WO2012026135A1 - 光導波路および電子機器 - Google Patents

光導波路および電子機器 Download PDF

Info

Publication number
WO2012026135A1
WO2012026135A1 PCT/JP2011/004773 JP2011004773W WO2012026135A1 WO 2012026135 A1 WO2012026135 A1 WO 2012026135A1 JP 2011004773 W JP2011004773 W JP 2011004773W WO 2012026135 A1 WO2012026135 A1 WO 2012026135A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical waveguide
core
layer
cladding
Prior art date
Application number
PCT/JP2011/004773
Other languages
English (en)
French (fr)
Inventor
森 哲也
公雄 守谷
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to US13/819,600 priority Critical patent/US9151888B2/en
Priority to CN201180041360.0A priority patent/CN103080798B/zh
Publication of WO2012026135A1 publication Critical patent/WO2012026135A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to an optical waveguide and an electronic device.
  • optical waveguides have become widespread as means for guiding an optical carrier wave from one point to another point with respect to an optical communication technology for transferring data using the optical carrier wave.
  • the optical waveguide has a linear core part and a clad part provided so as to cover the periphery thereof.
  • Patent Document 1 describes an optical waveguide in which a refractive index adjusting agent is diffused in a polymer substrate so that the refractive index of a core portion is distributed concentrically in a cross section.
  • the refractive index of the cladding part covering the periphery of the core part is constant.
  • the core part is made of a material that is substantially transparent to the light of the optical carrier wave
  • the cladding part is made of a material having a refractive index lower than that of the core part.
  • crosstalk may occur between adjacent core portions.
  • the present invention includes the following.
  • a first cladding layer A core layer provided on the first clad layer and having a clad part, a first core part, a clad part, a second core part, and a clad part provided in the in-layer direction in this order;
  • a second cladding layer provided on the core layer;
  • the refractive index distribution W in the in-layer direction of the first core portion and the portion extending to the clad portion is continuously changed, and the first convex portion, the first concave portion, and the first concave portion Has a region lined up in the order of the two convex portions,
  • the refractive index distribution W located in the first core portion has the first convex portion
  • the refractive index distribution W located in the clad portion has the second convex portion having a maximum refractive index smaller than that of the first convex portion,
  • the refractive index difference between the maximum value of the refractive index of the first core part and the maximum value of the refractive index of the first cladding layer is the maximum value of the refractive index of the first core part and the maximum value of the refractive index of the cladding part.
  • the optical waveguide is larger than the refractive index difference.
  • the second core layer is an optical waveguide having a third core portion located in an interlayer direction of the first core portion.
  • the optical waveguide has a refractive index at the top of the first recess that is smaller than an average refractive index in the cladding.
  • the refractive index distribution W is an optical waveguide having a top portion of the second convex portion in addition to the vicinity of the interface between the first core portion and the cladding portion.
  • the refractive index distribution W has a top portion of the second convex portion at the center portion of the cladding portion, and is continuously refracted from the top portion of the second convex portion toward the first concave portion.
  • the refractive index difference between the first core portion and the first cladding layer in the refractive index distribution T is the refractive index between the top of the first concave portion and the top of the first convex portion in the refractive index distribution W.
  • optical waveguide In the optical waveguide according to any one of [1] to [9], Having a hole provided so as to cross the first core part and the first cladding layer, and an inner surface of the hole constitutes a reflection surface that reflects light transmitted through the core part; Optical waveguide. [11] In the optical waveguide according to any one of [1] to [10], The difference between the refractive index of the top of the first recess and the average refractive index of the cladding is 3 of the difference between the refractive index of the top of the first recess and the refractive index of the top of the first projection. Optical waveguide that is ⁇ 80%.
  • a core layer comprising: a core portion; and side clad portions adjacent to both side surfaces of the core portion; An optical waveguide having a clad layer laminated on both sides of the core layer,
  • the refractive index distribution W in the width direction of the cross section of the core layer has at least two minimum values, at least one first maximum value, and at least two second maximum values smaller than the first maximum value.
  • FIG. 1 is a perspective view showing a first embodiment of an optical waveguide of the present invention (partially cut out and shown through).
  • 1 is a diagram schematically showing an example of a refractive index distribution when the horizontal axis indicates the position of the core layer thickness in the center line C1 and the vertical axis indicates the refractive index. It is. It is a figure which shows an example of intensity distribution of the emitted light when light injects into one of the core parts of the optical waveguide shown in FIG.
  • FIG. 1 is a sectional view taken along the line XX in FIG. 1, and a refractive index on the center line C2 passing through the center of the core part in the width direction of the line XX. It is a figure which shows an example of distribution T typically.
  • FIG. 1st manufacturing method of the optical waveguide shown in FIG. It is a figure for demonstrating the 1st manufacturing method of the optical waveguide shown in FIG.
  • FIG. 1st manufacturing method of the optical waveguide shown in FIG. It is a figure for demonstrating the 1st manufacturing method of the optical waveguide shown in FIG.
  • FIG. 1st manufacturing method of the optical waveguide shown in FIG. It is a figure for demonstrating the 1st manufacturing method of the optical waveguide shown in FIG.
  • FIG. 1st manufacturing method of the optical waveguide shown in FIG. It is a figure for demonstrating the 1st manufacturing method of the optical waveguide shown in FIG.
  • FIG. 1 is a perspective view showing a first embodiment of the optical waveguide of the present invention (partially cut out and shown in a transparent manner), and FIG. 2 is a horizontal axis of the cross-sectional view taken along the line XX shown in FIG.
  • FIG. 3 shows an example of the refractive index distribution when the position of the core layer in the center line is taken and the vertical axis indicates the refractive index.
  • FIG. 3 shows one of the core portions of the optical waveguide shown in FIG. It is a figure which shows an example of intensity distribution of the emitted light when light injects.
  • the upper side in FIG. 1 is referred to as “upper” and the lower side is referred to as “lower”.
  • the thickness direction of the layers is exaggerated.
  • the optical waveguide of the first embodiment includes a first cladding layer (cladding layer 11), a core layer (core layer 13), and a second cladding layer (cladding layer 12).
  • the core layer (core layer 13) is provided on the clad layer 11, and the clad part, the first core part (core part 14), the clad part (clad part 15), and the second core provided in the in-layer direction. It has a part (core part 14) and a clad part in this order.
  • the second cladding layer is provided on the core layer.
  • the refractive index distribution W in the in-layer direction of the first core part (core part 14) and the part extending over the cladding part (clad part 15) is continuously changing, and the first convex part, It means one having a region arranged in the order of the first concave portion and the second convex portion.
  • Such a refractive index distribution is referred to as a “W-type refractive index distribution”.
  • the refractive index distribution W located in the first core portion has a first convex portion.
  • the refractive index distribution W located in the cladding portion has a second convex portion having a maximum refractive index smaller than that of the first convex portion.
  • the refractive index distribution T in the interlayer direction of the first cladding layer (cladding layer 11) and the first core portion (core portion 14) has, for example, a “step index type (hereinafter referred to as SI type) pattern.
  • SI type refractive index distribution T means that the refractive index is substantially constant in each of the core layer and the cladding layer, and the refractive index is discontinuous at the boundary between the core layer and the cladding layer.
  • the refractive index distribution P in the interlayer direction of the portion extending over the first cladding layer (cladding layer 11), the cladding portion (cladding portion 15) and the second cladding layer (cladding layer 12) is at least located in the first cladding layer. And the portion located in the cladding portion are different.
  • the refractive index distribution P may change discontinuously.
  • the refractive index distribution P has a refractive index pattern similar to that of the refractive index distribution T, for example. That is, in the refractive index distribution P, it is preferable that the region located in the cladding portion has the fifth convex portion.
  • the fifth convex portion of the refractive index distribution P corresponds to the third convex portion of the refractive index distribution T.
  • the maximum refractive index or the average refractive index of the region located in the cladding part is preferably higher than the maximum refractive index or the average refractive index located in the first cladding layer.
  • the laminated structure of the first cladding layer having the refractive index distribution P, the cladding portion of the core layer, and the second cladding layer is composed of the first cladding layer having the refractive index distribution T and the core portion of the core layer. It can be formed in the same process as the laminated structure of the second cladding layer.
  • the refractive index distribution P may be the same as the refractive index distribution T (for example, all of the six vertical and horizontal diagonal directions on the plane in the refractive index distribution extending from the core portion to the adjacent cladding portion (cladding) layer). May be different from each other).
  • different refractive index distributions mean that (i) the repeated pattern of the shape of the refractive index distribution is different, or (ii) the shape of the refractive index distribution is the same pattern and the refractive index values are different. (However, manufacturing variations may be considered the same).
  • the refractive index difference in the interlayer direction between the adjacent cladding portion and the cladding layer may be different from the refractive index difference in the in-layer direction between the adjacent first core portion and the cladding portion.
  • the refractive index distribution P can be, for example, an SI type.
  • the SI type refractive index distribution P means that the refractive index is substantially constant in each of the core layer and the cladding layer, and the refractive index is discontinuous at the boundary between the core layer and the cladding layer.
  • the first effect is that high optical transmission characteristics can be realized.
  • the first concave portion is formed at the end portion, so that the refractive index difference between the central portion and the end portion of the core portion becomes large.
  • crosstalk between core parts adjacent in the in-layer direction is suppressed.
  • Even if light leaks from the core portion, the leaked light can be confined to the second convex portion of the cladding portion. Thereby, crosstalk between core parts adjacent in the in-layer direction is suppressed.
  • the second effect is that a light confinement effect is obtained in the interlayer direction of the clad portion.
  • the refractive index changes from the cladding part to the cladding layer. For this reason, it becomes possible to confine light in a clad part or a clad layer.
  • the third effect is that a design capable of reducing optical loss is possible depending on the usage mode. It is possible to design the refractive index distribution T in the interlayer direction to be different from the refractive index distribution W in the in-layer direction with the first core portion as a base point. For example, by making the refractive index difference in the interlayer direction larger than the refractive index difference in the in-layer direction, it is possible to reduce optical loss when the optical waveguide film is bent or rolled up in the extending direction of the optical waveguide. . This will be described in detail. If the film is bent in a predetermined direction, the film may be stretched and the refractive index difference may be reduced. On the other hand, even if the refractive index difference is reduced by increasing the refractive index difference in the direction in which the film is bent in advance, the optical loss can be reduced.
  • the fourth effect is high design freedom.
  • the optical waveguide of the present embodiment is obtained by laminating films, for example. For this reason, the thickness of the cladding layer is arbitrarily determined in relation to the thickness of the core layer. Further, since the thickness can be controlled, effects such as reduction of optical coupling loss can be enhanced.
  • the refractive index distribution of the present embodiment is measured and specified from the cross section of the optical waveguide in the direction orthogonal to the extending direction of the optical waveguide (for example, the extending direction of the first core portion).
  • the present invention is not limited to this mode, and may have five layers, seven layers or more.
  • one or more second core layers may be stacked on the first core layer. Any core layer is preferably sandwiched between clad layers.
  • the optical waveguide of the present embodiment is provided on the second cladding layer, and may include a second core layer that is a separate member from the core layer.
  • the second core layer has a third core portion located in the interlayer direction of the first core portion.
  • the optical waveguide of the present embodiment may include a plurality of core portions spaced in the in-layer direction and a plurality of core portions spaced in the interlayer direction.
  • a plurality of core portions may be arranged in a lattice shape in the cross section of the optical waveguide.
  • films are laminated. Since the positional deviation of the center of the core part in the interlayer direction is reduced, the optical coupling defect is reduced.
  • the optical waveguide of this Embodiment forms a core part by energy irradiation, for example. Since the misalignment of the core part in the interlayer direction is reduced, the optical coupling defect is reduced.
  • the refractive index distribution in the in-layer direction of the core layer may be such that a part of the region between at least two adjacent core parts is W-type, and regions located on both sides of the core part may be W-type, All the regions may be W-shaped.
  • the W-type refractive index distribution repeated in the in-layer direction may be different for each repeating unit.
  • the refractive index distribution in the interlayer direction of the core portion may be that the region extending at least between the core portion and the upper clad layer (or lower clad portion) is the refractive index distribution T, and the regions located on both sides of the core portion are the refractive index distribution. T may be sufficient, and refractive index distribution T may be repeated in all the area
  • the refractive index distribution T repeated in the interlayer direction may be different for each repeating unit.
  • the refractive index distribution in the interlayer direction of the cladding part may be different at least between the first cladding part and the cladding part, but between the first cladding part and the cladding part and between the second cladding part and the cladding part. May be different.
  • the refractive index distribution P repeated in the interlayer direction may be different for each repeating unit.
  • the difference in refractive index may be, for example, the difference between the maximum value of the first core part and the maximum value of the cladding part, or the difference between the average value of the first core part and the average value of the cladding part.
  • Continuous changing the refractive index distribution means that, for example, a transition region in which the refractive index gradually changes is provided in a region near the interface between the cladding layer and the core layer.
  • the function form representing the continuous change in the refractive index with respect to the thickness direction can take various forms, and examples thereof include a spline function and an exponential function. In the present embodiment, for example, the refractive index between the convex portion and the concave portion changes continuously.
  • the convex portion (first convex portion to sixth convex portion) of the refractive index distribution has either an aspect in which the top portion has a maximum value or an aspect in which the top portion has a flat portion.
  • the concave portions (first concave portion to third concave portion) of the refractive index distribution have both an aspect in which the top has a minimum value and an aspect in which the top has a flat portion.
  • the first core portion is a region from the maximum value of the first convex portion to the minimum value of the first concave portion
  • the cladding portion is a region from the minimum value of the first concave portion to the maximum value of the second concave portion. Also good. Moreover, it may replace with the maximum value or the minimum value, and may employ
  • the width of the flat portion is not particularly limited, but for example, is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the refractive index distribution of the present embodiment is, for example, (1) a method of observing a refractive index-dependent interference fringe using an interference microscope (dual-beam interference microscope) and calculating the refractive index distribution from the interference fringe. Or (2) It becomes possible to measure by the refraction near field method (Refracted Near Field method; RNF).
  • the refraction near field method can employ the measurement conditions described in JP-A-5-332880. In the embodiment, since the measurement is simple, a method using an interference microscope is preferable.
  • an optical waveguide piece is obtained by slicing the optical waveguide in the cross-sectional direction of the optical waveguide. For example, the optical waveguide is sliced so that the length is 200 ⁇ m to 300 ⁇ m.
  • a chamber filled with oil having a refractive index of 1.536 is created in a space surrounded by two glass slides.
  • a measurement sample in which the optical waveguide piece is sandwiched in the space in the chamber and a blank sample in which the optical waveguide piece is not inserted are prepared.
  • an interference fringe photograph in the cross-sectional direction of the optical waveguide fragment is obtained using an interference microscope.
  • the refractive index distribution can be obtained by image analysis of the interference fringe photograph. For example, the optical path length of the interference microscope is changed to continuously acquire image data in which the place where the interference fringes are generated.
  • the refractive index at each measurement point in the interlayer direction and the in-layer direction is calculated from a plurality of image data.
  • the interval between the measurement points is not particularly limited, but is, for example, 2.5 ⁇ m.
  • a maximum value exists in the convex portion of the refractive index distribution, and a minimum value exists in the concave portion.
  • the top of the first convex portion is the maximum value Wm2
  • the top of the second convex portion is the maximum value Wm3
  • the top of the third convex portion is the maximum value Tm2
  • the top of the fourth convex portion is The maximum value Tm3, the top of the first recess is the minimum value Ws2, and the top of the second recess is the minimum value Ts2.
  • the optical waveguide 1 shown in FIG. 1 functions as an optical wiring that transmits an optical signal from one end to the other end.
  • the optical waveguide 1 is formed by laminating a cladding layer 11, a core layer 13, and a cladding layer 12 in this order from the lower side in FIG.
  • the core layer 13 has a refractive index distribution in the surface direction.
  • This refractive index distribution has a region having a relatively high refractive index and a region having a relatively low refractive index, whereby incident light can be confined and propagated in a region having a high refractive index.
  • FIG. 2A is a cross-sectional view taken along the line XX of FIG. 1
  • FIG. 2B is a cross-sectional view taken along the center line C1 passing through the center of the core layer 13 in the thickness direction of the cross-sectional view taken along the line XX. It is a figure which shows an example of refractive index distribution typically.
