WO2012035387A1 - 直流接続装置 - Google Patents

直流接続装置 Download PDF

Info

Publication number
WO2012035387A1
WO2012035387A1 PCT/IB2011/001983 IB2011001983W WO2012035387A1 WO 2012035387 A1 WO2012035387 A1 WO 2012035387A1 IB 2011001983 W IB2011001983 W IB 2011001983W WO 2012035387 A1 WO2012035387 A1 WO 2012035387A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
connection terminal
current
connector
voltage
Prior art date
Application number
PCT/IB2011/001983
Other languages
English (en)
French (fr)
Inventor
卓也 香川
田村 秀樹
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/813,733 priority Critical patent/US20130127261A1/en
Priority to CN2011800381690A priority patent/CN103053083A/zh
Priority to EP20110824644 priority patent/EP2618432A4/en
Publication of WO2012035387A1 publication Critical patent/WO2012035387A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/707Structural association with built-in electrical component with built-in switch interlocked with contact members or counterpart
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/28Modifications for introducing a time delay before switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/095Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being Schottky barrier gate field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules

Definitions

  • the present invention relates to a direct current connection device suitable for direct current power distribution systems such as solar power generation and household fuel cells.
  • DC power distribution systems such as solar power generation and household fuel cells are becoming popular in ordinary homes, and the power supply voltage of these DC power distribution systems is around 400 V, which is the power supply voltage of conventional AC power distribution systems. Higher voltage than 100V or 200V.
  • a connection device such as a connector or an outlet is attached or detached.
  • the current is not easily interrupted, and the current continues to flow through the load, which is problematic in terms of safety.
  • Patent Document 1 the present applicant has proposed a DC connection device in which a capacitor is connected between terminals of a DC connection plug, and an arc is prevented from occurring when the plug is removed from the outlet. is doing.
  • this DC connection device when the plug is removed from the outlet, the electric charge charged in the capacitor is discharged, and the discharge current makes the terminal voltage of the plug almost the same as the terminal voltage of the outlet, thereby generating an arc. Suppressed. JP 2009-146783 A
  • the DC connection device has a simple structure, a small and low-cost DC connection device can be provided.
  • the capacitor is provided only in the plug used on the load side, the plug is inserted into the outlet. It is impossible to prevent the arc from being generated. Accordingly, the present invention has been made to solve the above-described problems of the conventional example, and an object of the present invention is to provide a DC connection device capable of preventing arcing when a plug and an outlet are attached and detached.
  • a DC connection device includes a first connector connected to a DC power supply side or a load side, and a second connector connected to the first connector.
  • the connector or the second connector is turned on when it is detected that a part of at least one terminal is in contact with the other terminal, and is turned off before the one terminal is completely separated from the other terminal.
  • a semiconductor switch is provided.
  • the DC connection device is a DC connection device including a first connector connected to a DC power supply side or a load side, and a second connector connected to the first connector,
  • the first connector includes a pair of first connection terminals
  • the second connector includes a pair of second connection terminals electrically connected to the first connection terminals
  • the first connector includes the direct current
  • a semiconductor switch connected in series between the first connection terminal of any one of the power supply side or the load side and the pair of first connection terminals, and the relative relationship of the second connection terminal with respect to the first connection terminal
  • a connection state detection device for detecting a positional relationship; and a control circuit for turning on or off the semiconductor switch according to a detection result by the connection state detection device, wherein the connection state detection device has the first connection terminal with respect to the first connection terminal.
  • a change in the relative position of the connecting terminal is detected, and the control circuit ensures that the relative position of the second connecting terminal with respect to the first connecting terminal is such that the first connecting terminal and the second connecting terminal are
  • the semiconductor switch is turned on and off when in an electrically connected state.
  • the state in which the first connection terminal and the second connection terminal are securely electrically connected is that the second connection terminal cannot be displaced any more relative to the first connection terminal. It is preferable to be in a position or a position in the vicinity of that position.
  • the relative position of the second connection terminal with respect to the first connection terminal is reversed from a state in which the first connection terminal and the second connection terminal are electrically completely connected.
  • the semiconductor switch is turned off until the first connection terminal and the second connection terminal are completely disconnected from each other.
  • the connection state detection device is provided at a position where the second connection terminal can no longer be displaced relative to the first connection terminal, or at a position in front of the second connection terminal, and is in contact with the second connection terminal.
  • a mechanical switch is included.
  • the connection state detection device is provided at a position where the second connection terminal can no longer be displaced relative to the first connection terminal or at a position in front of the second connection terminal, and the presence of the second connection terminal. It is preferable to include an optical sensor provided with a light-emitting element and a light-receiving element.
  • the connection state detection device includes a sensor or a switch that is provided in the main body of the first connector and detects that the main body of the second connector contacts the main body of the first connector.
  • the first connector includes a current detection circuit for detecting a current flowing to the load side, and the control circuit has a current value detected by the current detection circuit exceeding a preset current threshold value. It is preferable that the semiconductor switch is sometimes turned off and the semiconductor switch is turned on when the current value is equal to or lower than the current threshold value.
  • the first connector includes a voltage detection circuit for detecting a voltage applied to the load side, and the control circuit has a voltage threshold value in which a voltage value detected by the voltage detection circuit is set in advance.
  • the semiconductor switch is turned off when the voltage exceeds the threshold value, and the semiconductor switch is turned on when the voltage value becomes equal to or lower than the voltage threshold value.
  • the first connector includes a current detection circuit for detecting a current flowing on the load side and a voltage detection circuit for detecting a voltage applied to the load side, and the semiconductor switch includes two FETs
  • the control circuit is connected in series so that the source and drain are opposite to each other.
  • One of the FETs is turned off, the one FET is turned on when the current value falls below the current threshold value, and the voltage value detected by the voltage detection circuit is set to a preset voltage threshold value.
  • the first connector includes a current detection circuit for detecting a current flowing on the load side and a voltage detection circuit for detecting a voltage applied to the load side
  • the semiconductor switch includes a GaN / AlGaN A bidirectional switch element having a lateral transistor structure using the control circuit, wherein the control circuit detects when the current value detected by the current detection circuit exceeds a preset current threshold or by the voltage detection circuit When the voltage value exceeds a preset voltage threshold, the bidirectional switch element is turned off, and when the current value falls below the current threshold or when the voltage value falls below the voltage threshold It is preferable to turn on the bidirectional switch element.
  • the control circuit includes a timer, and the control circuit detects a time when the current value detected by the current detection circuit exceeds the current threshold by the timer, and the time is set in advance.
  • the semiconductor switch is preferably turned off when the time threshold is exceeded.
  • the first connector further includes a contact switching device connected in series between the first connection terminal and the semiconductor switch. Further, the control circuit turns on the semiconductor switch after the first connection terminal and the second connection terminal are completely electrically connected and after the ON operation of the contact switchgear is completed. Is preferred. In the control circuit, the relative position of the second connection terminal with respect to the first connection terminal is reversed from a state in which the first connection terminal and the second connection terminal are electrically completely connected.
  • the contact opening / closing It is preferable to turn off the device.
  • the displacement of the second connection terminal with respect to the first connection terminal includes either a linear operation or a rotation operation, or both a linear operation and a rotation operation, and the control circuit It is preferable that the contacted switching device is turned on after the second connection terminal cannot be displaced further.
  • the first connector further includes a lock mechanism that locks a state in which the second connection terminal cannot be displaced any more relative to the first connection terminal, and the control circuit includes the lock mechanism. It is preferable that the contact opening / closing device is turned on and off while the first connection terminal and the second connection terminal are locked.
  • the first connector preferably further includes a pair of third connection terminals connected to the AC power supply side or the load side.
  • the first connector includes an AC circuit breaker connected in series between the AC power supply side and the third connection terminal of any one of the pair of third connection terminals, the AC power supply side, and the load.
  • AC ground fault current detection circuit for detecting a ground fault current flowing in an AC circuit between the DC power supply side and another load side, and a DC ground fault for detecting a ground fault current flowing in a DC circuit between the DC power supply side and the load side
  • a semiconductor switch connected to the DC power supply side when either the DC ground fault current detection circuit or the AC ground fault current detection circuit detects a ground fault current. It is preferable to turn off both of the AC circuit breakers connected to the AC power supply side.
