WO2012036335A1 - 강판콘크리트 구조와 이질 구조간의 접합 방법 - Google Patents

강판콘크리트 구조와 이질 구조간의 접합 방법 Download PDF

Info

Publication number
WO2012036335A1
WO2012036335A1 PCT/KR2010/006555 KR2010006555W WO2012036335A1 WO 2012036335 A1 WO2012036335 A1 WO 2012036335A1 KR 2010006555 W KR2010006555 W KR 2010006555W WO 2012036335 A1 WO2012036335 A1 WO 2012036335A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
concrete structure
concrete
steel plate
joining
Prior art date
Application number
PCT/KR2010/006555
Other languages
English (en)
French (fr)
Inventor
이한우
김종학
조성일
이종보
노상훈
Original Assignee
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수력원자력 주식회사 filed Critical 한국수력원자력 주식회사
Priority to EP10857320.5A priority Critical patent/EP2617910A4/en
Publication of WO2012036335A1 publication Critical patent/WO2012036335A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • E04B1/161Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with vertical and horizontal slabs, both being partially cast in situ
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/16Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2/8635Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/84Walls made by casting, pouring, or tamping in situ
    • E04B2/86Walls made by casting, pouring, or tamping in situ made in permanent forms
    • E04B2002/867Corner details

Definitions

  • the present invention relates to a method of joining between a steel plate concrete structure and a heterogeneous structure, and more particularly, a steel plate that is subsequently joined to a heterogeneous concrete structure by first installing a joining steel sheet in a part of the heterogeneous concrete structure joined to the steel plate concrete structure. It ensures the integrity and workability of the concrete structure so that the load is continuously and evenly transmitted without deteriorating the stress at the joint surface, thereby improving the bonding performance between the steel plate concrete structure and the heterogeneous concrete structure. It is about a joining method.
  • Wall construction methods of conventional structures include a reinforced concrete structure (RC; Reinforced Concrete), steel reinforced concrete structure (SRC; Steel framed Reinforced Concrete), steel plate concrete (SC; steel plate concrete).
  • RC reinforced concrete structure
  • SRC steel reinforced concrete structure
  • SC steel plate concrete
  • the reinforced concrete structure (RC) is a structure in which the compressive force of the concrete and the tensile force of the reinforcing bars are complemented to each other
  • the steel reinforced concrete structure (SRC) is a structure in which the steel frame is covered with reinforced concrete and reinforced, Reinforced concrete that is covered by the steel frame and surrounding it is configured to cover and reinforce the steel frame in case of fire.
  • the reinforced concrete structure (RC) and the steel reinforced concrete structure (SRC) has a disadvantage in that the construction period is long because direct construction of the formwork and reinforcing steel or steel frame and constructing the structure by pouring concrete.
  • the steel plate concrete structure which is developed to solve this problem, fills concrete inside a pair of opposing steel plates, and protrudes a plurality of studs on the inner wall of the steel plate so that the concrete and the steel plate are integrated.
  • SC steel plate concrete structure
  • it consists of a structure in which both ends of a tie bar are coupled to the inner wall of the steel sheet so that the gap between the steel sheets is kept constant.
  • FIG. 1 and 2 is a longitudinal cross-sectional view of the vertical joint between the walls of the conventional reinforced concrete structure
  • Figure 1 is a longitudinal cross-sectional view when there is no slab
  • Figure 2 when there is a slab.
  • the slab reinforced concrete is poured into the reinforcing structure in which the slab reinforcement 31 and the horizontal reinforcement 32 are coupled to one side of the lower reinforcement concrete structure 10.
  • the present invention has been made in order to solve the above problems, the steel sheet concrete by preventing the stress degradation at the joint surface when the steel plate concrete structure (SC) and the heterogeneous structure is bonded and the load is continuously and evenly transmitted to the wall structure
  • An object of the present invention is to provide a joining method between a steel plate concrete structure and a heterogeneous structure that can improve the bonding performance between the structure and the heterogeneous structure.
  • the concrete is poured into the steel plate concrete structure and the steel reinforcement or steel reinforcing steel reinforcing the inside of the steel plate spaced apart from each other
  • the formwork is arranged around the space in which the concrete is to be cast to form the heterogeneous concrete structure, and the reinforcing bars or steel reinforcing bars are arranged inside the formwork so as to cross-couple in the vertical and horizontal directions.
  • the reinforcing bars or steel reinforcing bars in the vertical and horizontal direction to the inner side of the formwork, the reinforcing bars or steel reinforcing bars to extend from the inner space of the heterogeneous concrete structure to the inner space of the steel plate concrete structure It can be configured to deploy.
  • the plurality of studs may be formed to protrude on opposite inner surfaces of the joining steel sheet and the steel sheet structural structural steel sheet, and both ends of the tie bars may be fixed to the opposite inner surfaces.
  • the end of the joining steel sheet and the end of the steel sheet concrete structural steel sheet is arranged to be in contact with each other, the joining steel sheet and the steel sheet concrete structural steel sheet is in contact
  • a flat bar on the inner side of the boundary portion, it may be configured to join the bonding surface of the flat bar and the joining steel sheet and the steel sheet structural steel sheet.
  • it may be configured to fix the joint surface of the flat bar and the joining steel sheet and the steel sheet structural steel sheet by welding or screwing.
  • the joining method between the steel sheet concrete structure and the heterogeneous structure by integrating the joining between the steel plate concrete structure (SC) and the heterogeneous structure by improving the structural performance (in-plane shearing performance, out-of-plane load performance) and workability of the joining surface, Since the use of the steel plate concrete structure (SC) can be extended to apply, there is an effect that can shorten the construction period.
  • the steel plate concrete structure (SC) and the heterogeneous structure (RC or SRC) is integrally coupled through the joint portion so that the load is continuously and evenly transmitted without reducing the stress at the joint surface, thereby allowing the steel plate concrete structure and the heterogeneous structure.
  • FIG. 1 and 2 is a longitudinal cross-sectional view of the vertical joint between the walls of the conventional reinforced concrete structure, Figure 1 when there is no slab, Figure 2 is a longitudinal cross-sectional view when there is a slab,
  • FIG. 3 and 4 are longitudinal cross-sectional view of the vertical joint between the steel plate concrete structure and the heterogeneous structure wall according to an embodiment of the present invention, Figure 3 is the absence of the slab, Figure 4 is a longitudinal cross-sectional view when there is a slab,
  • 5 to 8 is a cross-sectional view showing a step-by-step construction sequence of the bonding method between the steel plate concrete structure and the heterogeneous structure according to an embodiment of the present invention
  • FIG. 10 is a cross-sectional plan view of a horizontal joint between walls of a steel plate concrete structure and a heterogeneous structure according to another embodiment of the present invention.
  • junction 121 lower steel plate
  • fastening bolt 130 steel plate concrete structure
  • tie bar 134 concrete
  • joint surface 230 steel plate concrete structure
  • tie bar 234 concrete
  • FIG. 3 and 4 are vertical cross-sectional views of the vertical joint between the steel plate concrete structure and the heterogeneous structure wall according to an embodiment of the present invention, Figure 3 is the absence of the slab, Figure 4 is a longitudinal cross-sectional view when there is a slab.
  • the reinforced concrete structure 110 installed at the lower portion is a structure in which concrete 113 is poured and bonded to the vertical reinforcement 111 and the horizontal reinforcement 112.
  • the 121 is made of a combined structure.
  • the joint portion 120 is an intermediate means for integrally joining the steel plate concrete structure 130 to the upper side of the reinforced concrete structure 110, and includes the lower steel plate 121 and the concrete surface 113 on the inner side thereof.
  • a plurality of studs 122 for facilitating attachment are coupled in a shape projecting inward, and the tie bars 123 are coupled between the lower steel plates 121 facing each other to maintain a constant distance therebetween. It is.
  • a flat bar 124 is welded to an inner surface of the lower steel plate 121 at an inner side of a boundary portion where the upper end of the lower steel plate 121 and the lower end of the upper steel plate 131 contact each other.
  • the upper steel plate 131 is coupled by a fastening bolt 126.
  • Reference numeral 125 denotes a welded portion at the joint surface between the flat bar 124 and the lower steel plate 121.
  • a plurality of studs 132 and tie bars 133 are coupled to the upper steel plate 131 and the inner surface thereof, and the bonding surface 127 is formed inside the upper steel plate 131.
  • the upper side is made of a structure in which the concrete 134 is filled.
  • the upper steel plate concrete structure 130 is integrally bonded to each other through the joint 120 coupled to the upper portion of the lower reinforced concrete structure 110, so that the heterogeneous structure can be smoothly joined and constructed.
  • the stiffness and the strength at the joint portion are improved to prevent the stress from dropping at the joint surface 127 and to maintain the load distribution uniformly.
  • the slab reinforced concrete structure 140 is additionally connected to one side of the reinforced concrete structure 110 in the bonding structure illustrated in FIG. 3, and the slab reinforced concrete structure 140 is illustrated. Is provided with a plurality of studs 142 on the upper surface of the bottom steel sheet 141, the upper space of the bottom steel sheet 141 is made of a structure in which the slab reinforcement 144 and concrete 113 in the horizontal direction.
  • the joining structure since the bonding structure between the steel plate concrete structure and the heterogeneous structure is easy to be bonded not only in the vertical direction but also in the horizontal direction, the joining structure can be designed in various forms.
  • FIG. 5 to 8 is a cross-sectional view showing a step-by-step construction sequence of the bonding method between the steel plate concrete structure and the heterogeneous structure according to an embodiment of the present invention
  • Figure 9 is a joint between the steel plate concrete structure and the heterogeneous structure according to an embodiment of the present invention Construction flowchart of the method.
  • the formwork 101 is disposed around the space where the concrete 113 is to be placed, and the formwork (S 10).
  • the reinforcing bar structure in which the vertical reinforcing bar 111 and the horizontal reinforcing bar 112 are coupled to the inside of the 101 is installed (S 10).
  • the vertical reinforcement 111 is installed to extend to the inner space of the steel plate concrete structure 130 bonded to the upper side of the reinforced concrete structure 110.
  • the lower inner steel plate 121 is provided on the upper inner surface of the formwork 101, a plurality of studs 122 are formed on the inner surface of the lower steel sheet 121, the tie between the lower steel sheet 121 Both ends of the bar 123 are coupled to be installed to maintain a predetermined interval between the lower steel sheets 121 (S 20).
  • a plurality of flat bars 124 are coupled to the upper inner surface of the lower steel plate 121 at regular intervals.
  • the flat bar 124 is for facilitating engagement with the upper steel plate 131 which is subsequently installed on the upper side of the lower steel plate 121, between the lower steel plate 121 and the flat bar 124 around the joint surface Can be joined by welding.
  • the concrete 113 is poured into the inner space of the formwork 101 and cured for a predetermined time to complete the reinforced concrete structure 110 (S 30).
  • the formwork 101 is separated and removed, the upper steel plate 131 is positioned above the lower steel plate 121, and the upper steel plate 131 and the flat bar 124 are fastened to the bolts. Coupled to (126) (S 40).
  • the lower steel plate 121 and the pratt bar 124 is coupled by welding, and between the upper steel plate 131 and the flat bar 124 was configured by coupling through the fastening bolt 126, but the welding coupling method is applied It can be configured by applying welding and bolting method together.
  • the coupling between the upper steel plate 131 and the flat bar 124 is not welded or bolted, it may be configured to weld the upper steel plate 131 and the lower steel plate 121.
  • the steel plate concrete structure 130 is formed to be integrally bonded to the reinforced concrete structure 110 (S 50).
  • FIG. 10 is a cross-sectional plan view of a horizontal joint between walls of a steel plate concrete structure and a heterogeneous structure according to another embodiment of the present invention.
  • the present invention is not limited thereto and is illustrated in FIG. 10.
  • the steel plate concrete structure 210 and the reinforced concrete structure 230 may also be applied to the case where the horizontal bonding through the junction 220.
  • a reinforcing bar structure in which a vertical reinforcing bar 211 and a horizontal reinforcing bar 212 are coupled to an inner space of a portion where the reinforcing concrete structure 210 is to be formed is installed.
  • the horizontal reinforcing bar 212 is preferably installed to extend to the space where the steel plate concrete structure 230 is to be formed.
  • formwork (not shown) is installed around the space in which the reinforced concrete structure 210 is to be formed, and the stud 222 and the tie bar 223 and the flat bar 224 are coupled to one inner side of the formwork.
  • the joining steel sheet 221 is fixed.
  • the concrete 213 is placed and cured in the inner space surrounded by the formwork and the joining steel sheet 221 to complete the reinforced concrete structure 210.
  • the formwork is separated and removed, and the end of the steel plate 231 constituting the steel plate concrete structure 230 is joined to the end of the steel plate 221 for joining, and the fastening bolt 226
  • the steel plate 231 and the flat bar 224 are fastened to each other by this.
  • the bonding between the joining steel sheet 221, the steel sheet 231, and the flat bar 224 may be combined in the same manner as in the above-described embodiments.
  • the steel plate concrete structure 230 is formed by integral bonding to the reinforced concrete structure 210.
  • Reference numeral 225 denotes a welded portion at the joint surface between the flat bar 224 and the joining steel sheet 221, and 227 denotes the concrete 213 of the reinforced concrete structure 210 and the concrete of the steel plate concrete structure 230. The joint surface between 234 is shown.
  • the bonding method between the steel plate concrete structure (SC) and the reinforced concrete structure (RC) has been described as an example, but the present invention is also the same as the bonding method between the steel plate concrete structure (SC) and the steel reinforced concrete structure (SRC) Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