  • the core layer 13 includes four local minimum values Ws1, Ws2, Ws3, and Ws4 and five local maximum values Wm1, Wm2, Wm3, Wm4, and Wm5 as shown in FIG. 2B in the width direction. It has a refractive index distribution W.
  • the five maximum values include a maximum value having a relatively high refractive index (first maximum value) and a maximum value having a relatively low refractive index (second maximum value).
  • the portion between the minimum value Ws ⁇ b> 1 and the minimum value Ws ⁇ b> 2 includes the maximum value Wm ⁇ b> 2 having a relatively large refractive index, and thus becomes the core portion 14. Since the maximum value Wm4 is also included between Ws3 and the minimum value Ws4, the core portion 14 is formed. More specifically, the core portion 141 is defined between the minimum value Ws1 and the minimum value Ws2, and the core portion 142 is defined between the minimum value Ws3 and the minimum value Ws4.
  • the region on the left side of the minimum value Ws1, the region between the minimum value Ws2 and the minimum value Ws3, and the region on the right side of the minimum value Ws4 are regions adjacent to both sides of the core portion 14, respectively.
  • a region on the left side of the minimum value Ws1 is a side cladding portion 151
  • a region between the minimum value Ws2 and the minimum value Ws3 is a side cladding portion 152
  • a region on the right side of the minimum value Ws4 is a side cladding portion 153.
  • the refractive index distribution W should have at least a region where the second maximum value, the minimum value, the first maximum value, the minimum value, and the second maximum value are arranged in this order. Note that this region is repeatedly provided according to the number of core portions.
  • the refractive index distribution W has a second maximum value, a minimum value, and a first value. Local maximum values, local minimum values, second local maximum values, local minimum values, first local maximum values, local minimum values, second local maximum values, and the like. It is only necessary to have a region in which the maximum value of 1 and the second maximum value are alternately arranged.
  • the plurality of local minimum values, the plurality of first local maximum values, and the plurality of second local maximum values are preferably substantially the same as each other, but the local minimum values are the first local maximum value and the second local maximum value.
  • the values may be slightly different from each other. In that case, it is preferable that the amount of deviation is suppressed within 10% of the average value of the plurality of minimum values.
  • the optical waveguide 1 has an elongated band shape, and the refractive index distribution W as described above is maintained substantially the same distribution in the entire longitudinal direction of the optical waveguide 1.
  • the core layer 13 is formed with two long core portions 14 and three side cladding portions 15 adjacent to each side of the core portions 14. It will be.
  • the optical waveguide 1 shown in FIG. 1 is provided with two parallel core portions 141 and 142 and three side cladding portions 151, 152, and 153 arranged in parallel.
  • each core part 141 and 142 will be in the state surrounded by each side cladding part 151,152,153 and each cladding layer 11,12, respectively.
  • the average refractive index of these two core parts 141 and 142 is higher than the average refractive index of the three side clad parts 151, 152, and 153, each core part 141, 142 and each side clad part 151. , 152, 153 can cause total reflection of light.
  • a dense dot is attached
  • the light incident on one end of the core portion 14 is totally reflected between the core portion 14 and the clad portion (the clad layers 11 and 12 and the side clad portions 15), By propagating, it can be taken out from the other end of the core part 14.
  • a quadrangular shape such as a square or a rectangle, but this shape is not particularly limited.
  • the shape may be a circle such as a triangle, a triangle, a pentagon, or a polygon such as a hexagon.
  • the width and height of the core part 14 are not particularly limited, but are preferably about 1 to 200 ⁇ m, more preferably about 5 to 100 ⁇ m, and more preferably about 20 to 70 ⁇ m. More preferably.
  • the four minimum values Ws1, Ws2, Ws3, and Ws4 are each less than the average refractive index WA in the side cladding portion 15.
  • a region having a smaller refractive index than the side clad portion 15 exists between each core portion 14 and each side clad portion 15.
  • a steeper refractive index gradient is formed in the vicinity of each local minimum value Ws1, Ws2, Ws3, and Ws4. This suppresses light leakage from each core portion 14, thereby reducing transmission loss.
  • the optical waveguide 1 is obtained.
  • the refractive index distribution W the refractive index continuously changes as a whole.
  • the effect of confining light in the core portion 14 is further enhanced, so that transmission loss can be further reduced.
  • the region closer to the center of the core portion 14 is transmitted. Since light propagates intensively, a difference in propagation time for each optical path is less likely to occur. For this reason, even when the transmission light includes a pulse signal, it is possible to suppress blunting of the pulse signal (spreading of the pulse signal). As a result, the optical waveguide 1 that can further improve the quality of optical communication is obtained.
  • the maximum values Wm2 and Wm4 are located at the core portions 141 and 142 as shown in FIG. 2, but the core portions 141 and 142 are located at the center of the width. Yes.
  • the probability that transmission light will gather in the center part of the width of core part 141 and 142 becomes high, and the probability that it will leak to side cladding parts 151, 152, and 153 becomes relatively low.
  • the transmission loss of the core parts 141 and 142 can be further reduced.
  • the central portion of the width of the core portion 141 is a region having a distance of 30% of the width of the core portion 141 on both sides from the midpoint between the minimum value Ws1 and the minimum value Ws2.
  • the positions of the maximum values Wm2 and Wm4 be located at the center of the width of the cores 141 and 142 if possible, but the edge of the cores 141 and 142 (not necessarily the center) ( If it is located outside the vicinity of the portions that are in contact with the side clad portions 151, 152, and 153, a significant deterioration in characteristics can be avoided. That is, the transmission loss of the core parts 141 and 142 can be suppressed to some extent.
  • the vicinity of the edge of the core part 141 is a region having a distance of 5% of the width of the core part 141 from the edge to the inside.
  • the maximum values Wm1, Wm3, and Wm5 of the refractive index distribution W are located in the side cladding portions 151, 152, and 153 as shown in FIG. , 153 is preferably located outside the vicinity of the edge (portion in contact with the core portions 141 and 142).
  • the local maximum values Wm2, Wm4 in the core portions 141, 142 and the local maximum values Wm1, Wm3, Wm5 in the side cladding portions 151, 152, 153 are sufficiently separated from each other.
  • 142 can sufficiently reduce the probability that the transmitted light leaks into the side clad parts 151, 152, 153.
  • the transmission loss of the core parts 141 and 142 can be reduced.
  • the vicinity of the edge of the side cladding portions 151, 152, and 153 is a region having a distance of 5% of the width of the side cladding portions 151, 152, and 153 from the edge to the inside.
  • the local maximum values Wm1, Wm3, and Wm5 are located at the center of the width of the side cladding portions 151, 152, and 153, and the local minimum values Ws1, Ws2 are adjacent to the local maximum values Wm1, Wm3, and Wm5. , Ws3, Ws4, it is preferable that the refractive index continuously decreases.
  • the maximum distances between the maximum values Wm2, Wm4 in the core portions 141, 142 and the maximum values Wm1, Wm3, Wm5 in the side cladding portions 151, 152, 153 are secured, and the maximum values Wm1, Since light can be reliably confined in the vicinity of Wm3 and Wm5, leakage of transmission light from the core portions 141 and 142 described above can be more reliably suppressed.
  • the local maximum values Wm1, Wm3, and Wm5 are smaller in refractive index than the local maximum values Wm2 and Wm4 located in the core portions 141 and 142 described above. Although it does not have, since the refractive index is higher than the surroundings, it has a slight light transmission property. As a result, the side clad parts 151, 152, and 153 have an effect of preventing transmission to other core parts by confining transmission light leaked from the core parts 141 and 142. That is, the presence of the maximum values Wm1, Wm3, and Wm5 can suppress crosstalk.
  • the minimum values Ws1, Ws2, Ws3, and Ws4 are less than the average refractive index WA of the side cladding portion 15, but the difference is desirably within a predetermined range. Specifically, the difference between the minimum value Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding portion 15 is the minimum value Ws1, Ws2, Ws3, Ws4 and the maximum value Wm2 in the core portions 141, 142.
  • the difference from Wm4 is preferably about 3 to 80%, more preferably about 5 to 50%, further preferably about 7 to 20% (for example, (WA ⁇ Ws1) / (Wm2 -Ws1) ⁇ 100 is preferably about 3 to 80%, more preferably about 5 to 50%, and even more preferably about 7 to 20% (hereinafter, "to" Unless otherwise stated, it means that the upper and lower limits are included)).
