WO2012035865A1 - 潜在性硬化剤の製造方法 - Google Patents

潜在性硬化剤の製造方法 Download PDF

Info

Publication number
WO2012035865A1
WO2012035865A1 PCT/JP2011/065963 JP2011065963W WO2012035865A1 WO 2012035865 A1 WO2012035865 A1 WO 2012035865A1 JP 2011065963 W JP2011065963 W JP 2011065963W WO 2012035865 A1 WO2012035865 A1 WO 2012035865A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
porous resin
imidazole compound
curing agent
latent curing
Prior art date
Application number
PCT/JP2011/065963
Other languages
English (en)
French (fr)
Inventor
和伸 神谷
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to CN201180044679.9A priority Critical patent/CN103249754B/zh
Priority to US13/389,356 priority patent/US9481787B2/en
Priority to KR1020127014228A priority patent/KR101780515B1/ko
Priority to EP11824874.9A priority patent/EP2617751A1/en
Publication of WO2012035865A1 publication Critical patent/WO2012035865A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0847Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers
    • C08G18/0852Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of solvents for the polymers the solvents being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6415Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63 having nitrogen
    • C08G18/6446Proteins and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/188Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using encapsulated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/322Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of solar panels
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a latent curing agent capable of initiating curing of a thermosetting resin composition mainly composed of an epoxy resin or the like at a relatively low temperature.
  • This latent curing agent is an oil-in-water emulsion by emulsifying an oil phase in which a polyfunctional isocyanate compound is dissolved in ethyl acetate into an aqueous phase in which a surfactant and a polyvinyl alcohol as a dispersant are dissolved in water.
  • the product is prepared and the emulsion is heated to interfacially polymerize the polyfunctional isocyanate compound in the oil phase to form porous resin particles.
  • the porous resin particles are recovered and dried, and then imidazole is added to ethanol. It is manufactured by immersing in an imidazole compound solution in which the compound is dissolved, allowing the imidazole compound solution to permeate the porous resin particles, and collecting, washing, and drying the porous resin particles infiltrated with the imidazole compound solution.
  • the latent hardening agent which patent document 1 has proposed has the comparatively intended characteristic regarding latency and low-temperature fast-curing property, the design freedom of a thermosetting epoxy resin composition is obtained. In order to improve, it is required to realize the intended curing characteristics even when the latent curing agent is blended in a smaller amount. In other words, the latent curing agent can be produced while increasing the penetration amount of the imidazole compound solution into the porous resin particles without sacrificing the latency and the low-temperature rapid curing property. It has been demanded.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to reduce the penetration amount of the imidazole solution into the porous resin particles without sacrificing the latency and the low-temperature rapid curability. It is to produce a latent curing agent so that it can be increased above.
  • the inventor of the present invention greatly affects the amount of the imidazole solution penetrating into the porous resin particles due to the dispersant added to the water phase used when emulsifying the oil phase and the water phase containing the polyfunctional isocyanate compound.
  • water-soluble polypeptides such as gelatin having amino groups that are reactive with isocyanate groups are used as dispersants, and further, proteolytic enzymes after interfacial polymerization
  • the present invention was completed by finding that the above-mentioned object can be achieved by enzymatic treatment.
  • the present invention is a method for producing a latent curing agent in which an imidazole compound is held on porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate compound, and includes the following steps (A) to (E): : Process (A) A step of obtaining an oil-in-water emulsion by emulsifying an oil phase obtained by dissolving a polyfunctional isocyanate compound in an organic solvent into an aqueous phase obtained by dissolving a water-soluble polypeptide and a surfactant in water.
  • a production method including a step of obtaining a latent curing agent.
  • the present invention also includes a latent curing agent obtained by the above-described production method and a thermosetting resin, and the thermosetting resin composition, the thermosetting resin composition, An anisotropic conductive adhesive film formed by dispersing conductive particles for anisotropic conductive connection into a film and an adhesive film for solar cells formed by forming the thermosetting resin composition into a film are provided.
  • a water-soluble polypeptide such as gelatin is used as a dispersant in an aqueous phase during interfacial polymerization.
  • a water-soluble polypeptide has an amino group or a carboxyl group that reacts with an isocyanate group. Therefore, a polypeptide structure derived from a water-soluble polypeptide is introduced on or near the surface of the porous resin particles that are intermediate products of the production method of the present invention.
  • porous resin particles into which such a polypeptide structure is introduced are subjected to proteolytic enzyme treatment.
  • the polypeptide structure is decomposed into amino acids and oligopeptides, so that the imidazole solution of porous resin particles is compared to the case of conventional porous resin particles obtained by interfacial polymerization using polyvinyl alcohol as a dispersant.
  • Improves permeability Therefore, when the latent curing agent obtained by the production method of the present invention is blended in a thermosetting resin composition, it becomes possible to achieve the same curing characteristics with a smaller blending amount than conventional latent curing agents. Moreover, such a thermosetting resin composition exhibits good low-temperature fast curing properties.
  • FIG. 1A is a particle size distribution diagram of porous resin particles of Example 1.
  • FIG. 1B is an electron micrograph (5000 magnifications) of the porous resin particles of Example 1.
  • FIG. 1C is an electron micrograph (20,000 times) of the porous resin particles of Example 1.
  • FIG. 2 is an electron micrograph (5000 magnifications) of porous resin particles of Reference Example 1.
  • 1 is a DSC measurement diagram of thermosetting fat compositions of Examples 1 to 3.
  • FIG. It is a DSC measurement figure of the thermosetting resin composition of Example 1 and Examples 4 and 5.
  • 1 is a DSC measurement diagram of thermosetting resin compositions of Example 1 and Examples 6 to 8.
  • FIG. 3 is a TG-DTA measurement diagram of the latent curing agent of Comparative Example 1, the porous resin particles of Example 1, and the latent curing agent of Example 6.
  • FIG. 10 is a DSC measurement diagram of test results of Example 9.
  • FIG. 10 is a DSC measurement diagram of test results of Example 9.
  • FIG. 10 is
  • the present invention is a method for producing a latent curing agent in which an imidazole compound is held on porous resin particles obtained by interfacial polymerization of a polyfunctional isocyanate compound, and includes the following steps (A) to (E): .
  • steps (A) to (E): include the following steps (A) to (E): .
  • step (A) an oil phase obtained by dissolving a polyfunctional isocyanate compound in an organic solvent is emulsified in an aqueous phase obtained by dissolving a water-soluble polypeptide and a surfactant in water to form oil-in-water droplets. This is a step of obtaining a mold emulsion.
  • step (A) first, a polyfunctional isocyanate compound is dissolved in an organic solvent to prepare a solution that becomes an oil phase in interfacial polymerization.
  • the organic solvent is preferably volatile. The reason is as follows. That is, when a high boiling point solvent having a boiling point exceeding 300 ° C. as used in a normal interfacial polymerization method is used, the organic solvent does not volatilize during the interfacial polymerization, so the contact probability between isocyanate and water does not increase. This is because the degree of progress of interfacial polymerization between them becomes insufficient.
  • thermosetting resin composition a thermosetting resin composition
  • the high boiling point solvent adversely affects the physical properties of the cured product of the thermosetting resin composition. For this reason, a volatile thing is used as an organic solvent used when preparing an oil phase.
  • Such an organic solvent is a good solvent for a polyfunctional isocyanate compound (solubility is preferably 0.1 g / ml (organic solvent) or more) and does not substantially dissolve in water (water solubility). Is 0.5 g / ml (organic solvent) or less) and has a boiling point of 100 ° C. or less under atmospheric pressure.
  • Specific examples of such an organic solvent include alcohols, acetate esters, ketones and the like. Among them, ethyl acetate can be preferably used in terms of high polarity, low boiling point, and poor water solubility.
  • the amount of the organic solvent used is preferably 1.5 to 5 times, more preferably 1.5 times the amount of the polyfunctional isocyanate compound, because if the amount is too small, the latency will decrease and if it is too large, the thermal response will decrease. -3 mass times. If the amount of the organic solvent is relatively large, hydrolysis of the isocyanate group is suppressed during emulsification, and the reaction between the amino group of the water-soluble polypeptide in the aqueous phase and the isocyanate group of the isocyanate compound in the oil phase. Tend to be competitive, and the shape of the porous resin particles obtained after interfacial polymerization tends to be irregular spherical. On the other hand, when the amount of the organic solvent is relatively reduced, the interfacial polymerizability of the isocyanate compound is improved, and the shape of the porous resin particles obtained after interfacial polymerization tends to be spherical.
  • the viscosity of the solution which becomes an oil phase can be lowered by using a relatively large amount of the organic solvent within the range of the amount of the organic solvent used. Lowering the viscosity improves the stirring efficiency, making it possible to make the oil phase droplets in the reaction system finer and more uniform.
  • the resulting latent curing agent particle size is about submicron to several microns. It is possible to make the particle size distribution monodisperse while controlling to the size of. From such a viewpoint, it is preferable to set the viscosity of the oil phase solution to 1 to 500 mPa ⁇ s.
  • the polyfunctional isocyanate compound When the polyfunctional isocyanate compound is dissolved in the organic solvent, it may be simply mixed and stirred at room temperature under atmospheric pressure, but may be heated as necessary.
  • the polyfunctional isocyanate compound used in the present invention is preferably a compound having two or more isocyanate groups, preferably three isocyanate groups in one molecule.
  • a TMP adduct of formula (2) obtained by reacting 3 mol of a diisocyanate compound with 1 mol of trimethylolpropane, and a formula (3) obtained by self-condensing 3 mol of a diisocyanate compound.
  • An isocyanurate of formula (4) and a biuret of formula (4) obtained by condensing the remaining 1 mol of diisocyanate with diisocyanate urea obtained from 2 mol of 3 mol of diisocyanate compound.
  • the substituent R is a portion excluding the isocyanate group of the diisocyanate compound.
  • diisocyanate compounds include toluene 2,4-diisocyanate, toluene 2,6-diisocyanate, m-xylylene diisocyanate, hexamethylene diisocyanate, hexahydro-m-xylylene diisocyanate, isophorone diisocyanate, methylene diphenyl-4. 4,4'-diisocyanate.
  • an aqueous phase in which a surfactant and a water-soluble polypeptide are dissolved in water is prepared.
  • the water-soluble polypeptide functions as a dispersant for dispersing porous resin particles described later in the aqueous phase.
  • the water-soluble level of the water-soluble polypeptide is a level that dissolves at least 1 g in 100 g of distilled water at 40 ° C.
  • water-soluble polypeptides include collagen peptides, gelatin, and casein.
  • gelatin is preferable from the viewpoint of average molecular weight, and further, acid-treated gelatin can be preferably used from the viewpoint of enabling control of the particle size of a single micrometer.
  • gelatin having a relatively low jelly strength can be preferably used. Specifically, it is preferable to use gelatin exhibiting a jelly strength of 10 to 250 according to JIS K6503-2001. Further, from the viewpoint of emulsion dispersion stability, it is preferable to use gelatin having a weight average molecular weight of 1,000 to 110,000.
  • water distilled water and ion-exchanged water can be preferably used. If the content of the water-soluble polypeptide such as gelatin relative to water is too small, the emulsification becomes unstable, and if it is too large, the emulsification dispersibility is lowered. More preferably, it is 0.1 to 10 parts by mass. In addition, since the water-soluble polypeptide such as gelatin is too low with respect to the polyfunctional isocyanate compound used, it becomes low reactivity, and when it is too much, it becomes highly reactive. 1 to 50 parts by mass, more preferably 1 to 30 parts by mass.
  • a surfactant is included for emulsification stability.
  • alkylbenzene sulfonate can be preferably used from the viewpoint of isocyanate reactivity and non-halogen. If the surfactant content is too small, the emulsion stability decreases, and if it is too large, fine particles are formed and foamed, and therefore it is preferably 0.001 to 10 per 100 parts by mass of distilled water or the like. Part by mass, more preferably 0.001 to 0.1 part by mass.
  • step (A) the oil phase in which the polyfunctional isocyanate compound described above is dissolved in an organic solvent is added to an aqueous phase containing a surfactant and gelatin and emulsified to form an oil-in-water emulsion.
  • the mixing ratio of the oil phase to the water phase is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the aqueous phase, because if the oil phase is too small, polydispersion occurs, and if it is too much, aggregation occurs due to refinement. is there.
  • stirring conditions such that the volume average particle diameter of the oil phase is preferably 0.5 to 100 ⁇ m, more preferably 0.5 to 30 ⁇ m (for example, a stirrer homogenizer; stirring speed 6000 to 25000 rpm, atmospheric pressure) Room temperature, stirring time 1 to 30 minutes).
  • Step (B) is a step of forming porous resin particles by interfacial polymerization of the polyfunctional isocyanate compound in the oil phase by heating the oil-in-water emulsion prepared in step (A).
  • the interfacial polymerization can be carried out following the step (A). For example, using a known stirrer equipped with a bladed stirrer, at a stirring speed of 10 to 300 rpm, usually at atmospheric pressure and a temperature of 30 to 80 It can be carried out by heating and stirring at a temperature of 2 ° C. for 2 to 12 hours. In addition, a process (A) and a process (B) can also be performed simultaneously.
  • Porous resin particles obtained by interfacial polymerization of such a polyfunctional isocyanate compound undergo a hydrolysis of a part of the isocyanate groups during the interfacial polymerization to become amino groups, which react with the amino groups. It is a porous polyurea that forms a urea bond to polymerize.
  • the water-soluble polypeptide which is a dispersant is one in which the amino group or carboxyl group reacts with an isocyanate group
  • the polypeptide structure part derived from the water-soluble polypeptide is formed on the surface of the porous resin particle by interfacial polymerization. It is introduced in the vicinity.
  • the proteolytic enzyme is added to the interfacial polymerization reaction liquid in which the porous resin particles prepared in the step (B) are dispersed at a time or little by little, and the porous resin particles are subjected to the enzymatic decomposition treatment. It is.
  • the enzymatic decomposition treatment the polypeptide structure portion introduced on or near the surface of the porous resin particles is enzymatically decomposed, and as a result, the permeability of the imidazole compound solution into the porous resin particles is improved.
  • proteolytic enzyme a known proteolytic enzyme can be used, and examples thereof include protease N “Amano G”, Newase F3G, Promeline F (Amano Enzyme Co., Ltd.) and the like. If the amount of the proteolytic enzyme used is too small, the peptide structure will be insufficiently decomposed, and if it is too much, residual foreign matter will be formed. 50 parts by mass, more preferably 1 to 30 parts by mass.
  • the enzyme treatment can be performed by adjusting the interfacial polymerization reaction solution charged with the proteolytic enzyme to an enzyme activity temperature range (for example, 30 to 60 ° C.) while stirring.
  • the stirring time varies depending on the temperature, the desired degree of decomposition, and the like, but is usually 1 to 12 hours.
  • Step (D) is a step of recovering the porous resin particles subjected to the enzymatic decomposition treatment in step (C) from the interfacial polymerization reaction solution.
  • the recovered porous resin particles are preferably further dried.
  • recovery method It can carry out by a well-known method. Further, after the recovery, it may be washed with an organic solvent such as water or a hydrocarbon solvent.
  • the drying treatment can be performed by a known drying method such as natural drying or vacuum drying.
  • the porous resin particles after recovery or drying can be crushed using a jet mill or the like for primary particle formation.
  • step (E) the porous resin particles obtained in step (D) are mixed with an imidazole compound solution obtained by dissolving an imidazole compound in an organic solvent, and the imidazole compound solution is infiltrated into the porous resin particles.
  • the latent curing agent obtained by holding the imidazole compound on the porous resin particles is obtained by collecting, washing, and drying according to the above.
  • the imidazole compound a known imidazole compound used as a curing agent such as an epoxy resin can be used.
  • 2-methylimidazole (melting point: 137-145 ° C.), 2-undecylimidazole (melting point: 69-74 ° C.), 2-heptadecylimidazole (melting point: 86-91 ° C.), 1,2-dimethylimidazole (melting point: about 36 ° C), 2-ethyl-4-methylimidazole (melting point about 41 ° C), 2-phenylimidazole (melting point 137-147 ° C), 2-phenyl-4-methylimidazole (melting point 174-184 ° C), 1-benzyl- Examples thereof include 2-methylimidazole (melting point: about 50 ° C.) and 1-benzyl-2-phenylimidazole (melting point: about 40 ° C.). These may be used alone or in combination of two or more.
  • the imidazole compound contains two imidazole compounds
  • the organic solvent for dissolving the imidazole compound as described above is a good solvent for the imidazole compound (the solubility is preferably 0.1 g / ml (organic solvent) or higher), and the boiling point under atmospheric pressure is 100 ° C. or lower. Those are preferred. Specific examples of such an organic solvent include alcohols, acetate esters, ketones and the like. Of these, ethanol is preferred because of its high polarity and low boiling point.
  • the amount of the organic solvent used is too small relative to the imidazole compound, the imidazole solution permeability of the porous resin particles will decrease, and if too large, the absolute amount of the imidazole compound that penetrates into the porous resin particles will decrease.
  • the amount is preferably 1 to 5 times by mass, more preferably 1 to 3 times by mass.
  • the imidazole compound solution preferably further contains a tertiary amine compound used as a curing accelerator for the epoxy compound.
  • a tertiary amine compound used as a curing accelerator for the epoxy compound.
  • tertiary amine compounds include dimethylethanolamine, dimethylbenzylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.0] undecene and the like. Can do.
  • 2,4,6-tris (dimethylaminomethyl) phenol can be preferably used from the viewpoint of curing acceleration effect.
  • the amount of such a tertiary amine compound is too small relative to the imidazole compound, the fast curability is lowered, and if it is too much, the low-temperature curability is lowered. More preferably, it is 0.1 to 0.8 times by mass.
  • the imidazole compound solution as described above is mixed with the enzymatic resin-treated porous resin particles obtained in the step (D), thereby allowing the imidazole compound solution to permeate the porous resin particles.
  • this infiltration operation is carried out by heating or stirring at room temperature for 24 hours.
  • the porous resin particles are recovered from the imidazole compound solution by a conventional method, preferably washed with water, and vacuum dried to obtain a latent curing agent in which the imidazole compound is held on the porous resin particles. Can be acquired. If necessary, the latent curing agent can be crushed by a jet mill or the like.
  • the latent curing agent thus obtained is preferably subjected to sublimation removal of the imidazole compound on the surface and in the vicinity thereof by heat treatment in order to improve the thermal stability and latency.
  • the heat treatment temperature is 80 to 120 ° C.
  • the heat treatment time is usually 0.25 to 1 hour.
  • the latent amount can be increased by changing the type and amount of the polyfunctional isocyanate compound, the type and amount of the water-soluble polypeptide, the interfacial polymerization conditions, the proteolytic enzyme treatment conditions, and the like. It is possible to control the curing characteristics of the adhesive curing agent. For example, if the polymerization temperature is lowered, the curing temperature can be lowered, and conversely, if the polymerization temperature is raised, the curing temperature can be raised.
  • the latent curing agent thus obtained can be used in the same applications as conventional imidazole-based latent curing agents, and when used in combination with a thermosetting resin, a low-temperature fast-curing thermosetting type A resin composition can be provided.
  • the amount is preferably 1 to 70 parts by mass, more preferably 1 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • thermosetting resin a thermosetting epoxy resin, a thermosetting urea resin, a thermosetting melamine resin, a thermosetting phenol resin, or the like can be used.
  • a thermosetting epoxy resin can be preferably used in consideration of a good adhesive strength after curing.
  • thermosetting epoxy resin may be liquid or solid, and preferably has an epoxy equivalent of usually about 100 to 4000 and having two or more epoxy groups in the molecule.
  • a bisphenol A type epoxy compound, a phenol novolac type epoxy compound, a cresol novolac type epoxy compound, an ester type epoxy compound, an alicyclic epoxy compound, or the like can be preferably used. These compounds include monomers and oligomers.
  • thermosetting resin composition of the present invention may contain a filler such as silica and mica, a silane coupling agent, a pigment, an antistatic agent, and the like as necessary.
  • thermosetting resin composition of the present invention is produced by uniformly mixing and stirring the latent curing agent of the present invention, the thermosetting resin, and other additives added as necessary according to a conventional method. be able to.
  • thermosetting resin composition of the present invention uses the latent curing agent of the present invention, so even if the latent curing agent is blended in a relatively smaller amount than before, It can be cured without impairing the low temperature fast curing property.
  • thermosetting resin composition of the present invention can be formed into a film and preferably used as an adhesive film for solar cells. Further, known anisotropic conductive connecting conductive particles can be dispersed in the composition to form a film, which can be preferably used as an anisotropic conductive adhesive film.
  • Example 1 Preparation of porous resin particles> A thermometer containing 840 parts by weight of distilled water, 0.05 part by weight of a surfactant (Newlex RT, NOF Corporation) and 8 parts by weight of gelatin (AP100 fine powder, Nitta Gelatin Co., Ltd.) In a 3 liter interfacial polymerization vessel and mixed uniformly. Further, 150 parts by mass of a trimethylolpropane (1 mol) adduct (D-109, Mitsui Chemicals, Inc.) of methylenediphenyl-4,4'-diisocyanate (3 mol) was added to this mixed solution and 450 parts by mass of ethyl acetate.
  • a trimethylolpropane (1 mol) adduct D-109, Mitsui Chemicals, Inc.
  • the oil phase dissolved in the part is charged and emulsified and mixed for 5 minutes using a homogenizer (T-65D, IKA Japan) at 7200 rpm at room temperature so that the volume-converted average particle size is 10 ⁇ m or less.
  • a homogenizer T-65D, IKA Japan
  • An oil droplet type emulsion was obtained.
  • the emulsion was heated to 80 ° C. while stirring with a bladed stirring rod, and interfacial polymerization was performed by continuing stirring at this temperature for 3 hours to obtain a polymerization reaction liquid in which porous resin particles were dispersed in an aqueous phase. It was.
  • the polymerization reaction solution was adjusted to 40 ° C., 0.8 parts by mass of the enzyme (Protease N “Amano G”, Amano Enzyme Co., Ltd.) was added, and the mixture was made porous by stirring at 40 ° C. for 6 hours.
  • the enzyme treatment of the resin particles was performed. After the enzyme treatment, the porous resin particles were collected from the polymerization reaction solution by filtration, washed with water, and dried to obtain spherical porous resin particles of Example 1.
  • the particle size distribution of the obtained porous resin particles was measured using a particle size distribution measuring device (SD-2000, Sysmex Corporation), and the obtained distribution chart is shown in FIG. 1A. Moreover, an electron micrograph is shown in FIG. 1B (5000 times magnification) and FIG. 1C (20000 times magnification). For reference, an electron micrograph (5000 times magnification) of the porous resin particles of Reference Example 1 prepared in the same manner except that the amount of ethyl acetate used was changed from 450 parts by mass to 200 parts by mass during the preparation of the oil phase is shown in FIG. 1D. Shown in
  • FIG. 1A shows that the average particle size (volume conversion) is 2.5 ⁇ m and the maximum particle size is 6.6 ⁇ m.
  • the permeability of the imidazole compound solution will decrease due to the spherical shape, and the absence of surface irregularities suppresses the adverse effect on the curing characteristics of the latent curing agent due to the jet mill crushing treatment. Can be expected.
  • ⁇ Infiltration treatment of imidazole compound 10 parts by mass of the obtained porous resin particles of Example 1 were dissolved in 60 parts by mass of ethanol and 40 parts by mass of 2-methylimidazole (2MZ-H, Shikoku Chemicals Co., Ltd.) having a melting point of 137 to 145 ° C. The solution was added to 100 parts by mass and stirred at 30 ° C. for 6 hours at 200 rpm. Thereafter, stirring was continued at room temperature for 20 hours. After completion of the stirring, the porous resin particles treated with the imidazole compound were collected by filtration, washed with distilled water, dried in vacuum, and further dissolved by a jet mill (AO-JET MILL, Seisin Co., Ltd.). It was crushed to form primary particles. Thereby, a latent curing agent was obtained.
  • 2-methylimidazole 2MZ-H, Shikoku Chemicals Co., Ltd.
  • thermosetting resin composition Uniformly blend 20 parts by mass of the resulting latent curing agent into 80 parts by mass of a bisphenol A type liquid epoxy resin (EP828, Mitsubishi Chemical Corporation) using a kneader (Awatori Netaro, Inc. Shinky Co., Ltd.). A thermosetting resin composition was obtained by mixing.
  • thermosetting resin composition was subjected to differential thermal scanning calorimetry using a differential thermal scanning calorimeter (DSC) (DSC6200, Seiko Instruments Inc.) (evaluation amount 5 mg, heating rate 10 ° C.). / Min).
  • DSC differential thermal scanning calorimeter
  • the exothermic start temperature means the curing start temperature
  • the exothermic peak temperature means the temperature at which curing is most active
  • the total calorific value is the value of the curing reaction. It means the amount of heat generated from the start to completion.
  • Example 2 A latent curing agent was prepared in the same manner as in Example 1, except that 2-ethyl-4-methylimidazole (2E4MZ, Shikoku Kasei Kogyo Co., Ltd.) having a melting point of 41 ° C. was used instead of 2-methylimidazole. Further, a thermosetting resin composition was prepared using the same. About the obtained thermosetting resin composition, differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 1 and FIG.
  • Example 3 A latent curing agent was prepared in the same manner as in Example 1 except that 2-phenylimidazole (2PZ-PW, Shikoku Kasei Kogyo Co., Ltd.) having a melting point of 137 to 147 ° C. was used instead of 2-methylimidazole. Further, a thermosetting resin composition was prepared using the same. About the obtained thermosetting resin composition, differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 1 and FIG.
  • thermosetting resin compositions of Examples 1 and 3 using a latent curing agent obtained by infiltrating an imidazole compound having a melting point of 137 ° C. into the porous resin particles are about 110 ° C.
  • An exothermic starting temperature and an exothermic peak temperature of a little less than 140 ° C. are shown. Therefore, it can be seen that low temperature rapid curability could be realized while showing the potential.
  • thermosetting resin composition of Example 2 using a latent curing agent obtained by impregnating porous resin particles with an imidazole compound having a melting point of 41 ° C. has a heat generation start temperature shifted to about 100 ° C. It can be seen that it has good low-temperature fast curability.
  • the same total calorific value as in Examples 1 and 3 was exhibited.
  • Example 4 10 parts by mass of 40 parts by mass of 2-methylimidazole was used as a liquid tertiary amine-based curing accelerator, 2,4,6-tris (dimethylaminomethyl) phenol (Lubeak-DMP-30, Nacalai
  • a latent curing agent was prepared in the same manner as in Example 1 except that Tex Co., Ltd. was used, and a thermosetting resin composition was prepared using the latent curing agent.
  • differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 2 and FIG.
  • Example 5 Of the 40 parts by mass of 2-methylimidazole, 20 parts by mass of 2,4,6-tris (dimethylaminomethyl) phenol (Lubeak-DMP-30, Nacalai) as a liquid tertiary amine curing accelerator.
  • a latent curing agent was prepared in the same manner as in Example 1 except that Tex Co., Ltd. was used, and a thermosetting resin composition was prepared using the latent curing agent.
  • differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 2 and FIG. For reference, the results of Example 1 are also shown in Table 2 and FIG.
  • Example 6 Example 1 except that 10 parts by mass of 40 parts by mass of 2-methylimidazole was used with 2-ethyl-4-methylimidazole (2E4MZ, Shikoku Chemicals Co., Ltd.) having a melting point of 41 ° C.
  • a latent curing agent was prepared in the same manner as described above, and a thermosetting resin composition was prepared using the latent curing agent.
  • a thermosetting resin composition was prepared using the latent curing agent.
  • differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 3 and FIG.
  • Example 7 Example 1 except that 10 parts by mass of 40 parts by mass of 2-methylimidazole was used with 2-phenylimidazole (2PZ-PW, Shikoku Chemicals Co., Ltd.) having a melting point of 137 to 147 ° C.
  • a latent curing agent was prepared in the same manner as described above, and a thermosetting resin composition was prepared using the latent curing agent.
  • differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 3 and FIG.
  • Example 8 10 parts by mass of 40 parts by mass of 2-methylimidazole was used except that 2-phenyl-4-methylimidazole (2P4MZ, Shikoku Kasei Kogyo Co., Ltd.) having a melting point of 174 to 184 ° C. was used.
  • a latent curing agent was prepared in the same manner as in Example 1, and a thermosetting resin composition was prepared using the latent curing agent.
  • differential thermal scanning calorimetry was performed similarly to Example 1, and the obtained result is shown in Table 3 and FIG. For reference, the results of Example 1 are also shown in Table 3 and FIG.
  • Example 1 The latent potential was the same as in Example 1 except that 4 parts by mass of polyvinyl alcohol (PVA-205, Kuraray Co., Ltd.) was used instead of 8 parts by mass of gelatin (AP100 fine powder, Nitta Gelatin Co., Ltd.).
  • a curing agent was prepared. About the obtained latent curing agent, the thermogravimetry-differential thermal analyzer (TG-DTA) (TG / DTA6200, Seiko Instruments Inc.) was used to measure the heating weight loss rate (evaluation amount 5 mg, ascending). (Temperature rate 10 ° C./min). The obtained results are shown in Table 4 and FIG.
  • the weight loss rate by heating was also measured for the porous resin particles prepared in Example 1 before the imidazole compound infiltration treatment and the latent curing agent prepared in Example 6.
  • the obtained results are shown in Table 4 and FIG.
  • the weight reduction rate is the ratio of the reduced weight when heated to 260 ° C. (thermal decomposition start temperature) relative to the initial weight
  • the encapsulation rate is the porosity of Example 1 before penetration of the imidazole compound solution from the weight reduction rate. This is a value obtained by reducing the weight reduction rate of the resin particles.
  • Example 9 (Effect of heat treatment of latent curing agent) Test Example A: A latent curing agent was prepared by repeating Example 4, and a thermosetting resin composition was prepared using the latent curing agent. The resulting thermosetting resin composition was the same as in Example 1. The differential thermal scanning calorimetry was performed, and the obtained results are shown in Table 5 and FIG. 6 (corresponding to Example 4).
  • Test Example B The latent curing agent prepared in Example 4 was heat-treated at 120 ° C. for 30 minutes, and the heat-cured latent curing agent was used in the same manner as in Example 4 to prepare a thermosetting resin composition.
  • the thermosetting resin composition prepared and obtained was subjected to differential thermal scanning calorimetry in the same manner as in Example 1, and the obtained results are shown in Table 5 and FIG.
  • Test Example C A latent curing agent was prepared by repeating Example 4, and further a thermosetting resin composition was prepared using the latent curing agent, followed by heat aging treatment at 55 ° C. for 7 hours, and then About the thermosetting resin composition (The thermosetting resin composition of Test Example A which had been aged at 55 ° C. for 7 hours) was subjected to differential thermal scanning calorimetry in the same manner as in Example 1 and obtained. The results are shown in Table 5 and FIG.
  • Test Example D The latent curing agent prepared in Example 4 was heat-treated at 120 ° C. for 30 minutes, and the heat-cured latent curing agent was used in the same manner as in Example 4 to prepare a thermosetting resin composition. Then, heat aging treatment is performed at 55 ° C. for 7 hours, and then a thermosetting resin composition subjected to heat aging treatment (the thermosetting resin composition of Test Example B is aged at 55 ° C. for 7 hours) As in Example 1, differential thermal scanning calorimetry was performed, and the obtained results are shown in Table 5 and FIG.
  • the production method of the present invention is useful for the production of a latent curing agent for a thermosetting resin composition that is used when an electronic component such as an IC chip must be bonded to a wiring board without excessive heat shock. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Epoxy Resins (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤は、多官能イソシアネート化合物をその1.5~5質量倍の量の有機溶剤に溶解させて得た油相を、水に水溶性ポリペプチドと界面活性剤とを溶解させて得た水相に乳化させ、次いで界面重合させ、更に、タンパク質分解酵素を投入して酵素分解処理を行い、その後、多孔性樹脂粒子を回収し、回収した多孔性樹脂粒子にイミダゾール化合物溶液を浸透させることにより製造する。

Description

潜在性硬化剤の製造方法
 本発明は、エポキシ樹脂等を主成分とする熱硬化型樹脂組成物の硬化を、比較的低温で開始させることができる潜在性硬化剤の製造方法に関する。
 熱硬化性エポキシ樹脂組成物の潜在性硬化剤として、多官能イソシアネート化合物の界面重合物である多孔性樹脂粒子にイミダゾール化合物が保持されてなるマイクロカプセル型の潜在性硬化剤が提案されている(特許文献1)。この潜在性硬化剤は、多官能イソシアネート化合物を酢酸エチルに溶解させた油相を、水に界面活性剤と分散剤としてポリビニルアルコールとを溶解させた水相中に乳化させて水中油滴型乳化物を調製し、この乳化物を加熱することにより油相中の多官能イソシアネート化合物を界面重合させて多孔性樹脂粒子を形成し、この多孔性樹脂粒子を回収し、乾燥した後、エタノールにイミダゾール化合物を溶解させたイミダゾール化合物溶液に浸漬して多孔性樹脂粒子にイミダゾール化合物溶液を浸透させ、イミダゾール化合物溶液が浸透した多孔性樹脂粒子を回収、洗浄し、乾燥することにより製造されている。
特開2006-291053号公報
 ところで、特許文献1が提案している潜在性硬化剤は、潜在性と低温速硬化性とに関しては比較的意図した特性が得られているものの、熱硬化性エポキシ樹脂組成物の設計自由度を向上させるために、潜在性硬化剤をより少ない量で配合した場合であっても意図した硬化特性を実現できるようにすることが求められている。換言すれば、潜在性と低温速硬化性を犠牲にすることなく、多孔性樹脂粒子へのイミダゾール化合物溶液の浸透量を今まで以上に増大させながら潜在性硬化剤を製造できるようにすることが求められている。
 本発明の目的は、以上の従来の技術の課題を解決しようとするものであり、潜在性と低温速硬化性を犠牲にすることなく、多孔性樹脂粒子へのイミダゾール溶液の浸透量を今まで以上に増大させることができるように、潜在性硬化剤を製造することである。
 本発明者は、多孔性樹脂粒子へのイミダゾール溶液の浸透量が、多官能イソシアネート化合物を含有する油相と水相とを乳化する際に使用する当該水相に配合する分散剤により大きく影響を受けるという仮定の下、様々な分散剤を検討した結果、イソシアネート基に対して反応性を有するアミノ基を有するゼラチン等の水溶性ポリペプチドを分散剤として使用し、更に、界面重合後にタンパク質分解酵素で酵素処理することにより上述の目的を達成できることを見出し、本発明を完成させた。
 即ち、本発明は、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤の製造方法であって、以下の工程(A)~(E):
 工程(A)
 多官能イソシアネート化合物を有機溶剤に溶解させて得た油相を、水に水溶性ポリペプチドと界面活性剤とを溶解させて得た水相に乳化させることにより水中油滴型乳化物を得る工程;
 工程(B)
 水中油滴型乳化物を加熱することにより油相中の多官能イソシアネート化合物を界面重合させて多孔性樹脂粒子を形成する工程;
 工程(C)
 多孔性樹脂粒子が分散している界面重合反応液にタンパク質分解酵素を投入し、多孔性樹脂粒子を酵素分解処理する工程;
 工程(D)
 酵素分解処理を受けた多孔性樹脂粒子を界面重合反応液から回収する工程;及び
 工程(E)
 回収した多孔性樹脂粒子を、イミダゾール化合物を有機溶剤に溶解して得たイミダゾール化合物溶液と混合し、多孔性樹脂粒子にイミダゾール化合物溶液を浸透させ、多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤を取得する工程
を有する製造方法を提供する。
 また、本発明は、上述の製造方法により得られた潜在性硬化剤と、熱硬化型樹脂とを含有することを特徴とする熱硬化型樹脂組成物、当該熱硬化型樹脂組成物中に、異方性導電接続用導電粒子を分散させフィルム化してなる異方性導電接着フィルム、並びに当該熱硬化型樹脂組成物をフィルム化してなる太陽電池用接着フィルムを提供する。
 イミダゾール化合物が多孔性樹脂粒子に保持されてなる潜在性硬化剤を製造するための本発明の製造方法においては、界面重合の際、水相に分散剤としてゼラチン等の水溶性ポリペプチドを使用する。このような水溶性ポリペプチドは、イソシアネート基に反応するアミノ基やカルボキシル基を有する。従って、本発明の製造方法の中間生成物である多孔性樹脂粒子の表面もしくはその近傍には、水溶性ポリペプチドに由来するポリペプチド構造部が導入されることになる。本発明の製造方法では、界面重合後、そのようなポリペプチド構造部が導入された多孔性樹脂粒子をタンパク質分解酵素処理する。この結果、ポリペプチド構造部がアミノ酸やオリゴペプチドに分解されるため、分散剤としてポリビニルアルコールを使用して界面重合により得た従来の多孔性樹脂粒子の場合に比べ、多孔性樹脂粒子のイミダゾール溶液浸透性が向上する。従って、本発明の製造方法により得られた潜在性硬化剤を熱硬化性樹脂組成物に配合した場合、従来の潜在性硬化剤よりも少ない配合量で同等の硬化特性を実現することが可能となり、また、そのような熱硬化性樹脂組成物は良好な低温速硬化性を示す。
図1Aは、実施例1の多孔性樹脂粒子の粒度分布図である。 図1Bは、実施例1の多孔性樹脂粒子の電子顕微鏡写真(5000倍)である。 図1Cは、実施例1の多孔性樹脂粒子の電子顕微鏡写真(20000倍)である。 参考例1の多孔性樹脂粒子の電子顕微鏡写真(5000倍)である。 実施例1~3の熱硬化型脂組成物のDSC測定図である。 実施例1並びに実施例4及び5の熱硬化型樹脂組成物のDSC測定図である。 実施例1及び実施例6~8の熱硬化型樹脂組成物のDSC測定図である。 比較例1の潜在性硬化剤、実施例1の多孔性樹脂粒子及び実施例6の潜在性硬化剤のTG-DTA測定図である。 実施例9の試験結果のDSC測定図である。
 本発明は、多官能イソシアネート化合物を界面重合させて得た多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤の製造方法であって、以下の工程(A)~(E)を有する。以下、工程毎に詳細に説明する。
<工程(A)>
 工程(A)は、多官能イソシアネート化合物を有機溶剤に溶解させて得た油相を、水に水溶性ポリペプチドと界面活性剤とを溶解させて得た水相に乳化させることにより水中油滴型乳化物を得る工程である。
 工程(A)においては、まず、多官能イソシアネート化合物を有機溶剤に溶解させ、界面重合における油相となる溶液を調製する。ここで、有機溶剤は、揮発性であることが好ましい。この理由は以下の通りである。即ち、通常の界面重合法で使用するような沸点が300℃を超える高沸点溶剤を用いた場合、界面重合の間に有機溶剤が揮発しないために、イソシアネートと水との接触確率が増大せず、それらの間での界面重合の進行度合いが不十分となるからである。そのため、界面重合させても良好な保形性の重合物が得られ難く、また、得られた場合でも重合物に高沸点溶剤が取り込まれたままとなり、熱硬化型樹脂組成物に配合した場合に、高沸点溶剤が熱硬化型樹脂組成物の硬化物の物性に悪影響を与えるからである。このため、油相を調製する際に使用する有機溶剤として、揮発性のものを使用する。
 このような有機溶剤としては、多官能イソシアネート化合物の良溶剤(溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、水に対しては実質的に溶解せず(水の溶解度が0.5g/ml(有機溶剤)以下)、大気圧下での沸点が100℃以下のものが好ましい。このような有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性、低沸点、貧水溶性の点で酢酸エチルを好ましく使用することができる。
 有機溶剤の使用量は、多官能イソシアネート化合物に対し、少なすぎると潜在性が低下し、多すぎると熱応答性が低下するので、好ましくは1.5~5質量倍、より好ましくは1.5~3質量倍である。なお、有機溶剤の量を比較的多くすると、乳化の際にイソシアネート基の加水分解が抑制され、水相中の水溶性ポリペプチドのアミノ基と、油相中のイソシアネート化合物のイソシアネート基との反応が競合的に進行し、界面重合後に得られる多孔性樹脂粒子の形状がいびつな球状になる傾向がある。他方、比較的有機溶剤の量を少なくすると、イソシアネート化合物の界面重合性が向上し、界面重合後に得られる多孔性樹脂粒子の形状が真球状になる傾向がある。
 なお、有機溶剤の使用量範囲内において、有機溶剤の使用量を比較的多く使用すること等により油相となる溶液の粘度を下げることができる。粘度を下げると撹拌効率が向上するため、反応系における油相滴をより微細化かつ均一化することが可能になり、結果的に得られる潜在性硬化剤の粒子径をサブミクロン~数ミクロン程度の大きさに制御しつつ、粒度分布を単分散とすることが可能となる。このような観点から、油相となる溶液の粘度を1~500mPa・sに設定することが好ましい。
 多官能イソシアネート化合物を有機溶剤に溶解させる際には、大気圧下、室温で混合撹拌するだけでもよいが、必要に応じ、加熱してもよい。
 また、本発明で使用する多官能イソシアネート化合物としては、好ましくは一分子中に2個以上のイソシアネート基、好ましくは3個のイソシアネート基を有する化合物が挙げられる。このような3官能イソシアネート化合物の更に好ましい例としては、トリメチロールプロパン1モルにジイソシアネート化合物3モルを反応させた式(2)のTMPアダクト体、ジイソシアネート化合物3モルを自己縮合させた式(3)のイソシアヌレート体、ジイソシアネート化合物3モルのうちの2モルから得られるジイソシアネートウレアに残りの1モルのジイソシアネートが縮合した式(4)のビュウレット体が挙げられる。
Figure JPOXMLDOC01-appb-I000001
 上記(2)~(4)において、置換基Rは、ジイソシアネート化合物のイソシアネート基を除いた部分である。このようなジイソシアネート化合物の具体例としては、トルエン2,4-ジイソシアネート、トルエン2,6-ジイソシアネート、m-キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、ヘキサヒドロ-m-キシリレンジイソシアネート、イソホロンジイソシアネート、メチレンジフェニル-4,4′-ジイソシアネートが挙げられる。
 次に、水に界面活性剤および水溶性ポリペプチドを溶解させた水相を調製する。水溶性ポリペプチドは、後述する多孔性樹脂粒子を水相に分散させるための分散剤として機能するものである。
 水溶性ポリペプチドの水溶性のレベルは、40℃の蒸留水100gに少なくとも1g以上溶解するレベルである。このような水溶性ポリペプチドとしては、コラーゲンペプチド、ゼラチン、カゼイン等が挙げられる。特に平均分子量の観点から、ゼラチンが好ましく、更に、シングルミクロンメーターの粒子径の制御を可能にするという観点から、酸処理を施したゼラチンを好ましく使用することができる。また、ゲルネットワーク形成の観点から、比較的低いゼリー強度のゼラチンを好ましく使用することができる。具体的には、JIS K6503-2001によるゼリー強度10~250を示すゼラチンを使用することが好ましい。更に、乳化分散安定性の観点から、重量平均分子量1000~110000のゼラチンを使用することが好ましい。
 水としては、蒸留水、イオン交換水を好ましく使用することができる。水に対するゼラチン等の水溶性ポリペプチドの含有量は、少なすぎると乳化が不安定化し、多すぎると乳化分散性が低下するので、水100質量部に対し、好ましくは0.1~50質量部、より好ましくは0.1~10質量部である。また、ゼラチン等の水溶性ポリペプチドは、使用した多官能イソシアネート化合物に対し、少なすぎると低反応性となり、多すぎると高反応性となるので、多官能イソシアネート化合物100質量部に対し、好ましくは1~50質量部、より好ましくは1~30質量部である。
 水相には、乳化安定性のために界面活性剤を含有させる。界面活性剤としては、イソシアネート反応性及びノンハロゲンの観点からアルキルベンゼンスルホン酸塩を好ましく使用できる。また、界面活性剤の含有量は、少なすぎると乳化安定性が低下し、多すぎると微細粒子形成及び発泡を生じる為、蒸留水等の水100質量部に対し、好ましくは0.001~10質量部、より好ましくは0.001~0.1質量部である。
 工程(A)においては、以上説明した多官能イソシアネート化合物が有機溶剤に溶解した油相を、界面活性剤とゼラチンとを含有する水相に投入し、乳化させ、水中油滴型乳化物を形成するが、油相の水相に対する混合割合は、油相が少なすぎると多分散化し、多すぎると微細化により凝集が生ずるので、水相100質量部に対し、好ましくは5~80質量部である。
 乳化条件としては、油相の体積平均粒子径が好ましくは0.5~100μm、より好ましくは0.5~30μmとなるような撹拌条件(例えば、撹拌装置ホモジナイザー;撹拌速度6000~25000rpm、大気圧下、室温、撹拌時間1~30分)が挙げられる。
<工程(B)>
 工程(B)は、工程(A)で調製した水中油滴型乳化物を加熱することにより油相中の多官能イソシアネート化合物を界面重合させて多孔性樹脂粒子を形成する工程である。
 界面重合は、工程(A)に引き続いて行うことができ、例えば、公知の羽根付き撹拌棒を備えた撹拌装置を用い、10~300rpmの撹拌速度で、通常、大気圧下、温度30~80℃、撹拌時間2~12時間、加熱撹拌することにより行うことができる。なお、工程(A)と工程(B)とを同時に行うこともできる。
 このような多官能イソシアネート化合物を界面重合させて得られる多孔性樹脂粒子は、界面重合の間にイソシアネート基の一部が加水分解を受けてアミノ基となり、そのアミノ基とイソシアネート基とが反応して尿素結合を生成してポリマー化するものであり、多孔性ポリウレアである。また、分散剤である水溶性ポリペプチドも、そのアミノ基もしくはカルボキシル基がイソシアネート基と反応するものであるため、界面重合により水溶性ポリペプチド由来のポリペプチド構造部が多孔性樹脂粒子の表面又はその近傍に導入される。
<工程(C)>
 工程(C)は、工程(B)で調製された多孔性樹脂粒子が分散している界面重合反応液にタンパク質分解酵素を一度にもしくは少しずつ投入し、多孔性樹脂粒子を酵素分解処理する工程である。この酵素分解処理により、多孔性樹脂粒子の表面又は表面近傍に導入されたポリペプチド構造部が酵素分解され、その結果、多孔性樹脂粒子内部へのイミダゾール化合物溶液の浸透性が向上する。
 タンパク質分解酵素としては、公知のタンパク質分解酵素を使用することができ、例えば、プロテアーゼN「アマノG」、ニューラーゼF3G、プロメラインF(天野エンザイム(株))等を挙げることができる。タンパク質分解酵素の使用量としては、少なすぎるとペプチド構造部の分解不足となり、多すぎると残留異物となるので、使用したゼラチン等の水溶性ポリペプチド100質量部に対し、好ましくは0.1~50質量部、より好ましくは1~30質量部である。
 なお、酵素処理は、タンパク質分解酵素が投入された界面重合反応液を撹拌しながら酵素活性温度域(例えば、30~60℃)に調整することにより行うことができる。撹拌時間は、温度、求める分解の程度等により変動するが、通常1~12時間である。
<工程(D)>
 工程(D)は、工程(C)で酵素分解処理を受けた多孔性樹脂粒子を界面重合反応液から回収する工程である。回収した多孔性樹脂粒子は、更に乾燥処理することが好ましい。回収手法としては特に限定は無く、公知の手法により行うことができる。また、回収した後、水や炭化水素系溶媒等の有機溶媒で洗浄してもよい。乾燥処理は、自然乾燥、真空乾燥などの公知の乾燥手法により行うことができる。回収もしくは乾燥後の多孔性樹脂粒子に対し、一次粒子化のためにジェットミル等を用いて解砕処理を施すことができる。
<工程(E)>
 工程(E)は、工程(D)で得た多孔性樹脂粒子を、イミダゾール化合物を有機溶剤に溶解して得たイミダゾール化合物溶液と混合し、多孔性樹脂粒子にイミダゾール化合物溶液を浸透させ、必要に応じて回収、洗浄、乾燥することにより、多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤を取得する工程である。
 イミダゾール化合物としては、エポキシ樹脂などの硬化剤として使用されている公知のイミダゾール化合物を使用することができる。例えば、2-メチルイミダゾール(融点137~145℃)、2-ウンデシルイミダゾール(融点69~74℃)、2-ヘプタデシルイミダゾール(融点86~91℃)、1,2-ジメチルイミダゾール(融点約36℃)、2-エチル-4-メチルイミダゾール(融点約41℃)、2-フェニルイミダゾール(融点137~147℃)、2-フェニル-4-メチルイミダゾール(融点174~184℃)、1-ベンジル-2-メチルイミダゾール(融点約50℃)、1-ベンジル-2-フェニルイミダゾール(融点約40℃)等を挙げることができる。これらは単独で用いてもよいが2種以上を併用することもできる。これらのイミダゾール化合物の中でも、硬化活性の良好な2-メチルイミダゾールを使用することが好ましい。
 なお、イミダゾール化合物が、2種のイミダゾール化合物を含有する場合、2-メチルイミダゾール(融点137~145℃)と、それと同等の又はより低い融点を有する別のイミダゾール化合物とを含有することが好ましい。具体的には、融点137~145℃の2-メチルイミダゾールと、融点約41℃の2-エチル-4-メチルイミダゾールまたは融点137~147℃の2-フェニルイミダゾールとを含有することが好ましい。この場合、イミダゾール化合物の50質量%以上が2-メチルイミダゾールであることが好ましい。
 上述したようなイミダゾール化合物を溶解させる有機溶剤としては、イミダゾール化合物の良溶剤(溶解度が好ましくは0.1g/ml(有機溶剤)以上)であって、大気圧下での沸点が100℃以下のものが好ましい。このような有機溶剤の具体例としては、アルコール類、酢酸エステル類、ケトン類等が挙げられる。中でも、高極性及び低沸点となることからエタノールが好ましい。
 有機溶剤の使用量は、イミダゾール化合物に対し、少なすぎると、多孔性樹脂粒子のイミダゾール溶液浸透性が低下し、多すぎると、多孔性樹脂粒子内へ浸透するイミダゾール化合物の絶対量が減少するので、好ましくは1~5質量倍、より好ましくは1~3質量倍である。
 イミダゾール化合物溶液には、イミダゾール化合物の硬化特性を改善するために、更にエポキシ化合物の硬化促進剤として用いられている第三級アミン化合物を含有させることが好ましい。このような第三級アミン化合物としては、ジメチルエタノールアミン、ジメチルベンジルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ[5.4.0]ウンデセン等を挙げることができる。中でも、硬化促進効果の点から、2,4,6-トリス(ジメチルアミノメチル)フェノールを好ましく使用することができる。
 このような第三級アミン化合物の使用量は、イミダゾール化合物に対し、少なすぎると速硬化性が低下し、多すぎると低温硬化性が低下するので、好ましくは0.1~1.0質量倍、より好ましくは0.1~0.8質量倍である。
 以上説明したようなイミダゾール化合物溶液と、工程(D)で取得した酵素分解処理した多孔性樹脂粒子とを混合し、それにより多孔性樹脂粒子にイミダゾール化合物溶液を浸透させる。通常、この浸透操作は、加温もしくは室温下で24時間の撹拌により行う。浸透処理後、イミダゾール化合物溶液から多孔性樹脂粒子を、常法により回収し、好ましくは水で洗浄し、真空乾燥することにより、多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤を取得することができる。この潜在性硬化剤に対しては、必要によりジェットミルなどにより解砕処理を施すことができる。
 なお、このようにして得られた潜在性硬化剤は、その熱安定性及び潜在性の向上のために、表面並びにその近傍のイミダゾール化合物を加熱処理により昇華除去することが好ましい。この場合、潜在性硬化剤の凝集を防止するために、イミダゾール化合物の融点を超えない温度で加熱処理をすることが好ましい。例えば、イミダゾール化合物として2-メチルイミダゾール(融点137~145℃)を使用した場合、加熱処理温度は80~120℃である。加熱処理時間は、通常0.25~1時間である。
 以上説明した本発明の製造方法によれば、多官能イソシアネート化合物の種類や使用量、水溶性ポリペプチドの種類や使用量、界面重合条件、タンパク質分解酵素処理条件等を変化させること等により、潜在性硬化剤の硬化特性をコントロールすることができる。例えば、重合温度を低くすると硬化温度を低下させることができ、反対に、重合温度を高くすると硬化温度を上昇させることができる。
 このようにして得られた潜在性硬化剤は、従来のイミダゾール系潜在性硬化剤と同様の用途に使用することができ、熱硬化型樹脂と併用することにより、低温速硬化性の熱硬化型樹脂組成物を与えることができる。
 熱硬化型樹脂組成物における本発明の潜在性硬化剤の含有量は、少なすぎると十分に硬化せず、多すぎるとその組成物の硬化物の樹脂特性(例えば、可撓性)が低下するので、熱硬化型樹脂100質量部に対し、好ましくは1~70質量部、より好ましくは1~50質量部である。
 熱硬化型樹脂としては、熱硬化型エポキシ樹脂、熱硬化型尿素樹脂、熱硬化型メラミン樹脂、熱硬化型フェノール樹脂等を使用することができる。中でも、硬化後の接着強度が良好な点を考慮すると、熱硬化型エポキシ樹脂を好ましく使用することができる。
 このような熱硬化型エポキシ樹脂としては、液状でも固体状でもよく、エポキシ当量が通常100~4000程度であって、分子中に2以上のエポキシ基を有するものが好ましい。例えば、ビスフェノールA型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、エステル型エポキシ化合物、脂環型エポキシ化合物等を好ましく使用することができる。また、これらの化合物にはモノマーやオリゴマーが含まれる。
 本発明の熱硬化型樹脂組成物には、必要に応じてシリカ、マイカなどの充填剤、シランカップリング剤、顔料、帯電防止剤などを含有させることができる。
 本発明の熱硬化型樹脂組成物は、本発明の潜在性硬化剤、熱硬化型樹脂及び必要に応じて添加される他の添加剤とを、常法に従って均一に混合撹拌することにより製造することができる。
 このようにして得られた本発明の熱硬化型樹脂組成物は、本発明の潜在性硬化剤を使用しているため、潜在性硬化剤を従来よりも比較的少ない量で配合しても、低温速硬化性を損なわずに硬化可能である。
 このような本発明の熱硬化型樹脂組成物は、フィルム化して太陽電池用接着フィルムとして好ましく使用することができる。また、当該組成物に公知の異方性導電接続用導電粒子を分散させフィルム化して異方性導電接着フィルムとしても好ましく使用することができる。
 以下、本発明を実施例により具体的に説明する。
  実施例1
<多孔性樹脂粒子の調製>
 蒸留水840質量部と、界面活性剤(ニューレックスR-T、日油(株))0.05重量部と、ゼラチン(AP100微粉、新田ゼラチン(株))8質量部とを、温度計を備えた3リットルの界面重合容器に入れ、均一に混合した。この混合液に、更に、メチレンジフェニル-4,4′-ジイソシアネート(3モル)のトリメチロールプロパン(1モル)付加物(D-109、三井化学(株))150質量部を、酢酸エチル450質量部に溶解した油相を投入し、体積換算平均粒子径が10μm以下となるように、室温で7200rpmのホモジナイザー(T-65D、IKAジャパン(株))を用いて5分間、乳化混合し、水中油滴型乳化物を得た。
 引き続いて、乳化物を羽根付き撹拌棒で撹拌しながら80℃まで加熱し、この温度で3時間撹拌を続けることにより界面重合を行い、多孔性樹脂粒子が水相に分散した重合反応液を得た。
 界面重合終了後、重合反応液を40℃に調整し、酵素(プロテアーゼN「アマノG」、天野エンザイム(株))を0.8質量部投入し、40℃で6時間撹拌することにより多孔性樹脂粒子の酵素処理を行った。酵素処理後、重合反応液から多孔性樹脂粒子を濾過により濾取し、水洗し、乾燥することにより実施例1の球状の多孔性樹脂粒子を得た。
 得られた多孔性樹脂粒子について、その粒度分布を粒度分布測定装置(SD-2000、シスメックス(株))を用いて測定し、得られた分布図を図1Aに示す。また、電子顕微鏡写真を図1B(倍率5000倍)と図1C(倍率20000倍)とに示す。参考のために、油相調製時に酢酸エチルの使用量を450質量部から200質量部に変更した以外同様に調製した参考例1の多孔性樹脂粒子の電子顕微鏡写真(倍率5000倍)を図1Dに示す。
 図1Aから、平均粒子径(体積換算)が2.5μmであり、最大粒子径が6.6μmであることがわかる。
 また、図1B、1C、1Dから、油相中の酢酸エチルの量を減らすと界面重合後に得られる多孔性樹脂粒子の形状が真球状になり、逆に多くすると、真球から歪んだ球状になることがわかる。また、いずれの場合も表面凹凸が形成されていないこともわかる。これらの結果は、酢酸エチルの量が多くなると、乳化時にイソシアネート基の加水分解が抑制され、水相中のゼラチンのアミノ基とイソシアネート化合物のイソシアネート基との反応が競合的に進行し、逆に少ないとイソシアネート化合物の界面重合性が向上するために得られたと考えられる。なお、真球状になることにより、イミダゾール化合物溶液の浸透性が低下することが期待でき、また、表面凹凸がないことにより、ジェットミル解砕処理による潜在性硬化剤の硬化特性への悪影響が抑制されることが期待できる。
<イミダゾール化合物の浸透処理>
 得られた実施例1の多孔性樹脂粒子10質量部を、エタノール60質量部に、融点が137~145℃の2-メチルイミダゾール(2MZ-H、四国化成工業(株))40質量部を溶解した溶液100質量部に投入し、30℃で6時間、200rpmで撹拌した。その後、室温で20時間撹拌を続けた。撹拌終了後、イミダゾール化合物の浸透処理が施された多孔性樹脂粒子を濾取し、蒸留水で洗浄後、真空乾燥し、更に、ジェットミル(AO-JET MILL、(株)セイシン企業)で解砕処理をし、一次粒子化した。これにより潜在性硬化剤を得た。
<熱硬化型樹脂組成物の調製>
 ビスフェノールA型液状エポキシ樹脂(EP828、三菱化学(株))80質量部に、得られた潜在性硬化剤20質量部を、混練機(あわとり練太郎、(株)シンキー)を用いて均一に混合することにより熱硬化型樹脂組成物を得た。
<熱硬化型樹脂組成物のDSC測定>
 得られた熱硬化型樹脂組成物について、示差熱走査熱量計(DSC)(DSC6200、セイコーインスツル(株))を用いて示差熱走査熱量測定を行った(評価量5mg、昇温速度10℃/分)。得られた結果を表1及び図2に示す。ここで、潜在性硬化剤の硬化特性に関し、発熱開始温度は硬化開始温度を意味しており、発熱ピーク温度は最も硬化が活性となる温度を意味しており、総発熱量は、硬化反応の開始から完結までに発生した熱量を意味している。
  実施例2
 2-メチルイミダゾールに代えて、融点が41℃の2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株))を使用すること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表1及び図2に示す。
  実施例3
 2-メチルイミダゾールに代えて、融点が137~147℃の2-フェニルイミダゾール(2PZ-PW、四国化成工業(株))を使用すること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び図2から、多孔性樹脂粒子に融点が137℃のイミダゾール化合物を浸透させて得た潜在性硬化剤を使用した実施例1および3の熱硬化型樹脂組成物は、110℃前後の発熱開始温度と140℃弱の発熱ピーク温度を示しており、従って、潜在性を示しながらも、低温速硬化性を実現できたことがわかる。また、多孔性樹脂粒子に融点が41℃のイミダゾール化合物を浸透させて得た潜在性硬化剤を使用した実施例2の熱硬化型樹脂組成物は、発熱開始温度が100℃程度にまでシフトしており、良好な低温速硬化性を有することがわかる。しかも、実施例1および3と同等の総発熱量を示したことがわかる。
  実施例4
 2-メチルイミダゾールの配合量40質量部のうちの10質量部を、液状の第三級アミン系硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(ルベアック-DMP-30、ナカライテクス(株))に代えること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表2及び図3に示す。
  実施例5
 2-メチルイミダゾールの配合量40質量部のうちの20質量部を、液状の第三級アミン系硬化促進剤として2,4,6-トリス(ジメチルアミノメチル)フェノール(ルベアック-DMP-30、ナカライテクス(株))に代えること以外、実施例1と同様に潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表2及び図3に示す。参考のために、併せて実施例1の結果も表2および図3に示す。
Figure JPOXMLDOC01-appb-T000003
 表2及び図3から、イミダゾール化合物の一部を液状の第三級アミン系硬化促進剤に代替することにより、イミダゾール化合物の熱時流動性を向上させ、その結果、発熱開始温度および発熱ピーク温度をそれぞれ低温側にシフトさせることができ、低温速硬化性を向上させ得ることがわかった。ただ、第三級アミン系硬化促進剤の割合を増加させ過ぎると低温側への発熱開始温度および発熱ピーク温度のシフトの程度が低減することがわかった。
  実施例6
 2-メチルイミダゾールの配合量40質量部のうちの10質量部を、融点が41℃の2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株))を使用すること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表3及び図4に示す。
  実施例7
 2-メチルイミダゾールの配合量40質量部のうちの10質量部を、融点が137~147℃の2-フェニルイミダゾール(2PZ-PW、四国化成工業(株))を使用すること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表3及び図4に示す。
  実施例8
 2-メチルイミダゾールの配合量40質量部のうちの10質量部を、融点が174~184℃の2-フェニル-4-メチルイミダゾール(2P4MZ、四国化成工業(株))を使用すること以外、実施例1と同様にして潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製した。得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表3及び図4に示す。参考のために、併せて実施例1の結果も表3および図4に示す。
Figure JPOXMLDOC01-appb-T000004
 表3および図4から、2-メチルイミダゾールと、それと同等又はそれ以下の融点を有するイミダゾール化合物とを併用することにより、発熱開始温度および発熱ピーク温度をそれぞれ低温側にシフトさせることができ、低温速硬化性を向上させ得ることがわかった。なお、2-メチルイミダゾールよりも、約40℃ほど高い融点のイミダゾール化合物を併用した実施例8の場合、併用の効果は見られなかった。
  比較例1
 ゼラチン(AP100微粉、新田ゼラチン(株))8質量部に代えて、ポリビニルアルコール(PVA-205、(株)クラレ)4質量部を使用すること以外は、実施例1と同様にして潜在性硬化剤を調製した。得られた潜在性硬化剤について、熱重量測定-示差熱分析装置(TG-DTA)(TG/DTA6200、セイコーインスツル(株))を用いて、加熱重量減少率を測定(評価量5mg、昇温速度10℃/分)した。得られた結果を表4及び図5に示す。参考のために、併せて、イミダゾール化合物浸透処理前の実施例1で調製した多孔性樹脂粒子、並びに実施例6で調製した潜在性硬化剤についても加熱重量減少率を測定した。得られた結果を表4及び図5に示す。なお、重量減少率は、初期重量に対する、260℃(熱分解開始温度)加熱時の減少重量の割合であり、カプセル化率は、重量減少率からイミダゾール化合物溶液浸透前の実施例1の多孔性樹脂粒子の重量減少率を減じた値である。
Figure JPOXMLDOC01-appb-T000005
 従来の潜在性硬化剤のように、ポリビニルアルコールを界面重合時の分散剤として使用した比較例1の従来の潜在性硬化剤に比べ、ポリビニルアルコールに代えてゼラチンを使用した実施例6の潜在性硬化剤は、多孔性樹脂粒子内へのイミダゾール化合物の浸透量が飛躍的に増大していることがわかった。
  実施例9(潜在性硬化剤の加熱処理の影響)
 試験例A:実施例4を繰り返すことにより潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製し、得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表5及び図6に示す(実施例4に相当)。
 試験例B:実施例4で調製した潜在性硬化剤を120℃で30分間加熱処理をし、その加熱処理済み潜在性硬化剤を用いて、実施例4と同様に熱硬化型樹脂組成物を調製し、得られた熱硬化型樹脂組成物について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表5及び図6に示す。
 試験例C:実施例4を繰り返すことにより潜在性硬化剤を調製し、更にそれを用いて熱硬化型樹脂組成物を調製し、続いて55℃で7時間、熱エージング処理を行い、その後、熱エージング処理済み熱硬化型樹脂組成物(試験例Aの熱硬化型樹脂組成物を55℃7時間エージング処理したもの)について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表5及び図6に示す。
 試験例D:実施例4で調製した潜在性硬化剤を120℃で30分間加熱処理をし、その加熱処理済み潜在性硬化剤を用いて、実施例4と同様に熱硬化型樹脂組成物を調製し、続いて55℃で7時間、熱エージング処理を行い、その後、熱エージング処理済み熱硬化型樹脂組成物(試験例Bの熱硬化型樹脂組成物を55℃7時間エージング処理したもの)について、実施例1と同様に示差熱走査熱量測定を行い、得られた結果を表5及び図6に示す。
Figure JPOXMLDOC01-appb-T000006
 表5及び図6の結果から、潜在性硬化剤を、熱硬化型樹脂組成物に配合する前に加熱処理することにより、表面並びに近傍のイミダゾール化合物を昇華除去すると、熱安定性が向上し、潜在性が高まることがわかる。
 本発明の製造方法は、ICチップ等の電子部品を配線基板に過大なヒートショックを与えずに接合させなければならない場合に使用する熱硬化型樹脂組成物用の潜在性硬化剤の製造に有用である。

Claims (13)

  1.  多官能イソシアネート化合物を界面重合させて得た多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤の製造方法であって、以下の工程(A)~(E):
     工程(A)
     多官能イソシアネート化合物を有機溶剤に溶解させて得た油相を、水に水溶性ポリペプチドと界面活性剤とを溶解させて得た水相に乳化させることにより水中油滴型乳化物を得る工程;
     工程(B)
     水中油滴型乳化物を加熱することにより油相中の多官能イソシアネート化合物を界面重合させて多孔性樹脂粒子を形成する工程;
     工程(C)
     多孔性樹脂粒子が分散している界面重合反応液にタンパク質分解酵素を投入し、多孔性樹脂粒子を酵素分解処理する工程;
     工程(D)
     酵素分解処理を受けた多孔性樹脂粒子を界面重合反応液から回収する工程;及び
     工程(E)
     回収した多孔性樹脂粒子を、イミダゾール化合物を有機溶剤に溶解して得たイミダゾール化合物溶液と混合し、多孔性樹脂粒子にイミダゾール化合物溶液を浸透させ、多孔性樹脂粒子にイミダゾール化合物が保持されてなる潜在性硬化剤を取得する工程
    を有する製造方法。
  2.  工程(A)において、油相が、多官能イソシアネート化合物を1.5~5質量倍の有機溶剤に溶解させたものである請求項1記載の製造方法。
  3.  水溶性ポリペプチドが、ゼラチンである請求項1記載の製造方法。
  4.  該ゼラチンとして、JISK6503-2001によるゼリー強度が10~250を示すものを使用する請求項3に記載の製造方法。
  5.  工程(E)におけるイミダゾール化合物溶液が、更に第三級アミン化合物を含有する請求項1~4のいずれかに記載の製造方法。
  6.  第三級アミン化合物が、2,4,6-トリス(ジメチルアミノメチル)フェノールを含有する請求項5記載の製造方法。
  7.  イミダゾール化合物が、2種のイミダゾール化合物を含有する請求項1~6のいずれかに記載の製造方法。
  8.  イミダゾール化合物が、融点137~145℃の2-メチルイミダゾールと、それと同等の又はより低い融点を有する別のイミダゾール化合物を含有する請求項7記載の製造方法。
  9.  イミダゾール化合物が、融点137~145℃の2-メチルイミダゾールと、融点41℃の2-エチル-4-メチルイミダゾールまたは融点137~147℃の2-フェニルイミダゾールとを含有する請求項7記載の製造方法。
  10.  請求項1~9のいずれかの製造方法により得られた潜在性硬化剤と、熱硬化型樹脂とを含有することを特徴とする熱硬化型樹脂組成物。
  11.  熱硬化型樹脂が熱硬化型エポキシ樹脂である請求項10記載の熱硬化型樹脂組成物。
  12.  請求項10又は11記載の熱硬化型樹脂組成物中に、異方性導電接続用導電粒子を分散させフィルム化してなる異方性導電接着フィルム。
  13.  請求項10又は11記載の熱硬化型樹脂組成物をフィルム化してなる太陽電池用接着フィルム。
PCT/JP2011/065963 2010-09-17 2011-07-13 潜在性硬化剤の製造方法 WO2012035865A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180044679.9A CN103249754B (zh) 2010-09-17 2011-07-13 潜在性固化剂的制备方法
US13/389,356 US9481787B2 (en) 2010-09-17 2011-07-13 Method for producing latent curing agent
KR1020127014228A KR101780515B1 (ko) 2010-09-17 2011-07-13 잠재성 경화제의 제조 방법
EP11824874.9A EP2617751A1 (en) 2010-09-17 2011-07-13 Method for producing latent curing agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-209707 2010-09-17
JP2010209707A JP5601115B2 (ja) 2010-09-17 2010-09-17 潜在性硬化剤の製造方法

Publications (1)

Publication Number Publication Date
WO2012035865A1 true WO2012035865A1 (ja) 2012-03-22

Family

ID=43537907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065963 WO2012035865A1 (ja) 2010-09-17 2011-07-13 潜在性硬化剤の製造方法

Country Status (7)

Country Link
US (1) US9481787B2 (ja)
EP (1) EP2617751A1 (ja)
JP (1) JP5601115B2 (ja)
KR (1) KR101780515B1 (ja)
CN (1) CN103249754B (ja)
TW (1) TWI494354B (ja)
WO (1) WO2012035865A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10096395B2 (en) * 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
ES2708803T3 (es) * 2014-10-14 2019-04-11 Henkel Ag & Co Kgaa Dispersiones acuosas de poliuretano estabilizado con péptido
CN107108913A (zh) * 2014-12-23 2017-08-29 3M创新有限公司 可固化的和固化的环氧树脂组合物
US10947405B2 (en) * 2017-01-24 2021-03-16 Agfa Nv Capsules stabilised by cationic dispersing groups
CN112218913B (zh) * 2019-03-04 2023-10-27 株式会社伊玛尔斯京都 多孔质体和多孔质体的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291053A (ja) 2005-04-12 2006-10-26 Sony Chemical & Information Device Corp 潜在性硬化剤の製造方法
WO2009028224A1 (ja) * 2007-08-28 2009-03-05 Sony Chemical & Information Device Corporation マイクロカプセル型潜在性硬化剤
JP2011001558A (ja) * 2010-09-17 2011-01-06 Sony Chemical & Information Device Corp 潜在性硬化剤の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3497524A (en) * 1967-07-12 1970-02-24 Dexter Corp Epoxy resins cured with a tertiary amine complex of tetrachloro- or tetrabromophthalic acid
US4900801A (en) * 1987-05-29 1990-02-13 Mitsui Petrochemical Industries, Ltd. Epoxy compounds and epoxy resin compositions containing the same
JP2903327B2 (ja) * 1990-02-13 1999-06-07 株式会社スリーボンド エポキシ樹脂用潜在性硬化剤
JP3060452B2 (ja) * 1995-10-18 2000-07-10 ソニーケミカル株式会社 異方性導電接着フィルム
JP4381255B2 (ja) * 2003-09-08 2009-12-09 ソニーケミカル&インフォメーションデバイス株式会社 潜在性硬化剤
US20070166344A1 (en) * 2006-01-18 2007-07-19 Xin Qu Non-leaching surface-active film compositions for microbial adhesion prevention
JP5228644B2 (ja) * 2007-10-05 2013-07-03 日立化成株式会社 エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物並びにエポキシ樹脂硬化物
CN101475790B (zh) * 2008-01-04 2012-10-10 杨光 新型木材胶粘剂及其制备方法
JP2010168525A (ja) * 2008-12-24 2010-08-05 Hitachi Chem Co Ltd 透明フィルム、この透明フィルムを用いた積層フィルム、無機粒子挟持フィルム、及び、ディスプレイ用パネル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291053A (ja) 2005-04-12 2006-10-26 Sony Chemical & Information Device Corp 潜在性硬化剤の製造方法
WO2009028224A1 (ja) * 2007-08-28 2009-03-05 Sony Chemical & Information Device Corporation マイクロカプセル型潜在性硬化剤
JP2011001558A (ja) * 2010-09-17 2011-01-06 Sony Chemical & Information Device Corp 潜在性硬化剤の製造方法

Also Published As

Publication number Publication date
US20120153230A1 (en) 2012-06-21
KR101780515B1 (ko) 2017-09-21
CN103249754B (zh) 2015-05-20
TW201213402A (en) 2012-04-01
EP2617751A1 (en) 2013-07-24
JP2010280914A (ja) 2010-12-16
CN103249754A (zh) 2013-08-14
JP5601115B2 (ja) 2014-10-08
TWI494354B (zh) 2015-08-01
US9481787B2 (en) 2016-11-01
KR20130108060A (ko) 2013-10-02

Similar Documents

Publication Publication Date Title
JP3454437B2 (ja) 低粘度無溶媒の一液型エポキシ樹脂接着性組成物
JP5458596B2 (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
JP5679083B2 (ja) 窒化ホウ素凝集粒子、窒化ホウ素凝集粒子を含有する組成物、及び該組成物からなる層を有する三次元集積回路
KR101162782B1 (ko) 잠재성 경화제
JP5321082B2 (ja) アルミニウムキレート系潜在性硬化剤及びその製造方法
JP5429337B2 (ja) 熱硬化型エポキシ樹脂組成物
WO2012035865A1 (ja) 潜在性硬化剤の製造方法
JP5146645B2 (ja) マイクロカプセル型潜在性硬化剤
WO2016039193A1 (ja) アルミニウムキレート系潜在性硬化剤、その製造方法及び熱硬化型エポキシ樹脂組成物
WO2011010549A1 (ja) アルミニウムキレート系潜在性硬化剤及びそれらの製造方法
JP4711721B2 (ja) 潜在性硬化剤の製造方法
JP5045895B2 (ja) エポキシ樹脂用潜在性硬化剤及びその製造方法
JP5488362B2 (ja) 潜在性硬化剤の製造方法
JP2009203477A (ja) 潜在性硬化剤
JP5285841B2 (ja) フィルム状接着剤の製造方法
JP5354192B2 (ja) 熱硬化型導電ペースト組成物
JP4947305B2 (ja) エポキシ樹脂用潜在性硬化剤の製造方法
KR20230107664A (ko) 경화제 및 그 제조방법, 경화용 조성물

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13389356

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127014228

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011824874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE