WO2012036499A2 - 박막 증착 장치 - Google Patents

박막 증착 장치 Download PDF

Info

Publication number
WO2012036499A2
WO2012036499A2 PCT/KR2011/006843 KR2011006843W WO2012036499A2 WO 2012036499 A2 WO2012036499 A2 WO 2012036499A2 KR 2011006843 W KR2011006843 W KR 2011006843W WO 2012036499 A2 WO2012036499 A2 WO 2012036499A2
Authority
WO
WIPO (PCT)
Prior art keywords
susceptor
gas
source
source gas
additional
Prior art date
Application number
PCT/KR2011/006843
Other languages
English (en)
French (fr)
Other versions
WO2012036499A3 (ko
Inventor
김진호
Original Assignee
주식회사 원익아이피에스
박상준
손병국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100091853A external-priority patent/KR20120029795A/ko
Priority claimed from KR1020100091852A external-priority patent/KR20120029794A/ko
Application filed by 주식회사 원익아이피에스, 박상준, 손병국 filed Critical 주식회사 원익아이피에스
Priority to CN201180044766.4A priority Critical patent/CN103140914B/zh
Priority to US13/823,846 priority patent/US20130180454A1/en
Priority to JP2013529066A priority patent/JP5710002B2/ja
Publication of WO2012036499A2 publication Critical patent/WO2012036499A2/ko
Publication of WO2012036499A3 publication Critical patent/WO2012036499A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention relates to a thin film deposition apparatus used for depositing a thin film on a substrate in the manufacture of semiconductors and the like.
  • CVD Chemical Vapor Deposition
  • PVD Physical Vapor Deposition
  • CVD is a technique in which a gaseous mixture is chemically reacted on a heated substrate surface to deposit a product on the substrate surface.
  • the CVD method is based on the type of material used as the precursor, the pressure in the process, the energy transfer method required for the reaction, and the like.
  • Organic CVD method and the like.
  • MOCVD is widely used for single crystal growth of nitride semiconductors for light emitting diodes.
  • the MOCVD method is a method of depositing a metal thin film on a substrate by vaporizing an organometallic compound, which is a raw material in a liquid state, in a gaseous state, and then supplying the vaporized source gas to a substrate to be deposited and contacting it with a high temperature substrate.
  • an injection method is widely employed as a method for supplying a source gas to a substrate.
  • the injection method is a method of introducing a source gas into the upper center of the susceptor through an injector installed in the center of the chamber, and then spraying the introduced source gas toward the periphery of the susceptor in a horizontal direction to supply the substrates on the susceptor.
  • the source gas injected from the injector to the susceptor passes through a gas entry region adjacent to the injector and proceeds to a growth region in which effective deposition is performed on the substrate.
  • the flow of source gas is uniform within the gas entry zone and at least partially decomposes. At this time, since the source gas is decomposed in the gas entry region, an unnecessary thin film may be deposited on the susceptor portion corresponding to the gas entry region.
  • the size of the chamber must be increased, and at the same time, the supply of source gas must be increased, thereby increasing the gas entry area.
  • the amount of source gas consumed increases as the unnecessary thin film is deposited in the gas entry area, thereby increasing the waste of the source gas.
  • the unnecessary thin film deposited on the susceptor portion may fall off during the deposition process and affect the substrate, and thus need to be maintained in advance.
  • Increasing the gas entry area also increases the possibility of depositing unnecessary thin films in the gas entry area. This leads to a shorter PM (Preventive Maintenance) cycle.
  • the diameter of the susceptor needs to be larger and larger.
  • the amount of source gas used must be increased, but this decreases the process efficiency.
  • the usage amount of the source gas increases, a problem may occur in that the amount of the source gas remaining in the particle state without reacting to the deposition surface of the substrate increases.
  • An object of the present invention is to provide a thin film deposition apparatus that can prevent unnecessary thin film deposition in the gas entry area, and reduce the waste of source gas due to unnecessary thin film deposition and increase the PM cycle even if the size of the chamber is enlarged.
  • an object of the present invention is to provide a thin film deposition apparatus that can ensure the deposition uniformity of the substrate even if the susceptor is enlarged, and the source gas consumption and particles can be suppressed.
  • a thin film deposition apparatus for achieving the above object, the chamber having an internal space in which the deposition process is performed; A susceptor disposed in the chamber, the susceptor directly supporting a plurality of substrates along a center circumference thereof or supporting a substrate holder having one or more substrates disposed thereon; The first and second source gases are supplied to the upper center of the susceptor in a separated state, and the separated first and second source gases are sprayed toward and around the susceptor through source gas injection holes arranged up and down, respectively.
  • a source gas supply unit supplying the first and second source gases to substrates on a susceptor; And a susceptor support provided at a lower side of the susceptor to support a center of the susceptor and having an additional gas supply unit for injecting additional gas introduced from the outside of the chamber to an upper surface of the susceptor.
  • the material decomposed in the first and second source gas Contact with the susceptor portion of the entry area may be blocked. Accordingly, the unnecessary thin film may be prevented from being deposited on the susceptor portion of the gas entry region.
  • waste of source gas due to unnecessary thin film deposition can be reduced, and the PM cycle can be shortened.
  • the present invention since additional gas is supplied from the center region of the susceptor to the upper part of the susceptor, even if the diameter of the susceptor is increased, the uniformity of deposition on the substrate can be secured while efficiently using the source gas. In addition, a phenomenon in which part of the source gas remains in the particle state without reacting to the deposition surface of the substrate can be suppressed. In addition, since the material decomposed from the source gas in the region adjacent to the source gas injection holes is not in contact with the central region of the susceptor, unnecessary thin film can be prevented from being deposited.
  • FIG. 1 is a side cross-sectional view of a thin film deposition apparatus according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing an example of the injection cap coupled to the susceptor support in the additional gas supply of Figure 1;
  • FIG. 3 is an assembly view of FIG.
  • Figure 4 is an exploded perspective view showing another example of the injection cap coupled to the susceptor support in the additional gas supply of Figure 1;
  • FIG. 5 is an assembly view of FIG. 4.
  • FIG. 6 is a side cross-sectional view of a thin film deposition apparatus according to another embodiment of the present invention.
  • FIG. 7 is a side cross-sectional view illustrating the susceptor and the additional gas supply unit in FIG. 6; FIG.
  • FIG. 8 is a plan view of the susceptor and the additional gas supply in FIG. 6;
  • FIG. 9 is a side cross-sectional view illustrating an example in which a gas guide part is provided in the additional gas supply part illustrated in FIG.
  • FIG. 1 is a block diagram of a thin film deposition apparatus according to an embodiment of the present invention.
  • the thin film deposition apparatus 100 is a device for depositing a thin film on a substrate 10, and includes a chamber 110, a susceptor 120, a susceptor support 130, and a source gas supply unit. 140, and an additional gas supply unit 150.
  • the substrate 10 may be a wafer or a glass substrate.
  • the chamber 110 has an internal space in which a deposition process is performed.
  • the chamber 110 includes a chamber body 111 having an upper opening and a top lid 112 covering the upper opening of the chamber body 111.
  • the lower surface of the top lid 112 may be provided with a ceiling made of quartz or the like.
  • the top lead 112 may be lowered during the deposition process to close the upper opening of the chamber body 111, and the upper lid 112 may be lifted during the loading or unloading of the substrate 10 to open the upper opening of the chamber body 111. .
  • the susceptor 120 is disposed in the chamber 10, and supports the plurality of substrates 10 along the center circumference of the upper surface. This is to deposit thin films on more substrates 10 at once for mass production.
  • the plurality of substrate seating parts 121 may be uniformly distributed around the center of the susceptor 120.
  • the substrates 10 may be seated and supported on the substrate mounting parts 121, respectively.
  • a plurality of substrate substrate holders may be uniformly distributed around the center of the susceptor 120. Each substrate holder receives and supports at least one substrate on the upper surface, respectively.
  • the susceptor support 130 is installed to support the center of the susceptor 120 at the lower side of the susceptor 120.
  • the susceptor support 130 has an additional gas supply unit 150.
  • the additional gas supply unit 150 injects additional gas introduced from the outside of the chamber 110 to the upper surface of the susceptor 120.
  • the additional gas supply unit 150 prevents unnecessary thin films from being deposited on the susceptor 120 corresponding to the gas entry region.
  • the susceptor support 130 enables rotation of the susceptor 120 as it is rotated by the rotation driving mechanism 101.
  • the lower portion of the susceptor support 130 may be drawn out of the chamber 110, and the susceptor support 130 may be rotated by the rotation driving mechanism 101 connected to the drawn portion.
  • the susceptor support 130 is rotated, the susceptor 120 is rotatable together.
  • the substrate holders may also be rotatably installed by gas cushions or the like. This is to ensure that the source gas injected from the upper center of the susceptor 120 is evenly supplied to all the substrates 10 on the susceptor 120 during the deposition process.
  • the susceptor 120 is heated by a heater (not shown) during the deposition process to allow the substrates 10 supported on the upper surface to be heated.
  • the source gas supply unit 140 receives the first and second source gases separated from each other to the upper center of the susceptor 120, and then source gas injection holes 141a arranged up and down. Each of them is sprayed toward the susceptor 120 around the 141b. Accordingly, the first and second source gases may be supplied to the substrates 10 on the susceptor 120.
  • the source gas supply unit 140 may be configured to spray the first and second source gases in a horizontal direction parallel to the upper surface of the susceptor 120.
  • the present invention is not limited thereto, and the source gas supply unit 140 may be sprayed in a direction inclined downward in a range in which the first and second source gases may be smoothly supplied to the substrates 10 on the susceptor 120. Can be configured.
  • the source gas supply unit 140 may include supply lines 142a and 142b for supplying the first and second source gases in a state separated from each other.
  • the supply lines 142a and 142b extend through the top lead 112 to the upper center of the susceptor 120, and the source gas injection holes 141a and 141b formed at the extended ends are arranged vertically. It may be made of a bent structure.
  • the first and second source gases injected from the source gas supply unit 140 pass through the gas entrance regions adjacent to the source gas injection holes 141a and 141b to the growth region in which the effective deposition on the substrate 10 is performed. do.
  • the flow of the first and second source gases is uniform within the gas entry zone and at least partially decomposes to descend to the top of the susceptor 120.
  • the additional gas is injected from the additional gas supply unit 150 to the upper surface of the susceptor 120 flows from the gas entry region to the growth region.
  • the material decomposed in the first and second source gases is induced to flow to the growth region without being lowered to the upper surface of the susceptor 120 by the additional gas.
  • the additional gas supply unit 150 the gas flow path 151 formed in the susceptor support 130 so that the additional gas is introduced from the outside of the chamber 110, and the additional gas introduced through the gas flow path 151 It may include an additional gas injection port 152 to inject to the upper surface of the susceptor 120.
  • the additional gas injection hole 152 may be formed to be connected to the gas flow path 151 on the side of the susceptor support 130. That is, the outlet of the gas passage 151 may be connected to the additional gas injection hole 152, and the inlet of the gas passage 151 may be connected to the additional gas inlet 153 of the susceptor support 130.
  • the additional gas inlet 153 is located at a portion drawn out of the chamber 110 from the susceptor support 130.
  • the additional gas inlet 153 is connected to the additional gas supply source so that the additional gas from the additional gas source can be introduced into the gas flow path.
  • the additional gas injection port 152 is positioned higher than the upper surface of the susceptor 120 to inject additional gas to the upper surface of the susceptor 120.
  • the additional gas injection holes 152 may be formed on the side of the susceptor support 130 so that the additional gas may be supplied to the gas entry area from several places at the same time.
  • the additional gas injection hole 152 may be formed to be connected to the gas flow path 151 on the upper surface as well as the side of the susceptor support 130.
  • the size and shape of the additional gas injection port 152, but the flow rate injected from the additional gas injection port 152 may be variously configured in the range capable of performing the above-described function.
  • the additional gas may be injected in a direction parallel to the upper surface of the susceptor 120.
  • the present invention is not limited thereto, and the additional gas may be injected in a direction inclined upward with respect to the upper surface of the susceptor 120 in a range capable of performing the above-described function.
  • the injection direction of the additional gas may be adjusted according to an angle at which the gas flow path 151 is connected to the additional gas injection hole 152, or may be adjusted by installing a guide member in front of the additional gas injection hole 152.
  • the injection cap 160 may be coupled to the top of the susceptor support 130.
  • the injection cap 160 has an inner space connected to the gas flow path 151.
  • a plurality of additional gas injection holes 152 may be formed on the side of the injection cap 160 so as to be connected to the internal space of the injection cap 160.
  • the injection cap 160 may include a disc-shaped cap body 161 and ribs 162 spaced apart from each other and protruded downward along the circumference of the cap body 161.