  • the side clad portion 15 has a light transmission property necessary and sufficient for suppressing crosstalk.
  • crosstalk can fully be suppressed by making the difference of minimum value Ws1, Ws2, Ws3, Ws4 and the average refractive index WA of the side cladding part 15 more than the said lower limit. By setting it to the upper limit value or less, it is possible to suppress a decrease in the light transmission performance of the core portions 141 and 142 due to the light transmission performance in the side cladding portion 15 being too large.
  • the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm1, Wm3, Wm5 is about 6 to 90% of the difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the maximum values Wm2, Wm4. It is preferably about 10 to 70%, more preferably about 14 to 40%. As a result, the balance between the refractive index height of the side cladding portion 15 and the refractive index height of the core portion 14 is optimized, and the optical waveguide 1 has particularly excellent optical transmission properties and more reliably suppresses crosstalk. It will be possible.
  • the difference in refractive index between the minimum values Ws1, Ws2, Ws3, and Ws4 and the maximum values Wm2 and Wm4 in the core portions 141 and 142 is preferably as large as possible, but is about 0.005 to 0.07.
  • it is about 0.007 to 0.05, more preferably about 0.01 to 0.03 (for example, (Wm1-Ws1) / (Wm2-Ws1) ⁇ 100 is 0).
  • 0.005 to 0.07 is preferable, 0.007 to 0.05 is more preferable, and 0.01 to 0.03 is still more preferable.
  • the refractive index distribution W in the core portions 141 and 142 has a maximum value when the horizontal axis indicates the cross-sectional position of the core layer 13 and the vertical axis indicates the refractive index.
  • the refractive index is continuously changing in the vicinity of Wm2 and the maximum value Wm4, it may have a substantially convex V shape (substantially linear except for the maximum value). It has an approximately U-shape that is convex upward (the entire vicinity of the maximum value is rounded).
  • the refractive index distribution W has such a shape, the light confinement action in the core portions 141 and 142 becomes more remarkable.
  • the refractive index distribution W has a shape in which the refractive index continuously changes in the vicinity of the minimum value Ws1, the vicinity of the minimum value Ws2, the vicinity of the minimum value Ws3, and the vicinity of the minimum value Ws4. If so, it may have a substantially convex V shape (substantially linear except for the maximum value), but preferably has a substantially U shape convex downward (the entire vicinity of the maximum value is rounded). It is said.
  • the present inventors made light incident on one desired end portion of the plurality of core portions 141 and 142 of the optical waveguide 1 and acquired the intensity distribution of the emitted light at the other end portion. It was found that the intensity distribution is extremely useful for suppressing the crosstalk of the optical waveguide 1.
  • FIG. 3 is a diagram showing the intensity distribution of the emitted light when light is incident on the core portion 141 of the optical waveguide 1.
  • the intensity of the emitted light becomes the largest at the central part of the outgoing end of the core part 141.
  • the intensity of the emitted light decreases as the distance from the central portion of the core portion 141 decreases.
  • an intensity distribution that takes a minimum value in the core portion 142 adjacent to the core portion 141 is obtained. . Since the minimum value of the intensity distribution of the emitted light coincides with the position of the core part 142 in this way, the crosstalk in the core part 142 can be suppressed to be extremely small.
  • An optical waveguide 1 that can reliably prevent the generation is obtained.
  • the intensity distribution of the emitted light does not take the minimum value in the core portion adjacent to the core portion where the light is incident, but rather takes the maximum value, which causes a crosstalk problem. It was.
  • the behavior of the intensity distribution of the emitted light in the optical waveguide of the present invention as described above is extremely useful for suppressing crosstalk.
  • the refractive index distribution W has the minimum values Ws1, Ws2, Ws3, and Ws4, and is refracted.
  • the characteristic refractive index distribution W in which the refractive index continuously changes throughout the refractive index distribution W, represents the intensity distribution of the emitted light, which conventionally had a maximum value in the core section 142, as the core section. For example, the side clad portion 153 adjacent to 142 is shifted. That is, the crosstalk is reliably suppressed by this shift.
  • the intensity distribution of the emitted light as described above is not necessarily observed although the probability of being observed in the optical waveguide of the present invention is high, but the NA (numerical aperture) of the incident light and the cross-sectional area of the core portion 141 are not necessarily observed.
  • the NA number of the incident light
  • the cross-sectional area of the core portion 141 are not necessarily observed.
  • a clear minimum value may not be observed, or the position of the minimum value may deviate from the core part 142. Even in such a case, crosstalk is sufficiently suppressed. Is done.
  • the refractive index in the vicinity of the maximum values Wm2 and Wm4 is continuously equal to or higher than the average refractive index WA. Is a [ ⁇ m], and the width of the portion where the refractive index in the vicinity of the minimum values Ws1, Ws2, Ws3, and Ws4 is continuously less than the average refractive index WA is b [ ⁇ m].
  • b is preferably about 0.01a to 1.2a, more preferably about 0.03a to 1a, and further preferably about 0.1a to 0.8a.
  • the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 can exhibit the above-described functions and effects. That is, by setting b to be equal to or more than the lower limit value, it is possible to suppress the substantial width of the minimum values Ws1, Ws2, Ws3, and Ws4 from being too narrow and the effect of confining light in the core portions 141 and 142 from being reduced. On the other hand, by setting b to be equal to or less than the upper limit value, the substantial widths of the minimum values Ws1, Ws2, Ws3, and Ws4 are too wide, the width and pitch of the core portions 141 and 142 are limited, and transmission efficiency decreases. It is possible to prevent the increase in the number of channels and the increase in density.
  • the average refractive index WA in the side cladding 15 can be approximated at the midpoint between the maximum value Wm1 and the minimum value Ws1, for example.
  • the constituent material (main material) of the core layer 13 as described above is not particularly limited as long as it is a material that causes the above-described difference in refractive index, but specifically, acrylic resin, methacrylic resin, polycarbonate, polystyrene, epoxy
  • acrylic resin methacrylic resin
  • polycarbonate polycarbonate
  • polystyrene epoxy
  • quartz glass A glass material such as borosilicate glass can be used.
  • the resin material may be a composite material obtained by combining materials having different compositions, and may contain an unpolymerized monomer.
  • the norbornene-based polymer includes, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using a cationic palladium polymerization initiator, and other polymerization initiators (for example, It can be obtained by all known polymerization methods such as polymerization using nickel or other transition metal polymerization initiators).
  • ROMP ring-opening metathesis polymerization
  • combination of ROMP and hydrogenation reaction polymerization by radical or cation
  • polymerization using a cationic palladium polymerization initiator for example, It can be obtained by all known polymerization methods such as polymerization using nickel or other transition metal polymerization initiators.
  • the clad layers 11 and 12 constitute clad portions located at the lower and upper portions of the core layer 13, respectively.
  • the average thickness of the clad layers 11 and 12 is preferably about 0.1 to 1.5 times the average thickness of the core layer 13 (the average height of each core portion 14). More preferably, the average thickness of the cladding layers 11 and 12 is not particularly limited, but it is usually preferably about 1 to 200 ⁇ m, and preferably about 5 to 100 ⁇ m. More preferably, it is about 10 to 60 ⁇ m. Thereby, the function as a clad part is suitably exhibited while preventing the optical waveguide 1 from becoming unnecessarily large (thickened).
  • constituent material of the cladding layers 11 and 12 for example, the same material as the constituent material of the core layer 13 described above can be used, but a norbornene polymer is particularly preferable.
  • the material when selecting the constituent material of the core layer 13 and the constituent materials of the clad layers 11 and 12, the material may be selected in consideration of the difference in refractive index between them. Specifically, in order to ensure total reflection of light at the boundary between the core portion 14 and the cladding layers 11 and 12, the material may be selected so that the refractive index of the constituent material of the core portion 14 is sufficiently large. As a result, a sufficient refractive index difference is obtained in the thickness direction of the optical waveguide 1, and light can be prevented from leaking from the respective core portions 14 to the cladding layers 11 and 12.
  • the adhesiveness (affinity) between the constituent material of the core layer 13 and the constituent materials of the cladding layers 11 and 12 is high.
