換回路8には直接に回転速度指令Vsppが入力される。図11はスイッチK1が電源線L1上であってDA変換回路8よりも電源回路5側に設けられる場合を示す。図12はスイッチK1が電源線L1上であってDA変換回路8よりもファンモータユニット9側に設けられる場合を示す。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。

Claims (9)

  1.  回転速度指令(Vspp)に応じたアナログ値(Vsp)を出力する指令値出力手段(6,7,8)と、
     第1開閉手段(K1,K2)を有する第1電源線(L1,L2)と、
     前記第1開閉手段及び前記第1電源線を介して給電され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、
     前記アナログ値が第1所定値未満(Vspb)のときに前記第1開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10A,10B)と
    を備える、モータ駆動システム。
  2.  前記駆動回路は前記モータ(93)に電流を出力するインバータ(92)及び前記インバータを制御するドライバ(91)を有し、
     前記第1電源線(L1)は、前記ドライバへの動作電源の給電経路である、請求項1記載のモータ駆動システム。
  3.  前記駆動回路は前記モータに電流を出力するインバータ(92)を有し、
     前記第1電源線(L2)は、前記インバータへの入力電力の給電経路である、請求項1記載のモータ駆動システム。
  4.  第2開閉手段(K2)を有する第2電源線(L2)を更に備え、
     前記第2電源線は、前記インバータ(92)への入力電力の給電経路であり、
     前記開閉手段は、前記アナログ値が第2所定値未満のときに前記第2開閉手段をも非導通とする、請求項2記載のモータ駆動システム。
  5.  回転速度指令に応じたパルス信号を出力するマイクロコンピュータユニット(6)と、
     開閉手段(K1)を有する電源線(L1)と、
     前記開閉手段及び前記電源線を介して給電され、前記パルス信号をD/A変換してアナログ値を出力するDAコンバータ(8)と、
     前記開閉手段及び前記電源線を介して動作電源が供給され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、
     前記パルス信号の積分値が所定値未満のときに前記開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10C)と
    を備える、モータ駆動システム。
  6.  回転速度指令に応じたパルス信号を出力するマイクロコンピュータユニット(6)と、
     開閉手段(K1)を有する電源線(L1)と、
     前記開閉手段及び前記電源線を介して給電され、前記パルス信号をD/A変換してアナログ値を出力する指令値出力手段(7,8)と、
     前記開閉手段及び前記電源線を介して動作電源が供給され、前記アナログ値に基づいた回転を供給するモータ(93)を駆動する駆動回路(91,92)と、
     前記パルス信号が所定値を越えることで絶対値が増加する信号の積分値が他の所定値未満のときに前記開閉手段を非導通とする、前記指令値出力手段とは独立した開閉制御手段(10D)と
    を備える、モータ駆動システム。
  7.  前記パルス信号は、前記駆動回路(91,92)へと給電が開始されてから所定期間では、前記所定期間終了後と比較して、パルス幅及びデューティ比が小さい、請求項1乃至6のいずれか一つに記載のモータ駆動システム。
  8.  請求項1乃至請求項6のいずれか一つに記載のモータ駆動システムと、
     前記制御回路(91,92)及び前記モータ(93)を内蔵するモータユニット(9)とを備えるモータシステム。
  9.  請求項7記載のモータ駆動システムと、
     前記制御回路(91,92)及び前記モータ(93)を内蔵するモータユニット(9)とを備えるモータシステム。
PCT/JP2011/070719 2010-09-22 2011-09-12 モータ駆動システム及びモータシステム WO2012039309A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/821,912 US8937450B2 (en) 2010-09-22 2011-09-12 Motor driving system and motor system
EP11826755.8A EP2621082A4 (en) 2010-09-22 2011-09-12 Motor driving system and motor system
AU2011304309A AU2011304309B2 (en) 2010-09-22 2011-09-12 Motor driving system and motor system
CN201180044065.0A CN103109456B (zh) 2010-09-22 2011-09-12 电动机驱动系统及电动机系统
KR1020137007138A KR101437802B1 (ko) 2010-09-22 2011-09-12 모터 구동 시스템 및 모터 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-211919 2010-09-22
JP2010211919A JP5007764B2 (ja) 2010-09-22 2010-09-22 モータ駆動システム及びモータシステム

Publications (1)

Publication Number Publication Date
WO2012039309A1 true WO2012039309A1 (ja) 2012-03-29

Family

ID=45873798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070719 WO2012039309A1 (ja) 2010-09-22 2011-09-12 モータ駆動システム及びモータシステム

Country Status (7)

Country Link
US (1) US8937450B2 (ja)
EP (1) EP2621082A4 (ja)
JP (1) JP5007764B2 (ja)
KR (1) KR101437802B1 (ja)
CN (1) CN103109456B (ja)
AU (1) AU2011304309B2 (ja)
WO (1) WO2012039309A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454596B2 (ja) * 2012-02-08 2014-03-26 ダイキン工業株式会社 電源制御装置
JP6128201B1 (ja) * 2015-12-28 2017-05-17 ダイキン工業株式会社 電源装置、その電源装置を用いたインバータ装置、並びにコンバータ装置、及びそのインバータ装置又はコンバータ装置を用いた冷凍装置、並びに空気清浄器
JP6851353B2 (ja) * 2018-10-03 2021-03-31 日立ジョンソンコントロールズ空調株式会社 空気調和機

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311436A (ja) * 1998-04-28 1999-11-09 Toshiba Corp 空気調和機
JP2009077609A (ja) * 2007-09-25 2009-04-09 Nidec Shibaura Corp ブラシレスdcモータの駆動装置
JP2010130817A (ja) * 2008-11-28 2010-06-10 Panasonic Corp モータ制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022844A3 (en) * 1999-01-19 2002-04-17 Matsushita Electric Industrial Co., Ltd. Power supply device and air conditioner using the same
JP4341232B2 (ja) * 2002-11-15 2009-10-07 ダイキン工業株式会社 自律型インバータ駆動油圧ユニットの昇温制御方法およびその装置
JP4075951B2 (ja) * 2006-03-08 2008-04-16 ダイキン工業株式会社 負荷駆動装置及び空気調和機の室外機並びに負荷の駆動方法
KR100836821B1 (ko) * 2007-02-16 2008-06-12 삼성전자주식회사 대기전력 절감 공기조화기 시스템 및 그 동작방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11311436A (ja) * 1998-04-28 1999-11-09 Toshiba Corp 空気調和機
JP4153586B2 (ja) 1998-04-28 2008-09-24 東芝キヤリア株式会社 空気調和機
JP2009077609A (ja) * 2007-09-25 2009-04-09 Nidec Shibaura Corp ブラシレスdcモータの駆動装置
JP2010130817A (ja) * 2008-11-28 2010-06-10 Panasonic Corp モータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2621082A4 *

Also Published As

Publication number Publication date
KR20130057472A (ko) 2013-05-31
AU2011304309A1 (en) 2013-04-11
EP2621082A1 (en) 2013-07-31
CN103109456A (zh) 2013-05-15
CN103109456B (zh) 2015-10-14
AU2011304309B2 (en) 2014-07-24
EP2621082A4 (en) 2017-08-02
KR101437802B1 (ko) 2014-09-03
US8937450B2 (en) 2015-01-20
JP5007764B2 (ja) 2012-08-22
US20130162185A1 (en) 2013-06-27
JP2012070507A (ja) 2012-04-05

Similar Documents

Publication Publication Date Title
JP4040592B2 (ja) モーター電源供給装置
US20070222300A1 (en) A controller interface system
WO2012039309A1 (ja) モータ駆動システム及びモータシステム
JP6377284B2 (ja) 空気調和機
JP2010207010A (ja) 三相交流電動機駆動システムの巻線切替装置
CN215345096U (zh) 一种电加热控制电路、系统及空调器
JP3644409B2 (ja) 自動車用空調装置
US11146174B2 (en) Dynamic mult-functional power controller
JP5125262B2 (ja) 空気調和機
JP2018057178A (ja) 電気機器
JP3125493U (ja) Dcモータの過電圧保護装置
JP3951932B2 (ja) 負荷駆動制御システム
US20110187299A1 (en) Fan system and braking circuit thereof
WO2010033101A1 (en) Improved motor driver for damping movement of an oscillatory load, and method of damping movement of an oscillatory load
WO2016015397A1 (zh) 一种ecm电机
JP5052910B2 (ja) モータ駆動装置
JP7287117B2 (ja) 動力工具及び制御回路
US9774283B2 (en) Motor driving circuit and method
WO2018079299A1 (ja) 電力変換装置
JP2006271035A (ja) モータ制御装置
CN218913235U (zh) 风扇驱动电路及变频器
CN214900158U (zh) 升降桌的硬件过流保护控制系统
TWI381098B (zh) 風扇之正反轉控制電路
JP5061578B2 (ja) インバータ装置、空調機およびインバータ装置の制御方法
KR20010046472A (ko) 압축기의 시동전류 제어장치 및 그 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044065.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826755

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821912

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011826755

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137007138

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011304309

Country of ref document: AU

Date of ref document: 20110912

Kind code of ref document: A