  • the semiconductor switch is turned on and off in contact with the sure second connector terminal (second connecting terminal).
  • the semiconductor switch is not turned on until the terminal of the first connector and the terminal of the second connector are electrically connected. No arc is generated between the terminal of the connector and the terminal of the second connector.
  • the terminal of the first connector and the terminal of the second connector are separated from the terminal of the second connector after the semiconductor switch is turned off first. During this period, no arc is generated.
  • the contact state between the terminal of the first connector and the terminal of the second connector can be detected by, for example, a sensor provided on the first connector.
  • FIG. 1 is a block diagram showing a basic configuration of a DC connection device according to an embodiment of the present invention.
  • FIG. XX sectional drawing in FIG. The top view which shows the structure of a bidirectional
  • XII-XII sectional drawing in FIG. The block diagram which shows the structure of the other modification of the said DC connection apparatus.
  • the DC connection device includes a first connector connected to the DC power supply side or the load side, and a second connector connected to the first connector.
  • the first connector includes a pair of first connection terminals. And a pair of second connection terminals electrically connected to the first connection terminals.
  • the shape and application of the first connector and the second connector are not particularly limited, and the shape and the concavo-convex relationship of the first connection terminal and the second connection terminal are not particularly limited.
  • FIG. 1 is a block diagram showing a basic configuration of a DC connection device 1 according to the present embodiment.
  • the first connector is exemplified as an outlet 10 provided on the wall surface 4 of a building, for example, and the second connector is exemplified as a plug 20.
  • the outlet 10 is connected to the DC power source 2, and the plug 20 is connected to the load 3 that is DC driven, for example, via a cable.
  • the plug 20 includes a pair of second connection terminals 21 and 22 protruding from the plug body 20a.
  • the outlet 10 is one of a pair of first connection terminals 11 and 12 electrically connected to the second connection terminals 21 and 22 of the plug 20, and the DC power supply 2 and a pair of first connection terminals 11 and 12.
  • a semiconductor switch (SW) 13 connected in series is provided between one first connection terminal (for example, 11).
  • the outlet 10 includes a connection state detection device 14 that detects a relative positional relationship between the second connection terminals 21 and 22 with respect to the first connection terminals 11 and 12, and a semiconductor switch according to a detection result by the connection state detection device 14.
  • a control circuit 15 for turning on or off 13 is provided.
  • the semiconductor switch 13 is a semiconductor switch element such as an FET (field effect transistor), for example, and the control circuit 15 controls the gate voltage of the FET according to the detection result by the connection state detection device 14.
  • the configuration of the connection state detection device 14 is not particularly limited, and the second connection terminals 21 and 22 of the plug 20 with respect to the first connection terminals 11 and 12 of the outlet 10 when the plug 20 is attached to and detached from the outlet 10. It is only necessary to detect a change in the relative position. As shown in FIG. 2, the connection state detection device 14 is provided at a position where the second connection terminals 21, 22 can no longer be displaced relative to the first connection terminals 11, 12 or at a position in front of it.
  • the mechanical switch 31 may be in contact with the second connection terminals 21 and 22.
  • the control circuit 15 can determine that the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are in an electrically connected state, so that the semiconductor switch 13 may be turned on. That is, when the plug 20 is connected to the outlet 10 (inserted), the potential difference between the second connection terminals 21 and 22 of the plug 20 and the first connection terminals 11 and 12 of the outlet 10 is small. No discharge occurs between the second connection terminals 21 and 22.
  • the plug 20 when the plug 20 is detached from the outlet 10 (pulled out), if the second connection terminals 21 and 22 are slightly displaced in the reverse direction with respect to the first connection terminals 11 and 12, the second connection terminals 21 and 22 are mechanically moved.
  • the switch 31 is separated from the switch 31 and the mechanical switch 31 is turned off or on.
  • the control circuit 15 may quickly turn off the semiconductor switch 13 until the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are electrically completely disconnected.
  • connection state detection device 14 may be configured by an optical sensor 32 provided at a similar position and provided with a light emitting element 32 a and a light receiving element 32 b.
  • the second connection terminals 21 and 22 cannot be displaced any more relative to the first connection terminals 11 and 12, or the second connection terminals 21 and 22 immediately block light from the light emitting element 32a. Therefore, the output signal of the light receiving element 32b changes from the high level to the low level.
  • the control circuit 15 can determine that the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are in a position where they are reliably electrically connected. Good.
  • the plug 20 is detached from the outlet 10 (pulled out)
  • the second connection terminals 21 and 22 are slightly displaced in the reverse direction with respect to the first connection terminals 11 and 12, light output from the light emitting element 32a is emitted.
  • the light enters the light receiving element 32b. Since the output signal of the light receiving element 32b changes from the low level to the high level, the control circuit 15 may turn off the semiconductor switch 13. Or as shown in FIG.
  • the connection state detection apparatus 14 may be comprised by the protrusion 23 provided in the main body 20a of the plug 20, and the push-on switch 33 provided in the outlet 10 side.
  • the push-on switch 33 is turned on by the protrusion 23.
  • the control circuit 15 can determine that the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are in a position where they are reliably electrically connected. Good.
  • the end of the push-on switch 33 may be protruded from the main body 10a of the outlet 10 without providing a protrusion on the main body 20a of the plug 20. Is preferred.
  • FIG. 5 shows a modification of the DC connection device 1 according to the present embodiment.
  • the outlet 10 further includes a current detection circuit (A) 41 for detecting a current flowing through the load 3 and a voltage detection circuit (V) 42 for detecting a voltage applied to the load 3. Yes.
  • a current detection circuit (A) 41 for detecting a current flowing through the load 3
  • V voltage detection circuit
  • at least one current threshold and at least one voltage threshold are set in the control circuit 15.
  • the control circuit 15 turns off the semiconductor switch 13 when the current value detected by the current detection circuit (A) 41 exceeds the current threshold, and turns on the semiconductor switch 13 when the current value falls below the current threshold.
  • an excessive current flows when the power is turned on.
  • an FET field effect transistor
  • the semiconductor switch 13 the current detection circuit (A) 41, and the control circuit 15 can constitute an inrush current prevention circuit.
  • the control circuit 15 can suppress the inrush current by controlling the on-duty ratio of the FET. Further, the control circuit 15 turns off the semiconductor switch 13 when the voltage value detected by the voltage detection circuit (V) 42 exceeds the voltage threshold value, and turns off the semiconductor switch 13 when the voltage value becomes equal to or lower than the voltage threshold value. Control to turn on.
  • FIG. 6 shows a circuit configuration example using an FET as the semiconductor switch 13.
  • the semiconductor switch 13 includes two FETs 131 and 132 connected in series so that their sources and drains are opposite to each other.
  • the control circuit 15 includes an IC 141 in which the current detection circuit (A) 41 and the gate control circuit of the FET 131 are integrated, and an IC 142 in which the voltage detection circuit (V) 42 and the gate control circuit of the FET 132 are integrated. ing. In this way, by connecting two FETs as semiconductor switches in opposite directions and controlling them independently, both overcurrent (inrush current) prevention and reverse current prevention can be performed simultaneously. Further, the IC 141 may be further provided with a timer function and a time threshold value may be set.
  • the IC 141 detects the time when the current value detected by the current detection circuit (A) 41 exceeds the current threshold by the timer, and further when the time exceeding the current threshold exceeds the time threshold Then, the FET 131 is turned off. As a result, the DC distribution system can be protected from an overcurrent caused by a short circuit of the load. Similarly, the FET 132 is turned off when the voltage value detected by the voltage detection circuit (V) 42 exceeds the voltage threshold, and the FET 132 is turned on when the voltage value becomes equal to or lower than the voltage threshold. Thereby, it is possible to prevent a reverse current from flowing from the load 3 side to the DC power source 2 side. FIG.
  • FIG. 7 shows a circuit configuration example using the bidirectional switch element 100 having a lateral transistor structure using GaN / AlGaN as the semiconductor switch 13 instead of the two FETs. Since the FET has a diode structure, a current flows when a voltage is applied in the forward direction of the diode regardless of the gate voltage. Therefore, as described above, two FETs must be connected in series so that the diode structure is reversed. In contrast, since this bidirectional switch element does not have a diode structure, a single element can perform the same function.
  • the bidirectional switch element having a lateral transistor structure using GaN / AlGaN has the advantage that there is no loss due to the diode structure, the loss is lower than that of the FET, and the control circuit can be integrated. .
  • the current detection circuit (A) 41, the voltage detection circuit (V) 42, the control circuit 15, and the timer 143 can be controlled by the integrated IC 143.
  • FIGS. 8 is a plan view showing the configuration of the bidirectional switch element 100
  • FIG. 9 is an enlarged view of the range A
  • FIG. 10 is a sectional view taken along line XX in FIG.
  • the bidirectional switch element 100 is called a single gate type since only one gate G is provided between the two electrodes D1 and D2.
  • the substrate 101 of the bidirectional switch element 100 includes a conductor layer 101a and a GaN layer 101b and an AlGaN layer 101c stacked on the conductor layer 101a.
  • a two-dimensional electron gas layer generated at the AlGaN / GaN hetero interface is used as the channel layer.