  • the injection cap 160 may be fixed around the upper end of the susceptor support 130 at each lower portion of the ribs 162 with the bottom surface of the cap body 161 spaced apart from the top surface of the susceptor support 130. . Accordingly, a separation space is formed between the bottom surface of the cap body 161 and the top surface of the susceptor support 130, and the separation space communicates with the openings 163 between the ribs 162.
  • the openings 163 function as the additional gas injection holes 152 described above.
  • the outlet 151a is located on the upper surface of the susceptor support 130 in the above-described gas flow path 151. Therefore, the additional gas may be supplied through the openings 163 formed around the injection cap 160 after being supplied between the injection cap 160 and the susceptor support 130 from the outlet 151a of the gas flow path 151. have.
  • the injection cap 260 has an internal space and has a shape in which a lower portion thereof is opened.
  • the injection cap 260 may have holes 261 communicating with an internal space along a circumference thereof.
  • the lower surface of the injection cap 260 is spaced apart from the upper surface of the susceptor support 130, and with holes 261 positioned higher than the susceptor support 130, the lower portion of the injection cap 260 is the susceptor support. It may be fixed around the top of the 130.
  • the additional gas may be supplied from the outlet 151a of the gas flow path 151 between the injection cap 260 and the susceptor support 130 and then injected through the holes 261 formed around the injection cap 160. have.
  • the holes 261 function as additional gas injection holes 152.
  • the injection cap 260 is formed with an inner flow path connected to the gas flow path 151, it is also possible that the inner flow path is connected to the additional gas injection holes 152, respectively.
  • the first source gas may be a source gas containing a group V element
  • the second source gas may be a source gas containing a group III element.
  • the first source gas is a hydride containing a group V element, and may be NH 3 or PH 3 or AsH 3 .
  • the second source gas is an organic metal containing a group III element, and may be TMG (Trimethylgallium) or TEG (Triethylgallium) or TMI (Trimethylindium).
  • the carrier gas may be included in the first and second source gases, respectively.
  • the additional gas may be at least one selected from gas containing group V element, hydrogen gas, and inert gas.
  • gas containing a group V element may be a hydride including a group V element such as NH 3 or PH 3 or AsH 3 .
  • the inert gas may be nitrogen (N 2 ) gas, helium (He) gas, argon (Ar) gas, or the like.
  • a source gas closest to the susceptor 120 side among the source gas injection holes for injecting the source gas containing the group V element and the source gas injection holes for injecting the source gas containing the Group III element may be a source gas injection hole for injecting a source gas containing a group III element.
  • the source gas injection hole closest to the susceptor 120 side may be a source gas injection hole for injecting a source gas containing a group V element.
  • the thin film deposition apparatus 100 may be disposed between the source gas injection holes 141a and 141b of the source gas supply unit 140 or above the upper source gas injection hole 141a of the source gas supply unit 140.
  • the source gas supply unit 140 may further include an inert gas supply unit for supplying an inert gas under the lower source gas injection hole 141b.
  • the inert gas supplied from the inert gas supply unit serves to prevent a reaction in a region adjacent to the source gas injection port between the first and second source gases injected from the source gas supply unit 140, or serves as a carrier of the first and second source gases. can do.
  • the inert gas may be nitrogen gas, helium gas or argon gas.
  • FIG. 6 is a side cross-sectional view of a thin film deposition apparatus according to another embodiment of the present invention
  • Figure 7 is a side cross-sectional view taken from the susceptor and additional gas supply
  • FIG. 8 is a plan view of the susceptor and the additional gas supply unit in FIG. 6.
  • the thin film deposition apparatus 300 is a device for depositing a thin film on the substrate 10, the chamber 310, the susceptor 320, the susceptor support 330, Source gas supply unit 340, and additional gas supply unit 350.
  • the chamber 310 has an interior space in which the deposition process is performed.
  • the chamber 310 includes a chamber body 311 having an upper opening and a top lid 312 covering the upper opening of the chamber body 311.
  • the lower surface of the top lead 312 may be provided with a ceiling made of quartz or the like.
  • the top lead 312 may be lowered during the deposition process to close the upper opening of the chamber body 311, and the upper lid 312 may be lifted during loading or unloading of the substrate 10 to open the upper opening of the chamber body 311. .
  • the susceptor 320 is disposed in the chamber 310 and supports the plurality of substrates 10 along the center circumference of the upper surface.
  • the plurality of substrate seating portions 321 may be uniformly distributed around the center of the susceptor 320.
  • the substrates 10 may be seated and supported by the substrate mounting parts 321, respectively.
  • a plurality of substrate holders may be uniformly distributed around the center of the susceptor 320. Each substrate holder receives and supports at least one substrate on the upper surface, respectively.
  • the susceptor support 330 is installed to support the center of the susceptor 320 at the lower side of the susceptor 320.
  • the susceptor support 330 enables the susceptor 320 to rotate as it is rotated by the rotation driving mechanism 301.
  • a lower portion of the susceptor support 330 may be drawn out of the chamber 310, and the susceptor support 330 may be rotated by a rotation driving mechanism connected to the drawn portion.
  • the susceptor support 330 is rotated, the susceptor 320 is rotatable together.
  • the substrate holders may also be rotatably installed by gas cushions or the like. This is to ensure that the source gas injected from the upper center of the susceptor 320 is evenly supplied to all the substrates 10 on the susceptor 320 during the deposition process.
  • the susceptor 320 is heated by a heater (not shown) during the deposition process to allow the substrates 10 supported on the upper surface to be heated.
  • the source gas supply unit 340 has the first and second source gases introduced into the upper center of the susceptor 320 in a state separated from each other, and then source gas injection holes 341a arranged up and down. Each of them is sprayed toward the susceptor 320 through the (341b). Accordingly, the first and second source gases may be supplied to the substrates 10 on the susceptor 320.
  • the source gas supply unit 340 may be configured to spray the first and second source gases in a horizontal direction parallel to the upper surface of the susceptor 320.
  • the present invention is not limited thereto, and the source gas supply unit 340 may be sprayed in a direction inclined downward in a range capable of smoothly supplying the first and second source gases to the substrates 10 on the susceptor 320. Can be configured.
  • the source gas supply unit 340 may include supply lines 342a and 342b for supplying the first and second source gases in a state separated from each other.
  • the supply lines 342a and 342b extend through the top lead 312 to the upper center of the susceptor 320, and the source gas injection holes 341a and 341b formed at the extended ends are arranged up and down. It may be made of a bent structure.
  • the additional gas supply unit 350 is installed at a central area inside the substrate support area on the upper surface of the susceptor 320 to supply additional gas to the upper part of the susceptor 320.
  • the additional gas supply unit 350 additionally injects the gas flow path unit 351 through which the additional gas is introduced from the outside of the chamber 310 and the additional gas introduced through the gas flow path unit 351 to the upper surface of the susceptor 320.
  • the gas injection port 356 is provided.
  • the gas flow path part 351 is formed inside the additional gas supply part 350, and the additional gas injection hole 356 is formed to be connected to the gas flow path part 351 on the upper surface of the additional gas supply part 350.
  • the additional gas supply unit 350 may secure the deposition uniformity of the substrate 10 while efficiently increasing the amount of the first and second source gases even when the diameter of the susceptor 320 increases.
  • the first and second source gases injected from the source gas supplier 340 flow around the susceptor 320.
  • the first and second source gases are supplied to the deposition surface of the substrate 10 to form a thin film in response to the deposition surface of the substrate 10.
  • the first and second source gases may not evenly reach the entire deposition surface of the substrate 10 unless the amount of the first and second source gases is increased. There is a fear that the deposition uniformity may decrease.
  • the additional gas is supplied from the additional gas supply unit 350 to the upper part of the susceptor 320 and flows toward the susceptor 320, the first and second source gases are supplied to the susceptor by the flow of the additional gas. 320) it can flow further towards the periphery.
  • additional gas is supplied from the additional gas supply unit 350 so that the first and second source gases reach the entire deposition surface of the substrate 10 evenly, the substrate may be efficiently used while taking the usage amount of the first and second source gases. Deposition uniformity with respect to (10) can be secured.
  • the phenomenon of remaining in the particle state without reacting to the deposition surface of the substrate 10 can also be suppressed.
  • the additional gas supply unit 350 is installed in the central region of the upper surface of the susceptor 320 to the inner side of the substrate support region to supply additional gas to the upper portion of the susceptor 320, so that source gas injection holes 341a are provided.
  • the material decomposed from the first and second source gases is induced to flow to the substrate support region without descending to the central region of the susceptor 320. Therefore, since the material decomposed from the first and second source gases does not come into contact with the central region of the susceptor 320, unnecessary thin film may be prevented from being deposited.
  • the additional gas injection port 356 is formed to be arranged in a plurality of radial or concentric as shown in Figure 7 so that the additional gas can be supplied to the upper portion of the susceptor 320 from several places to perform the above-described function. Can be.
  • the additional gas injection holes 356 may be arranged to have a predetermined angle radially so as to inject additional gas evenly for each region, or may be arranged to be spaced concentrically at regular intervals.
  • the gas flow path part 351 may include a main flow path 352 and branch flow paths 353 branched from the main flow path 352 and connected to the additional gas injection holes 356, respectively. The additional gas introduced into the main flow passage 352 may be injected through the additional gas injection holes 356 after branching into the branch flow passages 353.
  • the additional gas supply unit 350 may be partially accommodated in the accommodation groove 322 of the susceptor 320, so that the height of the additional gas injection hole 356 may be higher than that of the substrate 10 on the susceptor 320.
  • the additional gas supply unit 350 may be fixed to the susceptor 320 in contact with the bottom surface of the receiving groove 322, or may be fixed to the susceptor 320 in a non-contact state.
  • the additional gas supply unit 350 may be made of silicon carbide (SiC) or BN (Boron Nitride) coated graphite.
  • the additional gas supply 350 may be made of quartz (Quartz), or alumina (Al 2 O 3).
  • the additional gas supply unit 350 guides the additional gas injected from the additional gas injection holes 356 to flow around the susceptor 320 in a direction parallel to the upper surface of the susceptor 320. It may include a gas guide 357. However, the present invention is not limited thereto, and in a range capable of performing the above-described function, the gas is guided so that the additional gas injected from the additional gas injection holes 356 is injected in an inclined direction upward with respect to the upper surface of the susceptor 320. It may also be guided by the unit 357, or additional gas injection holes 356 are formed.
  • the thin film deposition apparatus 300 may include an additional gas supply path 360.
  • the additional gas supply path 360 is formed in the susceptor support 330.
  • the additional gas supply path 360 receives the additional gas from the outside of the chamber 310 and delivers the additional gas to the gas flow path part 351.
  • One end of the additional gas supply path 360 extends into the susceptor 320 and is connected to the main flow path 352 of the gas flow path part 351, and the other end of the additional gas supply path 360 is a susceptor supporter ( It is connected to the additional gas inlet 361 of 330.
  • the additional gas inlet 361 is located at a portion of the susceptor support 330 which is drawn out of the chamber 310.
  • the additional gas inlet 361 is connected to an additional gas supply source outside the chamber 310 to allow the additional gas of the additional gas source to flow into the additional gas supply path 360.
  • the first source gas may be a source gas containing a group V element
  • the second source gas may be a source gas containing a group III element.
  • the first source gas is a hydride containing a group V element, and may be NH 3 or PH 3 or AsH 3 .
  • the second source gas is an organic metal containing a group III element, and may be TMG (Trimethylgallium) or TEG (Triethylgallium) or TMI (Trimethylindium).
  • the carrier gas may be included in the first and second source gases, respectively.
  • the additional gas may be at least one selected from gas containing group V element, hydrogen gas, and inert gas.
  • gas containing a group V element may be a hydride including a group V element such as NH 3 or PH 3 or AsH 3 .
  • the inert gas may be nitrogen (N 2 ) gas, helium (He) gas, argon (Ar) gas, or the like.
  • the injection hole may be a source gas injection hole for injecting a source gas containing a group III element.
  • the source gas injection hole closest to the susceptor 320 may be a source gas injection hole for injecting a source gas containing a group V element.
  • the thin film deposition apparatus 300 may be disposed between the source gas injection holes 341a and 341b of the source gas supply unit 340 or above the upper source gas injection hole 341a of the source gas supply unit 340.
  • the inert gas supply unit may be further provided to supply an inert gas under the lower source gas injection hole 341b of the source gas supply unit 340.
  • the inert gas supplied from the inert gas supply unit serves to prevent a reaction in a region adjacent to the source gas injection port between the first and second source gases injected from the source gas supply unit 340, or serves as a carrier of the first and second source gases. can do.
  • the inert gas may be nitrogen gas, helium gas or argon gas.

