WO2012029698A1 - 複合多孔質膜及びその製造方法 - Google Patents

複合多孔質膜及びその製造方法 Download PDF

Info

Publication number
WO2012029698A1
WO2012029698A1 PCT/JP2011/069409 JP2011069409W WO2012029698A1 WO 2012029698 A1 WO2012029698 A1 WO 2012029698A1 JP 2011069409 W JP2011069409 W JP 2011069409W WO 2012029698 A1 WO2012029698 A1 WO 2012029698A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
film
composite porous
polyamide resin
composite
Prior art date
Application number
PCT/JP2011/069409
Other languages
English (en)
French (fr)
Inventor
水野 直樹
達彦 入江
鮎澤 佳孝
匡徳 中村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012531855A priority Critical patent/JP5636618B2/ja
Publication of WO2012029698A1 publication Critical patent/WO2012029698A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a composite porous membrane in which a porous membrane containing a specific polyamide resin is laminated on a porous membrane made of a polyolefin resin.
  • the present invention relates to a composite porous membrane useful as a separator for a lithium ion secondary battery, which is excellent in ion permeability and excellent in adhesion between a polyolefin-based porous membrane and a polyamide resin membrane.
  • a porous membrane made of a thermoplastic resin is widely used as a material for separating and selectively permeating and isolating substances.
  • battery separators for lithium ion secondary batteries nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, reverse osmosis filtration membranes, ultrafiltration membranes, microfiltration membranes, etc. It is used in filters, moisture-permeable and waterproof clothing, medical materials, etc.
  • polyethylene porous membranes are suitably used as separators for lithium ion secondary batteries because of their excellent electrical insulation properties, ion permeability by impregnation with electrolytes, and resistance to electrolytes and acids.
  • lithium-ion battery separators are deeply involved in battery characteristics, battery productivity, and battery safety.
  • Excellent mechanical characteristics, heat resistance, permeability, dimensional stability, pore clogging characteristics (shutdown characteristics), melting damage Film prevention characteristics (meltdown prevention characteristics) are required. Therefore, various heat resistance improvement studies have been made so far.
  • further thinning will progress in order to increase not only the electrodes but also the area that can be filled in the container not only in the separator. As the porous film becomes thinner, it tends to be deformed in the plane direction, so the heat-resistant resin layer may peel off during processing of the composite porous film, in the slit process, or in the battery assembly process, ensuring safety. It becomes difficult.
  • the present inventors are required to have less trouble such as peeling of the heat-resistant resin layer even in such high-speed processing, and for that purpose, it is speculated that higher adhesion is required. .
  • Patent Document 1 exemplifies a composite porous membrane obtained by applying a polyamide resin to a polyolefin-based porous membrane having a thickness of 25 ⁇ m.
  • a polyamide resin is directly applied to a polyolefin-based porous membrane, the penetration of the resin component into the polyolefin-based porous membrane is inevitable, resulting in a significant increase in air resistance and pore blockage. A decline in functionality is inevitable.
  • the thickness of the polyolefin-based porous film is as thin as less than 10 ⁇ m, the resin component easily fills the inside of the porous material, causing an extreme increase in air resistance.
  • such a method also has a problem that the film thickness unevenness of the polyolefin-based porous film is likely to be related to the film thickness unevenness of the heat-resistant resin layer, and the air resistance resistance is likely to vary.
  • Patent Document 2 exemplifies an electrolyte-supported polymer film obtained by immersing and drying a nonwoven fabric made of aramid fibers having an average thickness of 36 ⁇ m in a dope containing a vinylidene fluoride copolymer that is a heat-resistant resin.
  • Patent Document 3 a composite porous membrane obtained by immersing a polypropylene porous membrane having a film thickness of 25.6 ⁇ m in a dope mainly composed of polyvinylidene fluoride, which is a heat-resistant resin, and undergoing solidification, washing, and drying processes. Is illustrated.
  • Patent Document 3 the heat resistant porous layer is still formed on the inside and both surfaces of the polypropylene porous membrane, and a significant increase in the air permeability resistance cannot be avoided as in Patent Document 2, It is difficult to obtain an occlusion function.
  • the heat-resistant resin is infiltrated into the porous film serving as a base material. If the adhesion is improved, the increase in the air resistance increases, and if the penetration of the heat resistant resin is reduced, the increase in the air resistance can be suppressed, but the adhesion of the heat resistant resin layer is reduced. In particular, as separators become thinner, it is difficult to ensure safety, which is becoming more and more demanding, in view of speeding up in the battery assembly process.
  • the present invention provides a composite porous membrane that has both excellent adhesion to a heat-resistant resin layer and a small increase in air resistance even when battery separators are made thinner in the future.
  • the present invention aims to provide a battery separator particularly suitable for a lithium ion battery separator, which is suitable for increasing the capacity of the battery, excellent ion permeability, and high-speed processability in the battery assembly process.
  • the present invention has the following configurations (1) to (7).
  • a composite porous membrane used as a battery separator wherein a porous membrane A made of a polyolefin resin is laminated with a porous membrane B containing a polyamide resin containing an isophorone structure as an amine component
  • a composite porous membrane characterized in that the porous membrane satisfies the following formulas (A) to (F): Thickness of porous membrane A ⁇ 10 ⁇ m Formula (A) 0.01 ⁇ m ⁇ average pore diameter of porous membrane A ⁇ 0.3 ⁇ m Formula (B) 30% ⁇ Porosity of porous membrane A ⁇ 70% Formula (C) Total thickness of composite porous membrane ⁇ 13 ⁇ m Formula (D) Peel strength at the interface between porous membrane A and porous membrane B ⁇ 1.0 N / 25 mm ...
  • Formula (F) (X is the air resistance of the porous membrane A (second / 100 cc Air), Y is the air resistance of the entire composite porous membrane (second / 100 cc Air))
  • X is the air resistance of the porous membrane A (second / 100 cc Air)
  • Y is the air resistance of the entire composite porous membrane (second / 100 cc Air))
  • (3) The composite porous membrane according to (1) or (2), wherein the air permeability resistance of the composite porous membrane is 50 to 600 seconds / 100 cc Air.
  • the composite porous membrane of the present invention has both excellent adhesion of the polyamide resin layer and a small increase in the air resistance, so that the battery has a high capacity, excellent ion permeability, and a battery assembly process. It is suitable for high-speed processability, and can be suitably used particularly for battery separators.
  • the composite porous membrane of the present invention is obtained by laminating a porous membrane A made of a polyolefin resin and a porous membrane B containing a polyamide resin containing an isophorone structure as an amine component. Excellent adhesion of the polyamide resin layer is achieved without causing a significant increase in the air resistance.
  • the significant increase in the air resistance is that the difference between the air resistance (X) of the porous membrane A serving as the base material membrane and the air resistance (Y) of the composite porous membrane is 100 seconds / 100 cc Air. It means exceeding.
  • the excellent adhesion of the polyamide resin layer means that the peel strength is 1.0 N / 25 mm or more, preferably 1.5 N / 25 mm or more, more preferably 2.0 N / 25 mm or more. If it is less than 1.0 N / 25 mm, the polyamide resin layer may be peeled off during high-speed processing in the battery assembly process. There is no particular upper limit on the peel strength, but 3.0 N / 25 mm is sufficient as adhesion.
  • the porous membrane A used in the present invention will be described.
  • the resin constituting the porous membrane A polyolefin resin is used, and polyethylene resin is particularly preferable. This is because, in addition to basic characteristics such as electrical insulation and ion permeability, it has a hole closing effect that cuts off the current and suppresses excessive temperature rise at abnormal battery temperature rise.
  • the polyolefin-based resin constituting the porous membrane A has process workability and mechanical strength that can withstand various external pressures generated during winding with the electrode, such as tensile strength, elastic modulus, elongation, and piercing strength.
  • the mass average molecular weight is preferably 300,000 or more, more preferably 400,000 or more, and most preferably 500,000 or more.
  • the polyolefin component which has the mass mean molecular weight of the said range contains 50 weight% or more, More preferably, it contains 60 weight% or more. When the content is lower than the above range, the melt viscosity is low, so the mechanical properties are significantly reduced when the temperature is raised above the pore closing temperature. Melt film breakage may occur.
  • phase structure of the porous membrane A varies depending on the production method. As long as the above various characteristics are satisfied, the phase structure according to the purpose can be freely given by the production method. There are foaming methods, phase separation methods, dissolution recrystallization methods, stretched pore opening methods, powder sintering methods, etc., among these porous membrane production methods. Among these, phase separation is performed in terms of uniform micropores and cost. The method is preferred.
  • the porous membrane A needs to have a function of closing the pores when the charge / discharge reaction is abnormal (pore closing function).
  • the melting point (softening point) of the constituent resin is preferably 70 to 150 ° C., more preferably 80 to 140 ° C., and most preferably 100 to 130 ° C. If the temperature is lower than 70 ° C, the pore blocking function may be exhibited during normal use and the battery may become unusable. Therefore, if the temperature exceeds 150 ° C, the abnormal reaction proceeds sufficiently, and then the pore blocking function appears. Therefore, safety may not be ensured.
  • the film thickness of the porous film A needs to be less than 10 ⁇ m.
  • the upper limit of the film thickness is preferably 9.5 ⁇ m, more preferably 9 ⁇ m.
  • the lower limit of the film thickness is preferably 5 ⁇ m, more preferably 6 ⁇ m. If the film thickness is less than 5 ⁇ m, it may not be possible to retain practical film strength and pore blocking function. If the film thickness is 10 ⁇ m or more, the area per unit volume of the battery case is greatly restricted, and will continue in the future. It is not suitable for increasing the capacity of batteries.
  • the upper limit of the air permeability resistance (JIS-P8117) of the porous membrane A is preferably 500 seconds / 100 cc Air, more preferably 400 seconds / 100 cc Air, and most preferably 300 seconds / 100 cc Air.
  • the lower limit of the air resistance is preferably 50 seconds / 100 cc Air, more preferably 70 seconds / 100 cc Air, and most preferably 100 seconds / 100 cc Air.
  • the upper limit of the porosity of the porous membrane A is 70%, preferably 60%, more preferably 55%.
  • the lower limit of the porosity is 30%, preferably 35%, more preferably 40%. Whether the air resistance is higher than 500 seconds / 100 cc Air or the porosity is lower than 30%, sufficient charge / discharge characteristics of the battery, particularly ion permeability (charge / discharge operating voltage), battery life (electrolysis) (It is closely related to the amount of liquid retained), and if these ranges are exceeded, the battery function may not be fully exhibited. On the other hand, even if the air permeability resistance is lower than 50 seconds / 100 cc Air or the porosity is higher than 70%, sufficient mechanical strength and insulation cannot be obtained, and a short circuit may occur during charging and discharging. Increases nature.
  • the average pore diameter of the porous membrane A is 0.01 to 0.3 ⁇ m, preferably 0.05 to 0.3 ⁇ m, more preferably 0.1 to 0.2 ⁇ m, because it greatly affects the pore closing rate.
  • the average pore diameter is smaller than 0.01 ⁇ m, the anchor effect of the polyamide resin is difficult to obtain, so that sufficient adhesion of the polyamide resin may not be obtained. Is more likely to do.
  • the average pore diameter is larger than 1.0 ⁇ m, there is a possibility that a phenomenon such as a slow response to the temperature of the pore clogging phenomenon or a shift of the pore clogging temperature due to the heating rate to a higher temperature side may occur.
  • the porous membrane B includes a polyamide resin containing an isophorone structure in the amine component, and plays a role of supporting and reinforcing the porous membrane A due to its heat resistance. Therefore, the glass transition temperature of the resin constituting the porous membrane B is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, most preferably 100 ° C. or higher, and the upper limit is not particularly limited. When the glass transition temperature is higher than the decomposition temperature, the decomposition temperature may be in the above range. When the glass transition temperature is lower than 70 ° C., a sufficient heat-resistant film breaking temperature cannot be obtained, and high safety may not be ensured.
  • the polyamide resin has, as an amine component, an aliphatic diamine such as ethylenediamine and 1,4-butanediamine; an alicyclic diamine such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine, norbornanedimethyldiamine, and tricyclodecanedimethyldiamine; p- Aromatic diamines such as phenylenediamine, m-phenylenediamine, xylylenediamine, xylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether can be used.
  • an aliphatic diamine such as ethylenediamine and 1,4-butanediamine
  • an alicyclic diamine such as cyclohexanediamine, methylcyclohexanediamine, isophoronediamine
  • an amine component having an isophorone structure it is necessary to contain an amine component having an isophorone structure.
  • the introduction of such an isophorone structure is particularly effective for suppressing swelling and deterioration with time when the separator is immersed in a non-aqueous electrolyte.
  • the proportion of the isophorone structure is preferably in the range of 10 to 100 mol%, more preferably in the range of 30 to 100 mol% of the amine component of the polyamide resin.
  • the proportion of the isophorone structure is less than 10 mol%, the above-mentioned electrolytic solution resistance may be lowered.
  • a polyamide resin is synthesized by a solution polymerization method such as an acid chloride method using a polyvalent carboxylic acid chloride and a diamine, a diisocyanate method using a polyvalent carboxylic acid and a diisocyanate, or a melt polymerization method.
  • a solution polymerization method such as an acid chloride method using a polyvalent carboxylic acid chloride and a diamine, a diisocyanate method using a polyvalent carboxylic acid and a diisocyanate, or a melt polymerization method.
  • the polyamide resin used for the production of the porous membrane is preferably used in a solution state, and solution polymerization using diamine or diisocyanate is preferable from the viewpoint of production cost.
  • tricarboxylic acids such as trimellitic acid and trimesic acid
  • tetracarboxylic acids such as pyromellitic acid, benzophenone tetracarboxylic acid, biphenyltetracarboxylic acid, and diphenyltetracarboxylic acid.
  • 1,3-cyclohexanedicarboxylic acid and 1,4-cyclohexanedicarboxylic acid are preferable from the viewpoint of polymerizability, solvent solubility, and electrolyte resistance, and dimer acid and molecular weight of 1000 are preferable from the shutdown characteristics.
  • the above dicarboxypolybutadiene, dicarboxypoly (acrylonitrile butadiene) and dicarboxypoly (styrene-butadiene) are preferred.
  • a urethane group can be introduced into the molecule by replacing part of the dicarboxylic acid compound with glycol.
  • glycols include alkylene glycols such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, and hexanediol, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol, and one or two of the above dicarboxylic acids.
  • examples thereof include polyesters having terminal hydroxyl groups synthesized from the above and one or more of the above-mentioned glycols.
  • polyethylene glycol and polyesters having terminal hydroxyl groups are preferred because of shutdown effect.
  • these number average molecular weights are preferably 500 or more, and more preferably 1000 or more.
  • the upper limit is not particularly limited, but is preferably less than 8000.
  • cyclohexanedicarboxylic acid When cyclohexanedicarboxylic acid is used as a part of the polyvalent carboxylic acid component, it is preferable to replace 20 to 70 mol% of the polyvalent carboxylic acid component in order to satisfy the solvent solubility and shutdown characteristics.
  • a part of the acid component is replaced with at least one member selected from the group consisting of dimer acid, polyalkylene ether, polyester, and butadiene-based rubber containing a carboxyl group, a hydroxyl group, or an amino group at the terminal, It is preferable to replace 1 to 60 mol% of the components.
  • the isophorone diamine (diisocyanate) component used in the synthesis of the polyamide resin is an essential component, but as a component to replace a part thereof, an aliphatic diamine such as ethylenediamine, propylenediamine, hexamethylenediamine, etc.
  • alicyclic diamines such as these diisocyanates, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, dicyclohexylmethanediamine and the like, and these diisocyanates, m-phenylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, benzidine, xylylenediamine, naphthalenediamine and other aromatic diamines and their dii Cyanate, and the like, reactivity among these, cost, and most preferably dicyclohexylmethane diamine and its diisocyanates terms of electrolyte solution resistance, 4,4'-diaminodiphenylmethane, naphthalene diamines and these diisocyanates are preferred.
  • the raw material components are 60 to 200 ° C. in a polar solvent such as N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone. It can be easily produced by stirring while heating.
  • a polar solvent such as N, N′-dimethylformamide, N, N′-dimethylacetamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone.
  • amines such as triethylamine and diethylenetriamine
  • alkali metal salts such as sodium fluoride, potassium fluoride, cesium fluoride, sodium methoxide, and the like can be used as a catalyst as necessary.
  • the polyamide resin preferably has a glass transition temperature of 70 ° C. or higher and a logarithmic viscosity of 0.5 dl / g or higher. If the glass transition temperature is less than 70 ° C., there is a shutdown effect, but the meltdown temperature becomes low, and when used for a separator, the positive electrode and the negative electrode may be short-circuited. On the other hand, the upper limit of the glass transition temperature is preferably less than 400 ° C. in consideration of workability and solvent solubility. On the other hand, when the logarithmic viscosity is less than 0.5 dl / g, there is a risk that the same danger may increase due to a decrease in the melting temperature.
  • the porous membrane may be brittle.
  • the upper limit of the logarithmic viscosity is 2.0 dl / g, more preferably 1.5 dl / g in consideration of processability and solvent solubility.
  • the porous membrane B is a polyamide resin solution (varnish) that is soluble in a polyamide resin and dissolved in a solvent miscible with water, applied to a predetermined base film, and mixed with the polyamide resin and water under humidified conditions. It is obtained by phase-separating the solvent to be added, and adding it to a water bath (coagulation bath) to coagulate the polyamide resin. If necessary, a phase separation aid may be added to the varnish.
  • Solvents that can be used to dissolve the polyamide resin include N, N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), phosphoric acid hexamethyltriamide (HMPA), N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), ⁇ -butyrolactone, chloroform, tetrachloroethane, dichloroethane, 3-chloronaphthalene, parachlorophenol, tetralin, acetone, acetonitrile, etc., can be selected freely depending on the solubility of the resin it can.
  • DMAc N-dimethylacetamide
  • NMP N-methyl-2-pyrrolidone
  • HMPA phosphoric acid hexamethyltriamide
  • DMF N, N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • ⁇ -butyrolactone chloroform, tetrachloroe
  • the solid content concentration of the varnish is not particularly limited as long as it can be uniformly applied, but is preferably 2% by weight or more and 50% by weight or less, more preferably 4% by weight or more and 40% by weight or less.
  • the obtained porous membrane B may become brittle.
  • it exceeds 50% by weight it may be difficult to control the thickness of the porous membrane B.
  • the phase separation aid used in the present invention is water, alkylene glycol such as ethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol and hexanediol, polyalkylene glycol such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol, water-soluble Selected from water-soluble polyester, water-soluble polyurethane, polyvinyl alcohol, carboxymethyl cellulose and the like.
  • the amount added is preferably in the range of 10 to 90% by weight, more preferably 20 to 80% by weight, and most preferably 30 to 70% by weight, based on the weight of the varnish solution.
  • phase separation aids By mixing these phase separation aids into the varnish, it is possible to mainly control the air permeability resistance, the surface porosity, and the layer structure formation rate.
  • the addition amount is less than the above range, the phase separation rate may not be significantly increased.
  • the addition amount is more than the above range, the coating liquid becomes cloudy at the mixing stage and the resin component is precipitated. There is a fear.
  • inorganic particles or heat-resistant polymer particles may be added to the varnish in order to reduce the heat shrinkage rate of the porous layer B and to impart slipperiness.
  • the upper limit of the amount added is preferably 95% by mass.
  • the addition amount exceeds 95% by mass, the ratio of the polyamide resin to the total volume of the porous membrane B becomes small, and sufficient adhesion of the polyamide resin to the porous membrane A may not be obtained.
  • Inorganic particles include calcium carbonate, calcium phosphate, amorphous silica, crystalline glass filler, kaolin, talc, titanium dioxide, alumina, silica-alumina composite oxide particles, barium sulfate, calcium fluoride, lithium fluoride, zeolite , Molybdenum sulfide, mica and the like.
  • Examples of the heat-resistant polymer particles include crosslinked polystyrene particles, crosslinked acrylic resin particles, crosslinked methyl methacrylate particles, benzoguanamine / formaldehyde condensate particles, melamine / formaldehyde condensate particles, and polytetrafluoroethylene particles. .
  • the film thickness of the porous membrane B is preferably 1 to 5 ⁇ m, more preferably 1 to 4 ⁇ m, and most preferably 1 to 3 ⁇ m.
  • the film thickness is thinner than 1 ⁇ m, there is a possibility that the film breaking strength and the insulating property when the porous film A is melted / shrinked at a melting point or higher cannot be secured.
  • the film thickness is thicker than 5 ⁇ m, the proportion of the porous membrane A in the composite porous membrane is small, a sufficient pore blocking function cannot be obtained, and abnormal reactions may not be suppressed.
  • the volume of winding becomes large and it is not suitable for increasing the capacity of a battery that will be advanced in the future.
  • the porosity of the porous membrane B is preferably 30 to 90%, more preferably 40 to 70%. If the porosity is less than 30%, the electrical resistance of the film increases and it becomes difficult to pass a large current. On the other hand, if it exceeds 90%, the film strength tends to be weak.
  • the air resistance of the porous membrane B is preferably 1 to 2000 seconds / 100 cc Air measured by a method based on JIS-P8117. More preferably, it is 50 to 1500 seconds / 100 cc Air, and further preferably 100 to 1000 seconds / 100 cc Air. When the air resistance is less than 1 second / 100 cc Air, the film strength is weak, and when it exceeds 2000 seconds / 100 cc Air, the cycle characteristics may be deteriorated.
  • the upper limit of the total thickness of the composite porous membrane obtained by laminating the porous membrane A and the porous membrane B is 13 ⁇ m, and more preferably 12 ⁇ m.
  • the lower limit of the total thickness is preferably 6 ⁇ m or more, more preferably 7 ⁇ m or more. If it is thicker than 13 ⁇ m, the increase in air resistance may increase, and it may be difficult to avoid a decrease in capacity due to a decrease in the electrode area that can be filled in the container. If the thickness is less than 6 ⁇ m, it may be difficult to ensure sufficient mechanical strength and insulation.
  • the difference (Y ⁇ X) between the air permeability resistance (X seconds / 100 cc Air) of the porous membrane A and the air permeability resistance (Y seconds / 100 cc Air) of the entire composite porous membrane is 20 Seconds / 100 cc Air ⁇ Y ⁇ X ⁇ 100 seconds / 100 cc Air
  • YX is less than 20 seconds / 100 cc Air
  • sufficient adhesion of the polyamide resin layer cannot be obtained.
  • the air permeability resistance is significantly increased.
  • the ion permeability is lowered when the battery is incorporated in the battery, so that the separator is not suitable for a high-performance battery.
  • the air resistance of the composite porous membrane is preferably 50 to 600 seconds / 100 cc Air, more preferably 100 to 500 seconds / 100 cc Air, and most preferably 100 to 400 seconds / 100 cc Air.
  • the value of the air permeability resistance is lower than 50 seconds / 100 cc Air, sufficient insulation cannot be obtained, and foreign matter clogging, short circuit, and film breakage may occur.
  • the value is higher than 600 seconds / 100 cc Air, the film resistance is high, and charge / discharge characteristics and life characteristics in a practically usable range may not be obtained.
  • the upper limit of the porosity of the composite porous membrane used in the present invention is 80%, preferably 70%, more preferably 60%.
  • the lower limit of the porosity is 30%, preferably 35%, more preferably 40%. If the porosity is higher than 80%, sufficient mechanical strength and insulation cannot be obtained, and the possibility of short circuit during charge / discharge increases. On the other hand, if it is lower than 30%, sufficient charge / discharge characteristics of the battery, particularly ion permeability (charge / discharge operating voltage), battery life (intimately related to the amount of electrolyte retained) are not sufficient. If the above range is exceeded, the battery function may not be fully exhibited.
  • the porosity of the composite porous membrane is obtained by calculating the apparent resin density of the composite porous membrane from the resin density and film thickness of the porous membrane A and the porous membrane B, and calculating from the porosity calculation formula described later. Can do.
  • a varnish polyamide resin solution
  • a base film such as a polyester film or a polyolefin film
  • Examples of the method for applying the varnish include reverse roll coating, gravure coating, kiss coating, roll brushing, spray coating, air knife coating, wire barber coating, pipe doctor method, blade coating method, and die coating method. These methods can be carried out alone or in combination.
  • the low humidity zone in the present invention is a zone whose absolute humidity is adjusted to less than 6 g / m 3 .
  • the upper limit of absolute humidity is preferably 4 g / m 3 , more preferably 3 g / m 3
  • the lower limit is preferably 0.5 g / m 3 , more preferably 0.8 g / m 3 . If the absolute humidity is less than 0.5 g / m 3 , phase separation is not sufficiently performed, so that it is difficult to finally become a porous membrane, and the increase in air resistance may be increased.
  • the polyamide resin starts to solidify in parallel with the phase separation, and when the porous membrane A is bonded, the polyamide resin does not sufficiently penetrate into the porous membrane A.
  • the adhesion of the polyamide resin cannot be obtained.
  • the passage time in the low humidity zone is preferably 3 seconds or more and 20 seconds or less. If it is less than 3 seconds, the phase separation may not be sufficiently performed. On the other hand, if it exceeds 20 seconds, the solidification of the polyamide resin may proceed excessively.
  • the coated film is passed through a high humidity zone to form a semi-gel polyamide resin film on the base film.
  • the high humidity zone means that the lower limit of absolute humidity is 6 g / m 3 , preferably 7 g / m 3 , more preferably 8 g / m 3 , and the upper limit of absolute humidity is 25 g / m 3 , preferably 17 g / m 3 . m 3 , more preferably a zone adjusted to 15 g / m 3 .
  • the absolute humidity is less than 6 g / m 3 , gelation (non-fluidization) is not sufficiently performed.
  • the passage time in the high humidity zone is preferably 3 seconds or more and 10 seconds or less. In less than 3 seconds, gelation (non-fluidization) is not sufficiently performed. Therefore, when the porous membrane A is bonded, the penetration of the polyamide resin into the porous membrane A proceeds too much, and the air resistance increases. May increase. On the other hand, if it exceeds 10 seconds, the solidification of the polyamide resin proceeds too much, the penetration of the polyamide resin into the porous membrane A becomes too small, and sufficient adhesion may not be obtained.
  • the temperature conditions for both the low-humidity zone and the high-humidity zone are not particularly limited as long as the absolute humidity is within the above range, but 20 ° C. or more and 50 ° C. or less are preferable from the viewpoint of energy saving.
  • the thickness of the substrate film is not particularly limited as long as it can maintain the planarity, but a thickness of 25 ⁇ m to 100 ⁇ m is preferable. If it is less than 25 ⁇ m, sufficient planarity may not be obtained. Moreover, even if it exceeds 100 micrometers, planarity does not improve.
  • the porous film A is bonded to the semi-gelled polyamide resin film thus formed so as not to include bubbles.
  • a method of laminating a method of laminating a film coming from two directions on the surface of one metal roll is preferable because it causes less damage to the film.
  • the semi-gel form refers to a state in which a region gelled in the process of gelation of the polyamide resin solution due to absorption of moisture in the atmosphere and a region holding the solution state are mixed.
  • the porous film A is bonded on the semi-gelled polyamide resin film within at least 10 seconds immediately after passing through the high humidity zone. If it exceeds 10 seconds, solidification of the polyamide resin film proceeds and sufficient adhesion of the porous film B may not be obtained.
  • the base film After the formation of the polyamide resin film, the base film may be peeled off. However, in the method of the present invention, it is preferable to bond the porous film A to the polyamide resin film without peeling off the base film.
  • a composite porous membrane can be produced even when a soft porous membrane A that has a low elastic modulus and is necked by the tension during processing is used. Specifically, it can be expected that the composite porous membrane does not wrinkle or bend when passing through the guide roll, and curling during drying can be reduced.
  • the base material and the composite porous membrane may be wound up at the same time, or after passing through the drying step, the base material and the composite porous membrane may be wound up on separate winding rolls. Is preferable because there is little risk of winding deviation.
  • the bonded porous film A and polyamide resin film are immersed in a coagulation bath, and the polyamide resin film is phase-converted to be converted into a porous film B.
  • the composition of the coagulation bath is not particularly limited.
  • the coagulation bath may be an aqueous solution containing 1 to 20% by weight, more preferably 5 to 15% by weight of a good solvent for the polyamide resin constituting the porous membrane B.
  • the final composite porous membrane can be obtained by subjecting the unwashed porous membrane to a washing step using pure water and a drying step using hot air at 100 ° C. or lower.
  • the thickness of the porous membrane A is less than 10 ⁇ m, a composite porous membrane having an excellent balance between adhesion and air resistance can be obtained.
  • the composite porous membrane of the present invention can be prepared by using a polyolefin-based porous membrane slit to a target width as the porous membrane A, but it can also be processed subsequently on-line when the polyolefin porous membrane is produced. It is.
  • online refers to the purpose of laminating the porous membrane B continuously after the polyolefin porous membrane manufacturing process (specifically, the drying step after washing), and through the solidification, washing and slitting steps. Means for obtaining a composite porous membrane.
  • the composite porous membrane of the present invention is desirably stored in a dry state, but when it is difficult to store in a completely dry state, it is preferable to perform a vacuum drying treatment at 100 ° C. or lower immediately before use.
  • the composite porous membrane of the present invention is used for batteries such as nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium primary batteries and lithium ion secondary batteries, lithium polymer secondary batteries, etc. Although it can be used as a separator, it is particularly preferably used as a separator for a lithium ion secondary battery.
  • a lithium ion secondary battery will be described as an example.
  • a positive electrode and a negative electrode are laminated via a separator, and the separator contains an electrolytic solution (electrolyte).
  • the structure of the electrode is not particularly limited, and may be a known structure.
  • the positive electrode has a current collector and a positive electrode active material layer containing a positive electrode active material capable of occluding and releasing lithium ions formed on the current collector.
  • the positive electrode active material include transition metal oxides, composite oxides of lithium and transition metals (lithium composite oxides), and inorganic compounds such as transition metal sulfides. Transition metals include V, Mn, and Fe. , Co, Ni and the like.
  • Preferred examples of the lithium composite oxide among the positive electrode active materials include lithium nickelate, lithium cobaltate, lithium manganate, and a layered lithium composite oxide based on an ⁇ -NaFeO 2 type structure.
  • the negative electrode has a current collector and a negative electrode active material layer including a negative electrode active material formed on the surface of the current collector.
  • the negative electrode active material include carbonaceous materials such as natural graphite, artificial graphite, cokes, and carbon black.
  • the electrolytic solution can be obtained by dissolving a lithium salt in an organic solvent.
  • Lithium salts include LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , Li 2 B 10 Cl 10 , Examples include LiN (C 2 F 5 SO 2 ) 2 , LiPF 4 (CF 3 ) 2 , LiPF 3 (C 2 F 5 ) 3 , lower aliphatic carboxylic acid lithium salt, LiAlCl 4 and the like. These may be used alone or in admixture of two or more.
  • organic solvent examples include high boiling point and high dielectric constant organic solvents such as ethylene carbonate, propylene carbonate, ethyl methyl carbonate, and ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane, dimethyl carbonate, diethyl carbonate, and the like.
  • organic solvents having a low boiling point and a low viscosity These may be used alone or in admixture of two or more.
  • a high dielectric constant organic solvent has a high viscosity
  • a low viscosity organic solvent has a low dielectric constant. Therefore, it is preferable to use a mixture of both.
  • the separator (composite porous membrane) is impregnated with the electrolytic solution. Thereby, ion permeability can be imparted to the separator.
  • the impregnation treatment is performed by immersing the porous membrane in an electrolytic solution at room temperature.
  • a positive electrode sheet, a separator (composite porous membrane), and a negative electrode sheet are laminated in this order, and this laminate is wound from one end to form a wound electrode element.
  • a battery can be obtained by inserting this electrode element into a battery can, impregnating with the above electrolyte, and caulking a battery lid also serving as a positive electrode terminal provided with a safety valve via a gasket.
  • the film thickness was measured using a contact-type film thickness meter (Digital Micrometer M-30 manufactured by Sony Manufacturing Co., Ltd.).
  • Porous film A by a peeling method peeling speed 500 mm / min, T-type peeling
  • a tensile tester ““Tensilon RTM-100” manufactured by A & D Co., Ltd.”
  • the peel strength at the interface of the porous membrane B were measured. The measurement was performed over time during 100 mm from the start of measurement to the end of measurement, the average value of the measured values was calculated, and converted to a value per 25 mm width to obtain the peel strength.
  • the porous film B surface may remain on the porous film A side at the peeling interface, the peeling strength at the interface between the porous film A and the porous film B is also calculated in this case.
  • the average pore diameter of the porous membrane A was measured by the following method.
  • the test piece was fixed to the measuring cell using double-sided tape, platinum or gold was vacuum-deposited for several minutes, and the measurement was performed at an appropriate magnification.
  • Arbitrary 10 places observed most foremost on the image obtained by SEM measurement were selected, and the average value of the pore diameters at these 10 places was defined as the average pore diameter of the test piece.
  • the hole diameter was not substantially circular, the value obtained by adding the major axis and the minor axis and dividing by 2 was defined as the hole diameter.
  • a polyamide resin solution or a resin solution obtained by immersing a composite porous membrane in a good solvent and dissolving only the polyamide resin membrane is subjected to PET film (Toyobo E5001) or polypropylene film (Toyobo Co., Ltd.) using an applicator. Pyrene-OT) with a suitable gap, pre-dried at 120 ° C for 10 minutes, peeled off, fixed to a metal frame of appropriate size with heat-resistant adhesive tape, and further dried at 200 ° C for 12 hours under vacuum As a result, a dry film was obtained.
  • a test piece having a width of 4 mm and a length of 21 mm was cut from the obtained dry film, and the measurement length was 15 mm, using a dynamic viscoelasticity measuring apparatus (DVA-220 manufactured by IT Measurement Control), 110 Hz, temperature increase rate of 4 ° C. /
  • the storage elastic modulus (E ′) was measured in the range from room temperature to 450 ° C. under the condition of minutes. At the refraction point of the storage elastic modulus (E ′) at this time, the temperature at the intersection of the extended line of the base line below the glass transition temperature and the tangent showing the maximum inclination above the refraction point was defined as the glass transition temperature.
  • Porosity (1 ⁇ mass / (resin density ⁇ sample volume)) ⁇ 100
  • Example 1 In a four-necked flask equipped with a thermometer, a cooling pipe, and a nitrogen gas introduction pipe, 1 mol of sebacic acid, 1 mol of isophorone diisocyanate (IPDI), and 0.02 mol of potassium fluoride are added so that the solid content concentration becomes 50%.
  • the mixture was charged with -methyl-2-pyrrolidone, stirred at 180 ° C. for 5 hours, and diluted with N-methyl-2-pyrrolidone to a solid content concentration of 10% to synthesize a polyamide resin solution (a).
  • the obtained polyamide resin had a logarithmic viscosity of 0.65 dl / g and a glass transition temperature of 130 ° C.
  • porous film A polyethylene porous film, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air resistance 240 sec / 100 cc Air
  • porous film A Is placed on the above semi-gelled polyamide resin film, allowed to enter an aqueous solution containing 5% by weight of N-methyl-2-pyrrolidone, then washed with pure water, and then passed through a hot air drying oven at 70 ° C. And dried to obtain a composite porous membrane having a final thickness of 11.6 ⁇ m.
  • Example 2 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low humidity zone was 4.0 g / m 3 .
  • Example 3 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low humidity zone was 5.5 g / m 3 .
  • Example 4 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the high humidity zone was 7.0 g / m 3 .
  • Example 5 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity in the high humidity zone was 16.0 g / m 3 .
  • Example 6 Example 1 except that the passage times of the low-humidity zone and the high-humidity zone were 5.3 seconds and 3.0 seconds, respectively, and the time from the exit of the high-humidity zone to the bonding of the porous membrane A was 1.1 seconds. In the same manner, a composite porous membrane was obtained.
  • Example 7 Example 1 except that the passage time of the low humidity zone and the high humidity zone was 16.0 seconds and 10.0 seconds, respectively, and the time until the porous membrane A was bonded from the exit of the high humidity zone was 3.4 seconds. In the same manner, a composite porous membrane was obtained.
  • Example 8 A composite porous membrane A was prepared in the same manner as in Example 1 except that a polyethylene porous membrane having a thickness of 9.5 ⁇ m, a porosity of 40%, an average pore diameter of 0.15 ⁇ m, and a gas permeability of 320 seconds / 100 cc Air was used as the porous membrane A. A membrane was obtained.
  • Example 9 A composite porous membrane A was prepared in the same manner as in Example 1 except that a polyethylene porous membrane having a thickness of 7.0 ⁇ m, a porosity of 40%, an average pore diameter of 0.15 ⁇ m, and an air resistance of 220 seconds / 100 cc Air was used as the porous membrane A. A membrane was obtained.
  • Example 10 The acid component of Example 1 was 0.5 mol of isophthalic acid, 0.5 mol of sebacic acid, 0.505 mol of isophorone diisocyanate, 0.505 mol of diphenylmethane-4,4′-diisocyanate (MDI), 0.02 of potassium fluoride. Mole was charged with N-methyl-2-pyrrolidone so as to have a solid concentration of 50%, reacted at 120 ° C. for 1 hour and further at 180 ° C. for 3 hours, and then cooled, while cooling with N-methyl-2-pyrrolidone The polyamide resin solution (b) was synthesized by diluting to a solids concentration of 10%.
  • the obtained polyamide resin had a logarithmic viscosity of 0.7 dl / g and a glass transition temperature of 135 ° C.
  • a composite porous membrane was obtained in the same manner as in Example 1 except that the varnish (b) (solid content concentration 5.3 wt%) obtained by replacing the polyamide resin solution (a) with the polyamide resin solution (b) was used.
  • Example 11 32.6 parts by mass of the polyamide resin solution (a) and 10.5 parts by mass of alumina particles having an average particle size of 0.5 ⁇ m were diluted with 48.4 parts by mass of N-methyl-2-pyrrolidone, and further 8.5 g of ethylene glycol. A mass part was added, and it was put into a polypropylene container together with zirconium oxide beads (trade name “Traceram beads”, diameter 0.5 mm, manufactured by Toray Industries, Inc.), and dispersed for 6 hours with a paint shaker (manufactured by Toyo Seiki Seisakusho). Subsequently, it filtered with the filter of 5 micrometers of filtration limits, and prepared varnish (c) (solid content concentration 31.0 weight%). A composite porous membrane was obtained in the same manner as in Example 1 except that the varnish (a) was changed to the varnish (c).
  • Example 12 Varnish (d) (solid content concentration 31.0) in the same manner as in Example 11 except that the alumina particles were changed to titanium oxide particles (trade name “KR-380”, manufactured by Titanium Industry Co., Ltd., average particle size 0.38 ⁇ m). % By weight).
  • a composite porous membrane was obtained in the same manner as in Example 11 except that the varnish (a) was replaced with the varnish (d).
  • Example 13 A composite porous membrane was obtained in the same manner as in Example 1 except that the amount of varnish (a) applied was adjusted to a final thickness of 10.3 ⁇ m.
  • Example 14 The composite porous membrane A was composite porous in the same manner as in Example 1 except that a polyethylene porous membrane having a thickness of 6.5 ⁇ m, a porosity of 38%, an average pore diameter of 0.15 ⁇ m, and a gas permeability resistance of 210 seconds / 100 cc Air was used. A membrane was obtained.
  • Example 15 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity of the low-humidity zone was 1.2 g / m 3 .
  • Comparative Example 1 A composite porous membrane was obtained in the same manner as in Example 1 except that the temperature of the low humidity zone was 25 ° C. and the absolute humidity was 7.0 g / m 3 .
  • Comparative Example 2 A composite porous membrane was obtained in the same manner as in Example 1 except that the high humidity zone was set to a temperature of 25 ° C. and an absolute humidity of 5.0 g / m 3 .
  • Comparative Example 3 A varnish (a) was applied to the porous membrane A (made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air permeability 240 sec / 100 cc Air) by a blade coating method, and the temperature was 25 ° C. A low humidity zone with an absolute humidity of 1.8 g / m 3 was passed in 8 seconds, and then a high humidity zone with a temperature of 25 ° C. and an absolute humidity of 12 g / m 3 was passed in 5 seconds.
  • the porous membrane A made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air permeability 240 sec / 100 cc Air
  • Comparative Example 4 Porous membrane A (made of polyethylene, thickness 9 ⁇ m, porosity 45%, average pore diameter 0.15 ⁇ m, air resistance 240 sec / 100 cc Air) was previously immersed in N-methyl-2-pyrrolidone to saturate the pores. A composite porous membrane was obtained in the same manner as in Comparative Example 3 except that it was used by being filled with N-methyl-2-pyrrolidone.
  • Comparative Example 6 A composite porous membrane was obtained in the same manner as in Example 1 except that the absolute humidity in the high-humidity zone was 25.5 g / m 3 .
  • Comparative Example 7 A composite porous membrane was obtained in the same manner as in Example 1 except that the coating amount of varnish (a) was adjusted to a final thickness of 14.4 ⁇ m.
  • Comparative Example 8 A polyamide resin solution (c) was synthesized under the same conditions as in Example 1 except that 1.02 mol of sebacic acid and 1 mol of IPDI were used. The obtained polyamide resin had a logarithmic viscosity of 0.31 dl / g and a glass transition temperature of 128 ° C. A composite porous membrane was obtained in the same manner as in Example 1 except that varnish (e) (solid content concentration 5.3 wt%) in which the polyamide resin solution (a) was replaced with the polyamide resin solution (c) was used.
  • Table 1 shows the production conditions of the composite porous membranes of Examples 1 to 15 and Comparative Examples 1 to 8, and the characteristics of the porous membrane A and the composite porous membrane.
  • the composite porous membrane of the present invention has both excellent adhesion to the polyamide resin layer and small increase in air resistance even when the film thickness is further reduced in the future. It is suitable for ion permeability and high-speed workability in the battery assembly process, and particularly suitable for a separator for a lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Separators (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 電池用セパレーターを始めとする複合多孔質膜が今後ますます薄膜化された場合でも、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅が両立したものを提供する。 本発明は、電池用セパレーターとして用いる複合多孔質膜であって、ポリオレフィン系樹脂からなる多孔質膜Aにアミン成分にイソホロン構造を含有するポリアミド樹脂を含む多孔質膜Bが積層された複合多孔質膜である。多孔質膜Aが特定の範囲の厚さ、平均孔径、空孔率を満足し、複合多孔質膜全体が特定の範囲の厚さを満足するものにおいて、複合多孔質膜が、特定の範囲の多孔質膜Aと多孔質膜Bの界面での剥離強度、特定の範囲の複合多孔質膜全体の透気抵抗度と多孔質膜Aの透気抵抗度との差をさらに満足することを特徴とする。

Description

複合多孔質膜及びその製造方法
 本発明は、ポリオレフィン系樹脂からなる多孔質膜に対して特定のポリアミド樹脂を含む多孔質膜を積層した複合多孔質膜に関する。特にイオン透過性に優れ、かつ、ポリオレフィン系多孔質膜とポリアミド樹脂膜との密着性に優れる、リチウムイオン二次電池用セパレーターとして有用な複合多孔質膜に関するものである。
 熱可塑性樹脂からなる多孔質膜は、物質の分離や選択透過及び隔離のための材料等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池に用いる電池用セパレーターや、電気二重層コンデンサ用セパレーター、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種フィルター、透湿防水衣料、医療用材料等などで用いられている。特にポリエチレン製多孔質膜は、リチウムイオン二次電池用セパレーターとして好適に使用されているが、その理由は、電気絶縁性に優れる、電解液含浸によりイオン透過性を有する、耐電解液性・耐酸化性に優れるという特徴だけでなく、電池異常昇温時の120~150℃程度の温度において電流を遮断し過度の昇温を抑制する孔閉塞効果をも備えているためである。しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、膜を構成する融解したポリエチレンの粘度低下及び膜の収縮により、ある温度で破膜を生じることがある。また、一定高温下に放置すると、融解したポリエチレンの粘度低下及び膜の収縮により、ある時間経過後に破膜を生じる可能性がある。この現象は、ポリエチレンに限定された現象ではなく、他の熱可塑性樹脂を用いた場合においても、その多孔質膜を構成する樹脂の融点以上では避けることができない。
 特にリチウムイオン電池用セパレーターは、電池特性、電池生産性及び電池安全性に深く関わっており、優れた機械的特性、耐熱性、透過性、寸法安定性、孔閉塞特性(シャットダウン特性)、溶融破膜防止特性(メルトダウン防止特性)等が要求される。そのため、これまでに様々な耐熱性向上の検討がなされている。さらに、電池容量の向上のため、電極のみならず、セパレーターにおいても容器内に充填できる面積を増加させるため、より一層の薄膜化が進むことが予測されている。多孔質フィルムの薄膜化が進むと平面方向に変形しやすくなるため、複合多孔質膜の加工中やスリット工程、あるいは電池組み立て工程において耐熱性樹脂層が剥離することがあり、安全性の確保が困難となる。
 また、低コスト化に対応するため、電池組み立て工程においては高速化が進むことが予想される。したがって、本発明者等は、このような高速加工においても耐熱性樹脂層の剥離等のトラブルが少ないことが求められ、そのためには、より一層の高い密着性が必要であると推測している。
 特許文献1では、ポリアミド樹脂を厚さ25μmのポリオレフィン系多孔質膜に塗布して得た複合多孔質膜が例示されている。特許文献1の場合のように、ポリアミド樹脂をポリオレフィン系多孔質膜に直接塗布した場合、ポリオレフィン系多孔質膜への樹脂成分の浸透が避けられず、透気抵抗度の大幅な上昇と孔閉塞機能の低下が避けられない。このような方法では、特にポリオレフィン系多孔質膜の膜厚が10μm未満のような薄い場合、簡単に樹脂成分が多孔質内部を埋めてしまい、透気抵抗度の極端な上昇を招く。また、このような方法では、ポリオレフィン系多孔質膜の膜厚斑が耐熱性樹脂層の膜厚斑に結びつきやすく、透気抵抗度のバラツキに繋がりやすい問題も抱えている。
 特許文献2では、耐熱性樹脂であるフッ化ビニリデン系共重合体を含むドープに平均厚み36μmのアラミド繊維からなる不織布を浸漬し、乾燥して得た電解液担持ポリマー膜が例示されている。
 特許文献3では、耐熱性樹脂であるポリフッ化ビニリデンを主成分とするドープに膜厚25.6μmのポリプロピレン多孔質膜を浸漬し、凝固、水洗、乾燥工程を経由して得た複合多孔質膜が例示されている。
 特許文献2のように耐熱性樹脂溶液中にアラミド繊維からなる不織布を浸漬させると、不織布の内部および両面に耐熱多孔質層が形成されるため、不織布内部の連通孔を大部分に渡って塞ぐことになり、透気抵抗度の大幅な上昇が避けられないだけでなく、セパレーターの安全性を決定付ける孔閉塞機能が得られない。また、不織布は、ポリオレフィン系多孔質膜に比べて薄膜化が困難であるため、今後、進むであろう電池の高容量化には適さない。
 特許文献3においてもポリプロピレン多孔質膜の内部および両面に耐熱多孔質層が形成されることに変わりはなく、特許文献2と同様に透気抵抗度の大幅な上昇が避けられず、また、孔閉塞機能が得られ難い。
 このように、基材膜となるポリオレフィン系等の多孔質膜に耐熱性樹脂層を積層した複合多孔質膜において、耐熱性樹脂を基材となる多孔質膜に浸透させて耐熱性樹脂層の密着性の向上を図れば、透気抵抗度上昇幅が大きくなり、耐熱性樹脂の浸透を小さくすれば、透気抵抗度上昇幅は小さく抑えることができるが、耐熱性樹脂層の密着性が小さくなり、特に、セパレーターの薄膜化が進む中で、電池組み立て工程での高速化を踏まえた場合、ますます要求が厳しくなる安全性の確保が難しくなる。このように、耐熱性樹脂層の密着性と透気抵抗度上昇幅が両立した複合多孔質膜は従来存在しなかった。さらに、基材となるポリオレフィン系等の多孔質膜の膜厚が薄くなれば、ますます耐熱性樹脂層の密着性と透気抵抗度上昇幅の両立は困難となる。
特開2005-314635号公報 特開2001-266942号公報 特開2003-171495号公報
 本発明は、電池用セパレーターが今後ますます薄膜化された場合でも、優れた耐熱性樹脂層の密着性と小さい透気抵抗度上昇幅が両立した複合多孔質膜を提供するものである。特に電池の高容量化、優れたイオン透過性、および、電池組み立て加工工程における高速加工性に適した、特にリチウムイオン電池用セパレーターに好適な電池用セパレーターの提供を目指したものである。
 本発明は、以下の(1)~(7)の構成を有するものである。
(1)電池用セパレーターとして用いる複合多孔質膜であって、ポリオレフィン系樹脂からなる多孔質膜Aにアミン成分にイソホロン構造を含有するポリアミド樹脂を含む多孔質膜Bが積層された複合多孔質膜であり、該多孔質膜が下記式(A)~(F)を満足することを特徴とする複合多孔質膜。
 多孔質膜Aの厚さ<10μm           ・・・・・式(A)
 0.01μm≦多孔質膜Aの平均孔径≦0.3μm ・・・・・式(B)
 30%≦多孔質膜Aの空孔率≦70%       ・・・・・式(C)
 複合多孔質膜全体の厚さ≦13μm        ・・・・・式(D)
 多孔質膜Aと多孔質膜Bの界面での剥離強度≧1.0N/25mm
                         ・・・・・式(E)
 20≦Y-X≦100              ・・・・・式(F)
(Xは多孔質膜Aの透気抵抗度(秒/100ccAir)、Yは複合多孔質膜全体の透気抵抗度(秒/100ccAir)である)
(2)ポリアミド樹脂がアミン成分に対して10~100モル%の割合でイソホロン構造を含有することを特徴とする(1)に記載の複合多孔質膜。
(3)複合多孔質膜の透気抵抗度が50~600秒/100ccAirであることを特徴とする(1)又は(2)に記載の複合多孔質膜。
(4)以下の工程(i)及び(ii)を含むことを特徴とする(1)~(3)のいずれかに記載の複合多孔質膜の製造方法。
 工程(i):基材フィルム上にポリアミド樹脂溶液を塗布した後、絶対湿度6g/m未満の低湿度ゾーンを通過させ、次いで、絶対湿度6g/m以上25g/m以下の高湿度ゾーンを通過させて基材フィルム上にポリアミド樹脂膜を形成する工程、および
 工程(ii):工程(i)で形成されたポリアミド樹脂膜とポリオレフィン系樹脂からなる多孔質膜Aとを貼り合わせた後、凝固浴に浸漬させてポリアミド樹脂膜を多孔質膜Bに変換させ、洗浄、乾燥し、複合多孔質膜を得る工程。
(5)基材フィルムが、工程(ii)で複合多孔質膜を得た後に剥離されることを特徴とする(4)に記載の複合多孔質膜の製造方法。
(6)基材フィルムが厚さ25~100μmのポリエステル系フィルム又はポリオレフィン系フィルムであることを特徴とする(4)又は(5)に記載の複合多孔質膜の製造方法。
(7)工程(i)において低湿度ゾーンの通過時間が3秒以上20秒以下であり、高湿度ゾーンの通過時間が3秒以上10秒以下であることを特徴とする(4)~(6)のいずれかに記載の複合多孔質膜の製造方法。
 本発明の複合多孔質膜は、優れたポリアミド樹脂層の密着性と小さい透気抵抗度上昇幅を両立しているので、電池の高容量化、優れたイオン透過性、および、電池組み立て加工工程における高速加工性に適し、特に電池用セパレーターに好適に使用することができる。
 本発明の複合多孔質膜は、ポリオレフィン系樹脂からなる多孔質膜Aにアミン成分にイソホロン構造を含有するポリアミド樹脂を含む多孔質膜Bを積層したものであり、高度な加工技術によって、積層による透気抵抗度の大幅な上昇を招くことなく、優れたポリアミド樹脂層の密着性を達成したものである。
 ここで透気抵抗度の大幅な上昇とは、基材膜となる多孔質膜Aの透気抵抗度(X)と複合多孔質膜の透気抵抗度(Y)の差が100秒/100ccAirを超えることを意味する。また、優れたポリアミド樹脂層の密着性とは剥離強度が1.0N/25mm以上であることを意味し、好ましくは1.5N/25mm以上、さらに好ましくは2.0N/25mm以上である。1.0N/25mm未満では電池組み立て工程での高速加工時にポリアミド樹脂層が剥離してしまう可能性がある。剥離強度の上限は特にないが、3.0N/25mmもあれば密着性として十分である。
 まず、本発明で用いる多孔質膜Aについて説明する。
 多孔質膜Aを構成する樹脂としては、ポリオレフィン系樹脂が使用され、特にポリエチレン樹脂が好ましい。電気絶縁性、イオン透過性などの基本特性に加え、電池異常昇温時温度において電流を遮断し過度の昇温を抑制する孔閉塞効果を具備しているからである。
 さらに、多孔質膜Aを構成するポリオレフィン系樹脂は、工程作業性および電極との倦回時に生じる様々な外圧に耐える機械強度、例えば、引っ張り強度、弾性率、伸度、突き刺し強度の点から、好ましくは質量平均分子量が30万以上、さらに好ましくは40万以上、最も好ましくは50万以上である。なお、これらのポリオレフィン系樹脂を用いる際は、上記範囲の質量平均分子量を有するポリオレフィン成分が50重量%以上含有されていることが好ましく、さらに好ましくは60重量%以上含有されていることが好ましい。上記範囲よりも含有量が少ない場合、溶融粘度が低いため、孔閉塞温度を越えて昇温した際の機械物性の低下が著しく、孔閉塞温度付近でも倦回圧力や電極端部のバリなどによって溶融破膜が起こる恐れがある。
 多孔質膜Aの相構造は、製法によって異なる。上記の各種特徴を満足する範囲内ならば、製法により目的に応じた相構造を自由に持たせることができる。多孔質膜の製造方法としては、発泡法、相分離法、溶解再結晶法、延伸開孔法、粉末焼結法などがあり、これらの中では微細孔の均一化、コストの点で相分離法が好ましい。
 多孔質膜Aは、充放電反応の異常時に孔が閉塞する機能(孔閉塞機能)を有することが必要である。従って、構成する樹脂の融点(軟化点)は、好ましくは70~150℃、さらに好ましくは80~140℃、最も好ましくは100~130℃である。70℃未満では、正常使用時に孔閉塞機能が発現して電池が使用不可になる可能性があるため実用性に乏しく、150℃を超えると異常反応が十分に進行してから孔閉塞機能が発現してしまうため、安全性を確保できないおそれがある。
 多孔質膜Aの膜厚は10μm未満であることが必要である。膜厚の上限は9.5μmが好ましく、より好ましくは9μmである。膜厚の下限は5μmが好ましく、より好ましくは6μmである。膜厚が5μmよりも薄い場合は実用的な膜強度と孔閉塞機能を保有させることができないことがあり、10μm以上の場合、電池ケースの単位容積当たりの面積が大きく制約され、今後、進むであろう電池の高容量化には適さない。
 多孔質膜Aの透気抵抗度(JIS-P8117)の上限は好ましくは500秒/100ccAir、さらに好ましくは400秒/100ccAir、最も好ましくは300秒/100ccAirである。また、透気抵抗度の下限は好ましくは50秒/100ccAir、さらに好ましくは70秒/100ccAir、最も好ましくは100秒/100ccAirである。
 多孔質膜Aの空孔率の上限は70%、好ましくは60%、さらに好ましくは55%である。空孔率の下限は30%、好ましくは35%、さらに好ましくは40%である。透気抵抗度が500秒/100ccAirより高くても、空孔率が30%よりも低くても、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)、電池の寿命(電解液の保持量と密接に関係する)において十分ではなく、これらの範囲を超えた場合、電池としての機能を十分に発揮することができなくなる可能性がある。一方で、50秒/100ccAirよりも透気抵抗度が低くても、空孔率が70%よりも高くても、十分な機械的強度と絶縁性が得られず、充放電時に短絡が起こる可能性が高くなる。
 多孔質膜Aの平均孔径は、孔閉塞速度に大きく影響を与えるため、0.01~0.3μm、好ましくは0.05~0.3μm、さらに好ましくは0.1~0.2μmである。平均孔径が0.01μmよりも小さい場合、ポリアミド樹脂のアンカー効果が得られにくいため十分なポリアミド樹脂の密着性が得られない場合がある他、複合化の際に透気抵抗度が大幅に悪化する可能性が高くなる。平均孔径が1.0μmよりも大きい場合、孔閉塞現象の温度に対する応答が緩慢になる、昇温速度による孔閉塞温度がより高温側にシフトするなどの現象が生じる可能性がある。さらに、平均孔径を0.3μm以下とすることによってポリアミド樹脂が浸透しすぎるのを抑制することができる。
 多孔質膜Aの表面状態に関しては、表面粗さ(算術的平均粗さ)が0.01~0.5μmの範囲にあると多孔質膜Bとの密着性がより強くなる傾向にある。表面粗さが0.01μmより低い場合、密着性改善の効果は見られず、0.5μmより高い場合、多孔質膜Aの機械強度低下または多孔質膜Bの表面への凸凹の転写が起こることがある。
 次に、本発明で用いる多孔質膜Bについて説明する。
 多孔質膜Bは、アミン成分にイソホロン構造を含有するポリアミド樹脂を含むものであり、その耐熱性により多孔質膜Aを支持・補強する役割を担う。従って、多孔質膜Bを構成する樹脂のガラス転移温度は、好ましくは70℃以上、さらに好ましくは80℃以上、最も好ましくは100℃以上であり、上限は特に限定されない。ガラス転移温度が分解温度よりも高い場合、分解温度が上記範囲内であればよい。ガラス転移温度が70℃よりも低い場合、十分な耐熱破膜温度が得られず、高い安全性を確保できないおそれがある。
 以下、多孔質膜Bに使用するポリアミド樹脂について説明する。
 ポリアミド樹脂は、アミン成分として、エチレンジアミン、1,4-ブタンジアミン等の脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン、ノルボルナンジメチルジアミン、トリシクロデカンジメチルジアミン等の脂環式ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、キシレンジアミン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルスルホン、4,4′-ジアミノジフェニルエーテル等の芳香族ジアミンを用いることができるが、本発明ではイソホロン構造を有するアミン成分を含有することが必要である。このようなイソホロン構造の導入は、セパレーターが非水電解液に浸漬された場合の膨潤や経時劣化を抑えるのに特に有効である。
 ここでイソホロン構造の割合はポリアミド樹脂のアミン成分の10~100モル%の範囲であることが好ましく、より好ましくは30~100モル%の範囲である。イソホロン構造の割合が10モル%未満では、上記の耐電解液性が低下する場合がある。
 一般に、ポリアミド樹脂の合成は、多価カルボン酸クロリドとジアミンを用いる酸クロリド法や多価カルボン酸とジイソシアネートを用いるジイソシアネート法等の溶液重合法又は溶融重合法で行われる。本発明の場合、多孔質膜の製造に用いられるポリアミド樹脂が溶液状態で用いられること及び製造コストの点からジアミンやジイソシネートを用いた溶液重合が好ましい。
 ポリアミド樹脂の合成に用いられる多価カルボン酸成分としては、シュウ酸、アジピン酸、マロン酸、セバチン酸、アゼライン酸、ドデカンジカルボン酸、ジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリル-ブタジエン)、ジカルボキシポリ(スチレン-ブタジエン)等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、4,4′-ジシクロヘキシルメタンジカルボン酸、ダイマー酸等の脂環族ジカルボン酸、テレフタル酸、イソフタル酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸が挙げられる。また、これらの一部をトリメリット酸、トリメシン酸等のトリカルボン酸やピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ジフェニルテトラカルボン酸等のテトラカルボン酸に置き換えることができる。これらの中では、重合性、溶剤溶解性及び耐電解液性の点からは、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸が好ましく、シャットダウン特性からは、ダイマー酸、分子量が1000以上のジカルボキシポリブタジエン、ジカルボキシポリ(アクリロニトリルブタジエン)、ジカルボキシポリ(スチレン-ブタジエン)が好ましい。
 また、ジカルボン酸化合物の一部をグリコールに置き換えてウレタン基を分子内に導入することもできる。グリコールとしては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコールや上記ジカルボン酸の1種又は2種以上と上記グリコールの1種又は2種以上とから合成される末端水酸基のポリエステル等が挙げられ、これらの中ではシャットダウン効果からポリエチレングリコール、末端水酸基のポリエステルが好ましい。また、これらの数平均分子量は500以上が好ましく、1000以上がより好ましい。上限は特に限定されないが8000未満が好ましい。
 多価カルボン酸成分の一部にシクロヘキサンジカルボン酸を用いる場合、多価カルボン酸成分のうち20~70モル%を置き換えることが溶剤溶解性やシャットダウン特性を満足する上で好ましい。また、酸成分の一部をダイマー酸、ポリアルキレンエーテル、ポリエステル並びに末端にカルボキシル基、水酸基及びアミノ基のいずれかを含有するブタジエン系ゴムからなる群のうちの少なくとも1種で置き換える場合は、酸成分のうち、1~60モル%を置き換えることが好ましい。
 ポリアミド樹脂の合成に用いられるジアミン(ジイソシアネート)成分としては、前記イソホロンジアミン(ジイソシアネート)を必須成分とするが、その一部を置き換える成分としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等の脂肪族ジアミン及びこれらのジイソシアネート、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジシクロヘキシルメタンジアミン等の脂環族ジアミン及びこれらのジイソシアネート、m-フェニレンジアミン、p-フェニレンジアミン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルエーテル、4,4′-ジアミノジフェニルスルホン、ベンジジン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミン及びこれらのジイソシアネート等が挙げられ、これらの中では反応性、コスト、耐電解液性の点からジシクロヘキシルメタンジアミン及びこれのジイソシアネートが最も好ましく、4,4′-ジアミノジフェニルメタン、ナフタレンジアミン及びこれらのジイソシアネートが好ましい。
 ポリアミド樹脂を溶液重合で合成する場合、原料成分をN,N′-ジメチルホルムアミド、N,N′-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン等の極性溶剤中、60~200℃に加熱しながら攪拌することで容易に製造することができる。この場合、必要に応じてトリエチルアミン、ジエチレントリアミン等のアミン類、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド等のアルカリ金属塩等を触媒として用いることもできる。
 ポリアミド樹脂は、ガラス転移温度が70℃以上で対数粘度が0.5dl/g以上であることが好ましい。ガラス転移温度が70℃未満では、シャットダウン効果はあるが、メルトダウン温度が低くなり、セパレーターに用いた場合、正極と負極が短絡を起こすおそれがある。一方、ガラス転移温度の上限は、加工性や溶剤溶解性を考慮すると400℃未満が好ましい。また、対数粘度が0.5dl/g未満では、溶融温度の低下により同様の危険性が増すおそれがある。また、分子量が低いために多孔質膜が脆くなるおそれがある。一方、対数粘度の上限は、加工性や溶剤溶解性を考慮すると2.0dl/gであり、さらに好ましくは1.5dl/gである。
 多孔質膜Bは、ポリアミド樹脂に対して可溶で且つ水と混和する溶剤で溶解したポリアミド樹脂溶液(ワニス)を所定の基材フィルムに塗布し、加湿条件下でポリアミド樹脂と、水と混和する溶剤を相分離させ、さらに水浴(凝固浴)に投入してポリアミド樹脂を凝固させることによって得られる。必要に応じてワニスに相分離助剤を添加しても良い。
 ポリアミド樹脂を溶解するために使用できる溶剤としては、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、リン酸ヘキサメチルトリアミド(HMPA)、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、γ-ブチロラクトン、クロロホルム、テトラクロロエタン、ジクロロエタン、3-クロロナフタレン、パラクロロフェノール、テトラリン、アセトン、アセトニトリルなどが挙げられ、樹脂の溶解性に応じて自由に選択できる。
 ワニスの固形分濃度は、均一に塗布できれば特に制限されないが、2重量%以上、50重量%以下が好ましく、4重量%以上、40重量%以下がさらに好ましい。固形分濃度が2重量%未満では得られた多孔質膜Bが脆くなる場合がある。また、50重量%を超えると多孔質膜Bの厚み制御が困難となる場合がある。
 本発明で用いる相分離助剤は、水、エチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサンジオール等のアルキレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール、水溶性ポリエステル、水溶性ポリウレタン、ポリビニルアルコール、カルボキシメチルセルロースなどから選ばれる。その添加量はワニスの溶液重量に対して好ましくは10~90重量%、さらに好ましくは20~80重量%、最も好ましくは30~70重量%の範囲である。
 これらの相分離助剤をワニスに混合することによって、主に透気抵抗度、表面開孔率、層構造の形成速度をコントロールすることができる。上記範囲よりも添加量が少ない場合、相分離速度の顕著な上昇は見られないことがあり、また、上記範囲よりも多い場合、塗布液が混合段階で白濁して樹脂成分が析出してしまうおそれがある。
 また、多孔質層Bの熱収縮率を低減し、滑り性を付与するために、ワニスに無機粒子あるいは耐熱性高分子粒子を添加してもよい。粒子を添加する場合、その添加量の上限としては95質量%が好ましい。添加量が95質量%を超えると多孔質膜Bの総体積に対してポリアミド樹脂の割合が小さくなり、多孔質膜Aに対するポリアミド樹脂の十分な密着性が得られない場合がある。
 無機粒子としては、炭酸カルシウム、リン酸カルシウム、非晶性シリカ、結晶性のガラスフィラー、カオリン、タルク、二酸化チタン、アルミナ、シリカーアルミナ複合酸化物粒子、硫酸バリウム、フッ化カルシウム、フッ化リチウム、ゼオライト、硫化モリブデン、マイカなどが挙げられる。また、耐熱性高分子粒子としては、架橋ポリスチレン粒子、架橋アクリル系樹脂粒子、架橋メタクリル酸メチル系粒子、ベンゾグアナミン・ホルムアルデヒド縮合物粒子、メラミン・ホルムアルデヒド縮合物粒子、ポリテトラフルオロエチレン粒子などが挙げられる。
 また、多孔質膜Bの膜厚は好ましくは1~5μm、さらに好ましくは1~4μm、最も好ましくは1~3μmである。膜厚が1μmよりも薄い場合、多孔質膜Aが融点以上で溶融・収縮した際の破膜強度と絶縁性を確保できないおそれがある。膜厚が5μmよりも厚い場合、複合多孔質膜中の多孔質膜Aの占める割合が少なく、十分な孔閉塞機能が得られず、異常反応を抑制できないことがある。また、巻き嵩が大きくなり、今後、進むであろう電池の高容量化には適さないおそれがある。
 多孔質膜Bの空孔率は30~90%が好ましく、更に好ましくは40~70%である。空孔率が30%未満では、膜の電気抵抗が高くなり、大電流を流しにくくなる。一方、90%を超えると、膜強度が弱くなる傾向にある。また、多孔質膜Bの透気抵抗度は、JIS-P8117に準拠した方法により測定した値が1~2000秒/100ccAirであることが好ましい。より好ましくは50~1500秒/100ccAir、さらに好ましくは100~1000秒/100ccAirである。透気抵抗度が1秒/100ccAir未満では膜強度が弱くなり、2000秒/100ccAirを越えるとサイクル特性が悪くなることがある。
 多孔質膜Aと多孔質膜Bを積層して得られた複合多孔質膜の全体の厚さの上限は13μmであり、さらに好ましくは12μmである。全体の厚さの下限は6μm以上が好ましく、さらに好ましくは7μm以上である。13μmよりも厚い場合には透気抵抗度上昇幅が大きくなる場合がある他、容器内に充填できる電極面積が減少することにより容量の低下を回避することが困難になる恐れがある。また、6μmよりも薄い場合には、十分な機械強度と絶縁性を確保することが困難になることがある。
 本発明の複合多孔質膜は、多孔質膜Aの透気抵抗度(X秒/100ccAir)と複合多孔質膜全体の透気抵抗度(Y秒/100ccAir)の差(Y-X)が20秒/100ccAir≦Y-X≦100秒/100ccAirの関係を有する。Y-Xが20秒/100ccAir未満では、十分なポリアミド樹脂層の密着性が得られない。また、100秒/100ccAirを超えると、透気抵抗度の大幅な上昇を招き、その結果、電池に組み込んだ際に、イオン透過性が低下するため、高性能電池には適さないセパレーターとなる。
 さらに複合多孔質膜の透気抵抗度は、好ましくは50~600秒/100ccAir、さらに好ましくは100~500秒/100ccAir、最も好ましくは100~400秒/100ccAirである。50秒/100ccAirよりも透気抵抗度の値が低い場合、十分な絶縁性が得られず異物詰まりや短絡、破膜を招く可能性がある。一方、600秒/100ccAirよりも値が高い場合には膜抵抗が高く実使用可能な範囲の充放電特性、寿命特性が得られない場合がある。
 本発明で用いる複合多孔質膜の空孔率の上限は80%、好ましくは70%、さらに好ましくは60%である。空孔率の下限は30%、好ましくは35%、さらに好ましくは40%である。空孔率が80%よりも高い場合は、十分な機械的強度と絶縁性が得られず、充放電時に短絡が起こる可能性が高くなる。一方、30%よりも低い場合は、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)、電池の寿命(電解液の保持量と密接に関係する)において十分ではなく、これらの範囲を超えた場合、電池としての機能を十分に発揮することができなくなる可能性がある。複合多孔質膜の空孔率は、多孔質膜Aと多孔質膜Bの樹脂密度及び膜厚から複合多孔質膜の見かけの樹脂密度を計算し、後述の空孔率の計算式から求めることができる。
 次に本発明の複合多孔質膜の製造方法について説明する。
 本発明の複合多孔質膜の製造方法では、まず、ポリエステル系フィルム又はポリオレフィン系フィルム等の基材フィルム上にワニス(ポリアミド樹脂溶液)を塗布した後、低湿度ゾーンに通過させる。この間にワニス中のポリアミド樹脂と該樹脂を溶解させている溶剤とを相分離させる。
 前記ワニスを塗布する方法としては例えば、リバースロールコート法、グラビアコート法、キスコート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法、ブレードコート法およびダイコート法などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。
 本発明でいう低湿度ゾーンとは、絶対湿度が6g/m未満に調整されたゾーンである。絶対湿度の好ましい上限は4g/m、さらに好ましくは3g/mであり、下限は好ましくは0.5g/m、より好ましくは0.8g/mである。絶対湿度が0.5g/m未満では相分離が十分に行われないため最終的に多孔質膜になりにくく、透気抵抗度上昇幅が大きくなってしまう場合がある。また、絶対湿度が6g/m以上では相分離と平行してポリアミド樹脂の凝固が始まり、多孔質膜Aを貼り合わせる際、多孔質膜Aへのポリアミド樹脂の浸透が十分行われず、十分なポリアミド樹脂の密着性が得られない。低湿度ゾーンの通過時間は、3秒以上20秒以下であることが好ましい。3秒未満では前記相分離が十分行われないおそれがあり、一方、20秒を超えるとポリアミド樹脂の凝固が進行しすぎるおそれがある。
 次いで、該塗布フィルムを高湿度ゾーンに通過させて基材フィルム上に半ゲル状のポリアミド樹脂膜を形成させる。本発明で言う高湿度ゾーンとは、絶対湿度の下限が6g/m、好ましくは7g/m、さらに好ましくは8g/mに、絶対湿度の上限が25g/m、好ましくは17g/m、さらに好ましくは15g/mに調整されたゾーンである。絶対湿度が6g/m未満ではゲル状化(非流動状化)が十分に行われないため、多孔質膜Aを貼り合わせる際、多孔質膜Aへのポリアミド樹脂の浸透が進みすぎ、透気抵抗度上昇幅が大きくなる。絶対湿度が25g/mを超えるとポリアミド樹脂の凝固が進みすぎ、多孔質膜Aへのポリアミド樹脂の浸透が小さくなりすぎ、十分な密着性が得られない場合がある。高湿度ゾーンの通過時間は、3秒以上10秒以下であることが好ましい。3秒未満ではゲル状化(非流動状化)が十分に行われないため、多孔質膜Aを貼り合わせる際、多孔質膜Aへのポリアミド樹脂の浸透が進みすぎ、透気抵抗度上昇幅が大きくなるおそれがある。一方、10秒を超えるとポリアミド樹脂の凝固が進みすぎ、多孔質膜Aへのポリアミド樹脂の浸透が小さくなりすぎ、十分な密着性が得られないおそれがある。
 なお、低湿度ゾーン、高湿度ゾーンともに温度条件は、絶対湿度が上記範囲内であれば特に限定されないが、省エネルギーの観点から20℃以上、50℃以下が好ましい。また、前記基材フィルムの厚さは平面性を維持できる厚さであれば特に限定されないが、25μmから100μmの厚さが好適である。25μm未満では十分な平面性が得られない場合がある。また、100μmを超えても平面性は向上しない。
 次に、このようにして形成された半ゲル状のポリアミド樹脂膜の上に、多孔質膜Aを、気泡を含まないように貼り合わせる。貼り合わせる方法としては、二方向から来たフィルムを一つの金属ロールの面上で合わせる方法がフィルムに与えるダメージが少なく好ましい。ここで半ゲル状とは、雰囲気中の水分の吸収による、ポリアミド樹脂溶液のゲル化が進行する過程でゲル化した領域と、溶液状態を保持している領域が混在している状態を言う。
 半ゲル状のポリアミド樹脂膜上に、多孔質膜Aを貼り合わせる時期は高湿度ゾーンを通過した直後、少なくとも10秒以内に貼り合わせるのが好ましい。10秒を超えるとポリアミド樹脂膜の凝固が進み十分な多孔質膜Bの密着性が得られない場合がある。
 ポリアミド樹脂膜の形成後、基材フィルムを剥離してもよいが、本発明の方法では、基材フィルムを剥離することなく多孔質膜Aをポリアミド樹脂膜に貼り合わせることが好ましい。この方法を用いる場合、弾性率が低く、加工時の張力によってネッキングするような柔らかい多孔質膜Aを用いる場合でも複合多孔質膜の製造が可能になる。具体的には、ガイドロール通過時に複合多孔質膜にシワ、折れが入らない、乾燥時のカールを低減できるなど工程作業性に優れる特徴が期待できる。この時、基材と複合多孔質膜を同時に巻き取っても、乾燥工程を通過してから基材と複合多孔質膜を別々の巻き取りロールに巻き取っても良いが、後者の巻き取り方法の方が巻きズレの恐れが少なく好ましい。
 次に、貼り合わされた多孔質膜Aとポリアミド樹脂膜を凝固浴に浸漬させて、ポリアミド樹脂膜を相転換させて多孔質膜Bに変換させる。凝固浴の組成は、特に限定されないが、例えば、多孔質膜Bを構成するポリアミド樹脂に対する良溶媒を1~20重量%、さらに好ましくは5~15重量%含有する水溶液であることができる。凝固浴への浸漬により、多孔質膜Bは、全面に渡って多孔質膜Aに転写され、未洗浄の複合多孔質膜が得られる。これは多孔質膜Bの一部が多孔質膜Aの細孔に適度に食い込みアンカー効果が発現しているためである。
 さらに、上記の未洗浄多孔質膜を、純水などを用いた洗浄工程、及び100℃以下の熱風などを用いた乾燥工程に供し、最終的な複合多孔質膜を得ることができる。
 洗浄については、加温、超音波照射やバブリングといった一般的な手法を用いることができる。さらに、各浴槽内の濃度を一定に保ち、洗浄効率を上げるためには、浴間で多孔膜内部の溶液を取り除く手法が有効である。具体的には、空気または不活性ガスで多孔層内部の溶液を押し出す手法、ガイドロールによって物理的に膜内部の溶液を絞り出す手法などが挙げられる。
 本発明の方法によれば、多孔質膜Aの厚みが10μm未満の場合においても、密着性と透気抵抗度のバランスに優れた複合多孔質膜が得られる。
 本発明の複合多孔質膜は、目的幅にスリットされたポリオレフィン系多孔質膜を多孔質膜Aとして用いて作成することもできるが、ポリオレフィン多孔質膜作成時にオンラインで続いて加工することも可能である。ここでオンラインとは、ポリオレフィン多孔質膜の製造工程(具体的には、洗浄後の乾燥工程)後に、連続して多孔質膜Bを積層し、凝固、洗浄、スリットの各工程を経て目的とする複合多孔質膜を得る手段を言う。上記オンライン塗工を行うことで、大量生産が可能となり、コスト面で非常にメリットがある。
 本発明の複合多孔質膜は、乾燥状態で保存することが望ましいが、絶乾状態での保存が困難な場合は、使用の直前に100℃以下の減圧乾燥処理を行うことが好ましい。
 本発明の複合多孔質膜は、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウム一次電池およびリチウムイオン二次電池、リチウムポリマー二次電池等のなどの電池用セパレーターとして用いることができるが、特にリチウムイオン二次電池のセパレーターとして用いるのが好ましい。以下にリチウムイオン二次電池を例にとって説明する。
 リチウムイオン二次電池は、正極と負極がセパレーターを介して積層されており、セパレーターは電解液(電解質)を含有している。電極の構造は特に限定されず、公知の構造であることができる。例えば、円盤状の正極及び負極が対向するように配設された電極構造(コイン型)、平板状の正極及び負極が交互に積層された電極構造(積層型)、帯状の正極及び負極が重ねられて巻回された電極構造(巻回型)等の構造とすることができる。
 正極は、集電体とその表面に形成されたリチウムイオンを吸蔵放出可能な正極活物質を含む正極活物質層とを有する。正極活物質としては、遷移金属酸化物、リチウムと遷移金属との複合酸化物(リチウム複合酸化物)、遷移金属硫化物等の無機化合物等が挙げられ、遷移金属としては、V、Mn、Fe、Co、Ni等が挙げられる。正極活物質の中でリチウム複合酸化物の好ましい例としては、ニッケル酸リチウム、コバルト酸リチウム、マンガン酸リチウム、α-NaFeO型構造を母体とする層状リチウム複合酸化物等が挙げられる。
 負極は、集電体とその表面に形成された負極活物質を含む負極活物質層とを有する。負極活物質としては、天然黒鉛、人造黒鉛、コークス類、カーボンブラック等の炭素質材料が挙げられる。電解液はリチウム塩を有機溶媒に溶解することにより得られる。リチウム塩としては、LiClO、LiPF、LiAsF、LiSbF、LiBF、LiCFSO、LiN(CFSO、LiC(CFSO、Li10Cl10、LiN(CSO、LiPF(CF、LiPF(C、低級脂肪族カルボン酸リチウム塩、LiAlCl等が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、エチルメチルカーボネート、γ-ブチロラクトン等の高沸点及び高誘電率の有機溶媒や、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン、ジオキソラン、ジメチルカーボネート、ジエチルカーボネート等の低沸点及び低粘度の有機溶媒が挙げられる。これらは単独で用いても2種以上を混合して用いてもよい。特に高誘電率の有機溶媒は粘度が高く、低粘度の有機溶媒は誘電率が低いため、両者を混合して用いるのが好ましい。
 電池を組み立てる際に、セパレーター(複合多孔質膜)に電解液を含浸させる。これによりセパレーターにイオン透過性を付与することができる。通常、含浸処理は多孔質膜を常温で電解液に浸漬して行う。例えば、円筒型電池を組み立てる場合、まず正極シート、セパレーター(複合多孔質膜)、及び負極シートをこの順に積層し、この積層体を一端より巻き取って巻回型電極素子とする。次にこの電極素子を電池缶に挿入し、上記電解液を含浸させ、さらに安全弁を備えた正極端子を兼ねる電池蓋を、ガスケットを介してかしめることにより電池を得ることができる。
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で測定した。
(1)膜厚
 接触式膜厚計(ソニーマニュファクチュアリング社製 デジタルマイクロメーター M-30)を使用して測定した。
(2)多孔質膜Aと多孔質膜Bの界面での剥離強度
 実施例及び比較例で得られたセパレーターの多孔質膜B面に粘着テープ(ニチバン社製、405番;24mm幅)を貼り、幅24mm、長さ150mmに裁断し、試験用サンプルを作製した。
 23℃、50%RH条件下で引張り試験機[エー・アンド・デイ社製「テンシロンRTM-100」]を用いて、ピール法(剥離速度500mm/分、T型剥離)にて多孔質膜Aと多孔質膜Bの界面での剥離強度を測定した。測定開始から測定終了までの100mmの間において、経時的に測定し、測定値の平均値を算出し、幅25mm当たりの値に換算して剥離強度とした。なお、前記剥離界面において、多孔質膜A側に多孔質膜B面が残存する場合があるが、この場合も多孔質膜Aと多孔質膜Bの界面での剥離強度として算出した。
(3)平均孔径
 多孔質膜Aの平均孔径は以下の方法で測定した。試験片を測定用セルに上に両面テープを用いて固定し、プラチナまたは金を数分間真空蒸着させ、適度な倍率で測定を行った。SEM測定で得られた画像上で最も手前に観察される任意の10箇所を選択し、それら10箇所の孔径の平均値を試験片の平均孔径とした。なお、孔が略円形でない場合には、長径と短径を足して2で割った値を孔径とした。
(4)透気抵抗度
 テスター産業(株)社製のガーレー式デンソメーターB型を使用して、複合多孔質膜をクランピングプレートとアダプタープレートの間にシワが入らないように固定し、JIS P-8117に従って測定した。試料としては10cm角のものを2枚用意し、それぞれの試料について、試料の中央部と4隅を測定点として合計10点の測定を行い、10点の平均値を透気抵抗度[秒/100ccAir]として用いた。なお、試料の1辺の長さが10cmに満たない場合は5cm間隔で10点測定した値を用いてもよい。
(5)対数粘度
 ポリアミド樹脂0.5gを100mlのNMPに溶解した溶液を25℃でウベローデ粘度管を用いて測定した。
(6)ガラス転移温度
 ポリアミド樹脂溶液、または複合多孔質膜を良溶媒に漬けてポリアミド樹脂膜のみを溶解させた樹脂溶液を、アプリケーターによってPETフィルム(東洋紡績製E5001)あるいはポリプロピレンフィルム(東洋紡績製パイレン-OT)に適当なギャップで塗布し、120℃10分間予備乾燥した後に剥離して、適当な大きさの金枠に耐熱粘着テープで固定した状態で、さらに真空下で200℃12時間乾燥し、乾式フィルムを得た。得られた乾式フィルムから幅4mm×長さ21mmの試験片を切り取り、測定長15mmで動的粘弾性測定装置(アイティー計測制御製DVA―220)を用いて、110Hz、昇温速度4℃/分の条件下で室温から450℃までの範囲で貯蔵弾性率(E′)を測定した。この時の貯蔵弾性率(E′)の屈折点において、ガラス転移温度以下のベースラインの延長線と、屈折点以上における最大傾斜を示す接線との交点の温度をガラス転移温度とした。
(7)空孔率
 10cm角の試料を用意し、その試料体積(cm)と質量(g)を測定し、得られた結果から次式を用いて空孔率(%)を計算した。なお、10cm角試料の試料体積(cm)は、10(cm)×10(cm)×多孔質膜Aの厚み(cm)で求めることができる。
 空孔率=(1-質量/(樹脂密度×試料体積))×100
実施例1
 温度計、冷却管、窒素ガス導入管のついた4ツ口フラスコにセバチン酸1モル、イソホロンジイソシアネート(IPDI)1モル、フッ化カリウム0.02モルを固形分濃度が50%となるようにN-メチル-2-ピロリドンと共に仕込み、180℃で5時間攪拌した後、N-メチル-2-ピロリドンで固形分濃度が10%となるように希釈してポリアミド樹脂溶液(a)を合成した。得られたポリアミド樹脂の対数粘度は0.65dl/g、ガラス転移温度は130℃であった。
 このポリアミド樹脂溶液(a)48質量部をN-メチル-2-ピロリドン39質量部で希釈して、さらにエチレングリコール13質量部を加え、ワニス(a)(固形分濃度5.3重量%)を調合した。厚み50μmのポリエチレンテレフタレート樹脂フィルム(基材フィルム;東洋紡績製E5101)のコロナ処理面にワニス(a)をブレードコート法にて塗布し、温度25℃、絶対湿度1.8g/mの低湿度ゾーンを8秒間で通過させ、引き続き温度25℃、絶対湿度12g/mの高湿度ゾーンを5秒間で通過させて半ゲル状のポリアミド樹脂膜を形成させた。耐熱性樹脂膜が高湿度ゾーンから出た1.7秒後に多孔質膜A(ポリエチレン製多孔質膜、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)を、上記の半ゲル状ポリアミド樹脂膜に重ね、N-メチル-2-ピロリドンを5重量%含有する水溶液中に進入させ、その後、純水で洗浄した後、70℃の熱風乾燥炉を通過させることで乾燥し、最終厚み11.6μmの複合多孔質膜を得た。
実施例2
 低湿度ゾーンの絶対湿度を4.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例3
 低湿度ゾーンの絶対湿度を5.5g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例4
 高湿度ゾーンの絶対湿度を7.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例5
 高湿度ゾーンの絶対湿度を16.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例6
 低湿度ゾーン及び高湿度ゾーンの通過時間をそれぞれ5.3秒、3.0秒とし、高湿度ゾーン出口から多孔質膜Aを貼り合わせるまでの時間を1.1秒とした以外は実施例1と同様にして複合多孔質膜を得た。
実施例7
 低湿度ゾーン及び高湿度ゾーンの通過時間をそれぞれ16.0秒、10.0秒とし、高湿度ゾーン出口から多孔質膜Aを貼り合わせるまでの時間を3.4秒とした以外は実施例1と同様にして複合多孔質膜を得た。
実施例8
 多孔質膜Aとして厚み9.5μm、空孔率40%、平均孔径0.15μm、透気抵抗度320秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例9
 多孔質膜Aとして厚み7.0μm、空孔率40%、平均孔径0.15μm、透気抵抗度220秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例10
 実施例1の酸成分をイソフタル酸0.5モル、セバチン酸0.5モル、イソホロンジイソシアネート0.505モル、ジフェニルメタン-4,4′-ジイソシアネート(MDI)0.505モル、フッ化カリウム0.02モルを固形分濃度が50%となるようにN-メチル-2-ピロリドンと共に仕込み、120℃で1時間、さらに180℃で3時間反応させた後、冷却しながら、N-メチル-2-ピロリドンで固形分濃度が10%となるように希釈してポリアミド樹脂溶液(b)を合成した。得られたポリアミド樹脂の対数粘度は0.7dl/g、ガラス転移温度は135℃であった。ポリアミド樹脂溶液(a)をポリアミド樹脂溶液(b)に替えたワニス(b)(固形分濃度5.3重量%)を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例11
 ポリアミド樹脂溶液(a)32.6質量部及び平均粒径0.5μmのアルミナ粒子10.5質量部をN-メチル-2-ピロリドン48.4質量部で希釈して、さらにエチレングリコール8.5質量部を加え、酸化ジルコニウムビーズ(東レ社製、商品名「トレセラムビーズ」、直径0.5mm)と共に、ポリプロピレン製の容器に入れ、ペイントシェーカー(東洋精機製作所製)で6時間分散させた。次いで、濾過限界5μmのフィルターで濾過し、ワニス(c)(固形分濃度31.0重量%)を調合した。ワニス(a)をワニス(c)に替えた以外は実施例1と同様にして複合多孔質膜を得た。
実施例12
 アルミナ粒子を酸化チタン粒子(チタン工業社製、商品名「KR-380」、平均粒子径0.38μm)に替えた以外は実施例11と同様にしてワニス(d)(固形分濃度31.0重量%)を調合した。ワニス(a)をワニス(d)に替えた以外は実施例11と同様にして複合多孔質膜を得た。
実施例13
 ワニス(a)の塗布量を調整し、最終厚み10.3μmとした以外は実施例1と同様にして複合多孔質膜を得た。
実施例14
 多孔質膜Aとして厚み6.5μm、空孔率38%、平均孔径0.15μm、透気抵抗度210秒/100ccAirのポリエチレン製多孔質膜を用いた以外は実施例1と同様にして複合多孔質膜を得た。
実施例15
 低湿度ゾーンの絶対湿度を1.2g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例1
 低湿度ゾーンを温度25℃、絶対湿度7.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例2
 高湿度ゾーンを温度25℃、絶対湿度5.0g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例3
 多孔質膜A(ポリエチレン製、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)にワニス(a)をブレードコート法にて塗布し、温度25℃、絶対湿度1.8g/mの低湿度ゾーンを8秒間で通過させ、引き続き温度25℃、絶対湿度12g/mの高湿度ゾーンを5秒間で通過させた。次いで2秒後に、N-メチル-2-ピロリドンを5重量%含有する水溶液中に進入させ、その後、純水で洗浄した後、70℃の熱風乾燥炉を通過させることで乾燥し、最終厚み11.8μmの複合多孔質膜を得た。
比較例4
 多孔質膜A(ポリエチレン製、厚み9μm、空孔率45%、平均孔径0.15μm、透気抵抗度240秒/100ccAir)を事前にN-メチル-2-ピロリドンに浸漬して細孔内をN-メチル-2-ピロリドンで満たして用いた以外は比較例3と同様にして複合多孔質膜を得た。
比較例5
 ポリエチレンテレフタレート樹脂フィルム(東洋紡績製E5101、厚さ50μm)のコロナ処理面にワニス(a)をブレードコート法にて塗布し、引き続き温度25℃、絶対湿度18.4g/mの高湿度ゾーンを30.0秒間で通過させ、1.7秒後に多孔質膜Aとして厚み10μm、空孔率47%、平均孔径0.20μm、透気抵抗度80秒/100ccAirのポリエチレン製多孔膜を重ねた以外は実施例1と同様にして複合多孔質膜を得た。
比較例6
 高湿度ゾーンの絶対湿度25.5g/mとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例7
 ワニス(a)の塗布量を調整し、最終厚み14.4μmとした以外は実施例1と同様にして複合多孔質膜を得た。
比較例8
 実施例1でセバチン酸を1.02モル、IPDIを1モルとした以外は同じ条件でポリアミド樹脂溶液(c)を合成した。得られたポリアミド樹脂の対数粘度は0.31dl/g、ガラス転移温度は128℃であった。ポリアミド樹脂溶液(a)をポリアミド樹脂溶液(c)に替えたワニス(e)(固形分濃度5.3重量%)を用いた以外は実施例1と同様にして複合多孔質膜を得た。
 実施例1~15、比較例1~8の複合多孔質膜の製造条件、並びに多孔質膜A及び複合多孔質膜の特性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の複合多孔質膜は、今後ますます薄膜化が進んだ場合においても、優れたポリアミド樹脂層の密着性と小さい透気抵抗度上昇幅が両立しており、電池の高容量化、高イオン透過性、および、電池組み立て加工工程における高速加工性に適し、特にリチウムイオン二次電池用セパレーターに好適である。
 

Claims (7)

  1.  電池用セパレーターとして用いる複合多孔質膜であって、ポリオレフィン系樹脂からなる多孔質膜Aにアミン成分にイソホロン構造を含有するポリアミド樹脂を含む多孔質膜Bが積層された複合多孔質膜であり、該多孔質膜が下記式(A)~(F)を満足することを特徴とする複合多孔質膜。
     多孔質膜Aの厚さ<10μm        ・・・・・式(A)
     0.01μm≦多孔質膜Aの平均孔径≦0.3μm 
                          ・・・・・式(B)
     30%≦多孔質膜Aの空孔率≦70%    ・・・・・式(C)
     複合多孔質膜全体の厚さ≦13μm     ・・・・・式(D)
     多孔質膜Aと多孔質膜Bの界面での剥離強度≧1.0N/25mm
                          ・・・・・式(E)
     20≦Y-X≦100           ・・・・・式(F)
    (Xは多孔質膜Aの透気抵抗度(秒/100ccAir)、Yは複合多孔質膜全体の透気抵抗度(秒/100ccAir)である)
  2.  ポリアミド樹脂がアミン成分に対して10~100モル%の割合でイソホロン構造を含有することを特徴とする請求項1に記載の複合多孔質膜。
  3.  複合多孔質膜の透気抵抗度が50~600秒/100ccAirであることを特徴とする請求項1又は2に記載の複合多孔質膜。
  4.  以下の工程(i)及び(ii)を含むことを特徴とする請求項1~3のいずれかに記載の複合多孔質膜の製造方法。
     工程(i):基材フィルム上にポリアミド樹脂溶液を塗布した後、絶対湿度6g/m未満の低湿度ゾーンを通過させ、次いで、絶対湿度6g/m以上25g/m以下の高湿度ゾーンを通過させて基材フィルム上にポリアミド樹脂膜を形成する工程、および
     工程(ii):工程(i)で形成されたポリアミド樹脂膜とポリオレフィン系樹脂からなる多孔質膜Aとを貼り合わせた後、凝固浴に浸漬させてポリアミド樹脂膜を多孔質膜Bに変換させ、洗浄、乾燥し、複合多孔質膜を得る工程。
  5.  基材フィルムが、工程(ii)で複合多孔質膜を得た後に剥離されることを特徴とする請求項4に記載の複合多孔質膜の製造方法。
  6.  基材フィルムが厚さ25~100μmのポリエステル系フィルム又はポリオレフィン系フィルムであることを特徴とする請求項4又は5に記載の複合多孔質膜の製造方法。
  7.  工程(i)において低湿度ゾーンの通過時間が3秒以上20秒以下であり、高湿度ゾーンの通過時間が3秒以上10秒以下であることを特徴とする請求項4~6のいずれかに記載の複合多孔質膜の製造方法。
PCT/JP2011/069409 2010-09-02 2011-08-29 複合多孔質膜及びその製造方法 WO2012029698A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012531855A JP5636618B2 (ja) 2010-09-02 2011-08-29 複合多孔質膜及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010196757 2010-09-02
JP2010-196757 2010-09-02

Publications (1)

Publication Number Publication Date
WO2012029698A1 true WO2012029698A1 (ja) 2012-03-08

Family

ID=45772785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069409 WO2012029698A1 (ja) 2010-09-02 2011-08-29 複合多孔質膜及びその製造方法

Country Status (2)

Country Link
JP (1) JP5636618B2 (ja)
WO (1) WO2012029698A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121971A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
WO2013122010A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249974A (ja) * 1997-03-13 1998-09-22 Nitto Denko Corp 積層型多孔質フィルム、その用途および製造法
JP2004139867A (ja) * 2002-10-18 2004-05-13 Nitto Denko Corp 複合多孔質フィルム
JP2005314635A (ja) * 2004-03-31 2005-11-10 Toyobo Co Ltd 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
WO2006123798A1 (ja) * 2005-05-20 2006-11-23 Sumitomo Chemical Company, Limited 多孔質フィルムおよび積層多孔質フィルム
JP2007095575A (ja) * 2005-09-29 2007-04-12 Japan Vilene Co Ltd 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法、及び非水電解質二次電池
JP2007125821A (ja) * 2005-11-04 2007-05-24 Toyobo Co Ltd 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池セパレーター、電池及びコンデンサ
WO2008149895A1 (ja) * 2007-06-06 2008-12-11 Teijin Limited 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
JP2009087562A (ja) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP2009283273A (ja) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd 電池用セパレータおよび電池
JP2010052237A (ja) * 2008-08-27 2010-03-11 Asahi Kasei E-Materials Corp 積層微多孔性フィルム及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249974A (ja) * 1997-03-13 1998-09-22 Nitto Denko Corp 積層型多孔質フィルム、その用途および製造法
JP2004139867A (ja) * 2002-10-18 2004-05-13 Nitto Denko Corp 複合多孔質フィルム
JP2005314635A (ja) * 2004-03-31 2005-11-10 Toyobo Co Ltd 多孔質膜とその製造法及びこれを用いたリチウムイオン二次電池
WO2006123798A1 (ja) * 2005-05-20 2006-11-23 Sumitomo Chemical Company, Limited 多孔質フィルムおよび積層多孔質フィルム
JP2007095575A (ja) * 2005-09-29 2007-04-12 Japan Vilene Co Ltd 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法、及び非水電解質二次電池
JP2007125821A (ja) * 2005-11-04 2007-05-24 Toyobo Co Ltd 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池セパレーター、電池及びコンデンサ
WO2008149895A1 (ja) * 2007-06-06 2008-12-11 Teijin Limited 非水系二次電池セパレータ用ポリオレフィン微多孔膜基材、その製造方法、非水系二次電池セパレータおよび非水系二次電池
JP2009087562A (ja) * 2007-09-27 2009-04-23 Sanyo Electric Co Ltd 非水電解質電池用セパレータ及び非水電解質電池
JP2009283273A (ja) * 2008-05-22 2009-12-03 Hitachi Maxell Ltd 電池用セパレータおよび電池
JP2010052237A (ja) * 2008-08-27 2010-03-11 Asahi Kasei E-Materials Corp 積層微多孔性フィルム及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121971A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
WO2013122010A1 (ja) * 2012-02-15 2013-08-22 東レバッテリーセパレータフィルム株式会社 電池用セパレータ、および、電池用セパレータの製造方法
US9023506B2 (en) 2012-02-15 2015-05-05 Toray Battery Separator Film Co., Ltd. Battery separator, and battery separator manufacturing method
US9293754B2 (en) 2012-02-15 2016-03-22 Toray Battery Separator Film Co., Ltd. Battery separator, and battery separator manufacturing method

Also Published As

Publication number Publication date
JPWO2012029698A1 (ja) 2013-10-28
JP5636618B2 (ja) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5648481B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP5495210B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
JP6160013B2 (ja) 電池用セパレータ、および、電池用セパレータの製造方法
JP5870925B2 (ja) 複合多孔質膜及びその製造方法
JP4946006B2 (ja) 複合多孔質膜及びその製造方法
JP5636619B2 (ja) 複合多孔質膜及びその製造方法
JP5532430B2 (ja) 複合多孔質膜、複合多孔質膜の製造方法並びにそれを用いた電池用セパレーター
KR20160065100A (ko) 폴리올레핀 다공질 막, 이를 이용한 전지용 세퍼레이터 및 이들의 제조 방법
JP5358774B1 (ja) 電池セパレータ及びその製造方法
JP6048753B2 (ja) 電池用セパレータ、および、電池用セパレータの製造方法
JP5636618B2 (ja) 複合多孔質膜及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012531855

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11821714

Country of ref document: EP

Kind code of ref document: A1