  • the surface 101d of the substrate 101 has a first electrode D1 and a second electrode D2 connected in series to the DC power source 2 and the load 3, respectively, and the potential of the first electrode D1 and the second electrode D2.
  • An intermediate potential portion S that is an intermediate potential with respect to the potential of the electrode D2 is formed. Further, a control electrode (gate) G is stacked on the intermediate potential portion S. As the control electrode G, for example, a Schottky electrode is used.
  • the first electrode D1 and the second electrode D2 are comb teeth having a plurality of electrode portions 111, 112, 113... And 121, 122, 123.
  • the electrode parts arranged in the are arranged so as to face each other.
  • the intermediate potential portion S and the control electrode G are respectively disposed between the electrode portions 111, 112, 113... And 121, 122, 123. It has a shape (substantially fish spine shape) similar to the planar shape of the space to be formed.
  • the electrode part 111 of the first electrode D1 and the electrode part 121 of the second electrode D2 are arranged so that the center lines in the width direction are located on the same line. Further, the intermediate potential portion S and the control electrode G are provided in parallel to the arrangement of the electrode portion 111 of the first electrode D1 and the electrode portion 121 of the second electrode D2, respectively.
  • the distance between the electrode portion 111 of the first electrode D1, the electrode portion 121 of the second electrode D2, the intermediate potential portion S, and the control electrode G in the width direction is set to a distance that can maintain a predetermined withstand voltage.
  • the intermediate potential portion S and the control electrode G are arranged at positions where a predetermined withstand voltage can be maintained with respect to the first electrode D1 and the second electrode D2. Therefore, when the first electrode D1 is on the high potential side and the second electrode D2 is on the low potential side, when the bidirectional switch element 100 is off, at least between the first electrode D1, the control electrode G, and the intermediate potential portion S.
  • the current is reliably interrupted (the current is blocked immediately below the control electrode (gate) G).
  • the bidirectional switch element 100 is on, that is, when a signal having a voltage equal to or higher than a predetermined threshold is applied to the control electrode G, the first electrode D1 (electrode portion 111... -), A current flows through the path of the intermediate potential portion S and the second electrode D2 (electrode portion 121 ).
  • the bidirectional switch element 100 can be reliably turned on / off, and a low on-resistance can be realized. .
  • FIGS. 11 and 12 show the configuration of another bidirectional switch element 300 having a lateral transistor structure using GaN / AlGaN.
  • FIG. 11 is a plan view showing the configuration of the bidirectional switch element 300
  • FIG. 12 is a cross-sectional view taken along line XII-XII in FIG.
  • This bidirectional switch element 300 is called a dual gate type because two gates G1 and G2 are provided between two electrodes D1 and D2. As shown in FIGS.
  • the main switch element 300 having a horizontal dual-gate transistor structure is a structure that realizes a bidirectional element with a small loss, with one place maintaining the withstand voltage. That is, the drain electrodes D1 and D2 are each formed to reach the GaN layer, and the gate electrodes G1 and G2 are respectively formed on the AlGaN layer. In a state where no voltage is applied to the gate electrodes G1 and G2, a blank zone of electrons is generated in the two-dimensional electron gas layer generated at the AlGaN / GaN heterointerface immediately below the gate electrodes G1 and G2, and no current flows.
  • the drain electrode D1 and the gate electrode G1, and the drain electrode D2 and the gate electrode G2 may overlap via the insulating layer In.
  • FIG. 13 shows another modification of the DC connection device 1 according to the present embodiment.
  • the outlet 10 further includes a contact switch 16 connected in series between the first connection terminals 11 and 12 and the semiconductor switch 13.
  • the control circuit 15 turns on the semiconductor switch 13 after the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are completely electrically connected, and after the ON operation of the contact switch 16 is completed.
  • control circuit 15 is configured such that the relative positions of the second connection terminals 21 and 22 with respect to the first connection terminals 11 and 12 are such that the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are completely electrically connected. Between the connected state and the first connection terminals 11 and 12 and the second connection terminals 21 and 22 are completely disconnected from each other, and the semiconductor switch is further displaced. After turning off 13, the contact opening / closing device 16 is turned off.
  • a relay or a breaker can be used as the contact opening / closing device 16.
  • the method of attaching and detaching the plug 20 with respect to the outlet 10, that is, the displacement of the second connection terminals 21 and 22 with respect to the first connection terminals 11 and 12 is not only a linear operation that is a general insertion and removal, A combination of rotational motion and linear motion and rotational motion is possible.
  • the control circuit 15 opens and closes the contact after the plug 20 is connected to the outlet 10, that is, after the second connection terminals 21 and 22 can no longer be displaced relative to the first connection terminals 11 and 12.
  • the device 16 is turned on, and then the semiconductor switch 13 is turned on. Further, when the contact switch 16 is not provided, the control circuit 15 causes the semiconductor circuit after the second connection terminals 21 and 22 can no longer be displaced relative to the first connection terminals 11 and 12.
  • the switch 13 may be turned on. Further, as shown in FIG. 15, a mechanism for locking the plug 20 to the outlet 10 after the plug 20 is attached to the outlet 10 may be provided.
  • a locking hook 24 is provided on the side of the main body 20 a of the plug 20, and a locking hole 17 is provided in the main body 10 a of the outlet 10.
  • a switch 34 is provided in the vicinity of the locking hole 17 inside the main body 10 a of the outlet 10.
  • the tip of the locking hook 24 comes into contact with the switch 34, and the switch 34 is turned on.
  • the control circuit 15 turns on the contact switching device 16 after the switch 34 is turned on, and then turns on the semiconductor switch 13.
  • the user presses both the locking hooks 24 toward the main body 20a and deforms them. If it does so, the front-end
  • the control circuit 15 immediately turns off the semiconductor switch 13 and then turns off the contact opening / closing device 16. The user may pull out the plug 20 from the socket 10 in this state.
  • the locking mechanism is not limited to the illustrated one, and may have other structures.
  • FIG. 16 shows still another modification of the DC connection device 1 according to the present embodiment.
  • this modification it is configured in a hybrid specification in which the DC distribution and the AC distribution can be performed by one outlet 10.
  • electric devices such as air conditioners and refrigerators that are directly driven by a DC power source will be developed.
  • solar power generation is easily affected by the weather and seasons, the power generation amount is unstable, and no power is generated after sunset. Therefore, generally, a secondary battery is used in combination, and electric power charged in the secondary battery is used.
  • the power charged in the secondary battery does not necessarily cover the power consumption of all electrical devices, and electrical devices with large power consumption such as air conditioners and refrigerators can use conventional AC power as a backup power source.
  • the outlet 10 shown in FIG. 16 is provided with a pair of third connection terminals 18 and 19 connected to the AC power supply 5.
  • the terminals 51 and 52 of the AC plug 50 are connected to the third connection terminals 18 and 19.
  • the voltage of the AC power supply 5 is, for example, 100 V or 200 V.
  • the AC distribution system can be easily extinguished even if arc discharge occurs when the plug 50 is pulled out from the outlet 10. Therefore, no semiconductor switch is provided.
  • the contact switching device 16 composed of a relay or a breaker is connected in series between the AC power source 5 and a pair of third connection terminals 18 and 19 (which may be either) as an AC circuit breaker. Also works. Alternatively, an AC circuit breaker may be connected between the AC power source 5 and the pair of third connection terminals 18 and 19 separately from the contact switchgear 16.
  • the outlet 10 includes a DC ground fault current detection circuit (A ′) 43 that detects a ground fault current flowing in the DC circuit between the DC power source 2 and the load 3, and an AC circuit between the AC power source 5 and the load 3.
  • An AC ground fault current detection circuit (A ′′) 44 is provided for detecting a ground fault current flowing through the current source.
  • the DC ground fault current detection circuit 43 for example, a Hall element can be used.
  • a zero-phase current transformer (ZCT) can be used as the current detection circuit 44.
  • a DC circuit and an AC circuit are passed through the same core, and a DC ground fault current detection circuit is used. 43 and a part of the AC ground fault current detection circuit 44 may be shared, whereby the downsizing and cost reduction of the outlet 10 can be realized.
  • the control circuit 15 is connected to the semiconductor switch 13 connected to the DC power source 2 and the AC power source 5. Both the contact switchgear 16 (or the AC circuit breaker) are turned off.
  • FIG. 18 shows a configuration example in which an outlet 10 ′ is also provided on the load 3 side and connected to the outlet 10 on the DC power source 2 side by a cable 36.
  • the outlet 10 ′ on the load 3 side is connected to the internal power source (DC / DC converter or inverter) 35 of the load 3.
  • Plugs 20 and 20 ′ are connected to both ends of the cable 36, respectively.
  • the unevenness of the second connection terminals 21 and 22 of the plug 20 and the second connection terminals 21 'and 22' of the plug 20 ' is reversed.
  • the unevenness of the first connection terminals 11 and 12 of the outlet 10 and the first connection terminals 11 ′ and 12 ′ of the outlet 10 ′ is reversed.
  • the outlets 10 and 10 ′ that are the first connectors are not necessarily connected to the DC power supply 2, and may be connected to the load 3 or the internal power supply 35 on the load 3 side. Or it may be connected to the circuit breaker of the switchboard etc. which were connected to DC power supply.
  • the plugs 20 and 20 ′ that are the second connectors are not necessarily connected directly to the load 3, and may be connected to a cable 36 that connects the DC power supply 2 and the load 3.
  • the various embodiments described above can be implemented in appropriate combinations.
  • the optical sensor shown in FIG. 3 can be applied to the DC connection device shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Fuel Cell (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

直流電源(2)側又は負荷(3)側と接続される第1コネクタと、前記第1コネクタに接続される第2コネクタからなり、前記第1コネクタ又は第2コネクタ(10又は20)は、少なくとも一方の端子(11、12)の一部が他方の端子(21、22)に接触したことが検出されたときにオンされ、前記一方の端子(11、12)が前記他方の端子(21、22)から完全に離れる前にオフされる半導体スイッチ(13)を備える直流接続装置が提供される。

Description

直流接続装置
 本発明は、太陽光発電や家庭用燃料電池などの直流配電システムに適する直流接続装置に関する。
 近年、太陽光発電や家庭用燃料電池などの直流配電システムが一般家庭などにおいても普及しつつあり、これら直流配電システムの電源電圧は400V前後であり、従来からの交流配電システムの電源電圧である100V又は200V等と比べて高圧である。周知のように、電源の電圧が高くなると、コネクタやコンセントなどの接続装置を着脱する際にアークが発弧する。特に、直流電源の場合、接続装置を切り離す際にアークが発弧すると、電流が容易には遮断されず、負荷に電流が流れ続けるため、安全性に問題がある。そこで、本出願人は、例えば特許文献1に示されているように、直流接続用プラグの端子間にコンデンサを接続し、プラグをコンセントから抜き取る際のアークの発生を防止した直流接続装置を提案している。この直流接続装置によれば、プラグをコンセントから抜き取る際、コンデンサに充電された電荷が放電され、その放電電流によってプラグの端子電圧をコンセントの端子電圧とほぼ同電位にして、アークの発弧を抑制している。
特開2009−146783号公報
 上記直流接続装置は構造が簡単であるため、小型で低コストの直流接続装置を提供することができるが、専ら負荷側に用いられるプラグにのみコンデンサが設けられているため、プラグをコンセントに挿入する際のアークの発弧を防止することができない。そこで、本発明は、上記従来例の問題を解決するためになされたものであり、プラグとコンセントを着脱する際のアークの発弧を防止することが可能な直流接続装置を提供することを目的とする。
 上記目的を達成するために発明の一態様に係る直流接続装置は、直流電源側又は負荷側と接続される第1コネクタと、前記第1コネクタに接続される第2コネクタからなり、前記第1コネクタ又は前記第2コネクタは、少なくとも一方の端子の一部が他方の端子に接触したことが検出されたときにオンされ、前記一方の端子が前記他方の端子から完全に離れる前にオフされる半導体スイッチを備えたことを特徴とする。
 また、発明の他の一態様に係る直流接続装置は、直流電源側又は負荷側と接続される第1コネクタと、前記第1コネクタに接続される第2コネクタからなる直流接続装置であって、前記第1コネクタは一対の第1接続端子を備え、前記第2コネクタは、前記第1接続端子と電気的に接続される1対の第2接続端子を備え、前記第1コネクタは、前記直流電源側又は前記負荷側と前記1対の第1接続端子のいずれか一方の第1接続端子の間に直列接続された半導体スイッチと、前記第1接続端子に対する前記第2接続端子の相対的な位置関係を検出する接続状態検出装置と、前記接続状態検出装置による検出結果に応じて前記半導体スイッチをオン又はオフさせる制御回路を備え、前記接続状態検出装置は、前記第1接続端子に対する前記第2接続端子の相対的な位置の変化を検出し、前記制御回路は、前記第1接続端子に対する前記第2接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が確実に電気的接続された状態にあるときに、前記半導体スイッチをオン及びオフさせることを特徴とする。
 上記構成において、前記第1接続端子と前記第2接続端子が確実に電気的接続された状態とは、前記第1接続端子に対して前記第2接続端子が相対的にそれ以上変位できなくなった位置にあること又はその手前近傍の位置にあることが好ましい。
 また、前記制御回路は、前記第1接続端子に対する前記第2接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が電気的に完全に接続された状態から、逆方向に変位され、かつ、前記第1接続端子と前記第2接続端子が電気的に完全に非接続になる状態までの間に、前記半導体スイッチをオフさせることが好ましい。
 また、前記接続状態検出装置は、前記第1接続端子に対して前記第2接続端子が相対的にそれ以上変位できなくなった位置又はその手前近傍の位置に設けられ、前記第2接続端子に接触する機械スイッチを含むことが好ましい。
 または、前記接続状態検出装置は、前記第1接続端子に対して前記第2接続端子が相対的にそれ以上変位できなくなった位置又はその手前近傍の位置に設けられ、前記第2接続端子の存在を検出する発光素子及び受光素子を備えた光学センサを含むことが好ましい。
 または、前記接続状態検出装置は、前記第1コネクタの本体に設けられ、前記第1コネクタの本体に前記第2コネクタの本体が接触したことを検出するセンサ又はスイッチを含むことが好ましい。
 また、前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路を備え、前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたときに前記半導体スイッチをオフし、前記電流値が前記電流閾値以下になったときに前記半導体スイッチをオンすることが好ましい。
 また、前記第1コネクタは、前記負荷側に印加される電圧を検出するための電圧検出回路を備え、前記制御回路は、前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記半導体スイッチをオフし、前記電圧値が前記電圧閾値以下になったときに前記半導体スイッチをオンすることが好ましい。
 または、前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路及び前記負荷側に印加される電圧を検出するための電圧検出回路を備え、前記半導体スイッチは、2つのFETが、そのソース及びドレインが互いに逆向きとなるように直列接続されてなり、前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたときに前記2つのFETのうち一方のFETをオフし、前記電流値が前記電流閾値以下になったときに該前記一方のFETをオンし、前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記2つのFETのうち他方のFETをオフし、前記電圧値が前記電圧閾値以下になったときに該他方のFETをオンすることが好ましい。
 または、前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路及び前記負荷側に印加される電圧を検出するための電圧検出回路を備え、前記半導体スイッチは、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子であり、前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたとき又は前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記双方向スイッチ素子をオフし、前記電流値が前記電流閾値以下になったときに又は前記電圧値が前記電圧閾値以下になったときに前記双方向スイッチ素子をオンすることが好ましい。
 また、前記制御回路は、タイマーを備え、前記制御回路は、前記タイマーによって前記電流検出回路により検出された電流値が前記電流閾値を超えている時間を検出し、さらにその時間があらかじめ設定された時間閾値を超えたときに、前記半導体スイッチをオフすることが好ましい。
 また、前記第1コネクタは、前記第1接続端子と前記半導体スイッチの間に直列接続された有接点開閉装置をさらに備えたことが好ましい。
 また、前記制御回路は、前記第1接続端子と前記第2接続端子が完全に電気的に接続された状態となり、かつ、前記有接点開閉装置のオン動作完了後に、前記半導体スイッチをオンさせることが好ましい。
 また、前記制御回路は、前記第1接続端子に対する前記第2接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が電気的に完全に接続された状態から、逆方向に変位され、かつ、前記第1接続端子と前記第2接続端子が電気的に完全に非接続になる状態までの間であって、さらに、前記半導体スイッチをオフさせた後に、前記有接点開閉装置をオフさせることが好ましい。
 また、前記第1接続端子に対する前記第2接続端子の変位は、直線動作及び回転動作のいずれか一方又は直線動作及び回転動作の両方を含み、前記制御回路は、前記第1接続端子に対して前記第2接続端子が相対的にそれ以上変位できなくなった後に、前記有接点開閉装置をオンさせることが好ましい。
 また、前記第1コネクタは、前記第1接続端子に対して前記第2接続端子が相対的にそれ以上変位できなくなった状態をロックするロック機構をさらに備え、前記制御回路は、前記ロック機構が前記第1接続端子及び前記第2接続端子をロックしている間に、前記有接点開閉装置をオン及びオフさせることが好ましい。
 また、前記第1コネクタは、交流電源側又は前記負荷側に接続される1対の第3接続端子をさらに備えたことが好ましい。
 また、前記第1コネクタは、前記交流電源側と前記1対の第3接続端子のいずれか一方の第3接続端子の間に直列接続された交流回路遮断機と、前記交流電源側と前記負荷側又は他の負荷側の間の交流回路に流れる地絡電流を検出する交流地絡電流検出回路と、前記直流電源側と前記負荷側の間の直流回路に流れる地絡電流を検出する直流地絡電流検出回路をさらに備え、前記制御回路は、前記直流地絡電流検出回路又は前記交流地絡電流検出回路のいずれか一方が地絡電流を検出すると、前記直流電源側に接続された半導体スイッチ及び前記交流電源側に接続された交流回路遮断機の両方をオフすることが好ましい。
 また、前記直流地絡電流検出回路及び前記交流地絡電流検出回路の少なくとも一部が共通であることが好ましい。
発明の効果
 本発明によれば、第1コネクタの端子(第1接続端子)の一部が、必ず第2コネクタの端子(第2接続端子)に接触した状態で半導体スイッチがオンオフされる。例えば第1コネクタ(例えばコンセント)に第2コネクタ(例えばプラグ)が接続するときは、第1コネクタの端子と第2コネクタの端子が電気的に接続されるまで半導体スイッチはオンされず、第1コネクタの端子と第2コネクタの端子の間にアークは発弧しない。また、第1コネクタを第2コネクタから切り離すときも、先に半導体スイッチがオフされてから第1コネクタの端子が第2コネクタの端子から離反するので、第1コネクタの端子と第2コネクタの端子の間にアークは発弧しない。第1コネクタの端子と第2コネクタの端子の接触状態は、例えば第1コネクタに設けられたセンサなどにより検出可能である。
本発明の一実施形態に係る直流接続装置の基本構成を示すブロック図。 上記直流接続装置における接続状態検出装置の具体的構成を示す図。 上記直流接続装置における接続状態検出装置の別の具体的構成を示す図。 上記直流接続装置における接続状態検出装置のさらに別の具体的構成を示す図。 上記直流接続装置の変形例の構成を示すブロック図。 FETを用いた半導体スイッチの回路構成例を示す図。 2つのFETに代えて、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子を用いた半導体スイッチの回路構成例を示す図。 双方向スイッチ素子(シングルゲート)の構成を示す平面図。 図8における範囲Aの拡大図。 図8におけるX−X断面図。 双方向スイッチ素子(デュアルゲート)の構成を示す平面図。 図11におけるXII−XII断面図。 上記直流接続装置の他の変形例の構成を示すブロック図。 第2コネクタ(コンセント)に対する第1コネクタ(プラグ)の着脱方法の一例を示す図。 第1コネクタ(プラグ)を第2コネクタ(コンセント)にロックする機構の一例を示す図。 上記直流接続装置のさらに他の変形例を示すブロック図。 上記直流接続装置のさらに他の変形例を示すブロック図。 上記直流接続装置のさらに他の変形例を示すブロック図。
 以下、本発明の実施形態を本明細書の一部を成す添付図面を参照してより詳細に説明する。図面全体において同一又は類似する部分については同一参照符号を付して説明を省略する。
 本発明の一実施形態に係る直流接続装置について説明する。直流接続装置は、直流電源側又は負荷側と接続される第1コネクタと、第1コネクタに接続される第2コネクタからなり、第1コネクタは一対の第1接続端子を備え、第2コネクタは、第1接続端子と電気的に接続される1対の第2接続端子を有している。第1コネクタ及び第2コネクタの形状や用途は特に限定されず、また第1接続端子及び第2接続端子の形状や凹凸関係も特に限定されない。便宜上、以下に説明するように、半導体スイッチと、接続状態検出装置と、制御回路を備えたものを第1コネクタと称し、これらを備えていないものを第2コネクタと称する。
 図1は、本実施形態に係る直流接続装置1の基本構成を示すブロック図である。図1では、第1コネクタを、例えば建築物の壁面4に設けられたコンセント10とし、第2コネクタをプラグ20として例示する。コンセント10は直流電源2に接続され、プラグ20は直流駆動される負荷3に、例えばケーブルを介して接続されている。プラグ20は、プラグ本体20aから突出する一対の第2接続端子21及び22を備えている。コンセント10は、プラグ20の第2接続端子21,22と電気的に接続される1対の第1接続端子11及び12と、直流電源2と1対の第1接続端子11,12のいずれか一方の第1接続端子(例えば11)の間に直列接続された半導体スイッチ(SW)13を備えている。また、コンセント10は、第1接続端子11,12に対する第2接続端子21,22の相対的な位置関係を検出する接続状態検出装置14と、接続状態検出装置14による検出結果に応じて半導体スイッチ13をオン又はオフさせる制御回路15を備えている。
 半導体スイッチ13は、例えばFET(電界効果トランジスタ)などの半導体スイッチ素子であり、制御回路15は、接続状態検出装置14による検出結果に応じてこのFETのゲート電圧を制御する。接続状態検出装置14の構成は特に限定されるものではなく、プラグ20をコンセント10に対して着脱する際に、コンセント10の第1接続端子11,12に対するプラグ20の第2接続端子21,22の相対的な位置の変化が検出できればよい。
 図2に示すように、接続状態検出装置14は、第1接続端子11,12に対して第2接続端子21,22が相対的にそれ以上変位できなくなった位置又はその手前近傍の位置に設けられ、第2接続端子21,22に接触する機械スイッチ31で構成されていてもよい。
 プラグ20をコンセント10に接続させる場合、第1接続端子11,12に対して第2接続端子21,22が相対的にそれ以上変位できなくなるか又はその直前に第2接続端子21,22が機械スイッチ31に接触し、機械スイッチ31がオン又はオフする。それによって、制御回路15は、第1接続端子11,12と第2接続端子21,22が確実に電気的接続された状態にあると判断できるので、半導体スイッチ13をオンさせればよい。すなわち、プラグ20をコンセント10に接続させる(差し込む)際、プラグ20の第2接続端子21,22とコンセント10の第1接続端子11,12の電位差が小さいので、第1接続端子11,12と第2接続端子21,22の間で放電は発生しない。
 一方、プラグ20をコンセント10から離脱させる(引き抜く)場合、第1接続端子11,12に対して第2接続端子21,22を逆方向に若干変位させると、第2接続端子21,22が機械スイッチ31から離れ、機械スイッチ31がオフ又はオンする。この段階で、第1接続端子11,12と第2接続端子21,22は電気的に接続された状態にある。そのため、第1接続端子11,12と第2接続端子21,22が電気的に完全に非接続になる状態までの間に、制御回路15は速やかに半導体スイッチ13をオフさせればよい。すなわち、プラグ20をコンセント10から離脱させる(引き抜く)際、先に半導体スイッチ13がオフし、第1接続端子11,12と第2接続端子21,22が同電位になっているので、第1接続端子11,12と第2接続端子21,22の間で放電は発生しない。
 あるいは、図3に示すように、接続状態検出装置14は、同様の位置に設けられ、発光素子32a及び受光素子32bを備えた光学センサ32などで構成されていてもよい。この場合、第1接続端子11,12に対して第2接続端子21,22が相対的にそれ以上変位できなくなるか又はその直前に第2接続端子21,22が発光素子32aからの光を遮るので、受光素子32bの出力信号がハイレベルからローレベルに変化する。それによって、制御回路15は、第1接続端子11,12と第2接続端子21,22が確実に電気的接続される位置に存在していると判断できるので、半導体スイッチ13をオンさせればよい。一方、プラグ20をコンセント10から離脱させる(引き抜く)場合、第1接続端子11,12に対して第2接続端子21,22を逆方向に若干変位させると、発光素子32aから出力された光が受光素子32bに入射する。そして、受光素子32bの出力信号がローレベルからハイレベルに変化するので、制御回路15は、半導体スイッチ13をオフさせればよい。
 あるいは、図4に示すように、接続状態検出装置14は、プラグ20の本体20aに設けられた突起23と、コンセント10側に設けられたプッシュオンスイッチ33などで構成されていてもよい。この場合、プラグ20をコンセント10に接続し、コンセント10の本体10aにプラグ20の本体20aが接触すると、突起23によってプッシュオンスイッチ33がオンされる。それによって、制御回路15は、第1接続端子11,12と第2接続端子21,22が確実に電気的接続される位置に存在していると判断できるので、半導体スイッチ13をオンさせればよい。なお、プラグ20の本体20aに突起を設けずに、プッシュオンスイッチ33の先端部をコンセント10の本体10aから突出させるように構成してもよいが、幼児によるいたずらなどを考慮すると、図示した構成の方が好ましい。また、上記プッシュオンスイッチ33の代わりにコンセント10の本体10aにプラグ20の本体20aが接触することを検出するセンサを用いてもよい。
 図5は、本実施形態に係る直流接続装置1の変形例を示す。この変形例では、コンセント10は、負荷3に流れる電流を検出するための電流検出回路(A)41と負荷3に印加される電圧を検出するための電圧検出回路(V)42をさらに備えている。それに応じて制御回路15には、少なくとも1つの電流閾値及び少なくとも1つの電圧閾値が設定されている。制御回路15は、電流検出回路(A)41により検出された電流値が電流閾値を超えたときに半導体スイッチ13をオフし、電流値が電流閾値以下になったときに半導体スイッチ13をオンするように制御する。直流電源によって駆動される負荷の種類によっては、電源投入時に過大な電流(突入電流)が流れる。半導体スイッチ13として、例えばFET(電界効果トランジスタ)を用いた場合、この半導体スイッチ13、電流検出回路(A)41及び制御回路15で突入電流防止回路を構成することができる。制御回路15は、FETのオンデューティ比を制御することにより、突入電流を抑制することができる。また、制御回路15は、電圧検出回路(V)42により検出された電圧値が電圧閾値を超えたときに半導体スイッチ13をオフし、電圧値が電圧閾値以下になったときに半導体スイッチ13をオンするように制御する。例えば、直流電源2に他のコンセントなどを介して他の負荷が接続され電源電圧が低下した場合や、直流電源2が停止した場合、瞬間的に負荷3側の電圧が高くなり、負荷3側から直流電源2側に逆電流が流れる。半導体スイッチ13として、例えばFETを用いた場合、この半導体スイッチ13、電圧検出回路42及び制御回路15で逆電流防止回路を構成することができる。逆過電圧発生時に半導体スイッチ13をオフすることによって、負荷3側から直流電源2側に逆電流が流れるのを防止することができる。なお、電流検出回路(A)41と電圧検出回路(V)42の両方を備えている必要はなく、いずれか一方のみを備えていてもよい。
 図6は、半導体スイッチ13としてFETを用いた回路構成例を示す。半導体スイッチ13は、2つのFET131及び132が、そのソース及びドレインが互いに逆向きとなるように直列接続されて構成されている。また、制御回路15は、電流検出回路(A)41とFET131のゲート制御回路が一体化されたIC141と、電圧検出回路(V)42とFET132のゲート制御回路が一体化されたIC142で構成されている。このように、半導体スイッチとして2つのFETを逆向きに接続し、それぞれを独立して制御することにより、過電流(突入電流)防止及び逆電流防止の両方を同時に行うことができる。また、IC141に、さらにタイマー機能を設け、さらに時間閾値を設定してもよい。IC141(制御回路)は、タイマーによって電流検出回路(A)41により検出された電流値が電流閾値を超えている時間を検出し、さらにその電流閾値を超えている時間が時間閾値を超えたときに、FET131をオフする。それによって、負荷の短絡などによる過電流から直流配電システムを保護することができる。同様に、電圧検出回路(V)42により検出された電圧値が電圧閾値を超えたときにFET132をオフし、電圧値が電圧閾値以下になったときにFET132をオンするように制御する。これにより、負荷3側から直流電源2側に逆電流が流れるのを防止することができる。
 図7は、半導体スイッチ13として、上記2つのFETに代えて、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子100を用いた回路構成例を示す。FETは、ダイオード構造を有しているため、ゲート電圧にかかわらず、ダイオードの順方向に電圧がかかると電流が流れる性質を有している。そのため、上記のように、ダイオード構造が逆向きとなるように2つのFETを直列接続しなければならない。それに比べて、この双方向スイッチ素子はダイオード構造を有していないため、1つの素子で同様の機能を行うことができる。さらに、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子は、ダイオード構造による損失がなく、FETに比べて低損失であり、かつ制御回路の一体化が図れるというメリットを有している。すなわち、電流検出回路(A)41と電圧検出回路(V)42と制御回路15と、タイマーを一体化したIC143で制御することができる。
 図8~10を用いて、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子100の詳細について説明する。図8は双方向スイッチ素子100の構成を示す平面図であり、図9は範囲Aの拡大図、図10は図8におけるX−X断面図である。なお、この双方向スイッチ素子100は、2つの電極D1及びD2間にゲートGが1つだけ設けられているので、シングルゲート型と呼ばれている。
 図10に示すように、双方向スイッチ素子100の基板101は、導体層101aと、導体層101aの上に積層されたGaN層101b及びAlGaN層101cで構成されている。この実施形態では、チャネル層としてAlGaN/GaNヘテロ界面に生じる2次元電子ガス層を利用している。図8に示すように、基板101の表面101dには、直流電源2及び負荷3に対してそれぞれ直列に接続された第1電極D1及び第2電極D2と、第1電極D1の電位及び第2電極D2の電位に対して中間電位となる中間電位部Sが形成されている。さらに、中間電位部Sの上には、制御電極(ゲート)Gが積層形成されている。制御電極Gとして、例えばショットキ電極を用いる。第1電極D1及び第2電極D2は、それぞれ互いに平行に配列された複数の電極部111,112,113・・・及び121,122,123・・・を有する櫛歯状であり、櫛歯状に配列された電極部同士が互いに対向するように配置されている。中間電位部S及び制御電極Gは、櫛歯状に配列された電極部111,112,113・・・及び121,122,123・・・の間にそれぞれ配置されており、電極部の間に形成される空間の平面形状に相似した形状(略魚背骨状)を有している。
 次に、双方向スイッチ素子100を構成する横型のトランジスタ構造について説明する。図9に示すように、第1電極D1の電極部111と第2電極D2の電極部121は、それらの幅方向における中心線が同一線上に位置するように配列されている。また、中間電位部S及び制御電極Gは、それぞれ第1電極D1の電極部111及び第2電極D2の電極部121の配列に対して平行に設けられている。上記幅方向における第1電極D1の電極部111と第2電極D2の電極部121と中間電位部S及び制御電極Gの距離は、所定の耐電圧を維持しうる距離に設定されている。上記幅方向に直交する方向、すなわち第1電極D1の電極部111と第2電極D2の電極部121の長手方向においても同様である。また、これらの関係は、その他の電極部112及び122,113・・・及び123・・・についても同様である。すなわち、中間電位部S及び制御電極Gは、第1電極D1及び第2電極D2に対して所定の耐電圧を維持しうる位置に配置されている。
 そのため、第1電極D1が高電位側、第2電極D2が低電位側である場合、双方向スイッチ素子100がオフのとき、少なくとも第1電極D1と、制御電極G及び中間電位部Sの間で、電流は確実に遮断される(制御電極(ゲート)Gの直下で電流が阻止される)。一方、双方向スイッチ素子100がオンのとき、すなわち制御電極Gに所定の閾値以上の電圧の信号が印加されたときは、図中矢印で示すように、第1電極D1(電極部111・・・)、中間電位部S、第2電極D2(電極部121・・・)の経路で電流が流れる。逆の場合も同様である。その結果、制御電極Gに印加する信号の閾値電圧を必要最低限のレベルまで低下させても、双方向スイッチ素子100を確実にオン/オフさせることができ、低オン抵抗を実現することができる。また、第1電極D1の電極部111,112,113・・・及び第2電極D2の電極部121,122,123・・・を櫛歯状に配列することができ、双方向スイッチ素子100のチップサイズを大きくすることなく、大電流を取り出すことができる。
 図11及び12は、GaN/AlGaNを用いた横型トランジスタ構造を有する他の双方向スイッチ素子300の構成を示す。図11は双方向スイッチ素子300の構成を示す平面図であり、図12は図11におけるXII−XII断面図である。なお、この双方向スイッチ素子300は、2つの電極D1及びD2間に2つのゲートG1及びG2が設けられているので、デュアルゲート型と呼ばれている。
 図11及び12に示すように、横型のデュアルゲートトランジスタ構造の主スイッチ素子300は、耐圧を維持する箇所を1箇所とした損失の少ない双方向素子を実現する構造である。すなわち、ドレイン電極D1及びD2はそれぞれGaN層に達するように形成され、ゲート電極G1及びG2はそれぞれAlGaN層の上に形成されている。ゲート電極G1,G2に電圧が印加されていない状態では、ゲート電極G1,G2の直下のAlGaN/GaNヘテロ界面に生じる2次元電子ガス層に電子の空白地帯が生じ、電流は流れない。一方、ゲート電極G1,G2に電圧が印加されると、ドレイン電極D1からD2に向かって(又はその逆に)AlGaN/GaNヘテロ界面に電流が流れる。ゲート電極G1とG2の間は、耐電圧を必要とし、一定の距離を設ける必要があるが、ドレイン電極D1とゲート電極G1の間及びドレイン電極D2とゲート電極G2の間は耐電圧を必要としない。そのため、ドレイン電極D1とゲート電極G1及びドレイン電極D2とゲート電極G2とが、絶縁層Inを介して重複していてもよい。なお、この構成の素子はドレイン電極D1,D2の電圧を基準として制御する必要があり、2つのゲート電極G1,G2にそれぞれ駆動信号を入力する必要がある(そのため、デュアルゲートトランジスタ構造と呼ぶ)。
 図13は、本実施形態に係る直流接続装置1の他の変形例を示す。この変形例では、コンセント10は、第1接続端子11,12と半導体スイッチ13の間に直列接続された有接点開閉装置16をさらに備えている。制御回路15は、第1接続端子11,12と第2接続端子21,22が完全に電気的に接続された状態となり、かつ、有接点開閉装置16のオン動作完了後に、半導体スイッチ13をオンさせる。また、制御回路15は、第1接続端子11,12に対する第2接続端子21,22の相対的な位置が、第1接続端子11,12と第2接続端子21,22が電気的に完全に接続された状態から逆方向に変位され、かつ、第1接続端子11,12と第2接続端子21,22が電気的に完全に非接続になる状態までの間であって、さらに、半導体スイッチ13をオフさせた後に、有接点開閉装置16をオフさせる。有接点開閉装置16として、例えばリレーやブレーカなどを用いることができる。このように、プラグ20がコンセント10に接続されていない状態では、有接点開閉装置16の接点が開離し、コンセント10の第1接続端子11,12は物理的に直流電源2から遮断される。そのため、万一、半導体スイッチ13が破壊されても、安全性を確保することができる。また、プラグ20をコンセント10に着脱する際に、チャッタリングが発生したとしても、第1接続端子11,12と第2接続端子21,22の間での放電発生を防止することができる。
 コンセント10に対するプラグ20の着脱方法、すなわち、第1接続端子11,12に対する第2接続端子21,22の変位は、一般的な抜き差しである直線動作だけでなく、例えば図14に示すように、回転動作及び直線動作と回転動作の組み合わせが可能である。制御回路15は、プラグ20をコンセント10に接続完了した後、すなわち、第1接続端子11,12に対して第2接続端子21,22が相対的にそれ以上変位できなくなった後に、有接点開閉装置16をオンさせ、その後に半導体スイッチ13をオンさせる。また、有接点開閉装置16を有していない場合は、制御回路15は、第1接続端子11,12に対して第2接続端子21,22が相対的にそれ以上変位できなくなった後に、半導体スイッチ13をオンさせればよい。
 さらに、図15に示すように、プラグ20をコンセント10に装着した後、プラグ20をコンセント10にロックする機構を備えていてもよい。例えば、プラグ20の本体20aの側部に係止フック24が設けられ、コンセント10の本体10aに係止穴17が設けられている。さらに、コンセント10の本体10aの内部で、係止穴17の近傍にスイッチ34を設けられている。プラグ20をコンセント10に装着する(差し込む)と、係止フック24が樹脂の弾性により変形して係止穴17に嵌合され、弾性復元力により係止フック24が係止穴17に係止される。それによって、プラグ20がコンセント10にロックされる。同時に、係止フック24の先端部がスイッチ34に当接し、スイッチ34がオンされる。制御回路15は、スイッチ34がオンした後、有接点開閉装置16をオンさせ、さらにその後、半導体スイッチ13をオンさせる。コンセント10からプラグ20を取り外すには、ユーザが両方の係止フック24をそれぞれ本体20a側に押しつけて変形させる。そうすると、係止フック24の先端部がスイッチ34から離れ、スイッチ34がオフされる。制御回路15は、スイッチ34がオフすると、直ちに半導体スイッチ13をオフさせ、さらにその後、有接点開閉装置16をオフさせる。ユーザは、その状態でプラグ20をソケット10から引き抜けばよい。なお、ロック機構は図示したものに限定されず、その他の構造であってもよい。換言すれば、制御回路15は、ロック機構が第1接続端子11,12及び第2接続端子21,22をロックしている間に、有接点開閉装置16をオン及びオフさせるように構成されていればよい。
 図16は、本実施形態に係る直流接続装置1のさらに他の変形例を示す。この変形例では、上記直流配電と交流配電を1つのコンセント10で行いうるハイブリッド仕様に構成されている。太陽光発電や家庭用燃料電池の普及により、直流電源で直接駆動されるエアコンや冷蔵庫などの電気機器が開発されると考えられる。ところが、太陽光発電の場合、天候や季節の影響を受けやすく、発電量は不安定であり、また、日没後は発電されない。そのため、一般的には二次電池を併用し、二次電池に充電された電力が使用される。しかしながら、二次電池に充電された電力で全ての電気機器の消費電力をまかなえるとは限らず、エアコンや冷蔵庫など消費電力の大きな電気機器は、従来からの交流電源をバックアップ電源として使用可能なように、ハイブリッド仕様で設計されると予想される。従って、図16に示すコンセント10には、交流電源5に接続された1対の第3接続端子18,19が設けられている。第3接続端子18,19には、交流プラグ50の端子51,52が接続される。交流電源5の電圧は、例えば100V又は200Vであるが、直流配電システムと異なり、交流配電システムの場合は、プラグ50をコンセント10から引き抜く際にアーク放電が発生しても、容易に消弧できるため、半導体スイッチは特に設けられていない。
 例えばリレーやブレーカなどで構成された上記有接点開閉装置16は、交流電源5と1対の第3接続端子18,19(いずれか一方でもよい)の間に直列接続され、交流回路遮断機としても機能する。あるいは、上記有接点開閉装置16とは別に、交流電源5と1対の第3接続端子18,19の間に交流回路遮断機を接続してもよい。また、コンセント10には、直流電源2と負荷3の間の直流回路に流れる地絡電流を検出する直流地絡電流検出回路(A’)43と、交流電源5と負荷3の間の交流回路に流れる地絡電流を検出する交流地絡電流検出回路(A”)44が設けられている。直流地絡電流検出回路43としては、例えばホール素子などを用いることができる。また、交流地絡電流検出回路44としては、例えば零相変流器(ZCT)などを用いることができる。あるいは、図17に示すように、直流回路と交流回路を同一のコアに通し、直流地絡電流検出回路43と交流地絡電流検出回路44の一部を共通化してもよい。それによって、コンセント10の小型化及び低コスト化を実現することができる。
 制御回路15は、直流地絡電流検出回路43又は交流地絡電流検出回路44のいずれか一方が地絡電流を検出すると、直流電源2に接続された半導体スイッチ13及び交流電源5に接続された有接点開閉装置16(又は交流回路遮断機)の両方をオフする。なお、この場合は、直流回路側に接続された有接点開閉装置16をオフするタイミングよりも、半導体スイッチ13をオフするタイミングを早くすることはいうまでもない。
 なお、本発明は、上記実施形態の説明に限定されるものではなく、様々な変形及び応用が可能である。図18は、負荷3側にもコンセント10’を設け、直流電源2側のコンセント10とケーブル36で接続した構成例を示す。負荷3側のコンセント10’は負荷3の内部電源(DC/DCコンバータ又はインバータ)35に接続されている。ケーブル36の両端には、それぞれプラグ20及び20’が接続されている。この場合、プラグ20の第2接続端子21,22とプラグ20’の第2接続端子21’,22’の凹凸は逆である。同様に、コンセント10の第1接続端子11,12とコンセント10’の第1接続端子11’,12’の凹凸も逆である。このように、第1コネクタであるコンセント10,10’は必ずしも、直流電源2に接続されるものではなく、負荷3又は負荷3側の内部電源35に接続される場合もある。あるいは、直流電源に接続された配電盤の回路遮断機などに接続される場合もある。さらに、第2コネクタであるプラグ20,20’は、必ずしも負荷3に直接接続されるものではなく、直流電源2と負荷3を接続するケーブル36に接続される場合もある。
 上述の多様な複数の実施例は、適切に組み合わせて行うことができる。例えば、図16に示す直流接続装置に図3に示す光学センサを適用することができる。
 以上、本発明の好ましい実施形態が説明されたが、本発明はこれらの特定実施形態に限定されず、後続する請求範囲の範疇で多様な変更及び修正が行われることが可能であり、それも本発明の範疇に属すると言える。

Claims (20)

  1.  直流電源側又は負荷側と接続される第1コネクタと、前記第1コネクタに接続される第2コネクタからなり、前記第1コネクタ又は前記第2コネクタは、少なくとも一方の端子の一部が他方の端子に接触したことが検出されたときにオンされ、前記一方の端子が前記他方の端子から完全に離れる前にオフされる半導体スイッチを備えたことを特徴とする直流接続装置。
  2.  直流電源側又は負荷側と接続される第1コネクタと、前記第1コネクタに接続される第2コネクタからなる直流接続装置であって、
     前記第1コネクタは一対の第1接続端子を備え、
     前記第2コネクタは、前記第1接続端子と電気的に接続される1対の第2接続端子を備え、
     前記第1コネクタは、前記直流電源側又は前記負荷側と前記1対の第1接続端子のいずれか一方の第1接続端子の間に直列接続された半導体スイッチと、前記第1接続端子に対する前記第2接続端子の相対的な位置関係を検出する接続状態検出装置と、前記接続状態検出装置による検出結果に応じて前記半導体スイッチをオン又はオフさせる制御回路を備え、
     前記接続状態検出装置は、前記第1接続端子に対する前記第2接続端子の相対的な位置の変化を検出し、
     前記制御回路は、前記第1接続端子に対する前記第2接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が確実に電気的接続された状態にあるときに、前記半導体スイッチをオン及びオフさせることを特徴とする直流接続装置。
  3.  前記第1接続端子と前記第2接続端子が確実に電気的接続された状態とは、前記第2接続端子に対して前記第1接続端子が相対的にそれ以上変位できなくなった位置にあること又はその手前近傍の位置にあることを特徴とする請求項2に記載の直流接続装置。
  4.  前記制御回路は、前記第2接続端子に対する前記第1接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が電気的に完全に接続された状態から、逆方向に変位され、かつ、前記第1接続端子と前記第2接続端子が電気的に完全に非接続になる状態までの間に、前記半導体スイッチをオフさせることを特徴とする請求項3に記載の直流接続装置。
  5.  前記接続状態検出装置は、前記第2接続端子に対して前記第1接続端子が相対的にそれ以上変位できなくなった位置又はその手前近傍の位置に設けられ、前記第2接続端子に接触する機械スイッチを含むことを特徴とする請求項2乃至請求項4のいずれか一項に記載の直流接続装置。
  6.  前記接続状態検出装置は、前記第2接続端子に対して前記第1接続端子が相対的にそれ以上変位できなくなった位置又はその手前近傍の位置に設けられ、前記第1接続端子の存在を検出する発光素子及び受光素子を備えた光学センサを含むことを特徴とする請求項2乃至請求項4のいずれか一項に記載の直流接続装置。
  7.  前記接続状態検出装置は、前記第1コネクタの本体に設けられ、前記第1コネクタの本体に前記第2コネクタの本体が接触したことを検出するセンサ又はスイッチを含むことを特徴とする請求項2乃至請求項4のいずれか一項に記載の直流接続装置。
  8.  前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路を備え、
     前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたときに前記半導体スイッチをオフし、前記電流値が前記電流閾値以下になったときに前記半導体スイッチをオンすることを特徴とする請求項2乃至請求項7のいずれか一項に記載の直流接続装置。
  9.  前記第1コネクタは、前記負荷側に印加される電圧を検出するための電圧検出回路を備え、
     前記制御回路は、前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記半導体スイッチをオフし、前記電圧値が前記電圧閾値以下になったときに前記半導体スイッチをオンすることを特徴とする請求項2乃至請求項8のいずれが一項に記載の直流接続装置。
  10.  前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路及び前記負荷側に印加される電圧を検出するための電圧検出回路を備え、
     前記半導体スイッチは、2つのFETが、そのソース及びドレインが互いに逆向きとなるように直列接続されてなり、
     前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたときに前記2つのFETのうち一方のFETをオフし、前記電流値が前記電流閾値以下になったときに該前記一方のFETをオンし、前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記2つのFETのうち他方のFETをオフし、前記電圧値が前記電圧閾値以下になったときに該他方のFETをオンすることを特徴とする請求項2乃至請求項7のいずれか一項に記載の直流接続装置。
  11.  前記第1コネクタは、前記負荷側に流れる電流を検出するための電流検出回路及び前記負荷側に印加される電圧を検出するための電圧検出回路を備え、
     前記半導体スイッチは、GaN/AlGaNを用いた横型トランジスタ構造を有する双方向スイッチ素子であり、
     前記制御回路は、前記電流検出回路により検出された電流値があらかじめ設定された電流閾値を超えたとき又は前記電圧検出回路により検出された電圧値があらかじめ設定された電圧閾値を超えたときに前記双方向スイッチ素子をオフし、前記電流値が前記電流閾値以下になったときに又は前記電圧値が前記電圧閾値以下になったときに前記双方向スイッチ素子をオンすることを特徴とする請求項2乃至請求項7のいずれか一項に記載の直流接続装置。
  12.  前記制御回路は、タイマーを備え、
     前記制御回路は、前記タイマーによって前記電流検出回路により検出された電流値が前記電流閾値を超えている時間を検出し、さらにその時間があらかじめ設定された時間閾値を超えたときに、前記半導体スイッチをオフすることを特徴とする請求項8、請求項10及び請求項11のいずれか一項に記載の直流接続装置。
  13.  前記第1コネクタは、前記第1接続端子と前記半導体スイッチの間に直列接続された有接点開閉装置をさらに備えたことを特徴とする請求項2乃至請求項12のいずれか一項に記載の直流接続装置。
  14.  前記制御回路は、前記第1接続端子と前記第2接続端子が完全に電気的に接続された状態となり、かつ、前記有接点開閉装置のオン動作完了後に、前記半導体スイッチをオンさせることを特徴とする請求項13に記載の直流接続装置。
  15.  前記制御回路は、前記第2接続端子に対する前記第1接続端子の相対的な位置が、前記第1接続端子と前記第2接続端子が電気的に完全に接続された状態から、逆方向に変位され、かつ、前記第1接続端子と前記第2接続端子が電気的に完全に非接続になる状態までの間であって、さらに、前記半導体スイッチをオフさせた後に、前記有接点開閉装置をオフさせることを特徴とする請求項14に記載の直流接続装置。
  16.  前記第2接続端子に対する前記第1接続端子の変位は、直線動作及び回転動作のいずれか一方又は直線動作及び回転動作の両方を含み、
     前記制御回路は、前記第2接続端子に対して前記第1接続端子が相対的にそれ以上変位できなくなった後に、前記有接点開閉装置をオンさせることを特徴とする請求項13乃至請求項15のいずれか一項に記載の直流接続装置。
  17.  前記第1コネクタは、前記第2接続端子に対して前記第1接続端子が相対的にそれ以上変位できなくなった状態をロックするロック機構をさらに備え、
     前記制御回路は、前記ロック機構が前記第1接続端子及び前記第2接続端子をロックしている間に、前記有接点開閉装置をオン及びオフさせることを特徴とする請求項13乃至請求項16のいずれか一項に記載の直流接続装置。
  18.  前記第1コネクタは、交流電源側又は前記負荷側に接続された1対の第3接続端子をさらに備えたことを特徴とする請求項2乃至請求項17のいずれか一項に記載の直流接続装置。
  19.  前記第1コネクタは、前記交流電源側と前記1対の第3接続端子のいずれか一方の第3接続端子の間に直列接続された交流回路遮断機と、前記交流電源側と前記負荷側又は他の負荷側の間の交流回路に流れる地絡電流を検出する交流地絡電流検出回路と、前記直流電源側と前記負荷側の間の直流回路に流れる地絡電流を検出する直流地絡電流検出回路をさらに備え、
     前記制御回路は、前記直流地絡電流検出回路又は前記交流地絡電流検出回路のいずれか一方が地絡電流を検出すると、前記直流電源側に接続された半導体スイッチ及び前記交流電源側に接続された交流回路遮断機の両方をオフすることを特徴とする請求項18に記載の直流接続装置。
  20.  前記直流地絡電流検出回路及び前記交流地絡電流検出回路の少なくとも一部が共通であることを特徴とする請求項19に記載の直流接続装置。
PCT/IB2011/001983 2010-09-15 2011-08-30 直流接続装置 WO2012035387A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/813,733 US20130127261A1 (en) 2010-09-15 2011-08-30 Dc connection device
CN2011800381690A CN103053083A (zh) 2010-09-15 2011-08-30 直流连接装置
EP20110824644 EP2618432A4 (en) 2010-09-15 2011-08-30 CONTINUOUS CURRENT CONNECTION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-207251 2010-09-15
JP2010207251A JP5884067B2 (ja) 2010-09-15 2010-09-15 直流接続装置

Publications (1)

Publication Number Publication Date
WO2012035387A1 true WO2012035387A1 (ja) 2012-03-22

Family

ID=45831059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2011/001983 WO2012035387A1 (ja) 2010-09-15 2011-08-30 直流接続装置

Country Status (5)

Country Link
US (1) US20130127261A1 (ja)
EP (1) EP2618432A4 (ja)
JP (1) JP5884067B2 (ja)
CN (1) CN103053083A (ja)
WO (1) WO2012035387A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832514A (zh) * 2012-09-06 2012-12-19 张太平 直流电路中的电源接插件
CN103117467A (zh) * 2013-03-18 2013-05-22 张腾 传输直流电能的器具耦合器
WO2014089979A1 (zh) * 2012-12-11 2014-06-19 华为技术有限公司 配电系统及配电单元
US9666977B2 (en) 2015-07-29 2017-05-30 Abb Schweiz Ag Direct current socket with direct current arc protection
US10483693B2 (en) 2015-09-24 2019-11-19 Abb Schweiz Ag Sliding contact assembly for accelerating relative separation speed between plug contacts and socket outlet contacts

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098007B2 (ja) 2012-09-28 2017-03-22 パナソニックIpマネジメント株式会社 電気接続用コネクタ
CN104242227B (zh) * 2013-06-24 2018-09-25 中兴通讯股份有限公司 一种终端的保护装置及方法
CN104348047A (zh) * 2013-07-26 2015-02-11 鸿富锦精密工业(深圳)有限公司 电弧消除装置
JP2015162953A (ja) * 2014-02-27 2015-09-07 日本電信電話株式会社 分電盤
KR101803132B1 (ko) * 2014-04-28 2017-11-29 엘에스산전 주식회사 무 변압기형 태양광 인버터의 누설전류 감시 장치
KR101619644B1 (ko) * 2014-11-19 2016-05-10 현대자동차주식회사 파워 아웃렛장치
JP2016187290A (ja) * 2015-03-27 2016-10-27 パナソニックIpマネジメント株式会社 電力供給システム及び電力変換装置
TWI584539B (zh) * 2015-04-01 2017-05-21 易家居聯網科技有限公司 無火花插座
US10693262B2 (en) 2015-04-01 2020-06-23 Elifeconnection Co., Ltd. Sparkless socket
KR101745121B1 (ko) 2015-08-18 2017-06-20 공주대학교 산학협력단 직류용 고장전류 제한기
JP6631169B2 (ja) * 2015-09-14 2020-01-15 株式会社オートネットワーク技術研究所 通電システム
CN105552673A (zh) * 2016-02-05 2016-05-04 无锡知谷网络科技有限公司 连接器,安全控制装置,充电装置和移动设备
JP6895216B2 (ja) * 2016-05-09 2021-06-30 モッツエンボッカー マービン 直流スマートグリッド及びスマートコンセント
JP2018028995A (ja) * 2016-08-16 2018-02-22 有限会社R&K Japan 交流・直流併用型接続器及びアーク遮断機構
DE102016223166A1 (de) * 2016-11-23 2018-05-24 Robert Bosch Gmbh Schaltvorrichtung zum elektrischen Zu- und/oder Abschalten von einem Batteriesystem
US10523003B2 (en) * 2017-01-30 2019-12-31 Cummins Enterprise Inc. Auxiliary power circuit and method of use
CN109888576A (zh) * 2018-11-07 2019-06-14 广州金升阳科技有限公司 一种适用于直流电源的插座
KR102045203B1 (ko) * 2018-12-18 2019-11-15 주한솔 안전이 강화된 대전류 배선 연결장치
CN109728366A (zh) * 2018-12-28 2019-05-07 上汽通用五菱汽车股份有限公司 防电池块拆装产生电弧的方法、电池管理系统及存储介质
CN109742610A (zh) * 2019-01-31 2019-05-10 吴鹏翔 插头和插座安全通电控制系统
DE102019112951B3 (de) * 2019-05-16 2020-09-17 Dehn Se + Co Kg System zum Schutz einer elektrischen Quelle oder elektrischen Last
CN110401068B (zh) * 2019-07-25 2020-03-24 杭州康研文具有限公司 一种电源线连接器接口互连结构
DE102019135122A1 (de) * 2019-12-19 2021-06-24 Phoenix Contact Gmbh & Co. Kg Technik zur Vermeidung eines Lichtbogens beim Trennen einer Gleichstromverbindung unter Verwendung einer Verlängerung eines Leitungsverbunds
CN111391685B (zh) * 2020-03-31 2021-09-28 深圳供电局有限公司 充电装置
CN112165823B (zh) * 2020-09-22 2022-07-05 科华数据股份有限公司 一种应用于连接器的安全保护装置及安全控制方法
US11283214B1 (en) * 2021-02-10 2022-03-22 Hong Kong Applied Science And Technology Research Institute Co., Ltd Digital arc-less connector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282580U (ja) * 1985-11-13 1987-05-26
JPH03274688A (ja) * 1990-03-23 1991-12-05 Tokyo Electric Power Co Inc:The コンセント装置
JPH06325831A (ja) * 1993-05-12 1994-11-25 Nec Corp 高電圧の保護回路
JPH0737644A (ja) * 1993-07-22 1995-02-07 Sumitomo Wiring Syst Ltd 電気自動車充電用コネクタ
JP2000215772A (ja) * 1999-01-26 2000-08-04 Nichicon Corp インタ―ロック回路
JP2001069664A (ja) * 1999-08-31 2001-03-16 Yazaki Corp 車両用電源供給制御装置
JP2002231396A (ja) * 2001-01-26 2002-08-16 Matsushita Electric Works Ltd コンセント
JP2002335626A (ja) * 2001-05-10 2002-11-22 Nec System Technologies Ltd 逆電流防止回路
JP2009146783A (ja) 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd 直流接続装置
JP2010033855A (ja) * 2008-07-28 2010-02-12 Panasonic Electric Works Tatsuno Co Ltd 漏電継電器

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438472A (en) * 1982-08-09 1984-03-20 Ibm Corporation Active arc suppression for switching of direct current circuits
FR2651915B1 (fr) * 1989-09-13 1991-11-08 Merlin Gerin Disjoncteur statique ultra-rapide a isolement galvanique.
DE4118637A1 (de) * 1990-06-19 1992-01-09 Simon Hans Elektrische kupplung
WO2002067279A2 (en) * 2000-12-22 2002-08-29 Ixys Corporation Hot-swap protection circuit
WO2004082091A1 (en) * 2003-03-14 2004-09-23 Magnetek S.P.A. Electronic circuit breaker
US6891425B1 (en) * 2003-05-09 2005-05-10 Maxim Integrated Products, Inc. Low voltage or'ing circuits and methods with zero recovery time
US6917503B2 (en) * 2003-10-29 2005-07-12 Texas Instruments Incorporated Programmable current limiting using a shunt resistor
US7149063B2 (en) * 2004-01-20 2006-12-12 Tyco Electronics Corporation Apparatus, methods and articles of manufacture to minimize arcing in electrical connectors
US7382001B2 (en) * 2004-01-23 2008-06-03 International Rectifier Corporation Enhancement mode III-nitride FET
JP4308064B2 (ja) * 2004-03-31 2009-08-05 新電元工業株式会社 直流プラグ
JP4308065B2 (ja) * 2004-03-31 2009-08-05 新電元工業株式会社 直流コンセント
US20060168459A1 (en) * 2005-01-25 2006-07-27 Dwelley David M Providing data communication between power supply device and powered device in system for supplying power over communication link
US8230151B2 (en) * 2005-04-11 2012-07-24 Linear Technology Corporation Configurable data port for I2C or single-wire broadcast interface
EP1724899B1 (en) * 2005-05-17 2016-08-03 Continental Automotive GmbH Apparatus for short circuit protection
US7295171B2 (en) * 2005-10-17 2007-11-13 Sierra Wireless, Inc. Method and apparatus for switching between internal and external antennas in a device such as PC-Card modem
US8203810B2 (en) * 2006-04-04 2012-06-19 Tyco Electronics Corporation Solid state pre-charge module
JP4844468B2 (ja) * 2007-05-08 2011-12-28 富士電機株式会社 二次電池保護装置及び半導体集積回路装置
JP2008295158A (ja) * 2007-05-23 2008-12-04 Panasonic Corp 電源装置
JP2009033905A (ja) * 2007-07-30 2009-02-12 Panasonic Corp 電力制御装置
US7952840B2 (en) * 2008-05-13 2011-05-31 Unitron, L.P. Receptacle with arc protection circuitry
DE102008027428B4 (de) * 2008-06-09 2021-08-12 Texas Instruments Deutschland Gmbh Integrierte Batterieladegerät-Schutzschaltung
ATE523890T1 (de) * 2008-07-31 2011-09-15 Abb Technology Ag Antriebs- und steuerungseinheit für eine nieder- oder mittelspannungsvorrichtung
JP2010073679A (ja) * 2008-08-19 2010-04-02 Tempearl Ind Co Ltd 電気機械器具等の電源供給装置および埋込みコンセント
JP2010086820A (ja) * 2008-09-30 2010-04-15 Panasonic Electric Works Co Ltd コンセント装置
KR101099978B1 (ko) * 2008-12-31 2011-12-28 엘에스산전 주식회사 개폐기능을 구비한 제어모듈 및 한류기
WO2010117498A2 (en) * 2009-03-30 2010-10-14 Sendyne Corp. Battery cell protection and conditioning circuit and system
JP5281512B2 (ja) * 2009-07-29 2013-09-04 パナソニック株式会社 配線装置、スイッチ、プラグおよびコンセント
JP5457206B2 (ja) * 2010-01-08 2014-04-02 セイコーインスツル株式会社 電池パック
JP5081260B2 (ja) * 2010-02-15 2012-11-28 日本特殊陶業株式会社 ガスセンサ制御装置及びガスセンサ制御方法
JP5079053B2 (ja) * 2010-05-26 2012-11-21 三菱電機株式会社 給電用コネクタ及び給電用プラグ
US8587912B2 (en) * 2010-10-22 2013-11-19 General Electric Company Electric circuit protection system and method for protecting an electric circuit
US8643982B2 (en) * 2011-03-21 2014-02-04 Hamilton Sundstrand Corporation Discrete input signal generation via output short-circuit detection
WO2012148774A2 (en) * 2011-04-25 2012-11-01 Volterra Semiconductor Corporation Integrated protection devices with monitoring of electrical characteristics

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6282580U (ja) * 1985-11-13 1987-05-26
JPH03274688A (ja) * 1990-03-23 1991-12-05 Tokyo Electric Power Co Inc:The コンセント装置
JPH06325831A (ja) * 1993-05-12 1994-11-25 Nec Corp 高電圧の保護回路
JPH0737644A (ja) * 1993-07-22 1995-02-07 Sumitomo Wiring Syst Ltd 電気自動車充電用コネクタ
JP2000215772A (ja) * 1999-01-26 2000-08-04 Nichicon Corp インタ―ロック回路
JP2001069664A (ja) * 1999-08-31 2001-03-16 Yazaki Corp 車両用電源供給制御装置
JP2002231396A (ja) * 2001-01-26 2002-08-16 Matsushita Electric Works Ltd コンセント
JP2002335626A (ja) * 2001-05-10 2002-11-22 Nec System Technologies Ltd 逆電流防止回路
JP2009146783A (ja) 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd 直流接続装置
JP2010033855A (ja) * 2008-07-28 2010-02-12 Panasonic Electric Works Tatsuno Co Ltd 漏電継電器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2618432A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102832514A (zh) * 2012-09-06 2012-12-19 张太平 直流电路中的电源接插件
WO2014089979A1 (zh) * 2012-12-11 2014-06-19 华为技术有限公司 配电系统及配电单元
CN103117467A (zh) * 2013-03-18 2013-05-22 张腾 传输直流电能的器具耦合器
US9666977B2 (en) 2015-07-29 2017-05-30 Abb Schweiz Ag Direct current socket with direct current arc protection
US10483693B2 (en) 2015-09-24 2019-11-19 Abb Schweiz Ag Sliding contact assembly for accelerating relative separation speed between plug contacts and socket outlet contacts

Also Published As

Publication number Publication date
EP2618432A4 (en) 2015-04-15
JP5884067B2 (ja) 2016-03-15
CN103053083A (zh) 2013-04-17
EP2618432A1 (en) 2013-07-24
JP2012064419A (ja) 2012-03-29
US20130127261A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP5884067B2 (ja) 直流接続装置
CA2765943C (en) Alternating current/direct current two-way switch
CN109690790B (zh) 光伏设备、直流混合式开关机构、用于接通和关断光伏串的应用和方法
JP5634240B2 (ja) 漏電検出遮断器
CN106663557B (zh) 用于中断直流电流的分离开关
US9478917B2 (en) Mechatronic plug-in connector system
CN100590946C (zh) 保护开关系统
JP2012064419A5 (ja)
WO2009078148A1 (ja) 電力変換回路
US10355580B2 (en) DC-DC converter with protection circuit limits
KR100644310B1 (ko) 스위칭 소자 및 그것을 이용한 보호 회로
JP2003258615A (ja) 電気組立体、電気システム、ソリッドステート継電器、及びソリッドステート形a継電器
KR20160032849A (ko) 고전압 전원 차단 장치 및 이의 제어 방법
US8779837B2 (en) Load control device
CN102891595B (zh) 用于车辆的功率转换器
CN108092395A (zh) 一种后备电池切入及浮充控制装置
CN106253888A (zh) 双向mosfet开关和多路复用器
US20230178941A1 (en) Technique for preventing arcing when disconnecting a dc connection by using an extension of a line compound.
JP5412417B2 (ja) 電子リレー
KR20210048851A (ko) 배터리 차단 장치 및 이를 포함하는 배터리 장치
CN202190108U (zh) 电池充电放电器
CN211507519U (zh) 一种继电器触点状态检测电路及车辆、高压配电系统
US9960614B2 (en) DC-DC converter with protection circuit for connection error
CN109217871B (zh) 一种采样控制电路
KR20040028354A (ko) 서지 저감용 커넥터

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038169.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824644

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011824644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011824644

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13813733

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE