WO2012026522A1 - 表面修飾された無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液及びそれを用いたコーティング組成物並びに被覆部材 - Google Patents
表面修飾された無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液及びそれを用いたコーティング組成物並びに被覆部材 Download PDFInfo
- Publication number
- WO2012026522A1 WO2012026522A1 PCT/JP2011/069168 JP2011069168W WO2012026522A1 WO 2012026522 A1 WO2012026522 A1 WO 2012026522A1 JP 2011069168 W JP2011069168 W JP 2011069168W WO 2012026522 A1 WO2012026522 A1 WO 2012026522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- resin
- organic solvent
- dispersion
- anhydrous zinc
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/67—Particle size smaller than 100 nm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G30/00—Compounds of antimony
- C01G30/02—Antimonates; Antimonites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G9/00—Compounds of zinc
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/04—Compounds of zinc
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/24—Electrically-conducting paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/68—Particle size between 100-1000 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/08—Copolymers of styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L29/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
Definitions
- the present invention relates to a hydrophobic organic solvent dispersion of colloidal particles of surface-modified anhydrous zinc antimonate, a coating composition using the hydrophobic organic solvent dispersion, and a covering member using the coating composition.
- Hydrophobic organic solvent dispersion of colloidal anhydrous zinc antimonate of the present invention includes transparent antistatic materials such as resins, plastics, glass, paper, magnetic tape, transparent ultraviolet absorbers, transparent heat ray absorbers, high It is suitably used for various applications such as a refractive index hard coat material and an antireflection agent.
- An aqueous sol or organic solvent sol of anhydrous zinc antimonate colloidal particles is disclosed.
- These sols include alkylamines such as ethylamine, propylamine, isopropylamine and diisobutylamine, alkanolamines such as triethanolamine and monoethanolamine, diamines such as ethylenediamine, and oxycarboxylic acids such as lactic acid, tartaric acid, malic acid and citric acid.
- Dispersion medium of the organic solvent sol is alcohols such as methanol, ethanol, propanol, butanol, glycols such as ethylene glycol and diethylene glycol, cellosolves such as ethyl cellosolve and propyl cellosolve, or amides such as dimethylformamide and dimethylacetamide. It is disclosed (see Patent Document 1).
- anhydrous zinc antimonate colloidal particles obtained by coating anhydrous zinc antimonate colloidal particles with a silicon-containing substance as a nucleus and dispersed in a liquid, and amine and / or oxycarboxylic acid A sol containing is disclosed (see Patent Document 2).
- anhydrous zinc antimonate colloidal particles obtained by coating anhydrous zinc antimonate colloidal particles as a core and coating the surface of the core with an aluminum-containing substance, a polymeric surfactant, or a material of both are made into a liquid. Dispersed sols are disclosed (see Patent Document 3).
- An object of the present invention is to provide a hydrophobic organic solvent dispersion containing colloidal particles of anhydrous zinc antimonate having unprecedented high transparency, and a coating composition using the hydrophobic organic solvent dispersion, It was an object to provide a member to which the coating composition was applied.
- the present invention provides, as a first aspect, a hydrophobic organic solvent dispersion containing anhydrous zinc antimonate colloidal particles having a primary particle size of 5 to 500 nm that is surface-modified with a surfactant having an alkylamine and an acid group.
- the hydrophobic organic solvent dispersion according to the first aspect wherein the alkylamine is an alkylamine having 4 to 18 carbon atoms
- the hydrophobic organic solvent dispersion according to the first aspect wherein the acid group of the surfactant having an acid group is a carboxylic acid group, a sulfonic acid group, or a phosphoric acid group
- the hydrophobic organic solvent is methyl cellosolve, ethyl cellosolve, methyl ethyl ketone, methyl isobutyl ketone, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, butyl acetate, propyl acetate, pentyl acetate, propylene glycol monomethyl ether
- the hydrophobic organic solvent dispersion according to any one of the first to third aspects which is at least one selected from
- a coating composition according to the fifth aspect which is at least one selected from the group consisting of a resin, a diallyl phthalate resin, and a butyral resin;
- a member having a film formed from the coating composition according to the fifth aspect or the sixth aspect As an eighth aspect, the member according to the seventh aspect, in which the substrate is plastic, rubber, glass, metal, ceramics or paper,
- the coating film has a surface resistance value of 10 12 ⁇ / ⁇ or less
- a member with an antireflection film further comprising an antireflection film on the coating film of the member according to any one of the seventh aspect to the ninth aspect, It is.
- a hydrophobic organic solvent dispersion containing anhydrous zinc antimonate colloidal particles having a primary particle size of 5 to 500 nm, which is surface-modified with an alkylamine and an acid group-containing surfactant of the present invention, has a dispersibility and a storage stability. Is excellent.
- the coating composition obtained by mixing the hydrophobic organic solvent dispersion of the present invention and a binder can form a highly transparent conductive film by applying it to a substrate.
- a member having a conductive or antistatic film can be produced without impairing the transparency of the substrate.
- the film obtained from the coating composition of the present invention has a surface resistance value of 10 12 ⁇ / ⁇ or less, that is, good conductivity and excellent antistatic performance.
- the hydrophobic organic solvent dispersion which is the object of the present invention is a hydrophobic organic solvent containing anhydrous zinc antimonate colloidal particles having a primary particle size of 5 to 500 nm, which is surface-modified with a surfactant having an alkylamine and an acid group.
- Solvent dispersion for example, an alkylamine is added to an aqueous sol of anhydrous zinc antimonate colloidal particles, and this is converted into a methanol or ethanol dispersion by solvent substitution, and then a surfactant having an acid group is added. Further, it is obtained by solvent substitution with a hydrophobic organic solvent.
- anhydrous zinc antimonate colloidal particles used in the present invention can be obtained by a known method as described below.
- anhydrous zinc antimonate colloidal particles used in the present invention can preferably use anhydrous zinc antimonate obtained by the method described in JP-A-6-219743.
- This publication discloses anhydrous zinc antimonate having a ZnO / Sb 2 O 5 molar ratio of 0.8 to 1.2 and a primary particle diameter of 5 to 500 nm, preferably 5 to 50 nm, as observed with a transmission electron microscope. The manufacturing method is described. Specifically, the anhydrous zinc antimonate is calcined at 500 to 1100 ° C.
- anhydrous zinc antimonate can be produced by mixing antimony oxide sol and a zinc compound, further drying, and firing at 500 to 1100 ° C.
- the zinc compound is at least one zinc compound selected from the group consisting of zinc hydroxide, zinc oxide, zinc inorganic acid salt or organic acid salt.
- the inorganic acid salt of zinc include zinc carbonate, basic zinc carbonate, zinc nitrate, zinc chloride, and zinc sulfate.
- the organic acid salt of zinc include zinc formate, zinc acetate, and zinc oxalate.
- these zinc compounds those commercially available as industrial chemicals can be used, but when zinc hydroxide or zinc oxide is used, those having a primary particle diameter of 500 nm or less can be used.
- a salt containing an acid volatilized by firing that is, a carbonate (zinc carbonate, basic zinc carbonate) or an organic acid salt is preferable, and these can be used alone or in combination.
- Colloidal antimony oxide used for the production of anhydrous zinc antimonate is antimony oxide having a primary particle size of 300 nm or less, and antimony oxide sols such as antimony pentoxide sol, antimony sesquioxide sol, hydrated antimony tetroxide sol, And colloidal antimony trioxide.
- the primary particle size refers to the particle size measured by transmission electron microscope observation.
- the antimony pentoxide sol is a known method, for example, a method of oxidizing antimony trioxide (Japanese Patent Publication No. 57-11848), a method of dealkalizing alkali antimonate with an ion exchange resin (US Pat. No. 4,110,247). Further, it can be produced by a method of treating sodium antimonate with acid (Japanese Patent Laid-Open Nos. 60-41536 and 62-182116).
- the antimony trioxide 13 antimony sol can be produced by a method of oxidizing antimony trioxide (Japanese Patent Application Laid-Open No. 62-125849).
- Hydrated antimony tetroxide sol can also be produced by a method of oxidizing antimony trioxide (Japanese Patent Laid-Open No. 52-21298). Colloidal antimony trioxide can be produced by a gas phase method (Japanese Patent Publication No. 61-3292).
- the antimony oxide sol is particularly preferably an acidic sol having a primary particle size of 2 to 200 nm, preferably 2 to 40 nm and containing no base such as amine or sodium.
- antimony oxide sol having an antimony oxide (Sb 2 O 5 , Sb 6 O 13 or Sb 2 O 4 ) concentration of 1 to 60% by mass can be used. It can also be used as a dried product of antimony oxide sol dried by a method such as vacuum drying or freeze drying.
- colloidal antimony oxide those commercially available as industrial chemicals in the form of antimony pentoxide sol, antimony pentoxide powder, or ultrafine antimony trioxide powder can be used.
- the zinc compound and the antimony oxide sol are mixed using a stirring apparatus such as a Satake type stirrer, a Faudler type stirrer, or a disper, with a mixing temperature of 0 ° C. to 100 ° C. and a mixing time of 0.1 to 30 hours. be able to.
- the zinc compound and the dried antimony oxide sol or colloidal antimony trioxide can be mixed with a mixing device such as a mortar, a V-type mixer, a Henschel mixer, or a ball mill.
- a mixing device such as a mortar, a V-type mixer, a Henschel mixer, or a ball mill.
- the mixture (slurry) of the zinc compound and antimony oxide sol can be dried at 500 ° C. or less by a spray dryer, drum dryer, box-type hot air dryer, vacuum dryer, freeze dryer or the like. Also, before drying, this slurry is subjected to solid-liquid separation by suction filtration, centrifugal filtration, filter press, etc., and in some cases soluble impurities such as SO 4 derived from the raw material are removed by washing with water to make a wet cake. It can also be dried at room temperature to 500 ° C. with a box-type hot air dryer or the like. The drying is preferably performed at 300 ° C. or lower.
- Firing of a mixture of the zinc compound and antimony oxide sol or a mixture of the zinc compound and antimony oxide sol or a mixture of the zinc compound and colloidal antimony trioxide is performed at 500 ° C. to 1100 ° C., The reaction is preferably carried out at 550 ° C. to 900 ° C. for 0.5 hour to 50 hours, preferably 2 hours to 20 hours. By this firing, anhydrous zinc antimonate is obtained by solid phase reaction. Anhydrous zinc antimonate becomes white to blue-green depending on the firing conditions.
- the anhydrous zinc antimonate obtained by the above method is a colloidal fine particle having a primary particle diameter of 5 to 500 nm when observed with a transmission electron microscope.
- anhydrous zinc antimonate obtained at a firing temperature of 500 ° C. to 680 ° C. exhibits a resistance value of 0.1 k ⁇ to 1 M ⁇ and has electrical conductivity due to electronic conduction.
- ⁇ Aqueous sol of colloidal particles of anhydrous zinc antimonate> The anhydrous zinc antimonate obtained by the above method is made into an aqueous sol by wet grinding, and then deionized to obtain an aqueous sol of anhydrous zinc antimonate colloidal particles having high transparency.
- the wet pulverization can be performed by using a pulverizing medium such as zirconia beads or glass beads and using a wet pulverizing apparatus.
- the anhydrous zinc antimonate can be prepared as an aqueous sol of anhydrous zinc antimonate colloidal particles having a primary particle diameter of 5 to 500 nm by observation with a transmission electron microscope by wet grinding.
- the aqueous sol of anhydrous zinc antimonate colloidal particles obtained by the wet pulverization can be made into a highly transparent aqueous sol of anhydrous zinc antimonate colloidal particles by performing deionization treatment.
- the deionization treatment is achieved by anion exchange and / or cation exchange, and anion exchange and cation exchange can be performed by an anion exchange resin and a cation exchange resin, respectively.
- alkylamine having 4 to 18 carbon atoms is added as a dispersant to the aqueous sol of the deionized anhydrous zinc antimonate colloidal particles.
- alkylamine having 4 to 18 carbon atoms include n-butylamine, di-n-butylamine, tri-n-butylamine, di-n-amylamine, and tri-n-amylamine.
- Low molecular weight alkylamines such as n-butylamine, di-n-butylamine and tri-n-butylamine are preferred.
- the amount of alkylamine added is preferably 0.1 to 10% by mass, more preferably 0.2 to 2.0% by mass, based on the solid content of anhydrous zinc antimonate.
- the aqueous sol of anhydrous zinc antimonate colloidal particles to which the alkylamine has been added can be made into a methanol dispersion or ethanol dispersion by solvent substitution with methanol or ethanol. Solvent replacement can be performed under normal pressure or reduced pressure.
- a surfactant having an acid group a surfactant having at least one functional group selected from the group consisting of a carboxylic acid group, a sulfonic acid group, and a phosphoric acid group is used.
- Surfactants having a carboxylic acid group include potassium laurate, potassium myristate, polyoxyethylene lauryl ether acetic acid, sodium polyoxyethylene lauryl ether acetate, polyoxyethylene oxypropylene lauryl ether acetic acid, sodium polyoxypropylene lauryl ether acetate , Polyoxyethylene tridecyl ether acetic acid, coconut oil fatty acid sarcosine triethanolamine, lauroyl sarcosine ammonium and the like.
- surfactant having a sulfonic acid group examples include ammonium lauryl sulfate, polyoxyethylene lauryl ether ammonium sulfate, polyoxyethyleneoxypropylene lauryl ether ammonium sulfate, polyoxypropylene lauryl ether ammonium sulfate, polyoxyethylene nonylphenyl ether ammonium sulfate, and polyoxyethylene.
- surfactant having a phosphate group examples include dipolyoxyethylene lauryl ether ammonium phosphate, dipolyoxyethylene oxypropylene lauryl ether ammonium phosphate, dipolyoxypropylene lauryl ether ammonium phosphate, and dipolyoxyethylene oleyl.
- Ether phosphoric acid dipolyoxyethylene oxypropylene lauryl ether phosphoric acid, dipolyoxypropylene oleyl ether phosphoric acid, ammonium lauryl phosphate, octyl ether ammonium phosphate, cetyl ether ammonium phosphate, polyoxyethylene lauryl ether phosphoric acid, poly Oxyethyleneoxypropylene lauryl ether phosphate, polyoxypropylene lauryl ether phosphate, polyoxyethylene tristyryl phenyl ether Berlin triethanolamine, polyoxyethylene polyoxypropylene tristyryl phenyl ether phosphate triethanolamine, polyoxypropylene tristyryl phenyl ether phosphate triethanolamine.
- polyoxyethylene groups or phenyl groups such as polyoxyethylene alkylphenyl ether phosphoric acid and polyoxyethylene alkyl ether phosphoric acid, is preferable.
- surfactants having a phosphate group are preferably used.
- Surfactants having a phosphate group include Phosphanol (registered trademark) PE-510, PE-610, LB-400, EC-6103, RE-410, etc. (all manufactured by Toho Chemical Co., Ltd.), Disperbyk (Registered trademark) -102, Disperbyk-110, Disperbyk-111, Disperbyk-116, Disperbyk-140, Disperbyk-161, Disperbyk-163, Disperbyk-164, Disperbyk-180, etc. (all manufactured by Big Chemie Japan) Although what is marketed can be used, it is not limited to these.
- the amount of the surfactant having an acid group used relative to the anhydrous zinc antimonate colloidal particles is preferably 1.0 to 50% by mass. More preferably, the content is 1.5 to 30% by mass.
- ⁇ Hydrophobic organic solvent dispersion> Methanol dispersion or ethanol dispersion of anhydrous zinc antimonate colloidal particles surface-modified with alkylamine and acid group surfactant, hydrophobic organic solvent dispersion by solvent substitution with hydrophobic organic solvent Can be obtained.
- hydrophobic organic solvent used in the present invention examples include ethers such as methyl cellosolve and ethyl cellosolve, ketones such as methyl ethyl ketone and methyl isobutyl ketone, isobutyl acetate, isopropyl acetate, isopentyl acetate, ethyl acetate, butyl acetate, propyl acetate, Preference is given to esters such as pentyl acetate, ether alcohols such as propylene glycol monomethyl ether, ether esters such as propylene glycol monomethyl ether acetate, and hydrocarbons such as xylene, toluene and benzene.
- ethers such as methyl cellosolve and ethyl cellosolve
- ketones such as methyl ethyl ketone and methyl isobutyl ketone
- isobutyl acetate isopropyl acetate
- pH (hereinafter referred to as pH (1 + 1 + 1)) measured by a pH meter 1 hour after dilution of the diluted solution mixed at a mass ratio is 4.0 or more.
- pH (1 + 1 + 1) is less than 4.0, the storage stability of the hydrophobic organic solvent dispersion is poor, and an aggregation state occurs after about 24 hours.
- Hydrophobic organic solvent dispersions containing anhydrous zinc antimonate colloidal particles having a primary particle size of 5 to 500 nm and surface-modified with an alkylamine and an acid group-containing surfactant of the present invention have an anhydrous zinc antimonate concentration of 1 Obtained as a dispersion of ⁇ 60% by weight.
- the present invention relates to a coating comprising a hydrophobic organic solvent dispersion containing colloidal particles of anhydrous zinc antimonate having a primary particle size of 5 to 500 nm and surface-modified with a surfactant having an alkylamine and an acid group, and a binder component Also intended for the composition.
- the coating composition of the present invention is suitable for obtaining a film having transparent conductivity, transparent antistatic properties or high refractive index.
- the binder used in the composition is not particularly limited as described in the present specification, but acrylic resin, polyester resin, urethane resin, epoxy resin, polyvinyl alcohol resin, melamine resin, gelatin and gelatin derivative, cellulose and cellulose derivative, polyimide At least one or two or more selected from the group consisting of a resin, a phenol resin, an organosilicon compound, a urea resin, a diallyl phthalate resin, and a butyral resin can be used.
- acrylic resin examples include those having the following components (monomers) derived from (meth) acrylic acid as constituents, and these monomers can be used alone or in admixture of two or more. Moreover, in the said composition, it can use in any state of a monomer, an oligomer, and a polymer.
- polyester resin examples include linear polyesters having a dicarboxylic acid component and a glycol component as constituent components. Examples of the dicarboxylic acid component and the glycol component are shown below. These can be used alone or in admixture of two or more.
- Dicarboxylic acid component terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4-diphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, adipic acid, sebacic acid, phenylindanedicarboxylic acid and dimer Acid etc.
- Glycol component ethylene glycol, 1,4-butanediol, neopentyl glycol, diethylene glycol, dipropylene glycol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, xylylene glycol, dimethylolpropionic acid, glycerin, Trimethylolpropane, poly (ethyleneoxy) glycol, poly (tetramethyleneoxy) glycol, alkylene oxide adduct of bisphenol A, alkylene oxide adduct of hydrogenated bisphenol A, and the like.
- urethane resins include those obtained by polyaddition reaction of polyisocyanates and active hydrogen-containing compounds. Examples of the polyisocyanate and the active hydrogen-containing compound are shown below. These can be used alone or in admixture of two or more.
- Polyisocyanate ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2,2,4 Trimethylhexamethylene diisocyanate, lysine diisocyanate [2,6-diisocyanatomethylcaproate], bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6 -Diisocyanatohexanoate, isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4'-diisocyanate (hydrogenated MDI), cyclohexyl Diisocyanate, methylcyclohexy
- Active hydrogen-containing compounds dihydric alcohols (eg, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, etc.), branched diols (For example, propylene glycol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2,2-diethyl-1,3-propanediol, 1,2-, 1,3- or 2,3-butanediol, etc.
- dihydric alcohols eg, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, etc.
- branched diols For example, propylene glycol, neopentyl glycol, 3-methyl-1,5-
- Diol having a cyclic group for example, 1,4-bis (hydroxymethyl) cyclohexane, m- or p-xylylene glycol, etc.
- dihydric phenol for example, bisphenol A
- polyhydric alcohol for example, glycerin, trimethylol
- Propane pentaerythritol, sorbitol, etc.
- sugars Derivatives thereof eg, sucrose, methyl glucoside, etc.
- aliphatic diamines eg, ethylene diamine, hexamethylene diamine, etc.
- alicyclic diamines eg, 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, diaminocyclohexane, isophorone
- Diamines etc.
- aromatic diamines eg, diethyltoluenediamine, etc.
- araliphatic diamines eg,
- the epoxy resin examples include various liquid epoxy resins such as bisphenol A type, bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type, phenol novolac type, and derivatives thereof, and liquid epoxy resins derived from polyhydric alcohol and epichlorohydrin and the like Various glycidyl-type liquid epoxy resins such as derivatives, glycidylamine-type, hydantoin-type, aminophenol-type, aniline-type, and toluidine-type and derivatives thereof can be used.
- liquid epoxy resins such as bisphenol A type, bisphenol F type, hydrogenated bisphenol A type, bisphenol AF type, phenol novolac type, and derivatives thereof
- liquid epoxy resins derived from polyhydric alcohol and epichlorohydrin and the like Various glycidyl-type liquid epoxy resins such as derivatives, glycidylamine-type, hydantoin-type, aminophenol-type, aniline-type, and toluidine-type and derivative
- polyvinyl alcohol-based resin those obtained by saponifying a polyvinyl ester-based polymer obtained by radical polymerization of vinyl ester-based monomers such as vinyl acetate can be used.
- examples of the polyvinyl ester polymer are shown below. These can be used alone or in admixture of two or more.
- Polyvinyl ester polymers Polymers of vinyl ester monomers such as vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and vinyl versatate .
- the polyvinyl ester polymer may be a copolymer obtained by copolymerizing a comonomer copolymerizable with the above vinyl ester monomers.
- Examples of the comonomer include olefins such as ethylene, propylene, 1-butene, and isobutene; acrylic acid and salts thereof, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, and n-acrylate.
- olefins such as ethylene, propylene, 1-butene, and isobutene
- acrylic acid and salts thereof methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, and n-acrylate.
- -Acrylic esters such as butyl, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, methacrylic acid and its salts, methyl methacrylate, ethyl methacrylate, methacryl Methacrylic acid esters such as n-propyl acid, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate; acrylic Amide, hydroxyalkyl acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N, N-dimethyl acrylamide, diacetone acrylamide, acrylamide propane sulf
- melamine resin examples include methylated melamine resin, butylated melamine resin, and methylbutyl mixed melamine resin.
- gelatin and gelatin derivatives examples include phthalated gelatin, succinated gelatin, trimellit gelatin, pyromellitic gelatin, esterified gelatin, amidated gelatin, and formylated gelatin.
- cellulose and cellulose derivatives examples include diacetyl cellulose, triacetyl cellulose, hydroxypropyl cellulose, triacetyl cellulose, diacetyl cellulose, acetyl cellulose, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose acetate trimethylate. Or a cellulose nitrate etc. can be mentioned.
- Component C an organosilicon compound represented by the general formula (I) or a hydrolysis-condensation product thereof.
- R 2 represents an organic group selected from the group consisting of a group and a cyano group
- R 2 represents an organic group selected from the group consisting of an alkyl group having 1 to 8 carbon atoms, an alkoxy group, an acyl group and a phenyl group
- b represents an integer of 0 or 1.
- Component D an organosilicon compound represented by the general formula (I) or a hydrolysis-condensation product thereof.
- R 4 represents an organic group having 1 to 5 carbon atoms
- X represents an alkyl group having 1 to 4 carbon atoms or an acyl group having 1 to 4 carbon atoms
- Y represents 2 to 20 represents an organic group
- a represents an integer of 0 or 1.
- organosilicon compound represented by the general formula (I) or a hydrolysis condensate thereof include the following. : Methyl silicate, ethyl silicate, n-propyl silicate, isopropyl silicate, n-butyl silicate, tetraacetoxysilane, methyltrimethoxysilane, methyltripropoxysilane, methyltriacetoxysilane, methyltributoxysilane, methyltripropoxysilane, methyl Triamyloxysilane, methyltriphenoxysilane, methyltribenzyloxysilane, methyltriphenethyloxysilane, glycidoxymethyltrimethoxysilane, glycidoxymethyltrimethoxysilane, ⁇ -glycidoxyethyltrimethoxysilane, ⁇ - Glycidoxyethyltriethoxysilane, ⁇ -glycidoxyethyltrime
- organosilicon compound represented by the general formula (II) or a hydrolysis condensate thereof include the following. : Methylene bis (methyldimethoxysilane), ethylene bis (ethyldimethoxysilane), propylene bis (ethyldiethoxysilane), butylene bis (tildiethoxysilane), etc., and their hydrolysis condensates.
- the organosilicon compound of component C and component D or a hydrolysis condensate thereof can be used either alone or in combination with component C or component D, respectively. It is also possible to use two or more C components and two or more D components.
- Hydrolysis condensation reaction of organosilicon compound of component C and / or component D is carried out by using an acid component such as hydrochloric acid aqueous solution, sulfuric acid aqueous solution, acetic acid aqueous solution or the like as a catalyst in organic silicon compound of C component and / or D component. It is carried out by adding about 0.1 to 10% by mass to the silicon compound and stirring.
- an acid component such as hydrochloric acid aqueous solution, sulfuric acid aqueous solution, acetic acid aqueous solution or the like as a catalyst in organic silicon compound of C component and / or D component. It is carried out by adding about 0.1 to 10% by mass to the silicon compound and stirring.
- modified silicone varnish such as silicone varnish, silicone alkyd varnish, silicone epoxy varnish, silicone acrylic varnish or silicone polyester varnish is used in addition to the silicon compounds mentioned as the components (C) and (D). Can do. These can be used alone or in admixture of two or more.
- diallyl phthalate resin for example, diallyl phthalate, diallyl isophthalate or diallyl terephthalate can be used.
- butyral resin examples include polyvinyl butyral.
- Coating composition comprising a hydrophobic organic solvent dispersion containing colloidal particles of anhydrous zinc antimonate having a primary particle size of 5 to 500 nm and surface-modified with an alkylamine and an acid group-containing surfactant of the present invention, and a binder component
- the mixing ratio of the anhydrous zinc antimonate colloidal particles and the binder component contained in the hydrophobic organic solvent dispersion is 99: 1 to 1:99 as a solid content ratio.
- the solid content ratio is preferably 95: 5 to 50:50.
- an acid or a base can be added for the purpose of improving dispersibility and storage stability.
- Acids to be added include inorganic acids such as hydrochloric acid, nitric acid and orthophosphoric acid, dicarboxylic acids such as oxalic acid, malonic acid and succinic acid, lactic acid, tartaric acid, malic acid, citric acid, glycolic acid, hydroacrylic acid, ⁇ -oxy Aliphatic oxyacids such as butyric acid, glyceric acid and tartronic acid, and phosphonic acids such as phenylphosphonic acid and 1-hydroxyethylidene-1,1-diphosphonic acid can be used.
- inorganic acids such as hydrochloric acid, nitric acid and orthophosphoric acid
- dicarboxylic acids such as oxalic acid, malonic acid and succinic acid
- ⁇ -oxy Aliphatic oxyacids such as butyric acid, glyceric acid and tartronic acid
- ammonia alkali metal hydroxide, ethylamine, diethylamine, n-propylamine, isopropylamine, diisopropylamine, dipropylamine, n-butylamine, isobutylamine, diisobutylamine, triethylamine, benzylamine, octylamine , Quaternary ammonium hydroxides such as alkylamines such as dodecylamine and stearylamine, alkanolamines such as monoethanolamine and triethanolamine, guanidine hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide, or An organic base of carbonate such as ammonia carbonate or guanidine carbonate can be used.
- the member of the present invention has a film formed by the coating composition on the surface of the substrate. Specifically, the member of the present invention can be obtained by applying the coating composition on a substrate and curing it to form a film.
- the base material used for the member of the present invention is plastic, rubber, glass, metal, ceramics or paper.
- the method of applying the coating composition onto the member may be any known method, for example, a bar coating method, a reverse method, a gravure printing method, a micro gravure printing method, a dipping method, a spin coating method, or a spray method. Etc.
- the curing treatment can be performed by hot air drying or active energy ray irradiation.
- hot air drying it is preferably performed in hot air at 70 to 200 ° C.
- active energy rays ultraviolet rays, infrared rays, far infrared rays, electron beams, or the like can be used.
- the thickness of the coating formed on the member of the present invention is not particularly limited, but is preferably about 0.1 to 10 ⁇ m.
- the surface resistance value of the coating film formed on the member of the present invention can be measured by a surface resistivity measuring device (for example, Hiresta UP (manufactured by Mitsubishi Chemical Corporation), Loresta IP (manufactured by Mitsubishi Chemical Corporation)). .
- the surface resistance value of the coating is in the range of 10 5 to 10 12 ⁇ / ⁇ , and exhibits extremely good antistatic performance.
- the refractive index of the coating varies depending on the mixing ratio of the hydrophobic organic solvent dispersion containing the anhydrous zinc antimonate colloidal particles and the binder component and the kind of the binder component, but is in the range of approximately 1.55 to 1.80. is there.
- An antireflection function can be imparted by further providing an antireflection film on the coating of the member of the present invention.
- the antireflection film can be obtained by providing a film having a lower refractive index than the film on the film of the member obtained in the present invention.
- the refractive index difference between the low refractive index film and the high refractive index film is preferably 0.05 or more. If the difference in refractive index between the low refractive index coating and the high refractive index coating is less than 0.05, a synergistic effect with these antireflection coatings cannot be obtained, and the antireflection effect may decrease instead. Because. Accordingly, the difference in refractive index between the low refractive index film and the high refractive index film is more preferably 0.1 to 0.5, and even more preferably 0.15 to 0.5. .
- the thickness of the low refractive index film is not particularly limited, but is preferably 50 to 300 nm, for example.
- the thickness of the low refractive index film is preferably 50 nm to 300 nm.
- the thickness of the low refractive index film is less than 50 nm, the adhesion to the high refractive index film as a base may be lowered.
- the thickness exceeds 300 nm, optical interference occurs and the antireflection effect is lowered. There is a case.
- the total thickness may be 50 to 300 nm.
- the material constituting the low refractive index film is not particularly limited.
- Low refractive index coating obtained by mixing colloidal silica, magnesium fluoride, lithium fluoride, sodium magnesium fluoride or fine particles having voids and organic or inorganic binder as fine particles having a low refractive index A composition etc. can be mentioned.
- An inorganic compound such as magnesium fluoride or silica can be formed as a low refractive index film by a method such as vacuum deposition or sputtering.
- the antireflection film a multilayer antireflection film in which high refractive index layers and low refractive index layers are alternately laminated can be provided to provide an antireflection function.
- the high refractive index layer is a layer of at least one oxide selected from the group consisting of titanium, tantalum, zirconium, niobium or yttrium
- the low refractive index layer is silica, alumina, magnesium fluoride, lithium fluoride, It is at least one layer selected from the group consisting of sodium magnesium fluoride.
- These high refractive index layer and low refractive index layer can be formed by a method using a dry plating method such as vacuum deposition, sputtering, or ion plating.
- the aqueous sol of acidic anhydrous zinc antimonate colloidal particles thus obtained had a pH of 3.2, an electric conductivity of 164 ⁇ S / cm, and a ZnSb 2 O 6 concentration of 17.6% by mass.
- the specific surface area of the dried sol was 47 m 2 / g as measured by the BET method, and the converted primary particle diameter calculated from the specific surface area was 20 nm.
- Example 1 0.63 g of di-n-butylamine was added to 682 g of an aqueous sol of acidic anhydrous zinc antimonate colloidal particles obtained in Production Example 1, and the mixture was stirred for 1 hour.
- the obtained aqueous sol had a pH of 9.4 and a light intensity average particle size of 101 nm measured by a dynamic light scattering particle size distribution analyzer (Zetasizer NanoZS, manufactured by MALVERN).
- Zetasizer NanoZS manufactured by MALVERN.
- the aqueous sol was replaced with methanol while adding methanol to obtain 300 g of a methanol dispersion of anhydrous zinc antimonate colloidal particles.
- the obtained methyl ethyl ketone dispersion was stored in a sealed environment at room temperature for 24 hours or at 50 ° C. for 24 hours. As a result, both the light intensity average particle diameter and viscosity retained the physical properties before storage, and the storage stability was high. It was excellent.
- Example 2 0.82 g of tri-n-butylamine was added to 682 g of an aqueous sol of acidic anhydrous zinc antimonate colloidal particles obtained in Production Example 1, and the mixture was stirred for 1 hour.
- the obtained aqueous sol had a pH of 9.6 and a light intensity average particle size of 101 nm.
- the aqueous sol was replaced with methanol while adding methanol to obtain 300 g of an anhydrous zinc antimonate methanol dispersion.
- the resulting methanol dispersion had a solid content concentration of 40.5% by mass, a pH (1 + 1) of 9.5, and a light intensity average particle size of 96 nm.
- the resulting methyl ethyl ketone dispersion had a solid content concentration of 40.5% by mass, pH (1 + 1 + 1) 4.9, a light intensity average particle size of 91 nm, and a viscosity of 1.0 mPa ⁇ s.
- the obtained methyl ethyl ketone dispersion was stored in a sealed environment at room temperature for 24 hours or at 50 ° C. for 24 hours. As a result, both the light intensity average particle diameter and viscosity retained the physical properties before storage, and the storage stability was high. It was excellent.
- Example 3 0.82 g of tri-n-butylamine was added to 682 g of an aqueous sol of acidic anhydrous zinc antimonate colloidal particles obtained in Production Example 1, and the mixture was stirred for 1 hour.
- the obtained aqueous sol had a pH of 9.6 and a light intensity average particle size of 101 nm.
- the aqueous sol was replaced with methanol while adding methanol to obtain 300 g of an anhydrous zinc antimonate methanol dispersion.
- the resulting methanol dispersion had a solid content concentration of 40.5% by mass, a pH (1 + 1) of 9.5, and a light intensity average particle size of 96 nm.
- a surfactant having a phosphate group Disperbyk-111 manufactured by Big Chemie Japan Co., Ltd.
- ethyl acetate was added using a rotary evaporator.
- 300 g of an ethyl acetate dispersion of anhydrous zinc antimonate colloidal particles was obtained.
- the obtained ethyl acetate dispersion had a solid content concentration of 40.5% by mass, pH (1 + 1 + 1) 5.1, a light intensity average particle size of 100 nm, and a viscosity of 1.5 mPa ⁇ s.
- the resulting ethyl acetate dispersion was stored in a sealed environment at room temperature for 24 hours or at 50 ° C. for 24 hours. As a result, both the light intensity average particle diameter and viscosity retained the physical properties before storage, and the storage stability was excellent.
- Example 4 0.82 g of tri-n-butylamine was added to 682 g of an aqueous sol of acidic anhydrous zinc antimonate colloidal particles obtained in Production Example 1, and the mixture was stirred for 1 hour.
- the obtained aqueous sol had a pH of 9.6 and a light intensity average particle size of 101 nm.
- the aqueous sol was replaced with methanol while adding methanol to obtain 300 g of an anhydrous zinc antimonate methanol dispersion.
- the resulting methanol dispersion had a solid content concentration of 40.5% by mass, a pH (1 + 1) of 9.5, and a light intensity average particle size of 96 nm.
- methanol dispersion liquid 3.6 g of a surfactant having a phosphate group Disperbyk-111 (manufactured by Big Chemie Japan Co., Ltd.) was added, stirred for 1 hour, and then propylene glycol monomethyl ether using a rotary evaporator. Then, methanol was replaced with propylene glycol monomethyl ether to obtain 300 g of a propylene glycol monomethyl ether dispersion of anhydrous zinc antimonate colloidal particles.
- a surfactant having a phosphate group Disperbyk-111 manufactured by Big Chemie Japan Co., Ltd.
- the resulting propylene glycol monomethyl ether dispersion had a solid content concentration of 40.5% by mass, pH (1 + 1 + 1) 4.9, a light intensity average particle size of 110 nm, and a viscosity of 3.3 mPa ⁇ s.
- the resulting propylene glycol monomethyl ether dispersion was stored in a sealed environment at room temperature for 24 hours or at 50 ° C. for 24 hours. As a result, both the light intensity average particle diameter and the viscosity retained the physical property values before storage. Stability was excellent.
- Example 5 To 5 g of methyl ethyl ketone dispersion of colloidal anhydrous zinc antimonate particles obtained in Example 1, 0.9 g of dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd.)), photoinitiator Irgacure (Registered Trademark) 184 (Ciba Geigy Co., Ltd. (currently BASF Japan Ltd.)) 0.1 g of an ultraviolet curable resin composition mixed with 2.1 g of methyl ethyl ketone is mixed, and a resin composition containing anhydrous zinc antimonate colloidal particles I got a thing.
- KAYARAD registered trademark
- DPHA manufactured by Nippon Kayaku Co., Ltd.
- Irgacure Registered Trademark
- 184 Ciba Geigy Co., Ltd. (currently BASF Japan Ltd.)
- the dispersion state of the obtained resin composition was good.
- the obtained resin composition was placed on the upper surface of a PET film (thickness: 125 ⁇ m) with No. After coating using 6 wire bars, ultraviolet rays were irradiated with an ultraviolet irradiator to obtain a PET film having a conductive coating.
- the total light transmittance (Tt) was 96.5%, haze The value was 0.1.
- the surface resistance value of this film by a surface resistivity measuring apparatus Hiresta UP (manufactured by Mitsubishi Chemical Corporation) was 7 ⁇ 10 7 ⁇ / ⁇ .
- Example 6 To 5 g of methyl ethyl ketone dispersion of colloidal anhydrous zinc antimonate particles obtained in Example 2, 0.9 g of dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd.), photoinitiator Irgacure ( (Registered trademark) 184 (manufactured by Ciba Geigy Co., Ltd.
- KAYARAD registered trademark
- DPHA dipentaerythritol hexaacrylate
- Irgacure (Registered trademark) 184
- the total light transmittance (Tt) was 96.6%, haze.
- the value was 0.1.
- the surface resistance value of this film by a surface resistivity measuring apparatus Hiresta UP manufactured by Mitsubishi Chemical Corporation was 8 ⁇ 10 7 ⁇ / ⁇ .
- Example 7 Dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd.)) 0.9 g, photoinitiator Irgacure (5 g) of ethyl acetate dispersion of anhydrous zinc antimonate colloidal particles obtained in Example 3 (Registered trademark) 184 (manufactured by Ciba Geigy Co., Ltd. (currently BASF Japan Ltd.)), an ultraviolet curable resin composition mixed with 2.1 g of methyl ethyl ketone, and a resin composition containing anhydrous zinc antimonate colloidal particles The dispersion state of the obtained resin composition was good.
- KAYARAD registered trademark
- DPHA manufactured by Nippon Kayaku Co., Ltd.
- the obtained resin composition was placed on the upper surface of a PET film (thickness: 125 ⁇ m) with No. After coating using 6 wire bars, ultraviolet rays were irradiated with an ultraviolet irradiator to obtain a PET film having a conductive coating.
- a PET film having a conductive coating.
- Tt total light transmittance
- the value was 0.2.
- the surface resistance value of this film by a surface resistivity measuring apparatus Hiresta UP (manufactured by Mitsubishi Chemical Corporation) was 8 ⁇ 10 7 ⁇ / ⁇ .
- Example 8 Dipentaerythritol hexaacrylate (KAYARAD (registered trademark) DPHA (manufactured by Nippon Kayaku Co., Ltd.)) 0.9 g, photoinitiator was added to 5 g of propylene glycol monomethyl ether dispersion of colloidal particles of anhydrous zinc antimonate obtained in Example 4. Irgacure (registered trademark) 184 (manufactured by Ciba Geigy Co., Ltd.
- the resulting methyl ethyl ketone dispersion had a solid content concentration of 40.5% by mass, pH (1 + 1 + 1) 3.5, a light intensity average particle size of 93 nm, and a viscosity of 1.2 mPa ⁇ s.
- the obtained methyl ethyl ketone dispersion was stored in a sealed environment at room temperature for 24 hours or at 50 ° C. for 24 hours. As a result, it aggregated and gelled, and the storage stability was poor.
- the coating composition obtained by mixing a hydrophobic organic solvent dispersion containing colloidal particles of anhydrous zinc antimonate of the present invention and a binder can form a highly transparent conductive film by applying to a substrate. it can.
- a member having a conductive or antistatic coating can be produced without impairing the transparency of the substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Paints Or Removers (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願発明の無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液は、樹脂、プラスチックス、ガラス、紙、磁気テープ等の透明性帯電防止材料、透明性紫外線吸収剤、透明性熱線吸収材、高屈折率ハードコート材、反射防止剤など様々な用途に好適に用いられる。
第2観点として、前記アルキルアミンが炭素原子数4~18のアルキルアミンである第1観点に記載の疎水性有機溶媒分散液、
第3観点として、前記酸基を有する界面活性剤の酸基が、カルボン酸基、スルホン酸基又はリン酸基である第1観点に記載の疎水性有機溶媒分散液、
第4観点として、前記疎水性有機溶媒が、メチルセロソルブ、エチルセロソルブ、メチルエチルケトン、メチルイソブチルケトン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸ペンチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、キシレン、トルエン及びベンゼンからなる群から選ばれる少なくとも1種である第1観点~第3観点のいずれか一つに記載の疎水性有機溶媒分散液、
第5観点として、第1観点~第4観点のいずれか一つに記載の疎水性有機溶媒分散液とバインダー成分とを含むコーティング組成物、
第6観点として、前記バインダー成分が、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、ポリビニルアルコール樹脂、メラミン樹脂、ゼラチン及びゼラチン誘導体、セルロース及びセルロース誘導体、ポリイミド樹脂、フェノール樹脂、有機ケイ素化合物、ユリア樹脂、ジアリルフタレート樹脂及びブチラール樹脂からなる群から選ばれる少なくとも1種である第5観点に記載のコーティング組成物、
第7観点として、基材の表面に、第5観点又は第6観点に記載のコーティング組成物より形成される被膜を有する部材、
第8観点として、前記基材が、プラスチック、ゴム、ガラス、金属、セラミックス又は紙である第7観点に記載の部材、
第9観点として、前記被膜が1012Ω/□以下の表面抵抗値を有する第7観点又は第8観点に記載の部材、
第10観点として、第7観点~第9観点のいずれか一つに記載の部材の被膜上に更に反射防止膜を有する反射防止膜付部材、
である。
本願発明の対象とする疎水性有機溶媒分散液は、アルキルアミン及び酸基を有する界面活性剤により表面修飾された5~500nmの一次粒子径を有する無水アンチモン酸亜鉛コロイド粒子を含有する疎水性有機溶媒分散液である。
該疎水性有機溶媒分散液は、例えば無水アンチモン酸亜鉛コロイド粒子の水性ゾルにアルキルアミンを添加し、これを溶媒置換によりメタノール或いはエタノール分散液とした後、酸基を有する界面活性剤を添加し、さらに疎水性有機溶媒にて溶媒置換することにより、得られる。
本願発明に用いられる無水アンチモン酸亜鉛コロイド粒子は、以下に示すような公知の方法で得ることができる。
例えば、本願発明に用いられる無水アンチモン酸亜鉛コロイド粒子は、特開平6-219743号公報に記載の方法で得られる無水アンチモン酸亜鉛を好ましく用いることができる。同公報には、ZnO/Sb2O5モル比が0.8~1.2であり、透過型電子顕微鏡観察による一次粒子径が5~500nm、好ましくは5~50nmである無水アンチモン酸亜鉛とその製造方法が記載されている。具体的には、該無水アンチモン酸亜鉛は、ZnO/Sb2O5モル比が0.8~1.2となるように亜鉛化合物とコロイダル酸化アンチモンとを混合した後、500~1100℃で焼成することにより製造する。なおコロイダル酸化アンチモンとして後述する酸化アンチモンゾルを用いる場合、酸化アンチモンゾルと亜鉛化合物とを混合し、更に乾燥した後、500~1100℃で焼成することにより無水アンチモン酸亜鉛を製造することができる
コロイド状三酸化アンチモンは、気相法(特公昭61-3292号公報)によって製造することができる。
前記無水アンチモン酸亜鉛の製造において、酸化アンチモンゾルは、酸化アンチモン(Sb2O5、Sb6O13又はSb2O4)濃度が1~60質量%のものを使用できるが、これらをスプレードライ、真空乾燥、凍結乾燥等の方法により乾燥した酸化アンチモンゾルの乾燥物として使用することもできる。
また前記亜鉛化合物と酸化アンチモンゾルの乾燥物又はコロイド状三酸化アンチモンとの混合は、乳鉢、V型ミキサー、ヘンシェルミキサー、ボールミル等の混合装置により行うことができる。
ここで、前記亜鉛化合物と、酸化アンチモンゾル若しくはその乾燥物又はコロイド状三酸化アンチモンとを、ZnO/Sb2O5のモル比が0.8~1.2となるように混合することが好ましい。
前記の方法により得られる無水アンチモン酸亜鉛を、湿式粉砕により水性ゾルとした後、脱イオン処理することにより、透明性の高い無水アンチモン酸亜鉛コロイド粒子の水性ゾルが得られる。
前記の脱イオン処理された無水アンチモン酸亜鉛コロイド粒子の水性ゾルに対して、分散剤として炭素原子数が4~18であるアルキルアミンを添加する。ここで炭素原子数が4~18であるアルキルアミンとしては、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルアミン、ジ-n-アミルアミン、トリ-n-アミルアミン等が挙げられ、なかでもn-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルアミン等の低分子量のアルキルアミンが好ましい。
前記の溶媒置換により得られる無水アンチモン酸亜鉛コロイド粒子のメタノール分散液又はエタノール分散液に対して、酸基を有する界面活性剤を添加することにより、無水アンチモン酸亜鉛コロイド粒子の表面修飾を行うことができる。
アルキルアミン及び酸基を有する界面活性剤により表面修飾された無水アンチモン酸亜鉛コロイド粒子のメタノール分散液又はエタノール分散液は、疎水性有機溶媒にて溶媒置換をすることにより、疎水性有機溶媒分散液を得ることができる。
本願発明は、アルキルアミン及び酸基を有する界面活性剤により表面修飾された5~500nmの一次粒子径を有する無水アンチモン酸亜鉛コロイド粒子を含有する疎水性有機溶媒分散液とバインダー成分とを含むコーティング組成物をも対象とする。本願発明のコーティング組成物は、透明導電性、透明帯電防止性又は高屈折率性を有した被膜を得るのに好適である。
ポリビニルエステル系重合体は、上記のビニルエステル系モノマー類に共重合可能なコモノマーを共重合した共重合体でもよい。前記コモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等のオレフィン類;アクリル酸及びその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類、メタクリル酸及びその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類;アクリルアミド、ヒドロキシアルキルアクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸及びその塩、アクリルアミドプロピルジメチルアミン及びその塩又はその4級塩、N-メチロールアクリルアミド及びその誘導体等のアクリルアミド誘導体、メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸及びその塩、メタクリルアミドプロピルジメチルアミン及びその塩又はその4級塩、N-メチロールメタクリルアミド及びその誘導体等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル類、アクリロニトリル、メタクリロニトリル等のニトリル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル、酢酸アリル、塩化アリル等のアリル化合物、マレイン酸及びその塩又はそのエステル、ビニルトリメトキシシラン等のビニルシリル化合物、酢酸イソプロペニル等が挙げられる。
C成分:一般式(I)で表される有機ケイ素化合物又はその加水分解縮合物。
(R1)a(R3)bSi(OR2)4-(a+b) (I)
(式中、R1、R3はそれぞれ炭素原子数1~20のアルキル基、アルケニル基、アリール基、アシル基、ハロゲン基、グリシドキシ基、エポキシ基、アミノ基、フェニル基、メルカプト基、メタクリルオキシ基及びシアノ基からなる群より選ばれた有機基を表し、R2は炭素原子数1~8のアルキル基、アルコキシ基、アシル基及びフェニル基からなる群より選ばれる有機基を表し、a及びbは0又は1の整数を表す。)
D成分:一般式(II)で表される有機ケイ素化合物又はその加水分解縮合物。
{(OX)3-aSi(R4)}2Y (II)
(式中、R4は炭素原子数1~5の有機基を表し、Xは炭素原子数1~4のアルキル基又は炭素原子数1~4のアシル基を表し、Yは炭素原子数2~20の有機基を表し、aは0又は1の整数を表す。)
本願発明の部材は、前記コーティング組成物により形成される被膜を基材の表面に有するものである。具体的には、前記コーティング組成物を基材上に塗布し、硬化処理して被膜を形成することにより、本願発明の部材を得ることができる。
本願発明の部材に用いられる基材は、プラスチック、ゴム、ガラス、金属、セラミックス又は紙等である。
三酸化アンチモン(三国精練(株)製)1300gを水5587gに分散させ、次いで35%過酸化水素水953.7gを添加し、90~100℃に加熱しながら2時間反応させることにより、五酸化アンチモンゾルを得た。得られたゾルは比重1.198、pH1.80、粘度19.5mPa・s、Sb2O5濃度18.4質量%、透過型電子顕微鏡観察による一次粒子径20~30nm、BET法による比表面積55.0m2/gであった。
得られた五酸化アンチモンゾルに、室温で撹拌下に塩基性炭酸亜鉛(堺化学工業(株)製、3ZnCO3・4Zn(OH)2、ZnOに換算して70質量%含有)276gを添加、混合し、更に5時間撹拌を行ってスラリーを得た。このスラリーをスプレードライヤーで乾燥して黄白色の粉末を得た。得られた粉末を、流動焼成炉を用いて、550℃で5時間焼成し、青緑色の粉末を得た。この粉末は、X線回折測定の結果、無水アンチモン酸亜鉛(ZnSb2O6)のピークと一致した。また、この粉末を100kg/cm2でプレス成形したものは比抵抗値で80Ωcmの導電性を示した。
この粉末をピンディスクミルで粉砕した後、容量20リットルの湿式粉砕装置(アシザワ・ファインテック(株)製LMK-20型粉砕機)に前記粉末84kgと水320kgを添加し、ガラスビーズ(0.5mmφ)で湿式粉砕を行い、水性ゾルを得た。この水性ゾルのpHは6.86であった。
この水性ゾルをカチオン交換樹脂(アンバーライト(登録商標)IR-120B(オルガノ(株)製))50リットルを充填したカラムに速度SV=12で通液してカチオン交換を行った。ついでアニオン交換樹脂(アンバーライトIRA-410J(オルガノ(株)製))50リットルを充填したカラムに通液速度SV=12で通液しアニオン交換を行った。
このようにして得た酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾルはpH3.2、電導度164μS/cm、ZnSb2O6濃度17.6質量%であった。このゾルの乾燥物の比表面積はBET法で測定して47m2/g、比表面積より算出した換算一次粒子径は20nmであった。
製造例1にて得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにジ-n-ブチルアミンを0.63g添加し、1時間撹拌した。得られた水性ゾルはpH9.4、動的光散乱法粒度分布測定装置(ゼータサイザーNanoZS、MALVERN社製)による光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛コロイド粒子のメタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、メタノール分散液:水=1:1の質量比率で混合した希釈液を希釈1時間後にpHメーターによって測定したpH(以下pH(1+1)と表記する。)は9.3、光強度平均粒子径は96nmであった。
得られたメタノール分散液にリン酸基を有する界面活性剤Disperbyk(登録商標)-111(ビックケミー・ジャパン(株)製)を3.6g添加し、1時間撹拌した後、ロータリーエバポレーターを用いて、メチルエチルケトンを添加しながらメタノールをメチルエチルケトンに置換し、無水アンチモン酸亜鉛コロイド粒子のメチルエチルケトン分散液300gを得た。得られたメチルエチルケトン分散液は、固形分濃度40.5質量%、該分散液:メタノール:水=1:1:1の質量比率で混合した希釈液を希釈1時間後にpHメーターによって測定したpH(以下pH(1+1+1)と表記する。)は4.6、光強度平均粒子径は90nm、粘度1.1mPa・sであった。得られたメチルエチルケトン分散液は密閉環境下で、室温24時間又は50℃24時間に保管した結果、光強度平均粒子径及び粘度はどちらも保管前の物性値を保持しており、保存安定性が優れていた。
製造例1で得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにトリ-n-ブチルアミンを0.82g添加し、1時間撹拌した。得られた水性ゾルはpH9.6、光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛メタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、pH(1+1)は9.5、光強度平均粒子径は96nmであった。
得られたメタノール分散液にリン酸基を有する界面活性剤Disperbyk-111(ビックケミー・ジャパン(株)製)を3.6g添加し、1時間撹拌した後、ロータリーエバポレーターを用いて、メチルエチルケトンを添加しながらメタノールをメチルエチルケトンに置換し、無水アンチモン酸亜鉛コロイド粒子のメチルエチルケトン分散液300gを得た。得られたメチルエチルケトン分散液は、固形分濃度40.5質量%、pH(1+1+1)4.9、光強度平均粒子径は91nm、粘度1.0mPa・sであった。得られたメチルエチルケトン分散液は密閉環境下で、室温24時間又は50℃24時間に保管した結果、光強度平均粒子径及び粘度はどちらも保管前の物性値を保持しており、保存安定性が優れていた。
製造例1で得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにトリ-n-ブチルアミンを0.82g添加し、1時間撹拌した。得られた水性ゾルはpH9.6、光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛メタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、pH(1+1)は9.5、光強度平均粒子径は96nmであった。
得られたメタノール分散液にリン酸基を有する界面活性剤Disperbyk-111(ビックケミー・ジャパン(株)製)を3.6g添加し、1時間撹拌した後、ロータリーエバポレーターを用いて、酢酸エチルを添加しながらメタノールを酢酸エチルに置換し、無水アンチモン酸亜鉛コロイド粒子の酢酸エチル分散液300gを得た。得られた酢酸エチル分散液は、固形分濃度40.5質量%、pH(1+1+1)5.1、光強度平均粒子径は100nm、粘度1.5mPa・sであった。得られた酢酸エチル分散液は密閉環境下で、室温24時間又は50℃24時間に保管した結果、光強度平均粒子径及び粘度はどちらも保管前の物性値を保持しており、保存安定性が優れていた。
製造例1で得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにトリ-n-ブチルアミンを0.82g添加し、1時間撹拌した。得られた水性ゾルはpH9.6、光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛メタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、pH(1+1)は9.5、光強度平均粒子径は96nmであった。
得られたメタノール分散液にリン酸基を有する界面活性剤Disperbyk-111(ビックケミー・ジャパン(株)製)を3.6g添加し、1時間撹拌した後、ロータリーエバポレーターを用いて、プロピレングリコールモノメチルエーテルを添加しながらメタノールをプロピレングリコールモノメチルエーテルに置換し、無水アンチモン酸亜鉛コロイド粒子のプロピレングリコールモノメチルエーテル分散液300gを得た。得られたプロピレングリコールモノメチルエーテル分散液は、固形分濃度40.5質量%、pH(1+1+1)4.9、光強度平均粒子径は110nm、粘度3.3mPa・sであった。得られたプロピレングリコールモノメチルエーテル分散液は密閉環境下で、室温24時間又は50℃24時間に保管した結果、光強度平均粒子径及び粘度はどちらも保管前の物性値を保持しており、保存安定性が優れていた。
実施例1で得られた無水アンチモン酸亜鉛コロイド粒子のメチルエチルケトン分散液5gに、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(日本化薬(株)製))0.9g、光開始剤イルガキュア(登録商標)184(チバガイギー社製(現:BASFジャパン(株)))0.1g、メチルエチルケトン2.1gを混合した紫外線硬化性樹脂組成物を配合し、無水アンチモン酸亜鉛コロイド粒子を含む樹脂組成物を得た。得られた樹脂組成物の分散状態は良好であった。
得られた樹脂組成物をPETフィルム(厚さ125μm)の上面にNo.6のワイヤーバーを用いて塗布した後、紫外線照射機にて紫外線を照射し、導電性被膜を有するPETフィルムを得た。
得られた導電性被膜付きPETフィルムを分光ヘイズメーターTC-H3DPK-MKII((有)東京電色製)を用いてヘイズを測定した結果、全光透過率(Tt)は96.5%、ヘイズ値は0.1であった。このフィルムの表面抵抗率測定装置ハイレスターUP(三菱化学(株)製)による表面抵抗値は7×107Ω/□であった。
実施例2で得られた無水アンチモン酸亜鉛コロイド粒子のメチルエチルケトン分散液5gに、ジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(日本化薬(株)製)0.9g、光開始剤イルガキュア(登録商標)184(チバガイギー社製(現:BASFジャパン(株)))0.1g、メチルエチルケトン2.1gを混合した紫外線硬化性樹脂組成物を配合し、無水アンチモン酸亜鉛コロイド粒子を含む樹脂組成物を得た。得られた樹脂組成物の分散状態は良好であった。
得られた樹脂組成物をPETフィルム(厚さ125μm)の上面にNo.6のワイヤーバーを用いて塗布した後、紫外線照射機にて紫外線を照射し、導電性被膜を有するPETフィルムを得た。
得られた導電性被膜付きPETフィルムを分光ヘイズメーターTC-H3DPK-MKII((有)東京電色製)を用いてヘイズを測定した結果、全光透過率(Tt)は96.6%、ヘイズ値は0.1であった。このフィルムの表面抵抗率測定装置ハイレスターUP(三菱化学(株)製)による表面抵抗値は8×107Ω/□であった。
実施例3で得られた無水アンチモン酸亜鉛コロイド粒子の酢酸エチル分散液5gにジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(日本化薬(株)製)0.9g、光開始剤イルガキュア(登録商標)184(チバガイギー社製(現:BASFジャパン(株)))0.1g、メチルエチルケトン2.1gを混合した紫外線硬化性樹脂組成物を配合し、無水アンチモン酸亜鉛コロイド粒子を含む樹脂組成物を得た。得られた樹脂組成物の分散状態は良好であった。
得られた樹脂組成物をPETフィルム(厚さ125μm)の上面にNo.6のワイヤーバーを用いて塗布した後、紫外線照射機にて紫外線を照射し、導電性被膜を有するPETフィルムを得た。
得られた導電性被膜付きPETフィルムを分光ヘイズメーターTC-H3DPK-MKII((有)東京電色製)を用いてヘイズを測定した結果、全光透過率(Tt)は97.0%、ヘイズ値は0.2であった。このフィルムの表面抵抗率測定装置ハイレスターUP(三菱化学(株)製)による表面抵抗値は8×107Ω/□であった。
実施例4で得られた無水アンチモン酸亜鉛コロイド粒子のプロピレングリコールモノメチルエーテル分散液5gにジペンタエリスリトールヘキサアクリレート(KAYARAD(登録商標)DPHA(日本化薬(株)製)0.9g、光開始剤イルガキュア(登録商標)184(チバガイギー社製(現:BASFジャパン(株)))0.1g、メチルエチルケトン2.1gを混合した紫外線硬化性樹脂組成物を配合し、無水アンチモン酸亜鉛コロイド粒子を含む樹脂組成物を得た。得られた樹脂組成物の分散状態は良好であった。
得られた樹脂組成物をPETフィルム(厚さ125μm)の上面に、No.6のワイヤーバーを用いて塗布した後、紫外線照射機にて紫外線を照射し、導電性被膜を有するPETフィルムを得た。
得られた導電性被膜付きPETフィルムを分光ヘイズメーターTC-H3DPK-MKII((有)東京電色製)を用いてヘイズを測定した結果、全光透過率(Tt)は95.0%、ヘイズ値は0.3であった。このフィルムの表面抵抗率測定装置ハイレスターUP(三菱化学(株)製)による表面抵抗値は6×107Ω/□であった。
製造例1にて得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換を行ったが、置換中にゲル化し、安定なゾルは得られなかった。
製造例1にて得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにトリ-n-ブチルアミンを0.82g添加し、1時間撹拌した。得られた水性ゾルはpH9.6、光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛コロイド粒子のメタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、pH(1+1)は9.5、光強度平均粒子径は96nmであった。
得られたメタノール分散液を、ロータリーエバポレーターを用いて、MEKをチャージしながらメタノールをメチルエチルケトンに置換したが、置換中にゲル化し、安定なゾルは得られなかった。
製造例1にて得られた酸性無水アンチモン酸亜鉛コロイド粒子の水性ゾル682gにトリ-n-ブチルアミンを0.34g添加し、1時間撹拌した。得られた水性ゾルはpH5.1、光強度平均粒子径は101nmであった。
この水性ゾルをロータリーエバポレーターを用いて、メタノールを添加しながら水をメタノールに置換し、無水アンチモン酸亜鉛コロイド粒子のメタノール分散液300gを得た。得られたメタノール分散液は、固形分濃度40.5質量%、pH(1+1)5.8、光強度平均粒子径は96nmであった。
得られたメタノール分散液にリン酸基を有する界面活性剤Disperbyk-111(ビックケミー・ジャパン(株)製)を3.6g添加し、1時間撹拌した後、ロータリーエバポレーターを用いて、メチルエチルケトンを添加しながらメタノールをメチルエチルケトンに置換し、無水アンチモン酸亜鉛コロイド粒子のメチルエチルケトン分散液300gを得た。得られたメチルエチルケトン分散液は、固形分濃度40.5質量%、pH(1+1+1)3.5、光強度平均粒子径は93nm、粘度1.2mPa・sであった。得られたメチルエチルケトン分散液は、密閉環境下で、室温24時間又は50℃24時間に保管した結果、凝集、ゲル化し、保存安定性が劣っていた。
Claims (10)
- アルキルアミン及び酸基を有する界面活性剤により表面修飾された5~500nmの一次粒子径を有する無水アンチモン酸亜鉛コロイド粒子を含有する疎水性有機溶媒分散液。
- 前記アルキルアミンが炭素原子数4~18のアルキルアミンである請求項1に記載の疎水性有機溶媒分散液。
- 前記酸基を有する界面活性剤の酸基が、カルボン酸基、スルホン酸基又はリン酸基である請求項1に記載の疎水性有機溶媒分散液。
- 前記疎水性有機溶媒が、メチルセロソルブ、エチルセロソルブ、メチルエチルケトン、メチルイソブチルケトン、酢酸イソブチル、酢酸イソプロピル、酢酸イソペンチル、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸ペンチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、キシレン、トルエン及びベンゼンからなる群から選ばれる少なくとも1種である請求項1~3のいずれか一項に記載の疎水性有機溶媒分散液。
- 請求項1~4のいずれか一項に記載の疎水性有機溶媒分散液とバインダー成分とを含むコーティング組成物。
- 前記バインダー成分が、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、ポリビニルアルコール樹脂、メラミン樹脂、ゼラチン及びゼラチン誘導体、セルロース及びセルロース誘導体、ポリイミド樹脂、フェノール樹脂、有機ケイ素化合物、ユリア樹脂、ジアリルフタレート樹脂及びブチラール樹脂からなる群から選ばれる少なくとも1種である請求項5に記載のコーティング組成物。
- 基材の表面に、請求項5又は請求項6に記載のコーティング組成物より形成される被膜を有する部材。
- 前記基材が、プラスチック、ゴム、ガラス、金属、セラミックス又は紙である請求項7に記載の部材。
- 前記被膜が1012Ω/□以下の表面抵抗値を有する請求項7又は8に記載の部材。
- 請求項7~9のいずれか一項に記載の部材の被膜上に更に反射防止膜を有する反射防止膜付部材。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012530703A JP5682768B2 (ja) | 2010-08-27 | 2011-08-25 | 表面修飾された無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液及びそれを用いたコーティング組成物並びに被覆部材 |
KR1020137004470A KR20130100271A (ko) | 2010-08-27 | 2011-08-25 | 표면 개질된 무수 안티몬산 아연 콜로이드 입자의 소수성 유기용매 분산액,이를 이용한 코팅 조성물 및 피복부재 |
EP11819985.0A EP2610220A4 (en) | 2010-08-27 | 2011-08-25 | DISPERSION IN A HYDROPHOBIC ORGANIC SOLVENT WITH SURFACE-MODIFIED COLLOIDAL PARTICLES FROM WATER-FREE ZINCANTONONATE, COATING COMPOSITION THEREFOR AND COATED ELEMENT |
US13/817,270 US20130143035A1 (en) | 2010-08-27 | 2011-08-25 | Hydrophobic-organic-solvent dispersion of surface-modified colloidal particles of anhydrous zinc antimonate, coating composition containing the same, and coated member |
CN2011800413155A CN103118984A (zh) | 2010-08-27 | 2011-08-25 | 进行了表面修饰的无水锑酸锌胶体粒子的疏水性有机溶剂分散液、使用了该分散液的涂料组合物以及被覆部件 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010191184 | 2010-08-27 | ||
JP2010-191184 | 2010-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026522A1 true WO2012026522A1 (ja) | 2012-03-01 |
Family
ID=45723513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/069168 WO2012026522A1 (ja) | 2010-08-27 | 2011-08-25 | 表面修飾された無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液及びそれを用いたコーティング組成物並びに被覆部材 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130143035A1 (ja) |
EP (1) | EP2610220A4 (ja) |
JP (1) | JP5682768B2 (ja) |
KR (1) | KR20130100271A (ja) |
CN (1) | CN103118984A (ja) |
TW (1) | TW201226325A (ja) |
WO (1) | WO2012026522A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006158A (ja) * | 2014-05-27 | 2016-01-14 | キヤノン株式会社 | コーティング剤、導電性樹脂膜、電子写真用部材及び電子写真用部材の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130130508A1 (en) * | 2011-09-02 | 2013-05-23 | Air Products And Chemicals, Inc. | Compositions and Methods for Texturing of Silicon Wafers |
JP6662601B2 (ja) * | 2015-10-09 | 2020-03-11 | セコ コーポレイション リミテッド | 防曇剤 |
KR102456605B1 (ko) * | 2020-10-22 | 2022-10-21 | 주식회사 케이씨텍 | 디스플레이용 금속 산화물 분산액 조성물, 그의 제조방법 및 디스플레이용 광학 부재 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5221298A (en) | 1975-08-07 | 1977-02-17 | American Cyanamid Co | Method of making colloidal dispersion of particles of antimony tetraoxide hydrate antimonyy pentaoxide or mixture thereof |
US4110247A (en) | 1977-04-07 | 1978-08-29 | The Harshaw Chemical Company | Method of preparing colloidal sol of antimony oxide |
JPS5711848B2 (ja) | 1971-12-27 | 1982-03-06 | ||
JPS6041536A (ja) | 1983-08-16 | 1985-03-05 | Nissan Chem Ind Ltd | 五酸化アンチモンゾルの製造法 |
JPS613292B2 (ja) | 1982-07-20 | 1986-01-31 | Nippon Seiko Kk | |
JPS62125849A (ja) | 1985-11-26 | 1987-06-08 | Japan Exlan Co Ltd | 十三酸化六アンチモン水性ゾル |
JPS62182116A (ja) | 1986-02-06 | 1987-08-10 | Nissan Chem Ind Ltd | 五酸化アンチモンゾルの製造方法 |
JPH06219743A (ja) | 1993-01-29 | 1994-08-09 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛及びその製造法 |
JPH0745128A (ja) * | 1993-07-30 | 1995-02-14 | Idemitsu Kosan Co Ltd | 透明導電膜およびその製造方法 |
JPH09208840A (ja) * | 1996-01-30 | 1997-08-12 | Kureha Chem Ind Co Ltd | 可視域外光線吸収体 |
JPH11189416A (ja) * | 1997-12-26 | 1999-07-13 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛の製造方法 |
JPH11314918A (ja) | 1997-10-16 | 1999-11-16 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛ゾル及びその製造方法 |
JP2005330177A (ja) | 2004-04-21 | 2005-12-02 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛ゾル及びその製造方法 |
WO2010008050A1 (ja) * | 2008-07-17 | 2010-01-21 | 日産化学工業株式会社 | 無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散ゾル及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5580819A (en) * | 1995-03-22 | 1996-12-03 | Ppg Industries, Inc. | Coating composition, process for producing antireflective coatings, and coated articles |
US6093749A (en) * | 1997-10-16 | 2000-07-25 | Nissan Chemical Industries, Ltd. | Anhydrous zinc antimonate sol and method for producing the same |
US7718708B2 (en) * | 2004-04-21 | 2010-05-18 | Nissan Chemical Industries, Ltd. | Anhydrous zinc antimonate sol and process for producing same |
US20070065602A1 (en) * | 2005-09-21 | 2007-03-22 | Fuji Photo Film Co., Ltd. | Optical film, polarizing plate and image display device |
CN100480306C (zh) * | 2006-12-08 | 2009-04-22 | 江苏晨光涂料有限公司 | 透明隔热树脂板材 |
JP5060781B2 (ja) * | 2006-12-26 | 2012-10-31 | 三菱マテリアル電子化成株式会社 | 透明導電膜形成用組成物、透明導電膜及びディスプレイ |
CN101302358B (zh) * | 2007-05-09 | 2011-12-14 | 北京有色金属研究总院 | 一种无水纳米锑酸锌溶胶及其制备方法 |
CN101339258A (zh) * | 2007-07-03 | 2009-01-07 | 达信科技股份有限公司 | 抗反射膜及其制作方法 |
-
2011
- 2011-08-25 JP JP2012530703A patent/JP5682768B2/ja active Active
- 2011-08-25 EP EP11819985.0A patent/EP2610220A4/en not_active Withdrawn
- 2011-08-25 KR KR1020137004470A patent/KR20130100271A/ko not_active Application Discontinuation
- 2011-08-25 US US13/817,270 patent/US20130143035A1/en not_active Abandoned
- 2011-08-25 WO PCT/JP2011/069168 patent/WO2012026522A1/ja active Application Filing
- 2011-08-25 CN CN2011800413155A patent/CN103118984A/zh active Pending
- 2011-08-26 TW TW100130686A patent/TW201226325A/zh unknown
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5711848B2 (ja) | 1971-12-27 | 1982-03-06 | ||
JPS5221298A (en) | 1975-08-07 | 1977-02-17 | American Cyanamid Co | Method of making colloidal dispersion of particles of antimony tetraoxide hydrate antimonyy pentaoxide or mixture thereof |
US4110247A (en) | 1977-04-07 | 1978-08-29 | The Harshaw Chemical Company | Method of preparing colloidal sol of antimony oxide |
JPS613292B2 (ja) | 1982-07-20 | 1986-01-31 | Nippon Seiko Kk | |
JPS6041536A (ja) | 1983-08-16 | 1985-03-05 | Nissan Chem Ind Ltd | 五酸化アンチモンゾルの製造法 |
JPS62125849A (ja) | 1985-11-26 | 1987-06-08 | Japan Exlan Co Ltd | 十三酸化六アンチモン水性ゾル |
JPS62182116A (ja) | 1986-02-06 | 1987-08-10 | Nissan Chem Ind Ltd | 五酸化アンチモンゾルの製造方法 |
JPH06219743A (ja) | 1993-01-29 | 1994-08-09 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛及びその製造法 |
JPH0745128A (ja) * | 1993-07-30 | 1995-02-14 | Idemitsu Kosan Co Ltd | 透明導電膜およびその製造方法 |
JPH09208840A (ja) * | 1996-01-30 | 1997-08-12 | Kureha Chem Ind Co Ltd | 可視域外光線吸収体 |
JPH11314918A (ja) | 1997-10-16 | 1999-11-16 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛ゾル及びその製造方法 |
JPH11189416A (ja) * | 1997-12-26 | 1999-07-13 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛の製造方法 |
JP2005330177A (ja) | 2004-04-21 | 2005-12-02 | Nissan Chem Ind Ltd | 無水アンチモン酸亜鉛ゾル及びその製造方法 |
WO2010008050A1 (ja) * | 2008-07-17 | 2010-01-21 | 日産化学工業株式会社 | 無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散ゾル及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2610220A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016006158A (ja) * | 2014-05-27 | 2016-01-14 | キヤノン株式会社 | コーティング剤、導電性樹脂膜、電子写真用部材及び電子写真用部材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2610220A1 (en) | 2013-07-03 |
KR20130100271A (ko) | 2013-09-10 |
CN103118984A (zh) | 2013-05-22 |
JP5682768B2 (ja) | 2015-03-11 |
US20130143035A1 (en) | 2013-06-06 |
TW201226325A (en) | 2012-07-01 |
JPWO2012026522A1 (ja) | 2013-10-28 |
EP2610220A4 (en) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101359726B1 (ko) | 도전성 산화 주석 졸 및 그 제조방법 | |
JP2007324142A (ja) | 導電性コーティング組成物 | |
WO2010013660A1 (ja) | 導電性コーティング組成物 | |
JP5704345B2 (ja) | シラン表面処理金属酸化物微粒子およびその製造方法 | |
JP2007324143A (ja) | 導電性コーティング組成物 | |
JP4877518B2 (ja) | 導電性酸化スズゾル及びその製造方法 | |
US8697757B2 (en) | Hydrophobic organic solvent-dispersed sol of anhydrous zinc antimonate colloidal particles and method for producing the same | |
JP5682768B2 (ja) | 表面修飾された無水アンチモン酸亜鉛コロイド粒子の疎水性有機溶媒分散液及びそれを用いたコーティング組成物並びに被覆部材 | |
DE69802658T2 (de) | Verfahren zur Herstellung von wasserfreiem Zinkantimonat | |
WO2012161191A1 (ja) | 表面変性された熱線遮蔽性微粒子の製造方法及びその方法により得られる熱線遮蔽性微粒子分散液 | |
WO2011024829A1 (ja) | 導電性コーティング組成物及び被覆部材 | |
JP5029818B2 (ja) | コーティング組成物及び光学部材 | |
DE69813722T2 (de) | Wasserfreie Zinkantimonat Sol und Verfahren zu seiner Herstellung | |
JPWO2011024830A1 (ja) | 導電性コーティング組成物及び被覆部材 | |
JPH11314918A (ja) | 無水アンチモン酸亜鉛ゾル及びその製造方法 | |
JP2005008515A (ja) | 金属酸化物粒子及びその製造方法 | |
JP4605375B2 (ja) | 無水アンチモン酸亜鉛ゾル及びその製造方法 | |
JP2013252981A (ja) | 導電性酸化スズゾルの製造方法 | |
JP2010033881A (ja) | 導電性コーティング組成物 | |
JP2012036322A (ja) | ポリマーシリカナノコンポジットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180041315.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819985 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012530703 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13817270 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011819985 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137004470 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |