WO2012036211A1 - Pdgf-bb活性亢進による皮膚賦活化 - Google Patents

Pdgf-bb活性亢進による皮膚賦活化 Download PDF

Info

Publication number
WO2012036211A1
WO2012036211A1 PCT/JP2011/071017 JP2011071017W WO2012036211A1 WO 2012036211 A1 WO2012036211 A1 WO 2012036211A1 JP 2011071017 W JP2011071017 W JP 2011071017W WO 2012036211 A1 WO2012036211 A1 WO 2012036211A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdgf
skin
cells
stem cells
mesenchymal stem
Prior art date
Application number
PCT/JP2011/071017
Other languages
English (en)
French (fr)
Inventor
勤 相馬
治代 山西
弓子 石松
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Priority to EP11825211.3A priority Critical patent/EP2617835A4/en
Priority to JP2012534039A priority patent/JP5933443B2/ja
Priority to US13/823,211 priority patent/US20130184348A1/en
Publication of WO2012036211A1 publication Critical patent/WO2012036211A1/ja
Priority to US14/857,014 priority patent/US10017817B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/671Vitamin A; Derivatives thereof, e.g. ester of vitamin A acid, ester of retinol, retinol, retinal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5064Endothelial cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/148Screening for cosmetic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • the present invention relates to a skin activation method by enhancing platelet-derived growth factor-BB (PDGF-BB) activity.
  • PDGF-BB platelet-derived growth factor-BB
  • Stem cells are cells that have two properties: pluripotency that produces cells differentiated into a plurality of cells, and self-replication ability that produces the same cells as the cells by cell division.
  • Stem cells derived from embryos at the early developmental stage of fertilized eggs are called embryonic stem cells (ES cells).
  • ES cells embryonic stem cells
  • human ES cells are expected to be used for regenerative medicine, the creation of new human ES cells has not been approved due to the ethical problem of using fertilized eggs.
  • iPS cells artificial pluripotent stem cells
  • somatic stem cells having the ability to differentiate into a specific tissue are obtained from a patient's own body tissue, for example, bone marrow, and therefore have no ethical problems like embryonic stem cells.
  • Non-patent Document 1 epidermal stem cells
  • Non-patent Document 2 hair follicle epithelial stem cells
  • Non-patent Document 3 stem cells
  • the dermis there are elongate spindle-shaped fibroblasts among fiber components mainly composed of collagen, but it is not clear whether stem cells are present in the dermal fibroblasts.
  • Non-Patent Document 5 Mesenchymal stem cells isolated from bone marrow as progenitor cells of fibroblasts (Non-Patent Document 5) are used as various cells belonging to the mesenchymal system (bone cells, muscle cells, chondrocytes, tendon cells, fat cells, etc.). Because it differentiates, it is expected to be applied to regenerative medicine, such as reconstruction of bones, blood vessels, and muscles. Recently, the possibility of existing in many tissues having mesenchymal tissue has been clarified, and mesenchymal stem cells have also been isolated from fat, umbilical cord blood, placenta and the like (Non-patent Document 6- 8). However, the presence of mesenchymal stem cells in the dermis remains unclear.
  • mesenchymal stem cells have been found to be present in bone marrow, umbilical cord blood, and placenta as well as in fat. It was revealed that mesenchymal stem cells exist in the dermis as well as the underlying subcutaneous fat, and are localized in the vascular region. However, the mechanism by which these dermis and adipose mesenchymal stem cells are localized at the vascular site and the increase or decrease of these stem cells due to aging are still unclear.
  • the object of the present invention is to clarify the increase or decrease of mesenchymal stem cells in the dermis and subcutaneous fat due to aging, and to regulate the skin condition by adjusting the factors involved in the maintenance of mesenchymal stem cells at these sites It is to provide a way to improve.
  • mesenchymal stem cells are very few and cord blood and placenta are limited, the source of mesenchymal stem cells derived from self is limited. If mesenchymal stem cells can be isolated from the dermis, the skin can be a valuable source of mesenchymal stem cells for use in regenerative medicine and aesthetic medicine. Therefore, we have clarified that the dermis is present in mesenchymal stem cells as well as subcutaneous fat, and established a method for efficiently isolating mesenchymal stem cells from the dermis (Japanese Patent Application No. 2009-213291).
  • adipose-derived mesenchymal stem cells exert an antioxidant function in the skin. From these facts, the expression of endogenous PDGF-BB in vascular sites where dermal and subcutaneous fat mesenchymal stem cells are localized, more specifically, vascular endothelial cells that highly express PDGF-BB, is increased. In addition, skin aging can be suppressed by maintaining a large number of mesenchymal stem cells in subcutaneous fat.
  • this application encompasses the following inventions: [1] A method for screening a drug that activates the skin, wherein a drug that causes a candidate drug to act on vascular endothelial cells and enhances the expression of PDGF-BB in the cells is selected as a skin activator. how to. [2] The method according to [1], wherein the measurement is performed by measuring mRNA derived from PDGF-B in a cell by a real-time polymerase chain method. [3] A method of activating mesenchymal stem cells by increasing PDGF-BB activity or level in the blood vessel site of the skin, thus activating the skin and suppressing skin aging. [4] The method according to [3], wherein retinoic acid is applied to skin desired to suppress aging.
  • the present invention makes it possible to identify a novel skin activator.
  • the expression of the PDGF gene in vascular endothelial cells is shown. Shows the migration of dermal and adipose stem cells by PDGF®. The localization of PDGF-BB in the dermis is shown. The localization of PDGF-BB in the dermis is shown. The influence of PDGF-BB inhibition on the accumulation of dermis / adipose stem cells in the niche is shown. The change with the aging of the dermis and adipose stem cell in a human is shown. The change with the aging of the dermis and adipose stem cell in a human is shown. 3 shows enhancement of PDGF-BB production by retinoic acid.
  • the present invention is a method for screening a drug that activates the skin, wherein the candidate drug is allowed to act on vascular endothelial cells, and a drug that enhances the expression of PDGF-BB in the cells is selected as a skin activator. It relates to the method.
  • Platelet-derived growth factor is a growth factor involved in the regulation of the migration and proliferation of mesenchymal cells such as fibroblasts, smooth muscle cells, glial cells, etc., and is produced by various cells such as epithelial cells and endothelial cells.
  • mesenchymal cells such as fibroblasts, smooth muscle cells, glial cells, etc.
  • PDGF is known to express its physiological action through PDGF receptor (PDGFR), which is a tyrosine kinase-related type.
  • the gene for PDGF-B is known and has been cloned (Non-patent Document 10).
  • the mesenchymal cells used in the present invention may be any mammal, such as humans, chimpanzees, other primates, livestock animals such as dogs, cats, rabbits, horses, sheep, goats, cows, pigs, and other experimental animals. For example, derived from the dermis of rats, mice, guinea pigs and the like.
  • Skin activation as used in the present invention is not particularly limited, but generally, metabolism of skin tissue becomes active, turnover period is relatively short, tissue fatigue, atrophy, progress of oxidation, etc. are low. That means. Skin activation keeps the skin firm and prevents or improves fine wrinkles and spots.
  • the expression of the PDGF-BB gene in vascular endothelial cells may be determined, for example, by measuring the amount of PDGF-BB.
  • this measurement uses an antibody specific for PDGF-BB, and is a well-known method in the art, for example, an immunostaining method using a fluorescent substance, a dye, an enzyme, etc., a Western blot method, an immunoassay method, for example, Various methods such as ELISA and RIA can be used.
  • it can be determined by extracting total RNA from vascular endothelial cells and measuring the amount of mRNA encoding PDGF-B. Extraction of mRNA and measurement of the amount thereof are also well known in the art.
  • RNA is quantified by quantitative polymerase chain reaction (PCR), for example, real-time polymerase chain reaction (RT-PCR). Selection of suitable primers for RT-PCR can be carried out by methods well known to those skilled in the art.
  • the selection of the skin activator includes positive control using, for example, an agent that promotes PDGF-BB expression, such as retinoic acid, and an agent that inhibits PDGF-BB expression, such as siRNA of the PDGF-B gene. Whether or not the candidate drug enhances the expression of PDGF-BB in comparison with the negative control used can be examined, for example, using a statistical technique.
  • the present invention further evaluates the ability of a candidate agent to enhance the expression of a polynucleotide capable of hybridizing under high stringency conditions to a polynucleotide encoding PDGF-B (SEQ ID NO: 1) in vascular endothelial cells;
  • Hybridization can be performed according to a well-known method or a method analogous thereto, for example, the method described in J.
  • Sambrook et al., Molecular lon Cloning 2nd, Cold Spring ar Harbor Press, 1989, and high stringent hybridization conditions include, for example, This refers to conditions including a sodium concentration of about 10 to 40 mM, preferably about 20 mM, and a temperature of about 50 to 70 ° C., preferably about 60 to 65 ° C.
  • the present invention further provides that PDGF-BB with enhanced activity or increased expression level acts on mesenchymal stem cells by increasing PDGF-BB activity or levels at the blood vessel site of the skin, and as a result, the mesenchymal stem cells Relates to a cosmetic method that activates, activates the skin and therefore suppresses skin aging.
  • retinoic acid particularly tretinoic acid
  • This method is therefore carried out, for example, by applying retinoic acid to the skin where it is desired to suppress aging.
  • the gene encoding PDGF-B in a subject is in an inactive state or in a silenced state, and as a result, the cell is in a PDGF-B deficient or defective state
  • the PDGF-B gene itself is introduced into the cell.
  • the activity or level of PDGF-BB can be increased by using a vector incorporating the PDGF-BB gene.
  • a regulatory sequence that enhances the expression of the PDGF-B gene such as a promoter or an enhancer, is preferably arranged at a position where it can operate with respect to the PDGF-B gene.
  • a gene introduction method using a viral vector or a non-viral gene introduction method can be applied.
  • a gene transfer method using a viral vector for example, PDGF-B is encoded on a DNA virus such as a retrovirus, adenovirus, adeno-associated virus, herpes virus, vaccinia virus, poxvirus, poliovirus, symbis virus, or RNA virus. And a method for introducing and incorporating the DNA to be introduced.
  • Non-viral gene transfer methods include a method in which an expression plasmid is directly administered into muscle (DNA vaccine method), a liposome method, a lipofectin method, a microinjection method, a calcium phosphate method, an electroporation method, etc.
  • the vaccine method and the liposome method are preferred.
  • the DNA is introduced directly into the body, and certain types of cells are removed from the human body, and DNA is introduced into the cells outside the body, and the cells are returned to the body.
  • the in vivo method is more preferred.
  • it can be administered, for example, intravenously, artery, subcutaneously, intradermally, intramuscularly.
  • a conventional carrier may be added as necessary.
  • liposomes or membrane-fused liposomes Sendai virus (HVJ) -liposomes, etc.
  • they can be made into liposome preparations such as suspensions, freezing agents, and centrifugal concentrated freezing agents.
  • Epidermal keratinocyte KC and hair follicle epithelial cell outer root sheath cell ORSC are Epilife-KG2 medium (Kurabo)
  • skin fibroblast FB is DMEM medium (Invitrogen) supplemented with 10% FBS
  • human vascular endothelial cell HUVEC is EGM Growth culture was performed using -2 medium (Sanko Junyaku).
  • Isogen Nippon Gene
  • total RNA was extracted according to the provided protocol. The concentration of the purified total RNA was measured with a nucleic acid quantification device Nanodrop (Thermo scientific).
  • cDNA was synthesized with random primers (Invitrogen) and reverse transcriptase Superscript III (Invitrogen) according to the manual of Invitrogen. Quantitative PCR was performed using the synthesized cDNA as a template and the reaction reagent LightCycler FastStart DNA Master PLUS SYBR Green (Roche) and the reaction device LightCycler (Roche). Composition conditions followed the Roche protocol. The PCR conditions were initial denaturation at 95 ° C. for 10 minutes, denaturation at 95 ° C. for 10 seconds, annealing at 60 ° C. for 10 seconds, and extension at 72 ° C. for 10 seconds. The primer sequences used were as follows, and the expression level of the PDGF gene was measured using the software attached to LightCycler.
  • PDGF-A Forward primer: 5'-ATACCTCGCCCATGTTCTG-3 '(SEQ ID NO: 1) Reverse primer: 5'-GATGCTTCTCTTCCTCCGAA-3 '(SEQ ID NO: 2)
  • PDGF-B Forward primer: 5'-CTTTAAGAAGGCCACGGTGA-3 '(SEQ ID NO: 3) Reverse primer: 5'-CTTCAGTGCCGTCTTGTCAT-3 '(SEQ ID NO: 4)
  • PDGF-C Forward primer: 5'-TATATTAGGGCGCTGGTGTG-3 '(SEQ ID NO: 5) Reverse primer: 5'-ATTAAGCAGGTCCAGTGGCA-3 '(SEQ ID NO: 6)
  • PDGF-D Forward primer: 5'-TGGGAATCTGTCACAAGCTC-3 '(SEQ ID NO: 7) Reverse primer: 5'-CTTTTGACTTCCGGTCATGG-3 '(SEQ ID NO: 8)
  • G3PDH Forward primer: 5'-
  • G3PDH was used as an internal standard, and the cDNA amount of the control group was corrected using this when quantifying each gene.
  • MSC adipose-derived mesenchymal stem cells
  • MesenPro a medium for mesenchymal stem cells.
  • PDGF-AA a medium for mesenchymal stem cells.
  • PDGF-AB a medium for mesenchymal stem cells.
  • PDGF-BB R & D Systems
  • Nectin-coated cell insert was set, and 50,000 MSC suspended in StemPro medium were seeded. After overnight culture in a CO 2 incubator, the culture solution was removed by suction.
  • the cell inserter was immersed in a Hoechist 33258-PBS solution for 10 minutes to stain the cell nuclei adhering onto the cell insert. After washing with PBS, the back side of the cell insert was observed under a fluorescence microscope, and an image was taken. Five images were taken at random for each cell insert, and the number of migrated cells was counted.
  • Alexa 488 labeling diluted 200-fold with TBST containing 3% BSA-anti-sheep IgG and Alexa 594 labeling-
  • the mixture was reacted with a secondary antibody (Invitrogen) labeled with anti-rabbit IgG for 1 hour.
  • the sections were washed twice for 40 minutes twice with TBST and once for 40 minutes with TBS.
  • Hoechist 33258 using confocal fluorescence microscope LSM5 PASCAL (Zeiss) Observation and image capture were performed.
  • Vascular Endothelial Cell Tube Formation Assay HUVEC green fluorescent dye (PKH67 GREEN FLUORESCENT, Sigma) labeled with red fluorescent dye (PKH26 RED FLUORESCENT, Sigma) on 8-well chamber slide coated with In Vitro Angiogenesis Assay Kit After seeding with MSC labeled with, the mixture was incubated at 37 ° C. for 12 hours in the presence of 5% CO 2. Using a confocal fluorescence microscope LSM5 PASCAL (Zeiss), the state of the formed tube was observed and an image was taken. Mouse anti-PDGF receptor neutralizing antibody (R & D Systems) or isotype-matched mouse IgG was used at a concentration of 5 ⁇ g / ml.
  • PDGF-B gene expression level was determined in the same manner as described above using the following primers.
  • Reverse primer 5'-CCAATGGTCACCCGATTT-3 '(SEQ ID NO: 12)
  • Treatment was performed to activate the CD34 antigen.
  • mouse Anti-human CD34 antibody clone QBEND-10, clone 500 times diluted with TBST containing 3% BSA) Abcam
  • TBS serum-free blocking reagent
  • the mixture was reacted with an anti-mouse antibody staining reagent (histofine mouse stain kit, Nichirei) for 15 minutes.
  • Human vascular endothelial cells HUVEC were subcultured in EGM-2 medium (Sanko Junyaku), and the 4th generation cells were not containing VEGF-A Humedia- Suspended in EG2 medium (Kurabo), seeded at a rate of 20,000 in a collagen-coated 24-well multiplate (Asahi Glass), and cultured for 3-5 days at 37 ° C with 5% CO 2 in the presence of cells Went. After changing to Humedia-EG2 medium (Kurabo) supplemented with 1 ⁇ M, 10 ⁇ M retinoic acid, or solvent control DMSO, the cells were further cultured for 2 days.
  • Humedia-EG2 medium Humedia-EG2 medium (Kurabo) supplemented with 1 ⁇ M, 10 ⁇ M retinoic acid, or solvent control DMSO
  • PDGF-BB Quantikine ELISA kit R & D Systems
  • mRNA is extracted and purified from cultured cells using the RNA extraction reagent MagNA Pure LC mRNA HS kit (Roche) and automatic nucleic acid extraction device MagNA Pure LC 1.0 Instrument (Roche) according to the provided protocol. It was.
  • reaction reagent QuantiFast SYBR Green RT-PCR Kit Qiagen
  • reaction device LightCycler Roche Quantitative RT-PCR was performed. Composition conditions followed the Qiagen protocol. The RT-PCR conditions were: RT reaction at 50 ° C. for 20 minutes, initial denaturation at 95 ° C. for 15 minutes, denaturation at 94 ° C. for 15 seconds, annealing at 60 ° C. for 20 seconds, and extension at 72 ° C. for 30 seconds. G3PDH was used as an internal standard, and this was used to correct the amount of mRNA in the control group.
  • PDGF-A is very highly expressed in HUVEC, whereas it is hardly expressed in FB (Fig. 1).
  • PDGF-A was the same in KC, ORSC, and HUVEC and was about 4 times the FB, and PDGFC and PDGFD were significantly higher in FB ( Figure 1).
  • PDGF-BB was thought to work in the accumulation of mesenchymal stem cells in the vascular site.
  • Fig. 6 the number of mesenchymal stem cells decreased with aging
  • Fig. 7 PDGF-B gene expression was also senescent. From these facts, it is considered that the skin can be activated by increasing the number of mesenchymal stem cells by maintaining and enhancing PDGF-BB.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Dermatology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 皮膚を賦活化させる薬剤をスクリーニングする方法であって、候補薬剤を血管内皮細胞に作用させ、前記細胞のPDGF-BBの発現を亢進させる薬剤を皮膚賦活剤として選定することを特徴とする方法。

Description

PDGF-BB活性亢進による皮膚賦活化
 本発明は、血小板由来成長因子-BB(PDGF-BB)活性亢進による皮膚賦活化法に関する。
 幹細胞は、複数の細胞に分化した細胞を産生する多分化能と、細胞分裂によりその細胞と同じ細胞を産生する自己複製能という2つの性質を併せ持つ細胞である。受精卵の初期の発生段階である胚に由来する幹細胞は胚性幹細胞(ES細胞)と称される。ヒトES細胞は再生医療に使用することが期待されているものの、受精卵を利用するという倫理上の問題から新たなヒトES細胞の作成は認められていない。
 近年、ES細胞類似の性質を持つ細胞として、人工多能性幹細胞(iPS細胞)にも注目が集まっている。しかしながら、iPS細胞の作成には細胞の癌化、作成効率等の観点で多くの問題がある。一方、特定の組織に分化する能力を有する体性幹細胞は、患者自身の身体の組織、例えば骨髄から得られるため、胚性幹細胞のような倫理上の問題はない。
 皮膚では表皮基底層に表皮幹細胞(非特許文献1)が存在することが良く知られており、また毛包のバルジ領域と呼ばれる領域には、毛包上皮幹細胞(非特許文献2)や皮膚色素幹細胞(非特許文献3)が存在することが報告されている。一方、真皮にはコラーゲンを主体とする繊維成分の中に、細長い紡錘形をした線維芽細胞が存在しているが、真皮の線維芽細胞に幹細胞が存在するかは明らかにされていない。また、真皮には脂肪、グリア、軟骨、筋肉など複数の細胞系列に分化する皮膚由来前駆細胞(skin-derived precursors:SKP)が存在すること(非特許文献4)は知られているものの、真皮線維芽細胞とSKPの関連は明らかではない。
 線維芽細胞の前駆細胞として骨髄から分離された間葉系幹細胞(非特許文献5)は、間葉系に属するさまざまな細胞(骨細胞、筋細胞、軟骨細胞、腱細胞、脂肪細胞など)に分化することから、骨や血管、筋の再構築など再生医療への応用が期待されている。最近では、間葉系組織を持つ組織の多くに存在する可能性が明らかになってきており、脂肪や臍帯血、胎盤などからも間葉系幹細胞が単離されている(非特許文献6-8)。しかしながら、真皮における間葉系幹細胞の存在は依然として明らかにされていない。
Watt FM, J Dermatol Sci. 28:173-180, 2002 Cotsarelis G et al., Cell. 57:201-209, 1989 Nishimura EK et al., Nature. 416:854-860, 2002 Wong CE al., J Cell Biol. 175:1005-1015, 2006 Pittenger MF et al., Science. 284:143-147, 1999 Park KW et al., Cell Metab. 8:454-457, 2008 Flynn A, et al., Cytotherapy. 9:717-726,2007 Igura K et al., Cytotherapy. 6:543-553,2004 Kim WS et al., J Dermatol Sci. 53:96-102, 2009 Dalla-Favera R et al., Nature 292:31-35, 1981
 間葉系幹細胞は骨髄、臍帯血、胎盤に加えて脂肪にも存在することが明らかになっている。真皮にもその下の皮下脂肪と同様に間葉系幹細胞が存在し、さらに血管部位に局在することが明らかになった。しかし、これら真皮や脂肪の間葉系幹細胞が血管部位に局在する機構や、これら幹細胞の加齢による増減は依然として不明である。従って、本発明の課題は、加齢による真皮および皮下脂肪における間葉系幹細胞の増減を明らかにした上で、これらの部位における間葉系幹細胞の維持に関わる因子を調節することで皮膚状態を改善する方法を提供することにある。
 骨髄の間葉系幹細胞は非常にわずかであること、臍帯血や胎盤は対象が限定されることから、自己に由来する間葉系幹細胞のソースとしては限界がある。真皮から間葉系幹細胞が単離できれば、皮膚は再生医療や美容医療に使用する間葉系幹細胞の貴重な供給源になりうる。そこで我々は、真皮にも皮下脂肪と同様に間葉系幹細胞に存在することを明らかにするとともに、真皮から効率よく間葉系幹細胞を単離する方法を確立した(特願2009-213291)。これら真皮や皮下脂肪の間葉系幹細胞が血管部位に局在する機構や、これら幹細胞の加齢による増減は依然として不明であることから、本発明者が、真皮あるいは皮下脂肪において間葉系幹細胞の存在する部位をより詳細に明らかにするとともに、間葉系幹細胞を局在化させる因子を明らかにすることを目的に検討を行ったところ、PDGF-BBの関与が明らかになった。CD34陽性を示す真皮や皮下脂肪の間葉系幹細胞は加齢に伴い減少し、同様にPDGF-Bの遺伝子発現も加齢に伴い減少していた。脂肪由来の間葉系幹細胞を老化した皮膚に注入することで、シワなどの皮膚老化への改善効果が報告されている(非特許文献9)。あるいは、脂肪由来の間葉系幹細胞が皮膚において抗酸化機能を発揮することが分かってきた。これらのことから、真皮や皮下脂肪の間葉系幹細胞が局在する血管部位、より具体的にはPDGF-BBを高発現する血管内皮細胞で内因性のPDGF-BBの発現を高めて、真皮や皮下脂肪における間葉系幹細胞を多く保つことで皮膚老化を抑制することができる。
 したがって、本願は下記の発明を包含する:
[1]皮膚を賦活化させる薬剤をスクリーニングする方法であって、候補薬剤を血管内皮細胞に作用させ、前記細胞のPDGF-BBの発現を亢進させる薬剤を皮膚賦活剤として選定することを特徴とする方法。
[2]前記測定が、細胞中のPDGF-Bに由来するmRNAをリアルタイムポリメラーゼ連鎖方法により測定することにより実施される、[1]の方法。
[3]皮膚の血管部位でPDGF-BB活性又はレベルを増加させることにより、間葉系幹細胞を賦活化し、それ故皮膚を賦活化し、皮膚の老化を抑制する方法。
[4]老化の抑制を所望する皮膚にレチノイン酸を適用することによる、[3]の方法。
 本発明により新規の皮膚賦活剤の同定が可能となる。
血管内皮細胞でのPDGF遺伝子の発現を示す。 PDGF による真皮・脂肪幹細胞の遊走を示す。 真皮でのPDGF-BBの局在を示す。 真皮でのPDGF-BBの局在を示す。 真皮・脂肪幹細胞のニッチへの集積に対するPDGF-BB阻害の影響を示す。 ヒトにおける真皮・脂肪幹細胞の加齢による変化を示す。 ヒトにおける真皮・脂肪幹細胞の加齢による変化を示す。 レチノイン酸によるPDGF-BB産生の亢進を示す。
 本発明は、皮膚を賦活化させる薬剤をスクリーニングする方法であって、候補薬剤を血管内皮細胞に作用させ、前記細胞のPDGF-BBの発現を亢進させる薬剤を皮膚賦活剤として選定することを特徴とする方法に関する。
 血小板由来成長因子は線維芽細胞、平滑筋細胞、グリア細胞等といった間葉系細胞の遊走および増殖などの調節に関与する増殖因子であり、上皮細胞や内皮細胞など様々な細胞によって産生される。PDGFにはPDGF-A、B、CおよびDの少なくとも4種類が存在するが、A鎖およびB鎖はジスルフィド結合を形成することによりホモあるいはヘテロ2量体構造をとり3種類のアイソフォーム(PDGF-AA、AB、BB)を有している。PDGFはチロシンキナーゼ関連型であるPDGF受容体(PDGFR)を介してその生理作用を発現することが知られている。PDGF-Bの遺伝子は公知であり、遺伝子クローニングされている(非特許文献10)。
 本発明において使用する間葉系細胞は、あらゆる哺乳動物、例えばヒト、チンパンジー、その他の霊長類、家畜動物、例えばイヌ、ネコ、ウサギ、ウマ、ヒツジ、ヤギ、ウシ、ブタ、他に実験用動物、例えばラット、マウス、モルモットなどの真皮に由来し得る。
 本発明でいう皮膚の賦活とは、特に限定されるわけではないが、一般に皮膚組織の新陳代謝が活発となり、ターンオーバー期間が比較的短く、組織疲労や萎縮、酸化の進行などが低い状態となることをいう。皮膚の賦活により、肌のハリが保たれ、小ジワの形成、シミの形成などを防いだり、それらを改善することができる。
 血管内皮細胞中のPDGF-BB遺伝子の発現は、例えばPDGF-BBの量を測定することにより決定してよい。好ましくは、この測定は、PDGF-BBに特異的な抗体を利用し、当業界において周知の方法、例えば蛍光物質、色素、酵素等を利用する免疫染色法、ウェスタンブロット法、免疫測定方法、例えばELISA法、RIA法等、様々な方法により実施できる。また、例えば、血管内皮細胞中のtotal RNAを抽出し、PDGF-BをコードするmRNAの量を測定することにより決定することもできる。mRNAの抽出、その量の測定も当業界において周知であり、例えばRNAの定量は定量ポリメラーゼ連鎖反応(PCR)法、例えばリアルタイムポリメラーゼ連鎖反応(RT-PCR)により行われる。RT-PCRに適切なプライマーの選定は、当業者周知に方法により実施することができる。
 本発明者は、また、レチノイン酸がPDGF-BBの発明を亢進させることを見出した。したがって、皮膚賦活剤の選定は、例えばレチノイン酸といったPDGF-BBの発現促進効果を有する薬剤などを用いたポジティブコントロールや、PDGF-BB発現阻害効果を有する薬剤、例えばPDGF-B遺伝子のsiRNAなどを用いたネガティブコントロールとの対比において、候補薬剤がPDGF-BB の発現を亢進させるかどうかを例えば統計学的手法を介して調べ、行うことができる。
 本発明はさらに、候補薬剤を血管内皮細胞中のPDGF-B(配列番号1)をコードするポリヌクレオチドに対し高ストリンジェント条件下でハイブリダイゼーション可能なポリヌクレオチドの発現を亢進する能力について評価し、当該亢進能力を有する候補薬剤を皮膚賦活剤として選定することを特徴とする方法を提供する。ハイブリダイゼーションは周知の方法又はそれに準じる方法、例えばJ.SambrookらMolecular Cloning 2nd, Cold Spring Harbor Lab. Press, 1989に記載の方法に従って行うことができ、そして高ストリンジェントなハイブリダイゼーション条件とは、例えばナトリウム濃度が約10~40mM、好ましくは約20mM、温度が約50~70℃、好ましくは約60~65℃であることを含む条件をいう。
 本発明はさらに、皮膚の血管部位でPDGF-BB活性又はレベルを増加させることにより、活性が亢進又は発現レベルの増加したPDGF-BBが間葉系幹細胞に作用し、その結果該間葉系幹細胞が賦活化し、皮膚が賦活し、それ故皮膚老化を抑制する美容学的方法に関する。上記のとおり、本発明者はレチノイン酸、特にトレチノイン酸がPDGF-BBの発明を亢進させることを見出した。したがってこの方法は、例えば老化の抑制を所望する皮膚にレチノイン酸を適用することにより実施される。
 また、被験体におけるPDGF-Bをコードする遺伝子が不活性状態又は沈黙状態にあり、その結果細胞がPDGF-B欠損又は欠陥状態にあるときは、PDGF-B遺伝子自体を細胞内に導入するために、PDGF-BB遺伝子を組み込んだベクターを使用し、PDGF-BBの活性又はレベルを増加させることができる。該ベクターにおいては、PDGF-B遺伝子の発現を亢進させる調節配列、例えばプロモーターやエンハンサーを、PDGF-B遺伝子に対し作動可能な位置に配置することが好ましい。
 PDGF-B遺伝子を細胞内に導入する方法としては、ウイルスベクターを利用した遺伝子導入方法、あるいは非ウイルス性の遺伝子導入方法(日経サイエンス、1994年4月号、20-45頁、実験医学増刊、12(15)(1994)、実験医学別冊「遺伝子治療 の基礎技術」、羊土社(1996))のいずれの方法も適用することができる。ウイルスベクターによる遺伝子導入方法としては、例えばレトロウイルス、アデノウイルス、アデノ関連ウイルス、ヘルペスウイルス、ワクシニアウイルス、ポックスウイルス、ポリオウイルス、シンビスウイルス等のDNAウイルス、又はRNAウイルスに、PDGF-BをコードするDNAを組み込んで導入する方法が挙げられる。このうち、レトロウイルス、アデノウイルス、アデノ関連ウイルス、ワクシニアウイルスを用いた方法が、特に好ましい。非ウイルス性の遺伝子導入方法としては、発現プラスミドを直接筋肉内に投与する方法(DNAワクチン法)、リポソーム法、リポフェクチン法、マイクロインジェクション法、リン酸カルシウム法、エレクトロポレーション法等が挙げられ、特にDNAワクチン法、リポソーム法が好ましい。また、上記遺伝子を実際に医薬として作用させるには、DNAを直接体内に導入する in vivo 法、およびヒトからある種の細胞を取り出し体外でDNAを該細胞に導入し、その細胞を体内に戻すex vivo法がある(日経サイエンス、1994年4月号、20-45頁、月刊薬事、36(1), 23-48(1994)、実験医学増刊、12(15)(1994))。in vivo 法がより好ましい。in vivo 法により投与される場合は、例えば、静脈、動脈、皮下、皮内、筋肉内等に投与することができる。in vivo 法により投与する場合は、一般的には注射剤等とされ、必要に応じて慣用の担体を加えてもよい。また、リポソームまたは膜融合リポソーム(センダイウイルス(HVJ)-リポソーム等)の形態にした場合は、懸濁剤、凍結剤、遠心分離濃縮凍結剤等のリポソーム製剤とすることができる。
 次に実施例によって本発明をさらに詳細に説明する。なお、本発明はこれにより限定されるものではない。
実験方法
ヒト皮膚構成細胞におけるPDGF-B遺伝子発現量の測定
 ヒト皮膚の構成細胞におけるPDGF-B遺伝子発現量を定量PCR法で調べた。表皮角化細胞KCおよび毛包上皮細胞である外毛根鞘細胞ORSCはEpilife-KG2培地(クラボウ)、皮膚線維芽細胞FBは10%FBS添加のDMEM培地(Invitrogen)、ヒト血管内皮細胞HUVECはEGM-2培地(三光純薬)を用いて増殖培養を行った。各細胞をIsogen(ニッポンジーン)に回収して、提供されたプロトコールに従いtotal RNAを抽出した。精製したtotal RNAの濃度は核酸定量装置Nanodrop(Thermo scientific)により測定した。各サンプルについて同量のtotal RNAを用いて、ランダムプライマー(Invitrogen)と逆転写酵素Superscript III(Invitrogen)により、Invitrogen社のマニュアルに従いcDNAを合成した。合成したcDNAを鋳型に反応試薬LightCycler FastStart DNA Master PLUS SYBR Green (Roche)、反応装置LightCycler(Roche)を用いて定量PCRを行った。組成条件はRocheのプロトコールに従った。また、PCRの条件は、初期変性95℃で10分、変性95℃で10秒、アニール60℃で10秒、伸長72℃で10秒とした。使用したプライマーの配列は以下の通であり、LightCyclerの附属のソフトウェアを用いて、PDGF遺伝子の発現量を測定した。
PDGF-A:
フォワードプライマー:5‘-ATACCTCGCCCATGTTCTG-3‘(配列番号1)
リバースプライマー:5‘-GATGCTTCTCTTCCTCCGAA-3‘(配列番号2)
PDGF-B:
フォワードプライマー:5‘-CTTTAAGAAGGCCACGGTGA-3‘(配列番号3)
リバースプライマー:5‘-CTTCAGTGCCGTCTTGTCAT-3‘(配列番号4)
PDGF-C:
フォワードプライマー:5‘-TATATTAGGGCGCTGGTGTG-3‘(配列番号5)
リバースプライマー:5‘-ATTAAGCAGGTCCAGTGGCA-3‘(配列番号6)
PDGF-D:
フォワードプライマー:5‘-TGGGAATCTGTCACAAGCTC-3‘(配列番号7)
リバースプライマー:5‘-CTTTTGACTTCCGGTCATGG-3‘(配列番号8)
G3PDH:
フォワードプライマー:5‘-GCACCGTCAAGGCTGAGAAC-3‘(配列番号9)
リバースプライマー:5‘-ATGGTGGTGAAGACGCCAGT-3‘(配列番号10)
 なお、G3PDHは内部標準として用い、各遺伝子それぞれの定量時において、これを用いて対照群のcDNA量を補正した。
遊走能の評価
 市販の脂肪由来の間葉系幹細胞MSCを購入して間葉系幹細胞用培地 MesenPro (Invitrogen)で継代培養を行った。次に、24穴培養プレートに無血清のMSC用培地StemPro培地(Invitrogen)にPDGF-AA、PDGF-ABあるいはPDGF-BB(R&D Systems)を5~30ng/mlの濃度で加え、その上にファイブロネクチンコートセルインサート(BD bioscience)をセットし、StemPro培地に懸濁したMSC 50,000個を播種した。CO2インキュベーターで一晩培養を行った後、培養液を吸引除去した。続いて、セルインサーをHoechist 33258-PBS溶液に10分間浸漬してセルインサート上に接着している細胞の核を染色した。PBSで洗浄した後、セルインサートの裏側を蛍光顕微鏡下で観察して画像の撮影を行った。各セルインサートについてランダムに5枚の画像を撮影、移動した細胞の数をカウントした。
ヒト皮膚組織におけるPDFG-BBの局在部位
 ヒト皮膚組織を凍結組織包埋剤OTCコンパウンド(サクラファインテックジャパン)に包埋し、凍結切片作製装置クライオスタット(Leica)にて50μmの凍結切片を作製した。室温で風乾した凍結切片を、-20℃で15分間冷却した冷アセトンを用いて室温で15分間固定した。次に、TBSで洗浄後に無血清ブロッキング試薬(DAKO)で30分間ブロッキング処理を行い、3%BSA含有のTBSTで100倍に希釈したウサギAnti-ヒトPDGF-BB抗体(Abcam)とヒツジAnti-ヒトCD31抗体(R&D systems)と4℃で一晩反応させた。TBSTで40分間を2回、TBSで40分間を1回の計3回の洗浄を行った後、3%BSA含有のTBSTで200倍希釈したAlexa 488標識-anti-sheep IgG とAlexa 594標識-anti-rabbit IgG標識の二次抗体(Invitrogen)と1時間反応させた。反応後の切片をTBSTで40分間を2回、TBSで40分間を1回の計3回洗浄した後、Hoechist 33258で核染色を行ってから、共焦点蛍光顕微鏡 LSM5 PASCAL(Zeiss)を用いて観察および画像取り込みを行った。
血管内皮細胞チューブ形成アッセイ
 In Vitro Angiogenesis Assay Kitを用いてコーティングした8穴のチャンバースライドに、赤色の蛍光色素(PKH26 RED FLUORESCENT, Sigma)で標識したHUVEC、緑色の蛍光色素(PKH67 GREEN FLUORESCENT, Sigma)で標識したMSCを播種した後、5%CO2 存在下、37℃で12時間インキュベートした。共焦点蛍光顕微鏡 LSM5 PASCAL(Zeiss)を用いて、形成されたチューブの状態を観察、画像の撮影を行った。また、マウス抗PDGFレセプター中和抗体(R&D Systems)またはアイソタイプの一致するマウスIgGは5μg/mlの濃度で使用した。
定量PCR法によるヒト皮膚におけるPDGF遺伝子発現量の測定
 ヒト皮膚組織を液体窒素で凍結、クライオプレス(マイクロテック・ニチオン)を用いて液体窒素の冷却下において組織の破砕処理を行った。サンプルをIsogen(ニッポンジーン)に回収して、提供されたプロトコールを用いて皮膚のtotal RNAを抽出した。PDGF-B遺伝この発現量は、以下のプライマーを用いて前述と同様の方法で行った。
PDGF-B:
フォワードプライマー:5‘-CCTGGCATGCAAGTGTGA-3‘(配列番号11)
リバースプライマー:5‘-CCAATGGTCACCCGATTT-3‘(配列番号12)
 皮膚におけるヒト間葉系幹細胞の染色
 ヒト皮膚組織をホルマリン-リン酸緩衝液で1週間まで固定した後、自動包埋機(サクラファインテックジャパン)を用いてパラフィンに包埋した。得られたヒト皮膚パラフィンブロックからミクロトーム(Leica)にて6μmの組織切片を作製、APSコートスライドガラスに貼り付けて伸展機(サクラファインテックジャパン)の上で伸展・乾燥させた。作製した皮膚組織スライドについて、キシレンによる脱パラフィンとエタノール/水系列での親水処理を行いさらにTBS緩衝液でリンスしてから、20μg/mlのProteinase K(Roche)と37℃で15分間の酵素反応処理を行ってCD34抗原を賦活化させた。次に、TBSTで十分に洗浄した後、無血清ブロッキング試薬(DAKO)で15分間ブロッキング処理を行い、3%BSA含有のTBSTで500倍に希釈したマウスAnti-ヒトCD34抗体(クローンQBEND-10、Abcam)と室温で1時間反応させた。TBSTで15分間を2回、TBSで15分間を1回の計3回の洗浄を行った後に、抗マウス抗体用染色試薬(ヒストファインマウスステインキット、ニチレイ)と15分間反応させた。次に、反応後の切片をTBSTで15分間を2回、TBSで15分間を1回の計3回洗浄した後、ペルオキシダ-ゼ標識ストレプトアビジン(ニチレイ)と15分間の反応を行った。反応後の切片をTBSTで15分間を2回、TBSで15分間を1回の計3回洗浄した後、シンプルステインDAB溶液(ニチレイ)を用いて発色反応を行った。対比染色は行わずに蒸留水でリンスした後、エタノール/水系列による脱水とキシレンによる透徹処理を行い、さらにマウントクイック(大道産業)とカバーガラスを用いて封入した。微分干渉顕微鏡(Olympus BX51 )で対物20倍のレンズにて画像取り込みを行い、それぞれの切片に対して10枚の画像についてCD34陽性細胞の数をカウントした。
血管内皮細胞におけるPDGF-Bの産生亢進作用の評価
 ヒト血管内皮細胞HUVECをEGM-2培地(三光純薬)で継代培養を行い、継代4代目の細胞をVEGF-Aを含まないHumedia-EG2培地(クラボウ)に懸濁してコラーゲンコート24穴マルチプレート(旭硝子)に20,000個の割合で播種、5%CO2 存在下、37℃で細胞が集密に達するままで3~5日間の培養を行った。レチノイン酸1μM、10μMあるいは溶媒コントロールDMSOを添加したHumedia-EG2培地(クラボウ)に交換した後、さらに2日間培養を行った。培養終了時に培養上清を回収、ヒトPDGF-BB Quantikine ELISAキット(R&D Systems)を用いて、提供されたプロトコールに従いPDGF-BBの定量を行った。また、培養後の細胞からRNA抽出試薬MagNA Pure LC mRNA HSキット(Roche)と自動核酸抽出装置MagNA Pure LC 1.0 インスツルメント(Roche)を用いて、提供されたプロトコールに従ってmRNAの抽出・精製を行った。各サンプルについて同容量のmRNAを鋳型に、配列番号9と10のプライマーペアー、反応試薬QuantiFast SYBR Green RT-PCR Kit(Qiagen)と反応装置LightCycler(Roche)を用いて、PDGF-B遺伝子のワンステップ定量RT-PCRを行った。組成条件はQiagenのプロトコールに従った。また、RT-PCRの条件は、RT反応50℃で20分、初期変性95℃で15分、変性94℃で15秒、アニール60℃で20秒、伸長72℃で30秒とした。なお、G3PDHは内部標準として用い、これを用いて対照群のmRNA量を補正した。
結果
 ヒト皮膚において間葉系幹細胞が血管部位に局在していることが明らかになっている(特願2009-213291)。線維芽細胞の遊走因子として知られるPDGFファミリーについて、血管部位で発現が高い分子種を調べる目的で、4つの遺伝子PDGF-A、PDGF-B、PDGF-C、PDGF-Dの皮膚構成細胞での発現を比較した結果、PDGF-BはHUVECにおいて非常に発現が高く、一方でFBではほとんど発現していないことが明らかになった(図1)。その他、PDGF-AはKC、ORSC、HUVECで同等かつFBの4倍程度、PDGFCとPDGFDはFBでの発現が顕著に高い結果であった(図1)。HUVECでPDGFAとPDGFBの発現が認められたことから、これらの遺伝子から生じるPDGF タンパク質のPDGF-AA、PDGF-AB、PDGF-BBの間葉系幹細胞の遊走能への影響を調べた。その結果、PDGF-BBがPDGF-AAやPDGF-ABと比較して有意に、幹細胞の遊走能を亢進することが明らかになった(図2)。
 次に、真皮や皮下脂肪におけるPDGF-BBの局在を調べたところ、太い血管部位において血管マーカーCD31と一致して分布していた(図3)。太い血管部位での分布状態を共焦点レーザー顕微鏡で観察したところ、PDGF-BBは血管内皮細胞の外側かつ周皮細胞(=真皮幹細胞)の間に存在していることが分かった(図4)。さらに、血管内皮細胞チューブ形成アッセイに間葉系幹細胞を加えるとそのほとんどが分岐部に集積するのに対して、PDGF-BBのレセプターPDGFRβの中和抗体存在下では分岐部への集積が阻害され(図5)、血管部位への間葉系幹細胞の集積にPDGF-BBが働いていると考えられた。ヒト皮膚における間葉系幹細胞およびPDGF-BBの加齢変化を調べたところ、老化に伴い間葉系幹細胞の数が減少していること(図6)、PDGF-B遺伝子の発現も同様に老化で減少することが分かった(図7)。これらのことから、PDGF-BBを維持・亢進することにより間葉系幹細胞を多くすることで、皮膚を賦活化できる可能性が考えられる。
 そこで、PDGF-BBの発現を亢進する薬剤についてELISA法および定量PCR法で調べた結果、トレチノイン(all trans retinoic acid)に濃度依存的な活性を見出した(図8)。

Claims (3)

  1.  皮膚を賦活化させる薬剤をスクリーニングする方法であって、候補薬剤を血管内皮細胞に作用させ、前記細胞のPDGF-BBの発現を亢進させる薬剤を皮膚賦活剤として選定することを特徴とする方法。
  2.  前記測定が、細胞中のPDGF-Bに由来するmRNAをリアルタイムポリメラーゼ連鎖方法により測定することにより実施される、請求項1に記載の方法。
  3.  皮膚の血管部位でPDGF-BB活性又はレベルを増加させることにより、間葉系幹細胞を賦活化し、それ故皮膚を賦活化し、皮膚の老化を抑制する方法。
PCT/JP2011/071017 2010-09-17 2011-09-14 Pdgf-bb活性亢進による皮膚賦活化 WO2012036211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11825211.3A EP2617835A4 (en) 2010-09-17 2011-09-14 SKIN ACTIVATION BY STRENGTHENING THE PDGF-BB ACTIVITY
JP2012534039A JP5933443B2 (ja) 2010-09-17 2011-09-14 Pdgf−bb活性亢進による皮膚賦活化
US13/823,211 US20130184348A1 (en) 2010-09-17 2011-09-14 Skin activation by acceleration of pdgf-bb activity
US14/857,014 US10017817B2 (en) 2010-09-17 2015-09-17 Skin activation by acceleration of PDGF-BB activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010209705 2010-09-17
JP2010-209705 2010-09-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/823,211 A-371-Of-International US20130184348A1 (en) 2010-09-17 2011-09-14 Skin activation by acceleration of pdgf-bb activity
US14/857,014 Division US10017817B2 (en) 2010-09-17 2015-09-17 Skin activation by acceleration of PDGF-BB activity

Publications (1)

Publication Number Publication Date
WO2012036211A1 true WO2012036211A1 (ja) 2012-03-22

Family

ID=45831667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071017 WO2012036211A1 (ja) 2010-09-17 2011-09-14 Pdgf-bb活性亢進による皮膚賦活化

Country Status (5)

Country Link
US (2) US20130184348A1 (ja)
EP (1) EP2617835A4 (ja)
JP (1) JP5933443B2 (ja)
TW (1) TWI564013B (ja)
WO (1) WO2012036211A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194760A1 (ja) * 2015-05-29 2016-12-08 ロート製薬株式会社 美容方法およびそれに用いる皮膚外用剤、並びに遊走付与剤、皮膚状態を向上させる美容方法に用いられる成分のスクリーニング方法
JPWO2019017356A1 (ja) * 2017-07-18 2020-05-28 株式会社 資生堂 抗老化物質のスクリーニング方法
WO2021084665A1 (ja) * 2019-10-30 2021-05-06 株式会社 資生堂 血小板由来成長因子(pdgf)-bb産生亢進剤、及びそれを含む幹細胞安定化剤、並びにそれらを含む皮膚抗老化剤
US11427807B2 (en) * 2013-06-12 2022-08-30 Shiseido Company, Ltd. Serum-free medium containing PDGF for DS cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213291A (ja) 2008-03-05 2009-09-17 Toyota Industries Corp 永久磁石式回転電機の回転子
JP2009213921A (ja) 2009-06-29 2009-09-24 Daiichi Shokai Co Ltd 遊技機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE296117T1 (de) * 1997-03-07 2005-06-15 Wistar Inst Verwendung von adenoviralen vektoren, die pdgf oder vegf exprimieren, zur heilung von gewebsdefekten und zur induzierung der hypervaskulität in säugergeweben
EP2040804A1 (en) * 2006-06-12 2009-04-01 Chanel Parfums Beauté Cosmetic use of active ingredients increasing the production of growth factors
US20080119433A1 (en) * 2006-07-06 2008-05-22 Aaron Thomas Tabor Compositions and Methods for Genetic Modification of Cells Having Cosmetic Function to Enhance Cosmetic Appearance
JP5311439B2 (ja) * 2006-12-27 2013-10-09 日本メナード化粧品株式会社 皮膚の状態を評価する方法及びその用途
KR101229914B1 (ko) * 2009-03-06 2013-02-05 주식회사 엘지생활건강 싸이토카인을 함유하는 피부 상태 개선용 화장료 조성물
CN101785852A (zh) * 2010-01-21 2010-07-28 孙杰 一种真皮层微量介入美容抗衰除皱制剂与方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213291A (ja) 2008-03-05 2009-09-17 Toyota Industries Corp 永久磁石式回転電機の回転子
JP2009213921A (ja) 2009-06-29 2009-09-24 Daiichi Shokai Co Ltd 遊技機

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Basic Technologies of Gene Therapy", 1996, YODOSHA CO., LTD., article "Experimental Medicine Supplement"
COTSARELIS, G. ET AL., CELL, vol. 57, 1989, pages 201 - 209
DALLA-FAVERA, R. ET AL., NATURE, vol. 292, 1981, pages 31 - 35
EXPERIMENTAL MEDICINE SPECIAL, vol. 12, no. 15, 1994
FLYNN, A. ET AL., CYTOTHERAPY, vol. 9, 2007, pages 717 - 726
GUO ZE-JUN ET AL.: "Differentiation of adult adipose-derived mesenchymal stem cells into smooth muscle cells induced by PDGF-BB in vitro.", ZHONGGUO YAOWU YU LINCHUANG, vol. 9, no. 4, 2009, pages 301 - 303 *
IGURA, K. ET AL., CYTOTHERAPY, vol. 6, 2004, pages 543 - 553
JAPAN MEDICINE MONTHLY, vol. 36, no. 1, 1994, pages 23 - 48
KIM WS ET AL.: "Antiwrinkle effect of adipose- derived stem cell: Activation of dermal fibroblast by secretory factors.", J. DERMATOL. SCI., vol. 53, no. 2, 2009, pages 96 - 102, XP025815305 *
KIM, W.S. ET AL., J. DERMATOL. SCI., vol. 53, 2009, pages 96 - 102
NIKKEI SCIENCE, April 1994 (1994-04-01), pages 20 - 45
NIKKEI SCIENCE, pages 20 - 45
NISHIMURA, E.K. ET AL., NATURE, vol. 416, 2002, pages 854 - 860
PARK, K.W. ET AL., CELL METAB., vol. 8, 2008, pages 454 - 457
PITTENGER, M.F. ET AL., SCIENCE, vol. 284, 1999, pages 143 - 147
SAMBROOK ET AL.: "Molecular Cloning", 1989, COLD SPRING HARBOR LAB. PRESS
See also references of EP2617835A4 *
TSUTOMU SOMA ET AL.: "Shinpi ni Okeru Kan'yokei Kansaibo no Kyokuzai to Tokusei ni Kansuru Kaiseki", REGENERATIVE MEDICINE, vol. 9, February 2010 (2010-02-01), pages 239, XP008155396 *
WATT, F.M., J. DERMATOL. SCI., vol. 28, 2002, pages 173 - 180
WONG, C.E. ET AL., J. CELL BIOL., vol. 175, 2006, pages 1005 - 1015

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11427807B2 (en) * 2013-06-12 2022-08-30 Shiseido Company, Ltd. Serum-free medium containing PDGF for DS cells
WO2016194760A1 (ja) * 2015-05-29 2016-12-08 ロート製薬株式会社 美容方法およびそれに用いる皮膚外用剤、並びに遊走付与剤、皮膚状態を向上させる美容方法に用いられる成分のスクリーニング方法
JPWO2016194760A1 (ja) * 2015-05-29 2018-03-15 ロート製薬株式会社 美容方法およびそれに用いる皮膚外用剤、並びに遊走付与剤、皮膚状態を向上させる美容方法に用いられる成分のスクリーニング方法
JPWO2019017356A1 (ja) * 2017-07-18 2020-05-28 株式会社 資生堂 抗老化物質のスクリーニング方法
JP7258749B2 (ja) 2017-07-18 2023-04-17 株式会社 資生堂 抗老化物質のスクリーニング方法
WO2021084665A1 (ja) * 2019-10-30 2021-05-06 株式会社 資生堂 血小板由来成長因子(pdgf)-bb産生亢進剤、及びそれを含む幹細胞安定化剤、並びにそれらを含む皮膚抗老化剤
JPWO2021084665A1 (ja) * 2019-10-30 2021-05-06
JP7433337B2 (ja) 2019-10-30 2024-02-19 株式会社 資生堂 血小板由来成長因子(pdgf)-bb産生亢進剤、及びそれを含む幹細胞安定化剤、並びにそれらを含む皮膚抗老化剤

Also Published As

Publication number Publication date
US20160002724A1 (en) 2016-01-07
TW201216973A (en) 2012-05-01
JPWO2012036211A1 (ja) 2014-02-03
US10017817B2 (en) 2018-07-10
EP2617835A4 (en) 2014-03-19
US20130184348A1 (en) 2013-07-18
EP2617835A1 (en) 2013-07-24
JP5933443B2 (ja) 2016-06-08
TWI564013B (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
Soliman et al. Pathogenic potential of Hic1-expressing cardiac stromal progenitors
El-Asrar et al. Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT)
Naitoh et al. Gene expression in human keloids is altered from dermal to chondrocytic and osteogenic lineage
Ferrer-Lorente et al. Systems biology approach to identify alterations in the stem cell reservoir of subcutaneous adipose tissue in a rat model of diabetes: effects on differentiation potential and function
Gaber et al. Fetal reprogramming and senescence in hypoplastic left heart syndrome and in human pluripotent stem cells during cardiac differentiation
Aird et al. Adipose-derived stromal vascular fraction cells isolated from old animals exhibit reduced capacity to support the formation of microvascular networks
JP5800712B2 (ja) 真皮幹細胞の単離方法
JP6909454B2 (ja) 幹細胞の品質を評価する方法及び幹細胞の品質評価用キット
Sato et al. Fibroblast growth factor-23 induces cellular senescence in human mesenchymal stem cells from skeletal muscle
Lederle et al. Platelet-derived growth factor-BB controls epithelial tumor phenotype by differential growth factor regulation in stromal cells
KR20110034617A (ko) 심장 조직을 처치하는 세포를 이용하는 조성물 및 방법
JP5933443B2 (ja) Pdgf−bb活性亢進による皮膚賦活化
Blázquez-Medela et al. Noggin depletion in adipocytes promotes obesity in mice
Kleiman et al. Elevated IGF2 prevents leptin induction and terminal adipocyte differentiation in hemangioma stem cells
Bagheri-Hosseinabadi et al. Fibrin scaffold could promote survival of the human adipose-derived stem cells during differentiation into cardiomyocyte-like cells
Lee et al. Tbx3, a transcriptional factor, involves in proliferation and osteogenic differentiation of human adipose stromal cells
JP2022182154A (ja) 毛球部毛根鞘細胞の評価方法
Dai et al. lncRNA‑MIAT facilitates the differentiation of adipose‑derived mesenchymal stem cells into lymphatic endothelial cells via the miR‑495/Prox1 axis
El-Karef et al. Expression of large tenascin-C splice variants by hepatic stellate cells/myofibroblasts in chronic hepatitis C
WO2014191978A2 (en) Chorion-derived mscs cells and conditioned media as inducer for angiogenesis application for the treatment of cardiac degeneration.
Muscari et al. Different expression of NOS isoforms in early endothelial progenitor cells derived from peripheral and cord blood
Sun et al. Rare Gli1+ perivascular fibroblasts promote skin wound repair
Lin et al. Intravenous transplantation of human hair follicle-derived mesenchymal stem cells ameliorates trabecular bone loss in osteoporotic mice
US20130108594A1 (en) Method for evaluating angiogenic potential
US20200190475A1 (en) Methods for identifying and isolating cardiac stem cells and methods for making and using them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012534039

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13823211

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011825211

Country of ref document: EP