WO2012037806A1 - 防止电流倒灌的功率管电路 - Google Patents

防止电流倒灌的功率管电路 Download PDF

Info

Publication number
WO2012037806A1
WO2012037806A1 PCT/CN2011/072086 CN2011072086W WO2012037806A1 WO 2012037806 A1 WO2012037806 A1 WO 2012037806A1 CN 2011072086 W CN2011072086 W CN 2011072086W WO 2012037806 A1 WO2012037806 A1 WO 2012037806A1
Authority
WO
WIPO (PCT)
Prior art keywords
controlled switch
power tube
controlled
output signal
circuit structure
Prior art date
Application number
PCT/CN2011/072086
Other languages
English (en)
French (fr)
Inventor
许刚
Original Assignee
上海山景集成电路技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海山景集成电路技术有限公司 filed Critical 上海山景集成电路技术有限公司
Publication of WO2012037806A1 publication Critical patent/WO2012037806A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit

Definitions

  • the invention relates to a power tube, in particular to a power tube circuit structure capable of preventing current backflow. Background technique
  • Metal oxide field effect transistors are widely used in various power conversion integrated circuits, such as switching power supply circuits, LD0 circuits, charging circuits, and the like.
  • the structure of the metal oxide field effect transistor is symmetrical, that is, when the voltage of the source and the drain of the device changes, the roles of the source and the drain are interchangeable.
  • Figure 1 shows the structure of the PM0S. As shown in the figure, on a P-type region of a P-type thin silicon wafer, an N-well (N-WELL) is used as a substrate to diffuse two high-concentration impurities on the N-well.
  • N-WELL N-well
  • the P-type region P+ is used as the source S and the drain D of the PMOS power transistor respectively, and then the surface of the silicon wafer is covered with an insulator, and then a gate G is extracted by the metal aluminum, thereby forming a PMOS power tube. structure.
  • the PM0S power tube is in a normal working state or an off state.
  • the diode formed between the P-type region and the N-well must be reverse biased, and the potential of the N-well. It cannot be higher than the P+ potential in any one of the N wells.
  • the substrate of the PM0S (ie, the N-well) is connected to the highest potential of the PM0S transistor.
  • the PN junction between the source-drain electrode and the N-well of the PMOS must be in normal operation (Vin>Vout) or reverse bias (Vin ⁇ Vout). , must be reverse biased to avoid leakage current between the source or drain to the substrate.
  • the existing researchers have proposed a variety of methods to prevent power tube current backflow by monitoring the input and output voltages of the PM0S power tube. For example, in the Chinese patent application No. 200810041912. 8, a method of using a comparator plus several CMOS transmission gates is proposed to solve the problem of large reverse current that may occur when the PM0S power tube is reverse biased; For example, in U.S. Patent No.
  • the present invention provides a power tube circuit structure capable of preventing current backflow, comprising: a common power transistor including a substrate, a source, a drain, and a gate, and a source and a drain thereof.
  • the first controlled switch, the second controlled switch, the third controlled switch, and the fourth controlled switch all adopt a MOSFET tube, wherein a turn-on voltage of the first controlled switch is lower than The turn-on voltage of the normal power transistor; for example, the first controlled switch uses an intrinsic MOSFET tube.
  • each of the controlled switches is selected to be connected to the input signal access terminal or the output signal terminal according to the respective type and the type of the conventional power transistor.
  • the power tube circuit structure of the present invention capable of preventing current backflow uses a plurality of controlled switches controlled by an input signal or an output signal to implement a function of preventing current backflow.
  • FIG. 1 is a schematic structural view of a conventional P-type power tube.
  • FIG. 2 is a schematic diagram of a power tube circuit structure capable of preventing current backflow according to the present invention.
  • Fig. 3 is a schematic diagram showing an equivalent circuit of the power tube circuit structure capable of preventing current backflow in a normal working state according to the present invention.
  • FIG. 4 is an equivalent circuit diagram of the power tube circuit structure capable of preventing current backflow in a reverse bias state according to the present invention.
  • the power tube circuit structure of the present invention capable of preventing current backflow includes: a common power tube M1, a first controlled switch MN, a second controlled switch MD, a third controlled switch MS, and a fourth controlled Switch MG, etc.
  • the normal power transistor M1 includes a substrate SUB, a source, a drain, and a gate VG0, and one of the source and the drain serves as an input signal input terminal, and the other serves as an output signal terminal.
  • the drain of the normal power tube M1 serves as an input signal input terminal and the source serves as an output signal terminal; or the source serves as an input signal input terminal and the drain serves as an output signal terminal.
  • the normal power tube M1 may be a P-type MOSFET tube or an N-type MOSFET tube; for example, it may be a MOSFET tube of the structure shown in FIG. In this embodiment, the normal power tube M1 is a P-type MOSFET tube.
  • the first controlled switch MN is connected to the gate VG0 of the normal power tube M1, and the other end is used as a gate terminal VG of a power tube circuit structure capable of preventing current backflow;
  • the second controlled switch MD is connected to the The input signal access terminal Vin and the substrate SUB of the ordinary power tube M1;
  • the third controlled switch MS is connected between the substrate SUB of the ordinary power tube M1 and the output signal terminal Vout;
  • the fourth controlled switch MG is connected between the gate VG0 of the normal power tube M1 and the output signal terminal Vout.
  • the respective controlled ends are respectively connected to the input signal access terminal and the output signal terminal One.
  • the four controlled switches can use the MOSFET tube, so the controlled end (ie, the gate terminal) of each MOSFET tube is connected to the input signal input terminal or the output signal terminal, and can be according to the type of each MOS transistor (ie, P type or N type) and the type of the conventional power tube (ie, P type or N type) are determined.
  • a preferred option is to make the turn-on voltage of the first controlled switch lower than the turn-on voltage of the normal power transistor.
  • an intrinsic MOSFET can be selected, such a MOSFET can Reduce area consumption.
  • the common power tube M1 is a P-type MOSFET tube
  • the first controlled switch MN uses an NM0SFET tube
  • a second controlled switch MD uses an NM0SFET tube
  • a third controlled switch MS uses an NM0SFET tube
  • the fourth controlled switch MG adopts a PM0SFET tube, such that the gate ends of the first controlled switch MN, the third controlled switch MS and the fourth controlled switch MG are connected to the input signal access terminal Vin
  • the gate terminal of the second controlled switch MD is connected to the output signal terminal Vout.
  • the power tube is in the reverse bias state due to external reasons, that is, the voltage input to the input signal Vin is smaller than the voltage of the signal output terminal Vout, that is, the Vir Vout, also based on the controlled switches using the M0S tube.
  • the switching characteristic, the first controlled switch MN and the second controlled switch MD are in an open state, and the fourth controlled switch MG and the third controlled switch MS are in a closed state, and thus, the circuit shown in FIG. 2 is equivalent
  • the equivalent PM0S power transistor is in a reverse diode state. At this time, although Vout > Vin, the equivalent PM0S power tube will not have reverse sink current.
  • the first controlled switch uses a PMOS transistor
  • the second controlled switch, the third controlled switch, and the fourth controlled switch all adopt a ⁇ 0SFET tube, and the controlled ends of the first controlled switch, the third controlled switch and the fourth controlled switch are connected at the An input signal access terminal, the controlled end of the second controlled switch is connected to the output signal terminal;
  • the ordinary power transistor is a P-type MOSFET or an N-type
  • the MOSFET, the first controlled switch, the second controlled switch, the third controlled switch, and the fourth controlled opening may adopt other types of switching tubes according to the principles described above, and Optional connected to respective input signals and output signals the access terminal, thereby implementing the normal power tube current anti-intrusion function, in this way no longer connected in each case them out.
  • the power tube circuit structure of the present invention capable of preventing current backflow adopts a plurality of controlled switches controlled by a signal input from an input signal input terminal or a signal output from an output signal terminal, thereby being effective
  • this circuit structure occupies a small chip area compared to the existing method of monitoring the input voltage and output voltage of the power tube, and each controlled switch is a passive device, so zero power consumption can be achieved to achieve prevention.
  • the purpose of pouring is

Landscapes

  • Electronic Switches (AREA)
  • Direct Current Feeding And Distribution (AREA)

Description

防止电流倒灌的功率管电路 技术领域
本发明涉及一种功率管, 特别涉及一种能防止电流倒灌的功率管电路结构。 背景技术
金属氧化物场效应管 (M0SFET), 特别是 P型 M0SFET被广泛应用于各种功率转换的集成 电路中,如开关电源电路、 LD0电路、充电电路等等。而金属氧化物场效应管的结构是对称的, 也就是说, 当器件的源极和漏极的电压发生变化时, 源极和漏极的作用是可以发生互换的。 图 1示出了 PM0S的结构, 如图所示, 在一块 P型薄硅片的 P型区上, 以 N阱 (N-WELL) 作为 衬底, 在 N阱上扩散两个高浓度杂质的 P型区 P+, 分别作为 PMOS功率管的源极 S和漏极 D, 再在硅片表面覆盖一层绝缘物, 然后再用金属铝引出一个栅极 G, 由此即形成了 PMOS功率管 的结构。 该 PM0S功率管无论是处在一般工作状态还是关断状态, 为避免由于 PN结的正偏引 起的漏电, 其 P型区与 N阱之间形成的二极管必须要反偏, 同时 N阱的电位不能高于其中任 何一个 N阱内的 P+电位。 由于典型的 PM0S功率管在工作时其漏极和源极与衬底形成的 PN结 二极管都必须反偏, 所以 PM0S的衬底 (即 N阱) 要连接到 PM0S管的最高电位上。 如图中所 示, 由于 PM0S器件是构成在 N阱中, 所以 PM0S的源漏电极与 N阱之间的 PN结必须不论在正 常工作 (Vin>Vout ) 还是在反偏 (Vin〈Vout ) 时, 都必须保持反偏, 这样才能避免源极或漏 极到衬底之间的漏电流。 同时对于 PM0S管, 在正常工作时 (Vin>Vout), 其栅极电位需连接 到电路的其他部分, 以实现特定的功能; 而在反偏时 (Vin〈Vout), 由于功率 PM0S通常尺寸 非常大, 必须将其栅极连接在最高电位上, 以避免由 PM0S引入的漏电流。
由于 PM0S功率管在使用中必须保证其 P型区与 N阱之间形成的二极管反偏,而且当 PM0S 管自身处于反偏 (即 Vir Vout ) 时, 其栅极要连接在最高电位 (即 Vout ) 上, 因此, 现有研 发人员提出多种通过监测 PM0S功率管输入和输出电压来防止功率管电流倒灌的方法。 如申请 号为 200810041912. 8的中国专利中, 提出了一种用比较器加上几个 CMOS的传输门的方法来 解决当 PM0S功率管在反偏时可能出现的大的倒灌电流的问题; 再例如, 在 NO. 7394633B2的 美国专利中, 提出了一种类似上述检测偏置极性的方法来改变功率 M0SFET的偏置, 从而防止 倒灌的方法; 再例如, 在 NO. 7394307B2的美国专利中, 提出了一种在功率管 PM0S中串联一 个开关管并采用与上述方法类似的检测电路来开关这个开关管, 以达到防止倒灌的目的; 还 有, 在 N0. 005682050A的美国专利中, 提出了一种用转换 PM0S管衬底电位和栅极的方法来防 止 PM0S管的电流倒灌。 前述这些例子中, 或者需要增加检测电路, 或者需要增加消耗大量的 硅片面积的开关管, 这些方式都会导致电路复杂, 难以有效实行, 甚至还会降低转换效率。 因此, 迫切需要一种能防止电流倒灌的功率管电路结构。 发明内容
本发明的目的在于提供一种能防止电流倒灌的功率管电路结构。
为了达到上述目的及其他目的, 本发明提供的能防止电流倒灌的功率管电路结构, 其包 括: 包含衬底、 源极、 漏极、 和栅极的普通功率管, 其源极和漏极中的一者作为输入信号接 入端, 另一者作为输出信号端; 一端与所述普通功率管的栅极连接且另一端作为功率管电路 结构的栅端的第一受控开关; 连接在所述输入信号接入端和所述普通功率管的衬底之间的 第二受控开关; 连接在所述普通功率管的衬底和所述输出信号端之间的第三受控开关; 连接 在所述普通功率管的栅极和所述输出信号端之间的第四受控开关; 其中, 所述第一受控开关、 第二受控开关、 第三受控开关、 和第四受控开关各自的受控端分别连接所述输入信号接入端 及输出信号端中的一者。
较佳的,所述第一受控开关、第二受控开关、第三受控开关、和第四受控开关都采用 M0SFET 管, 其中, 所述第一受控开关的开启电压低于所述普通功率管的开启电压; 例如, 所述第一 受控开关采用本征 M0SFET管。
此外, 各受控开关根据各自的类型和所述普通功率管的类型选择是连接在所述输入信号 接入端还是输出信号端。
综上所述, 本发明的能防止电流倒灌的功率管电路结构采用由输入信号或输出信号控制 的多个受控开关, 来实现防止电流倒灌的功能。 附图说明
图 1为现有 P型功率管的结构示意图。
图 2为本发明的能防止电流倒灌的功率管电路结构的示意图。
图 3 为本发明的能防止电流倒灌的功率管电路结构的在正常工作状态时的等效电路示意 图。
图 4为本发明的能防止电流倒灌的功率管电路结构的在反偏状态时的等效电路示意图。
具体实施方式
请参阅图 2, 本发明的能防止电流倒灌的功率管电路结构包括: 普通功率管 Ml、 第一受 控开关丽、 第二受控开关 MD、 第三受控开关 MS、 及第四受控开关 MG等。 所述普通功率管 Ml包括衬底 SUB、 源极、 漏极、 和栅极 VG0, 且所述源极和漏极中的一 者作为输入信号接入端, 另一者作为输出信号端。 例如, 所述普通功率管 Ml的漏极作为输入 信号接入端而源极作为输出信号端; 或者源极作为输入信号接入端而漏极作为输出信号端。 所述普通功率管 Ml可以是 P型 M0SFET管, 也可以是 N型 M0SFET管; 例如, 可以是如图 1所 示的结构的 M0SFET管。 在本实施例中, 所述普通功率管 Ml为 P型 M0SFET管。
所述第一受控开关 MN与所述普通功率管 Ml的栅极 VG0连接, 另一端作为能防止电流倒 灌的功率管电路结构的栅端 VG;所述第二受控开关 MD连接在所述输入信号接入端 Vin和所述 普通功率管 Ml的衬底 SUB之间; 所述第三受控开关 MS连接在所述普通功率管 Ml的衬底 SUB 和所述输出信号端 Vout之间; 所述第四受控开关 MG连接在所述普通功率管 Ml的栅极 VG0和 所述输出信号端 Vout之间。
对于第一受控开关丽、 第二受控开关 MD、 第三受控开关 MS、 及第四受控开关 MG, 各自 的受控端分别连接所述输入信号接入端及输出信号端中的一者。 这四个受控开关可以采用 M0SFET管, 故各 M0SFET管的受控端 (即栅端) 是连接所述输入信号接入端还是输出信号端, 可根据各 M0S管的类型 (即 P型还是 N型) 以及所述普通功率管的类型 (即 P型还是 N型) 来确定。 不过, 为确保功率管的有效运行, 较佳的选择是使所述第一受控开关的开启电压低 于所述普通功率管的开启电压, 例如, 可以选用本征 M0SFET管, 这样的 M0SFET可以降低面积 消耗。
如图 2所示, 在本实施例中, 所述普通功率管 Ml为 P型 M0SFET管, 所述第一受控开关 MN采用 NM0SFET管,第二受控开关 MD、第三受控开关 MS、和第四受控开关 MG都采用 PM0SFET 管, 如此, 所述第一受控开关 MN、 第三受控开关 MS和第四受控开关 MG的栅端连接在所述输 入信号接入端 Vin, 所述第二受控开关 MD的栅端连接在所述输出信号端 Vout。
以下将上述能防止电流倒灌的功率管电路结构进行分析:
1、 正常状态时,即当所述输入信号端 Vin接入的电压大于信号输出端 Vout输出的电 压, 也就是 Vin>V0ut时, 根据各受控开关(即 M0S管)的开关特性, 第四受控开关 MG和第三受控开关 MS处于打开状态, 而第二受控开关 MD和第一受控开关丽处 于闭合状态, 如此, 图 2所示的电路就等效为图 3中的右边的等效 PM0S功率管, 该等效 PM0S功率与普通功率管正常工作所需要的状态是一致的。
2、 如果由于外部原因使功率管要处于反偏状态, 即输入信号接入端 Vin接入的电压 小于信号输出端 Vout的电压, 也就是 Vir Vout时, 同样基于采用 M0S管的各受 控开关的开关特性, 第一受控开关 MN和第二受控开关 MD处于打开状态, 而第四 受控开关 MG和第三受控开关 MS处于闭合状态, 如此, 图 2所示的电路就等效为 图 4中右边的等效电路, 等效的 PM0S功率管处于一个反向的二极管状态。 此时, 尽管 Vout > Vin, 等效的 PM0S功率管也不会存在反向倒灌电流。
尽管上述仅列示了一种各受控开关和输入信号接入端及输出信号端的连接方式, 而且经 过分析, 此种功率管电路结构在两种不同状态也符合功率管实际应用时的要求, 但上述示例 仅为了更好描述本发明的方案, 而非用于限制本发明, 事实上, 如果当所述普通功率管是 N 型 M0SFET管时, 所述第一受控开关采用 PM0SFET管, 第二受控开关、 第三受控开关、 和第四 受控开关都采用 匪 0SFET管, 则所述第一受控开关、 第三受控开关和第四受控开关的受控端 连接在所述输入信号接入端, 所述第二受控开关的受控端连接在所述输出信号端; 此外, 本 领域的技术人员应该理解, 无论所述普通功率管是 P型 M0SFET管还是 N型 M0SFET管, 所述 第一受控开关、 第二受控开关、 第三受控开关、 和第四受控开都可根据上述所述的原理, 采 用其他类型的开关管, 并选择连接在相应的输入信号接入端和输出信号端, 由此来实现所述 普通功率管电流防倒灌的功能, 在此, 不再对各种情形下的连接方式一一说明。
综上所述, 本发明的能防止电流倒灌的功率管电路结构采用多个由输入信号接入端所接 入的信号或者输出信号端输出的信号来控制的受控开关, 由此, 可有效防止电流倒灌, 相对 于现有采用监测功率管的输入电压和输出电压的方式, 本电路结构占据的芯片面积小, 而且 各受控开关全都是被动器件, 因此, 可以实现零功耗来达到防倒灌的目的。
上述实施例仅列示性说明本发明的原理及功效, 而非用于限制本发明。 任何熟悉此项技 术的人员均可在不违背本发明的精神及范围下, 对上述实施例进行修改。 因此, 本发明的权 利保护范围, 应如权利要求书所列。

Claims

权利 要 求 书
1. 一种能防止电流倒灌的功率管电路结构, 其特征在于包括:
包括衬底、 源极、 漏极、 和栅极的普通功率管, 所述源极和漏极中的一者作为 输入信号接入端, 另一者作为输出信号端;
第一受控开关, 与所述普通功率管的栅极连接, 另一端作为功率管电路结构的栅
¾ ;
第二受控开关, 一端连接在所述输入信号接入端和所述普通功率管的衬底之间; 第三受控开关, 连接在所述普通功率管的衬底和所述输出信号端之间; 第四受控开关, 连接在所述普通功率管的栅极和所述输出信号端之间; 其中, 所述第一受控开关、 第二受控开关、 第三受控开关、 和第四受控开关各自 的受控端分别连接所述输入信号接入端及输出信号端中的一者。
2. 如权利要求 1所述的能防止电流倒灌的功率管电路结构, 其特征在于: 所述第一受控 开关、 第二受控开关、 第三受控开关、 和第四受控开关都采用 M0SFET管, 其中, 所 述第一受控开关的开启电压低于所述普通功率管的开启电压。
3. 如权利要求 1或 2所述的能防止电流倒灌的功率管电路结构, 其特征在于: 所述第一 受控开关采用本征 M0SFET管。
4. 如权利要求 1或 2所述的能防止电流倒灌的功率管电路结构, 其特征在于: 所述第一 受控开关、第二受控开关、第三受控开关、和第四受控开关根据各自的类型和所述普 通功率管的类型选择是连接在所述输入信号接入端还是输出信号端。
5. 如权利要求 4所述的能防止电流倒灌的功率管电路结构, 其特征在于: 当所述普通功 率管是 P型 M0SFET管时, 所述第一受控开关采用 NM0SFET管, 第二受控开关、 第三 受控开关、和第四受控开关都采用 PM0SFET管, 且所述第一受控开关、第三受控开关 和第四受控开关的受控端连接在所述输入信号接入端,所述第二受控开关的受控端连 接在所述输出信号端。
PCT/CN2011/072086 2010-09-21 2011-03-23 防止电流倒灌的功率管电路 WO2012037806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102899786A CN101997526B (zh) 2010-09-21 2010-09-21 能防止电流倒灌的功率管电路
CN201010289978.6 2010-09-21

Publications (1)

Publication Number Publication Date
WO2012037806A1 true WO2012037806A1 (zh) 2012-03-29

Family

ID=43787234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072086 WO2012037806A1 (zh) 2010-09-21 2011-03-23 防止电流倒灌的功率管电路

Country Status (2)

Country Link
CN (1) CN101997526B (zh)
WO (1) WO2012037806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545896A (zh) * 2013-11-07 2014-01-29 成都芯源系统有限公司 一种双向开关电路、移动电源电路及其控制方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185569B (zh) * 2011-04-07 2017-07-07 北京中星微电子有限公司 一种d类放大器的输出级电路
CN102684670B (zh) * 2012-05-29 2015-08-05 上海山景集成电路股份有限公司 零倒灌电流的信号高速输出电路
CN102970017B (zh) * 2012-11-23 2016-02-03 矽力杰半导体技术(杭州)有限公司 一种单向导通电路
CN106656148B (zh) * 2016-12-20 2020-05-15 峰岹科技(深圳)有限公司 一种防止电流倒灌的双向io电路
CN111682869B (zh) * 2020-07-03 2024-02-09 上海艾为电子技术股份有限公司 一种防倒灌电流的负载开关及电子设备
CN115498991B (zh) * 2021-06-17 2024-06-25 圣邦微电子(北京)股份有限公司 一种总线保持电路及方法
CN113885644B (zh) * 2021-09-30 2022-11-18 上海芯飏科技有限公司 用于ldo防倒灌的衬底切换电路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660520A2 (en) * 1993-11-30 1995-06-28 Siliconix Incorporated A bidirectional current blocking mosfet for battery disconnect switching including protection against reverse connected battery charger
CN1906852A (zh) * 2004-01-19 2007-01-31 皇家飞利浦电子股份有限公司 Mos开关电路
CN101345520A (zh) * 2008-08-20 2009-01-14 启攀微电子(上海)有限公司 防倒灌电路
CN201185410Y (zh) * 2008-03-21 2009-01-21 广芯电子技术(上海)有限公司 芯片中模拟开关控制电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3243892B2 (ja) * 1993-05-21 2002-01-07 ソニー株式会社 信号切り替え用スイッチ
JP3169775B2 (ja) * 1994-08-29 2001-05-28 株式会社日立製作所 半導体回路、スイッチ及びそれを用いた通信機
FR2781949B1 (fr) * 1998-08-03 2000-10-27 St Microelectronics Sa Dispositif de commutation de signaux radio-frequences
JP2002289790A (ja) * 2001-03-27 2002-10-04 Sanyo Electric Co Ltd 化合物半導体スイッチ回路装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0660520A2 (en) * 1993-11-30 1995-06-28 Siliconix Incorporated A bidirectional current blocking mosfet for battery disconnect switching including protection against reverse connected battery charger
CN1906852A (zh) * 2004-01-19 2007-01-31 皇家飞利浦电子股份有限公司 Mos开关电路
CN201185410Y (zh) * 2008-03-21 2009-01-21 广芯电子技术(上海)有限公司 芯片中模拟开关控制电路
CN101345520A (zh) * 2008-08-20 2009-01-14 启攀微电子(上海)有限公司 防倒灌电路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103545896A (zh) * 2013-11-07 2014-01-29 成都芯源系统有限公司 一种双向开关电路、移动电源电路及其控制方法

Also Published As

Publication number Publication date
CN101997526A (zh) 2011-03-30
CN101997526B (zh) 2012-08-22

Similar Documents

Publication Publication Date Title
WO2012037806A1 (zh) 防止电流倒灌的功率管电路
US10673426B2 (en) Switch bootstrap charging circuit suitable for gate drive circuit of GaN power device
US8363437B2 (en) Unidirectional MOSFET and applications thereof
US9029921B2 (en) Self-bootstrapping field effect diode structures and methods
US20060145746A1 (en) On chip power supply
TWI727349B (zh) 降壓轉換器電路以及降壓轉換方法
CN101826794A (zh) 逆流防止电路以及电源切换装置
US20130099297A1 (en) Electrostatic discharge protection device
US20090140707A1 (en) Circuit for an Active Diode and Method for Operating an Active Diode
US9306064B2 (en) Semiconductor device and integrated apparatus comprising the same
WO2021136025A1 (zh) 一种充电保护电路、充电电路以及电子设备
CN106229962B (zh) 一种电源反接保护电路
US8730624B2 (en) Electrostatic discharge power clamp with a JFET based RC trigger circuit
US20120274385A1 (en) Transmission Gate
CN105679758B (zh) 一种具有防电流倒灌的p型金属氧化物半导体场效应管
US8274269B2 (en) Switching circuit and small-size high-efficiency DC-DC converter for portable devices including the same
CN115913215A (zh) 功率晶体管装置
US20020175373A1 (en) Semiconductor device
JP2007123706A (ja) 半導体装置
CN107887332B (zh) 一种用于斩波电路的单片集成半导体芯片及其制备方法
JP2003116279A (ja) 同期整流回路
CN110635687A (zh) 降压转换器电路以及降压转换方法
CN214850979U (zh) 用于电源转换电路的同步整流的开关电路及电源转换电路
US7557634B2 (en) Low-power consumption high-voltage CMOS driving circuit
TW530419B (en) Level shift circuit without junction breakdown of transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826333

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 11826333

Country of ref document: EP

Kind code of ref document: A1