WO2012037880A1 - Dna标签及其应用 - Google Patents

Dna标签及其应用 Download PDF

Info

Publication number
WO2012037880A1
WO2012037880A1 PCT/CN2011/079902 CN2011079902W WO2012037880A1 WO 2012037880 A1 WO2012037880 A1 WO 2012037880A1 CN 2011079902 W CN2011079902 W CN 2011079902W WO 2012037880 A1 WO2012037880 A1 WO 2012037880A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
primer
pcr
tag
index
Prior art date
Application number
PCT/CN2011/079902
Other languages
English (en)
French (fr)
Inventor
章文蔚
于竞
龚梅花
张艳艳
田方
陈海燕
周妍
刘涛
王俊
Original Assignee
深圳华大基因科技有限公司
深圳华大基因研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司, 深圳华大基因研究院 filed Critical 深圳华大基因科技有限公司
Publication of WO2012037880A1 publication Critical patent/WO2012037880A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1065Preparation or screening of tagged libraries, e.g. tagged microorganisms by STM-mutagenesis, tagged polynucleotides, gene tags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/06Biochemical methods, e.g. using enzymes or whole viable microorganisms

Definitions

  • the invention relates to the field of nucleic acid sequencing technology, in particular to the field of DNA sequencing technology.
  • the invention relates to DNA tags for DNA sequencing and their use. More specifically, the present invention provides a DNA tag, a PCR tag primer, a DNA tag library, a preparation method thereof, a method for determining DNA sample sequence information, a method for determining a plurality of DNA sample sequence information, and a method for constructing a DNA tag library.
  • a kit for constructing a DNA tag library Background technique
  • DNA sequencing technology is one of the important molecular biological analysis methods. It not only provides important data for basic biological research such as gene expression and gene regulation, but also plays an important role in applied research such as disease diagnosis and gene therapy. .
  • Solexa DNA Sequencing Platform Illumina
  • SBS Sequencing By Synthesis
  • Illumina has introduced a DNA tag (also known as index) database building method based on the Solexa DNA sequencing platform. As shown in Fig. 1, in the DNA tag construction process, three PCR primers were used, and a DNA tag library was constructed by PCR. (Preparing samples for multiplexed paired-End sequencing; Illumina part#1005361 Rev.B, by reference Incorporate it in its entirety).
  • the inventors of the present application found that the above-described method for preparing a tag library has some drawbacks: First, Illumina currently only provides 12 tag sequences of 6 bp in length, and the number of tags is small, and as the Solexa sequencing throughput increases, It is impossible to mix and sequence a large number of samples, which will waste the sequencing resources and affect the sequencing flux. Second, the above label construction method is to introduce the tag sequence into the library of the target fragment by PCR reaction, and the PCR amplification of the target fragment The amplification process requires the use of three PCR primers (two common PCR primers and one PCR tag primer, as shown in Figure 1), time-consuming consumables, high cost, and low PCR amplification efficiency.
  • a DNA tag (herein, simply referred to as a "tag") that can be used to construct a library of DNA tags is presented.
  • the invention proposes a set of isolated DNA tags.
  • the isolated DNA tags are each comprised of the nucleotides set forth in SEQ ID NOs: 1-161.
  • the nucleotide sequence (CATTGCTT) shown by NO: 1 is the same, that is, the corresponding; the sequence of Index 55 (TACAGGCC) corresponds to the nucleotide sequence (TACAGGCC) shown by SEQ ID NO: 55 in the Sequence Listing.
  • the sequence of Indexl58 (TTGGCGCC) corresponds to the nucleotide sequence (TTGGCGCC) shown by SEQ ID NO: 158 in the Sequence Listing.
  • the sample source of DNA can be accurately characterized by linking the DNA tag to the sample DNA or its equivalent.
  • a DNA tag library of a plurality of samples herein, sometimes referred to as a "tag library”
  • a DNA tag library derived from different samples can be mixed and then sequenced.
  • the library is sequenced to increase the sequencing efficiency and throughput of the DNA tag library.
  • the inventors have surprisingly found that by constructing a DNA tag library using a DNA tag according to an embodiment of the present invention, it is possible to accurately distinguish a plurality of DNA tag libraries, and the resulting sequencing data results are very stable and reproducible.
  • the invention also provides a set of isolated PCR tag primers for introducing the above DNA tag into sample DNA or equivalents thereof.
  • a set of isolated PCR tag primers according to an embodiment of the invention consists of the nucleotides set forth in SEQ ID NOs: 161-323, respectively.
  • these PCR tag primers also referred to as "DNA PCR tag primers" in the present specification
  • the PCR reaction of the label primer allows the introduction of the PC R-tag primer into the DNA of the sample or its equivalent, thereby introducing the corresponding DNA tag into the DNA or its equivalent.
  • GTGTGCTCTTCCGATCT corresponds.
  • Index 140's serial number 'J CAAGCAGAAGACGGCATACGAG
  • a DNA tag can be efficiently introduced into the DNA of the sample or its equivalent, whereby a DNA tag library having a DNA tag can be constructed.
  • the inventors have surprisingly found that when constructing a library of DNA tags containing various DNA tags using PCR tag primers with different tags for the same sample, the resulting sequencing data results are very stable and reproducible.
  • the human whole blood sample DNA tag library constructed using DNA Indexl-161 exhibits a correlation of at least 0.99 when data analysis is performed using the pearson coefficient. Details of the specific algorithm for the pearson coefficient can be found in the relevant literature, for example: t Hoen, PA, Y.
  • the present invention provides a method of preparing a DNA tag library.
  • the method comprises the steps of: fragmenting a DNA sample to obtain a DNA fragment of a specific length; performing end repair of the DNA fragment to obtain a DNA fragment subjected to end repair; A DNA A is added to the 3' ends of the two oligonucleotide strands of the DNA fragment to obtain a DNA fragment having a sticky terminal A; a DNA linker is ligated to the DNA fragment having the sticky end A, respectively, to obtain a link.
  • the ligation product is subjected to a PCR reaction to obtain a PCR amplification product, wherein the PCR reaction uses a PCR tag primer, wherein the PCR tag primer comprises a set of isolated DNA tags selected from the embodiments of the present invention.
  • the PCR amplification product comprises a fragment of interest, a DNA linker, and a DNA tag, wherein the sequence of the target fragment corresponds to the sequence of the DNA fragment; and the PCR amplification product is isolated and recovered,
  • the PCR amplification product constitutes the DNA tag library.
  • a DNA tag according to an embodiment of the present invention can be efficiently introduced into a DNA tag library constructed for sample DNA.
  • This allows the DNA tag library to be sequenced to obtain sequence information of the sample DNA and information on the DNA tag, thereby enabling differentiation of the source of the sample DNA.
  • the inventors have surprisingly found that the stability of the resulting sequencing data results when constructing a DN A-tag library containing various DN A tags using PCR tag primers with different tags for the same sample based on the above method. And repeatability is very good.
  • the present invention also provides a DNA tag library obtained by a method of preparing a DNA tag library according to an embodiment of the present invention.
  • the present invention also provides a method of determining DNA sample sequence information.
  • the method comprises the following steps: A method of preparing a DNA tag library according to an embodiment of the present invention Establishing a DNA tag library of the DNA sample; and sequencing the DNA tag library to determine sequence information of the DNA sample. Based on this method, the sequence information of the DNA sample in the DNA tag library and the sequence information of the DNA tag can be efficiently obtained, thereby enabling differentiation of the source of the DNA sample.
  • the inventors have surprisingly found that the use of the method according to an embodiment of the present invention to determine DNA sample sequence information can effectively reduce the problem of data output bias and can accurately distinguish a plurality of DNA tag libraries.
  • the present invention also provides a method of determining a plurality of DNA sample sequence information.
  • the method comprises the steps of: establishing, for each of the plurality of samples, a DNA tag library of the DNA sample independently of the method of constructing a DNA tag library according to an embodiment of the present invention, wherein Different DNA samples are labeled with DNA tags of different and known sequences, wherein the plurality of samples are 2-161; the DNA tag libraries of the plurality of samples are combined to obtain a DNA tag library mixture; and Solexa is utilized; a sequencing technique for sequencing the DNA tag library mixture to obtain sequence information of the DNA sample and sequence information of the tag; and classifying sequence information of the DNA sample based on sequence information of the tag, so as to The DNA sequence information of the plurality of samples is determined.
  • the method according to an embodiment of the present invention can make full use of high-throughput sequencing technology, for example, using Solexa sequencing technology, and simultaneously sequencing DNA tag libraries of various samples, thereby improving the efficiency and sequencing of DNA tag library sequencing.
  • the amount, at the same time, can improve the efficiency of determining the sequence information of a variety of DNA samples.
  • a kit for constructing a DNA tag library comprising: 161 separate PCR tag primers, respectively, according to an embodiment of the present invention, wherein the PCR tag primers are respectively The nucleotide composition shown in SEQ ID NO: 162-322, wherein the 161 isolated PCR tag primers are respectively disposed in different containers.
  • a DNA tag according to an embodiment of the present invention can be conveniently introduced into a constructed DNA tag library.
  • Fig. 1 is a schematic flow chart showing a method for constructing a DNA tag library provided by Illumina
  • Fig. 2 is a flow chart showing a method for constructing a DNA tag library according to an embodiment of the present invention
  • Fig. 3 showing a method according to an embodiment of the present invention The proportion of 1 mismatch/0 mismatches (lmismatch/Omismatch) obtained from the Solexa sequencing data of the DNA tag.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first”, “second” may explicitly or implicitly include one or more of the features. Further, in the description of the present invention, “multiple” means two or more unless otherwise stated.
  • the present invention proposes a number of isolated DNA tags.
  • these isolated DNA tags are each composed of the nucleotide sequence shown in SEQ ID NOS: 1-161.
  • DNA as used in the present invention may be any polymer comprising deoxyribonucleotides including, but not limited to, modified or unmodified DNA.
  • a DNA tag library having a tag is obtained by linking the DNA tag to the DNA of the sample or its equivalent.
  • the DNA tag library is sequenced to obtain the sequence of the sample DNA as well as the sequence of the tag, and the sequence of the sample of the DNA can be accurately characterized based on the sequence of the tag.
  • a DNA tag library of a plurality of samples can be simultaneously constructed, and the DNA sequence of the sample can be classified based on the DNA tag by mixing and simultaneously sequencing the DNA tag library derived from different samples.
  • DNA tag attached to the DNA of the sample or its equivalent shall be understood broadly, and it may include a DNA tag directly linked to the DNA of the sample to construct a DNA tag library, and may also have DNA with the sample.
  • a nucleic acid of the same sequence (for example, may be the corresponding RNA sequence or cDNA sequence, which has the same sequence as the DNA).
  • the inventors of the present application found that: In the present invention, in order to design an effective DNA tag, it is first necessary to consider the problem of recognizability and recognition rate between tag sequences. Second, in the case of a label mix of less than 12 samples, the GT content of each base site on the mixed label must be considered. Because the excitation fluorescence of the bases G and T is the same in the Solexa sequencing process, the excitation lights of the bases A and C are the same, so the "balance" of the base “GT” content and the base “AC” content must be considered. The base base "GT” content is 50%, which guarantees the highest label recognition rate and the lowest error rate. Finally, consider the repeatability and accuracy of the data output.
  • a set of DNA tags In order to achieve efficient construction of the DNA tag library and sequencing, a set of DNA tags must be constructed to ensure reliable results and high reproducibility. The same DNA sample ensures that a library of DNA tags constructed using different tags in the set of DN A tags will result in consistent sequencing results, thus ensuring reliable and reproducible results. In addition, it is also necessary to avoid the appearance of 3 or more consecutive bases in the tag sequence, because 3 or more consecutive bases increase the error rate of the sequence during synthesis or sequencing, and also Consider the hairpin structure formed by the PCR tag primer itself and its own secondary structure.
  • the inventors of the present application conducted a large number of screening work, and selected a set of isolated DNA tags according to an embodiment of the present invention, which are each composed of the nucleotide sequences shown in SEQ ID NOS: 1-161.
  • the sequence is as shown in Table 1 above and will not be described again.
  • These tags can be applied to the construction of any DNA tag library. There are currently no rumors for library construction of these tags for DNA sample sequencing and sequencing by Solexa.
  • the DNA tag used is a nucleic acid sequence of 8 bp in length, and the difference between the tags is more than 4 bases, the set of DNA tags comprising or consisting of: At least 10, or at least 20, or at least 30, or at least 40, at least 50, or at least 60, of the 161 DNA tags shown in Table 1 or a DNA tag differing by 1 base therefrom, Or at least 70, or at least 80, or 90, or at least 100, or at least 110, or at least 120, or at least 130, or at least 140, or at least 150, or all 161.
  • the set of DNA tags preferably includes at least 161 DNA tags of DNA Index1 ⁇ DNA Index10, or DNA Indexl ⁇ DNA Index20, or DNA Index21 - DNA Index30 , or DNA Index31 ⁇ DNA Index40, or DNA Index41 ⁇ DNA Index50, or DNA Index51 - DNA Index60, or DNA Index61 - DNA Index70, or DNA Index71 ⁇ DNA Index80, or DNA Index 81 ⁇ DNA Index90, or DNA Index91 ⁇ DNA Index 100 , or DNA Index lOl ⁇ DNA Index 10 , or DNA Index 11 ⁇ DNA Index 120 , or DNA Index 121 ⁇ DNA Index 130, or DNA Index 131 ⁇ DNA Index 140 , or DNA Index 141 ⁇ DNA Indexl50 , or DNA Indexl 51 - DNA Indexl61, or a combination of any two or more of them.
  • the 1 base difference comprises a substitution, addition or deletion of 1 base in the sequence of 161 DNA tags shown in Table 1.
  • the present invention also provides the use of a DNA tag according to an embodiment of the present invention for DNA sequence library construction and sequencing, wherein the PCR tag primer of the DNA tag library comprises a DNA tag according to an embodiment of the present invention, Thereby, the corresponding PCR tag primers are constructed. According to the embodiment of the use, the DNA label Insert the PCR tag primer.
  • the present invention provides a set of isolated PCR tag primers which can be used to introduce a DNA tag as described above into the DNA of a sample, thereby constructing a DNA tag library.