Abstract

박막 증착 장치는 챔버와, 서셉터와, 소스가스 공급부, 및 서셉터 지지대를 포함한다. 챔버는 증착 공정이 행해지는 내부 공간을 갖는다. 서셉터는 챔버 내에 배치되며, 상면에 중심 둘레를 따라 복수의 기판들을 직접적으로 지지하거나, 하나 이상의 기판이 배치되어 있는 기판 홀더를 지지한다. 소스가스 공급부는 서셉터의 상부 중앙으로 제1,2 소스가스를 분리된 상태로 공급되며, 상하로 배열된 소스가스 분사구들을 통해 분리된 제1,2 소스가스를 서셉터 주변을 향해 각각 분사하여 서셉터 상의 기판들에 제1,2 소스가스를 공급한다. 서셉터 지지대는 서셉터의 하측에서 서셉터의 중앙을 받치도록 설치되며, 챔버의 외부로부터 도입된 추가가스를 서셉터의 상면으로 분사하는 추가가스 공급부를 구비한다.

Description

박막 증착 장치
본 발명은 반도체 등의 제조에 있어 기판 상에 박막을 증착하기 위해 사용되는 박막 증착 장치에 관한 것이다.
일반적으로, 반도체에서 사용하는 박막 제조 방법으로는 CVD(Chemical Vapor Deposition)법, PVD(Physical Vapor Deposition)법이 있다. CVD법은 기체상태의 혼합물을 가열된 기판 표면에서 화학 반응시켜 생성물을 기판 표면에 증착시키는 기술이다. CVD법은 전구체(precursor)로 사용되는 물질의 종류, 공정 중의 압력, 반응에 필요한 에너지 전달 방식 등에 의해, APCVD(Atmospheric CVD), LPCVD(Low Pressure CVD), PECVD(Plasma Enhanced CVD), MOCVD(Metal Organic CVD)법 등으로 구분된다.
최근에는 발광다이오드용 질화물 반도체가 각광을 받고 있는데, 발광다이오드용 질화물 반도체의 단결정 성장을 위해 MOCVD법이 많이 사용되고 있다. MOCVD법은 액체 상태의 원료인 유기금속 화합물을 기체 상태로 기화시킨 다음, 기화된 소스가스를 증착 대상인 기판으로 공급해서 고온의 기판에 접촉시킴으로써, 기판 상에 금속 박막을 증착시키는 방법이다.
이러한 MOCVD법의 경우, 소스가스를 기판으로 공급하기 위한 방식으로 인젝션(injection) 방식이 많이 채용되고 있다. 인젝션 방식은 챔버의 중앙에 설치된 인젝터를 통해 소스가스를 서셉터의 상부 중앙으로 도입한 후, 도입된 소스가스를 수평 방향으로 서셉터 주변을 향해 분사하여 서셉터 상의 기판들에 공급하는 방식이다.
그런데, 전술한 인젝션 방식에 있어서, 인젝터로부터 서셉터로 분사된 소스가스는 인젝터에 인접한 가스 진입영역을 지나 기판에 대한 유효 증착이 이루어지는 성장영역으로 진행한다. 소스가스의 흐름은 가스 진입영역 내에서 균일해지며 적어도 부분적으로 분해된다. 이때, 가스 진입영역에서 소스가스가 분해됨으로 인해, 가스 진입영역에 대응되는 서셉터 부위에 불필요한 박막이 증착되는 문제가 발생할 수 있다.
그리고, 보다 많은 기판들에 대해 동시에 박막 증착을 하기 위해서는 챔버의 크기가 대형화되어야 하는데, 이와 동시에 소스가스의 공급도 증가되어야 하므로 가스 진입영역이 증가하게 된다. 이에 따라, 가스 진입영역에 불필요한 박막이 증착되면서 소모되는 소스가스의 양도 늘어나게 되므로, 소스가스의 낭비가 심해지게 된다.
전술한 바와 같이, 서셉터 부위에 증착된 불필요한 박막은 증착 공정 중 떨어져 나가 기판에 영향을 미칠 수 있으므로, 사전에 정비해줄 필요가 있다. 가스 진입영역이 증가하면 가스 진입영역에 불필요한 박막이 증착될 가능성도 커지게 된다. 이는 PM(Preventive Maintenance; 사전 예방정비) 주기의 단축을 불러오게 된다.
또한, 보다 많은 기판들에 대해 동시에 박막 증착을 하기 위해서는 서셉터의 직경이 커져서 대형화될 필요가 있다. 그런데, 전술한 인젝션 방식에 의하면, 서셉터가 대형화될수록 기판에 대한 증착 균일도가 떨어지는 문제가 있다. 이를 해결하기 위해서는 소스가스의 사용량을 늘려야 하지만, 이로 인해 공정 효율성이 떨어지게 된다. 게다가, 소스가스의 사용량을 늘릴수록 기판의 증착면에 반응하지 않고 파티클 상태로 잔존하는 소스가스의 양이 많아지는 문제가 발생할 수 있다.
본 발명의 과제는 가스 진입영역에서 불필요한 박막 증착을 방지할 수 있으며, 챔버의 크기가 대형화되더라도 불필요한 박막 증착으로 인한 소스가스의 낭비를 줄이고 PM 주기를 늘릴 수 있는 박막 증착 장치를 제공함에 있다.
그리고, 본 발명의 과제는 서셉터가 대형화되더라도 기판에 대한 증착 균일도가 확보될 수 있고, 소스가스 사용량 및 파티클 억제가 가능한 박막 증착 장치를 제공함에 있다.
상기의 과제를 달성하기 위한 본 발명에 따른 박막 증착 장치는, 증착 공정이 행해지는 내부 공간을 갖는 챔버; 상기 챔버 내에 배치되며, 상면에 중심 둘레를 따라 복수의 기판들을 직접적으로 지지하거나, 하나 이상의 기판이 배치되어 있는 기판 홀더를 지지하는 서셉터; 상기 서셉터의 상부 중앙으로 제1,2 소스가스를 분리된 상태로 공급되며, 상하로 배열된 소스가스 분사구들을 통해 상기 분리된 제1,2 소스가스를 상기 서셉터 주변을 향해 각각 분사하여 상기 서셉터 상의 기판들에 상기 제1,2 소스가스를 공급하는 소스가스 공급부; 및 상기 서셉터의 하측에서 상기 서셉터의 중앙을 받치도록 설치되며, 상기 챔버의 외부로부터 도입된 추가가스를 상기 서셉터의 상면으로 분사하는 추가가스 공급부를 구비하는 서셉터 지지대를 포함한다.
본 발명에 따르면, 서셉터 상부에서 소스가스들을 서셉터 상면을 따라 흐르도록 공급하는 한편, 서셉터 지지대를 통해 서셉터 상면으로 추가가스를 공급함으로써, 제1,2 소스가스에서 분해된 물질이 가스 진입영역의 서셉터 부위에 접촉되는 것을 차단할 수 있다. 이에 따라, 가스 진입영역의 서셉터 부위에 불필요한 박막이 증착되는 것이 방지될 수 있다. 또한, 챔버의 크기가 대형화되어 가스 진입영역이 증가하더라도, 불필요한 박막 증착으로 인한 소스가스의 낭비가 줄어들 수 있고, PM 주기가 단축될 수 있다.
본 발명에 따르면, 서셉터의 중앙 영역으로부터 서셉터의 상부로 추가가스가 공급되므로, 서셉터의 직경이 커져서 대형화더라도 소스가스의 사용량을 효율적으로 가져가면서 기판에 대한 증착 균일도가 확보될 수 있다. 그리고, 소스가스 중 일부가 기판의 증착면에 반응하지 않고 파티클 상태로 잔존하는 현상도 억제될 수 있다. 또한, 소스가스 분사구들에 인접한 영역에서 소스가스로부터 분해된 물질이 서셉터의 중앙 영역에 접촉되지 않게 되므로, 불필요한 박막이 증착되는 것이 방지될 수 있다.
도 1은 본 발명의 일 실시예에 따른 박막 증착 장치에 대한 측단면도.
도 2는 도 1의 추가가스 공급부에 있어서, 서셉터 지지대에 결합되는 분사 캡의 일 예를 도시한 분해 사시도.
도 3은 도 2에 대한 조립도.
도 4는 도 1의 추가가스 공급부에 있어서, 서셉터 지지대에 결합되는 분사 캡의 다른 예를 도시한 분해 사시도.
도 5는 도 4에 대한 조립도.
도 6은 본 발명의 다른 실시예에 따른 박막 증착 장치에 대한 측단면도.
도 7은 도 6에 있어서 서셉터 및 추가가스 공급부를 발췌하여 도시한 측단면도.
도 8은 도 6에 있어서, 서셉터 및 추가가스 공급부에 대한 평면도.
도 9는 도 6에 도시된 추가가스 공급부에 가스 안내부가 구비된 예를 도시한 측단면도.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 본 발명을 상세히 설명하기로 한다.
도 1은 본 발명의 일 실시예에 따른 박막 증착 장치에 대한 구성도이다.
도 1을 참조하면, 박막 증착 장치(100)는 기판(10) 상에 박막을 증착하는 장치로서, 챔버(110)와, 서셉터(120)와, 서셉터 지지대(130)와, 소스가스 공급부(140), 및 추가가스 공급부(150)를 포함한다. 여기서, 기판(10)은 웨이퍼 또는 글라스 기판일 수 있다.
챔버(110)는 증착 공정이 행해지는 내부 공간을 갖는다. 챔버(110)는 상부가 개구된 챔버 본체(111)와, 챔버 본체(111)의 상부 개구를 덮는 탑 리드(112)를 포함한다. 탑 리드(112)의 하면에는 석영 등으로 이루어진 천장이 구비되어 보호받을 수 있다. 탑 리드(112)는 증착 공정시 하강 동작하여 챔버 본체(111)의 상부 개구를 폐쇄하고, 기판(10)의 로딩 또는 언로딩시 승강 동작하여 챔버 본체(111)의 상부 개구를 개방시킬 수 있다.
서셉터(120)는 챔버(10) 내에 배치되며, 상면에 중심 둘레를 따라 복수의 기판(10)들을 지지한다. 이는 대량 생산을 위해 보다 많은 기판(10)들에 대해 한꺼번에 박막 증착하기 위함이다. 서셉터(120)의 중심 주위에 복수의 기판 안착부(121)들이 균일하게 분포되어 형성될 수 있다. 기판 안착부(121)들에 기판(10)들이 각각 안착되어 지지될 수 있다. 다른 예로, 도시하고 있지 않지만, 서셉터(120)의 중심 주위에 복수의 기판 기판 홀더들이 균일하게 분포되어 설치될 수 있다. 각각의 기판 홀더는 상면에 적어도 하나의 기판을 각각 수용해서 지지한다.
서셉터 지지대(130)는 서셉터(120)의 하측에서 서셉터(120)의 중앙을 받치도록 설치된다. 서셉터 지지대(130)는 추가가스 공급부(150)를 구비한다. 추가가스 공급부(150)는 챔버(110)의 외부로부터 도입된 추가가스를 서셉터(120)의 상면으로 분사한다. 추가가스 공급부(150)는 가스 진입영역에 대응되는 서셉터(120) 부위에 불필요한 박막이 증착되는 것을 방지한다.
서셉터 지지대(130)는 회전구동기구(101)에 의해 회전함에 따라 서셉터(120)의 회전을 가능하게 한다. 예컨대, 서셉터 지지대(130)의 하측 부위가 챔버(110)의 외부로 인출되며, 인출된 부위에 회전구동기구(101)가 연결되어 서셉터 지지대(130)가 회전할 수 있다. 서셉터 지지대(130)의 회전시 서셉터(120)가 함께 회전 가능하게 된다.
만일, 서셉터(120) 상에 기판 홀더들이 마련된 경우라면, 기판 홀더들도 각각 가스 쿠션 등에 의해 회전 가능하게 설치될 수 있다. 이는 증착 공정 중 서셉터(120)의 상부 중앙으로부터 분사되는 소스가스가 서셉터(120) 상의 모든 기판(10)들에 고르게 공급되도록 하기 위해서이다. 서셉터(120)는 증착 공정 중 히터(미도시)에 의해 가열되어 상면에 지지된 기판(10)들이 가열될 수 있게 한다.
소스가스 공급부(140)는 서셉터(120)의 상부 중앙으로 제1,2 소스가스를 서로 분리한 상태로 공급받은 후 공급된 제1,2 소스가스를 상하로 배열된 소스가스 분사구들(141a)(141b)을 통해 서셉터(120) 주변을 향해 각각 분사한다. 이에 따라, 제1,2 소스가스가 서셉터(120) 상의 기판(10)들에 공급될 수 있다.
소스가스 공급부(140)는 제1,2 소스가스를 서셉터(120)의 상면에 나란한 수평 방향으로 분사하도록 구성될 수 있다. 하지만, 이에 한정되지 않고, 소스가스 공급부(140)는 서셉터(120) 상의 기판(10)들에 제1,2 소스가스를 원활히 공급할 수 있는 범주에서 하측으로 경사진 방향으로 분사하는 등 다양하게 구성될 수 있다.
그리고, 소스가스 공급부(140)는 제1,2 소스가스를 서로 분리된 상태로 각각 공급하기 위한 공급 라인들(142a)(142b)을 포함할 수 있다. 공급 라인들(142a)(142b)은 탑 리드(112)를 관통하여 서셉터(120)의 상부 중앙으로 연장되고, 연장된 단부들에 형성된 소스가스 분사구들(141a)(141b)이 상하로 배열되도록 굽어진 구조로 이루어질 수 있다.
상술하면, 소스가스 공급부(140)로부터 분사된 제1,2 소스가스는 소스가스 분사구들(141a)(141b)에 인접한 가스 진입영역을 지나 기판(10)에 대한 유효 증착이 이루어지는 성장영역으로 진행한다. 제1,2 소스가스의 흐름은 가스 진입영역 내에서 균일해지며 적어도 부분적으로 분해되어 서셉터(120)의 상면으로 하강하려 한다.
이때, 추가가스가 추가가스 공급부(150)로부터 서셉터(120) 상면으로 분사되어 가스 진입영역에서 성장영역으로 흘러간다. 이 과정에서, 제1,2 소스가스에서 분해된 물질은 추가가스에 밀려 서셉터(120)의 상면으로 하강하지 못하고 성장영역으로 흐르도록 유도된다.
따라서, 제1,2 소스가스에서 분해된 물질은 가스 진입영역에 대응되는 서셉터(120) 부위에 접촉되지 않게 되므로, 불필요한 박막이 증착되는 것이 방지될 수 있다. 그리고, 챔버(110)의 크기가 대형화되어 가스 진입영역이 증가하더라도, 불필요한 박막 증착으로 인한 소스가스의 낭비가 줄어들 수 있고, PM 주기가 단축될 수 있다.
한편, 추가가스 공급부(150)는, 챔버(110)의 외부로부터 추가가스가 도입되도록 서셉터 지지대(130)의 내부에 형성된 가스 유로(151)와, 가스 유로(151)를 통해 유입된 추가가스를 서셉터(120)의 상면으로 분사하는 추가가스 분사구(152)를 포함할 수 있다.
일 예로, 추가가스 분사구(152)는 서셉터 지지대(130)의 측면에 가스 유로(151)와 연결되도록 형성될 수 있다. 즉, 가스 유로(151)의 출구는 추가가스 분사구(152)와 연결되고, 가스 유로(151)의 입구는 서셉터 지지대(130)의 추가가스 유입구(153)와 연결될 수 있다. 추가가스 유입구(153)는 서셉터 지지대(130)에서 챔버(110)의 외부로 인출된 부위에 위치된다. 추가가스 유입구(153)는 추가가스 공급원과 연결되어, 추가가스 공급원의 추가가스가 가스 유로로 유입될 수 있게 한다.
그리고, 추가가스 분사구(152)는 서셉터(120)의 상면으로 추가가스를 분사하도록 서셉터(120)의 상면보다 높게 위치한다. 추가가스 분사구(152)는 서셉터 지지대(130)의 측면에 다수 형성되어 추가가스가 동시에 여러 곳으로부터 가스 진입영역으로 공급되도록 할 수 있다. 다른 예로, 추가가스 분사구(152)는 서셉터 지지대(130)의 측면뿐 아니라 상면에도 가스 유로(151)와 연결되도록 형성되는 것도 가능하다. 추가가스 분사구(152)의 크기 및 형상이나, 추가가스 분사구(152)로부터 분사되는 유량은 전술한 기능을 수행할 수 있는 범주에서 다양하게 구성될 수 있다.
추가가스는 서셉터(120)의 상면에 나란한 방향으로 분사될 수 있다. 하지만, 이에 한정되지 않고, 추가가스는 전술한 기능을 수행할 수 있는 범주에서, 서셉터(120)의 상면에 대해 상방으로 경사진 방향으로 분사되는 것도 가능하다. 예를 들어, 추가가스의 분사 방향은 가스 유로(151)가 추가가스 분사구(152)와 연결되는 각도에 따라 조절되거나, 추가가스 분사구(152)의 전방에 가이드 부재를 설치하여 조절할 수 있다.
한편, 도 2 및 도 3에 도시된 바와 같이, 서셉터 지지대(130)의 상단에 분사 캡(160)이 결합될 수 있다. 분사 캡(160)은 가스 유로(151)와 연결되는 내부 공간을 갖는다. 그리고, 추가 가스 분사구(152)는 분사 캡(160)의 측면에 분사 캡(160)의 내부 공간과 연결되게 다수 형성될 수 있다. 일 예로, 분사 캡(160)은 원판 형상의 캡 본체(161)와, 캡 본체(161)의 둘레를 따라 서로 이격되며 하측으로 각각 돌출된 리브(162)들을 구비할 수 있다.
분사 캡(160)은 캡 본체(161)의 저면이 서셉터 지지대(130)의 상면으로부터 이격된 상태에서 리브(162)들의 각 하측 부위가 서셉터 지지대(130)의 상단 둘레에 고정될 수 있다. 이에 따라, 캡 본체(161)의 저면과 서셉터 지지대(130)의 상면 사이에 이격 공간이 형성되며, 이격 공간은 리브(162)들 사이의 개구(163)들과 연통된다.
개구(163)들은 전술한 추가가스 분사구(152)들로서 기능한다. 이 경우, 전술한 가스 유로(151)에서 출구(151a)가 서셉터 지지대(130)의 상면에 위치한다. 따라서, 추가가스는 가스 유로(151)의 출구(151a)로부터 분사 캡(160)과 서셉터 지지대(130) 사이로 공급된 후 분사 캡(160)의 둘레에 형성된 개구(163)들을 통해 분사될 수 있다.
다른 예로, 도 4 및 도 5에 도시된 바와 같이, 분사 캡(260)은 내부 공간을 갖고 하부가 개구된 형상으로 이루어진다. 그리고, 분사 캡(260)은 둘레를 따라 내부 공간과 연통되는 홀(261)들이 형성될 수 있다. 분사 캡(260)의 저면이 서셉터 지지대(130)의 상면으로부터 이격되며, 홀(261)들이 서셉터 지지대(130)보다 높게 위치된 상태에서, 분사 캡(260)의 하측 부위가 서셉터 지지대(130)의 상단 둘레에 고정될 수 있다.
따라서, 추가가스는 가스 유로(151)의 출구(151a)로부터 분사 캡(260)과 서셉터 지지대(130) 사이로 공급된 후 분사 캡(160)의 둘레에 형성된 홀(261)들을 통해 분사될 수 있다. 이처럼 홀(261)들은 추가가스 분사구(152)들로서 기능한다. 한편, 분사 캡(260)은 가스 유로(151)와 연결되는 내부 유로가 형성되고, 내부 유로가 추가가스 분사구(152)들과 각각 연결되는 것도 가능하다.
증착 공정이 Ⅲ-Ⅴ족 MOCVD법에 의해 행해지는 경우, 제1 소스가스는 Ⅴ족 원소를 함유한 소스가스며, 제2 소스가스는 Ⅲ족 원소를 함유한 소스가스일 수 있다. 제1 소스가스는 Ⅴ족 원소를 포함하는 수소화물로서, NH3 또는 PH3 또는 AsH3 등일 수 있다. 제2 소스가스는 Ⅲ족 원소를 포함하는 유기 금속으로서, TMG(Trimethylgallium) 또는 TEG(Triethylgallium) 또는 TMI(Trimethylindium) 등일 수 있다. 제1,2 소스가스에는 캐리어 가스가 각각 포함될 수도 있다.
추가가스는 Ⅴ족 원소를 함유한 가스, 수소 가스, 비활성 가스 중 선택된 적어도 어느 하나일 수 있다. Ⅴ족 원소를 함유한 가스의 예로는 NH3 또는 PH3 또는 AsH3 등과 같은 Ⅴ족 원소를 포함하는 수소화물일 수 있다. 비활성 가스의 예로는 질소(N2) 가스 또는 헬륨(He) 가스 또는 아르곤(Ar) 가스 등일 수 있다.
소스가스 공급부(140)에서, Ⅴ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구와 Ⅲ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구 중, 서셉터(120) 측에 가장 인접한 소스가스 분사구는 Ⅲ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구일 수 있다. 물론, 서셉터(120) 측에 가장 인접한 소스가스 분사구는 Ⅴ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구인 것도 가능하다.
그리고, 도시하고 있지는 않지만, 박막 증착 장치(100)는 소스가스 공급부(140)의 소스가스 분사구들(141a)(141b) 사이, 또는 소스가스 공급부(140)의 상부 소스가스 분사구(141a)의 위쪽 또는 소스가스 공급부(140)의 하부 소스가스 분사구(141b)의 아래쪽에서 비활성가스를 공급하기 위한 비활성가스 공급부를 더 포함할 수 있다.
비활성가스 공급부로부터 공급된 비활성가스는 소스가스 공급부(140)로부터 분사된 제1,2 소스가스 간에 소스가스 분사구 인접영역에서의 반응을 방지하는 역할을 하거나, 제1,2 소스가스의 캐리어로서 역할을 할 수 있다. 여기서, 비활성가스는 질소 가스나 헬륨 가스나 아르곤 가스일 수 있다.
도 6은 본 발명의 다른 실시예에 따른 박막 증착 장치에 대한 측단면도이며, 도 7은 도 6에 있어서 서셉터 및 추가가스 공급부를 발췌하여 도시한 측단면도이다. 그리고, 도 8은 도 6에 있어서 서셉터 및 추가가스 공급부에 대한 평면도이다.
도 6 내지 도 8을 참조하면, 박막 증착 장치(300)는 기판(10) 상에 박막을 증착하는 장치로서, 챔버(310)와, 서셉터(320)와, 서셉터 지지대(330)와, 소스가스 공급부(340), 및 추가가스 공급부(350)를 포함한다.
챔버(310)는 증착 공정이 행해지는 내부 공간을 갖는다. 챔버(310)는 상부가 개구된 챔버 본체(311)와, 챔버 본체(311)의 상부 개구를 덮는 탑 리드(312)를 포함한다. 탑 리드(312)의 하면에는 석영 등으로 이루어진 천장이 구비되어 보호받을 수 있다. 탑 리드(312)는 증착 공정시 하강 동작하여 챔버 본체(311)의 상부 개구를 폐쇄하고, 기판(10)의 로딩 또는 언로딩시 승강 동작하여 챔버 본체(311)의 상부 개구를 개방시킬 수 있다.
서셉터(320)는 챔버(310) 내에 배치되며, 상면에 중심 둘레를 따라 복수의 기판(10)들을 지지한다. 서셉터(320)의 중심 주위에 복수의 기판 안착부(321)들이 균일하게 분포되어 형성될 수 있다. 기판 안착부(321)들에 기판(10)들이 각각 안착되어 지지될 수 있다. 다른 예로, 도시하고 있지 않지만, 서셉터(320)의 중심 주위에 복수의 기판 홀더들이 균일하게 분포되어 설치될 수 있다. 각각의 기판 홀더는 상면에 적어도 하나의 기판을 각각 수용해서 지지한다.
서셉터 지지대(330)는 서셉터(320)의 하측에서 서셉터(320)의 중앙을 받치도록 설치된다. 서셉터 지지대(330)는 회전구동기구(301)에 의해 회전함에 따라 서셉터(320)의 회전을 가능하게 한다. 예컨대, 서셉터 지지대(330)의 하측 부위가 챔버(310)의 외부로 인출되며, 인출된 부위에 회전구동기구가 연결되어 서셉터 지지대(330)가 회전할 수 있다. 서셉터 지지대(330)의 회전시 서셉터(320)가 함께 회전 가능하게 된다.
만일, 서셉터(320) 상에 기판 홀더들이 마련된 경우라면, 기판 홀더들도 각각 가스 쿠션 등에 의해 회전 가능하게 설치될 수 있다. 이는 증착 공정 중 서셉터(320)의 상부 중앙으로부터 분사되는 소스가스가 서셉터(320) 상의 모든 기판(10)들에 고르게 공급되도록 하기 위해서이다. 서셉터(320)는 증착 공정 중 히터(미도시)에 의해 가열되어 상면에 지지된 기판(10)들이 가열될 수 있게 한다.
소스가스 공급부(340)는 서셉터(320)의 상부 중앙으로 제1,2 소스가스가 서로 분리된 상태로 도입된 후 도입된 제1,2 소스가스를 상하로 배열된 소스가스 분사구들(341a)(341b)을 통해 서셉터(320) 주변을 향해 각각 분사한다. 이에 따라, 제1,2 소스가스가 서셉터(320) 상의 기판(10)들에 공급될 수 있다.
소스가스 공급부(340)는 제1,2 소스가스를 서셉터(320)의 상면에 나란한 수평 방향으로 분사하도록 구성될 수 있다. 하지만, 이에 한정되지 않고, 소스가스 공급부(340)는 서셉터(320) 상의 기판(10)들에 제1,2 소스가스를 원활히 공급할 수 있는 범주에서 하측으로 경사진 방향으로 분사하는 등 다양하게 구성될 수 있다.
그리고, 소스가스 공급부(340)는 제1,2 소스가스를 서로 분리된 상태로 각각 공급하기 위한 공급 라인들(342a)(342b)을 포함할 수 있다. 공급 라인들(342a)(342b)은 탑 리드(312)를 관통하여 서셉터(320)의 상부 중앙으로 연장되고, 연장된 단부들에 형성된 소스가스 분사구들(341a)(341b)이 상하로 배열되도록 굽어진 구조로 이루어질 수 있다.
추가가스 공급부(350)는 서셉터(320)의 상면에서 기판지지 영역보다 안쪽에 있는 중앙 영역에 설치되어 서셉터(320)의 상부로 추가가스를 공급하기 위한 것이다. 추가가스 공급부(350)는 챔버(310)의 외부로부터 추가가스가 도입되는 가스 유로부(351)와, 가스 유로부(351)를 통해 도입된 추가가스를 서셉터(320) 상면으로 분사하는 추가가스 분사구(356)를 구비한다. 가스 유로부(351)는 추가가스 공급부(350)의 내부에 형성되며, 추가가스 분사구(356)는 추가가스 공급부(350)의 상면에 가스 유로부(351)와 연결되게 형성된다.
추가가스 공급부(350)는 서셉터(320)의 직경이 커져서 대형화더라도 제1,2 소스가스의 사용량을 효율적으로 가져가면서 기판(10)에 대한 증착 균일도를 확보할 수 있도록 한다. 상술하면, 소스가스 공급부(340)로부터 분사된 제1,2 소스가스는 서셉터(320)의 주변으로 흘러가게 된다. 이 과정에서, 제1,2 소스가스는 기판(10)의 증착면으로 공급되어 기판(10)의 증착면에 반응함에 따라 박막을 형성하게 된다. 그런데, 서셉터(320)의 직경이 커질수록 제1,2 소스가스의 사용량을 늘리지 않으면 제1,2 소스가스가 기판(10)의 증착면 전체에 걸쳐 고르게 도달하지 못하게 되어 기판(10)에 대한 증착 균일도가 떨어질 우려가 있다.
하지만, 추가가스가 추가가스 공급부(350)에서 서셉터(320)의 상부로 공급되어 서셉터(320) 주변을 향해 흘러가기 때문에, 추가가스의 흐름에 의해 제1,2 소스가스는 서셉터(320) 주변을 향해 더 멀리 흘러갈 수 있게 된다. 이때, 제1,2 소스가스가 기판(10)의 증착면 전체에 걸쳐 고르게 도달하도록 추가가스 공급부(350)로부터 추가가스를 공급한다면, 제1,2 소스가스의 사용량을 효율적으로 가져가면서도 기판(10)에 대한 증착 균일도가 확보될 수 있는 것이다. 아울러, 기판(10)의 증착면에 반응하지 않고 파티클 상태로 잔존하는 현상도 억제될 수 있다.
또한, 추가가스 공급부(350)는 서셉터(320)의 상면에서 기판지지 영역보다 안쪽에 있는 중앙 영역에 설치되어 서셉터(320)의 상부로 추가가스를 공급하므로, 소스가스 분사구들(341a)(341b)에 인접한 영역에서 제1,2 소스가스로부터 분해된 물질이 서셉터(320)의 중앙 영역으로 하강하지 못하고 기판지지 영역으로 흐르도록 유도된다. 따라서, 제1,2 소스가스로부터 분해된 물질은 서셉터(320)의 중앙 영역에 접촉되지 않게 되므로, 불필요한 박막이 증착되는 것이 방지될 수 있다.
한편, 추가가스 분사구(356)는 추가가스가 여러 곳으로부터 서셉터(320)의 상부로 공급되어 전술한 기능을 수행할 수 있도록, 도 7에 도시된 바와 같이 방사상 또는 동심상으로 다수 배열되도록 형성될 수 있다. 여기서, 추가가스 분사구(356)들은 각 영역별로 균등하게 추가가스를 분사할 수 있도록 방사상으로 일정 각도를 갖도록 배열되거나, 동심상으로 일정 간격으로 이격되도록 배열될 수 있다. 이 경우, 가스 유로부(351)는 메인 유로(352)와, 메인 유로(352)로부터 분기되어 추가가스 분사구(356)들과 각각 연결되는 분기 유로(353)들을 포함할 수 있다. 메인 유로(352)로 유입된 추가가스는 분기 유로(353)들로 분기된 후 추가가스 분사구(356)들을 통해 분사될 수 있다.
추가가스 공급부(350)는 서셉터(320)의 수용 홈(322) 내에 일부 수용되어, 추가가스 분사구(356)의 높이가 서셉터(320) 상의 기판(10)보다 높게 위치할 수 있다. 여기서, 추가가스 공급부(350)는 수용 홈(322)의 저면에 대해 접촉된 상태로 서셉터(320)에 고정되거나, 비접촉 상태로 서셉터(320)에 고정될 수 있다. 추가가스 공급부(350)는 탄화규소(SiC), BN(Boron Nitride) 코팅된 그래파이트(graphite)로 제조될 수 있다. 또는, 추가가스 공급부(350)는 석영(Quartz)이나, 알루미나(Al2O3)로 제조될 수 있다.
도 9에 도시된 바와 같이, 추가가스 공급부(350)는 추가가스 분사구(356)들로부터 분사된 추가가스가 서셉터(320)의 상면에 나란한 방향으로 서셉터(320) 주변을 향해 흐르도록 안내하는 가스 안내부(357)를 포함할 수 있다. 하지만, 이에 한정되지 않고, 전술한 기능을 수행할 수 있는 범주에서, 추가가스 분사구(356)들로부터 분사된 추가가스가 서셉터(320)의 상면에 대해 상방으로 경사진 방향으로 분사되도록 가스 안내부(357)에 의해 안내되거나, 추가가스 분사구(356)들이 형성되는 것도 가능하다.
박막 증착 장치(300)는 추가가스 공급로(360)를 포함할 수 있다. 추가가스 공급로(360)는 서셉터 지지대(330)의 내부에 형성된다. 추가가스 공급로(360)는 챔버(310)의 외부로부터 추가가스를 공급받아서 가스 유로부(351)로 전달한다. 추가가스 공급로(360)의 일단은 서셉터(320)의 내부로 연장되어 가스 유로부(351)의 메인 유로(352)와 연결되며, 추가가스 공급로(360)의 타단은 서셉터 지지대(330)의 추가가스 유입구(361)와 연결된다. 추가가스 유입구(361)는 서셉터 지지대(330)에서 챔버(310) 외부로 인출된 부위에 위치된다. 추가가스 유입구(361)는 챔버(310) 외부의 추가가스 공급원과 연결되어, 추가가스 공급원의 추가가스가 추가가스 공급로(360)로 유입될 수 있게 한다.
한편, 증착 공정이 Ⅲ-Ⅴ족 MOCVD법에 의해 행해지는 경우, 제1 소스가스는 Ⅴ족 원소를 함유한 소스가스며, 제2 소스가스는 Ⅲ족 원소를 함유한 소스가스일 수 있다. 제1 소스가스는 Ⅴ족 원소를 포함하는 수소화물로서, NH3 또는 PH3 또는 AsH3 등일 수 있다. 제2 소스가스는 Ⅲ족 원소를 포함하는 유기 금속으로서, TMG(Trimethylgallium) 또는 TEG(Triethylgallium) 또는 TMI(Trimethylindium) 등일 수 있다. 제1,2 소스가스에는 캐리어 가스가 각각 포함될 수도 있다.
추가가스는 Ⅴ족 원소를 함유한 가스, 수소 가스, 비활성 가스 중 선택된 적어도 어느 하나일 수 있다. Ⅴ족 원소를 함유한 가스의 예로는 NH3 또는 PH3 또는 AsH3 등과 같은 Ⅴ족 원소를 포함하는 수소화물일 수 있다. 비활성 가스의 예로는 질소(N2) 가스 또는 헬륨(He) 가스 또는 아르곤(Ar) 가스 등일 수 있다.
소스가스 공급부(340)에서, Ⅴ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구와 Ⅲ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구 중, 서셉터(320) 측에 가장 인접한 소스가스 분사구는 Ⅲ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구일 수 있다. 물론, 서셉터(320) 측에 가장 인접한 소스가스 분사구는 Ⅴ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구인 것도 가능하다.
그리고, 도시하고 있지는 않지만, 박막 증착 장치(300)는 소스가스 공급부(340)의 소스가스 분사구들(341a)(341b) 사이, 또는 소스가스 공급부(340)의 상부 소스가스 분사구(341a)의 위쪽 또는 소스가스 공급부(340)의 하부 소스가스 분사구(341b)의 아래쪽에서 비활성가스를 공급하기 위한 비활성가스 공급부를 더 포함할 수 있다. 비활성가스 공급부로부터 공급된 비활성가스는 소스가스 공급부(340)로부터 분사된 제1,2 소스가스 간에 소스가스 분사구 인접영역에서의 반응을 방지하는 역할을 하거나, 제1,2 소스가스의 캐리어로서 역할을 할 수 있다. 여기서, 비활성가스는 질소 가스나 헬륨 가스나 아르곤 가스일 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (13)

  1. 증착 공정이 행해지는 내부 공간을 갖는 챔버;
    상기 챔버 내에 배치되며, 상면에 중심 둘레를 따라 복수의 기판들을 직접적으로 지지하거나, 하나 이상의 기판이 배치되어 있는 기판 홀더를 지지하는 서셉터;
    상기 서셉터의 상부 중앙으로 제1,2 소스가스를 분리된 상태로 공급되며, 상하로 배열된 소스가스 분사구들을 통해 상기 분리된 제1,2 소스가스를 상기 서셉터 주변을 향해 각각 분사하여 상기 서셉터 상의 기판들에 상기 제1,2 소스가스를 공급하는 소스가스 공급부; 및
    상기 서셉터의 하측에서 상기 서셉터의 중앙을 받치도록 설치되며, 상기 챔버의 외부로부터 도입된 추가가스를 상기 서셉터의 상면으로 분사하는 추가가스 공급부를 구비하는 서셉터 지지대;
    를 포함하는 박막 증착 장치.
  2. 제1항에 있어서,
    상기 추가가스는 Ⅴ족 원소를 함유한 가스, 수소 가스, 비활성 가스 중 선택된 적어도 어느 하나인 것을 특징으로 하는 박막 증착 장치.
  3. 제2항에 있어서,
    상기 제1 소스가스는 Ⅴ족 원소를 함유한 소스가스이며,
    상기 제2 소스가스는 Ⅲ족 원소를 함유한 소스가스인 것을 특징으로 하는 박막 증착 장치.
  4. 제3항에 있어서,
    상기 소스가스 공급부는,
    상기 Ⅴ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구와 상기 Ⅲ족 원소를 함유한 소스가스를 분사하는 분사구 중 상기 서셉터 측에 가장 인접한 소스가스 분사구가 상기 Ⅲ족 원소를 함유한 소스가스를 분사하는 소스가스 분사구인 것을 특징으로 하는 박막 증착 장치.
  5. 제1항에 있어서,
    상기 추가가스 공급부는:
    상기 챔버의 외부로부터 추가가스가 도입되도록 상기 서셉터 지지대의 내부에 형성된 가스 유로와, 상기 가스 유로를 통해 유입된 추가가스를 상기 서셉터의 상면으로 분사하는 추가가스 분사구를 포함하는 것을 특징으로 하는 박막 증착 장치.
  6. 제5항에 있어서,
    상기 추가가스 분사구는,
    상기 서셉터 지지대의 측면에 상기 가스 유로와 연결되도록 다수 형성되거나, 상기 서셉터 지지대의 측면과 상면에 각각 상기 가스 유로와 연결되도록 다수 형성된 것을 특징으로 하는 박막 증착 장치.
  7. 제5항에 있어서,
    상기 서셉터 지지대의 상단에는,
    상기 가스 유로와 연결되는 내부 공간이나 내부 유로가 형성된 분사 캡이 결합되며;
    상기 추가가스 분사구는,
    상기 분사 캡의 측면에 상기 분사 캡의 내부 공간이나 내부 유로와 연결되도록 다수 형성되거나, 상기 분사 캡의 측면 및 상면에 각각 상기 분사 캡의 내부 공간이나 내부 유로와 연결되도록 다수 형성된 것을 특징으로 하는 박막 증착 장치.
  8. 제5항에 있어서,
    상기 추가가스는 상기 서셉터의 상면에 나란한 방향으로 분사되거나, 상기 서셉터의 상면에 대해 상방으로 경사진 방향으로 분사되는 것을 특징으로 하는 박막 증착 장치.
  9. 제1항에 있어서,
    상기 소스가스 공급부 중 상부 소스가스 분사구의 위쪽, 또는 하부 소스가스 분사구의 아래쪽, 또는 상기 소스가스 공급부들 사이에서 비활성가스를 공급하기 위한 비활성가스 공급부를 더 포함하는 것을 특징으로 하는 박막 증착 장치.
  10. 제5항에 있어서,
    상기 추가가스 분사구는 방사상 또는 동심상으로 다수 배열되도록 형성되는 것을 특징으로 하는 박막 증착 장치.
  11. 제5항에 있어서,
    상기 추가가스 공급부는,
    상기 추가가스 분사구들로부터 분사된 추가가스가 상기 서셉터의 상면에 나란한 방향으로 상기 서셉터 주변을 향해 흐르도록 안내하는 가스 안내부를 포함하는 것을 특징으로 하는 박막 증착 장치.
  12. 제5항에 있어서,
    상기 서셉터 지지대 내부에는 상기 챔버 외부로부터 유입되는 추가가스를 상기 추가가스 공급부의 가스 유로부로 전달하는 추가가스 공급로가 형성된 것을 특징으로 하는 박막 증착 장치.
  13. 제5항에 있어서,
    상기 소스가스 공급부 중 상부 소스가스 분사구의 위쪽, 또는 하부 소스가스 분사구의 아래쪽, 또는 상기 소스가스 공급부들 사이에서 비활성가스를 공급하기 위한 비활성가스 공급부를 더 포함하는 것을 특징으로 하는 박막 증착 장치.
PCT/KR2011/006843 2010-09-17 2011-09-16 박막 증착 장치 WO2012036499A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180044766.4A CN103140914B (zh) 2010-09-17 2011-09-16 薄膜蒸镀装置
US13/823,846 US20130180454A1 (en) 2010-09-17 2011-09-16 Thin film deposition apparatus
JP2013529066A JP5710002B2 (ja) 2010-09-17 2011-09-16 薄膜蒸着装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0091853 2010-09-17
KR1020100091853A KR20120029795A (ko) 2010-09-17 2010-09-17 박막 증착 장치
KR1020100091852A KR20120029794A (ko) 2010-09-17 2010-09-17 박막 증착 장치
KR10-2010-0091852 2010-09-17

Publications (2)

Publication Number Publication Date
WO2012036499A2 true WO2012036499A2 (ko) 2012-03-22
WO2012036499A3 WO2012036499A3 (ko) 2012-06-28

Family

ID=45832119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006843 WO2012036499A2 (ko) 2010-09-17 2011-09-16 박막 증착 장치

Country Status (5)

Country Link
US (1) US20130180454A1 (ko)
JP (1) JP5710002B2 (ko)
CN (1) CN103140914B (ko)
TW (1) TWI487803B (ko)
WO (1) WO2012036499A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099584A (zh) * 2013-04-10 2014-10-15 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室及等离子体加工设备
US20160002821A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Carousel batch epitaxy system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480417B (zh) 2012-11-02 2015-04-11 Ind Tech Res Inst 具氣幕之氣體噴灑裝置及其薄膜沉積裝置
TWI473903B (zh) * 2013-02-23 2015-02-21 Hermes Epitek Corp 應用於半導體設備的噴射器與上蓋板總成
KR101980313B1 (ko) 2014-01-24 2019-05-20 주식회사 원익아이피에스 기판 처리 장치
KR102350588B1 (ko) 2015-07-07 2022-01-14 삼성전자 주식회사 인젝터를 갖는 박막 형성 장치
TWI612176B (zh) * 2016-11-01 2018-01-21 漢民科技股份有限公司 應用於沉積系統的氣體分配裝置
JP7002268B2 (ja) * 2017-09-28 2022-01-20 東京エレクトロン株式会社 プラズマ処理装置
US11139149B2 (en) 2017-11-29 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Gas injector
CN111254383B (zh) * 2020-03-25 2020-09-25 上海陛通半导体能源科技股份有限公司 用于改善反应溅射膜层均匀性的物理气相沉积设备
CN111996511A (zh) * 2020-08-10 2020-11-27 长江存储科技有限责任公司 化学气相沉积装置以及氮化钨薄膜的沉积方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359204A (ja) * 2001-05-17 2002-12-13 Hanbekku Co Ltd 化合物半導体製造用水平反応炉
KR20060095276A (ko) * 2005-02-28 2006-08-31 삼성전기주식회사 화학기상증착 공정을 이용한 초격자 반도체 구조를 제조하는 방법
KR100980397B1 (ko) * 2010-05-24 2010-09-07 주식회사 시스넥스 유기금속가스의 농도분포조절이 가능한 화학기상증착반응기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246192A (ja) * 1996-03-05 1997-09-19 Nissin Electric Co Ltd 薄膜気相成長装置
JP4423011B2 (ja) * 2003-06-23 2010-03-03 日本碍子株式会社 高比抵抗GaN層を含む窒化物膜の製造方法
JP2005228757A (ja) * 2004-02-10 2005-08-25 Japan Pionics Co Ltd 気相成長装置及び気相成長方法
JP4945185B2 (ja) * 2006-07-24 2012-06-06 株式会社東芝 結晶成長方法
US8465802B2 (en) * 2008-07-17 2013-06-18 Gang Li Chemical vapor deposition reactor and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359204A (ja) * 2001-05-17 2002-12-13 Hanbekku Co Ltd 化合物半導体製造用水平反応炉
KR20060095276A (ko) * 2005-02-28 2006-08-31 삼성전기주식회사 화학기상증착 공정을 이용한 초격자 반도체 구조를 제조하는 방법
KR100980397B1 (ko) * 2010-05-24 2010-09-07 주식회사 시스넥스 유기금속가스의 농도분포조절이 가능한 화학기상증착반응기

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099584A (zh) * 2013-04-10 2014-10-15 北京北方微电子基地设备工艺研究中心有限责任公司 一种反应腔室及等离子体加工设备
US20160002821A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Carousel batch epitaxy system
KR20170029551A (ko) * 2014-07-03 2017-03-15 어플라이드 머티어리얼스, 인코포레이티드 캐러셀 뱃치 에피택시 시스템
US9890473B2 (en) * 2014-07-03 2018-02-13 Applied Materials, Inc. Batch epitaxy processing system having gas deflectors
KR102364760B1 (ko) * 2014-07-03 2022-02-18 어플라이드 머티어리얼스, 인코포레이티드 캐러셀 뱃치 에피택시 시스템

Also Published As

Publication number Publication date
CN103140914A (zh) 2013-06-05
JP5710002B2 (ja) 2015-04-30
TWI487803B (zh) 2015-06-11
CN103140914B (zh) 2015-10-14
JP2013538463A (ja) 2013-10-10
WO2012036499A3 (ko) 2012-06-28
TW201213570A (en) 2012-04-01
US20130180454A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
WO2012036499A2 (ko) 박막 증착 장치
WO2011129492A1 (ko) 가스 분사 유닛 및 이를 이용한 박막 증착 장치 및 방법
WO2010101369A2 (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
US9410247B2 (en) Chemical vapor deposition apparatus
WO2013147481A1 (ko) 선택적 에피택셜 성장을 위한 장치 및 클러스터 설비
WO2013180451A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2011037377A2 (ko) 배치식 에피택셜층 형성장치 및 그 형성방법
WO2009104918A2 (en) Apparatus and method for processing substrate
KR101589257B1 (ko) 박막 증착 장치
WO2016047972A2 (ko) 막 제조 장치, 및 이를 이용한 막의 제조 방법
WO2013100462A1 (ko) 기판처리장치
KR100980397B1 (ko) 유기금속가스의 농도분포조절이 가능한 화학기상증착반응기
KR101651880B1 (ko) 유기금속화학기상증착장치
KR100944186B1 (ko) 화학기상증착 반응기의 가스분사장치
KR20120029795A (ko) 박막 증착 장치
KR20120029794A (ko) 박막 증착 장치
WO2012177099A2 (en) Apparatus and method for deposition
WO2014119955A1 (ko) 배치식 증착층 형성장치
WO2012177064A2 (en) Deposition apparatus
KR101589255B1 (ko) 박막 증착 장치
WO2024054056A1 (ko) 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법
KR101625211B1 (ko) 박막 증착 장치
WO2024010295A1 (ko) 가스 분사 장치, 기판 처리 장치 및 박막 증착 방법
KR101395206B1 (ko) 기판 처리 장치 및 방법
WO2022114583A1 (ko) 샤워 헤드 및 그를 포함하는 박막 증착 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044766.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825459

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13823846

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013529066

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825459

Country of ref document: EP

Kind code of ref document: A2