WO2012032659A1 - 無線通信装置及び無線通信装置制御方法 - Google Patents

無線通信装置及び無線通信装置制御方法 Download PDF

Info

Publication number
WO2012032659A1
WO2012032659A1 PCT/JP2010/065661 JP2010065661W WO2012032659A1 WO 2012032659 A1 WO2012032659 A1 WO 2012032659A1 JP 2010065661 W JP2010065661 W JP 2010065661W WO 2012032659 A1 WO2012032659 A1 WO 2012032659A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
local oscillation
signals
different frequencies
Prior art date
Application number
PCT/JP2010/065661
Other languages
English (en)
French (fr)
Inventor
隆 谷井
満則 前田
一成 岸上
尚士 高山
光彦 満保
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP10857003.7A priority Critical patent/EP2615740B1/en
Priority to PCT/JP2010/065661 priority patent/WO2012032659A1/ja
Priority to JP2012532822A priority patent/JP5617924B2/ja
Publication of WO2012032659A1 publication Critical patent/WO2012032659A1/ja
Priority to US13/786,000 priority patent/US8781422B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0067Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands
    • H04B1/0071Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with one or more circuit blocks in common for different bands using a common intermediate frequency for more than one band

Definitions

  • the present invention relates to a wireless communication device and a wireless communication device control method.
  • 3GPP 3rd Generation Partnership Project
  • a plurality of frequency bands are defined as frequency bands to be used. Then, each of the defined frequency bands is exclusively assigned to a plurality of operators.
  • the service provider provides a wireless communication service using the allocated frequency band.
  • Some operators are assigned a wide band within one specified frequency band. In the case of such a business operator, since radio communication is performed using signals in the same frequency band, signal processing can be performed with one local oscillation signal, so only one oscillator is required.
  • a wireless communication device as shown in FIG. 7 has been used.
  • signals received through two different reception paths are processed by the respective signal processing units 901 and 902 and processed by the respective signal processing units.
  • the result is synthesized by the synthesis unit 903 to make the signal one signal.
  • JP 2000-151553 A Japanese Patent Laid-Open No. 2006-203686
  • the wireless communication apparatus as shown in FIG. 7 has only one oscillator such as the oscillator 904 or the oscillator 905 for a reception path of one frequency. Therefore, only one signal from one frequency band can be received in one reception path. Therefore, in order to process signals included in two different frequency bands, two reception paths are required as shown in FIG. 7, resulting in an increase in circuit scale.
  • the conventional technique for maintaining the frequency stability of the main signal secures the frequency stability using signals in different frequency bands, but does not perform processing such as reception and synthesis of signals in different frequency bands.
  • the direct conversion method does not use an IF filter, so that it is easy to increase the bandwidth of the receiver.
  • processing such as reception and synthesis of signals in different frequency bands is not performed. That is, even if these conventional techniques are used, it is difficult to reduce the scale of a wireless communication apparatus that receives signals in two different frequency bands and combines the received signals into one signal.
  • the disclosed technology has been made in view of the above, and an object thereof is to provide a wireless communication device and a wireless communication device control method capable of processing signals having different frequency bands in one reception path.
  • the signal reception unit receives a plurality of signals having different frequency bands.
  • the first oscillation unit outputs a first local oscillation signal.
  • the second oscillation unit outputs a second oscillation signal having a frequency different from that of the first local oscillation signal.
  • the modulation unit modulates the frequency based on the first local oscillation signal and the second local oscillation signal to generate a plurality of local oscillation signals having different frequencies.
  • the frequency converting unit mixes the plurality of local oscillation signals having different frequencies with the plurality of signals having different frequencies received by the signal receiving unit.
  • the signal processing unit performs predetermined processing on the signal generated by the mixing by the frequency conversion unit.
  • signals having different frequency bands can be processed in one reception path.
  • the circuit scale of the wireless communication apparatus that simultaneously receives signals of different frequencies can be reduced.
  • FIG. 1 is a block diagram of a wireless communication apparatus according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the relationship between the reception frequency and the oscillation frequency.
  • FIG. 3 is a flowchart of received signal processing in the wireless communication apparatus according to the first embodiment.
  • FIG. 4 is a block diagram of the wireless communication apparatus according to the second embodiment.
  • FIG. 5 is a flowchart of the process of modulating the oscillation frequency.
  • FIG. 6 is a block diagram of a modification of the wireless communication apparatus according to the second embodiment.
  • FIG. 7 is a diagram for explaining a conventional wireless communication apparatus that simultaneously receives signals of different frequencies.
  • FIG. 1 is a block diagram of the wireless communication apparatus according to the first embodiment.
  • the wireless communication apparatus according to the first embodiment includes a first oscillator 1, a second oscillator 2, a modulator 3, a quadrature demodulator 4, an LNA (Low Noise Amplifier) 5, a filter processing unit 6, It has ADC (Analog Digital Converter) 7, signal processing unit 8, and antenna 9.
  • the wireless communication apparatus according to the first embodiment uses a direct conversion method and performs direct modulation.
  • the oscillator 1 outputs a local oscillation signal having an oscillation frequency f1 to the modulator 3.
  • the oscillator 1 corresponds to an example of the first oscillation unit
  • the local oscillation signal output from the oscillator 1 corresponds to an example of the first local oscillation signal.
  • the oscillator 2 outputs a local oscillation signal having an oscillation frequency f2 to the modulator 3.
  • the oscillator 2 corresponds to an example of the second oscillation unit
  • the local oscillation signal output from the oscillator 2 corresponds to an example of the second local oscillation signal.
  • f2 is a frequency smaller than f1.
  • the frequency f1 and the frequency f2 are specified in advance by the operator so that f1 + f2 and f1-f2 substantially coincide with the frequencies of two types of RF (Radio Frequency) signals to be received. To do.
  • the modulator 3 stores a frequency modulation method in advance. Specifically, in the present embodiment, the modulator 3 stores an expression for obtaining the difference and sum of two input signals.
  • the modulator 3 receives a local oscillation signal having an oscillation frequency f 1 from the oscillator 1.
  • the modulator 3 receives a local oscillation signal having an oscillation frequency f2 from the oscillator 2. Then, the modulator 3 uses the oscillation frequency f1 and the oscillation frequency f2 in an expression stored in advance, and f1 + f2 that is the sum of the oscillation frequencies of the two signals and f1 ⁇ f2 that is the difference between the frequencies of the two signals Ask for.
  • the modulator 3 outputs a local oscillation signal having the oscillation frequency f1 + f2 and a local oscillation signal having the oscillation frequency f1-f2 to the quadrature demodulator 4.
  • the local oscillation signal having the oscillation frequency f1 + f2 may be referred to as “f1 + f2 signal”
  • the local oscillation signal having the oscillation frequency f1-f2 may be referred to as “f1-f2 signal”.
  • the modulator 3 corresponds to an example of a modulation unit.
  • the antenna 9 receives a signal transmitted from the outside.
  • the antenna 9 receives an RF signal 101 and an RF signal 102 that are two signals having different frequencies.
  • the frequency of the RF signal 101 is RF1
  • the frequency of the RF signal 102 is RF2.
  • RF1 and RF2 may be referred to as reception frequencies.
  • the frequency band including RF1 used for communication with the wireless communication apparatus according to the first embodiment is a frequency band that is converted to a predetermined frequency by being mixed with the f1 + f2 signal.
  • the frequency band including RF2 used for communication with the wireless communication apparatus according to the first embodiment is a frequency band that is converted to the same predetermined frequency as in RF1 by mixing the f1-f2 signals. .
  • the converted frequency is a frequency close to zero.
  • These frequency bands are frequency bands that are approved for use when the wireless communication apparatus according to the first embodiment performs wireless communication.
  • different spreading codes are assigned to the RF signal 101 and the RF signal 102, respectively, and the spreading code is added to each signal.
  • FIG. 2 is a schematic diagram showing the relationship between the reception frequency and the oscillation frequency.
  • the value 201 is included in the frequency band 203 including RF2.
  • the value 202 is included in the frequency band 204 including RF1.
  • the width of the frequency band including RF1 and RF2 is about 100 MHz (Mega Hertz).
  • the LNA 5 amplifies the RF signal 101 and the RF signal 102 received by the antenna 9. Then, the LNA 5 outputs the amplified RF signal 101 and RF signal 102 to the quadrature demodulator 4.
  • the antenna 9 and the LNA 5 are an example of a signal receiving unit.
  • the quadrature demodulator 4 includes a frequency converter 41, a variable gain amplifier 42, a phase shifter (not shown), and the like.
  • the frequency converter 41 corresponds to an example of a frequency conversion unit.
  • the quadrature demodulator 4 receives the f1 + f2 signal and the f1-f2 signal from the modulator 3. Then, in addition to the f1 + f2 signal and the f1-f2 signal, the phase shifter generates a signal in which the phases of the f1 + f2 signal and the f1-f2 signal are shifted by 90 degrees. Then, the frequency converter 41 receives the f1 + f2 signal and the f1-f2 signal whose phases are unchanged, and the f1 + f2 signal and the f1-f2 signal whose phases are shifted by 90 degrees. Further, the frequency converter 41 receives the RF signal 101 and the RF signal 102 from the LNA 5.
  • the frequency converter 41 mixes each of the RF signal 101 and the RF signal 102 with the original phase f1 + f2 signal and the f1-f2 signal and the f1 + f2 signal and the f1-f2 signal whose phases are shifted by 90 degrees.
  • the baseband signal of I signal and Q signal is acquired.
  • the frequency converter 41 obtains a baseband signal by subtracting the local oscillation signal from the RF signal.
  • the RF signal 101 and the RF signal 102 are mixed with the f1 + f2 signal, the RF signal 101 is converted into a baseband signal having a predetermined frequency, but the RF signal 102 is converted into a baseband signal different from the predetermined frequency. Converted.
  • a band pass filter a signal obtained by mixing the RF signal 102 and the f1 + f2 signal is removed.
  • the RF signal 101 and the RF signal 102 are mixed with the f1-f2 signal, the RF signal 102 is converted into a baseband signal having a predetermined frequency, but the RF signal 101 has a baseband different from the predetermined frequency. Converted to a signal. Therefore, by using a band pass filter, a signal obtained by mixing the RF signal 101 and the f1-f2 signal is removed.
  • the frequency converter 41 can acquire a baseband signal separated into an I signal and a Q signal by shifting the phase of the local oscillation signal by 90 degrees. The frequency converter 41 outputs the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal to the variable gain amplifier 42.
  • the variable gain amplifier 42 receives from the frequency converter 41 the input of the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal.
  • the variable gain amplifier 42 amplifies each of the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal, and is a level suitable for AD (Analog Digital) conversion. Adjust to.
  • the variable gain amplifier 42 outputs the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the amplified I signal and Q signal to the filter processing unit 6.
  • the filter processing unit 6 receives from the variable gain amplifier 42 inputs of the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal. Then, the filter processing unit 6 performs filter processing on the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal, and from high frequency noise components and other circuits. The leak component is removed. Then, the filter processing unit 6 outputs to the ADC 7 the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 that are separated into the filtered I signal and Q signal.
  • the ADC 7 receives the input of the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated from the I signal and the Q signal from the filter processing unit 6.
  • the ADC 7 converts the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal from an analog signal to a digital signal.
  • the ADC 7 outputs the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal converted into the digital signal to the signal processing unit 8.
  • the signal processing unit 8 receives from the ADC 7 the input of the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal. Then, the signal processing unit 8 determines whether each signal is the RF signal 101 or the RF signal 102 based on the spread code of each input signal. As described above, by using the spreading code, the signal processing unit 8 can separate the RF signal 101 and the RF signal 102 input in a superimposed state. Then, the signal processing unit 8 performs signal processing such as phase adjustment and synthesis of each signal on the separated baseband signal of the RF signal 101 and the baseband signal of the RF signal 102.
  • the signal processing unit 8 can process two signals received simultaneously. Thereafter, the signal processing unit 8 causes an output unit (not shown) to output using the processed signal. For example, the signal processing unit 8 sounds a speaker according to the processed signal and outputs a sound.
  • FIG. 3 is a flowchart of received signal processing in the wireless communication apparatus according to the first embodiment.
  • the antenna 9 receives the RF signal 101 and the RF signal 102 (step S101).
  • the LNA 5 amplifies the RF signal 101 and the RF signal 102 (step S102).
  • the oscillator 1 oscillates a local oscillation signal having an oscillation frequency f1
  • the oscillator 2 oscillates a local oscillation signal having an oscillation frequency f2 (step S103).
  • the modulator 3 modulates the local oscillation signal input from the oscillator 1 and the oscillator 2 to generate an f1 + f2 signal and an f1-f2 signal (step S104).
  • the quadrature demodulator 4 generates a signal that has undergone phase conversion by shifting the phases of the f1 + f2 signal and the f1-f2 signal by 90 degrees using the phase shifter (step S105).
  • the frequency converter 41 mixes the original phase f1 + f2 signal and the f1-f2 signal and the f1 + f2 signal and the f1-f2 signal whose phases are shifted by 90 degrees with the RF signal 101 and the RF signal 102, respectively. Then, the frequency converter 41 generates the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal (step S106).
  • the variable gain amplifier 42 amplifies the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal, and sets the level suitable for AD conversion (step S107).
  • the filter processing unit 6 performs a filtering process on the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal to process noise components and the like (step S108).
  • the ADC 7 converts the baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 separated into the I signal and the Q signal from an analog signal to a digital signal (step S109).
  • the signal processing unit 8 determines whether each signal is the RF signal 101 or the RF signal 102 based on the spread code of each input signal, and separates the signal (step S110). Then, the signal processing unit 8 performs signal processing on the separated baseband signal of the RF signal 101 and the baseband signal of the RF signal 102 (step S111). Then, the signal processing unit 8 causes the output unit to output using the processed signal (step S112).
  • the wireless communication apparatus simultaneously receives RF signals included in different frequency bands with one signal processing unit by using local oscillation signals with different frequencies from two oscillators. Can be processed.
  • a plurality of frequency bands can be processed in one reception path.
  • wireless communication apparatus which can receive simultaneously the signal of a several different frequency band can be made small. Therefore, when a provider with a narrow use bandwidth in each frequency band secures a wide signal band as a whole and increases the throughput, a wireless communication device with a small circuit scale can be used. Therefore, it can contribute to restraining the cost concerning the communication business of such an operator.
  • one oscillator oscillates a local oscillation signal having an intermediate frequency between two received signals
  • the other oscillator has a frequency between the intermediate frequency and the frequency of each signal. Oscillates the signal of the difference frequency.
  • the power consumption of the oscillator that oscillates the signal of the difference frequency from the intermediate frequency of each signal to the frequency of each signal can be suppressed as compared with the case where the signal having the same frequency as the frequency of the received signal is directly oscillated. it can.
  • the reception method using the direct conversion method and the quadrature modulation is described.
  • any other method may be used as long as it performs frequency conversion and directly or indirectly generates a baseband signal.
  • a reception method may be used.
  • a heterodyne method, a superheterodyne method, or the like may be used, and a configuration in which phase modulation is not performed may be used.
  • f1 and f2 are selected so that the frequency difference between the RF signal 1 and the f1 + f2 signal and the frequency difference between the RF signal 2 and the f1-f2 signal are intermediate frequencies. Become.
  • the frequency of the local oscillation signal of the oscillator 1 is an intermediate signal between the two frequencies to be received, and two frequencies of the local oscillation signal of the oscillator 2 are received. What is necessary is just to make it the half of the difference of a frequency.
  • the difference in reception frequency is about several tens of MHz (Mega Hertz), which is a frequency one digit smaller than the reception frequency itself of several hundred Hz to several GHz (Giga Hertz). And as the frequency increases, the power consumption increases.
  • the frequency is suppressed to half the difference between the two frequencies receiving the local oscillation signal from the oscillator 2. It is possible to reduce the overall consumption.
  • FIG. 4 is a block diagram of the wireless communication apparatus according to the second embodiment.
  • the wireless communication apparatus according to the second embodiment is different from the first embodiment in that execution and prohibition of oscillation by an oscillator are controlled. Therefore, hereinafter, control of the oscillator 1 and the oscillator 2 will be mainly described.
  • FIG. 4 each part having the same reference numeral as in FIG. 1 has the same function unless otherwise specified.
  • the wireless communication apparatus according to the second embodiment has a configuration in which an oscillator control unit 10 is further added to the wireless communication apparatus according to the first embodiment shown in FIG.
  • the oscillator control unit 10 receives an input of the frequency of the RF signal to be received designated by the operator from an input unit (not shown).
  • the oscillator control unit 10 oscillates the oscillator 1 and inhibits the oscillator 2 from oscillating.
  • the oscillator control unit 10 prohibits the oscillation of the oscillator 1 and causes the oscillator 2 to oscillate.
  • the oscillator control unit 10 causes both the oscillator 1 and the oscillator 2 to oscillate.
  • the frequency of the RF signal 101 to be received is f1 + f2 and the frequency of the RF signal 102 is f1-f2, it is the same as in the first embodiment. Therefore, hereinafter, a case will be described in which the signal to be received is only the RF signal 101 having the frequency f1 or f2.
  • the modulator 3 When the frequency of the RF signal 101 is f1, the modulator 3 receives the local oscillation signal having the oscillation frequency f1 only from the oscillator 1. In this case, when the modulator 3 obtains the difference and sum of the local oscillation signals from the oscillator 1 and the oscillator 2, the oscillation frequency f1 is obtained. Therefore, the modulator 3 outputs only the local oscillation signal having the oscillation frequency f1 to the quadrature demodulator 4.
  • the modulator 3 receives the local oscillation signal having the oscillation frequency f2 only from the oscillator 1. In this case, when the modulator 3 obtains the difference and sum of the local oscillation signals from the oscillator 1 and the oscillator 2, the oscillation frequency f2 is obtained. Therefore, the modulator 3 outputs only the local oscillation signal having the oscillation frequency f2 to the quadrature demodulator 4.
  • the quadrature demodulator 4 When the frequency of the RF signal 101 is f1, the quadrature demodulator 4 generates a baseband signal of the RF signal 101 separated into an I signal and a Q signal using a local oscillation signal having an oscillation frequency f1. Similarly, when the frequency of the RF signal 101 to be received is f2, the quadrature demodulator 4 uses the local oscillation signal of the oscillation frequency f2 to separate the baseband of the RF signal 101 into the I signal and the Q signal. Generate a signal.
  • the generated baseband signal is output as voice after being amplified by the variable gain amplifier 42, filtered by the filter processing unit 6, analog-digital conversion by the ADC 7, and signal processing by the signal processing unit 8.
  • FIG. 5 is a flowchart of control of the oscillator in the wireless communication apparatus according to the second embodiment.
  • the oscillator control unit 10 determines whether or not the reception target is only the RF signal 101 having the frequency f1 (step S201). When the reception target is only the RF signal 101 having the frequency f1 (Yes at Step S201), the oscillator control unit 10 oscillates the oscillator 1 and prohibits the oscillation of the oscillator 2 (Step S202).
  • the oscillator control unit 10 determines whether the reception target is only the RF signal 101 with the frequency f2 (Step S203). When the reception target is only the RF signal 101 having the frequency f2 (Yes at Step S203), the oscillator control unit 10 prohibits the oscillation of the oscillator 1 and causes the oscillator 2 to oscillate (Step S204).
  • the oscillator control unit 10 uses the RF signal 101 having the frequency f1 + f2 and the RF signal 102 having the frequency f1-f2 as the reception target signals. Judge that there is. Then, the oscillator control unit 10 oscillates both the oscillator 1 and the oscillator 2 (step S205).
  • the radio communication apparatus performs reception of only the signal of frequency f1, reception of only the signal of frequency f2, and simultaneous reception of signals of frequency f1 + f2 and frequency f1-f2. Can do. Therefore, the wireless communication apparatus according to the second embodiment can perform three types of signal processing by controlling the oscillator.
  • FIG. 6 is a block diagram of a modification of the wireless communication apparatus according to the second embodiment.
  • the wireless communication apparatus according to the modification includes a coupler 30 instead of the modulator 3, and a switch 11 and a switch 21 between the oscillator 1 and the oscillator 2 and the coupler 30. This is different from the second embodiment.
  • the switches 11 and 21 are examples of connection switches.
  • the switch control unit 31 receives an input of the frequency of the RF signal to be received and controls ON / OFF of the switch 11 and the switch 21. Specifically, the switch control unit 31 turns on the switch 11 when the local oscillation signal from the oscillator 1 is input to the coupler 30 and does not input the local oscillation signal from the oscillator 1 to the coupler 30. Turns off the switch 11. The switch control unit 31 turns on the switch 21 when the local oscillation signal from the oscillator 2 is input to the coupler 30, and the switch 21 when the local oscillation signal from the oscillator 2 is not input to the coupler 30. Set to OFF. For example, if the reception target is only the RF signal 101 with the frequency f1, the switch control unit 31 turns on the switch 11 and turns off the switch 21. When the reception target is the RF signal 101 having the frequency f1 + f2 and the RF signal 102 having the frequency f1-f2, the switch control unit 31 turns on both the switch 11 and the switch 21.
  • the combiner 30 combines the input signals. For example, when local oscillation signals are input from both the oscillator 1 and the oscillator 2, the coupler 30 causes the local oscillation signal of the oscillation frequency f 1 oscillated from the oscillator 1 and the local oscillation signal of the oscillation frequency f 2 oscillated from the oscillator 2. And combine. At this time, the combiner 30 inverts the sign of the f2 signal to ⁇ f2, and combines the f1 and f2 and the f1 and ⁇ f2. As a result, the combiner 30 generates the f1 + f2 signal and the f1-f2 signal. Then, the combiner 30 outputs the f1 + f2 signal and the f1-f2 signal to the quadrature demodulator 4.
  • the combiner 30 outputs the input signal to the quadrature demodulator 4.
  • a combination of a coupler and a switch is used for controlling an input from the oscillator and modulating a frequency.
  • a combination of a modulator and a switch may be used.
  • the radio communication apparatus can control the input of the local oscillation signal by the switch and change the type of the local oscillation signal used for frequency conversion. As a result, when a signal in one frequency band is received, it can be received with only one oscillator connected, and noise can be reduced.
  • the overall power consumption can be suppressed by using a frequency that is half the difference between the frequencies of the two received signals as the local oscillation signal of the oscillator 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Superheterodyne Receivers (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 アンテナ9は、周波数帯の異なるRF信号101及びRF信号102を受信する。発振器1は、周波数f1の局部発振信号を出力する。発振器2は、周波数f2の局部発振信号を出力する。変調器3は、周波数f1の局部発振信号及び周波数f2の局部発振信号を基に周波数を変調させ周波数が異なる複数の局部発振信号を生成する。周波数変換器41は、RF信号101及びRF信号102に変調器3が生成した周波数が異なる複数の局部発振信号を混合して、RF信号101及びRF信号102のベースバンド信号を生成する。信号処理部8は、周波数変換器41により生成されたベースバンド信号に対して所定の処理を行う。

Description

無線通信装置及び無線通信装置制御方法
 本発明は、無線通信装置及び無線通信装置制御方法に関する。
 現在、第3世代移動通信システムや次世代の移動通信システムにおける無線通信方式については、3GPP(3rd Generation Partnership Project)において審議がなされ、様々な規定が制定されている。
 この3GPPにおいて、使用する周波数帯として複数の周波数帯が規定されている。そして、規定された周波数帯のそれぞれが複数の事業者に排他的に割り当てられる。事業者は割り当てられた周波数帯を使用して無線通信のサービスを提供することになる。
 事業者の中には、規定された1つの周波数帯の中の広い帯域が割り当てられる事業者がいる。このような事業者の場合、同じ周波数帯の信号を用いて無線通信を行うので、1つの局部発振信号で信号処理が行えるので、発振器が1つあればよい。
 これに対して、事業者の中には、他の事業者に帯域が押さえられてしまい、狭い帯域しか確保できない事業者が存在する。このような、事業者は、1つの周波数帯では周波数帯域が十分に確保できないため、狭い帯域を複数の周波数帯において確保することで、必要とする周波数帯域を確保する場合がある。このように、複数の周波数帯を用いて無線通信を行う場合、各周波数帯に対して異なる局部発振信号を用いるため、複数の発振器が必要となる。そして、異なる周波数帯の信号を同時受信する場合にも、複数の発振器が必要となる。この点、発振器と周波数変換器はそれぞれ1つずつの1セットとして用いられることが一般的であるため、異なる周波数帯の信号を同時受信しようとすると、2系統の受信経路が必要となってしまう。
 従来は、2つの異なる周波数帯の信号を合成して1つの信号とする場合、図7に示すような無線通信装置を用いていた。このような無線通信装置では、図7に示すように2つの異なる受信経路で受信した信号に対してそれぞれの信号処理部901及び信号処理部902で処理を施し、各信号処理部で処理された結果を合成部903で合成して信号を1つの信号にしていた。
 また、異なる信号を取り扱う技術としては、主信号に異なる周波数帯の信号を付加して送信し、受信側で付加した各信号を復調し、付加された信号の差分を用いて主信号の周波数安定度を保つ従来技術がある。また、図7にあるような直交復調器を用いた技術としては、位相がπ/2ずれたローカル信号をそれぞれI(In-phase)軸及びQ(Quadrature)軸の各受信信号の周波数変換に用いて信号の再生を行うダイレクトコンバージョン方式を用いた従来技術が提案されている。
特開2000-151553号公報 特開2006-203686号公報
 しかしながら、図7に示すような無線通信装置では、1つの周波数の受信経路に対して発振器904や発振器905のように1つの発振器しか備わっていない。そのため、1つの受信経路においては1つの周波数帯からの信号しか受信できなかった。そこで、異なる2つの周波数帯に含まれる信号を処理するためには、図7に示すように受信経路が2つ必要となり、回路規模が大きくなってしまっていた。
 また、主信号の周波数安定度を保つ従来技術は、異なる周波数帯の信号を用いて周波数安定度を確保することは行っているが、異なる周波数帯の信号の受信及び合成といった処理は行っていない。また、ダイレクトコンバージョン方式は、IFフィルタを用いないため受信機の広帯域化が容易となるが、異なる周波数帯の信号の受信及び合成といった処理は行っていない。すなわち、これらの従来技術を用いても、異なる2つの周波数帯の信号を受信して、その受信した信号を合成して1つの信号にする無線通信装置の規模を小さくすることは困難である。
 開示の技術は、上記に鑑みてなされたものであって、1つの受信経路で周波数帯の異なる信号を処理することができる無線通信装置及び無線通信装置制御方法を提供することを目的とする。
 本願の開示する無線通信装置及び無線通信装置制御方法は、一つの態様において、信号受信部は、周波数帯の異なる複数の信号を受信する。第1発振部は、第1局部発振信号を出力する。第2発振部は、前記第1局部発振信号とは異なる周波数の第2発振信号を出力する。変調部は、前記第1局部発振信号及び前記第2局部発振信号を基に周波数を変調させ周波数が異なる複数の局部発振信号を生成する。周波数変換部は、前記信号受信部が受信した周波数の異なる複数の前記信号に前記周波数の異なる複数の局部発振信号を混合する。信号処理部は、前記周波数変換部による混合により生成された信号に対して所定の処理を行う。
 本願の開示する無線通信装置及び無線通信装置制御方法の一つの態様によれば、1つの受信経路で周波数帯の異なる信号を処理することができる。これにより、異なる周波数の信号の同時受信を行う無線通信装置の回路規模を小さくできるという効果を奏する。
図1は、実施例1に係る無線通信装置のブロック図である。 図2は、受信周波数と発振周波数との関係を表す模式図である。 図3は、実施例1に係る無線通信装置における受信信号の処理のフローチャートである。 図4は、実施例2に係る無線通信装置のブロック図である。 図5は、発振周波数の変調の処理のフローチャートである。 図6は、実施例2に係る無線通信装置の変形例のブロック図である。 図7は、従来の異なる周波数の信号の同時受信を行う無線通信装置を説明するための図である。
 以下に、本願の開示する無線通信装置及び無線通信装置制御方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例により本願の開示する無線通信装置及び無線通信装置制御方法が限定されるものではない。
 図1は、実施例1に係る無線通信装置のブロック図である。図1に示すように、本実施例1に係る無線通信装置は、第1発振器1、第2発振器2、変調器3、直交復調器4、LNA(Low Noise Amplifier)5、フィルタ処理部6、ADC(Analog Digital Converter)7、信号処理部8及びアンテナ9を有している。本実施例1に係る無線通信装置は、ダイレクトコンバージョン方式を用い、且つ直行変調を行うものとする。
 発振器1は、発振周波数f1の局部発振信号を変調器3へ出力する。ここで、発振器1が第1発振部の一例にあたり、発振器1が出力する局部発振信号が第1局部発振信号の一例にあたる。
 発振器2は、発振周波数f2の局部発振信号を変調器3へ出力する。ここで、発振器2が第2発振部の一例にあたり、発振器2が出力する局部発振信号が第2局部発振信号の一例にあたる。また、本実施例では、f2はf1より小さい周波数とする。
 ここで、周波数f1と周波数f2は、f1+f2とf1-f2とが受信対象とする2種類のRF(Radio Frequency)信号のそれぞれの周波数とほぼ一致するように予め操作者により指定されているものとする。
 変調器3は、予め周波数の変調方法を記憶している。具体的には、本実施例では、変調器3は、入力された2つの信号の差と和を求める式を記憶している。
 変調器3は、発振器1から発振周波数f1の局部発振信号を受信する。また、変調器3は、発振器2から発振周波数f2の局部発振信号を受信する。そして、変調器3は、予め記憶している式に発振周波数f1及び発振周波数f2を用いて、2つの信号の発振周波数の和であるf1+f2と2つの信号の周波数の差であるf1-f2とを求める。
 そして、変調器3は、発振周波数f1+f2を有する局部発振信号と発振周波数f1-f2を有する局部発振信号とを直交復調器4へ出力する。以下では、発振周波数f1+f2の局部発振信号を「f1+f2信号」といい、発振周波数f1-f2の局部発振信号を「f1-f2信号」という場合がある。ここで、変調器3が変調部の一例にあたる。
 アンテナ9は、外部から送信されてきた信号を受信する。アンテナ9は、異なる周波数の2つの信号であるRF信号101及びRF信号102を受信する。ここで、RF信号101の周波数をRF1とし、RF信号102の周波数をRF2とする。このRF1及びRF2は、受信周波数と呼ばれることがある。また、本実施例1に係る無線通信装置との通信で用いられるRF1を含む周波数帯は、f1+f2信号と混合されることによって所定の周波数に変換される周波数帯である。さらに、本実施例1に係る無線通信装置との通信で用いられるRF2を含む周波数帯は、f1-f2信号を混合されることによってRF1の場合と同じ所定の周波数に変換される周波数帯である。ここで、本実施例1ではダイレクトコンバージョン方式を用いているため、変換された周波数はほぼ0に近い周波数となる。そして、これらの周波数帯は、本実施例1に係る無線通信装置が無線通信を行うにあたって使用が認められた周波数帯である。また、RF信号101及びRF信号102には、それぞれ異なる拡散コードが割り当てられ、その拡散コードが各信号に付加されている。
 ここで、図2を参照して、RF1及びRF2とf1及びf2との関係を説明する。図2は、受信周波数と発振周波数との関係を表す模式図である。上述したように、本実施例ではダイレクトコンバージョン方式を用いているため、図2に示すように、f1からf2を減算した値201は、RF2と一致する。すなわち、f1-f2=RF2となる。そして、値201は、RF2を含む周波数帯203に含まれる。また、f1にf2を加算した値202は、RF1と一致する。すなわち、f1+f2=RF1となる。そして、値202は、RF1を含む周波数帯204に含まれる。本実施例1では、RF1及びRF2が含まれる周波数帯域の幅はそれぞれ100MHz(Mega Hertz)程度であるとする。
 LNA5は、アンテナ9が受信したRF信号101及びRF信号102を増幅する。そして、LNA5は、増幅したRF信号101及びRF信号102を直交復調器4へ出力する。このアンテナ9及びLNA5が信号受信部の一例にあたる。
 直交復調器4は、周波数変換器41や、可変利得アンプ42や、移相器(不図示)などを有する。ここで、周波数変換器41が周波数変換部の一例にあたる。
 直交復調器4は、f1+f2信号及びf1-f2信号を変調器3から受信する。そして、f1+f2信号及びf1-f2信号に加えて、移相器により、f1+f2信号及びf1-f2信号のそれぞれの位相が90度ずらされた信号が生成される。そして、周波数変換器41は、位相が元のままのf1+f2信号及びf1-f2信号、並びに位相が90度ずらされたf1+f2信号及びf1-f2信号の入力を受ける。また、周波数変換器41は、RF信号101及びRF信号102をLNA5から受信する。そして、周波数変換器41は、RF信号101及びRF信号102のそれぞれと元の位相のf1+f2信号及びf1-f2信号並びに位相が90度ずらされたf1+f2信号及びf1-f2信号のそれぞれとを混合し、I信号及びQ信号のベースバンド信号を取得する。本実施例1では、周波数変換器41は、RF信号から局部発振信号を減算することでベースバンド信号を得る。ここで、RF信号101及びRF信号102とf1+f2信号とを混合した場合、RF信号101は所定の周波数のベースバンド信号に変換されるが、RF信号102は所定の周波数とは異なるベースバンド信号に変換される。そこで、帯域通過フィルタを用いることで、RF信号102とf1+f2信号とを混合した信号は除去される。同様に、RF信号101及びRF信号102とf1-f2信号とを混合した場合、RF信号102は所定の周波数のベースバンド信号に変換されるが、RF信号101は所定の周波数とは異なるベースバンド信号に変換される。そこで、帯域通過フィルタを用いることで、RF信号101とf1-f2信号とを混合した信号は除去される。また、周波数変換器41は、局部発振信号の位相を90度ずらすことにより、I信号とQ信号とに分離したベースバンド信号を取得することができる。周波数変換器41は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号を可変利得アンプ42へ出力する。
 可変利得アンプ42は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号の入力を周波数変換器41から受ける。そして、可変利得アンプ42は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号のそれぞれを増幅し、AD(Analog Digital)変換するときに適したレベルに調整する。そして、可変利得アンプ42は、増幅したI信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号をフィルタ処理部6へ出力する。
 フィルタ処理部6は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号の入力を可変利得アンプ42から受ける。そして、フィルタ処理部6は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号に対してフィルタ処理を行い、高周波数の雑音成分や他の回路からのリーク成分を除去する。そして、フィルタ処理部6は、フィルタ処理を行ったI信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号をADC7へ出力する。
 ADC7は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号の入力をフィルタ処理部6から受ける。そして、ADC7は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号をアナログ信号からディジタル信号に変換する。そして、ADC7は、ディジタル信号に変換されたI信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号を信号処理部8へ出力する。
 信号処理部8は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号の入力をADC7から受ける。そして、信号処理部8は、入力された各信号の拡散コードにより、各信号がRF信号101又はRF信号102のいずれであるかを判定する。このように、拡散コードを用いることで、信号処理部8は、重畳した状態で入力されるRF信号101及びRF信号102を分離することができる。そして、信号処理部8は、分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号それぞれに対して位相の調整や各信号の合成といった信号処理を施す。このように、RF信号101及びRF信号102を分離することで、信号処理部8は、同時受信した2つの信号をそれぞれ処理することができる。その後、信号処理部8は、処理を行った信号を用いて出力部(不図示)に出力を行わせる。例えば、信号処理部8は、処理を行った信号によりスピーカを鳴らし音声を出力する。
 次に、図3を参照して、本実施例に係る無線通信装置における受信信号の処理について説明する。ここで、図3は、実施例1に係る無線通信装置における受信信号の処理のフローチャートである。
 アンテナ9は、RF信号101及びRF信号102を受信する(ステップS101)。
 LNA5は、RF信号101及びRF信号102を増幅する(ステップS102)。
 発振器1は発振周波数f1の局部発振信号を発振し、発振器2は発振周波数f2の局部発振信号を発振する(ステップS103)。
 変調器3は、発振器1及び発振器2から入力された局部発振信号を変調し、f1+f2信号及びf1-f2信号を生成する(ステップS104)。
 直交復調器4は、移相器によりf1+f2信号及びf1-f2信号のそれぞれの位相を90度ずらし位相変換を行った信号を生成する(ステップS105)。
 周波数変換器41は、RF信号101及びRF信号102のそれぞれに対して、元の位相のf1+f2信号及びf1-f2信号及び位相を90度ずらしたf1+f2信号及びf1-f2信号のそれぞれを混合させる。そして、周波数変換器41は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号を生成する(ステップS106)。
 可変利得アンプ42は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号を増幅し、AD変換に適したレベルにする(ステップS107)。
 フィルタ処理部6は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号に対してフィルタリング処理を行い、雑音成分などを処理する(ステップS108)。
 ADC7は、I信号とQ信号とに分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号をアナログ信号からディジタル信号に変換する(ステップS109)。
 信号処理部8は、入力された各信号の拡散コードにより、各信号がRF信号101又はRF信号102のいずれであるかを判定し信号を分離する(ステップS110)。そして、信号処理部8は、分離したRF信号101のベースバンド信号及びRF信号102のベースバンド信号に信号処理を施す(ステップS111)。そして、信号処理部8は、処理を施した信号を用いて出力部に出力を行わせる(ステップS112)。
 以上で説明したように、実施例1に係る無線通信装置は、2つの発振器からの異なる周波数の局部発振信号を用いることで、1つの信号処理部で異なる周波数帯に含まれるRF信号を同時に受信して処理することができる。すなわち、1つの受信経路で複数の周波数帯の処理を行うことができる。これにより、複数の異なる周波数帯の信号を同時受信することができる無線通信装置の回路規模を小さくすることができる。そのため、個々の周波数帯での使用帯域幅が狭い事業者が、全体で広い信号帯域を確保しスループットをあげる場合に、回路規模が小さい無線通信装置を用いることができる。したがって、そのような事業者の通信事業にかかるコストを抑えることに寄与することができる。
 また、本実施例に係る無線通信装置においては、片方の発振器は、2つの受信信号の中間の周波数の局部発振信号を発振し、他方の発振器は、その中間の周波数と各信号の周波数との差分の周波数の信号を発振する。これにより、直接受信信号の周波数と同じ周波数の信号を発振する場合に比べて、各信号の中間の周波数から各信号の周波数までの差分の周波数の信号を発振する発振器の消費電力を抑えることができる。
 また、本実施例では、ダイレクトコンバージョン方式でかつ直交変調を用いた受信方法で説明しているが、これは周波数変換を行い、直接又は間接的にベースバンド信号を生成する方法であれば他の受信方法を用いてもよい。例えば、ヘテロダイン方式やスーパーヘテロダイン方式などでも良く、また位相変調を行わない構成でもよい。例えば、スーバーヘテロダイン方式を用いた場合、RF信号1とf1+f2信号との周波数の差及びRF信号2とf1-f2信号との周波数の差が中間周波数になるようにf1及びf2を選択することになる。
 さらに、本実施例では、図2に示すように異なる周波数帯に含まれる信号を受信する場合で説明したが、これは同一周波数帯に含まれる異なる周波数の信号を受信する場合でも同様である。同一周波数帯に含まれる異なる周波数の信号を受信する場合には、発振器1の局部発振信号の周波数を受信する2つの周波数の中間の信号とし、発振器2の局部発振信号の周波数を受信する2つの周波数の差分の半分とすればよい。ここで、同一周波数帯では受信周波数の差分は数十MHz(Mega Hertz)程度であり、数百Hz~数GHz(Giga Hertz)受信周波数そのものよりも一桁小さい周波数である。そして、周波数が高くなると消費電力が大きくなる。そのため、それぞれの発振器から受信する2つの周波数と同じ周波数の局部発振信号を発振する場合に比べて、発振器2からの局部発振信号を受信する2つの周波数の差分の半分の周波数に抑えることで、全体の消費量を抑えることが可能となる。
 図4は、実施例2に係る無線通信装置のブロック図である。実施例2に係る無線通信装置は、発振器による発振の実行及び禁止を制御することが実施例1と異なるものである。そこで、以下では、発振器1及び発振器2の制御について主に説明する。図4において図1と同様の符号を有する各部は、特に説明の無い限り同様の機能を有するものとする。
 図4に示すように、本実施例2に係る無線通信装置は、図1で表される実施例1の無線通信装置に発振器制御部10をさらに加えた構成である。
 発振器制御部10は、操作者が指定した受信対象となるRF信号の周波数の入力を入力部(不図示)から受ける。受信対象となるRF信号の周波数がf1の場合には、発振器制御部10は、発振器1を発振させ、発振器2の発振を禁止する。また、受信対象となるRF信号101の周波数がf2の場合には、発振器制御部10は、発振器1の発振を禁止し、発振器2を発振させる。さらに、受信対象となるRF信号の周波数がf1+f2及びf1-f2の場合には、発振器制御部10は、発振器1及び発振器2のいずれも発振させる。以下では、1種類の周波数の信号を受信する場合には、その信号をRF信号101として説明する。
 受信対象となるRF信号101の周波数がf1+f2であり、RF信号102の周波数がf1-f2の場合には、実施例1の場合と同様である。そこで、以下では、受信対象となる信号が周波数f1又はf2のRF信号101のみの場合について説明する。
 RF信号101の周波数がf1の場合には、変調器3は、発振器1からのみ発振周波数f1の局部発振信号の入力を受ける。この場合、変調器3は、発振器1及び発振器2からの局部発振信号の差及び和を求めると、いずれも発振周波数f1が求まる。そこで、変調器3は、発振周波数f1の局部発振信号のみを直交復調器4へ出力する。
 同様に、受信対象となるRF信号101の周波数がf2の場合には、変調器3は、発振器1からのみ発振周波数f2の局部発振信号の入力を受ける。この場合、変調器3は、発振器1及び発振器2からの局部発振信号の差及び和を求めると、いずれも発振周波数f2が求まる。そこで、変調器3は、発振周波数f2の局部発振信号のみを直交復調器4へ出力する。
 RF信号101の周波数がf1の場合には、直交復調器4は、発振周波数f1の局部発振信号を用いてI信号とQ信号とに分離したRF信号101のベースバンド信号を生成する。同様に、受信対象となるRF信号101の周波数がf2の場合には、直交復調器4は、発振周波数f2の局部発振信号を用いてI信号とQ信号とに分離したRF信号101のベースバンド信号を生成する。
 その後、生成されたベースバンド信号は、可変利得アンプ42による増幅や、フィルタ処理部6によるフィルタ処理や、ADC7によるアナログデジタル変換や、信号処理部8による信号処理を受け音声として出力される。
 ここで、図5を用いて発振器1及び発振器2の制御の処理について説明する。図5は、実施例2に係る無線通信装置における発振器の制御のフローチャートである。
 発振器制御部10は、受信対象が周波数f1のRF信号101のみか否かを判定する(ステップS201)。受信対象が周波数f1のRF信号101のみの場合(ステップS201肯定)、発振器制御部10は、発振器1を発振させ、発振器2の発振を禁止する(ステップS202)。
 これに対して、受信対象が周波数f1のRF信号101のみでない場合(ステップS201否定)、発振器制御部10は、受信対象が周波数f2のRF信号101のみか否かを判定する(ステップS203)。受信対象が周波数f2のRF信号101のみの場合(ステップS203肯定)、発振器制御部10は、発振器1の発振を禁止し、発振器2を発振させる(ステップS204)。
 これに対して、受信対象が周波数f2のRF信号101のみでない場合(ステップS203否定)、発振器制御部10は、受信対象の信号が周波数f1+f2のRF信号101及び周波数f1-f2のRF信号102であると判定する。そして、発振器制御部10は、発振器1及び発振器2の双方を発振させる(ステップS205)。
 以上に説明したように、本実施例2に係る無線通信装置は、周波数f1の信号のみの受信、周波数f2の信号のみの受信、並びに周波数f1+f2及び周波数f1-f2の信号の同時受信を行うことができる。したがって、本実施例2に係る無線通信装置は発振器を制御することにより、3種類の信号処理を行うことができる。
 (変形例)
 図6は、実施例2に係る無線通信装置の変形例のブロック図である。図6に示すように、変形例に係る無線通信装置は、変調器3の代わりに結合器30を配置し、発振器1及び発振器2と結合器30との間にスイッチ11及びスイッチ21をそれぞれ配置したことが、実施例2と異なる。このスイッチ11及びスイッチ21が接続スイッチの一例である。
 スイッチ制御部31は、受信対象となるRF信号の周波数の入力を受け、スイッチ11及びスイッチ21のON/OFFの制御を行う。具体的には、スイッチ制御部31は、発振器1からの局部発振信号を結合器30に入力する場合にはスイッチ11をONにし、発振器1からの局部発振信号を結合器30に入力しない場合にはスイッチ11をOFFにする。また、スイッチ制御部31は、発振器2からの局部発振信号を結合器30に入力する場合にはスイッチ21をONにし、発振器2からの局部発振信号を結合器30に入力しない場合にはスイッチ21をOFFにする。例えば、受信対象が周波数f1のRF信号101のみだとすると、スイッチ制御部31は、スイッチ11をONにし、スイッチ21をOFFにする。また、受信対象が周波数f1+f2のRF信号101及び周波数f1-f2のRF信号102とすると、スイッチ制御部31は、スイッチ11及びスイッチ21のいずれもONにする。
 結合器30は、入力された信号を結合する。例えば、発振器1及び発振器2の双方から局部発振信号が入力された場合、結合器30は発振器1から発振された発振周波数f1の局部発振信号と発振器2から発振された発振周波数f2の局部発振信号とを結合させる。この時、結合器30は、f2信号の符号を反転させて-f2として、f1とf2との結合及びf1と-f2との結合を行う。これにより、結合器30は、f1+f2信号及びf1-f2信号を生成する。そして、結合器30は、f1+f2信号及びf1-f2信号を直交復調器4へ出力する。
 これに対して、発振器1又は発振器2のいずれかからのみ信号が入力された場合、結合器30は入力された信号を直交復調器4へ出力する。
 また、本変形例では、発振器からの入力の制御及び周波数の変調に、結合器及びスイッチの組み合わせを用いたが、これは変調器及びスイッチの組み合わせを用いてもよい。
 以上に説明したように、本変形例に係る無線通信装置は、スイッチによって局部発振信号の入力の制御を行い、周波数変換に用いる局部発振信号の種類を変更することができる。これにより、1つの周波数帯の信号を受信する場合には、1つの発振器のみが接続された状態で受信することができ、雑音を軽減することができる。
 また、本変形例においても、同一周波数帯に含まれる異なる2つの周波数の信号を受信することも可能である。その場合、発振器1及び発振器2において受信する2つの信号と同じ周波数の信号をそれぞれ発振することも考えられる。そのような構成にした場合、実施例1で説明したように2つの受信信号の周波数の差分の半分の周波数を発振器2の局部発振信号として用いたほうが、全体の消費電力を抑えることができる。
 1 発振器
 2 発振器
 3 変調器
 4 直交復調器
 5 LNA
 6 フィルタ処理部
 7 ADC
 8 信号処理部
 9 アンテナ
 10 発振器制御部
 11 スイッチ
 21 スイッチ
 30 結合器
 31 スイッチ制御部
 41 周波数変換器
 42 可変利得アンプ
 101 RF信号
 102 RF信号

Claims (12)

  1.  周波数の異なる複数の信号を受信する信号受信部と、
     第1局部発振信号を出力する第1発振部と、
     前記第1局部発振信号とは異なる周波数の第2局部発振信号を出力する第2発振部と、
     前記第1局部発振信号及び前記第2局部発振信号を基に周波数を変調させ周波数が異なる複数の局部発振信号を生成する変調部と、
     前記信号受信部が受信した異なる周波数の複数の前記信号に前記周波数が異なる複数の局部発振信号を混合する周波数変換部と、
     前記周波数変換部による混合により生成された信号に対して所定の処理を行う信号処理部と
     を備えたことを特徴とする無線通信装置。
  2.  周波数が異なる複数の信号を受信する信号受信部と、
     第1局部発振信号を出力する第1発振部と、
     前記第1局部発振信号とは異なる周波数の第2局部発振信号を出力する第2発振部と、
     前記第1局部発振信号及び前記第2局部発振信号を基に周波数を変調させ周波数が異なる複数の局部発振信号を生成する変調部と、
     周波数が異なる複数の局部発振信号を基に、前記信号受信部が受信した周波数が異なる複数の前記信号からそれぞれのベースバンド信号を生成する直交復調部と、
     前記ベースバンド信号に対して所定の処理を行う信号処理部と
     を備えたことを特徴とする無線通信装置。
  3.  前記信号受信部は、周波数が異なる2つの信号を受信し、
     前記変調部は、周波数が異なる2つの局部発振信号を生成する
     ことを特徴とする請求項1又は請求項2に記載の無線通信装置。
  4.  前記第1局部発振信号は、前記周波数が異なる2つの信号の中間の周波数を有し、前記第2局部発振信号は、前記第1局部発振信号の周波数と前記周波数が異なる2つの信号の周波数との差の周波数を有することを特徴とする請求項3に記載の無線通信装置。
  5.  前記変調部は、第1局部発振信号の周波数と前記第2局部発振信号の周波数との差の周波数の局部発振信号及び和の周波数の局部発振信号を生成することを特徴とする請求項1又は請求項2に記載の無線通信装置。
  6.  前記信号受信部は周波数の異なる複数の信号又は単一の周波数の1つの信号を受信し、
     前記信号受信部が単一の周波数の1つの信号を受信する場合、前記第1発振器又は前記第2発振器のいずれかのみを発振させ、前記信号受信部が周波数の異なる複数の信号を受ける場合、前記第1発振器及び第2発振器のいずれも発振させる制御を行う発振器制御部をさらに備えた
     ことを特徴とする請求項1又は請求項2に記載の無線通信装置。
  7.  前記第1発振部と前記変調部との間及び前記第2発振部と前記変調部との間のそれぞれに接続スイッチを設け、
     前記信号受信部は周波数の異なる複数の信号又は単一の周波数の1つの信号を受信し、
     前記信号受信部が単一の周波数の1つの信号を受信する場合、前記接続スイッチの一方をONにして他方をOFFにし、前記信号受信部が周波数の異なる複数の信号を受ける場合、前記接続スイッチの双方をONにするスイッチ制御部をさらに備えた
     ことを特徴とする請求項1に記載の無線通信装置。
  8.  前記変調部は結合器であることを特徴とする請求項7に記載の無線通信装置。
  9.  周波数の異なる複数の前記信号は、予め帯域幅が決められている1つの周波数帯に含まれることを特徴とする請求項1又は請求項2に記載の無線通信装置。
  10.  周波数の異なる複数の前記信号は、予め帯域幅が決められている異なる周波数帯に含まれることを特徴とする請求項1又は請求項2に記載の無線通信装置。
  11.  変調部は、前記信号受信部が受信した異なる周波数の前記信号から前記複数の局部発振信号を減算することで混合を行い、中間周波数又はベースバンド信号を生成することを特徴とする請求項1に記載の無線通信装置。
  12.  周波数の異なる複数の信号を受信する信号受信ステップと、
     第1局部発振信号を出力する第1発振ステップと、
     前記第1局部発振信号とは異なる周波数の第2局部発振信号を出力する第2発振ステップと、
     前記第1局部発振信号及び前記第2局部発振信号を基に周波数を変調させ周波数の異なる複数の局部発振信号を生成する変調ステップと、
     周波数の異なる複数の前記信号に前記周波数の異なる複数の局部発振信号を混合する周波数変換ステップと、
     前記周波数変換ステップにおける混合により生成された信号に対して所定の処理を行う信号処理ステップと
     を含んだことを特徴とする無線通信装置制御方法。
PCT/JP2010/065661 2010-09-10 2010-09-10 無線通信装置及び無線通信装置制御方法 WO2012032659A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10857003.7A EP2615740B1 (en) 2010-09-10 2010-09-10 Wireless communication device and wireless communication device control method
PCT/JP2010/065661 WO2012032659A1 (ja) 2010-09-10 2010-09-10 無線通信装置及び無線通信装置制御方法
JP2012532822A JP5617924B2 (ja) 2010-09-10 2010-09-10 無線通信装置及び無線通信装置制御方法
US13/786,000 US8781422B2 (en) 2010-09-10 2013-03-05 Wireless communication device and control method for wireless communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065661 WO2012032659A1 (ja) 2010-09-10 2010-09-10 無線通信装置及び無線通信装置制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/786,000 Continuation US8781422B2 (en) 2010-09-10 2013-03-05 Wireless communication device and control method for wireless communication device

Publications (1)

Publication Number Publication Date
WO2012032659A1 true WO2012032659A1 (ja) 2012-03-15

Family

ID=45810278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065661 WO2012032659A1 (ja) 2010-09-10 2010-09-10 無線通信装置及び無線通信装置制御方法

Country Status (4)

Country Link
US (1) US8781422B2 (ja)
EP (1) EP2615740B1 (ja)
JP (1) JP5617924B2 (ja)
WO (1) WO2012032659A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110463074B (zh) * 2017-03-28 2023-05-23 高通股份有限公司 基于距离的传输参数调节
US10305611B1 (en) 2018-03-28 2019-05-28 Qualcomm Incorporated Proximity detection using a hybrid transceiver
US11073599B2 (en) * 2018-05-07 2021-07-27 Qualcomm Incorporated Radar interference mitigation using a pseudorandom offset
US11129116B2 (en) 2019-06-21 2021-09-21 Qualcomm Incorporated System for detecting an object within a transmission path

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151553A (ja) 1998-11-10 2000-05-30 Oki Electric Ind Co Ltd 信号伝送装置
JP2002290866A (ja) * 2001-03-26 2002-10-04 Aiwa Co Ltd 映像信号受信装置
JP2003008485A (ja) * 2001-06-26 2003-01-10 Gcomm Corp 無線送受信装置
JP2003298450A (ja) * 2002-04-05 2003-10-17 Denso Corp 無線機
JP2006203686A (ja) 2005-01-21 2006-08-03 Sony Corp 無線通信装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3275222B2 (ja) * 1994-03-04 2002-04-15 富士通株式会社 位相同期発振器
JPH08223073A (ja) * 1995-02-14 1996-08-30 Fujitsu Ltd デュアルバンド無線通信装置
JPH0918378A (ja) * 1995-07-03 1997-01-17 Matsushita Electric Ind Co Ltd 無線回路
JPH09200070A (ja) * 1996-01-12 1997-07-31 Matsushita Electric Ind Co Ltd 受信回路
JPH1141132A (ja) * 1997-07-24 1999-02-12 Toshiba Corp 無線通信装置
JP2001345727A (ja) * 2000-05-31 2001-12-14 Toshiba Corp シンセサイザ及びこのシンセサイザを備えた送受信回路
JP2002208870A (ja) * 2001-01-11 2002-07-26 Toshiba Corp マルチモード無線通信装置
US7308229B2 (en) * 2001-02-23 2007-12-11 Xanadoo Company System, apparatus and method for single-channel or multi-channel terrestrial communication
KR20010110389A (ko) * 2001-11-20 2001-12-13 이상건 전계효과 트랜지스터를 적용한 주파수변환기를 이용한마이크로웨이브 감지장치
US6785529B2 (en) * 2002-01-24 2004-08-31 Qualcomm Incorporated System and method for I-Q mismatch compensation in a low IF or zero IF receiver
KR100714699B1 (ko) * 2005-08-25 2007-05-07 삼성전자주식회사 복수의 통신/방송 서비스를 지원하는 무선 송수신기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151553A (ja) 1998-11-10 2000-05-30 Oki Electric Ind Co Ltd 信号伝送装置
JP2002290866A (ja) * 2001-03-26 2002-10-04 Aiwa Co Ltd 映像信号受信装置
JP2003008485A (ja) * 2001-06-26 2003-01-10 Gcomm Corp 無線送受信装置
JP2003298450A (ja) * 2002-04-05 2003-10-17 Denso Corp 無線機
JP2006203686A (ja) 2005-01-21 2006-08-03 Sony Corp 無線通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615740A4

Also Published As

Publication number Publication date
EP2615740A4 (en) 2015-12-30
JP5617924B2 (ja) 2014-11-05
US20130183918A1 (en) 2013-07-18
JPWO2012032659A1 (ja) 2013-12-12
EP2615740A1 (en) 2013-07-17
US8781422B2 (en) 2014-07-15
EP2615740B1 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
KR100756041B1 (ko) 믹서를 이용한 도허티 증폭장치 및 송신기
US7769359B2 (en) Adaptive wireless receiver
JP3848445B2 (ja) 複数通信方式対応の無線機
US7593491B1 (en) Quadrature single-mixer multi-mode radio frequency receiver
KR20060136227A (ko) 믹서를 이용한 도허티 증폭장치 및 송신기
US20080182617A1 (en) Multiband mobile communication apparatus
US20090117870A1 (en) Receiver
JP5617924B2 (ja) 無線通信装置及び無線通信装置制御方法
JP2001077717A (ja) 受信機
US20030027543A1 (en) Direct conversion receiver
JP3816356B2 (ja) 無線送信機
US20090061805A1 (en) Rf receiver and method for removing interference signal
US7965994B2 (en) Method and system for an analog zero-IF interface for GSM receivers
US10263654B2 (en) Radio receiver and intermediate frequency selection method
US8014466B2 (en) Wide-band direct conversion transmission apparatus
US7224997B2 (en) Apparatus and method for radio signal parallel processing
KR100193836B1 (ko) 감소된 위상동기루프를 가지는 디지털 무선통신시스템 및 그 동기화 방법
JP3746209B2 (ja) 無線送受信機
JP3828077B2 (ja) 周波数変換回路および通信装置
JP2009060476A (ja) 周波数シンセサイザ、周波数シンセサイザの制御方法、マルチバンド通信装置
JP2010193160A (ja) 無線受信機及び無線信号の受信方法
JP5197510B2 (ja) 受信機
JP2009171349A (ja) 受信機
JP2005167417A (ja) 複数の無線システムに対応可能な無線通信装置
JP2009239407A (ja) マルチバンド受信器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857003

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012532822

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010857003

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE