WO2012029389A1 - 作業車両の走行制御装置 - Google Patents

作業車両の走行制御装置 Download PDF

Info

Publication number
WO2012029389A1
WO2012029389A1 PCT/JP2011/064570 JP2011064570W WO2012029389A1 WO 2012029389 A1 WO2012029389 A1 WO 2012029389A1 JP 2011064570 W JP2011064570 W JP 2011064570W WO 2012029389 A1 WO2012029389 A1 WO 2012029389A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
tilt angle
low
gear ratio
work vehicle
Prior art date
Application number
PCT/JP2011/064570
Other languages
English (en)
French (fr)
Inventor
恭央 山崎
章禄 川原
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to EP11821407.1A priority Critical patent/EP2589836A4/en
Priority to US13/818,799 priority patent/US20130152574A1/en
Priority to KR1020137001919A priority patent/KR20130124475A/ko
Priority to CN2011800368200A priority patent/CN103026099A/zh
Publication of WO2012029389A1 publication Critical patent/WO2012029389A1/ja
Priority to US14/985,748 priority patent/US20160194854A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2079Control of mechanical transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/283Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a single arm pivoted directly on the chassis
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/202Mechanical transmission, e.g. clutches, gears
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2253Controlling the travelling speed of vehicles, e.g. adjusting travelling speed according to implement loads, control of hydrostatic transmission
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/02Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the volumetric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/4148Open loop circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/42Control of exclusively fluid gearing hydrostatic involving adjustment of a pump or motor with adjustable output or capacity
    • F16H61/421Motor capacity control by electro-hydraulic control means, e.g. using solenoid valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/38Control of exclusively fluid gearing
    • F16H61/40Control of exclusively fluid gearing hydrostatic
    • F16H61/46Automatic regulation in accordance with output requirements
    • F16H61/462Automatic regulation in accordance with output requirements for achieving a target speed ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means

Definitions

  • the present invention relates to a travel control device for a work vehicle such as a wheel loader.
  • a transmission using a clutch that can be controlled only in a fully engaged state or a completely disconnected state, and suppressing occurrence of shock when the clutch is disengaged and then reengaged Is known (see Patent Document 1). Specifically, by controlling the swash plate angle of the hydraulic pump and matching the rotational speeds of the upstream and downstream powers of the clutch, the occurrence of shift shock when the clutch is engaged again is reduced.
  • Patent Document 1 Since the apparatus of Patent Document 1 described above is configured to reduce the shift shock by matching the rotational speeds of the clutch upstream and downstream powers, there is a synchronization mechanism for matching the rotational speeds. It becomes necessary.
  • a traveling control device for a work vehicle includes a variable displacement hydraulic pump driven by an engine, a variable circuit hydraulically connected to the hydraulic pump and driven by pressure oil from the hydraulic pump.
  • a displacement type hydraulic motor a first control unit that controls a motor tilt angle of the hydraulic motor by an electric signal, a high clutch unit that transmits power at a first speed ratio, and a first speed ratio that is larger than the first speed ratio.
  • a clutch device having a low clutch portion for transmitting power at a gear ratio of 2, a constant meshing transmission for transmitting or interrupting power from a hydraulic motor, and a second gear shift from the first gear ratio to the transmission.
  • a second control unit that controls the first control unit to reduce the motor tilt angle to a predetermined value when switching to the ratio.
  • the predetermined value of the motor tilt angle is larger than the minimum tilt angle of the hydraulic motor, and the work vehicle is driven by the hydraulic motor. It is preferable that the minimum motor tilt angle is possible.
  • the second control unit switches the transmission from the first speed ratio to the second speed ratio.
  • a wheel loader includes the travel control device according to any one of claims 1 to 3.
  • the shift shock can be reduced when switching from high to low.
  • FIG. 1 is a side view of a work vehicle to which a travel control device according to an embodiment of the present invention is applied.
  • FIG. 2 is a diagram showing a schematic configuration of the travel control device according to the present embodiment.
  • FIG. 3 is a configuration diagram of the transmission.
  • FIG. 4 is a diagram showing a shift change process from high to low.
  • FIGS. 5A and 5B are diagrams showing a traveling performance diagram and a comparative example of a work vehicle to which the traveling control apparatus according to the present embodiment is applied.
  • FIG. 1 is a side view of a wheel loader that is an example of a work vehicle to which the travel control device according to the present embodiment is applied.
  • the wheel loader 100 includes a front vehicle body 110 having an arm 111, a bucket 112, tires 113, and the like, and a rear vehicle body 120 having an operator cab 121, an engine compartment 122, tires 123, and the like.
  • the arm 111 rotates up and down (up and down) by driving the arm cylinder 114
  • the bucket 112 rotates up and down (dump or cloud) by driving the bucket cylinder 115.
  • the front vehicle body 110 and the rear vehicle body 120 are rotatably connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of a steering cylinder (not shown).
  • FIG. 2 is a diagram showing a schematic configuration of the travel control device according to the present embodiment.
  • the variable displacement hydraulic pump 2 driven by the engine 1 and the variable displacement hydraulic motor 3 are connected in a closed circuit by a pair of main pipelines LA and LB to form a so-called HST circuit.
  • the forward / reverse switching valve 6 is operated by a signal from the controller 10, and when the forward / reverse switching valve 6 is in the neutral position as shown in the figure, the pressure oil from the charge pump 5 passes through the throttle 7 and the forward / reverse switching valve 6, It acts on the oil chambers 8a and 8b of the tilting cylinder 8, respectively. In this state, the pressures acting on the oil chambers 8a and 8b are equal to each other, and the piston 8c is in the neutral position. For this reason, the displacement volume qp of the hydraulic pump 2 is 0, and the pump discharge amount Q is 0.
  • the rotation of the hydraulic motor 3 is shifted by the transmission 130, and the rotation after the shift is transmitted to the tires 113 and 123 via the propeller shaft and the axle, and the vehicle travels.
  • the transmission 130 can be switched to the second speed of low and high by operating the high / low selection switch 23.
  • the accelerator pedal 9 is provided with an operation amount detector 9a for detecting the operation amount of the accelerator pedal 9, and a signal from the operation amount detector 9a is input to the controller 10.
  • the controller 10 outputs a rotation speed control signal to the engine control unit 1a, and the engine rotation speed is controlled according to a signal from the operation amount detector 9a.
  • the pressure oil from the charge pump 5 passes through the throttle 7 and the check valve in the overload relief valve 13, is led to the main pipelines LA and LB, and is replenished to the HST circuit.
  • the pressure on the downstream side of the throttle 7 is limited by the charge relief valve 12, and the maximum pressure in the main lines LA and LB is limited by the overload relief valve 13.
  • the displacement volume qm (motor tilt angle) of the hydraulic motor 3 is controlled by the regulator 14.
  • the regulator 14 is an electric regulator including an electromagnetic switching valve, an electromagnetic proportional valve, and the like.
  • the tilt control lever 140 is driven by driving the regulator 14 with a control current from the controller 10 output via the signal lines 14a and 14b. To change the motor tilt angle qm.
  • a stopper 15 is provided in the motor tilt control unit. When the tilt control lever 140 contacts the stopper 15, the minimum value of the motor tilt angle qm is mechanically limited to a predetermined value qmin. When the regulator 14 is not energized, the tilt control lever 140 contacts the stopper 15 and the motor tilt angle qm is held at the minimum value qmin. As the control current output to the regulator 14 increases, the motor tilt angle qm also increases.
  • the controller 10 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits.
  • the controller 10 includes a signal from the pressure detector 21 that detects the pressures (traveling load pressure Pt) in the main lines LA and LB, a signal from the vehicle speed sensor 17 that detects the vehicle speed, a signal from the high / low selection switch 23, And the signal from the quick shift switch 24 is input, respectively.
  • the quick shift switch 24 is a switch provided on a grip of a cargo handling operation lever (not shown) in order to switch between high / low.
  • Controller 10 controls motor tilt angle qm in accordance with running load pressure Pt (PID control).
  • Pt running load pressure
  • the rotational speed of the hydraulic motor 2 is expressed by pump discharge amount Q ⁇ motor volume efficiency / motor capacity qm, and the vehicle speed is proportional to the motor rotational speed. Accordingly, when the traveling load pressure Pt is large and the motor tilt angle qm is large, the vehicle can travel at low speed and high torque, and when the traveling load Pt is small and the motor tilt angle qm is small, the vehicle travels at high speed and low torque. can do.
  • FIG. 3 shows the configuration of the transmission 130.
  • the transmission 130 is a so-called always-mesh transmission.
  • the transmission 130 includes an input shaft 131 to which power from the hydraulic motor 3 is input, an output shaft 132 that outputs the input power to the axle, and a clutch device 133 that transmits or cuts power from the input shaft 131 to the output shaft 132.
  • the clutch device 133 is a wet multi-plate clutch that transmits or cuts power by pressing or separating a plurality of disks arranged in parallel in the axial direction.
  • the clutch device 133 rotates either the high gear 134 or the low gear 135 integrally with the input shaft 131.
  • the high gear 134 and the low gear 135 mesh with driven gears 136 and 137 coupled to the output shaft 132, respectively.
  • rotation from the input shaft 131 is transmitted to the output shaft 132 via the low gear 135 and the driven gear 137.
  • the clutch device 133 includes a high clutch 133a and a high gear 134 for transmitting power at a first speed ratio, and a low clutch 133b and low gear for transmitting power at a second speed ratio larger than the first speed ratio. 135.
  • the high clutch 133a and the low clutch 133b are operated by pressure oil from the transmission control valve 138.
  • the transmission control valve 138 is controlled by a command from the controller 10.
  • the transmission control valve 138 is switched and the pressure acting on the low clutch 133b is increased, the low clutch 133b is gradually connected and switched to the low state (see FIG. 3).
  • the high clutch 133a is gradually connected to switch to the high state.
  • the high / low switching transmission as described above has the advantages of lower manufacturing costs and better fuel consumption than an automatic transmission that performs automatic gear shifting.
  • a shift shock occurs due to the gear ratio of the high gear 134 and the low gear 135 when switching from high to low. For example, if the gear ratio difference is tripled, when shifting down from high to low, the vehicle speed will be 1/3 times and the tractive force will be tripled. Will occur.
  • the shock at the time of shifting is reduced by lowering the motor tilt angle of the hydraulic motor 3 when switching from high to low.
  • the controller 10 when switching from high to low is instructed by the operation of the high / low selection switch 23, the controller 10 permits the shift when the vehicle speed is less than the shift limit speed.
  • the controller 10 permits the speed change when the vehicle speed decreases to the speed limit speed.
  • the quick shift switch 24 when switching from high to low is instructed by operating the quick shift switch 24, the shift is permitted only when the high / low selection switch 23 is operated high and the vehicle speed is less than the speed limit speed.
  • the controller 10 determines that the signal from the quick shift switch 24 is invalid.
  • the speed limit speed is set to an appropriate value in advance (for example, 10 km / h) so as to reduce a shift shock at the time of switching from high to low. Note that no special control of the motor tilt angle is performed when switching from low to high.
  • Fig. 4 shows the shift change process from high to low.
  • the horizontal axis represents time
  • the vertical axis represents the motor tilt command value.
  • the motor tilt command value qi is a command value for the motor tilt angle output from the controller 10 to the regulator 14 of the hydraulic motor 3.
  • the vehicle is working in a high state, the vehicle speed is less than the speed limit speed, and the motor tilt command value qi is qa.
  • the motor tilt is PID controlled based on the circuit pressure detected by the pressure detector 21.
  • the controller 10 instructs the motor tilt command value qi to the regulator 14 to lower the motor tilt angle.
  • a predetermined value qb is output.
  • the predetermined value qb is equal to or greater than the above-described minimum value qmin, and is set to a motor tilt angle that can secure a minimum amount of oil that can be driven by the hydraulic motor 3 even when an electrical abnormality occurs in the regulator 14, for example. Is done.
  • the motor tilt command value qi is fixed to the predetermined value qb.
  • the controller 10 outputs an instruction to switch from high to low to the transmission 140 at time t2.
  • the transmission control valve 138 is switched, the pressure acting on the low clutch 133b is increased, and the low clutch 133b is gradually connected to switch to the low state.
  • the controller 10 After outputting a switching instruction from high to low at time t2, the controller 10 instructs the regulator 14 to return the motor tilt command value qi from the predetermined value qb to the value corresponding to the PID control at a predetermined transition time ⁇ T2. Is output.
  • the motor tilt command value qi increases at a predetermined slope during the transition time ⁇ T2, and after the transition time ⁇ T2 has elapsed, PID control is resumed based on the circuit pressure at that time.
  • the predetermined value qb of the motor tilt command value qi is, for example, when the gear ratio between the high gear 134 and the low gear 135 is tripled, taking into account the delay of the control system, etc.
  • a value smaller than 1/3 times the tilt command value qa, for example, an appropriate value about 1/4 times qa is preset.
  • the predetermined elapsed time ⁇ T1 is an appropriate value (for example, 400 msec) as a waiting time until the motor tilt angle of the hydraulic motor 3 is switched according to the command value qb after the motor tilt command value qb is output. Is set.
  • the predetermined transition time ⁇ T2 is set to an appropriate time (for example, 1 sec) in advance as a ramp time for smoothly returning the motor tilt angle control to the normal PID control.
  • the predetermined value qb, the elapsed time ⁇ T1, and the transition time ⁇ T2 are not limited to the above examples so that smooth switching from high to low can be realized, and appropriate values are set according to vehicle specifications and the like. .
  • FIG. 5A shows an example of a travel performance diagram of a vehicle to which the travel control device according to the present embodiment is applied.
  • the gear ratio between the high gear 134 and the low gear 135 is three times.
  • FIG. 5B shows a comparative example. 5A and 5B, the horizontal axis indicates the vehicle speed, and the vertical axis indicates the traction force.
  • the vehicle speed is changed from high to low when the vehicle speed is A, the vehicle speed is 1/3 times and the tractive force is tripled at the moment of the downshift.
  • a large shock due to a decrease in the vehicle speed and a slip of the tire due to an increase in the traction force occur.
  • the tilt of the hydraulic motor 3 is moved to the small tilt side when switching from high to low.
  • the motor tilt angle becomes a small tilt
  • the vehicle speed when switching to the low state increases, that is, the decrease in the vehicle speed decreases and the traction force also decreases.
  • the travel control device includes a variable displacement hydraulic pump 2 driven by an engine, a variable displacement hydraulic motor 3 connected to the hydraulic pump 2 in a closed circuit, and driven by pressure oil from the hydraulic pump 2. , A regulator 14 for controlling the motor tilt angle of the hydraulic motor 3 by an electric signal, a high clutch portion (high clutch 133a and high gear 134) for transmitting power at a first gear ratio, and a gear ratio larger than the first gear ratio.
  • a clutch device 133 having a low clutch portion (low clutch 133b and low gear 135) for transmitting power at a gear ratio of 2, and a constantly meshing transmission 130 for transmitting or interrupting power from the hydraulic motor 3, and a transmission
  • the motor tilt angle is decreased to a predetermined value qb.
  • a controller 10 for controlling the regulator 140.
  • the predetermined value qb of the motor tilt angle is larger than the minimum tilt angle qmin of the hydraulic motor 3 and is the minimum motor tilt angle at which the work vehicle can be driven by the hydraulic motor 3. If the predetermined value qb is 0, for example, when the harness for controlling the hydraulic motor 3 is disconnected, the vehicle cannot travel. By setting the predetermined value qb to the above-described value, even when the harness is disconnected, the minimum amount of oil for moving the vehicle can be secured and the vehicle can be driven. (3) When the transmission is switched from high to low, the motor tilt angle is reduced to a predetermined value qb, and then fixed to a predetermined time ⁇ T1 and a predetermined value qb, and then the motor tilt angle is restored. As a result, it is possible to secure a time during which the motor tilt angle actually changes and realize a smooth speed change.
  • the travel control device described above may be applied to a work vehicle other than a wheel loader, for example, a road machine such as a tire roller or a road roller.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Fluid Gearings (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

 作業車両の走行制御装置は、エンジンにより駆動される可変容量型の油圧ポンプと、油圧ポンプに閉回路接続され、油圧ポンプからの圧油によって駆動される可変容量型の油圧モータと、電気信号により油圧モータのモータ傾転角を制御する第1の制御部と、第1の変速比で動力を伝達するハイクラッチ部と第1の変速比よりも大きい第2の変速比で動力を伝達するロークラッチ部とを備えるクラッチ装置を有し、油圧モータからの動力を伝達または遮断する常時噛み合い式のトランスミッションと、トランスミッションを第1の変速比から第2の変速比に切り換える際に、モータ傾転角を所定値まで低下するよう第1の制御部を制御する第2の制御部とを備える。

Description

作業車両の走行制御装置
 本発明は、ホイールローダなどの作業車両の走行制御装置に関する。
 作業車両の走行制御装置において、完全に係合した状態または完全に切り離された状態にのみ制御できるクラッチを用いるトランスミッションを備え、クラッチを切り離してから再び係合させる際のショックの発生を抑制するものが知られている(特許文献1参照)。具体的には、油圧ポンプの斜板角を制御し、クラッチの動力上流側と動力下流側との回転数を一致させることによって、再びクラッチを係合させる際の変速ショックの発生を低減する。
特開2002-139148号公報
 上述した特許文献1の装置は、クラッチの動力上流側と動力下流側との回転数を一致させることによって変速ショックを低減するように構成されているため、回転数を一致させるための同期機構が必要となってしまう。
 本発明の第1の態様によると、作業車両の走行制御装置は、エンジンにより駆動される可変容量型の油圧ポンプと、油圧ポンプに閉回路接続され、油圧ポンプからの圧油によって駆動される可変容量型の油圧モータと、電気信号により油圧モータのモータ傾転角を制御する第1の制御部と、第1の変速比で動力を伝達するハイクラッチ部と第1の変速比よりも大きい第2の変速比で動力を伝達するロークラッチ部とを備えるクラッチ装置を有し、油圧モータからの動力を伝達または遮断する常時噛み合い式のトランスミッションと、トランスミッションを第1の変速比から第2の変速比に切り換える際に、モータ傾転角を所定値まで低下するよう第1の制御部を制御する第2の制御部とを備える。
 本発明の第2の態様によると、第1の態様の作業車両の走行制御装置において、モータ傾転角の所定値は、油圧モータの最小傾転角よりも大きく、油圧モータによって作業車両が駆動できる最低限のモータ傾転角であるのが好ましい。
 本発明の第3の態様によると、第1または第2の態様の作業車両の走行制御装置において、第2の制御部は、トランスミッションを第1の変速比から第2の変速比に切り換える際に、モータ傾転角を所定値まで低下した後、所定時間、所定値に固定してから、モータ傾転角を復帰するよう第1の制御部を制御するのが好ましい。
 本発明の第4の態様によると、ホイールローダは、請求項1から請求項3のいずれか1項に記載の走行制御装置を備える。
 本発明によると、ハイからローへの切り換え時に変速ショックを低減することができる。
図1は、本発明の一実施の形態に係る走行制御装置が適用される作業車両の側面図。 図2は、本実施の形態に係る走行制御装置の概略構成を示す図。 図3は、トランスミッションの構成図。 図4は、ハイからローへのシフトチェンジ工程を示す図。 図5(a)、図5(b)は、本実施の形態に係る走行制御装置を適用した作業車両の走行性能線図および比較例を示す図。
 以下、図1~図5を参照して本発明の一実施の形態による作業車両の走行制御装置について説明する。
 図1は、本実施の形態に係る走行制御装置が適用される作業車両の一例であるホイールローダの側面図である。ホイールローダ100は、アーム111、バケット112、タイヤ113等を有する前部車体110と、運転室121、エンジン室122、タイヤ123等を有する後部車体120とから構成される。アーム111はアームシリンダ114の駆動により上下方向に回動(俯仰動)し、バケット112はバケットシリンダ115の駆動により上下方向に回動(ダンプまたはクラウド)する。前部車体110と後部車体120はセンタピン101により互いに回動自在に連結され、ステアリングシリンダ(不図示)の伸縮により後部車体120に対し前部車体110が左右に屈折する。
 図2は、本実施の形態に係る走行制御装置の概略構成を示す図である。エンジン1によって駆動される可変容量型油圧ポンプ2と、可変容量型油圧モータ3とは、一対の主管路LA,LBによって閉回路接続され、いわゆるHST回路が構成されている。
 エンジン1により駆動されるチャージポンプ5からの圧油は、前後進切換弁6を介して傾転シリンダ8に導かれる。前後進切換弁6はコントローラ10からの信号により操作され、図示のように前後進切換弁6が中立位置のときは、チャージポンプ5からの圧油は絞り7および前後進切換弁6を介し、傾転シリンダ8の油室8a,8bにそれぞれ作用する。この状態では油室8a,8bに作用する圧力は互いに等しく、ピストン8cは中立位置にある。このため、油圧ポンプ2の押しのけ容積qpは0となり、ポンプ吐出量Qは0である。
 前後進切換弁6がA側に切り換えられると、油室8a,8bにはそれぞれ絞り7の上流側圧力と下流側圧力が作用するため、シリンダ8の油室8a,8bに圧力差が生じ、ピストン8cが図示右方向に変位する。これにより油圧ポンプ2のポンプ押しのけ容積qp(ポンプ傾転量)が増加し、油圧ポンプ2からの圧油は主管路LAを介して油圧モータ3に導かれ、油圧モータ3が正転し、車両が前進する。前後進切換弁6がB側に切り換えられると、傾転シリンダ8のピストン8cが図示左方向に変位し、油圧ポンプ2からの圧油は主管路LBを介して油圧モータ3に導かれ、油圧モータ3が逆転する。
 油圧モータ3の回転はトランスミッション130によって変速され、変速後の回転はプロペラシャフト,アクスルを介してタイヤ113,123に伝達され、車両が走行する。トランスミッション130は、ハイ/ロー選択スイッチ23の操作によりローとハイの2速に切換可能である。
 アクセルペダル9には、アクセルペダル9の操作量を検出する操作量検出器9aが設けられ、操作量検出器9aからの信号はコントローラ10に入力される。コントローラ10はエンジン制御部1aに回転速度制御信号を出力し、エンジン回転速度は操作量検出器9aからの信号に応じて制御される。チャージポンプ5からの圧油は絞り7およびオーバーロードリリーフ弁13内のチェック弁を通過して主管路LA,LBに導かれ、HST回路に補充される。絞り7の下流側圧力はチャージリリーフ弁12により制限され、主管路LA,LBの最高圧力はオーバーロードリリーフ弁13により制限される。
 油圧モータ3の押しのけ容積qm(モータ傾転角)はレギュレータ14により制御される。レギュレータ14は電磁切換弁や電磁比例弁等を含む電気式レギュレータであり、信号ライン14a,14bを介して出力されるコントローラ10からの制御電流によりレギュレータ14を駆動することで、傾転制御レバー140を駆動し、モータ傾転角qmを変更する。モータ傾転制御部にはストッパ15が設けられている。傾転制御レバー140がストッパ15に当接することにより、モータ傾転角qmの最小値が所定値qminにメカ的に制限される。なお、レギュレータ14の非通電時には、ストッパ15に傾転制御レバー140が当接してモータ傾転角qmは最小値qminに保持される。レギュレータ14に出力する制御電流が増加すると、モータ傾転角qmも増加する。
 コントローラ10はCPU,ROM,RAM、その他の周辺回路などを有する演算処理装置を含んで構成される。コントローラ10には、主管路LA,LBの圧力(走行負荷圧Pt)を検出する圧力検出器21からの信号、車速を検出する車速センサ17からの信号、ハイ/ロー選択スイッチ23からの信号、およびクイックシフトスイッチ24からの信号がそれぞれ入力される。クイックシフトスイッチ24は、ハイ/ロー選択スイッチ23とは別に、ハイ/ローの切り換えを行うために荷役操作レバー(不図示)のグリップに設けられたスイッチである。
 コントローラ10は、走行負荷圧Ptに応じてモータ傾転角qmを制御する(PID制御)。走行負荷圧Ptが大きくなるほど、モータ傾転角qmは最小値qminから最大値qmaxまで徐々に増加する。油圧モータ2の回転速度は、ポンプの吐出量Q×モータ容積効率/モータ容量qmで表され、モータ回転速度に車速が比例する。従って、走行負荷圧Ptが大きくモータ傾転角qmが大きいと、車両は低速高トルクで走行することができ、走行負荷Ptが小さくモータ傾転角qmが小さいと、車両は高速低トルクで走行することができる。
 図3に、トランスミッション130の構成を示す。トランスミッション130は、いわゆる常時噛み合い式のトランスミッションである。トランスミッション130は、油圧モータ3からの動力が入力する入力軸131と、入力された動力を車軸に出力する出力軸132と、入力軸131から出力軸132に動力を伝達または遮断するクラッチ装置133とを有する。
 クラッチ装置133は、軸方向に並設された複数枚のディスクを圧接または離間して動力を伝達または遮断する湿式多板式クラッチである。クラッチ装置133は、ハイギヤ134、ローギヤ135のいずれか一方を入力軸131と一体に回転させる。ハイギヤ134、ローギヤ135は、それぞれ出力軸132に結合されたドリブンギヤ136,137と噛合している。ローギヤ135が入力軸131に接続した状態(ロー状態)では、入力軸131からの回転がローギヤ135およびドリブンギヤ137を介して出力軸132に伝達される。ハイギヤ134が入力軸131に接続された状態(ハイ状態)では、入力軸131からの回転がハイギヤ134およびドリブンギヤ136を介して出力軸132に伝達される。これにより、出力軸132が所定のギヤ比に変速されて回転し、出力軸132の回転に応じた速度で車両が走行する。
 クラッチ装置133は、第1の変速比で動力を伝達するためのハイクラッチ133aおよびハイギヤ134と、第1の変速比よりも大きい第2の変速比で動力を伝達するためのロークラッチ133bおよびローギヤ135を備えている。ハイクラッチ133aおよびロークラッチ133bは、トランスミッションコントロールバルブ138からの圧油によって作動する。トランスミッションコントロールバルブ138は、コントローラ10からの指令によって制御される。トランスミッションコントロールバルブ138が切り換わり、ロークラッチ133bに作用する圧力が上昇すると、ロークラッチ133bが徐々に接続して、ロー状態に切り換わる(図3参照)。一方、トランスミッションコントロールバルブ138の切り換えによってハイクラッチ133aに作用する圧力が上昇すると、ハイクラッチ133aが徐々に接続し、ハイ状態に切り換わる。
 上述したようなハイ/ロー切換式のトランスミッションは、オートマチックでの変速を行うオートトランスミッションに比べて、製造コストが安く、燃費がよい、といった利点がある。しかし、ハイからローへの切り換え時に、ハイギヤ134とローギヤ135のギヤ比に起因して変速ショックが発生してしまう。例えば、ギヤ比の差を3倍とすると、ハイからローにシフトダウンした場合に車速は1/3倍、牽引力は3倍となり、車速の減少による大きなショックと、牽引力の増大によるタイヤのスリップ等が発生してしまう。
 このような変速ショックを抑制するために、車速を十分に抑えた状態でハイからローへの変速を許可することが考えられる。さらに、本実施の形態においては、ハイからローへの切り換え時に油圧モータ3のモータ傾転角を下げることによって、変速時のショックを低減する。
 具体的には、コントローラ10は、ハイ/ロー選択スイッチ23の操作によってハイからローへの切り換えが指示された場合は、車速が変速制限速度未満のときに変速を許可する。車速が変速制限速度以上でハイからローへの切り換えが指示された場合、コントローラ10は車速が変速制限速度まで低下すると変速を許可する。一方、クイックシフトスイッチ24の操作によってハイからローへの切り換えが指示された場合は、ハイ/ロー選択スイッチ23がハイに操作され、かつ車速が変速制限速度未満の場合のみ変速を許可する。車速が変速制限速度以上でクイックシフトスイッチ24が操作されると、コントローラ10はクイックシフトスイッチ24からの信号を無効と判断する。ここで、変速制限速度は、ハイからローへの切り換え時の変速ショックを低減するように、適切な値を予め設定しておく(例えば10km/h)。なお、ローからハイへの切り換え時にはモータ傾転角の特別な制御は行わない。
 図4に、ハイからローへのシフトチェンジ工程を示す。図4の横軸は時間、縦軸はモータ傾転指令値を示す。モータ傾転指令値qiは、コントローラ10から油圧モータ3のレギュレータ14に出力されるモータ傾転角の指令値である。車両はハイ状態で作業中で、車速は変速制限速度未満、モータ傾転指令値qiはqaとする。変速時以外の通常状態では、モータ傾転は圧力検出器21によって検出される回路圧に基づいてPID制御されている。
 この状態から、時点t1でハイからローへ切り換えるためにオペレータがハイ/ロー選択スイッチ23またはクイックシフトスイッチ24を操作すると、コントローラ10はモータ傾転角を下げるようにレギュレータ14にモータ傾転指令値qiとして所定値qbを出力する。所定値qbは、上述した最小値qmin以上で、例えばレギュレータ14に電気的な異常が発生した場合でも油圧モータ3によって車両が駆動できる最低限の油量を確保できるようなモータ傾転角に設定される。
 時点t1から所定の経過時間ΔT1が経過するまでは、モータ傾転指令値qiを所定値qbに固定する。経過時間ΔT1が経過し、車両の牽引力が十分に低下すると、コントローラ10は時点t2でトランスミッション140にハイからローへの切り換え指示を出力する。コントローラ10からの指示に応じてトランスミッションコントロールバルブ138が切り換わり、ロークラッチ133bに作用する圧力が上昇し、ロークラッチ133bが徐々に接続してロー状態に切り換わる。
 時点t2でハイからローへの切り換え指示を出力した後、コントローラ10は所定の移行時間ΔT2でモータ傾転指令値qiを所定値qbからPID制御に応じた値まで復帰させるようにレギュレータ14に指令を出力する。モータ傾転指令値qiは移行時間ΔT2の間、所定の傾きで増加し、移行時間ΔT2経過後に、その時点での回路圧に基づいてPID制御が再開される。
 ここで、モータ傾転指令値qiの所定値qbは、例えばハイギヤ134とローギヤ135のギヤ比を3倍とすると、制御系の遅れ等を考慮して、ハイからローへの切り換え指示時のモータ傾転指令値qaの1/3倍よりも小さい値、例えばqaの1/4倍程度の適切な値が予め設定される。所定の経過時間ΔT1は、モータ傾転指令値qbが出力されてから油圧モータ3のモータ傾転角が指令値qbに応じて切り換わるまでの待ち時間として、予め適切な値(例えば400msec)が設定される。また、所定の移行時間ΔT2は、モータ傾転角の制御を通常のPID制御にスムーズに復帰させるためのランプタイムとして、予め適切な時間(例えば1sec)に設定される。所定値qb、経過時間ΔT1、および移行時間ΔT2は、ハイからローへのスムーズな切り換えが実現できるように、上記例示には限定されず、車両の仕様等に応じて適切な値が設定される。
 以上説明した本実施の形態による走行制御装置の作用について、以下に説明する。図5(a)に、本実施の形態による走行制御装置を適用した車両の走行性能線図の一例を示す。ここで、ハイギヤ134とローギヤ135のギヤ比は3倍とする。図5(b)には比較例を示す。図5(a),5(b)の横軸は車速、縦軸は牽引力を示す。図5(b)の比較例に示すように、車速がAでハイからローへ変速した場合、シフトダウンした瞬間に車速は1/3倍、牽引力は3倍になる。これにより、車速の減少による大きなショックと、牽引力の増大によるタイヤ等のスリップが発生する。
 これに対し、図5(a)に示すように、本実施の形態では、ハイからローへの切り換え時に油圧モータ3の傾転を小傾転側に動かす。モータ傾転角が小傾転となることにより、ロー状態に切り換わったときの車速が上がり、すなわち車速の低下が小さくなり、牽引力も小さくなる。これにより、ハイからローへの切り換え時の変速ショックを抑制してスムーズな変速動作を実現することができる。
 以上説明した本実施の形態によると、以下のような作用効果を奏することができる。
(1)走行制御装置は、エンジンにより駆動される可変容量型の油圧ポンプ2と、油圧ポンプ2に閉回路接続され、油圧ポンプ2からの圧油によって駆動される可変容量型の油圧モータ3と、電気信号により油圧モータ3のモータ傾転角を制御するレギュレータ14と、第1の変速比で動力を伝達するハイクラッチ部(ハイクラッチ133aとハイギヤ134)と第1の変速比よりも大きい第2の変速比で動力を伝達するロークラッチ部(ロークラッチ133bとローギヤ135)とを備えるクラッチ装置133を有し、油圧モータ3からの動力を伝達または遮断する常時噛み合い式のトランスミッション130と、トランスミッション130を第1の変速比から第2の変速比に切り換える際に、モータ傾転角を所定値qbまで低下するようレギュレータ140を制御するコントローラ10とを備える。変速比を切り換える際にモータ傾転角を低下することで、モータ傾転角を低下しない場合に比べて、相対的に車速が上がるとともに牽引力が低下する。これにより、製造コストが低く、車両燃費の良好なハイ/ロー切り換え式のトランスミッション130を用いた場合に、ハイからローへの切り換え時の変速ショックを軽減することができる。
(2)モータ傾転角の所定値qbは、油圧モータ3の最小傾転角qminよりも大きく、油圧モータ3によって作業車両が駆動できる最低限のモータ傾転角である。所定値qbを0とすると、例えば油圧モータ3を制御するハーネスが断線した場合に、車両が走行不能となってしまう。所定値qbを上述したような値に設定することにより、ハーネスが断線した場合でも、車両を移動する最低限の油量を確保して車両の走行を可能とすることができる。
(3)トランスミッションをハイからローに切り換える際に、モータ傾転角を所定値qbまで低下した後、所定時間ΔT1、所定値qbに固定してから、モータ傾転角を復帰する。これにより、モータ傾転角が実際に変化する時間を確保して、スムーズな変速を実現することが可能となる。
 以上の説明はあくまで一例であり、本発明は、上記の実施形態の構成に何ら限定されるものではない。たとえば、上述した走行制御装置を、ホイールローダ以外の作業車両、例えばタイヤローラやロードローラといった道路機械に適用しても構わない。
 上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2010年第194083号(2010年8月31日出願)
 

Claims (4)

  1.  作業車両の走行制御装置であって、
     エンジンにより駆動される可変容量型の油圧ポンプと、
     前記油圧ポンプに閉回路接続され、前記油圧ポンプからの圧油によって駆動される可変容量型の油圧モータと、
     電気信号により前記油圧モータのモータ傾転角を制御する第1の制御部と、
     第1の変速比で動力を伝達するハイクラッチ部と前記第1の変速比よりも大きい第2の変速比で動力を伝達するロークラッチ部とを備えるクラッチ装置を有し、前記油圧モータからの動力を伝達または遮断する常時噛み合い式のトランスミッションと、
     前記トランスミッションを前記第1の変速比から前記第2の変速比に切り換える際に、前記モータ傾転角を所定値まで低下するよう前記第1の制御部を制御する第2の制御部とを備える作業車両の走行制御装置。
  2.  請求項1に記載の作業車両の走行制御装置において、
     前記モータ傾転角の前記所定値は、前記油圧モータの最小傾転角よりも大きく、前記油圧モータによって前記作業車両が駆動できる最低限のモータ傾転角である作業車両の走行制御装置。
  3.  請求項1または請求項2に記載の作業車両の走行制御装置において、
     前記第2の制御部は、前記トランスミッションを前記第1の変速比から前記第2の変速比に切り換える際に、前記モータ傾転角を前記所定値まで低下した後、所定時間、前記所定値に固定してから、前記モータ傾転角を復帰するよう前記第1の制御部を制御する作業車両の走行制御装置。
  4.  請求項1から請求項3のいずれか1項に記載の走行制御装置を備えるホイールローダ。
PCT/JP2011/064570 2010-08-31 2011-06-24 作業車両の走行制御装置 WO2012029389A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11821407.1A EP2589836A4 (en) 2010-08-31 2011-06-24 WAY CONTROL DEVICE FOR WORK MACHINES
US13/818,799 US20130152574A1 (en) 2010-08-31 2011-06-24 Working Vehicle Travel Control Apparatus
KR1020137001919A KR20130124475A (ko) 2010-08-31 2011-06-24 작업 차량의 주행 제어 장치
CN2011800368200A CN103026099A (zh) 2010-08-31 2011-06-24 作业车辆的行驶控制装置
US14/985,748 US20160194854A1 (en) 2010-08-31 2015-12-31 Working Vehicle Travel Control Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010194083A JP5301509B2 (ja) 2010-08-31 2010-08-31 作業車両の走行制御装置
JP2010-194083 2010-08-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/818,799 A-371-Of-International US20130152574A1 (en) 2010-08-31 2011-06-24 Working Vehicle Travel Control Apparatus
US14/985,748 Continuation US20160194854A1 (en) 2010-08-31 2015-12-31 Working Vehicle Travel Control Apparatus

Publications (1)

Publication Number Publication Date
WO2012029389A1 true WO2012029389A1 (ja) 2012-03-08

Family

ID=45772501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064570 WO2012029389A1 (ja) 2010-08-31 2011-06-24 作業車両の走行制御装置

Country Status (6)

Country Link
US (2) US20130152574A1 (ja)
EP (1) EP2589836A4 (ja)
JP (1) JP5301509B2 (ja)
KR (1) KR20130124475A (ja)
CN (1) CN103026099A (ja)
WO (1) WO2012029389A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594409A (zh) * 2019-10-18 2019-12-20 三一汽车制造有限公司 柔性换挡液压系统及其控制方法与工程机械

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5873876B2 (ja) * 2011-09-07 2016-03-01 日立建機株式会社 建設機械
JP5754397B2 (ja) 2012-03-09 2015-07-29 三菱電機株式会社 縦型トレンチigbtの製造方法
JP6258593B2 (ja) * 2013-03-25 2018-01-10 日立建機株式会社 作業車両の自動変速装置
JP5899167B2 (ja) * 2013-08-08 2016-04-06 日立建機株式会社 作業車両の自動変速装置
US9746070B2 (en) 2014-11-26 2017-08-29 Polaris Industries Inc. Electronic control of a transmission
US9759313B2 (en) * 2014-11-26 2017-09-12 Polaris Industries Inc. Electronic shifting of a transmission
JP6438368B2 (ja) * 2015-09-18 2018-12-12 ヤンマー株式会社 作業車両
US10519627B2 (en) 2017-02-08 2019-12-31 Caterpillar Inc. Pull-slip control system for track-type tractor and track-type tractor operating method
CN107310384A (zh) * 2017-07-27 2017-11-03 天津工程机械研究院有限公司 一种全液压行走装载机传动系统
US11891781B2 (en) * 2019-03-13 2024-02-06 Hitachi Construction Machinery Co., Ltd. Loading vehicle
JP6961643B2 (ja) 2019-03-29 2021-11-05 日立建機株式会社 ホイール式作業車両
EP4031718A1 (en) 2019-09-19 2022-07-27 Clark Equipment Company Drive motor displacement control
KR20210058434A (ko) * 2019-11-14 2021-05-24 두산인프라코어 주식회사 자동 변속 장치가 구비된 건설 기계 및 변속 제어 방법
WO2022113784A1 (ja) * 2020-11-26 2022-06-02 日立建機株式会社 転圧機械

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139148A (ja) 2000-11-06 2002-05-17 Yanmar Agricult Equip Co Ltd 作業車両のhst斜板制御機構
JP2002174333A (ja) * 2000-12-05 2002-06-21 Hitachi Constr Mach Co Ltd ホイール走行式作業車両
WO2003091606A1 (fr) * 2002-04-26 2003-11-06 Hitachi Construction Machinery Co., Ltd. Dispositif de commande de deplacement d'un vehicule a entrainement hydraulique, vehicule a entrainement hydraulique et pelle hydraulique sur roues
JP2008137524A (ja) * 2006-12-04 2008-06-19 Hitachi Constr Mach Co Ltd 作業車両の走行駆動装置
JP2010194083A (ja) 2009-02-25 2010-09-09 Okamura Corp 椅子の背凭れ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE440262B (sv) * 1983-01-13 1985-07-22 Stensele Mek Verkstad Ab Synkroniserad, hydrostatisk-mekanisk vexellada
US4766779A (en) * 1984-03-05 1988-08-30 Fabco Automotive Corporation Hydrostatic transmission assembly and method of increasing the torque and speed range thereof
IT1245204B (it) * 1991-03-15 1994-09-13 Fritz Carl Anton Hurth Cambio di velocita' a motori idrostatici particolarmente per macchine movimento terra
DE4223846C2 (de) * 1992-07-20 1996-03-28 Hydromatik Gmbh Getriebeeinheit zur Anordnung zwischen einem Antriebsmotor und einem Verbraucher
JP3431651B2 (ja) * 1992-12-28 2003-07-28 日立建機株式会社 作業車両の走行用油圧モータ駆動回路
DE19524189C2 (de) * 1995-07-03 1997-07-17 Brueninghaus Hydromatik Gmbh Hydrostatischer Antrieb mit nachgeschaltetem Lastschaltgetriebe
DE10133358B4 (de) * 2001-07-10 2006-03-16 Brueninghaus Hydromatik Gmbh Hydrostatischer Antrieb und Verfahren zum Wechseln von Gängen eines einem hydrostatischen Getriebe nachgeschalteten Schaltgetriebes
JP4528238B2 (ja) * 2005-09-30 2010-08-18 株式会社クボタ 作業車の車速制御構造
DE102005058937A1 (de) * 2005-10-27 2007-05-31 Brueninghaus Hydromatik Gmbh Verfahren und Getriebeanordnung zum Wechseln von Gangstufen
DE102006036317A1 (de) * 2006-06-28 2008-01-03 Brueninghaus Hydromatik Gmbh Verfahren zur Steuerung eines Übersetzungsverhältnisses
CN101479508A (zh) * 2006-06-28 2009-07-08 布鲁宁赫斯海诺马帝克有限公司 控制传动比的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139148A (ja) 2000-11-06 2002-05-17 Yanmar Agricult Equip Co Ltd 作業車両のhst斜板制御機構
JP2002174333A (ja) * 2000-12-05 2002-06-21 Hitachi Constr Mach Co Ltd ホイール走行式作業車両
WO2003091606A1 (fr) * 2002-04-26 2003-11-06 Hitachi Construction Machinery Co., Ltd. Dispositif de commande de deplacement d'un vehicule a entrainement hydraulique, vehicule a entrainement hydraulique et pelle hydraulique sur roues
JP2008137524A (ja) * 2006-12-04 2008-06-19 Hitachi Constr Mach Co Ltd 作業車両の走行駆動装置
JP2010194083A (ja) 2009-02-25 2010-09-09 Okamura Corp 椅子の背凭れ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2589836A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110594409A (zh) * 2019-10-18 2019-12-20 三一汽车制造有限公司 柔性换挡液压系统及其控制方法与工程机械
CN110594409B (zh) * 2019-10-18 2024-03-12 三一汽车制造有限公司 柔性换挡液压系统及其控制方法与工程机械

Also Published As

Publication number Publication date
JP2012052580A (ja) 2012-03-15
JP5301509B2 (ja) 2013-09-25
CN103026099A (zh) 2013-04-03
US20160194854A1 (en) 2016-07-07
EP2589836A4 (en) 2015-09-23
EP2589836A1 (en) 2013-05-08
KR20130124475A (ko) 2013-11-14
US20130152574A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5301509B2 (ja) 作業車両の走行制御装置
JP5171053B2 (ja) 油圧駆動車両のクラッチ制御装置
JP5164933B2 (ja) 作業車両の制御装置
EP2687704B1 (en) Drive control device for work vehicle
WO2014175026A1 (ja) ホイールローダ
KR20120139536A (ko) 작업차의 전동 전환 구조 및 차속 제어 구조
JP4670865B2 (ja) 産業車両における作業機用ポンプの駆動装置
JP5833168B2 (ja) 作業車両の変速装置
JP5426731B2 (ja) 作業車両の変速装置
JP4589649B2 (ja) ホイールローダのクラッチ制御装置およびホイールローダ
JP5138328B2 (ja) 作業車両の変速装置
JP5346456B2 (ja) 作業車両の変速装置
JP5592539B2 (ja) 作業車両の変速装置
JP5860390B2 (ja) 作業車両の変速装置
JP4796432B2 (ja) 作業車両の走行停止制御装置
JP3784350B2 (ja) 作業機の走行構造
JPH10306874A (ja) 油圧式車両
US20160186857A1 (en) Method of controlling machines with continuously variable transmission
WO2020066750A1 (ja) 作業車両
JP4604547B2 (ja) 走行伝動装置
JP4889600B2 (ja) 作業車両の変速装置
CN115087821A (zh) 车辆用动力传递装置
JP2010159804A (ja) 作業車の走行制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180036820.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11821407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137001919

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011821407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011821407

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13818799

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE