WO2012036150A1 - レンズアレイおよびそのレンズエッジ検出方法 - Google Patents

レンズアレイおよびそのレンズエッジ検出方法 Download PDF

Info

Publication number
WO2012036150A1
WO2012036150A1 PCT/JP2011/070848 JP2011070848W WO2012036150A1 WO 2012036150 A1 WO2012036150 A1 WO 2012036150A1 JP 2011070848 W JP2011070848 W JP 2011070848W WO 2012036150 A1 WO2012036150 A1 WO 2012036150A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens surface
array
lens array
measuring
Prior art date
Application number
PCT/JP2011/070848
Other languages
English (en)
French (fr)
Inventor
昌弘 棚澤
慎也 菅家
Original Assignee
株式会社エンプラス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンプラス filed Critical 株式会社エンプラス
Priority to CN201180044100.9A priority Critical patent/CN103097921B/zh
Priority to US13/818,963 priority patent/US20130163007A1/en
Publication of WO2012036150A1 publication Critical patent/WO2012036150A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between

Definitions

  • the present invention relates to a lens array and a lens edge detection method thereof, and more particularly to a lens array suitable for detection of a peripheral end portion of a lens surface when measuring the position of the lens surface and a lens edge detection method thereof.
  • a photoelectric conversion device including a plurality of light emitting elements such as VCSEL (Vertical Cavity Surface ⁇ ⁇ ⁇ ⁇ Emitting Laser)
  • a plurality of optical fibers as an example of an optical transmission body are attached so as to face each lens surface on the exit side of the lens array.
  • the lens array is thus arranged between the photoelectric conversion device and the optical fiber, and the light emitted from each light emitting element of the photoelectric conversion device is optically applied to the end face of each optical fiber by each lens. It is possible to perform multi-channel optical communication (transmission) by coupling to.
  • the lens array can be used for reception by optically coupling the end face of the optical fiber to a light receiving element (photo detector, etc.) provided in the photoelectric conversion device, In some cases, it was used for optical coupling of the end faces of the two.
  • this type of lens array is mainly formed by injection molding of a resin material (for example, polyetherimide) using a mold.
  • FIG. 7 is a cross-sectional view showing an example of such a lens array 1 conventionally employed.
  • 8 is a plan view of FIG. 7, and
  • FIG. 9 is a bottom view of FIG.
  • the lens array 1 has a long plate-like translucent substrate 2 whose planar shape is substantially rectangular, and the thickness (plate) of the translucent substrate 2
  • a plurality of convex first lens surfaces 4 are formed on one end surface in the (thickness) direction (vertical direction in FIG. 7), that is, the upper end surface 3.
  • the first lens surfaces 4 are aligned and formed so as to be adjacent to each other along the longitudinal direction of the translucent substrate 2, and the outer shapes are all formed in a circle having the same diameter.
  • the upper end surface 3 is formed in a two-stage structure including a central portion 3a and a peripheral portion 3b, and each first lens surface 4 is formed in the central portion 3a.
  • Each of these first lens surfaces 4 faces the end surfaces of a plurality of optical fibers, for example, in use.
  • each second lens surface 6 is formed in accordance with a design such that the optical axes thereof coincide with each other corresponding to each first lens surface 4 (that is, coaxial), and 1 having the same diameter as the lens surface 4.
  • the optical axis direction of both lenses 4 and 6 corresponds to the vertical direction in FIG. In FIG.
  • the lower end surface 5 is formed in a two-stage structure of a central portion 5a and a peripheral portion 5b, and each second lens surface 6 is formed in the central portion 5a.
  • Each of the second lens surfaces 6 faces, for example, a plurality of light emitting elements of the photoelectric conversion device in a use state.
  • optical fibers or photoelectric conversion devices to be attached to the lens array 1 are arranged at both outer positions in the alignment direction with respect to the formation regions of the lens surfaces 4 and 6 in the translucent substrate 2.
  • a pair of positioning holes 7 are formed for positioning.
  • Each positioning hole 7 is formed so as to penetrate the translucent substrate 2 in the vertical direction from the peripheral portion 3 b on the upper end surface 3 to the peripheral portion 5 b on the lower end surface 5.
  • the upper end surface 3 and the lower end surface 5 may be formed so that the portion where the positioning hole 7 is formed has a step in any of the central portions 3a and 5a and the peripheral portions 3b and 5b.
  • a fiber positioning pin disposed on a multi-core integrated connector that accommodates end portions of a plurality of optical fibers is fitted from the first lens surface 4 side in use.
  • the device positioning pins arranged on the semiconductor substrate of the photoelectric conversion device are fitted from the second lens surface 6 side.
  • a convex portion, a hole portion (bottomed hole), or a combination of these may be formed.
  • Such a lens array 1 has been proposed in Patent Document 1, for example.
  • such a lens array 1 has a positional accuracy of the lens surfaces 4 and 6, particularly a relative positional accuracy of the lens surfaces 4 and 6 corresponding to each other (in other words, Coaxial accuracy) was important.
  • FIG. 10 shows an outline of the position measurement of the lens surfaces 4 and 6 of the lens array 1 conventionally employed.
  • the position measurement of the lens surfaces 4 and 6 an enlarged image of the lens surfaces 4 and 6 is detected (captured) by the principle of a microscope, and the position measurement is performed based on the detection result.
  • the measuring machine 8 to be used was used. Examples of such a measuring machine 8 include a non-contact three-dimensional measuring device (manufactured by Mitaka Kogyo Co., Ltd.) and other microscopes.
  • the lens array 1 When performing position measurement using such a measuring instrument 8, for example, as shown in FIG. 10A, first, the lens array 1 is placed on the XY stage 10 of the measuring instrument 8 and the first thereof. It is installed so that the lens surface 4 faces the objective lens 11 of the measuring device 8.
  • the XY stage 10 can be moved in the X direction (left and right direction in FIG. 10) and the Y direction (perpendicular direction in FIG. 10) by an actuator (not shown).
  • the objective lens 11 can be moved in the Z direction (vertical direction in FIG. 10) by an autofocus mechanism (not shown). Note that the Z direction corresponds to the optical axis direction in the lens array 1 in a state of being installed on the stage 10.
  • the XY stage 10 and the objective lens 11 are appropriately moved, the laser light emitted from the laser light source 12 of the measuring device 8 is converged by the objective lens 11 and irradiated onto the lens array 1, and the reflected light is reflected on the objective lens. 11, an image of the end of the inner peripheral surface of one positioning hole 7 on the first lens surface 4 side (hereinafter referred to as the first inner peripheral surface end) is detected while forming an image on the CCD camera 14.
  • An optical system such as a beam splitter 15 or a lens 16 is disposed on the optical path between the objective lens 11 and the CCD camera 14 as necessary. Further, the detection image by the CCD camera 14 can be confirmed on the screen of the monitor TV 18.
  • the detection of the image of the first inner peripheral surface end portion of the positioning hole 7 is performed by focusing the objective lens 11 on one point on the first inner peripheral surface end portion of the positioning hole 7 in the first manner.
  • a series of detection operations for detecting the image of each point is performed.
  • the coordinates of each point are acquired each time the image of each point is detected.
  • the origin of the coordinates is set at a position on the XY stage 10 corresponding to the measuring machine 8.
  • the acquisition is performed so far.
  • the coordinates of the center point of the end portion of the first inner peripheral surface of the positioning hole 7 are obtained.
  • a line segment L connecting the center points of the first inner peripheral surface ends of the two positioning holes 7 calculated as described above is calculated (see FIG. 11), and based on the calculated line segment L.
  • the coordinates of one point on the lens array 1 to be the position reference point when the position of the first lens surface 4 is measured are calculated.
  • one point on the lens array 1 may be a point P where a perpendicular bisector of the line segment L (one-dot chain line portion in the figure) intersects the front end portion of the upper end surface 3. Good.
  • the detection of the image of the peripheral end portion (in other words, the outline or the outline) of the first lens surface 4 is performed.
  • This operation is performed as an image detection operation for a plurality of points on the peripheral edge of one lens surface 4.
  • coordinates based on the reference point (that is, the origin (0, 0)) for each point on the peripheral edge of the first lens surface 4 are acquired every time the image of each point is detected. To go.
  • the position measurement of the first lens surface 4 is completed by calculating the coordinates of the center point of the first lens surface 4 for all the first lens surfaces 4.
  • the lens array 1 is inverted from the state of FIG.
  • the lens array 1 is placed on the XY stage 10 so that the second lens surface 6 faces the objective lens 11.
  • the position of the second lens surface 6 is measured by calculating the coordinates of the center point of each second lens surface 6 in the same manner as in the case of the first lens surface 4.
  • a second inner peripheral surface end portion an image of an end portion on the peripheral surface on the second lens surface 6 side (hereinafter referred to as a second inner peripheral surface end portion) is used. This is because the image of the end portion of the first inner peripheral surface of the positioning hole 7 cannot be detected from the thickness of the translucent substrate 2 from the second lens surface 6 side.
  • the coordinates of the center points of the lens surfaces 4 and 6 are determined from the design coordinates to a predetermined value. Whether or not the error is within an allowable error (for example, ⁇ 0.1), and the relative deviation of the coordinates of the center points of the lens surfaces 4 and 6 corresponding to each other is within the allowable amount (for example, ⁇ 0.1).
  • the accuracy of the positional accuracy of the lens surfaces 4 and 6 is determined based on whether or not the lens surface is within the range.
  • the lens array 1 when switching to the position measurement of the other lens surface 6 after the position measurement of the one lens surface 4 is completed, the lens array 1 must be inverted and re-installed on the measuring instrument 8. Since a reference point at a position different from the position reference point used to measure the position of one lens surface 4 had to be newly set, a great amount of labor, time, and time were required to measure the positions of both lens surfaces 4 and 6. There was a problem of cost.
  • the reference points of the positions obtained when measuring the positions of the lens surfaces 4 and 6 are, for example, the shape error of the positioning hole 7 and the lens array 1 when the lens array 1 is re-installed in the measuring machine 8. In some cases, they may deviate from each other due to installation errors. In such a case, when evaluating the coaxial accuracy between the lens surfaces 4 and 6 corresponding to each other, the coordinates of the center points of the lens surfaces 4 and 6 are calculated based on the origins that are shifted from each other. Therefore, there has been a problem that it is difficult to make an accurate pass / fail judgment.
  • the present invention has been made in view of such problems, and can reduce labor, time and cost required for measuring the position of the lens surface, and improve measurement accuracy and mass productivity. It is an object of the present invention to provide a lens array that can be used and a lens edge detection method thereof.
  • the lens array according to claim 1 of the present invention is characterized in that a plurality of circular first lens surfaces formed on one end surface in the thickness direction of a plate-like translucent substrate. And a plurality of second circular surfaces respectively corresponding to the first lens surfaces formed coaxially with the plurality of first lens surfaces on the other end surface in the thickness direction of the translucent substrate.
  • a lens array comprising: a lens surface, wherein the detection of the images of the peripheral ends of both lens surfaces from the first lens surface side when measuring the positions of the first lens surface and the second lens surface is provided.
  • the first lens surface is formed with a smaller diameter than the second lens surface corresponding to the first lens surface, and light is transmitted through the translucent substrate.
  • the image of the peripheral edge of the second lens surface is In that it is possible to detect from the first lens surface.
  • the first lens surface is formed to have a smaller diameter than the second lens surface, and an image of the peripheral end portion of the second lens surface is formed on the translucent substrate.
  • the feature of the lens array according to claim 2 is that the lens array according to claim 1 is further used for setting a reference of a position when measuring the position of the first lens surface on the translucent substrate.
  • the specific shape made possible is that it is formed so as to be detectable from the first lens surface side.
  • the position reference based on the specific shape set when measuring the position of the first lens surface is used as it is when measuring the position of the second lens surface. be able to.
  • the lens array according to claim 3 is characterized in that, in claim 2, the specific shape is used for positioning at the time of mounting the optical transmission body or the photoelectric conversion device to be mounted on the one end face. This is in the shape of the positioning structure.
  • the existing shape can be utilized for the position measurement of a lens surface.
  • the lens array according to claim 4 is characterized in that, in any one of claims 1 to 3, the first lens surface and the second lens surface are incident on one lens surface.
  • the divergent light is formed so as to be emitted as convergent light from the other lens surface.
  • both optical coupling with an optical transmission body and a photoelectric conversion device, and optical coupling between optical transmission bodies can be performed appropriately.
  • the lens edge detection method is characterized in that a plurality of circular first lens surfaces formed on one end surface in the thickness direction of a plate-like translucent substrate, and the translucent base.
  • the imaging optical system is focused on the peripheral end portion of the first lens surface with respect to the installed lens array to detect an image of the peripheral end portion of the first lens surface.
  • the second lens surface through the light transmission through the translucent substrate with respect to the lens array installed on the installation position in the second step.
  • the first to fourth steps detect the images of the peripheral ends of both lens surfaces when measuring the positions of the first lens surface and the second lens surface. Since it can be performed only by the detection operation from the first lens surface side, it is not necessary to reverse the lens array when measuring the position of the second lens surface after measuring the position of the first lens surface. It is possible to measure the position of the lens surface with high accuracy using a single position reference.
  • the present invention it is possible to reduce labor, time and cost required for measuring the position of the lens surface, and to improve measurement accuracy and mass productivity.
  • Sectional drawing and partial enlarged view which show embodiment of the lens array which concerns on this invention Plan view of the lens array of FIG. Bottom view of the lens array of FIG.
  • the top view which shows the modification of the lens array which concerns on this invention
  • Bottom view of FIG. 1 is a conceptual diagram showing an embodiment of a lens edge detection method according to the present invention.
  • Sectional drawing which shows an example of the conventional lens array Plan view of FIG. Bottom view of FIG.
  • Conceptual diagram showing a method for measuring the position of a lens surface in a conventional lens array
  • Schematic diagram showing an example of a reference point setting method in the position measurement method of FIG.
  • FIG. 1 is a cross-sectional view of the lens array 20 in the present embodiment and a partially enlarged view thereof.
  • 2 is a plan view of FIG. 1
  • FIG. 3 is a bottom view of FIG.
  • the lens array 20 in the present embodiment detects images at the peripheral ends of both the lens surfaces 4 and 6 when measuring the positions of the first lens surface 4 and the second lens surface 6.
  • the first lens surface 4 is formed so that it can be performed only by the detection operation.
  • the diameter d of the first lens surface 4 is larger than the diameter D of the second lens surface 6 corresponding to the first lens surface 4. It is formed small. Such a relationship is established for all the first lens surfaces 4. Thus, an image of the peripheral end portion of the second lens surface 6 can be detected from the first lens surface 4 side through light transmission through the translucent substrate 2.
  • D may be 250 ⁇ m and the value of d may be 230 ⁇ m.
  • the reference point that is, the origin of the position when the position of the first lens surface 4 is measured is obtained, the reference point is transmitted from the first lens surface 4 side.
  • the present invention can be applied as it is to the position measurement of the second lens surface 6 that can be detected (imaged) through the transmission of light through the substrate 2.
  • the reference point may be set by using the outer shape (specific shape) of the positioning hole 7 (positioning structure) as in the prior art, but in the present embodiment, the reference point on the first lens surface 14 side is used. Since only setting is required, it is sufficient to detect only the image of the first inner peripheral surface end portion of the positioning hole 7, and the image of the second inner peripheral surface end portion of the positioning hole 7 is not required.
  • both lens surfaces 4 and 6 can be measured using a single reference point, the coaxial accuracy of both lens surfaces 4 and 6 can be evaluated appropriately.
  • the present invention can be effectively applied not only to the 12-channel lens array 20 shown in FIGS. 1 to 3, but also to the 24-channel lens array 21 shown in FIGS. 4 and 5, for example.
  • the lens array 21 shown in FIGS. 4 and 5 has a configuration in which a series of twelve lens surfaces 4 and 6 are arranged in two rows in parallel.
  • both lens surfaces 4 and 6 may be formed so that diverging light incident on one lens surface 4 and 6 is emitted from the other lens surface 4 and 6 as convergent light.
  • both lens surfaces 4 and 6 may be the same or different.
  • the object light from the peripheral end of the second lens surface is After passing through the transparent substrate 2 toward the first lens surface 4 side, the light is emitted in the same direction as the optical axis direction of the first lens surface 4 from the emission position on the first lens surface 4 side. It is desirable.
  • the gap between the first lens surfaces 4 adjacent to each other It is desirable to form on the flat surface 22 perpendicular to the optical axis direction.
  • the lens array 20 (21) as described above is formed (first step).
  • the reference point is set based on the detection image of the end portion of the first inner peripheral surface of the positioning hole 7 in the same manner as before.
  • the objective lens 11 is focused on the peripheral end portion of the first lens surface 4 with respect to the lens array 20 (21), and the image of the peripheral end portion of the first lens surface 4 is detected ( (3rd step).
  • the detection of the image of the peripheral end portion of the first lens surface 4 in the third step is performed as a series of detection operations for detecting a plurality of points on the peripheral end portion, as in the prior art.
  • the coordinates of the center point of the first lens surface 4 are calculated based on the image of the peripheral end portion of the first lens surface 4 detected in the third step.
  • the position measurement of the first lens surface 4 is completed by performing the calculation of the coordinates of the center point of the first lens surface 4 on all the first lens surfaces 4. To do.
  • the process proceeds to the position measurement of the second lens surface 6. At this time, it is not necessary to invert the lens array 20 (21) and install it again on the XY stage 10, and to newly set a position reference point. There is no need to set it again.
  • the objective lens 11 is made transparent to the lens array 20 (21) installed on the XY stage 10. Focusing on the peripheral end portion of the second lens surface 6 through the transmission of light through the substrate 2, the image of the peripheral end portion of the second lens surface 6 is detected (fourth step).
  • the detection of the image of the peripheral end portion of the second lens surface 6 in the fourth step is performed as a series of detection operations for detecting a plurality of points on the peripheral end portion.
  • the position measurement of the second lens surface 6 is completed by calculating the coordinates of the center point of the second lens surface 6 for all the second lens surfaces 6.
  • the first lens surface 4 is formed to have a smaller diameter than the second lens surface 6, and the image at the peripheral edge of the second lens surface 6 is translucent.
  • both the lens surfaces 4, 6 when measuring the positions of the first lens surface 4 and the second lens surface 6 are used.
  • the detection of the image at the peripheral end can be performed only by the detection operation from the first lens surface 4 side. This eliminates the need to invert the lens array 20 (21) when the position of the second lens surface 6 is measured after the position of the first lens surface 4 is measured.
  • the present invention can be effectively applied to a lens array having more channels than 24 channels.
  • the present invention can be effectively applied to an optical transmission body other than an optical fiber such as an optical waveguide.
  • the position measurement of the first lens surface 4 and the position measurement of the second lens surface 6 are thereafter performed as long as the reference point of the position is obtained by imaging from the first lens surface 4 side. Either of these may be performed first.
  • the outer shape of the alignment mark is adopted as a specific shape, and the position measurement reference point It may be used for setting.

Abstract

【課題】レンズ面の位置測定に要する労力、時間およびコストの軽減を図ることができるとともに、測定精度および量産性の向上を図ることができるレンズアレイおよびそのレンズエッジ検出方法を提供する。 【解決手段】第1レンズ面4および第2レンズ面6の位置を測定する際における両レンズ面4、6の周端部の像の検出を第1レンズ面4側からの検出作業のみによって行うことを可能とするために、第1のレンズ面4が、これに対応する第2のレンズ面6よりも小径に形成され、透光性基材2における光の透過を介して第2のレンズ面6の周端部の像を第1レンズ面4側から検出可能とされていること。

Description

レンズアレイおよびそのレンズエッジ検出方法
 本発明は、レンズアレイおよびそのレンズエッジ検出方法に係り、特に、レンズ面の位置を測定する際におけるレンズ面の周端部の検出に好適なレンズアレイおよびそのレンズエッジ検出方法に関する。
 近年、通信の高速化および通信デバイスの小型化のニーズを反映して、マルチチャンネルの光通信をコンパクトな構成で実現するのに有効な光学部品として、複数のレンズが並列配置されたレンズアレイの需要が益々高まりつつある。
 この種のレンズアレイは、実使用状態において、例えば、VCSEL(Vertical Cavity Surface Emitting Laser)等の複数の発光素子を備えた光電変換装置が、各発光素子をレンズアレイの入射側の各レンズ面に臨ませるようにして取り付けられるとともに、光伝送体の一例としての複数の光ファイバが、これらの端面をレンズアレイの出射側の各レンズ面に臨ませるようにして取り付けられるようになっていた。そして、レンズアレイは、このように光電変換装置と光ファイバとの間に配置された状態で、光電変換装置の各発光素子から出射された光を、各レンズによって各光ファイバの端面に光学的に結合させることにより、マルチチャンネルの光通信(送信)を行うことが可能とされていた。
 なお、このような送信用の用途以外にも、レンズアレイは、光ファイバの端面を光電変換装置に備えられた受光素子(フォトディテクタ等)に光学的に結合させて受信に用いることや、光ファイバの端面同士の光学的な結合に用いることもあった。また、この種のレンズアレイは、金型を用いた樹脂材料(例えば、ポリエーテルイミド等)の射出成形によって形成することが主流となっている。
 ここで、図7は、このような従来から採用されていたレンズアレイ1の一例を示す断面図である。また、図8は、図7の平面図であり、図9は図7の下面図である。
 図7に示すように、レンズアレイ1は、平面形状が略長方形状とされた長尺な板状の透光性基材2を有しており、この透光性基材2の厚み(板厚)方向(図7における上下方向)における一方の端面すなわち上端面3には、凸状の複数の第1のレンズ面4が形成されている。図8に示すように、各第1のレンズ面4は、透光性基材2の長手方向に沿って互いに隣接するように整列形成されているとともに、外形がいずれも同径の円形に形成されている。なお、図8においては、上端面3が中央側の部位3aおよび周辺側の部位3bの2段構造に形成されていて、中央側の部位3aに各第1のレンズ面4が形成されている。これら各第1のレンズ面4は、使用状態において例えば複数本の光ファイバの端面にそれぞれ臨むようになっている。
 一方、図7に示すように、透光性基材2の厚み方向における他方の端面すなわち下端面5には、第1のレンズ面4と同数の凸状の第2のレンズ面6が形成されている。図9に示すように、各第2のレンズ面6も、各第1のレンズ面4と同様に、透光性基材2の長手方向に沿って互いに隣接するように整列形成されているとともに、外形がいずれも同径の円形に形成されている。さらに、各第2のレンズ面6は、それぞれに対応する各第1のレンズ面4と互いに光軸が一致する(すなわち、同軸状となる)ような設計にしたがって形成されているとともに、各第1のレンズ面4と同径に形成されている。なお、両レンズ4、6の光軸方向は、図7における上下方向に相当する。また、図9においては、下端面5が中央側の部位5aおよび周辺側の部位5bの2段構造に形成されていて、中央側の部位5aに各第2のレンズ面6が形成されている。これら各第2のレンズ面6は、使用状態において例えば光電変換装置の複数の発光素子にそれぞれ臨むようになっている。
 さらに、図7~図9に示すように、透光性基材2におけるレンズ面4、6の形成領域に対する整列方向の両外側位置には、レンズアレイ1に取り付けられるべき光ファイバまたは光電変換装置の位置決めを行うための一対の位置決め孔7が形成されている。各位置決め孔7は、上端面3における周辺側の部位3bから下端面5における周辺側の部位5bに亘って透光性基材2を上下方向に貫通するように形成されている。なお、上端面3および下端面5は、位置決め孔7を形成する部位が、中央側の部位3a、5aおよび周辺側の部位3b、5bのいずれとも段差を有するように形成されていてもよい。このような位置決め孔7には、使用状態において、例えば、複数本の光ファイバの端部を収容した多芯一体型のコネクタに配置されたファイバ位置決めピンが第1のレンズ面4側から嵌合するとともに、光電変換装置の半導体基板に配置されたデバイス位置決めピンが第2のレンズ面6側から嵌合することになる。ただし、光ファイバ側/光電変換装置側の位置決め構造に応じては、位置決め孔7の代わりに、凸部または穴部(有底孔)もしくはこれらを組み合わせた構造が形成される可能性もある。
 このようなレンズアレイ1は、これまでにも、例えば、特許文献1において提案されている。
 ところで、このようなレンズアレイ1は、良好な光結合効率を実現する上で、各レンズ面4、6の位置精度、とりわけ互いに対応するレンズ面4、6同士の相対位置精度(換言すれば、同軸精度)が重要とされていた。
 このため、このような各レンズ面4、6の位置精度を判定すべく各レンズ面4、6の位置を測定する際には、ミクロンオーダ以下の極めて高い測定精度が要求されていた。
 ここで、図10は、このような従来から採用されていたレンズアレイ1のレンズ面4、6の位置測定の概要を示している。
 図10に示すように、従来から、各レンズ面4、6の位置測定には、顕微鏡の原理によって各レンズ面4、6の拡大像を検出(撮像)し、検出結果に基づいて位置測定を行う測定機8が用いられていた。このような測定機8としては、例えば、非接触三次元測定装置(三鷹光器株式会社製)やその他のマイクロスコープを挙げることができる。
 このような測定機8を用いて位置測定を行う際には、例えば、まず、図10(a)に示すように、測定機8のXYステージ10上に、レンズアレイ1を、その第1のレンズ面4が測定機8の対物レンズ11に臨むように設置する。なお、XYステージ10は、不図示のアクチュエータによってX方向(図10における左右方向)およびY方向(図10における紙面垂直方向)に移動可能とされている。また、対物レンズ11は、不図示のオートフォーカス機構によってZ方向(図10における上下方向)に移動可能とされている。なお、Z方向は、ステージ10上に設置された状態のレンズアレイ1における光軸方向に相当する。
 次いで、XYステージ10および対物レンズ11を適宜移動させるとともに、測定機8のレーザ光源12から出射されたレーザ光を対物レンズ11によって収束させてレンズアレイ1上に照射し、その反射光を対物レンズ11を経てCCDカメラ14に結像させつつ、1つの位置決め孔7の内周面における第1のレンズ面4側の端部(以下、第1の内周面端部と称する)の像を検出する。なお、対物レンズ11とCCDカメラ14との光路上には、必要に応じてビームスプリッタ15やレンズ16等の光学系が配置される。また、CCDカメラ14による検出像は、モニタTV18の画面上で確認することができる。
 ここで、位置決め孔7の第1の内周面端部の像の検出は、対物レンズ11を位置決め孔7の第1の内周面端部上の一点に合焦させる作業を、第1の内周面端部上の互いに異なる複数の点に対して繰り返すことによって、各点の像を検出するための一連の検出作業として行う。そして、その過程で、各点の座標を、各点の像の検出の都度取得していく。ただし、このときの座標は、その原点が測定機8に応じたXYステージ10上の位置にとられている。
 そして、このような位置決め孔7の第1の内周面端部の像の検出が完了した場合、すなわち、前述した複数の点のすべての像が検出された場合には、これまでに取得していた各点の座標の重心座標を算出することによって、位置決め孔7の第1の内周面端部の中心点の座標を求める。
 さらに、このような第1の内周面端部の中心点の座標の算出を、もう1つの位置決め孔7に対しても行う。
 次いで、このようにして算出された2つの位置決め孔7の第1の内周面端部の中心点同士を結ぶ線分Lを割り出し(図11参照)、割り出された線分Lに基づいて、第1のレンズ面4の位置を測定する際における位置の基準点となるべきレンズアレイ1上の一点の座標を算出する。このレンズアレイ1上の一点は、例えば、図11に示すように、線分Lの垂直二等分線(図中の一点鎖線部)が上端面3の前端部と交わる点Pであってもよい。
 次いで、このようにして算出されたレンズアレイ1上の一点Pの座標を、原点(0,0)として座標変換することによって、第1のレンズ面4の位置を測定する際における位置の基準点を設定する。
 次いで、位置決め孔7の第1の内周面端部の像の検出と同じ要領で、第1のレンズ面4の周端部(換言すれば、輪郭もしくは外形線)の像の検出を、第1のレンズ面4の周端部上の複数の点の像の検出作業として行う。そして、その過程で、第1のレンズ面4の周端部上の各点についての基準点(すなわち原点(0,0))を基準とした座標を、各点の像の検出の都度取得していく。
 そして、このような第1のレンズ面4の周端部の像の検出が完了した場合には、これまでに取得していた第1のレンズ面4の周端部上の各点の座標の重心座標を算出することによって、基準点を基準とした第1のレンズ面4の中心点の座標を求める。
 さらに、このような第1のレンズ面4の中心点の座標の算出を、すべての第1のレンズ面4に対して行うことによって、第1のレンズ面4の位置測定が完了する。
 次に、このような第1のレンズ面4の位置測定が完了した後には、図10(b)に示すように、今度は、レンズアレイ1を図10(a)の状態から反転させて(裏返して)、第2のレンズ面6が対物レンズ11に臨むようにレンズアレイ1をXYステージ10上に設置する。
 そして、第1のレンズ面4の場合と同じ要領で各第2のレンズ面6の中心点の座標を算出することによって、第2のレンズ面6の位置測定を行う。
 ただし、このときの位置の基準点すなわち原点(0,0)の算出には、前述した位置決め孔7の第1の内周面端部の像の代わりに、これに対向する位置決め孔7の内周面における第2のレンズ面6側の端部(以下、第2の内周面端部と称する)の像が用いられることになる。蓋し、第2のレンズ面6側からは、位置決め孔7の第1の内周面端部の像は透光性基材2の厚みによって検出できないからである。
 そして、このようにして位置測定が行われた各レンズ面4、6の位置精度を評価する際には、各レンズ面4、6のそれぞれの中心点の座標が、設計上の座標から所定の許容誤差(例えば、φ0.1)以内に収まっているか否か、また、互いに対応する両レンズ面4、6の中心点同士の座標の相対的なズレが許容量(例えば、φ0.1)以内に収まっているか否かに基づいて、レンズ面4、6の位置精度の良否を判定していた。
特開2009-229996号公報
 しかしながら、従来は、一方のレンズ面4の位置測定が完了した後に他方のレンズ面6の位置測定に切り替える際に、レンズアレイ1を反転させて測定機8に設置し直さなければならない上に、一方のレンズ面4の位置測定に用いた位置の基準点とは異なる位置の基準点を新たに設定し直さなければならかったため、両レンズ面4、6の位置測定に多大な労力、時間およびコストを要するといった問題が生じていた。
 さらに、こればかりでなく、両レンズ面4、6の位置測定の際にそれぞれ求められた位置の基準点は、例えば、位置決め孔7の形状誤差やレンズアレイ1を測定機8に設置し直す際の設置誤差等に起因して互いにずれる場合があった。そして、このような場合には、互いに対応する両レンズ面4、6同士の同軸精度を評価する際に、両レンズ面4、6の中心点の座標が、それぞれ互いにずれた原点を基準として算出されたものとなるため、正確な良否判定を行うことが困難といった問題も生じていた。
 これらの問題は、複数のレンズ面4、6を有するレンズアレイ1においては極めて重大であり、また、最近のレンズアレイ1の更なる多チャンネル化は、これらの問題をより一層深刻化していた。
 そこで、本発明は、このような問題点に鑑みなされたものであり、レンズ面の位置測定に要する労力、時間およびコストの軽減を図ることができるとともに、測定精度および量産性の向上を図ることができるレンズアレイおよびそのレンズエッジ検出方法を提供することを目的とするものである。
 前述した目的を達成するため、本発明の請求項1に係るレンズアレイの特徴は、板状の透光性基材の厚み方向における一方の端面に形成された円形の複数の第1のレンズ面と、前記透光性基材の厚み方向における他方の端面に、前記複数の第1のレンズ面とそれぞれ同軸状に形成された各第1のレンズ面にそれぞれ対応する円形の複数の第2のレンズ面とを備えたレンズアレイであって、前記第1レンズ面および前記第2レンズ面の位置を測定する際における両レンズ面の周端部の像の検出を前記第1レンズ面側からの検出作業のみによって行うことを可能とするために、前記第1のレンズ面が、これに対応する前記第2のレンズ面よりも小径に形成され、前記透光性基材における光の透過を介して前記第2のレンズ面の周端部の像を前記第1レンズ面側から検出可能とされている点にある。
 そして、この請求項1に係る発明によれば、第1のレンズ面を第2のレンズ面よりも小径に形成して、第2のレンズ面の周端部の像を透光性基材における光の透過を介して第1のレンズ面側から検出可能としたことによって、第1レンズ面および第2レンズ面の位置を測定する際における両レンズ面の周端部の像の検出を第1レンズ面側からの検出作業のみによって一回的に行うことができる。これにより、第1のレンズ面の位置測定の後に第2のレンズ面の位置測定を行う場合にレンズアレイを反転させる必要がなくなり、また、両レンズ面の位置測定を単一の位置の基準を用いて高精度に行うことが可能となる。
 また、請求項2に係るレンズアレイの特徴は、請求項1において、更に、前記透光性基材に、前記第1のレンズ面の位置を測定する際における位置の基準の設定に用いることが可能とされた特定形状が、前記第1のレンズ面側から検出可能に形成されている点にある。
 そして、この請求項2に係る発明によれば、第1のレンズ面の位置測定の際に設定された特定形状に基づく位置の基準を、第2のレンズ面の位置測定の際にそのまま利用することができる。
 さらに、請求項3に係るレンズアレイの特徴は、請求項2において、更に、前記特定形状は、前記一方の端面に取り付けられるべき光伝送体または光電変換装置の取り付けの際における位置決めを行うための位置決め構造の外形とされている点にある。
 そして、この請求項3に係る発明によれば、既存の形状をレンズ面の位置測定に活用することができる。
 さらにまた、請求項4に係るレンズアレイの特徴は、請求項1~3のいずれか1項において、更に、前記第1のレンズ面および前記第2のレンズ面は、一方のレンズ面に入射した発散光を他方のレンズ面から収束光として出射させるように形成されている点にある。
 そして、この請求項4に係る発明によれば、光伝送体と光電変換装置との光学的な結合および光伝送体間の光学的な結合をいずれも適切に行うことができる。
 また、請求項5に係るレンズエッジ検出方法の特徴は、板状の透光性基材の厚み方向における一方の端面に形成された円形の複数の第1のレンズ面と、前記透光性基材の厚み方向における他方の端面に、前記複数の第1のレンズ面とそれぞれ同軸状に形成された各第1のレンズ面にそれぞれ対応する円形の複数の第2のレンズ面とを備えたレンズアレイに対して、所定の測定装置を用いた前記第1のレンズ面および前記第2のレンズ面の位置の測定を行う際に、両レンズ面の周端部の像を前記測定装置によって検出するためのレンズエッジ検出方法であって、前記第1のレンズ面が、これに対応する前記第2のレンズ面よりも小径となるように前記レンズアレイを形成する第1のステップと、この第1のステップによって形成された前記レンズアレイを、前記第1レンズ面が前記測定装置の結像光学系に臨むように前記測定装置における所定の設置位置上に設置する第2のステップと、この第2のステップによって前記設置位置上に設置された前記レンズアレイに対して、前記結像光学系を前記第1のレンズ面の周端部上に合焦させて前記第1のレンズ面の周端部の像の検出を行う第3のステップと、前記第2のステップによって前記設置位置上に設置された前記レンズアレイに対して、前記結像光学系を前記透光性基材における光の透過を介して前記第2のレンズ面の周端部上に合焦させて前記第2のレンズの周端部の像の検出を行う第4のステップとを含む点にある。
 そして、この請求項5に係る発明によれば、第1~第4のステップにより、第1レンズ面および第2レンズ面の位置を測定する際における両レンズ面の周端部の像の検出を第1レンズ面側からの検出作業のみによって行うことができるので、第1のレンズ面の位置測定の後に第2のレンズ面の位置測定を行う場合にレンズアレイを反転させる必要がなくなるとともに、両レンズ面の位置測定を単一の位置の基準を用いて高精度に行うことが可能となる。
 本発明によれば、レンズ面の位置測定に要する労力、時間およびコストの軽減を図ることができるとともに、測定精度および量産性の向上を図ることができる。
本発明に係るレンズアレイの実施形態を示す断面図および部分拡大図 図1のレンズアレイの平面図 図1のレンズアレイの下面図 本発明に係るレンズアレイの変形例を示す平面図 図4の下面図 本発明に係るレンズエッジ検出方法の実施形態を示す概念図 従来のレンズアレイの一例を示す断面図 図7の平面図 図7の下面図 従来のレンズアレイにおけるレンズ面の位置測定方法を示す概念図 図10の位置測定方法における基準点の設定方法の一例を示す模式図
(レンズアレイの実施形態)
 以下、本発明に係るレンズアレイの実施形態について、従来との相違点を中心に図1~図5を参照して説明する。
 なお、従来と基本的構成が同一もしくはこれに類する箇所については、同一の符号を用いて説明する。
 図1は、本実施形態におけるレンズアレイ20の断面図およびその部分拡大図である。また、図2は、図1の平面図であり、図3は、図1の下面図である。
 本実施形態におけるレンズアレイ20は、従来のレンズアレイ1とは異なり、第1レンズ面4および第2レンズ面6の位置測定の際における両レンズ面4、6の周端部の像の検出を、第1レンズ面4側からの検出作業のみによって行うことが可能に形成されている。
 すなわち、図1に示すように、本実施形態におけるレンズアレイ20は、第1のレンズ面4の直径dが、この第1のレンズ面4に対応する第2のレンズ面6の直径Dよりも小さく形成されている。このような関係は、すべての第1のレンズ面4に成立している。そして、このことによって、透光性基材2における光の透過を介して、第2のレンズ面6の周端部の像を第1レンズ面4側から検出可能とされている。なお、Dの値を250μm、dの値を230μmとしてもよい。
 このような構成によれば、第1のレンズ面4の位置測定の際における位置の基準点(すなわち原点)さえ求めれておけば、この基準点を、第1のレンズ面4側から透光性基材2における光の透過を介して検出(撮像)可能な第2のレンズ面6の位置測定にそのまま適用することができる。なお、基準点の設定には、従来と同様に位置決め孔7(位置決め構造)の外形(特定形状)を利用すればよいが、本実施形態においては、第1のレンズ面14側の基準点の設定のみで済むため、位置決め孔7の第1の内周面端部の像のみを検出すれば足り、位置決め孔7の第2の内周面端部の像は要しない。
 したがって、従来のように、第1のレンズ面4の位置測定を行った後に第2のレンズ面6の位置測定に切り替える際のレンズアレイ1を反転させる手間や、第1のレンズ面4の位置測定時の基準点と異なる新たな基準点を第2のレンズ面6の位置測定のために別途算出する作業は要しなくなる。
 さらに、単一の基準点を用いて両レンズ面4、6の位置測定を行うことができるので、両レンズ面4、6の同軸精度の評価を適切に行うことができる。
 なお、本発明は、図1~図3に示した12チャンネルのレンズアレイ20に限らず、例えば、図4および図5に示す24チャンネルのレンズアレイ21にも有効に適用することができる。なお、図4および図5に示すレンズアレイ21は、一連の12個のレンズ面4、6が二列並列配置された構成となっている。
 また、両レンズ面4、6は、一方のレンズ面4、6に入射した発散光を他方のレンズ面4、6から収束光として出射させるように形成されていてもよい。
 さらに、両レンズ面4、6の曲率半径は互いに同一であってもよいし、異なっていてもよい。
 さらにまた、第1のレンズ面4側からの検出作業によって第2のレンズ面6の周端部の像を適正に検出するためには、第2のレンズ面の周端部からの物体光が、第1のレンズ面4側に向かって透光性基板2を透過した上で、第1のレンズ面4側の出射位置から第1のレンズ面4の光軸方向と同方向に出射されることが望ましい。このような第2のレンズ面6の周端部からの物体光の出射位置を確保するためには、図1に示すように、互いに隣位する第1のレンズ面4同士の間隙部を、光軸方向に垂直な平坦面22に形成することが望ましい。
(レンズエッジ検出方法の実施形態)
 次に、本発明に係るレンズエッジ検出方法の実施形態について、図6を参照して説明する。
 本実施形態においては、まず、前述したようなレンズアレイ20(21)を形成する(第1のステップ)。
 そして、この後の本実施形態の各工程(ステップ)は、レンズ面4、6の位置測定における一工程として行う。
 すなわち、第1のステップの後には、図10(a)に示した場合と同様に、レンズアレイ20(21)を、その第1レンズ面4が測定機8(測定装置)の結像光学系としての対物レンズ11に臨むようにXYステージ10上に設置する(第2のステップ)。
 次いで、従来と同じ要領で、位置決め孔7の第1の内周面端部の検出像に基づいた基準点の設定を行う。
 次いで、レンズアレイ20(21)に対して、対物レンズ11を第1のレンズ面4の周端部上に合焦させて、第1のレンズ面4の周端部の像の検出を行う(第3のステップ)。この第3のステップにおける第1のレンズ面4の周端部の像の検出は、従来と同様に、この周端部上の複数の点を検出するための一連の検出作業として行う。
 次いで、従来と同じ要領で、第3のステップにおいて検出された第1のレンズ面4の周端部の像に基づいた第1のレンズ面4の中心点の座標の算出を行う。
 そして、従来と同様に、このような第1のレンズ面4の中心点の座標の算出をすべての第1のレンズ面4に対して行うことによって、第1のレンズ面4の位置測定が完了する。
 次いで、第2のレンズ面6の位置測定に移行するが、このとき、レンズアレイ20(21)を反転させてXYステージ10上に設置し直す必要もなく、また、位置の基準点を新たに設定し直す必要もない。
 すなわち、本実施形態においては、第2のレンズ面6の位置測定を開始した後に、まず、XYステージ10上に設置されているレンズアレイ20(21)に対して、対物レンズ11を透光性基材2における光の透過を介して第2のレンズ面6の周端部上に合焦させて、第2のレンズ面6の周端部の像の検出を行う(第4のステップ)。この第4のステップにおける第2のレンズ面6の周端部の像の検出は、この周端部上の複数の点を検出するための一連の検出作業として行う。
 次いで、第1のレンズ面4の場合と同じ要領で、第4のステップにおいて検出された第2のレンズ面6の周端部の像に基づいた第2のレンズ面6の中心点の座標の算出を行う。
 そして、このような第2のレンズ面6の中心点の座標の算出をすべての第2のレンズ面6に対して行うことによって、第2のレンズ面6の位置測定が完了する。
 以上述べたように、本実施形態によれば、第1のレンズ面4を第2のレンズ面6よりも小径に形成して、第2のレンズ面6の周端部の像を透光性基材2における光の透過を介して第1のレンズ面4側から検出可能としたことによって、第1レンズ面4および第2レンズ面6の位置を測定する際における両レンズ面4、6の周端部の像の検出を第1レンズ面4側からの検出作業のみによって行うことができる。これにより、第1のレンズ面4の位置測定の後に第2のレンズ面6の位置測定を行う際のレンズアレイ20(21)を反転させる手間を要しなくなり、また、両レンズ面4、6の位置測定を単一の位置の基準点を用いて高精度に行うことができるので、レンズ面4、6の位置測定に要する労力、時間およびコストの軽減を図ることができるとともに、測定精度および量産性の向上を図ることができる。
 なお、本発明は、前述した実施の形態に限定されるものではなく、本発明の特徴を損なわない限度において種々変更することができる。
 例えば、本発明は、24チャンネルよりも更に多チャンネルのレンズアレイにも有効に適用することができる。
 また、本発明は、光導波路等の光ファイバ以外の光伝送体にも有効に適用することができる。
 さらに、本発明は、第1のレンズ面4側からの撮像によって位置の基準点を求めることさえ遵守すれば、その後に第1のレンズ面4の位置測定および第2のレンズ面6の位置測定のいずれを先に行ってもよい。
 さらにまた、光伝送体および光電変換装置の位置決めを、レンズアレイに形成されたアライメントマークを光学的に読み取って行う場合には、そのアライメントマークの外形を特定形状として採用して位置測定の基準点の設定に用いてもよい。
 2 透光性基材
 3 上端面
 4 第1のレンズ面
 5 下端面
 6 第2のレンズ面
 20 レンズアレイ

Claims (5)

  1.  板状の透光性基材の厚み方向における一方の端面に形成された円形の複数の第1のレンズ面と、
     前記透光性基材の厚み方向における他方の端面に、前記複数の第1のレンズ面とそれぞれ同軸状に形成された各第1のレンズ面にそれぞれ対応する円形の複数の第2のレンズ面と
     を備えたレンズアレイであって、
     前記第1レンズ面および前記第2レンズ面の位置を測定する際における両レンズ面の周端部の像の検出を前記第1レンズ面側からの検出作業のみによって行うことを可能とするために、前記第1のレンズ面が、これに対応する前記第2のレンズ面よりも小径に形成され、前記透光性基材における光の透過を介して前記第2のレンズ面の周端部の像を前記第1レンズ面側から検出可能とされていること
     を特徴とするレンズアレイ。
  2.  前記透光性基材に、前記第1のレンズ面の位置を測定する際における位置の基準の設定に用いることが可能とされた特定形状が、前記第1のレンズ面側から検出可能に形成されていること
     を特徴とする請求項1に記載のレンズアレイ。
  3.  前記特定形状は、前記一方の端面に取り付けられるべき光伝送体または光電変換装置の取り付けの際における位置決めを行うための位置決め構造の外形とされていること
     を特徴とする請求項2に記載のレンズアレイ。
  4.  前記第1のレンズ面および前記第2のレンズ面は、一方のレンズ面に入射した発散光を他方のレンズ面から収束光として出射させるように形成されていること
     を特徴等する請求項1~3のいずれか1項に記載のレンズアレイ。
  5.  板状の透光性基材の厚み方向における一方の端面に形成された円形の複数の第1のレンズ面と、前記透光性基材の厚み方向における他方の端面に、前記複数の第1のレンズ面とそれぞれ同軸状に形成された各第1のレンズ面にそれぞれ対応する円形の複数の第2のレンズ面とを備えたレンズアレイに対して、所定の測定装置を用いた前記第1のレンズ面および前記第2のレンズ面の位置の測定を行う際に、両レンズ面の周端部の像を前記測定装置によって検出するためのレンズエッジ検出方法であって、
     前記第1のレンズ面が、これに対応する前記第2のレンズ面よりも小径となるように前記レンズアレイを形成する第1のステップと、
     この第1のステップによって形成された前記レンズアレイを、前記第1レンズ面が前記測定装置の結像光学系に臨むように前記測定装置における所定の設置位置上に設置する第2のステップと、
     この第2のステップによって前記設置位置上に設置された前記レンズアレイに対して、前記結像光学系を前記第1のレンズ面の周端部上に合焦させて前記第1のレンズ面の周端部の像の検出を行う第3のステップと、
     前記第2のステップによって前記設置位置上に設置された前記レンズアレイに対して、前記結像光学系を前記透光性基材における光の透過を介して前記第2のレンズ面の周端部上に合焦させて前記第2のレンズの周端部の像の検出を行う第4のステップと
     を含むことを特徴とするレンズエッジ検出方法。
PCT/JP2011/070848 2010-09-14 2011-09-13 レンズアレイおよびそのレンズエッジ検出方法 WO2012036150A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180044100.9A CN103097921B (zh) 2010-09-14 2011-09-13 透镜阵列及其透镜边缘检测方法
US13/818,963 US20130163007A1 (en) 2010-09-14 2011-09-13 Lens array and lens edge detection method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205063 2010-09-14
JP2010205063A JP2012063377A (ja) 2010-09-14 2010-09-14 レンズアレイおよびそのレンズエッジ検出方法

Publications (1)

Publication Number Publication Date
WO2012036150A1 true WO2012036150A1 (ja) 2012-03-22

Family

ID=45831609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070848 WO2012036150A1 (ja) 2010-09-14 2011-09-13 レンズアレイおよびそのレンズエッジ検出方法

Country Status (4)

Country Link
US (1) US20130163007A1 (ja)
JP (1) JP2012063377A (ja)
CN (1) CN103097921B (ja)
WO (1) WO2012036150A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415863A4 (en) * 2016-02-10 2019-10-09 Enplas Corporation MARKER
JPWO2017163778A1 (ja) * 2016-03-23 2019-01-31 株式会社エンプラス マーカ
CN108319034B (zh) * 2018-02-27 2020-08-14 Oppo广东移动通信有限公司 激光投射模组、深度相机和电子装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279255A (ja) * 2006-04-04 2007-10-25 Olympus Corp 光学素子および光学素子の測定方法
JP2009229996A (ja) * 2008-03-25 2009-10-08 Enplas Corp レンズアレイ装置およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2309299B (en) * 1996-01-16 2000-06-07 Mars Inc Sensing device
US5889593A (en) * 1997-02-26 1999-03-30 Kla Instruments Corporation Optical system and method for angle-dependent reflection or transmission measurement
JP3747890B2 (ja) * 2002-07-08 2006-02-22 オムロン株式会社 光学部品ならびに当該光学部品を用いた光検出装置、光検出方法および分析方法
US7023557B2 (en) * 2003-08-05 2006-04-04 Agilent Technologies, Inc. Parallel interferometric measurements using an expanded local oscillator signal
US6967711B2 (en) * 2004-03-09 2005-11-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6989886B2 (en) * 2004-06-08 2006-01-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN1790082A (zh) * 2004-12-15 2006-06-21 恩普乐股份有限公司 复合透镜以及具备该复合透镜的透镜单元和具备该透镜单元的摄像装置
US7332733B2 (en) * 2005-10-05 2008-02-19 Asml Netherlands B.V. System and method to correct for field curvature of multi lens array
US8014072B2 (en) * 2007-08-20 2011-09-06 Nippon Sheet Glass Co., Ltd. Erecting equal-magnification lens array plate, image sensor unit, and image reading device
JP2010128361A (ja) * 2008-11-28 2010-06-10 Nippon Sheet Glass Co Ltd 正立等倍レンズアレイプレート、イメージセンサユニットおよび画像読取装置
US7936516B2 (en) * 2009-06-16 2011-05-03 Nippon Sheet Glass Co., Ltd. Erecting equal-magnification lens array plate, optical scanning unit, and image reading device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007279255A (ja) * 2006-04-04 2007-10-25 Olympus Corp 光学素子および光学素子の測定方法
JP2009229996A (ja) * 2008-03-25 2009-10-08 Enplas Corp レンズアレイ装置およびその製造方法

Also Published As

Publication number Publication date
CN103097921A (zh) 2013-05-08
CN103097921B (zh) 2015-02-18
JP2012063377A (ja) 2012-03-29
US20130163007A1 (en) 2013-06-27

Similar Documents

Publication Publication Date Title
JP7430756B2 (ja) 光学システムを製造する方法および光学システム
JP4914819B2 (ja) 光結合素子およびこれを備えた光モジュール
TWI816773B (zh) 耦接光子積體電路的光電電路板
WO2012124433A1 (ja) レンズアレイ
US7830610B2 (en) Lens, lens unit, and imaging device using the same
CN101210806B (zh) 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法
JP2020530121A (ja) 光電子チップを接触させるための位置公差に無感応な接触モジュール
WO2013053708A1 (en) Optical connector with alignment element, optical unit and assembly method
US20130027692A1 (en) Eccentricity measuring method
EP3431918A1 (en) Multichannel confocal sensor and related method for inspecting a sample
CN102576140A (zh) 透镜组装方法、透镜组装体以及具备透镜组装体的摄像装置
CN103676031A (zh) 光通信模块
CN110632727B (zh) 光学镜头、摄像模组及其组装方法
WO2012036150A1 (ja) レンズアレイおよびそのレンズエッジ検出方法
JPWO2008153140A1 (ja) 光モジュール及びその製造方法
JP3927063B2 (ja) 光学部材アレイのコア位置測定方法及びコア位置測定装置
CN113504614B (zh) 一种多通道透镜准直耦合方法及设备
JP6714555B2 (ja) 光導波路部品、コアの調芯方法、および光素子の実装方法
CN109964159B (zh) 光学部件、光学部件的注射成形模具、及光学部件的注射成形方法
CN110955002A (zh) 硅光子芯片光功率测量装置、设备、系统及测量方法
CN115712201B (zh) 一种无源耦合系统及耦合方法
US20220377231A1 (en) Precision non-contact core imaging of fiber optic assemblies
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
US20240060851A1 (en) Precision non-contact measurement of core-to-ferrule offset vectors for fiber optic assemblies
US20230314721A1 (en) Optical probe for optoelectronic integrated circuits

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044100.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13818963

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825152

Country of ref document: EP

Kind code of ref document: A1