본 발명은 강판콘크리트 구조(SC)와 이질 구조간의 접합시 접합면에서의 응력 저하를 방지하고 벽체 구조물에 하중이 연속적이고 균등하게 전달되도록 함으로써 강판콘크리트 구조와 이질 구조간의 접합성능을 향상시킬 수 있는 강판콘크리트 구조와 이질 구조간의 접합 방법을 제공함에 그 목적이 있다. 이를 구현하기 위한 본 발명은, 서로 대향하여 이격 배치된 강판의 내측에 콘크리트가 충전되는 강판콘크리트 구조와, 철근 또는 철골철근에 콘크리트가 타설되는 이질의 콘크리트 구조간의 접합 방법에 있어서, 상기 이질의 콘크리트 구조 형성을 위해 콘크리트가 타설될 공간 둘레에 거푸집을 배치하고, 상기 거푸집의 내측에 철근 또는 철골철근을 수직·수평 방향으로 교차 결합되도록 배치하는 단계; 상기 거푸집의 내측면에서 상기 강판콘크리트 구조와 접합되는 방향의 일부면에 접합용 강판을 배치하는 단계; 상기 거푸집의 내측 공간에 콘크리트를 타설하여 이질의 콘크리트 구조를 형성하는 단계; 상기 접합용 강판에 상기 강판콘크리트 구조용 강판을 결합하는 단계; 및 상기 강판콘크리트 구조용 강판의 내측에 콘크리트를 타설하여 상기 강판콘크리트 구조를 상기 이질의 콘크리트 구조에 일체로 접합하는 단계;를 포함한다.

Description

강판콘크리트 구조와 이질 구조간의 접합 방법
본 발명은 강판콘크리트 구조와 이질 구조간의 접합 방법에 관한 것으로서, 더욱 상세하게는 강판콘크리트 구조와 접합되는 이질의 콘크리트 구조의 일부에 접합용 강판을 먼저 설치함으로써 이질의 콘크리트 구조에 후속하여 접합되는 강판콘크리트 구조와의 일체성 및 시공성을 확보하여 접합면에서의 응력 저하없이 하중이 연속적이고 균등하게 전달되도록 함으로써 강판콘크리트 구조와 이질의 콘크리트 구조간의 접합성능을 향상시킬 수 있는 강판콘크리트 구조와 이질 구조간의 접합 방법에 관한 것이다.
종래 구조물의 벽체 시공 방법에는 철근콘크리트 구조(RC; Reinforced Concrete), 철골철근콘크리트 구조(SRC; Steel framed Reinforced Concrete), 강판콘크리트 구조(SC; Steel plate Concrete)에 의한 시공 방법이 있다.
상기 철근콘크리트 구조(RC)는 콘크리트의 압축력과 철근의 인장력이 일체로 되어 서로의 결점을 보완한 구조이고, 철골철근콘크리트 구조(SRC)는 철골 뼈대를 철근콘크리트로 피복하고 보강한 구조로서, 외력은 철골이 부담하고 그 주위를 둘러싼 철근콘크리트는 화재시에 철골을 피복 및 보강할 수 있도록 구성된 것이다.
상기 철근콘크리트 구조(RC)와 철골철근콘크리트 구조(SRC)는 현장에서 거푸집과 철근이나 철골 등을 직접 조립하고 콘크리트를 타설하여 구조물을 시공하게 되므로 공사 기간이 길어지는 단점이 있었다.
이러한 문제를 보완할 수 있도록 개발된 강판콘크리트 구조(SC)는 대향하는 한 쌍의 강판 내측에 콘크리트를 충전하고, 콘크리트와 강판이 일체화되도록 강판의 내벽에 다수의 스터드(Stud)를 돌출 형성함과 동시에 강판 사이의 간격이 일정하게 유지되도록 강판의 내벽에 타이 바(Tie bar)의 양단이 결합된 구조로 이루어져 있다.
종래에는 구조물의 벽체 시공시 철근콘크리트 구조(RC), 철골철근콘크리트 구조(SRC), 강판콘크리트 구조(SC)의 각 동종 구조간의 접합 기술이 사용되고 있다. 철근콘크리트 구조(RC) 및 철골철근콘크리트 구조(SRC)에서의 동종 구조간의 벽체 접합 방법은, 벽체 내부에 철근 또는 철골을 설치하고 콘크리트를 타설함으로써 접합이 이루어지게 된다. 즉, 동종 구조간의 벽체 접합(연결) 부분에 특별한 접합 기술이 요구되는 것은 아니며, 단지 설계 및 시공 필요에 따라 접합면이 발생하게 된다. 이를 첨부된 도면을 참조하여 설명한다.
도 1과 도 2는 종래 철근콘크리트 구조의 벽체간 수직 접합의 종단면도로서, 도 1은 슬래브가 없는 경우, 도 2는 슬래브가 있는 경우의 종단면도이다.
종래 철근콘크리트 구조의 벽체 접합 방법은, 도 1에 도시된 바와 같이 하부 철근콘크리트 구조(10)를 완성한 후, 그 상부에 동종 구조의 상부 철근콘크리트 구조(20)가 접합된 것으로, 먼저 수직 철근(11)과 수평 철근(12)이 결합된 철근 구조물에 콘크리트(13)를 타설하여 하부 철근콘크리트 구조(10)를 형성하고, 콘크리트(13) 상단의 접합면(15)의 상측으로 돌출되도록 설치된 수직 철근(11)에 수직 철근(21)의 하단 일부를 결합하고 수직 철근(21)에 수평 철근(22)을 결합시킨 철근 구조물에 콘크리트(23)를 타설하여 상부 철근콘크리트 구조(20)를 형성함으로써 벽체 구조물을 시공하게 된다.
또 다른 경우로는, 도 2에 도시된 바와 같이 하부 철근콘크리트 구조(10)의 일측으로 슬래브 철근(31)과 수평 철근(32)이 결합된 철근 구조물에 콘크리트(33)를 타설하여 슬래브 철근콘크리트(30) 구조를 연결시켜 벽체 구조물을 시공하게 된다.
상기와 같이 종래의 구조인 철근콘크리트 구조(RC), 철골철근콘크리트 구조(SRC)는 공사기간의 단축에 한계가 있고, 새로운 구조라 할 수 있는 강판콘크리트 구조(SC)는 거푸집 해체와 철근 설치 작업 등이 생략되므로 공사기간이 단축되어 사용성이 커지고 있으나, 공기단축에 유리한 강판콘크리트 구조(SC)의 확대 적용을 위해서는 철근콘크리트 구조(RC)와의 접합기술이 필요하다.
그러나 종래에는 동종 구조간의 접합기술만을 적용하고 있을 뿐이며, 강판콘크리트 구조(SC)와 철근콘크리트 구조(RC) 또는 철골철근콘크리트 구조(SRC)와 같이 서로 다른 구조간의 접합기술의 개발이 미비하여, 접합면에서의 응력 저하가 발생하고 하중이 연속적으로 균등하게 전달되지 못하여 벽체 구조물이 취약해지는 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 강판콘크리트 구조(SC)와 이질 구조간의 접합시 접합면에서의 응력 저하를 방지하고 벽체 구조물에 하중이 연속적이고 균등하게 전달되도록 함으로써 강판콘크리트 구조와 이질 구조간의 접합성능을 향상시킬 수 있는 강판콘크리트 구조와 이질 구조간의 접합 방법을 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 강판콘크리트 구조와 이질 구조간의 접합 방법은, 서로 대향하여 이격 배치된 강판의 내측에 콘크리트가 충전되는 강판콘크리트 구조와, 철근 또는 철골철근에 콘크리트가 타설되는 이질의 콘크리트 구조간의 접합 방법에 있어서, 상기 이질의 콘크리트 구조 형성을 위해 콘크리트가 타설될 공간 둘레에 거푸집을 배치하고, 상기 거푸집의 내측에 철근 또는 철골철근을 수직·수평 방향으로 교차 결합되도록 배치하는 단계; 상기 거푸집의 내측면에서 상기 강판콘크리트 구조와 접합되는 방향의 일부면에 접합용 강판을 배치하는 단계; 상기 거푸집의 내측 공간에 콘크리트를 타설하여 이질의 콘크리트 구조를 형성하는 단계; 상기 접합용 강판에 상기 강판콘크리트 구조용 강판을 결합하는 단계; 및 상기 강판콘크리트 구조용 강판의 내측에 콘크리트를 타설하여 상기 강판콘크리트 구조를 상기 이질의 콘크리트 구조에 일체로 접합하는 단계;를 포함한다.
이 경우 상기 거푸집의 내측에 철근 또는 철골철근을 수직·수평 방향으로 교차 결합되도록 배치하는 단계에서, 상기 철근 또는 철골철근은 상기 이질의 콘크리트 구조의 내측 공간으로부터 상기 강판콘크리트 구조의 내측 공간까지 연장되도록 배치하는 것으로 구성될 수 있다.
또한 상기 접합용 강판과 상기 강판콘크리트 구조용 강판의 각각 대향하는 내측면에 복수의 스터드를 돌출 형성함과 동시에 상기 대향하는 내측면에는 타이 바의 양단이 고정되도록 결합하는 것으로 구성될 수 있다.
또한 상기 접합용 강판에 상기 강판콘크리트 구조용 강판을 결합하는 단계에서, 상기 접합용 강판의 단부와 상기 강판콘크리트 구조용 강판의 단부가 서로 접하도록 배치하고, 상기 접합용 강판과 상기 강판콘크리트 구조용 강판이 접하는 경계부의 내측면에 플랫 바를 배치하여, 상기 플랫 바와 상기 접합용 강판 및 상기 강판콘크리트 구조용 강판의 접합면을 서로 결합하는 것으로 구성될 수 있다.
또한 상기 플랫 바와 상기 접합용 강판 및 상기 강판콘크리트 구조용 강판의 접합면을 용접 또는 나사 결합에 의해 고정하는 것으로 구성될 수 있다.
본 발명에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법에 의하면, 강판콘크리트 구조(SC)와 이질 구조간의 접합을 일체화하여 구조성능(면내전단성능, 면외하중성능) 및 접합면의 시공성을 향상시킴으로써, 강판콘크리트 구조(SC)의 사용을 확대 적용할 수 있게 되므로 공사기간을 단축할 수 있는 효과가 있다.
또한 본 발명에 의하면, 강판콘크리트 구조(SC)와 이질 구조(RC 또는 SRC)가 접합부를 매개로 일체로 결합되어 접합면에서의 응력 저하없이 하중이 연속적이고 균등하게 전달되도록 함으로써 강판콘크리트 구조와 이질 구조간의 접합성능의 향상에 따른 벽체 구조물의 안정적인 시공이 가능한 효과가 있다.
도 1과 도 2는 종래 철근콘크리트 구조의 벽체간 수직 접합의 종단면도로서, 도 1은 슬래브가 없는 경우, 도 2는 슬래브가 있는 경우의 종단면도,
도 3과 도 4는 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조의 벽체간 수직 접합의 종단면도로서, 도 3은 슬래브가 없는 경우, 도 4는 슬래브가 있는 경우의 종단면도,
도 5 내지 도 8은 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법의 단계별 시공 순서를 보여주는 단면도,
도 9는 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법의 시공 순서도,
도 10은 본 발명의 다른 실시예에 따른 강판콘크리트 구조와 이질 구조의 벽체간 수평 접합의 평단면도이다.
* 부호의 설명 *
10 : 하부 철근콘크리트 구조 11 : 수직 철근
12 : 수평 철근 13 : 콘크리트
15 : 접합면 20 : 상부 철근콘크리트 구조
21 : 수직 철근 22 : 수평 철근
23 : 콘크리트 30 : 슬래브 철근콘크리트 구조
31 : 슬래브 철근 32 : 수평 철근
33 : 콘크리트 101 : 거푸집
110 : 철근콘크리트 구조 111 : 수직 철근
112 : 수평 철근 113 : 콘크리트
120 : 접합부 121 : 하부 강판
122 : 스터드 123 : 타이 바
124 : 플랫 바 125 : 용접부
126 : 체결볼트 130 : 강판콘크리트 구조
131 : 상부 강판 132 : 스터드
133 : 타이 바 134 : 콘크리트
140 : 슬래브 철근콘크리트 구조 141 : 바닥 강판
142 : 스터드 144 : 슬래브 철근
210 : 철근콘크리트 구조 211 : 수직 철근
212 : 수평 철근 213 : 콘크리트
221 : 접합용 강판 222 : 스터드
223 : 타이 바 224 : 플랫 바
225 : 용접부 226 : 체결볼트
227 : 접합면 230 : 강판콘크리트 구조
231 : 강판 232 : 스터드
233 : 타이 바 234 : 콘크리트
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 3과 도 4는 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조의 벽체간 수직 접합의 종단면도로서, 도 3은 슬래브가 없는 경우, 도 4는 슬래브가 있는 경우의 종단면도이다.
본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법은, 도 3과 도 4에 도시된 바와 같이 하부의 철근콘크리트 구조(110)의 상측에 접합부(120)를 매개로 강판콘크리트 구조(130)가 접합된 구조물의 시공 방법에 관한 것으로, 접합 방법의 단계를 설명하기에 앞서 강판콘크리트 구조와 이질 구조가 접합된 구조를 설명하면 다음과 같다.
도 3을 참조하면, 하부에 설치되는 철근콘크리트 구조(110)는, 수직 철근(111)과 수평 철근(112)에 콘크리트(113)가 타설되어 결합된 구조물로서, 상부 외측면의 일부에는 하부 강판(121)이 결합된 구조로 이루어진다.
상기 접합부(120)는 상기 철근콘크리트 구조(110)의 상측에 강판콘크리트 구조(130)를 일체로 접합하기 위한 매개수단으로서, 상기 하부 강판(121)을 포함하여 그 내측면에는 콘크리트(113)와의 부착을 용이하게 하기 위한 다수의 스터드(122)가 내측을 향해 돌출된 형상으로 결합되고, 서로 대향하는 하부 강판(121) 사이에는 이들 간의 이격 거리를 일정하기 유지하기 위한 타이 바(123)가 결합되어 있다.
그리고 상기 하부 강판(121)의 상단과 상부 강판(131)의 하단이 접하는 경계부의 내측에는 플랫 바(124)가 상기 하부 강판(121)의 내측면에 용접 결합되고, 상기 플랫 바(124)와 상부 강판(131)은 체결볼트(126)에 의해 결합되어 있다. 미설명부호 125는 플랫 바(124)와 하부 강판(121)간의 접합면에서의 용접부위를 나타낸 것이다.
상기 강판콘크리트 구조(130)는, 상부 강판(131)과 그 내측면에 다수의 스터드(132)와 타이 바(133)가 결합되어 있고, 상부 강판(131)의 내측으로 접합면(127)의 상측에는 콘크리트(134)가 충진되어 있는 구조로 이루어진다.
상기와 같이 하부의 철근콘크리트 구조(110)의 상부에 결합된 접합부(120)를 매개로 하여 상부의 강판콘크리트 구조(130)가 일체로 접합되므로 이질 구조간의 접합이 원활하게 이루어질 수 있고, 시공성이 향상됨은 물론 접합 부위에서의 강성과 내력이 향상되어 접합면(127)에서의 응력 저하를 방지하고 하중 분포를 균일하게 유지할 수 있게 된다.
도 4에 도시된 실시예는 도 3에 도시된 접합 구조에서 철근콘크리트 구조(110)의 일측으로 슬래브 철근콘크리트 구조(140)가 추가로 연결된 실시예를 나타낸 것으로, 상기 슬래브 철근콘크리트 구조(140)는 바닥 강판(141)의 상면에 다수의 스터드(142)가 구비되고, 상기 바닥 강판(141)의 상측 공간에는 수평 방향으로 슬래브 철근(144)과 콘크리트(113)로 타설된 구조로 이루어진 것이다.
이와 같이 본 발명에 의하면, 강판콘크리트 구조와 이질 구조간의 접합 구조가 수직 방향은 물론 수평 방향으로도 접합이 용이하므로 다양한 형태로 접합 구조의 설계가 가능하게 된다.
이하에서는 도 3에 도시된 실시예를 기준으로 본 발명에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법을 설명한다.
도 5 내지 도 8은 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법의 단계별 시공 순서를 보여주는 단면도, 도 9는 본 발명의 일실시예에 따른 강판콘크리트 구조와 이질 구조간의 접합 방법의 시공 순서도이다.
먼저, 도 5에 도시된 바와 같이 강판콘크리트 구조(130)와는 이질 구조인 철근콘크리트 구조(110)의 구현을 위해 콘크리트(113)가 타설될 공간 둘레에 거푸집(101)을 배치하고, 상기 거푸집(101)의 내측에 수직 철근(111)과 수평 철근(112)이 결합된 철근 구조물을 설치한다(S 10). 여기서, 상기 수직 철근(111)은 철근콘크리트 구조(110)의 상측에 접합되는 강판콘크리트 구조(130)의 내측 공간까지 연장되도록 설치된다.
그리고 거푸집(101)의 상부 내측면에는 대향하는 하부 강판(121)이 설치되고, 상기 하부 강판(121)의 내측면에는 다수의 스터드(122)가 형성되어 있고, 하부 강판(121) 사이에는 타이 바(123)의 양단이 결합되어 있어 하부 강판(121) 사이에 일정한 간격이 유지되도록 설치된다(S 20).
다음으로 하부 강판(121)의 상부 내측면에는 복수의 플랫 바(124)가 일정 간격으로 결합된다. 상기 플랫 바(124)는 후속하여 하부 강판(121)의 상측에 설치되는 상부 강판(131)과의 결합을 용이하게 하기 위한 것으로, 하부 강판(121)과 플랫 바(124) 간에는 접합면 둘레에 용접으로 결합될 수 있다.
그리고 도 6에 도시된 바와 같이, 거푸집(101)의 내측 공간에 콘크리트(113)를 타설하고 일정 시간 동안 양생하여 철근콘크리트 구조(110)를 완성한다(S 30).
다음으로 도 7에 도시된 바와 같이, 거푸집(101)을 분리 제거하고, 하부 강판(121)의 상측에 상부 강판(131)을 위치시키고, 상부 강판(131)과 플랫 바(124)를 체결볼트(126)로 결합한다(S 40).
본 실시예에서는 하부 강판(121)과 프랫 바(124)간에는 용접으로 결합하고, 상부 강판(131)과 플랫 바(124)간에는 체결볼트(126)를 통해 결합한 것으로 구성하였으나, 용접결합 방식을 적용할 수 있으며, 용접과 볼트결합 방식을 함께 적용하여 구성할 수 있다. 또한 상부 강판(131)과 플랫 바(124) 간의 결합을 용접 또는 볼트결합을 시키지 않은 경우, 상부 강판(131)과 하부 강판(121)을 용접결합하는 것으로 구성될 수 있다.
그리고 최종적으로 상부 강판(131)의 내측 공간으로 콘크리트(134)를 타설 및 양생함으로써 강판콘크리트 구조(130)를 철근콘크리트 구조(110)에 일체로 접합되도록 형성한다(S 50).
도 10은 본 발명의 다른 실시예에 따른 강판콘크리트 구조와 이질 구조의 벽체간 수평 접합의 평단면도이다.
상술한 실시예에서는 하부에 철근콘크리트 구조(110)가 위치하고 상부에 강판콘크리트 구조(130)가 수직으로 접합되는 구조물의 시공 방법에 대해 설명하였으나, 본 발명은 이에 한정되지 않으며, 도 10에 도시된 실시예에서와 같이 강판콘크리트 구조(210)와 철근콘크리트 구조(230)가 접합부(220)를 매개로 수평으로 접합되는 경우에도 적용될 수 있다.
도 10에 도시된 접합 구조물의 시공 방법은, 먼저 철근콘크리트 구조(210)가 형성될 부분의 내측 공간에 수직 철근(211)과 수평 철근(212)이 결합된 철근 구조물을 설치한다. 이때, 상기 수평 철근(212)은 강판콘크리트 구조(230)가 형성될 공간으로 까지 연장되도록 설치됨이 바람직하다.
다음으로 철근콘크리트 구조(210)가 형성될 공간 둘레에 거푸집(미도시됨)을 설치하고, 상기 거푸집의 일측 내측면에는 스터드(222)와 타이 바(223) 및 플랫 바(224)가 결합된 접합용 강판(221)을 고정한다. 그리고 상기 거푸집과 접합용 강판(221)으로 둘러싸인 내측 공간에 콘크리트(213) 타설 및 양생하여 철근콘크리트 구조(210)를 완성한다.
철근콘크리트 구조(210)가 완성되면, 거푸집을 분리 제거하고, 상기 접합용 강판(221)의 단부에 강판콘크리트 구조(230)를 구성하는 강판(231)의 단부를 접합하고, 체결볼트(226)에 의해 강판(231)과 플랫 바(224)를 서로 체결한다.
이 경우 상기 접합용 강판(221)과 강판(231) 및 플랫 바(224) 간의 결합은 상술한 실시예들에서와 동일한 방식으로 결합될 수 있다.
다음으로 상기 강판(231)으로 둘러싸인 내측 공간에 콘크리트(234)를 타설 및 양생함으로써 강판콘크리트 구조(230)를 철근콘크리트 구조(210)에 일체의 접합으로 형성하게 된다.
미설명부호 225는 플랫 바(224)와 접합용 강판(221)간의 접합면에서의 용접부위를 나타낸 것이고, 227은 철근콘크리트 구조(210)의 콘크리트(213)와 강판콘크리트 구조(230)의 콘크리트(234) 간의 접합면을 나타낸 것이다.
상기한 실시예들에서는 강판콘크리트 구조(SC)와 철근콘크리트 구조(RC)간의 접합 방법을 예로 들어 설명하였으나, 본 발명은 강판콘크리트 구조(SC)와 철골철근콘크리트 구조(SRC)간의 접합 방법에도 동일하게 적용될 수 있다.
또한 본 명세서에서는 강판콘크리트 구조(SC) 중 구조재(H 형강)가 없는 USC(Unstiffened Steel Plate Concrete) 구조를 예로 들어 설명하였으나, 구조재(H 형강)로 보강된 SSC(Stiffened Steel Plate Concrete) 구조를 적용하여 실시될 수 있음은 자명하다.

Claims (5)

  1. 서로 대향하여 이격 배치된 강판의 내측에 콘크리트가 충전되는 강판콘크리트 구조와, 철근 또는 철골철근에 콘크리트가 타설되는 이질의 콘크리트 구조간의 접합 방법에 있어서,
    상기 이질의 콘크리트 구조 형성을 위해 콘크리트가 타설될 공간 둘레에 거푸집을 배치하고, 상기 거푸집의 내측에 철근 또는 철골철근을 수직·수평 방향으로 교차 결합되도록 배치하는 단계;
    상기 거푸집의 내측면에서 상기 강판콘크리트 구조와 접합되는 방향의 일부면에 접합용 강판을 배치하는 단계;
    상기 거푸집의 내측 공간에 콘크리트를 타설하여 이질의 콘크리트 구조를 형성하는 단계;
    상기 접합용 강판에 상기 강판콘크리트 구조용 강판을 결합하는 단계; 및
    상기 강판콘크리트 구조용 강판의 내측에 콘크리트를 타설하여 상기 강판콘크리트 구조를 상기 이질의 콘크리트 구조에 일체로 접합하는 단계;를 포함하는 강판콘크리트 구조와 이질 구조간의 접합 방법.
  2. 제1항에 있어서,
    상기 거푸집의 내측에 철근 또는 철골철근을 수직·수평 방향으로 교차 결합되도록 배치하는 단계에서,
    상기 철근 또는 철골철근은 상기 이질의 콘크리트 구조의 내측 공간으로부터 상기 강판콘크리트 구조의 내측 공간까지 연장되도록 배치하는 것을 특징으로 하는 강판콘크리트 구조와 이질 구조간의 접합 방법.
  3. 제1항에 있어서,
    상기 접합용 강판과 상기 강판콘크리트 구조용 강판의 각각 대향하는 내측면에 복수의 스터드를 돌출 형성함과 동시에 상기 대향하는 내측면에는 타이 바의 양단이 고정되도록 결합하는 것을 특징으로 하는 강판콘크리트 구조와 이질 구조간의 접합 방법.
  4. 제1항에 있어서,
    상기 접합용 강판에 상기 강판콘크리트 구조용 강판을 결합하는 단계에서,
    상기 접합용 강판의 단부와 상기 강판콘크리트 구조용 강판의 단부가 서로 접하도록 배치하고, 상기 접합용 강판과 상기 강판콘크리트 구조용 강판이 접하는 경계부의 내측면에 플랫 바를 배치하여, 상기 플랫 바와 상기 접합용 강판 및 상기 강판콘크리트 구조용 강판의 접합면을 서로 결합하는 것을 특징으로 하는 강판콘크리트 구조와 이질 구조간의 접합 방법.
  5. 제4항에 있어서,
    상기 플랫 바와 상기 접합용 강판 및 상기 강판콘크리트 구조용 강판의 접합면을 용접 또는 나사 결합에 의해 고정하는 것을 특징으로 하는 강판콘크리트 구조와 이질 구조간의 접합 방법.
PCT/KR2010/006555 2010-09-14 2010-09-27 강판콘크리트 구조와 이질 구조간의 접합 방법 WO2012036335A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10857320.5A EP2617910A4 (en) 2010-09-14 2010-09-27 METHOD OF CONNECTING BETWEEN STEEL-TO-STEEL CONCRETE STRUCTURE AND DIFFERENT STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100090152A KR101011070B1 (ko) 2010-09-14 2010-09-14 강판콘크리트 구조와 이질 구조간의 접합 방법
KR10-2010-0090152 2010-09-14

Publications (1)

Publication Number Publication Date
WO2012036335A1 true WO2012036335A1 (ko) 2012-03-22

Family

ID=43616807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006555 WO2012036335A1 (ko) 2010-09-14 2010-09-27 강판콘크리트 구조와 이질 구조간의 접합 방법

Country Status (3)

Country Link
EP (1) EP2617910A4 (ko)
KR (1) KR101011070B1 (ko)
WO (1) WO2012036335A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103437423B (zh) * 2013-08-09 2017-02-08 广州市设计院 钢桁架的可控型定量释放连接方法及可控定量释放连接结构
KR101554206B1 (ko) 2013-11-28 2015-09-18 한국수력원자력 주식회사 서로 다른 두께의 강판콘크리트 벽체간 접합 구조
KR101504615B1 (ko) 2014-01-24 2015-03-20 한국수력원자력 주식회사 Rc-sc 접합부 기계적 이음장치
CN103924710B (zh) * 2014-04-25 2016-06-22 四川大学 低层装配式复合墙体房屋钢板焊接节点结构
CN105113664A (zh) * 2015-07-14 2015-12-02 上海核工程研究设计院 钢板-混凝土组合剪力墙与混凝土剪力墙正交连接方法
CN106013499A (zh) * 2016-06-08 2016-10-12 浙江新华建设有限公司 一种高强度建筑墙身结构
FR3060622B1 (fr) 2016-12-21 2020-10-02 Electricite De France Coffrage permanent a beton et procede de fabrication d'une structure composite metal-beton utilisant un tel coffrage
CN106988455B (zh) * 2017-04-12 2018-12-04 山东科技大学 钢板混凝土剪力墙现场拼接节点及其施工方法
KR102446358B1 (ko) * 2020-09-14 2022-09-21 한국수력원자력 주식회사 철근콘크리트와 강판콘크리트의 이음 구조 및 이음 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116125A (ja) * 1997-06-19 1999-01-12 Mitsubishi Heavy Ind Ltd コンクリート構造物
JP2003049489A (ja) * 2001-08-07 2003-02-21 Kajima Corp 鋼板コンクリート構造の継手構造
JP2009024359A (ja) * 2007-07-18 2009-02-05 Shimizu Corp 鋼板コンクリート構造体
JP2009084930A (ja) * 2007-10-02 2009-04-23 Railway Technical Res Inst 鋼部材とコンクリートによる複合構造物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605748B2 (ja) * 1980-07-14 1985-02-13 鹿島建設株式会社 ユニツト鋼製型枠による壁体の施工法
JPS61254727A (ja) * 1985-05-02 1986-11-12 鹿島建設株式会社 鋼板コンクリ−ト壁と鉄筋コンクリ−ト部材の接合方法
JPS62228543A (ja) * 1986-03-28 1987-10-07 鹿島建設株式会社 原子炉建屋における壁体開黒部の後打ち壁構造
JP2000240196A (ja) * 1999-02-23 2000-09-05 Kajima Corp 鋼板コンクリート構造のタイバー取付方法およびタイバー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116125A (ja) * 1997-06-19 1999-01-12 Mitsubishi Heavy Ind Ltd コンクリート構造物
JP2003049489A (ja) * 2001-08-07 2003-02-21 Kajima Corp 鋼板コンクリート構造の継手構造
JP2009024359A (ja) * 2007-07-18 2009-02-05 Shimizu Corp 鋼板コンクリート構造体
JP2009084930A (ja) * 2007-10-02 2009-04-23 Railway Technical Res Inst 鋼部材とコンクリートによる複合構造物

Also Published As

Publication number Publication date
EP2617910A4 (en) 2014-02-26
EP2617910A1 (en) 2013-07-24
KR101011070B1 (ko) 2011-01-25

Similar Documents

Publication Publication Date Title
WO2012036335A1 (ko) 강판콘크리트 구조와 이질 구조간의 접합 방법
WO2016129826A1 (ko) 안전성이 강화된 피씨 트러스 벽체 구조물 및 이를 이용한 지하구조물 시공방법
WO2016133291A2 (ko) 조립트러스 매립형 합성보
WO2016085187A1 (ko) 트러스거더 고정용 스페이서 및 이를 이용한 데크플레이트와 트러스거더 간의 결합구조
WO2013180347A1 (ko) 중공 구조체 및 그 제조방법
WO2009142416A9 (ko) 철근콘크리트 빔 단부연결용 보강재 및 이를 이용한 구조물 시공방법
WO2016021811A1 (ko) 선조립 벽체 유니트 및 프레임
WO2018074814A1 (ko) 프리캐스트 보와 기둥의 연결구조 및 이를 이용한 보와 기둥을 연결하는 공법
WO2012044094A2 (ko) 교량의 상부 구조물
WO2012044097A2 (ko) 교량용 바닥판 구조체
WO2019093540A1 (ko) V형 띠철근을 이용한 기둥 보강 구조
WO2012093836A2 (ko) 프리캐스트 또는 현장 타설로 만들어진 콘크리트 부재를 구비하는 복합빔 및, 그 시공방법
WO2010079872A1 (ko) 티형 강재를 이용한 합성보 제작방법 및 이를 이용한 구조물 시공방법
WO2012053730A1 (ko) 지점부의 이차 모멘트에 대응하는 트러스구조물과 이의 제작방법 및 지점부의 이차 모멘트에 대응하는 트러스구조물을 이용한 트러스교와 이의 시공방법
WO2016171374A1 (ko) 보 관통형 기둥접합부 및 이를 이용한 건축물 상하부 병행 구축 공법
WO2015147414A1 (ko) 강-콘크리트 합성부재용 선조립 골조
WO2012044096A2 (ko) 교량의 상부 구조물
WO2020231003A1 (ko) 강합성 콘크리트 부재용 선조립 철골 조립체와 경량 영구거푸집의 결합 구조
WO2015122615A1 (ko) 콘크리트 슬래브 합성구조용 용접빔 및 이를 이용한 기둥-보의 결합구조
WO2016182278A1 (ko) 모멘트 발생 크기에 따른 보강구조를 갖는 합성보 구조물 및 이를 이용한 시공방법
WO2012044013A2 (ko) 개단면 상현재를 갖는 트러스구조물과 이의 제작방법 및 개단면 상현재를 갖는 트러스구조물을 이용한 트러스교와 이의 시공방법
WO2017034354A1 (ko) 데크거푸집 고정 구조
WO2020145542A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드
WO2016143979A1 (ko) 메가컬럼 및 이의 시공방법
WO2020145541A1 (ko) 선조립 기둥용 탈형 거푸집 고정 밴드

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010857320

Country of ref document: EP