  • the set of isolated PCR tag primers consists of the nucleotides shown in SEQ ID NOs: 162-322, respectively.
  • the above PCR tag primers respectively have a DNA tag according to an embodiment of the present invention, and a PCR tag primer can be introduced into a sample DNA or an equivalent thereof by PCR reaction using a PCR tag primer. Thereby, the corresponding DNA tag is introduced into the DNA or its equivalent.
  • the sequences of these PCR tag primers are as shown in Table 2 above, and are not described herein again.
  • PCR PCR primer DNA PCR Index N Primer
  • Lasergene's PrimerSelect software was used to predict and analyze the hairpins formed by each of the 161 PCR tag primers in accordance with an embodiment of the present invention. Structure, self-extending dimer structure, self-dimer structure. Further, as shown in Table 3 below, the inventors provided the results of the above prediction of DNA PCR tag primers. Among them, [ST_Hairpin] Score indicates the hairpin score; [AD_Self_Extend_Dimer] Score indicates that it extends the dimer score; [ST_Self_Dimer] Score indicates the self-dimer score.
  • DNA PCR Index 71 primer 1.49 0.59 3.43
  • DNA PCR Index 72 primer 1.49 0.59 3.43
  • the invention provides DNA PCR tag primers comprising a DNA tag according to an embodiment of the invention described above at the 3' end.
  • the PCR tag primers comprise or consist of at least 161 PCR tag primer sequences shown in Table 2 or at least one base PCR primer primer sequence different from the DN A tag sequence contained therein 10, or at least 20, or at least 30, or at least 40, at least 50, or at least 60, or at least 70, or at least 80, or 90, or at least 100, or at least 110 , or at least 120, or at least 130, or at least 140, or at least 150, or all 161.
  • these PCR tag primer sequences preferably include at least DNA PCR index 1 primer ⁇ DNA PCR index 10 primer, or DNA PCR index 11 primer - in the 161 PCR tag primer sequences shown in Table 2.
  • a difference of 1 base includes substitution, addition or deletion of 1 base in the tag sequence.
  • the use of PCR tag primers for DNA tag library construction and sequencing is also provided.
  • a DNA tag library constructed using the above PCR tag primers is also provided.
  • the present invention also provides a method of constructing a DNA tag library using the above PCR tag primers. Specifically, according to an embodiment of the present invention, referring to FIG. 2, the method includes:
  • a DNA sample is fragmented to obtain a DNA fragment of a specific length.
  • the source of the DN A sample is not particularly limited and may be derived from all eukaryotic and prokaryotic organisms.
  • the DNA sample is derived from a human DNA sample and, more specifically, may be a human genomic DNA sample.
  • a DNA sample was fragmented using a Covaris shredder, and the resulting DNA fragment was about 200 bp in length.
  • the DNA fragment is end-repaired to obtain a DNA fragment that has been repaired at the end.
  • base A is added to the 3's ends of the two oligonucleotide strands of the end-repaired DNA fragment, respectively, to obtain a DNA fragment having a sticky terminal A.
  • the DN A linker was attached to both ends of the DN A fragment having the sticky end A to obtain the ligation product.
  • the DNA linker consists of the nucleotide sequences set forth in SEQ ID NO: 323 and SEQ ID NO: 324.
  • the ligation product can also be separated and recovered by 2% agarose gel electrophoresis before proceeding to the next step.
  • the PCR reaction primer uses a PCR tag primer which is one selected from the group of isolated PCR tag primers according to an embodiment of the present invention, which comprises one selected from the group according to the embodiment of the present invention.
  • PCR tag primer which is one selected from the group of isolated PCR tag primers according to an embodiment of the present invention, which comprises one selected from the group according to the embodiment of the present invention.
  • One of the isolated DNA tags is one of the isolated DNA tags.
  • another primer for the PCR reaction has the nucleotide sequence set forth in SEQ ID NO: 325, referred to herein as PE PCR Primers 1.0.
  • the PCR amplification product comprises a fragment of interest, a DNA linker, and a DNA tag, wherein the sequence of the target fragment corresponds to the sequence of the DNA fragment.
  • the sequence of the target fragment corresponds to the sequence of the DNA fragment, which means that the sequence of the DNA fragment can be directly derived from the sequence of the target fragment, for example, the sequence of the target fragment can be identical to the sequence of the DNA fragment, It may be completely complementary, even increasing or decreasing a known number of known bases, as long as the sequence of DNA can be obtained by limited calculations.
  • the length of the PCR amplification product is about 280-300 bp.
  • the resulting PCR amplification products are separated and recovered, and these PCR amplification products constitute the DNA tag library.
  • the method for separating and recovering the PCR amplification product is not particularly limited, and those skilled in the art can select an appropriate method and apparatus for separation according to the characteristics of the PCR amplification product.
  • the obtained PCR amplification product is separated and recovered by 2% agarose gel electrophoresis.
  • the present invention provides a method of constructing a DNA tag library, comprising:
  • n being an integer and 1 ⁇ n ⁇ 161 integer, preferably n is an integer and 2 ⁇ n ⁇ 161, the DNA sample is from all eukaryotic and prokaryotic DNA samples, including but not limited to human DNA sample;
  • the breaking method includes, but is not limited to, an ultrasonic breaking method, and preferably the DNA strip after the disruption is concentrated at about 200 bp;
  • the linked product obtained in the step 5) is subjected to gel recovery and purification, preferably by electrophoresis and recovery by 2% agarose gel, and the recovered products of the respective DNA samples are mixed together;
  • PCR reaction using a mixture of the recovered products of the step 6) as a template, performing PCR amplification under conditions suitable for amplifying the nucleic acid of interest, and purifying and purifying the PCR product, preferably recovering a 280-300 bp target fragment.
  • the above steps of the method for constructing a DNA tag library according to an embodiment of the present invention 7)
  • the primers used in the PCR reaction are as follows:
  • the upstream primer is PE PCR Primers 1.0:
  • the downstream primer is a DNA PCR tag primer comprising or consisting of: 161 DNA PCR tag primers shown in Table 2 or at least 10 DNA PCR tag primers differing by one base from the DNA tag sequence contained therein, or At least 20, or at least 30, or at least 40, at least 50, or at least 60, or at least 70, or at least 80, or 90, or at least 100, or at least 110, or at least 120 , or at least 130, or at least 140, or at least 150, or all 161.
  • the DNA PCR tag primer used preferably includes at least 161 DNA PCR tag primers shown in Table 2 PCR PCR 1 primer - DNA PCR index 10 primer , or DNA PCR index 11 primer - DNA PCR index20 primer, or DNA PCR index21 primer ⁇ DNA PCR index30 primer, or DNA PCR index31 primer - DNA PCR index40 primer, or DNA PCR index41 primer - DNA PCR index50 primer, or DNA PCR index51 Primer ⁇ DNA PCR index60 primer, or DNA PCR index61 primer - DNA PCR index70 primer, or DNA PCR index71 primer - DNA PCR index80 primer, or DNA PCR index81 primer ⁇ DNA PCR index90 primer, or DNA PCR index91 primer ⁇ DNA PCR index 100 Primer, or DNA PCR index lOl primer ⁇ DNA PCR index l lOprim, or DNA PCR index 111 primer ⁇ DNA PCR index 120 primer, or DNA PCR index 121 primer
  • a difference of 1 base comprises a substitution, addition or deletion of 1 base in the tag.
  • the DNA linker used in the step 5) of the above method for constructing a DNA tag library according to an embodiment of the present invention is a PE index Adapters:
  • a DNA tag according to an embodiment of the present invention can be efficiently introduced into a DNA tag library constructed for a DNA sample.
  • sequencing the DNA tag library the sequence information of the DNA sample and the sequence information of the DNA tag can be obtained, thereby distinguishing the source of the DNA sample.
  • the inventors have surprisingly found that when constructing a DNA tag library containing various DNA tags using PCR tag primers having different tags for the same sample based on the above method, the stability of the obtained sequencing data results and Repeatability is very good.
  • the present invention optimizes the DNA tag library construction method provided by Illumina, and optimizes the database construction method provided by Illumina by introducing three PCR primers (two common primers and one PCR tag primer) into the tag.
  • the label can be introduced by only two PCR primers (one PE PCR Primers 1.0 and one PCR tag primer), which reduces the difficulty of the PCR reaction, increases the specificity of PCR amplification, and increases the PCR amplification reaction.
  • the efficiency of the invention also improves the recognition efficiency of the tag sequence, thereby improving the construction efficiency of the DNA tag library and reducing the cost of library construction.
  • a DNA tag library can be simultaneously constructed for a plurality of (2-161) DNA samples to be mixed. Sequencing, compared to Illumina's ability to construct a DNA tag library for up to 12 DNA samples for hybrid sequencing, has been significantly improved, saving sequencing resources and making full use of high-throughput sequencing platforms. Specifically, a comparison can be made with reference to FIG. 1 and FIG. 2, wherein a flowchart of a method for constructing a DNA tag library of Illumina Corporation shown in FIG. 1 and a flowchart of a method for constructing a DNA tag library according to an embodiment of the present invention shown in FIG. . So far, the DNA library construction method and tag sequence of the tag introduced into these tags by these PCR tag primers have not been reported.
  • the present invention also provides a kit for constructing a DNA tag library.
  • the kit comprises: 161 isolated PCR tag primers consisting of the nucleotides set forth in SEQ ID NO: 162-322, respectively, wherein the 161 isolated PCR tags Primers are placed in separate containers.
  • a DNA tag according to an embodiment of the present invention can be conveniently introduced into a constructed DNA tag library.
  • other components for constructing a DNA tag library can also be included in the kit, and details are not described herein.
  • the present invention also provides a DNA tag library constructed according to the method of constructing a DNA tag library of the present invention.
  • the tagged DNA tag library can be effectively applied to high-throughput sequencing technologies such as Solexa technology, so that the obtained nucleic acid sequence information such as DNA sequence information can be accurately classified by sample source by obtaining a tag sequence.
  • the present invention also provides a method of determining DNA sample sequence information.
  • the method comprises: constructing a DNA tag library according to a method for constructing a DNA tag library according to an embodiment of the present invention; and then, sequencing the constructed DNA tag library to determine sequence information of the DNA sample. Based on this method, the sequence information of the DNA sample in the DNA tag library and the sequence information of the DNA tag can be efficiently obtained, thereby distinguishing the source of the DNA sample. Further, the inventors have surprisingly found that the use of the method according to an embodiment of the present invention to determine DNA sample sequence information can effectively reduce the problem of data output bias, and can accurately distinguish a plurality of DNA tag libraries.
  • the constructed DNA tag library can be sequenced by any known method, and the type thereof is not particularly limited. According to some examples of the invention, DNA tag libraries can be sequenced using Solexa sequencing technology. According to an embodiment of the present invention, suitable sequencing primers can be selected for sequencing according to specific conditions.
  • the method of determining the DNA sample sequence information above can be applied to a plurality of samples.
  • the invention provides a method of determining sequence information for a plurality of DNA samples.
  • the method comprises the steps of: constructing a DNA tag library of the DNA sample according to a method for constructing a DNA tag library according to an embodiment of the present invention, respectively, for each of a plurality of samples, wherein Different DNA samples use DNA labels of different and known sequences, and the term "various" is used herein to be 2-161.
  • the resulting DNA tag libraries of various samples were combined to obtain a DNA tag library mixture.
  • the resulting DNA tag library mixture is sequenced using Solexa sequencing technology to obtain sequence information of the DNA sample and sequence information of the tag. Finally, based on the sequence information of the tag, the sequence information of the DNA sample is classified to determine sequence information of the plurality of DNA samples.
  • the method according to an embodiment of the present invention can make full use of high-throughput sequencing technology, for example, using Solexa sequencing technology to simultaneously sequence DNA libraries of various samples, thereby improving the efficiency and throughput of DNA library sequencing. At the same time, the efficiency of determining sequence information of a plurality of DNA samples can be improved.
  • the methods for sequencing and the sequencing primers used in the prior art have been described in detail above and will not be described here.
  • the comfort thermomixer was adjusted to 20 °C, reaction 30, and then purified using the QIAquick PCR purification kit, and finally the sample was dissolved in 32 ⁇ l of EB solution.
  • the comfort thermomixer was adjusted to 37 °C for 30 min, then purified using the MiniElute PCR Purification Kit, and finally the sample was dissolved in 1 (( EB solution).
  • the ligation product was electrophoretically separated in 2% agarose gel; the target fragment strip was then transferred to an Eppendorf tube.
  • the gel was purified by QIAquick gel purification kit, and the recovered product was dissolved in 20 ⁇ l of EB solution.
  • the reaction mixture was prepared according to the following reaction system, and the reagent was placed on water.
  • the DNA PCR primer used can be any of the DNA PCR index primers shown in Table 4 (Table 4).
  • the PCR product was electrophoresed in 2% agarose gel, and the target fragment was cut and recovered, and purified by QIAquick gel purification kit, and the recovered product was dissolved in 30 ⁇ l of Elution Buffer.
  • Figure 3 shows the proportion of its 1 mismatch/0 mismatch/lmismatch/lmismatch obtained from the Solexa sequencing data of the DNA tag according to an embodiment of the present invention.
  • the 161 DNA tags according to the examples of the present invention were subjected to Solexa sequencing, and the sequencing data were used for statistical analysis to determine whether they were qualified. The results are shown in Fig. 3. Among them, the ratio of 1 mismatch / 0 mismatch is controlled below 5%, most of them are below 3%, and 24362092 sequences are obtained by Solexa sequencing.
  • the sequence of the perfectly matched tag ( Omismatch ) has 23099149 Sequence, tag sequencing There are 460238 sequences with 1 incorrect base, that is, the ratio of identifiable tags is 96.7%. It is shown that all of the 161 DNA tags according to the embodiments of the present invention are qualified to meet the needs of the solexa DNA tag library.
  • the kit can be applied to DNA sequencing and can effectively improve the sequencing throughput of sequencing platforms such as the Solexa sequencing platform.

Description

DNA标签及其应用 优先权信息
本申请请求 2010 年 9 月 21 日向中国国家知识产权局提交的、 专利申请号为 201010299305.9的专利申请的优先权和权益, 并且通过参照将其全文并入此处。
技术领域
本发明涉及核酸测序技术领域, 特别是 DNA测序技术领域。 具体的, 本发明涉及 用于 DNA测序的 DNA标签及其应用。 更具体的, 本发明提供了用于构建 DNA标签文 库的 DNA标签、 PCR标签引物、 DNA标签文库及其制备方法、 确定 DNA样品序列信 息的方法、确定多种 DNA样品序列信息的方法以及用于构建 DNA标签文库的试剂盒。 背景技术
DNA测序技术, 是重要的分子生物学分析方法之一, 它不仅为基因表达、 基因调 控等生物学基础研究提供重要数据, 而且也在疾病诊断学、基因治疗等应用研究中起着 重要的作用。基于 Solexa DNA测序平台( Illumina ) , 釆用边合成边测序 ( Sequencing By Synthesis, SBS ) , 具有所需样品量少, 高通量, 高精确性, 拥有简单易操作的自动化 平台和功能强大等特点 (例 口参见 Paired- End sequencing User Guide ;Illumina part#1003880 ; Preparing samples for ChIP sequencing for DNA;Illumina part#l 1257047 Rev. A ; mRNA sequencing sample preparation Guide;Illumina part#l 004898 Rev.D ; Preparing 2-5kb samples for mate pair library sequencing; Illumina part#1005363 Rev.B , 通过参照将其全文并入本文) 。
然而, 目前对样品 DNA进行测序的方法, 仍有待改进。
发明内容
本发明是基于发明人的下列发现而完成的:
目前 Illumina公司基于 Solexa DNA测序平台推出了 DNA标签(也称为 index )建 库方法。 如图 1所示, 在 DNA标签建库流程中, 使用了 3条 PCR引物, 通过 PCR导 入标签来构建 DNA标签文库 ( Preparing samples for multiplexed Paired-End sequencing; Illumina part#1005361 Rev.B , 通过参照将其全文并入本文) 。 本申请的发明人发现, 上述标签文库制备方法存在着一些缺陷: 第一、 目前 Illumina公司只提供了 12种长度 为 6bp的标签序列, 标签的数量较少, 随着 Solexa测序通量的增加, 不能对大量样本 进行混合测序, 从而将浪费测序资源和影响到测序通量; 第二、 上述标签建库方法是通 过 PCR反应将标签序列导入到目的片段文库中的, 其对目的片段的 PCR扩增过程需要 釆用 3条 PCR引物 (两条公用 PCR引物和一条 PCR标签引物, 如图 1所示) , 耗时 耗材, 费用较高, 且 PCR扩增效率不高。
本发明旨在解决现有技术问题的至少之一。 为此, 本发明的一个方面, 提出了一种 能够用于构建 DNA标签文库的 DNA标签(在本文中, 有时也简单地称为 "标签" ) 。 根据本发明的一个方面, 本发明提出了一组分离的 DNA标签。 根据本发明的一些实施 例, 这些分离的 DNA标签分别由 SEQ ID NO: 1-161所示的核苷酸构成。 在本说明书 中, 这些 DNA标签分别被命名为 DNA IndexN, 其中 N=l-161的任意整数, 其序列如 下表 1所示。 其中, 表 1中 DNA IndexN的序列对应序列表中 SEQ ID NO: N所示的核 苷酸序列, N=l-161的任意整数, 例如 Index 1的序列 (CATTGCTT ) , 与序列表中 SEQ ID NO: 1所示的核苷酸序列( CATTGCTT )相同,即对应; Index55的序列( TACAGGCC ) , 与序列表中 SEQ ID NO: 55所示的核苷酸序列 (TACAGGCC )对应。 Indexl58的序列 ( TTGGCGCC ) , 与序列表中 SEQ ID NO: 158所示的核苷酸序列( TTGGCGCC )对应。 DNA标签 ( IndexN ) 序列
Figure imgf000003_0001
Index41 CAACTAAG Index95 TCGTAAGC Index 149 TGCTAGTG
Index42 ATAGGAAG Index96 CCGTCACG Indexl50 CCGAGCTC
Index43 ACTACAAG Index97 GCGAAGTA Indexl51 CGGATTAG
Index44 GATGGTTC Index98 GGACTGCG Index 152 CGGACGGA
Index45 CCACATTC Index99 GAGCATTG Index 153 GACTGAGG
Index46 TCTTGGTC Index 100 TCGCCGTG Index 154 GTGTGTTA
Index47 CGAGGATC IndexlOl CAGCGGCG Index 155 CTCGTCCG
Index48 AGTCCATC Index 102 AAGGATGC Index 156 TGGAGAGG
Index49 CACTAATC Index 103 GCAATGGC Indexl57 TGGAATTC
Index50 TAAGGCGC Index 104 GTATTCTC Indexl58 TTGGCGCC
Index51 AATAGAGC Index 105 GTCATTAC Indexl59 GCCTTAAT
Index52 ACTGTTCC Index 106 ATCCAAGC Index 160 AAGCGATT
Index53 CTTCCTCC Index 107 GGTATACT Indexl61 AACCGCAA
Index54 GCGACTCC Indexl08 TTGCGTGC 利用上述根据本发明实施例的 DNA标签,通过将 DNA标签与样品 DNA或其等同 物相连, 可以精确地表征 DNA的样品来源。 由此, 利用上述 DNA标签, 可以同时构 建多种样品的 DNA标签文库 (在本文中, 有时也称为 "标签文库" ) , 从而可以通过 将来源于不同样品的 DNA标签文库混合之后进行测序,并且能够基于 DNA标签对 DNA 标签文库的 DNA序列进行分类, 从而可以获得多种样品的 DNA序列信息, 由此可以 充分利用高通量的测序技术, 例如利用 Solexa测序技术, 同时对多种 DNA标签文库进 行测序, 从而提高 DNA标签文库的测序效率和通量。 发明人惊奇地发现, 利用根据本 发明实施例的 DNA标签构建 DNA标签文库,能够精确地对多种 DNA标签文库进行区 分, 并且所得到的测序数据结果的稳定性和可重复性非常好。
根据本发明的另一方面, 本发明还提供了用于将上述 DNA标签引入样品 DNA或 其等同物中的一组分离的 PCR标签引物。根据本发明的实施例的一组分离的 PCR标签 引物, 分别由 SEQ ID NO: 161-323所示的核苷酸构成。 #居本发明的实施例, 这些 P CR标签引物 (在本说明书中, 有时也称为 "DNA PCR标签引物" ) 分别具有如前所 述的根据本发明实施例的 DNA标签, 通过釆用 PCR标签引物的 PCR反应, 可以将 PC R标签引物引入样品的 DNA或其等同物中,从而就将相应的 DNA标签引入到 DNA或 其等同物中。 与 DNA标签的命名方法类似, 在本说明书中, 与 DNA标签 DNA Index N相对应的 PCR标签引物被命名为 DNA PCR IndexN Primer, 其中 N=l-161的任意整 数, 其序列如下表 2所示 (表中所示序列方向均是 5, _ 3,方向) 。 其中, 表 2中的 DN A PCR IndexN Primer的序列分别对应序列表中 SEQ ID NO: ( N+161 )所示的核苷酸 序列, N=l-161的任意整数, 例如 DNA PCR Indexl Primer的序列 ( CAAGCAGAAGA 与序歹 'J表中 SEQ ID NO: 162所示^;核苦酸序歹' J ( CAAGCAGAAGACGGCATACGAGA
PCR Index27 Primer 的序列 ( CAAGCAGAAGACGGCATACGAGATCAGTGAATGTGAC TGGAGTTCAGACGTGTGCTCTTCCGATCT ) , 与序歹 'J表中 SEQ ID NO: 188所示的核
GTGTGCTCTTCCGATCT )对应。 Index 140 的序歹 'J ( CAAGCAGAAGACGGCATACGAG
ID NO: 301 所示的核苷酸序歹' J ( CAAGCAGAAGACGGCATACGAGATTGGTTACAGT GACTGGAGTTCAGACGTGTGCTCTTCCGATCT )对应。 PCR标签引物 ( DNA PCR IndexN Primer ) 序列
Figure imgf000005_0001
DNA PCR Index22 CAAGCAGAAGACGGCATACGAGATATCTTATTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
CAAGCAGAAGACGGCATACGAGATATGGCATAGTGACTG
DNA PCR Index23
GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index24 CAAGCAGAAGACGGCATACGAGATATTAGAATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index25 CAAGCAGAAGACGGCATACGAGATCAACATTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index26 CAAGCAGAAGACGGCATACGAGATCAAGTAACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index27 CAAGCAGAAGACGGCATACGAGATCAGTGAATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index28 CAAGCAGAAGACGGCATACGAGATCATATGATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index29 CAAGCAGAAGACGGCATACGAGATCATTAAGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index30 CAAGCAGAAGACGGCATACGAGATCCATATCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index31 CAAGCAGAAGACGGCATACGAGATCCATCAAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index32 CAAGCAGAAGACGGCATACGAGATCCGATCTTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index33 CAAGCAGAAGACGGCATACGAGATCCGGTTAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index34 CAAGCAGAAGACGGCATACGAGATCGACTTAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index35 CAAGCAGAAGACGGCATACGAGATCGCGAATAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index36 CAAGCAGAAGACGGCATACGAGATCGTGCTTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index37 CAAGCAGAAGACGGCATACGAGATCTACTGGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index38 CAAGCAGAAGACGGCATACGAGATCTAGACAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index39 CAAGCAGAAGACGGCATACGAGATCTAGCGCTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index40 CAAGCAGAAGACGGCATACGAGATCTCACAGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index41 CAAGCAGAAGACGGCATACGAGATCTTAGTTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index42 CAAGCAGAAGACGGCATACGAGATCTTCCTATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index43 CAAGCAGAAGACGGCATACGAGATCTTGTAGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR Index44 CAAGCAGAAGACGGCATACGAGATGAACCATCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index45 CAAGCAGAAGACGGCATACGAGATGAATGTGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index46 CAAGCAGAAGACGGCATACGAGATGACCAAGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index47 CAAGCAGAAGACGGCATACGAGATGATCCTCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index48 CAAGCAGAAGACGGCATACGAGATGATGGACTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index49 CAAGCAGAAGACGGCATACGAGATGATTAGTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index50 CAAGCAGAAGACGGCATACGAGATGCGCCTTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index51 CAAGCAGAAGACGGCATACGAGATGCTCTATTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index52 CAAGCAGAAGACGGCATACGAGATGGAACAGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index53 CAAGCAGAAGACGGCATACGAGATGGAGGAAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index54 CAAGCAGAAGACGGCATACGAGATGGAGTCGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index55 CAAGCAGAAGACGGCATACGAGATGGCCTGTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index56 CAAGCAGAAGACGGCATACGAGATGGCTTAACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index57 CAAGCAGAAGACGGCATACGAGATGGTAATTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index58 CAAGCAGAAGACGGCATACGAGATGGTGTTATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index59 CAAGCAGAAGACGGCATACGAGATGTCCTACGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index60 CAAGCAGAAGACGGCATACGAGATGTCGAGAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index61 CAAGCAGAAGACGGCATACGAGATGTGCGTAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index62 CAAGCAGAAGACGGCATACGAGATGTTAACCTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index63 CAAGCAGAAGACGGCATACGAGATGTTGCAACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index64 CAAGCAGAAGACGGCATACGAGATTAATTGAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index65 CAAGCAGAAGACGGCATACGAGATTAGACTTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR Index66 CAAGCAGAAGACGGCATACGAGATTAGGTTGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index67 CAAGCAGAAGACGGCATACGAGATTATGGTAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index68 CAAGCAGAAGACGGCATACGAGATTATGTGTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index69 CAAGCAGAAGACGGCATACGAGATTATTATCTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index70 CAAGCAGAAGACGGCATACGAGATTCACCGCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index71 CAAGCAGAAGACGGCATACGAGATTCATAGTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index72 CAAGCAGAAGACGGCATACGAGATTCCAACAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index73 CAAGCAGAAGACGGCATACGAGATTCCTCACTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index74 CAAGCAGAAGACGGCATACGAGATTCGGCGATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index75 CAAGCAGAAGACGGCATACGAGATTCTATAAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index76 CAAGCAGAAGACGGCATACGAGATTCTCATGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR IndexW CAAGCAGAAGACGGCATACGAGATTGAGGTGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index78 CAAGCAGAAGACGGCATACGAGATTGCAAGGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index79 CAAGCAGAAGACGGCATACGAGATTGGAGTATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index80 CAAGCAGAAGACGGCATACGAGATTGTCGAACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index81 CAAGCAGAAGACGGCATACGAGATTTATGATGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index82 CAAGCAGAAGACGGCATACGAGATTTCATGTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index83 CAAGCAGAAGACGGCATACGAGATTTCCTCATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index84 CAAGCAGAAGACGGCATACGAGATTTGGAGGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index85 CAAGCAGAAGACGGCATACGAGATTTGTCTAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index86 CAAGCAGAAGACGGCATACGAGATTTCTGGACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index87 CAAGCAGAAGACGGCATACGAGATCGATAGATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR Index88 CAAGCAGAAGACGGCATACGAGATAACAGTAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index89 CAAGCAGAAGACGGCATACGAGATCCGCGTGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index90 CAAGCAGAAGACGGCATACGAGATTCTGGATAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index91 CAAGCAGAAGACGGCATACGAGATTATTCCTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index92 CAAGCAGAAGACGGCATACGAGATTCACGTTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index93 CAAGCAGAAGACGGCATACGAGATCTGTGCGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index94 CAAGCAGAAGACGGCATACGAGATAACGCAATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index95 CAAGCAGAAGACGGCATACGAGATGCTTACGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index96 CAAGCAGAAGACGGCATACGAGATCGTGACGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index97 CAAGCAGAAGACGGCATACGAGATTACTTCGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index98 CAAGCAGAAGACGGCATACGAGATCGCAGTCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Index99 CAAGCAGAAGACGGCATACGAGATCAATGCTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR IndexlOO CAAGCAGAAGACGGCATACGAGATCACGGCGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR IndexlOl CAAGCAGAAGACGGCATACGAGATCGCCGCTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl02 CAAGCAGAAGACGGCATACGAGATGCATCCTTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl03 CAAGCAGAAGACGGCATACGAGATGCCATTGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl04 CAAGCAGAAGACGGCATACGAGATGAGAATACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl05 CAAGCAGAAGACGGCATACGAGATGTAATGACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl06 CAAGCAGAAGACGGCATACGAGATGCTTGGATGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl07 CAAGCAGAAGACGGCATACGAGATAGTATACCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl08 CAAGCAGAAGACGGCATACGAGATGCACGCAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl09 CAAGCAGAAGACGGCATACGAGATCCGTCGGAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR IndexllO CAAGCAGAAGACGGCATACGAGATATGCCTGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexlll CAAGCAGAAGACGGCATACGAGATTCGCTGGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll2 CAAGCAGAAGACGGCATACGAGATCCAGTGTGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR IndexlB CAAGCAGAAGACGGCATACGAGATGCGAGGCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll4 CAAGCAGAAGACGGCATACGAGATTGCGCGCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll5 CAAGCAGAAGACGGCATACGAGATAGGTGGCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll6 CAAGCAGAAGACGGCATACGAGATGCCGCATGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR IndexlH CAAGCAGAAGACGGCATACGAGATCTGTTGCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll8 CAAGCAGAAGACGGCATACGAGATTGATACCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexll9 CAAGCAGAAGACGGCATACGAGATATTGGCCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl20 CAAGCAGAAGACGGCATACGAGATGGACGGCTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl21 CAAGCAGAAGACGGCATACGAGATCACTCTGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl22 CAAGCAGAAGACGGCATACGAGATGGCTGCGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl23 CAAGCAGAAGACGGCATACGAGATGTCAGCTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl24 CAAGCAGAAGACGGCATACGAGATAGCCATCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl25 CAAGCAGAAGACGGCATACGAGATATGATTCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl26 CAAGCAGAAGACGGCATACGAGATGTCTGTCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl27 CAAGCAGAAGACGGCATACGAGATACGACCACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl28 CAAGCAGAAGACGGCATACGAGATCTCCACGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl29 CAAGCAGAAGACGGCATACGAGATGCGGAAGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl30 CAAGCAGAAGACGGCATACGAGATGTACATGTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl31 CAAGCAGAAGACGGCATACGAGATTTAGCCGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR Indexl32 CAAGCAGAAGACGGCATACGAGATCAGGATCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl33 CAAGCAGAAGACGGCATACGAGATATATCGTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl34 CAAGCAGAAGACGGCATACGAGATTGGCCAGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl35 CAAGCAGAAGACGGCATACGAGATGACGTCTTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl36 CAAGCAGAAGACGGCATACGAGATTAGAGAGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl37 CAAGCAGAAGACGGCATACGAGATGACACGCTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl38 CAAGCAGAAGACGGCATACGAGATAACAACGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl39 CAAGCAGAAGACGGCATACGAGATCGTAGCAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl40 CAAGCAGAAGACGGCATACGAGATTGGTTACAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl41 CAAGCAGAAGACGGCATACGAGATTTAACACAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl42 CAAGCAGAAGACGGCATACGAGATCGGCTATCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl43 CAAGCAGAAGACGGCATACGAGATCGGTGTTAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl44 CAAGCAGAAGACGGCATACGAGATTAACTACTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl45 CAAGCAGAAGACGGCATACGAGATAGGCAGACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl46 CAAGCAGAAGACGGCATACGAGATTCTACTCCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl47 CAAGCAGAAGACGGCATACGAGATGCTGCGCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl48 CAAGCAGAAGACGGCATACGAGATTATAGGCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl49 CAAGCAGAAGACGGCATACGAGATCACTAGCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl50 CAAGCAGAAGACGGCATACGAGATGAGCTCGGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl51 CAAGCAGAAGACGGCATACGAGATCTAATCCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl52 CAAGCAGAAGACGGCATACGAGATTCCGTCCGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl53 CAAGCAGAAGACGGCATACGAGATCCTCAGTCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT DNA PCR Indexl54 CAAGCAGAAGACGGCATACGAGATTAACACACGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl55 CAAGCAGAAGACGGCATACGAGATCGGACGAGGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl56 CAAGCAGAAGACGGCATACGAGATCCTCTCCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl57 CAAGCAGAAGACGGCATACGAGATGAATTCCAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl58 CAAGCAGAAGACGGCATACGAGATGGCGCCAAGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl59 CAAGCAGAAGACGGCATACGAGATATTAAGGCGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl60 CAAGCAGAAGACGGCATACGAGATAATCGCTTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
DNA PCR Indexl61 CAAGCAGAAGACGGCATACGAGATTTGCGGTTGTGACTG Primer GAGTTCAGACGTGTGCTCTTCCGATCT
利用上述根据本发明实施例的 PCR标签引物,能够有效地将 DNA标签引入到样品 的 DNA或其等同物中, 由此能够构建具有 DNA标签的 DNA标签文库。 另外, 发明人 惊奇地发现,当针对相同的样品,釆用具有不同标签的 PCR标签引物构建含有各种 DNA 标签的 DNA标签文库时, 所得到的测序数据结果的稳定性和可重复性非常好。 根据本 发明的实施例, 当釆用 pearson系数进行数据分析时, 利用 DNA Indexl-161所构建的 人全血样本 DNA标签文库均表现出了至少 0.99的相关性。 关于 pearson系数具体算法 的细节可以参见相关文献, 例如: t Hoen, P. A., Y. Ariyurek, et al. (2008). "Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five micro array platforms." Nucleic Acids Res 36(21): el41 , 通过 参照将其全文并入本文。 重复性越高, 则其 pearson系数越接近 1。
根据本发明的又一方面, 本发明提供了一种制备 DNA标签文库的方法。 根据本发 明的实施例, 包括以下步骤: 将 DNA样品片段化, 以获得特定长度的 DNA片段; 将所 述 DNA片段进行末端修复, 以便获得经过末端修复的 DNA片段; 在所述经过末端修复 的 DNA片段的两条寡核苷酸链的 3,末端分别添加碱基 A , 以便获得具有粘性末端 A的 DNA片段; 在所述具有粘性末端 A的 DNA片段两端分别连接 DNA接头, 以便获得连接 产物; 将所述连接产物进行 PCR反应, 以便获得 PCR扩增产物, 其中所述 PCR反应釆用 PCR标签引物,其中所述 PCR标签引物包含选自根据本发明实施例的一组分离的 DNA标 签中的一种, 所述 PCR扩增产物包含目的片段、 DNA接头以及 DNA标签, 其中所述目 的片段的序列与所述 DNA片段的序列相对应; 以及分离回收所述 PCR扩增产物, 所述 PCR扩增产物构成所述 DNA标签文库。 利用根据本发明实施例的制备 DNA标签文库的 方法, 能够有效地将根据本发明实施例的 DNA标签引入到针对样品 DNA所构建的 DNA 标签文库中。 从而可以通过对 DNA标签文库进行测序, 获得样品 DNA的序列信息以及 DNA标签的信息, 从而能够对样品 DNA的来源进行区分。 另外, 发明人惊奇地发现, 当针对相同的样品, 基于上述方法, 釆用具有不同标签的 PCR标签引物构建含有各种 DN A标签的 DN A标签文库时, 所得到的测序数据结果的稳定性和可重复性非常好。
进一步, 本发明还提供了一种 DNA 标签文库, 其是由根据本发明实施例的制备 DNA标签文库的方法所获得的。
根据本发明的又一方面, 本发明还提供了一种确定 DNA样品序列信息的方法。 根 据本发明的实施例, 其包括下列步骤: 根据本发明实施例的制备 DNA标签文库的方法 建立所述 DNA样品的 DNA标签文库; 以及对所述 DNA标签文库进行测序, 以确定所述 DNA样品的序列信息。 基于该方法, 能够有效地获得 DNA标签文库中 DNA样品的序列 信息以及 DNA标签的序列信息, 从而能够对 DNA样品的来源进行区分。 另外, 发明人 惊奇地发现, 利用根据本发明实施例的方法确定 DNA样品序列信息, 能够有效地减少 数据产出偏向性的问题, 并且能够精确地对多种 DNA标签文库进行区分。
根据本发明的再一方面,本发明还提供了一种确定多种 DNA样品序列信息的方法。 根据本发明的实施例, 其包括以下步骤: 针对所述多种样品的每一种, 分别独立地根据 本发明实施例的构建 DNA标签文库的方法, 建立所述 DNA样品的 DNA标签文库, 其 中, 不同的 DNA样品釆用相互不同并且已知序列的 DNA标签, 其中所述多种为 2-161 种; 将所述多种样品的 DNA标签文库进行组合, 以便获得 DNA标签文库混合物; 利 用 Solexa测序技术, 对所述 DNA标签文库混合物进行测序, 以获得所述 DNA样品的 序列信息以及所述标签的序列信息; 以及基于所述标签的序列信息对所述 DNA样品的 序列信息进行分类, 以便确定所述多种样品的 DNA序列信息。 由此, 根据本发明实施 例的该方法, 可以充分利用高通量的测序技术, 例如利用 Solexa测序技术, 同时对多 种样品的 DNA标签文库进行测序, 从而提高 DNA标签文库测序的效率和通量, 同时 可以提高确定多种 DNA样品序列信息的效率。
根据本发明的再一方面, 还提供了一种用于构建 DNA标签文库的试剂盒, 根据本 发明的实施例, 该试剂盒包括: 161种分离的 PCR标签引物, 所述 PCR标签引物分别 由 SEQ ID NO: 162-322所示的核苷酸构成, 其中, 所述 161种分离的 PCR标签引物 分别设置在不同的容器中。 由此, 利用该试剂盒, 能够方便地将根据本发明实施例的 DNA标签引入到构建的 DNA标签文库中。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得 明显, 或通过本发明的实践了解到。
附图说明
本发明的上述和 /或附加的方面和优点从结合下面附图对实施例的描述中将变得明 显和容易理解, 其中:
图 1 : 显示了 Illumina公司提供的 DNA标签文库构建方法的流程示意图; 图 2: 显示了根据本发明实施例的 DNA标签文库构建方法的流程示意图; 图 3: 显示了由根据本发明实施例的 DNA 标签的 Solexa测序数据统计得到的其 1 个错误匹配 /0个错误匹配 ( lmismatch/Omismatch ) 的比例。
发明详细描述
下面详细描述本发明的实施例, 所述实施例的示例在附图中示出, 其中自始至终相 同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附 图描述的实施例是示例性的, 仅用于解释本发明, 而不能理解为对本发明的限制。
需要说明的是, 术语 "第一" 、 "第二" 仅用于描述目的, 而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。 由此, 限定有 "第一"、 "第二" 的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本发明的描述中, 除非另有说明, "多个" 的含义是两个或两个以上。
DNA标签
根据本申请的一个方面, 本发明提出了一些分离的 DNA标签。 根据本发明的实施 例, 这些分离的 DNA标签分别由 SEQ ID NO: 1-161所示的核苷酸序列构成。 在本说 明书中, 这些 DNA标签分别被命名为 DNA IndexN, 其中 N=l-161的任意整数, 其序 列如前面表 1所示, 在此不再赞述。
在本发明中所使用术语 "DNA" 可以是任何包含脱氧核糖核苷酸的聚合物, 包括 但不限于经过修饰的或者未经修饰的 DNA。利用根据本发明实施例的 DN A标签, 通过 将 DNA标签与样品的 DNA或其等同物相连, 得到具有标签的 DNA标签文库, 通过对 DNA标签文库进行测序, 可以获得样品 DNA的序列以及标签的序列, 进而基于标签的 序列可以精确地表征 DNA的样品来源。 由此, 利用上述 DNA标签, 可以同时构建多 种样品的 DNA标签文库, 从而可以通过将来源于不同样品的 DNA标签文库进行混合, 同时进行测序, 基于 DNA标签对样品的 DNA序列进行分类, 获得多种样品的 DNA的 序列信息。 从而可以充分利用高通量的测序技术, 例如利用 Solexa测序技术, 同时对 多种样品的 DNA进行测序, 从而提高了通过高通量测序技术的效率和通量, 降低了确 定 DNA样品序列信息的成本。 这里所使用的表述方式 "DNA标签与样品的 DNA或其 等同物相连" 应^ 广义理解, 其包括 DNA标签可以与样品的 DNA直接相连, 以构建 DNA标签文库,也可以与和样品的 DNA具有相同序列的核酸(例如可以是相应的 RNA 序列或 cDNA序列, 其与 DNA具有相同的序列) 相连。
本申请的发明人发现: 在本发明中, 为了设计有效的 DNA标签, 首先需要考虑标 签序列之间的可识别性和识别率的问题。 其次,在标签混合量少于 12个样品的情况下, 必须考虑到混合后的标签上的每个碱基位点的 GT含量。 因为 Solexa测序过程中,碱基 G和 T的激发荧光一样, 碱基 A和 C的激发光是一样的, 因此必须考虑碱基 "GT" 含 量与碱基 "AC" 含量的 "平衡" , 最适碱基 "GT" 含量为 50% , 能保证标签识别率最 高和错误率最低。 最后, 还要考虑数据产出的可重复性和准确性, 即为了实现能够有效 构建 DNA标签文库并进行测序, 所构建的一组 DNA标签需要能够保证结果可靠, 可 重复性高, 也就是针对同样的 DNA样品, 可以保证利用该组 DN A标签中的不同标签 构建的 DNA标签文库, 能够获得一致的测序结果, 因而可以确保实验结果可靠且重复 性高。 另外, 还需要同时避免标签序列出现 3或 3 个以上连续的碱基的出现, 因为 3 个或 3个以上连续的碱基会增加序列在合成过程中或测序过程中的错误率,同时也要考 虑到 PCR标签引物自身形成的发夹结构和自身的二级结构。
为此, 本申请的发明人进行了大量的筛选工作, 并且选定了根据本发明实施例的一 组分离的 DNA标签, 分别由 SEQ ID NO: 1-161所示的核苷酸序列构成。 其序列如前 面表 1所示, 不再赘述。 另外, 发明人发现这些标签之间的差异至少有 4个碱基, 即至 少 4个碱基序列不同,并且当标签的 8个碱基中的任意 1个碱基出现测序错误或合成错 误, 都不影响到标签的最终识别。 这些标签可以应用于任何 DNA标签文库的构建。 目 前尚未有关于这些标签应用于 DNA样品测序的文库构建并通过 Solexa测序的 艮道。
根据本发明的一些实施例, 所釆用的 DNA标签为长度是 8bp的核酸序列, 并且所述 标签之间的差异在 4个碱基以上, 所述一组 DNA标签包括如下或由如下组成: 表 1所示 的 161个 DNA标签或与之相差 1个碱基的 DNA标签中的至少 10个, 或至少 20个, 或至少 30个, 或至少 40个, 至少 50个, 或至少 60个, 或至少 70个, 或至少 80个, 或 90个, 或至 少 100个, 或至少 110个, 或至少 120个, 或至少 130个, 或至少 140个, 或至少 150个, 或 全部 161个。 具体地, 根据本发明的实施例, 所述一组 DNA标签优选地至少包括表 1所 示的 161个 DNA标签的 DNA Indexl ~ DNA IndexlO, 或 DNA Indexl l ~ DNA Index20 , 或 DNA Index21 - DNA Index30 , 或 DNA Index31 ~ DNA Index40, 或 DNA Index41 ~ DNA Index50 , 或 DNA Index51 - DNA Index60 , 或 DNA Index61 - DNA Index70 , 或 DNA Index71 ~ DNA Index80 , 或 DNA Index 81 ~ DNA Index90 , 或 DNA Index91 ~ DNA Index 100 ,或 DNA IndexlOl ~ DNA Indexl 10,或 DNA Indexl 11 ~ DNA Index 120 ,或 DNA Index 121 ~ DNA Index 130, 或 DNA Index 131 ~ DNA Index 140 , 或 DNA Index 141 ~ DNA Indexl50 , 或 DNA Indexl 51 - DNA Indexl61 , 或者他们任何两个或多个的组合。 在本 发明的一些具体示例中, 所述相差 1个碱基包括对表 1所示 161个 DNA标签的序列中 1个 碱基的取代、 添加或缺失。
根据本发明的实施例, 本发明还提供了将根据本发明实施例的 DNA标签用于 DNA 标签文库构建并测序的用途,其中 DNA标签文库的 PCR标签引物包含根据本发明实施例 的 DNA标签, 从而构成各自相对应的 PCR标签引物。 才艮据该用途的实施例, DNA标签 插入 PCR标签引物中。
PCR标签引物以及构建 DNA标签文库
根据本发明的又一方面, 本发明提供了一组分离的 PCR标签引物, 其可以用于将前 面所描述的 DNA标签引入到样品的 DNA中, 进而构建 DNA标签文库。 #居本发明的实 施例, 该组分离的 PCR标签引物分别由 SEQ ID NO: 162-322所示的核苷酸构成。 根据 本发明的实施例, 上述 PCR标签引物分别具有如前所述的根据本发明实施例的 DNA标 签, 通过釆用 PCR标签引物的 PCR反应, 可以将 PCR标签引物引入样品的 DNA或其等同 物中, 从而将相应的 DNA标签引入到 DNA或其等同物中。 具体地, 这些 PCR标签引物 的序列如前面表 2所示, 在此不再赘述。
发明人发现, 根据本发明的实施例所提供的 PCR 标签引物 (DNA PCR IndexN Primer ) 具有较高的稳定性。 该发现主要是根据本发明的一些实施例得来的, 具体地, 根据本发明的实施例, 使用 Lasergene的 PrimerSelect软件预测并分析了根据本发明实 施例的 161个 PCR标签引物各自形成的发夹结构、 自身延长二聚体结构、 自身二聚体 结构。 进一步, 如下表 3所示, 发明人提供了对 DNA PCR标签引物进行上述预测的结 果。 其中, [ST_Hairpin] Score表示发夹得分; [AD_Self_Extend_Dimer] Score表示自身 延长二聚体得分; [ST_Self_Dimer] Score表示自身二聚体得分。
表 3 各 DNA PCR \ 签引物形成的发夹结构和自身的二级结构的预测得分
[ST_Hairpin] [AD_Self_Extend_ [ST_Self_Dimer] 名称
Score Dimer] Score Score
DNA PCR Index 1 primer 1.49 0.59 3.43
DNA PCR Index 2 primer 1.49 0.59 3.43
DNA PCR Index 3primer 1.49 0.59 3.43
DNA PCR Index 4 primer 1.49 0.59 3.43
DNA PCR Index 5 primer 1.49 0.59 3.43
DNA PCR Index 6 primer 1.49 0.59 3.43
DNA PCR Index 7 primer 1.49 0.59 3.43
DNA PCR Index 8 primer 1.49 0.59 3.43
DNA PCR Index 9 primer 1.49 0.59 3.43
DNA PCR Index lOprimer 1.49 0.59 3.43
DNA PCR Index 11 primer 1.49 0.59 3.43
DNA PCR Index 12 primer 1.49 0.59 3.43
DNA PCR Index 13 primer 1.49 1.52 3.43
DNA PCR Index 14 primer 1.49 0.59 3.43
DNA PCR Index 15 primer 1.49 1.34 3.43
DNA PCR Index 16 primer 1.49 0.59 3.43
DNA PCR Index 17 primer 1.49 0.59 3.43
DNA PCR Index 18 primer 1.49 0.59 3.43
DNA PCR Index 19 primer 1.49 0.59 3.43
DNA PCR Index 20 primer 1.49 0.59 3.43
DNA PCR Index 21 primer 1.49 0.59 3.43
DNA PCR Index 22 primer 1.49 0.59 3.43
DNA PCR Index 23 primer 1.49 0.59 3.43
DNA PCR Index 24 primer 1.49 0.59 3.43
DNA PCR Index 25 primer 1.49 1.52 3.43
DNA PCR Index 26 primer 1.49 1.52 3.43 DNA PCR Index 27 primer 1.49 1.52 3.43
DNA PCR Index 28 primer 1.49 1.52 3.43
DNA PCR Index 29 primer 1.49 1.52 3.43
DNA PCR Index 30 primer 1.49 1.52 3.43
DNA PCR Index 31 primer 1.49 1.52 3.43
DNA PCR Index 32 primer 1.49 1.52 3.43
DNA PCR Index 33 primer 1.49 1.52 3.43
DNA PCR Index 34 primer 1.49 3.28 3.43
DNA PCR Index 35 primer 1.49 3.28 3.43
DNA PCR Index 36 primer 1.49 3.28 3.43
DNA PCR Index 37 primer 1.49 1.52 3.43
DNA PCR Index 38 primer 1.49 1.52 3.43
DNA PCR Index 39 primer 1.49 1.52 3.43
DNA PCR Index 40 primer 1.49 1.52 3.43
DNA PCR Index 42 primer 1.49 1.52 3.43
DNA PCR Index 43 primer 1.49 1.52 3.43
DNA PCR Index 44 primer 1.49 0.59 3.43
DNA PCR Index 45 primer 1.49 0.59 3.43
DNA PCR Index 46 primer 1.49 0.59 3.43
DNA PCR Index 47 primer 1.49 0.59 3.43
DNA PCR Index 48 primer 1.49 0.59 3.43
DNA PCR Index 49 primer 1.49 0.59 3.43
DNA PCR Index 50 primer 1.49 0.59 3.43
DNA PCR Index 51 primer 1.49 0.59 3.43
DNA PCR Index 52 primer 1.49 0.59 3.43
DNA PCR Index 53 primer 1.49 0.59 3.43
DNA PCR Index 54primer 1.49 0.59 3.43
DNA PCR Index 55primer 1.49 0.59 3.43
DNA PCR Index 56 primer 1.49 0.59 3.43
DNA PCR Index 57 primer 1.49 0.59 3.43
DNA PCR Index 58 primer 1.49 0.59 3.43
DNA PCR Index 59 primer 1.49 0.59 3.43
DNA PCR Index 60 primer 1.49 1.76 3.43
DNA PCR Index 61 primer 1.49 0.59 3.43
DNA PCR Index 62 primer 1.49 0.59 3.43
DNA PCR Index 63 primer 1.49 0.59 3.43
DNA PCR Index 64 primer 1.49 0.64 3.43
DNA PCR Index 65 primer 1.49 0.59 3.43
DNA PCR Index 66 primer 1.49 0.59 3.43
DNA PCR Index 67 primer 1.49 0.59 3.43
DNA PCR Index 68 primer 1.49 0.59 3.43
DNA PCR Index 69 primer 1.49 0.59 3.43
DNA PCR Index 70 primer 1.49 0.59 3.43
DNA PCR Index 71 primer 1.49 0.59 3.43 DNA PCR Index 72 primer 1.49 0.59 3.43
DNA PCR Index 73 primer 1.49 0.59 3.43
DNA PCR Index 74 primer 1.49 0.59 3.43
DNA PCR Index 75 primer 1.49 0.59 3.43
DNA PCR Index 76 primer 1.49 0.59 3.43
DNA PCR Index 77 primer 1.49 0.59 3.43
DNA PCR Index 78 primer 1.49 0.71 3.43
DNA PCR Index 79 primer 1.49 2.97 3.43
DNA PCR Index 80 primer 1.49 0.59 3.43
DNA PCR Index 81 primer 1.49 0.59 3.43
DNA PCR Index 82 primer 1.49 0.59 3.43
DNA PCR Index 83 primer 1.49 0.59 3.43
DNA PCR Index 84 primer 1.49 0.59 3.43
DNA PCR Index 85 primer 1.49 0.59 3.43
DNA PCR Index 86 primer 1.51 0.59 3.43
DNA PCR Index 87 primer 1.56 3.13 3.43
DNA PCR Index 88 primer 1.57 0.59 3.43
DNA PCR Index 89 primer 1.57 1.52 3.43
DNA PCR Index 90 primer 1.58 0.59 3.43
DNA PCR Index 91 primer 1.69 0.59 3.43
DNA PCR Index 92 primer 1.75 0.59 3.43
DNA PCR Index 93 primer 1.82 1.52 3.43
DNA PCR Index 94 primer 1.87 0.59 3.43
DNA PCR Index 95 primer 1.99 0.59 3.43
DNA PCR Index 96 primer 2.06 3.28 3.43
DNA PCR Index 97 primer 2.13 0.59 3.43
DNA PCR Index 98 primer 2.14 3.28 3.43
DNA PCR Index 99 primer 2.20 1.52 3.43
DNA PCR Index 100 primer 2.23 1.52 3.43
DNA PCR Index 101 primer 2.30 3.28 3.43
DNA PCR Index 102 primer 2.31 0.59 3.43
DNA PCR Index 103 primer 2.31 0.59 3.43
DNA PCR Index 104 primer 2.34 0.18 3.43
DNA PCR Index 105primer 2.51 0.59 3.43
DNA PCR Index 106 primer 2.53 0.59 3.43
DNA PCR Index 107 primer 2.58 0.59 3.43
DNA PCR Index 108 primer 2.59 0.59 3.43
DNA PCR Index 109 primer 2.68 1.52 3.43
DNA PCR Index 110 primer 2.73 0.59 3.43
DNA PCR Index 111 primer 2.89 0.59 3.43
DNA PCR Index 112 primer 3.12 1.52 3.43
DNA PCR Index 113 primer 3.16 0.59 3.43
DNA PCR Index 114 primer 3.16 0.59 3.43
DNA PCR Index 115 primer 3.67 1.34 3.43 DNA PCR Index 116 primer 4.25 0.59 3.43
DNA PCR Index 117 primer 4.65 1.52 3.43
DNA PCR Index 118 primer 1.71 0.59 3.47
DNA PCR Index 119 primer 3.93 0.59 3.47
DNA PCR Index 120 primer 2.86 0.59 3.54
DNA PCR Index 121 primer 3.51 1.52 3.57
DNA PCR Index 122 primer 2.45 0.59 3.64
DNA PCR Index 123 primer 2.20 0.59 3.75
DNA PCR Index 124 primer 1.49 0.59 3.76
DNA PCR Index 125 primer 1.49 0.59 3.76
DNA PCR Index 126 primer 1.49 0.59 3.76
DNA PCR Index 127 primer 2.13 0.59 3.79
DNA PCR Index 128 primer 2.99 1.52 3.83
DNA PCR Index 129 primer 2.62 0.59 3.90
DNA PCR Index 130 primer 2.86 0.59 3.99
DNA PCR Index 131 primer 2.66 0.59 4.03
DNA PCR Index 132 primer 2.23 1.52 4.04
DNA PCR Index 133 primer 1.49 0.59 4.07
DNA PCR Index 134 primer 1.49 1.95 4.18
DNA PCR Index 135 primer 6.59 0.59 4.19
DNA PCR Index 136 primer 1.61 1.67 4.28
DNA PCR Index 137 primer 1.84 0.59 4.49
DNA PCR Index 138 primer 2.06 0.59 4.55
DNA PCR Index 139 primer 1.49 3.28 4.62
DNA PCR Index 140 primer 1.49 1.95 4.75
DNA PCR Index 141 primer 1.49 0.59 4.75
DNA PCR Index 142 primer 2.90 4.81 4.81
DNA PCR Index 143 primer 2.90 4.81 4.81
DNA PCR Index 144 primer 1.49 0.59 4.96
DNA PCR Index 145 primer 4.04 2.05 5.09
DNA PCR Index 146 primer 2.16 0.59 5.23
DNA PCR Index 147 primer 2.49 0.59 5.33
DNA PCR Index 148 primer 2.49 0.59 5.33
DNA PCR Index 149 primer 1.87 1.52 5.33
DNA PCR Index 150 primer 2.15 2.03 5.43
DNA PCR Index 151 primer 1.71 1.52 5.52
DNA PCR Index 152 primer 2.61 0.59 5.52
DNA PCR Index 153 primer 1.49 1.52 6.10
DNA PCR Index 154 primer 4.68 0.59 6.18
DNA PCR Index 155 primer 7.00 8.34 8.34
DNA PCR Index 156 primer 1.49 1.52 10.57
DNA PCR Index 157 primer 1.49 0.59 12.46
DNA PCR Index 158 primer 3.11 0.59 3.43
DNA PCR Index 159 primer 1.49 0.59 3.43
Figure imgf000019_0001
根据本发明的一些实施例, 本发明提供了一些 DNA PCR标签引物, 其在 3'末端包 含前面所述根据本发明实施例的的 DNA标签。根据本发明的实施例, 这些 PCR标签引物 包括如下或由如下组成:表 2所示 161个 PCR标签引物序列或与其所包含的 DN A标签序列 相差 1个碱基的 PCR标签引物序列中的至少 10个, 或至少 20个, 或至少 30个, 或至少 40 个, 至少 50个, 或至少 60个, 或至少 70个, 或至少 80个, 或 90个, 或至少 100个, 或至 少 110个, 或至少 120个, 或至少 130个, 或至少 140个, 或至少 150个, 或全部 161个。 才艮 据本发明的具体示例, 这些 PCR标签引物序列优选地至少包括表 2所示的 161个 PCR标签 引物序列中的 DNA PCR index 1 primer ~ DNA PCR index 10 primer, 或 DNA PCR index 11 primer - DNA PCR index20 primer, 或 DNA PCR index21 primer - DNA PCR index30 primer, 或 DNA PCR index31 primer - DNA PCR index40 primer, 或 DNA PCR index41 primer - DNA PCR index50 primer, 或 DNA PCR index51 primer - DNA PCR index60 primer, 或 DNA PCR index61 primer - DNA PCR index70 primer, 或 DNA PCR index71 primer - DNA PCR index80 primer, 或 DNA PCR index81 primer - DNA PCR index90 primer, 或 DNA PCR index91 primer ~ DNA PCR index 100 primer, 或 DNA PCR indexlOl primer ~ DNA PCR indexl lO primer, 或 DNA PCR index 111 primer ~ DNA PCR index 120 primer,或 DNA PCR indexl21 primer ~ DNA PCR indexl30 primer,或 DNA PCR indexl31 primer ~ DNA PCR index 140 primer, 或 DNA PCR indexl41 primer ~ DNA PCR index 150 primer, 或 DNA PCR indexl51 primer ~ DNA PCR indexl61 primer, 或者他们任何两个 或多个的组合。 根据具体的示例, 相差 1个碱基包括对标签序列中 1个碱基的取代、 添加 或删除。根据本发明的实施例,还提供了 PCR标签引物用于 DNA标签文库构建并测序的 用途。 由此, 根据本发明的实施例, 还提供了使用上述 PCR标签引物构建的 DNA标签文 库。
根据本发明的另一方面,本发明还提供了一种利用上述 PCR标签引物构建 DNA标签 文库的方法。 具体地, 根据本发明的实施例, 参考图 2, 该方法包括:
首先, 将 DNA样品片段化, 以获得特定长度的 DNA片段。 根据本发明的实施例, DN A样品的来源并不受特别限制, 可以来源于所有真核和原核生物。 根据本发明的一 个实施例, DNA样品来自于人 DNA样品, 更具体的, 可以为人基因组 DNA样品。 根据 本发明的实施例, 利用 Covaris打碎仪将 DNA样品片段化, 所得 DNA片段的长度为约 200bp。
其次, 将 DNA片段进行末端修复, 以便获得经过末端修复的 DNA片段。
接着, 在经过末端修复的 DNA片段的两条寡核苷酸链的 3,末端分别添加碱基 A, 以 便获得具有粘性末端 A的 DNA片段。
接下来,在具有粘性末端 A的 DN A片段两端分别连接 DN A接头,以便获得连接产物。 根据本发明的实施例, DNA接头由 SEQ ID NO: 323和 SEQ ID NO: 324所示的核苷酸序 列构成。 根据本发明的实施例, 在进入下一步骤前, 还可以将连接产物通过 2%的琼脂 糖凝胶电泳进行分离回收。
然后, 将连接产物进行 PCR反应,以便获得 PCR扩增产物。根据本发明的实施例, PCR反应釆用 PCR标签引物,此 PCR标签引物为选自根据本发明实施例的一组分离的 PCR标签引物的一种,其包含选自根据本发明实施例的一组分离的 DNA标签中的一种。 根据本发明的实施例, PCR反应的另一条引物具有 SEQ ID NO: 325所示核苷酸序列, 在本说明书中称为 PE PCR Primers 1.0。 具体地, 根据本发明的一些具体示例, 优选地 釆用 PE PCR Primers 1.0作为上游序列, PCR标签引物作为下游序列进行 PCR反应。 根据本发明的实施例, PCR扩增产物包含目的片段、 DNA接头以及 DNA标签, 其中 目的片段的序列与 DNA片段的序列相对应。 在这里, 目的片段的序列与 DNA片段的 序列相对应, 其含义是指, 可以通过目的片段的序列直接推导出 DNA片段的序列, 例 如, 目的片段的序列可以与 DNA片段的序列完全相同, 也可以是完全互补, 甚至是增 加或者减少了已知数目的已知碱基,只要能够通过有限的计算获得的 DNA的序列即可。 #居本发明的实施例, PCR扩增产物的长度为约 280-300bp。
最后, 分离回收所得的 PCR扩增产物, 这些 PCR扩增产物构成所述 DNA标签文 库。 根据本发明的实施例, 分离回收 PCR扩增产物的方法不受特别限制, 本领域技术 人员可以根据 PCR扩增产物的特点选择适当的方法和设备进行分离。 根据本发明的一 个具体示例, 利用 2%的琼脂糖凝胶电泳分离回收所得的 PCR扩增产物。
进一步, 根据本发明的实施例, 本发明提供了一种构建 DNA标签文库的方法, 其 包括:
1 ) 提供 n个 DNA样品, n为整数且 1 < n < 161的整数, 优选地 n为整数且 2 < n < 161 , 所述 DNA样品来自所有真核和原核 DNA样品, 包括但不限于人 DNA样品;
2 ) 将基因组 DNA 打断, 其中打断方法包括但不限于超声波打断方法, 优选地使 打断后的 DNA条带集中在 200bp左右;
3 ) 末端修复;
4 ) DNA片段 3,末端加碱基 "A" ;
5 ) 连接 DNA接头;
6 )将步骤 5 )得到的连接产物进行凝胶回收纯化, 优选地通过 2 %的琼脂糖胶进行 电泳并回收, 并将各个 DNA样品的回收产物混合在一起;
7 ) PCR反应, 使用步骤 6 ) 的回收产物的混合物作为模板, 在适于扩增目的核酸 的条件下进行 PCR扩增, 将 PCR产物进行胶回收纯化, 优选地回收 280 ~ 300bp的目 的片段。
根据本发明的一些具体示例, 上述根据本发明实施例的构建 DNA标签文库的方法 的步骤 7 ) PCR反应中使用的引物如下:
上游引物是 PE PCR Primers 1.0:
GATCT;
下游引物是包括如下或由如下组成的 DNA PCR标签引物: 表 2所示 161个 DNA PCR 标签引物或与其所包含的 DNA标签序列相差 1个碱基的 DNA PCR标签引物中的至少 10 个, 或至少 20个, 或至少 30个, 或至少 40个, 至少 50个, 或至少 60个, 或至少 70个, 或 至少 80个, 或 90个, 或至少 100个, 或至少 110个, 或至少 120个, 或至少 130个, 或至少 140个, 或至少 150个, 或全部 161个。 上述根据本发明实施例的构建 DNA标签文库的方 法中, 釆用的 DNA PCR标签引物优选地至少包括表 2所示的 161个 DNA PCR标签引物中 的 DNA PCR index 1 primer - DNA PCR index 10 primer, 或 DNA PCR index 11 primer - DNA PCR index20 primer, 或 DNA PCR index21 primer ~ DNA PCR index30 primer, 或 DNA PCR index31 primer - DNA PCR index40 primer, 或 DNA PCR index41 primer - DNA PCR index50 primer, 或 DNA PCR index51 primer ~ DNA PCR index60 primer, 或 DNA PCR index61 primer - DNA PCR index70 primer, 或 DNA PCR index71 primer - DNA PCR index80 primer, 或 DNA PCR index81 primer ~ DNA PCR index90 primer, 或 DNA PCR index91 primer ~ DNA PCR index 100 primer, 或 DNA PCR indexlOl primer ~ DNA PCR indexl lO primer, 或 DNA PCR index 111 primer ~ DNA PCR index 120 primer, 或 DNA PCR index 121 primer - DNA PCR index 130 primer , 或 DNA PCR indexl31 primer ~ DNA PCR index 140 primer, 或 DNA PCR indexl41 primer ~ DNA PCR index 150 primer, 或 DNA PCR indexl51 primer ~ DNA PCR indexl61 primer, 或者他们任何两个 或多个的组合。 根据本发明的实施例, 相差 1个碱基包括标签中 1个碱基的取代、 添加或 删除。 根据本发明的实施例, 其中上述根据本发明实施例的构建 DNA标签文库的方法 的步骤 5 ) 中使用的 DNA接头是 PE index Adapters:
5, Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
5, TAC ACTCTTTCCCTAC ACGACGCTCTTCCGATCT。
利用根据本发明实施例的构建 DNA标签文库的方法, 能够有效地将根据本发明实 施例的 DNA标签引入到针对 DNA样品所构建的 DNA标签文库中。 从而可以通过对 DNA标签文库进行测序, 获得 DNA样品的序列信息以及 DNA标签的序列信息, 从而 能够对 DNA样品的来源进行区分。 另外, 发明人惊奇地发现, 当针对相同的样品, 基 于上述方法, 釆用具有不同标签的 PCR标签引物构建含有各种 DNA标签的 DNA标签 文库时, 所得到的测序数据结果的稳定性和可重复性非常好。
根据本发明的实施例, 本发明对 Illumina提供的 DNA标签文库构建方法进行了优 化, 将 Illumina公司提供的通过 3条 PCR引物 (两条公用引物和一条 PCR标签引物) 导入标签的建库方法优化为仅通过两条 PCR引物(一条 PE PCR Primers 1.0和一条 PCR 标签引物)即能导入标签,这样就降低了 PCR反应的难度,提高了 PCR扩增的特异性, 也就提高了 PCR扩增反应的效率, 同时本发明还提高了标签序列的识别效率, 从而提 高了 DNA标签文库的构建效率, 降低了文库构建的费用。 另一方面, 根据本发明实施 例提供的构建 DNA标签文库的方法, 因为提高了标签的数量 ( 161种) , 所以可以同 时针对多种( 2-161种)DNA样品构建 DNA标签文库进而进行混合测序,相对于 Illumina 公司的只能最多针对 12种 DNA样品构建 DNA标签文库进而进行混合测序, 有了明显 的改进, 从而能够节省测序资源, 充分的利用高通量测序平台。 具体情况, 可比较参照 图 1和图 2, 其中图 1所示的 Illumina公司的 DNA 标签文库构建方法的流程图, 图 2 所示的根据本发明的实施例的 DNA 标签文库构建方法的流程图。 目前为止, 通过这些 PCR标签引物导入标签的 DNA文库构建方法及其标签序列, 并没有相关的报道。
根据本发明的再一方面, 本发明还提供了一种用于构建 DNA标签文库的试剂盒。 根据本发明的实施例, 该试剂盒包括: 161种分离的 PCR标签引物, 这些 PCR标签引 物分别由 SEQ ID NO: 162-322所示的核苷酸构成, 其中, 这 161种分离的 PCR标签 引物分别设置在不同的容器中。 由此, 利用该试剂盒, 能够方便地将根据本发明实施例 的 DNA标签引入到构建的 DNA标签文库中。 当然, 本领域技术人员能够理解, 试剂 盒中还可以包含其他用于构建 DNA标签文库的常规组件, 在此不再赘述。
DNA标签文库及测序方法
根据本发明的又一方面, 本发明还提供了一种 DNA标签文库, 其是根据本发明的 构建 DNA标签文库的方法所构建的。 该具有标签的 DNA标签文库可以有效地应用于 高通量测序技术例如 Solexa技术, 从而可以通过获得标签序列, 来对所获得的核酸序 列信息例如 DNA序列信息来精确地进行样品来源分类。
根据本发明的又一方面, 本发明还提供了一种确定 DNA样品序列信息的方法。 根 据本发明的实施例, 其包括: 根据本发明实施例的构建 DNA 标签文库的方法, 构建 DNA标签文库; 接着, 对所构建的 DNA标签文库进行测序, 以确定 DNA样品的序列 信息。 基于该方法, 能够有效地获得 DNA标签文库中 DNA样品的序列信息以及 DNA 标签的序列信息, 从而能够对 DNA样品的来源进行区分。 另外, 发明人惊奇地发现, 利用根据本发明实施例的方法确定 DNA样品序列信息, 能够有效地减少数据产出偏向 性的问题, 并且能够精确地对多种 DNA标签文库进行区分。 根据本发明的实施例, 可 以釆用任何已知的方法对所构建的 DNA标签文库进行测序, 其类型并不受特别限制。 根据本发明的一些示例, 可以利用 Solexa测序技术对 DNA标签文库进行测序。 根据本 发明的实施例, 可以根据具体情况选择合适的测序引物进行测序。
进一步, 可以将上面确定 DNA样品序列信息的方法应用于多种样品。 例如, 根据 本发明的实施例, 本发明提供了一种确定多种 DNA样品序列信息的方法。 根据本发明 的实施例, 其包括以下步骤: 针对多种样品的每一种, 分别独立地根据根据本发明的实 施例的构建 DNA标签文库的方法, 构建该 DNA样品的 DNA标签文库, 其中, 不同的 DNA样品釆用相互不同并且已知序列的 DNA标签,这里所使用的术语"多种"为 2-161 种。 将得到的多种样品的 DNA标签文库进行组合, 以便获得 DNA标签文库混合物。 利用 Solexa测序技术, 对所得的 DNA标签文库混合物进行测序, 从而获得 DNA样品 的序列信息以及标签的序列信息。 最后, 基于标签的序列信息, 对 DNA样品的序列信 息进行分类, 以便确定所述多种 DNA样品的序列信息。 由此, 根据本发明实施例的该 方法, 可以充分利用高通量的测序技术, 例如利用 Solexa测序技术, 同时对多种样品 的 DNA文库进行测序, 从而提高 DNA文库测序的效率和通量, 同时可以提高确定多 种 DNA样品的序列信息的效率。 关于测序的方法和釆用的测序引物, 前面已经进行了 详细描述, 此处不再赞述。
需要说明的是, 根据本发明实施例的确定 DNA样品序列信息的方法是本申请的发 明人经过艰苦的创造性劳动和优化工作才完成的。 下面将结合实施例对本发明的方案进行解释。 本领域技术人员将会理解, 下面的实 施例仅用于说明本发明, 而不应视为限定本发明的范围。 实施例中未注明具体技术或条 件的, 按照本领域内的文献所描述的技术或条件(例如参考 J.萨姆布鲁克等著, 黄培堂 等译的 《分子克隆实验指南》 , 第三版, 科学出版社)或者按照产品说明书进行。 所用 试剂或仪器未注明生产厂商者, 均为可以通过市购获得的常规产品, 例如可以釆购自 Illumina公司。
实施例 1:
Paired End DNA PCR标签引物序列:
PE index Adapters
5, Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCAC
5, TAC ACTCTTTCCCTAC ACGACGCTCTTCCG ATCT
Figure imgf000022_0001
GATCT
实施例 1:
1.1 DNA片段化
将人全血基因组 DNA 5微克使用 Covaris打碎仪打断 6分钟(参数设置: Duty cycle (负载比)一 20% ; Intensity (强度 )—5.0 ; Bursts per second (每秒钟脉冲 )—200 ; Duration (持续时间 )― 40 seconds ; Mode (模式)一 Frequency sweeping (频率扫描) ; Power (功率) 一 33-34W ; Temperature (温度) 一 5.5 to 6°C ) , 使其在琼脂糖电泳中 显示的主要条带集中在 200 bp 左右 (Preparing samples for multiplexed Paired-End sequencing; Illumina part#1005361 Rev.B , 通过参照将其全文并入本文) 。
1.2 末端修复
按照下列的配比准备反应混合:
DNA模板 35微升
T4 DNA 连接酶緩冲液 50微升
dNTPs 混合液 4微升 T4 DNA聚合酶 5微升
Klenow DNA聚合酶 1微升
T4多聚核苷酸激酶 5微升
总体积 10C敫升
将舒适型恒温混匀器调至 20 °C , 反应 30 , 然后用 QIAquick PCR纯化试剂盒进行 纯化, 最后将样品溶于 32微升 EB solution。
1.3 DNA片段 3'末端力口 "A "碱基
按照下列的配比准备反应混合物:
末端修复后的 DNA 32微升
Klenow酶緩冲液 5微升
dATP(lmM) 10微升
Klenow 酶 (3'到 5'外切酶活性) 3微升
总体积 50微升
将舒适型恒温混匀器调至 37 °C , 反应 30min, 然后用 MiniElute PCR纯化试剂盒进行 纯化, 最后将样品溶于 1(敫升 EB solution。
1.4 连接 DNA接头
按照下列的配比准备反应混合物:
DNA 10微升
T4 DNA 连接酶緩冲液 25^敫升
PE index Adapters 10微升
T4 DNA 连接酶 5微升
总体积 50微升
将舒适型恒温混匀器调至 20°C , 反应 15min, 然后用 QIAquick PCR纯化试剂盒进行 纯化, 最后将样品溶于 3(敫升 EB solution
1.5 连接产物的胶回收纯化
将连接产物于 2%的琼脂糖胶中进行电泳分离; 随后将目的片段条带切胶转移至 Eppendorf管中。 用 QIAquick胶纯化试剂盒进行胶纯化回收, 回收产物溶于 20微升 EB solution。
1.6 PCR反应导入标签接头
PCR反应: 按照下列的反应体系准备反应混合物, 将试剂放置于水上。
胶回收纯化后的 DNA 1(M敫升
Phusion DNA聚合酶 25微升
PE PCR Primers 1.0 1微升
DNA PCR标签 I物 1微升
ddH20 13 微升 总体积 50微升
注: 对于每一个 DNA样品, 所使用的 DNA PCR标签引物可为表 4中所示 DNA PCR 标签引物 ( DNA PCR indexN primer ) 中的任意一种接头(表 4) ,
PCR反应条件
98 °C 30s
15个循环
Figure imgf000024_0001
1.7 PCR产物的胶回收纯化
将 PCR产物于 2%琼脂糖胶中电泳分离, 切割回收目的片段, 用 QIAquick胶纯化试 剂盒进行胶纯化回收, 回收产物溶于 30微升 Elution Buffer。
1.8 DNA制备产物检测
1 ) 使用 Agilent 2100 Bioanalyzer检测文库产量。
2 ) 使用 QPCR定量检测文库产量。
图 3 : 显示了由根据本发明实施例的 DNA 标签的 Solexa测序数据统计得到的其 1 个错误匹配 /0个错误匹配( lmismatch/Omismatch )的比例。 将根据本发明实施例的 161 种 DNA 标签进行 Solexa测序, 由测序数据进行统计, 分析其是否合格, 结果如图 3 所示。 其中, 1错误匹配 ( mismatch ) /0错误匹配的比例均控制在 5%以下, 大部分控 制在 3%以下, 通过 Solexa 测序共得到 24362092 条序列, 其中标签完全配对的序列 ( Omismatch ) 有 23099149条序列 , 标签测序出现 1个错误碱基的有 460238 条序列 , 即可以识别的标签的比例为 96.7%。表明根据本发明实施例的 161种 DNA 标签均合格, 即可以满足 solexa DNA标签建库需求。
工业实用性
本发明的用于构建 DNA标签文库的 DNA标签、 PCR标签引物、 DNA标签文库及 其制备方法、 确定 DNA样品序列信息的方法、 确定多种 DNA样品序列信息的方法以 及用于构建 DNA标签文库的试剂盒, 能够应用于 DNA测序, 并且能够有效地提高测 序平台, 例如 Solexa测序平台的测序通量。
尽管本发明的具体实施方式已经得到详细的描述, 本领域技术人员将会理解。 根 据已经公开的所有教导, 可以对那些细节进行各种修改和替换, 这些改变均在本发明的 保护范围之内。 本发明的全部范围由所附权利要求及其任何等同物给出。
在本说明书的描述中, 参考术语 "一个实施例" 、 "一些实施例" 、 "示意性实施 例" 、 "示例" 、 "具体示例" 、 或 "一些示例" 等的描述意指结合该实施例或示例描 述的具体特征、 结构、 材料或者特点包含于本发明的至少一个实施例或示例中。 在本说 明书中, 对上述术语的示意性表述不一定指的是相同的实施例或示例。 而且, 描述的具 体特征、 结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结 合。

Claims

权利要求书
1、 一组分离的 DNA标签, 其分别由 SEQ ID NO: 1-161所示的核苷酸构成。
2、 一组分离的 PCR标签引物, 其分别由 SEQ ID NO: 162-322所示的核苷酸构成。
3、 一种制备 DNA标签文库的方法, 其特征 于, 包括以下步骤:
将 DNA样品片段化, 以获得特定长度的 DNA片段;
将所述 DNA片段进行末端修复, 以便获得经过末端修复的 DNA片段;
在所述经过末端修复的 DNA片段的两条寡核苷酸链的 3 '末端分别添加碱基 A , 以便 获得具有粘性末端 A的 DNA片段;
在所述具有粘性末端 A的 DNA片段两端分别连接 DNA接头, 以便获得连接产物; 将所述连接产物进行 PCR反应,以便获得 PCR扩增产物,其中所述 PCR反应釆用 PCR 标签引物, 其中所述 PCR标签引物包含选自权利要求 1所述一组分离的 DNA标签中的一 种, 所述 PCR扩增产物包含目的片段、 DNA接头以及 DNA标签, 其中所述目的片段的 序列与所述 DNA片段的序列相对应; 以及
分离回收所述 PCR扩增产物, 所述 PCR扩增产物构成所述 DNA标签文库。
4、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
所述 DNA样品来自于人 DNA样品。
5、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
利用 Covaris打碎仪将 DNA样品片段化。
6、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
所述 DNA片段的长度为约 200bp。
7、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
在将所述连接产物进行 PCR反应之前, 还包括分离回收所述连接产物的步骤。
8、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
所述 PCR标签引物为选自根据权利要求 2所述的一组分离的 PCR标签引物的一种。
9、 根据权利要求 8所述的制备 DNA标签文库的方法, 其特征在于,
所述 PCR反应进一步釆用具有 SEQ ID NO: 325所示核苷酸序列的引物。
10、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
利用 2%的琼脂糖凝胶电泳分离回收所述连接产物及 PCR扩增产物。
11、 根据权利要求 3所述的制备 DNA标签文库的方法, 其特征在于,
所述 PCR扩增产物的长度为约 280-300bp。
12、 一种 DNA标签文库, 其是根据权利要求 3-11任一项所述的方法建立的。
13、 一种确定 DNA样品序列信息的方法, 其包括以下步骤:
根据权利要求 3-1 1任一项所述的方法, 建立所述 DNA样品的 DNA标签文库; 以 及
对所述 DNA标签文库进行测序, 以确定所述 DNA样品的序列信息。
14、 根据权利要求 13所述的确定 DNA样品序列信息的方法, 其特征在于, 对所述 DNA标签文库进行测序是利用 Solexa测序技术进行的。
15、 一种确定多种 DNA样品序列信息的方法, 其包括下列步骤:
针对所述多种样品的每一种, 分别独立地根据权利要求 3-11任一项所述的方法, 建立所述 DNA样品的 DNA标签文库, 其中, 不同的 DNA样品釆用相互不同并且已知 序列的 DNA标签, 其中所述多种为 2-161种;
将所述多种样品的 DNA标签文库进行组合, 以便获得 DNA标签文库混合物; 利用 Solexa测序技术, 对所述 DNA标签文库混合物进行测序, 以获得所述 DNA 样品的序列信息以及所述标签的序列信息; 以及
基于所述标签的序列信息对所述 DNA样品的序列信息进行分类, 以便确定所述多 种样品的 DNA序列信息。
16、 一种用于构建 DNA标签文库的试剂盒, 其包括:
161种分离的 PCR标签引物, 所述 PCR标签引物分别由 SEQ ID NO: 162-322所 示的核苷酸构成,
其中, 所述 161种分离的 PCR标签引物分别设置在不同的容器中。
PCT/CN2011/079902 2010-09-21 2011-09-20 Dna标签及其应用 WO2012037880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010299305 CN102409049B (zh) 2010-09-21 2010-09-21 一种基于pcr的dna标签文库构建方法
CN201010299305.9 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012037880A1 true WO2012037880A1 (zh) 2012-03-29

Family

ID=45873444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079902 WO2012037880A1 (zh) 2010-09-21 2011-09-20 Dna标签及其应用

Country Status (3)

Country Link
CN (1) CN102409049B (zh)
HK (1) HK1168627A1 (zh)
WO (1) WO2012037880A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104562214A (zh) * 2014-12-26 2015-04-29 上海派森诺生物科技有限公司 一种基于ⅱb型限制性内切酶酶切的简化基因组建库方法
WO2016037358A1 (zh) * 2014-09-12 2016-03-17 深圳华大基因科技有限公司 分离的寡核苷酸及其在核酸测序中的用途

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103571822B (zh) * 2012-07-20 2016-03-30 中国科学院植物研究所 一种用于新一代测序分析的多重目的dna片段富集方法
CN102952877B (zh) * 2012-08-06 2014-09-24 深圳华大基因研究院 检测α珠蛋白基因拷贝数的方法和系统
CN103290104B (zh) * 2013-01-23 2016-03-02 北京诺禾致源生物信息科技有限公司 一种应用于第二代测序的简捷廉价的基因组样品破碎方法
CN106192018B (zh) * 2015-05-07 2020-03-24 深圳华大智造科技有限公司 一种锚定巢式多重pcr富集dna目标区域的方法和试剂盒
CN105132407B (zh) * 2015-08-10 2017-12-12 北京吉因加科技有限公司 一种脱落细胞dna低频突变富集测序方法
CN106811460B (zh) * 2015-11-30 2020-11-27 浙江安诺优达生物科技有限公司 用于低频突变检测的二代测序文库的构建方法及试剂盒
CN106283198B (zh) * 2015-12-31 2021-08-13 浙江安诺优达生物科技有限公司 用于单细胞全基因组重亚硫酸氢盐测序的文库构建方法
CN106048009B (zh) * 2016-06-03 2020-02-18 人和未来生物科技(长沙)有限公司 一种用于超低频基因突变检测的标签接头及其应用
CN106192022B (zh) * 2016-08-08 2018-07-03 中国科学院北京基因组研究所 16SrRNA多重测序文库的构建方法
CN108949905B (zh) * 2017-05-23 2022-05-17 深圳华大基因股份有限公司 对照文库及其构建方法
CN108070643A (zh) * 2017-10-31 2018-05-25 南京格致基因生物科技有限公司 微生物16S rDNA单分子水平测序文库的构建方法
CN107937986A (zh) * 2017-11-10 2018-04-20 深圳裕策生物科技有限公司 一种ffpe dna建库用试剂盒、其用途及建库方法
CN113444769B (zh) * 2020-03-28 2023-06-23 深圳人体密码基因科技有限公司 一种dna标签序列的构建方法及其应用
CN113584600A (zh) * 2021-08-11 2021-11-02 翌圣生物科技(上海)股份有限公司 一种全基因组甲基化单链dna建库方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622269A (zh) * 2007-03-01 2010-01-06 诺沃-诺迪斯克有限公司 蛋白质在大肠杆菌中的表达
CN101967476A (zh) * 2010-09-21 2011-02-09 深圳华大基因科技有限公司 一种基于接头连接的DNA PCR-Free标签文库构建方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0400584D0 (en) * 2004-01-12 2004-02-11 Solexa Ltd Nucleic acid chacterisation
WO2008093098A2 (en) * 2007-02-02 2008-08-07 Illumina Cambridge Limited Methods for indexing samples and sequencing multiple nucleotide templates
CN100564618C (zh) * 2007-06-13 2009-12-02 北京万达因生物医学技术有限责任公司 分子置换标签测序并行检测法即寡聚核酸代码标签分子库微球阵列分析

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622269A (zh) * 2007-03-01 2010-01-06 诺沃-诺迪斯克有限公司 蛋白质在大肠杆菌中的表达
CN101967476A (zh) * 2010-09-21 2011-02-09 深圳华大基因科技有限公司 一种基于接头连接的DNA PCR-Free标签文库构建方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037358A1 (zh) * 2014-09-12 2016-03-17 深圳华大基因科技有限公司 分离的寡核苷酸及其在核酸测序中的用途
US9890375B2 (en) 2014-09-12 2018-02-13 Bgi Shenzhen Co., Limited Isolated oligonucleotide and use thereof in nucleic acid sequencing
US10023906B2 (en) 2014-09-12 2018-07-17 Mgi Tech Co., Ltd. Method for constructing nucleic acid single-stranded cyclic library and reagents thereof
US10544451B2 (en) 2014-09-12 2020-01-28 Mgi Tech Co., Ltd. Vesicular linker and uses thereof in nucleic acid library construction and sequencing
US10995367B2 (en) 2014-09-12 2021-05-04 Mgi Tech Co., Ltd. Vesicular adaptor and uses thereof in nucleic acid library construction and sequencing
CN104562214A (zh) * 2014-12-26 2015-04-29 上海派森诺生物科技有限公司 一种基于ⅱb型限制性内切酶酶切的简化基因组建库方法

Also Published As

Publication number Publication date
HK1168627A1 (en) 2013-01-04
CN102409049B (zh) 2013-10-23
CN102409049A (zh) 2012-04-11

Similar Documents

Publication Publication Date Title
WO2012037880A1 (zh) Dna标签及其应用
WO2012037882A1 (zh) Dna标签及其应用
WO2012037876A1 (zh) Dna标签及其应用
JP7011392B2 (ja) Dnaプロファイリングのための方法および組成物
US9133513B2 (en) High throughput methylation detection method
CN105506125B (zh) 一种dna的测序方法及一种二代测序文库
WO2012037877A1 (zh) Dna标签及其应用
TW201321518A (zh) 微量核酸樣本的庫製備方法及其應用
WO2012116661A1 (zh) Dna标签及其应用
CN111379031B (zh) 核酸文库构建方法、得到的核酸文库及其用途
WO2012037884A1 (zh) Dna标签及其应用
EP3497242A1 (en) Methods of analyzing nucleic acid fragments
CN106995836B (zh) 二代测序样品前处理的引物和方法以及试剂盒
WO2012037883A1 (zh) 核酸标签及其应用
CN110218781B (zh) 21个微单倍型位点的复合扩增体系、下一代测序分型试剂盒及分型方法
CN111808854B (zh) 带有分子条码的平衡接头及快速构建转录组文库的方法
AU2021204166A1 (en) Reagents, kits and methods for molecular barcoding
WO2012126398A1 (zh) Dna标签及其用途
WO2013192292A1 (en) Massively-parallel multiplex locus-specific nucleic acid sequence analysis
JP2019514360A (ja) 超並列シークエンシングのためのdnaライブラリーを生成する方法及びキット
WO2012037881A1 (zh) 核酸标签及其应用
WO2018148289A2 (en) Duplex adapters and duplex sequencing
WO2012037875A1 (zh) Dna标签及其应用
WO2018147438A1 (ja) Hla遺伝子のpcrプライマーセット及びそれを用いたシークエンス法
WO2018113799A1 (zh) 构建简化基因组文库的方法及试剂盒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/08/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11826407

Country of ref document: EP

Kind code of ref document: A1