  • the clad layers 11 and 12 may be provided as necessary, and either one or both may be omitted. In this case, the surface of the core layer 13 is exposed to the atmosphere (air), but since the refractive index of air is sufficiently low, the air can substitute for the functions of the cladding layers 11 and 12.
  • the refractive index distribution T in the thickness direction of the optical waveguide 1 has a shape different from the refractive index distribution W in the width direction described above.
  • FIG. 4A is a diagram in which a part centered on the core portion of the XX sectional view shown in FIG. 1 is cut out
  • FIG. 4B is a diagram of the core portion of the XX sectional view. It is a figure which shows typically an example of the refractive index distribution T on the centerline C2 which passes the center of the width direction.
  • FIG. 4B is a diagram illustrating an example of the refractive index distribution T when the horizontal axis indicates the refractive index and the vertical axis indicates the position on the center line C2.
  • the optical waveguide 1 is formed by laminating the clad layer 11, the core layer 13, and the clad layer 12 in this order. Of the cross section, the optical waveguide 1 is refracted in the thickness direction passing through the core portion 14.
  • the index distribution T has a shape in which the refractive index is substantially constant in each of the region (part) T1 corresponding to the core portion 14 and the region (part) T2 corresponding to each of the cladding layers 11 and 12. Further, the refractive index changes discontinuously at the boundary between the region T1 and the region T2. That is, the refractive index distribution T has a step index shape. Since such an optical waveguide 1 can be obtained by simply laminating the clad layer 11, the core layer 13, and the clad layer 12, there is an advantage that the manufacturability is high.
  • the ratio of the refractive index difference between the refractive index n1 in the core portion 14 and the refractive index n2 in the cladding layer 11 and the cladding layer 12 is preferably as large as possible. Is preferably 0.5% or more, and more preferably 0.8% or more.
  • the upper limit value may not be set, but is preferably about 5.5%. If the difference in refractive index is less than the lower limit, the effect of transmitting light may be reduced. On the other hand, even if the upper limit is exceeded, no further increase in light transmission efficiency can be expected.
  • the ratio of the refractive index difference between the refractive index n1 and the refractive index n2 is expressed by the following equation.
  • Refractive index difference ratio (%)
  • the refractive index difference between the core portion 14 and the cladding layers 11 and 12 in the refractive index distribution T takes a value in a specific range based on a preferable range of the ratio of the refractive index difference.
  • the difference in refractive index between the minimum values Ws1, Ws2, Ws3, Ws4 and the first maximum values Wm2, Wm4 in the refractive index distribution W is larger.
  • n1-n2 may be larger than the refractive index difference between the minimum values Ws1, Ws2, Ws3, Ws4 and the first maximum values Wm2, Wm4 in the refractive index distribution W, but preferably 100. It is 5% or more, more preferably 101% or more, and still more preferably 102% or more. Thereby, the transmission loss in the thickness direction is necessary and sufficiently suppressed.
  • the refractive index is substantially constant.
  • the ratio of the refractive index deviation amount to the average refractive index in each of the regions T1 and T2. Is preferably 10% or less, and more preferably 5% or less.
  • a support film 2 as shown in FIG. 1 may be laminated on the lower surface of the optical waveguide 1 as necessary.
  • Support film 2 supports and reinforces the lower surface of the optical waveguide 1. Thereby, the reliability and mechanical characteristics of the optical waveguide 1 can be improved.
  • the constituent material of the support film 2 examples include various resin materials such as polyethylene terephthalate (PET), polyolefin such as polyethylene and polypropylene, polyimide and polyamide, and metal materials such as copper, aluminum and silver. It is done. In the case of a metal material, a metal foil is preferably used as the support film 2.
  • PET polyethylene terephthalate
  • polyolefin such as polyethylene and polypropylene
  • polyimide and polyamide polyimide and polyamide
  • metal materials such as copper, aluminum and silver. It is done.
  • a metal material a metal foil is preferably used as the support film 2.
  • the average thickness of the support film 2 is not particularly limited, but is preferably about 5 to 200 ⁇ m, more preferably about 10 to 100 ⁇ m. Thereby, since the support film 2 has moderate rigidity, the optical waveguide 1 is reliably supported and the flexibility of the optical waveguide 1 is difficult to be hindered.
  • the support film 2 and the optical waveguide 1 are bonded or bonded, and examples of the method include thermocompression bonding, bonding with an adhesive or a pressure sensitive adhesive, and the like.
  • the adhesive layer examples include acrylic adhesives, urethane adhesives, silicone adhesives, and various hot melt adhesives (polyester and modified olefins).
  • thermoplastic polyimide adhesive agents such as a polyimide, a polyimide amide, a polyimide amide ether, a polyester imide, a polyimide ether, are used preferably. Since the adhesive layer made of such a material is relatively flexible, even if the shape of the optical waveguide 1 changes, the change can be freely followed. As a result, it is possible to reliably prevent peeling due to the shape change.
  • the average thickness of such an adhesive layer is not particularly limited, but is preferably about 1 to 100 ⁇ m, and more preferably about 5 to 60 ⁇ m.
  • the cover film 3 protects the optical waveguide 1 and supports the optical waveguide 1 from above. Thereby, the optical waveguide 1 is protected from dirt and scratches, and the reliability and mechanical characteristics of the optical waveguide 1 can be improved.
  • a constituent material of such a cover film 3 it is the same as the constituent material of the support film 2.
  • resin materials such as polyethylene terephthalate (PET), polyolefin such as polyethylene and polypropylene, polyimide and polyamide
  • Metal materials such as copper, aluminum, silver, are mentioned.
  • a metal material a metal foil is preferably used as the cover film 3.
  • a mirror is formed in the middle of the optical waveguide 1, light is transmitted through the cover film 3, so that the constituent material of the cover film 3 is preferably substantially transparent.
  • the average thickness of the cover film 3 is not particularly limited, but is preferably about 3 to 50 ⁇ m, more preferably about 5 to 30 ⁇ m. By setting the thickness of the cover film 3 within the above range, the cover film 3 has sufficient light transmittance in optical communication, and has sufficient rigidity to reliably protect the optical waveguide 1.
  • cover film 3 and the optical waveguide 1 are bonded or bonded, and examples of the method include thermocompression bonding, bonding with an adhesive or a pressure-sensitive adhesive, and the like. Of these, the adhesive described above can be used.
  • the optical waveguide 1 composed of a laminate of the clad layer 11, the core layer 13, and the clad layer 12 has been described. However, these may be integrally formed.
  • the number of the core parts 14 is not specifically limited, One or three or more may be sufficient. .
  • the refractive index distribution W of the cross section of the optical waveguide 1 has two minimum values, and the minimum value is less than the average refractive index WA as described above. Yes, and it is sufficient that the refractive index continuously changes throughout the refractive index distribution W.
  • the refractive index distribution W has accordingly.
  • the number of local minimum values will increase to 6, 8, 10,.
  • FIG. 5 is a perspective view showing a second embodiment of the optical waveguide of the present invention (partially shown).
  • illustration of a part of core part 14 is abbreviate
  • the second embodiment is the same as the first embodiment except that a mirror (reflection surface) 17 that changes the traveling direction of light propagating through the core unit 14 is provided.
  • the mirror 17 is formed with a recess (hole) 170 having a V-shaped cross section so as to partially penetrate the optical waveguide 1 in the thickness direction, and is configured by a part of the side surface (inner surface) of the recess 170. Has been. This side surface is planar and is inclined 45 ° with respect to the axis of the core portion 14. The light propagating through the core portion 14 is reflected by the mirror 17, and the optical path is converted by 90 ° downward in FIG. Further, the light propagating from below in FIG. 5 is reflected by the mirror 17 and enters the core portion 14. That is, the mirror 17 has a function as an optical path conversion unit that converts an optical path of light propagating through the core unit 14.
  • the processed surfaces of the clad layer 11, the core layer 13, and the clad layer 12 are exposed on the mirror 17, and the processed surface of the core portion 14 is located almost at the center of the mirror 17.
  • the refractive index is substantially constant in the region T1 (see FIG. 4) corresponding to the core portion 14 of the refractive index distribution T, the reflected light is constant regardless of which part the incident light enters. It is presumed that this is because of the characteristic, and as a result, the light reflectance is improved.
  • the mirror 17 may be provided so as to traverse only the core portion 14, but as shown in FIG. 5A, each of the cladding layers 11, 12 and the side cladding portion 15 around the core portion 14 is provided. It is preferably provided so as to cross. Thereby, the effective area contributing to reflection in the mirror 17 is widened, and mirror loss is suppressed.
  • a reflective film may be formed on the surface of the processed surface constituting the mirror 17.
  • the reflective film include a metal film such as Au, Ag, and Al, and a film made of a material having a lower refractive index than the core portion 14.
  • Examples of the method for forming the metal film include a physical vapor deposition method such as vacuum vapor deposition, a chemical vapor deposition method such as CVD, and a plating method.
  • the optical waveguide of the present invention is a light emitting element or a light receiving element (both of which are optical fibers or the like). And the tolerance of misalignment with the end face is wide. This is because the refractive index distribution T in the thickness direction of the optical waveguide 1 has a region T1 in which the refractive index is substantially constant, so that the incident efficiency is almost equal at any position in the region T1. . Therefore, the optical waveguide 1 is easy to optically couple with the light emitting element and the light receiving element and has a small optical coupling loss.
  • FIG. 5B shows another configuration example of the second embodiment.
  • the core portion 14 does not reach the end face of the optical waveguide 1 at one end portion, and is interrupted in the middle.
  • a side clad portion 15 is formed from the location where the core portion 14 is interrupted to the end face.
  • a portion where the core portion 14 is interrupted is referred to as a core portion missing portion 16.
  • the mirror 17 is formed in this core part lacking part 16.
  • the processed surfaces of the cladding layer 11, the core layer 13, and the cladding layer 12 are exposed.
  • the processed surface of the side cladding portion 15 is on the processed surface of the core layer 13. It will be exposed.
  • both the processed surface of the core portion 14 and the processed surface of the side cladding portion 15 are exposed on the processed surface of the core layer 13.
  • the mirror 17 shown in FIG. 5 (b) has uniform smoothness because the exposed surface of the core layer 13 is composed of only a single material. This is because a single material is processed at the time of processing, and the processing rate becomes uniform in the plane. For this reason, the mirror 17 has excellent reflection characteristics and has a small mirror loss.
  • deletion part 16 is separated from the core part 14, the density
  • FIGS. 6 to 10 are diagrams for explaining a first method of manufacturing the optical waveguide 1 shown in FIG.
  • the upper side in FIGS. 6 to 10 is referred to as “upper” and the lower side is referred to as “lower”.
  • the optical waveguide 1 is manufactured by preparing a clad layer 11, a core layer 13, and a clad layer 12, and laminating them.
  • the first manufacturing method of the optical waveguide 1 is as follows: [1] After applying the core layer forming composition 900 on the support substrate 951 to form a liquid film, the support substrate 951 is placed on a level table to form the liquid film. While flattening, the solvent is evaporated (desolvent). Thereby, the layer 910 is obtained. [2] Next, a refractive index difference is generated by irradiating a part of the layer 910 with actinic radiation to obtain the core layer 13 in which the core part 14 and the side cladding part 15 are formed. [3] Next, the cladding layers 11 and 12 are laminated on both surfaces of the core layer 13 to obtain the optical waveguide 1.
  • a core layer forming composition 900 is prepared.
  • the core layer forming composition 900 contains a polymer 915 and an additive 920 (including at least a monomer in this embodiment).
  • a composition 900 for forming a core layer is a material that causes a reaction of at least a monomer in the polymer 915 by irradiation with actinic radiation and changes the refractive index distribution accordingly. That is, in the core layer forming composition 900, the refractive index distribution changes due to the deviation in the abundance ratio of the polymer 915 and the monomer, and as a result, the core portion 14 and the side cladding portion 15 are formed in the core layer 13. It is a material that can be used.
  • the core layer forming composition 900 is applied on the support substrate 951 to form a liquid film (see FIG. 6A). Then, the support substrate 951 is placed on the level table to flatten the liquid film and evaporate (desolvent) the solvent. Thereby, the layer 910 is obtained (see FIG. 6B).
  • the support substrate 95 for example, a silicon substrate, a silicon dioxide substrate, a glass substrate, a polyethylene terephthalate (PET) film, or the like is used.
  • a silicon substrate for example, a silicon substrate, a silicon dioxide substrate, a glass substrate, a polyethylene terephthalate (PET) film, or the like is used.
  • PET polyethylene terephthalate
  • Examples of the coating method for forming a liquid film include a doctor blade method, a spin coating method, a dipping method, a table coating method, a spray method, an applicator method, a curtain coating method, and a die coating method.
  • the polymer (matrix) 915 exists substantially uniformly and randomly, and the additive 920 is substantially uniformly and randomly dispersed in the polymer 915. Thereby, the additive 920 is substantially uniformly and randomly dispersed in the layer 910.
  • the average thickness of the layer 910 is appropriately set according to the thickness of the core layer 13 to be formed, and is not particularly limited, but is preferably about 5 to 300 ⁇ m, more preferably about 10 to 200 ⁇ m.
  • the polymer 915 serves as a base polymer for the core layer 13.
  • the polymer 915 has sufficiently high transparency (colorless and transparent) and is compatible with the monomer described later, and among them, the monomer can react (polymerization reaction or crosslinking reaction) as described later. There are preferably used those having sufficient transparency even after the monomer is polymerized.
  • having compatibility means that the monomer is at least mixed and does not cause phase separation with the polymer 915 in the core layer forming composition 900 or the layer 910.
  • Examples of such a polymer 915 include cyclic olefin resins such as norbornene resins and benzocyclobutene resins, acrylic resins, methacrylic resins, polycarbonates, polystyrenes, epoxy resins, polyamides, polyimides, polybenzoxazoles, Examples thereof include silicone resins and fluorine resins, and one or more of these can be used in combination (polymer alloy, polymer blend (mixture), copolymer, etc.).
  • the core layer 13 having excellent optical transmission performance and heat resistance can be obtained.
  • the cyclic olefin-based resin may be unsubstituted or may have hydrogen substituted with other groups.
  • cyclic olefin resins examples include norbornene resins and benzocyclobutene resins.
  • norbornene-based resin it is preferable to use a norbornene-based resin from the viewpoints of heat resistance and transparency. Moreover, since norbornene-type resin has high hydrophobicity, the core layer 13 which cannot produce the dimensional change by water absorption etc. can be obtained.
  • the norbornene-based resin may be either one having a single repeating unit (homopolymer) or one having two or more norbornene-based repeating units (copolymer).
  • a norbornene-based resin for example, (1) addition (co) polymer of norbornene type monomer obtained by addition (co) polymerization of norbornene type monomer, (2) addition copolymers of norbornene monomers with ethylene and ⁇ -olefins, (3) an addition polymer such as an addition copolymer of a norbornene-type monomer and a non-conjugated diene and, if necessary, another monomer; (4) a ring-opening (co) polymer of a norbornene-type monomer, and a resin obtained by hydrogenating the (co) polymer if necessary, (5) a ring-opening (co) polymer of a norbornene-type monomer and ethylene or ⁇ -olefins, and a resin obtained by hydrogenating the (co) polymer if necessary, (6) Ring-opening copolymers such as norbornene-type monomers and non-conjugated dienes, or other monomers,
  • norbornene resins include, for example, ring-opening metathesis polymerization (ROMP), combination of ROMP and hydrogenation reaction, polymerization by radical or cation, polymerization using cationic palladium polymerization initiator, other polymerization initiators (for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • ROMP ring-opening metathesis polymerization
  • combination of ROMP and hydrogenation reaction polymerization by radical or cation
  • polymerization using cationic palladium polymerization initiator cationic palladium polymerization initiator
  • other polymerization initiators for example, it can be obtained by any known polymerization method such as polymerization using a polymerization initiator of nickel or another transition metal).
  • norbornene resins are preferably those having at least one repeating unit represented by the following structural formula B, that is, addition (co) polymers. Since the addition (co) polymer is rich in transparency, heat resistance, and flexibility, for example, after the optical waveguide 1 is formed, an electrical component or the like may be mounted on the optical waveguide 1 via solder. This is because even in such a case, high heat resistance, that is, reflow resistance can be imparted to the optical waveguide 1.
  • Such a norbornene-based polymer is suitably synthesized by using, for example, a norbornene-based monomer described later (a norbornene-based monomer represented by Structural Formula C described below or a crosslinkable norbornene-based monomer).
  • the product when the optical waveguide 1 is incorporated into various products, the product may be used in an environment of about 80 ° C., for example. Even in such a case, an addition (co) polymer is preferable from the viewpoint of ensuring heat resistance.
  • the norbornene-based resin preferably includes a norbornene repeating unit having a substituent containing a polymerizable group or a norbornene repeating unit having a substituent containing an aryl group.
  • repeating unit of norbornene having a substituent containing a polymerizable group the repeating unit of norbornene having a substituent containing an epoxy group, the repeating unit of norbornene having a substituent containing a (meth) acryl group, and an alkoxysilyl group At least one of the repeating units of norbornene having a substituent containing is preferable.
  • These polymerizable groups are preferable because of their high reactivity among various polymerizable groups.
  • the norbornene-based resin preferably contains an alkylnorbornene repeating unit.
  • the alkyl group may be linear or branched.
  • the norbornene-based resin By including the repeating unit of alkyl norbornene, the norbornene-based resin has high flexibility, and therefore can provide high flexibility (flexibility).
  • a norbornene-based resin containing a repeating unit of alkyl norbornene is preferable because it has excellent transmittance for light in a specific wavelength region (particularly, a wavelength region near 850 nm).
  • norbornene-based resin containing the norbornene repeating unit as described above examples include hexyl norbornene homopolymer, phenylethyl norbornene homopolymer, benzyl norbornene homopolymer, hexyl norbornene and phenylethyl norbornene copolymer, hexyl norbornene. And a copolymer of benzylnorbornene and the like.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms
  • a represents an integer of 0 to 3
  • b represents an integer of 1 to 3
  • p 1 / q 1 is 20 or less.
  • the norbornene-based resin of the formula (1) can be produced as follows. (1) is obtained by dissolving norbornene having R 1 and norbornene having an epoxy group in the side chain in toluene and solution polymerization using Ni compound (A) as a catalyst.
  • the manufacturing method of norbornene which has an epoxy group in a side chain is as (i) (ii), for example.
  • R 1 is an alkyl group having 4 to 10 carbon atoms
  • R 2 represents an alkyl group having 1 to 10 carbon atoms
  • R 3 represents a hydrogen atom or a methyl group
  • c represents an integer of 0 to 3
  • the norbornene-based resin of the formula (2) is obtained by dissolving norbornene having R 2 and norbornene having acryl and methacryl groups in the side chain in toluene, and performing solution polymerization using the above-described Ni compound (A) as a catalyst. Obtainable.
  • R 2 is an alkyl group having 4 to 10 carbon atoms and c is 1 from the viewpoint of achieving both flexibility and heat resistance.
  • Compounds such as copolymers of butylbornene and 2- (5-norbornenyl) methyl acrylate, copolymers of hexylnorbornene and 2- (5-norbornenyl) methyl acrylate, decylnorbornene and 2- (5-norbornenyl) methyl acrylate And a copolymer thereof are preferred.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms
  • each X 3 independently represents an alkyl group having 1 to 3 carbon atoms
  • d represents 0 to 3 carbon atoms. Represents an integer, and p 3 / q 3 is 20 or less.
  • the resin of the formula (3) can be obtained by dissolving norbornene having R 4 and norbornene having an alkoxysilyl group in the side chain in toluene, and solution polymerization using the above-described Ni compound (A) as a catalyst. it can.
  • norbornene-based polymers represented by the formula (3) in particular, a compound in which R 4 is an alkyl group having 4 to 10 carbon atoms, d is 1 or 2, and X 3 is a methyl group or an ethyl group,
  • R 5 represents an alkyl group having 1 to 10 carbon atoms
  • a 1 and A 2 each independently represent a substituent represented by the following formulas (5) to (7). (However, they are not the same substituent at the same time, and p 4 / q 4 + r is 20 or less.)
  • the resin of the formula (4) can be obtained by dissolving norbornene having R 5 and norbornene having A 1 and A 2 in the side chain in toluene, and solution polymerization using Ni compound (A) as a catalyst. it can.
  • R 6 represents a hydrogen atom or a methyl group, and g represents an integer of 0 to 3.
  • X 4 each independently represents an alkyl group having 1 to 3 carbon atoms, and h represents an integer of 0 to 3)
  • norbornene-based resin represented by the formula (4) for example, any one of butyl norbornene, hexyl norbornene or decyl norbornene, 2- (5-norbornenyl) methyl acrylate, norbornenyl ethyl trimethoxysilane, Terpolymer with either triethoxysilyl norbornene or trimethoxysilyl norbornene, butyl bornene, hexyl norbornene or decyl norbornene, terpolymer of 2- (5-norbornenyl) methyl acrylate and methyl glycidyl ether norbornene, butylbornene, Either hexyl norbornene or decyl norbornene and methyl glycidyl ether norbornene, norbornenyl ethyltrimethoxysilane, triethoxysilylno Terpolymers, etc. with either
  • R 7 represents an alkyl group having 1 to 10 carbon atoms
  • R 8 represents a hydrogen atom, a methyl group or an ethyl group
  • Ar represents an aryl group
  • X 1 represents oxygen Represents an atom or a methylene group
  • X 2 represents a carbon atom or a silicon atom
  • i represents an integer of 0 to 3
  • j represents an integer of 1 to 3
  • p 5 / q 5 is 20 or less is there.
  • the resin of the formula (8) is obtained by dissolving norbornene having R 7 and norbornene containing — (CH 2 ) —X 1 —X 2 (R 8 ) 3-j (Ar) j in the side chain in toluene, It can be obtained by solution polymerization using a compound as a catalyst.
  • norbornene resins represented by the formula (8) those in which X 1 is an oxygen atom, X 2 is a silicon atom, and Ar is a phenyl group are preferable.
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is an oxygen atom
  • X 2 is a silicon atom
  • Ar is a phenyl group
  • R 7 is an alkyl group having 4 to 10 carbon atoms
  • X 1 is a methylene group
  • X 2 is a carbon atom
  • Ar is Compounds in which R 8 is a hydrogen atom, i is 0, and j is 1, for example, a copolymer of butylbornene and phenylethylnorbornene, a copolymer of hexylnorbornene and phenylethylnorbornene, a copolymer of decylnorbornene and phenylethylnorbornene Etc. Further, the following may be used as the norbornene resin.
  • R 10 represents an alkyl group having 1 to 10 carbon atoms
  • R 11 represents an aryl group
  • k is 0 or more and 4 or less.
  • P 6 / q 6 is 20 or less. is there.
  • p 1 / q 1 to p 3 / q 3 , p 5 / q 5 , p 6 / q 6 or p 4 / q 4 + r may be 20 or less, preferably 15 or less, About 0.1 to 10 is more preferable. Thereby, the effect including the repeating unit of multiple types of norbornene is exhibited.
  • the polymer 915 may be an acrylic resin, a methacrylic resin, an epoxy resin, a polyimide, a silicone resin, a fluorine resin, or the like.
  • acrylic resins and methacrylic resins include poly (methyl acrylate), poly (methyl methacrylate), poly (epoxy acrylate), poly (epoxy methacrylate), poly (amino acrylate), and poly (amino methacrylate).
  • epoxy resin examples include alicyclic epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin having a biphenyl skeleton, naphthalene ring-containing epoxy resin, Dicyclopentadiene type epoxy resin having cyclopentadiene skeleton, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, triphenylmethane type epoxy resin, aliphatic epoxy resin and triglycidyl isocyanurate, etc. Of these, one or more of these composite materials are used.
  • the polyimide is not particularly limited as long as it is a resin obtained by ring-closing and curing (imidizing) a polyamic acid which is a polyimide resin precursor.
  • the polyamic acid can be obtained, for example, as a solution by reacting tetracarboxylic dianhydride and diamine in an equimolar ratio in N, N-dimethylacetamide.
  • examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 2,2-bis (2,3-di ().
  • examples of the diamine include m-phenylenediamine, p-phenylenediamine, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, and 3,3'-diaminodiphenyl.
  • examples of the silicone resin include silicone rubber and silicone elastomer. These silicone resins are obtained by reacting a silicone rubber monomer or oligomer with a curing agent.
  • silicone rubber monomer or oligomer examples include those containing a methylsiloxane group, an ethylsiloxane group, or a phenylsiloxane group.
  • silicone rubber monomer or oligomer for example, those obtained by introducing a functional group such as an epoxy group, a vinyl ether group, or an acrylic group are preferably used in order to impart photoreactivity.
  • the fluorine-based resin for example, a polymer obtained from a monomer having a fluorine-containing aliphatic ring structure, a polymer obtained by cyclopolymerizing a fluorine-containing monomer having two or more polymerizable unsaturated bonds, Examples thereof include a polymer obtained by copolymerizing a fluorine-containing monomer and a radical polymerizable monomer.
  • fluorine-containing aliphatic ring structure examples include perfluoro (2,2-dimethyl-1,3-dioxole), perfluoro (4-methyl-1,3-dioxole), and perfluoro (4-methoxy-1,3-dioxole). ) And the like.
  • fluorine-containing monomer examples include perfluoro (allyl vinyl ether), perfluoro (butenyl vinyl ether) and the like.
  • radical polymerizable monomer examples include tetrafluoroethylene, chlorotrifluoroethylene, perfluoro (methyl vinyl ether) and the like.
  • the refractive index of each part of the core layer 13 is determined according to the relative magnitude relationship between the refractive index of the polymer 915 and the refractive index of the monomer in each part and the existence ratio thereof, the polymer depends on the type of monomer used.
  • the refractive index of 915 may be adjusted as appropriate.
  • a monomer having an aromatic ring (aromatic group), a nitrogen atom, a bromine atom or a chlorine atom in the molecular structure is generally selected, A polymer 915 is synthesized (polymerized).
  • a monomer having an alkyl group, a fluorine atom or an ether structure (ether group) is generally selected in the molecular structure, and the polymer 915 is synthesized ( Polymerization).
  • norbornene-based resin having a relatively high refractive index those containing a repeating unit of aralkyl norbornene are preferable.
  • Such norbornene-based resins have a particularly high refractive index.
  • Examples of the aralkyl group (arylalkyl group) of the aralkylnorbornene repeating unit include benzyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, naphthylethyl group, naphthylpropyl group, fluorenylethyl group, fluorene group, and the like. Examples thereof include a nylpropyl group, and a benzyl group and a phenylethyl group are particularly preferable.
  • a norbornene-based resin having such a repeating unit is preferable because it has a very high refractive index.
  • the polymer 915 as described above has a leaving group (leaving pendant group) that is branched from the main chain and at least a part of the molecular structure of which can be released from the main chain by irradiation with actinic radiation. Is preferred. Since the refractive index of the polymer 915 decreases due to the removal of the leaving group, the polymer 915 can form a refractive index difference depending on the presence or absence of irradiation with actinic radiation.
  • Examples of the polymer 915 having such a leaving group include a polymer having at least one of an —O— structure, an —Si—aryl structure, and an —O—Si— structure in a molecular structure. Such a leaving group is released relatively easily by the action of a cation.
  • the leaving group that causes a decrease in the refractive index of the resin by leaving at least one of the —Si-diphenyl structure and the —O—Si-diphenyl structure is preferable.
  • examples of the polymer 915 having a leaving group in the side chain include polymers of monocyclic monomers such as cyclohexene and cyclooctene, norbornene, norbornadiene, dicyclopentadiene, dihydrodicyclopentadiene, tetracyclododecene,
  • examples thereof include cyclic olefin resins such as polymers of polycyclic monomers such as cyclopentadiene, dihydrotricyclopentadiene, tetracyclopentadiene, dihydrotetracyclopentadiene and the like.
  • one or more cyclic olefin resins selected from polymers of polycyclic monomers are preferably used. Thereby, the heat resistance of resin can be improved.
  • polymerization forms known forms such as random polymerization and block polymerization can be applied.
  • specific examples of the polymerization of norbornene monomers include (co) polymers of norbornene monomers, copolymers of norbornene monomers and other copolymerizable monomers such as ⁇ -olefins, A combined hydrogenated product corresponds to a specific example.
  • These cyclic olefin resins can be produced by a known polymerization method.
  • the polymerization methods include an addition polymerization method and a ring-opening polymerization method, and among them, the cyclic olefin resin obtained by the addition polymerization method.
  • norbornene-based resins are preferable (that is, addition polymers of norbornene-based compounds). Thereby, it is excellent in transparency, heat resistance, and flexibility.
  • X 1 is an oxygen atom
  • X 2 is a silicon atom
  • Ar is a phenyl group.
  • the side chain may have an epoxy group.
  • the compound represented by the formula (31) includes, for example, hexyl norbornene, diphenylmethyl norbornene methoxysilane (norbornene containing —CH 2 —O—Si (CH 3 ) (Ph) 2 in the side chain) and epoxy norbornene in toluene. It can be obtained by dissolving and solution polymerization using a Ni compound as a catalyst.
  • examples of another leaving group include a substituent having an acetophenone structure at the terminal. This leaving group is released relatively easily by the action of free radicals.
  • the content of the leaving group is not particularly limited, but is preferably 10 to 80% by weight in the polymer 915 having a leaving group in the side chain, and more preferably 20 to 60% by weight. preferable. When the content is within the above range, both flexibility and refractive index modulation function (effect of changing the refractive index difference) are particularly excellent.
  • the width of changing the refractive index can be expanded by increasing the content of the leaving group.
  • Additive 920 contains a monomer and a polymerization initiator.
  • the monomer reacts in the irradiation region of the actinic radiation to form a reactant by irradiation with actinic radiation described later, and the monomer diffuses and moves with it, so that the layer 910 is refracted between the irradiation region and the non-irradiation region. It is a compound that can cause a rate difference.
  • a polymer (polymer) formed by polymerizing the monomer in the polymer 915 As a reaction product of the monomer, a polymer (polymer) formed by polymerizing the monomer in the polymer 915, a cross-linked structure in which the monomer cross-links the polymers 915, and a polymer 915 obtained by polymerizing the monomer to the polymer 915. At least one of the branched structures branched from.
  • the difference in refractive index generated between the irradiated region and the non-irradiated region is generated based on the difference between the refractive index of the polymer 915 and the refractive index of the monomer. Therefore, the monomer contained in the additive 920 is the polymer 915. Is selected in consideration of the magnitude relationship with the refractive index.
  • a polymer 915 having a relatively low refractive index and a monomer having a high refractive index with respect to the polymer 915 are included. Used in combination.
  • a polymer 915 having a relatively high refractive index and a monomer having a low refractive index with respect to the polymer 915 are used in combination.
  • those having compatibility with the polymer 915 and having a refractive index difference with the polymer 915 of 0.01 or more are preferably used.
  • Such a monomer is not particularly limited as long as it is a compound having a polymerizable site, and examples thereof include norbornene monomers, acrylic acid (methacrylic acid) monomers, epoxy monomers, oxetane monomers, and vinyl ether monomers. , A styrene monomer, etc., and one or more of these can be used in combination.
  • a monomer or oligomer having a cyclic ether group such as an oxetanyl group or an epoxy group, or a norbornene monomer as the monomer.
  • a monomer or oligomer having a cyclic ether group the cyclic ether group is likely to be opened, so that a monomer capable of reacting quickly can be obtained.
  • the core layer 13 (optical waveguide 1) having excellent optical transmission performance and excellent heat resistance and flexibility can be obtained.
  • the molecular weight (weight average molecular weight) of the monomer having a cyclic ether group or the molecular weight (weight average molecular weight) of the oligomer is preferably 100 or more and 400 or less, respectively.
  • the monomer having an oxetanyl group and the oligomer having an oxetanyl group those selected from the group of the following formulas (11) to (20) are preferable.
  • these there is an advantage that transparency in the vicinity of a wavelength of 850 nm is excellent and both flexibility and heat resistance are possible. These may be used alone or in combination.
  • n is 0 or more and 3 or less.
  • compounds represented by the following formulas (32) and (33) can be used as the compound having an oxetanyl group.
  • the compound represented by the formula (32) trade name TOSOX manufactured by Toagosei Co., Ltd.
  • trade name OX-SQ manufactured by Toagosei Co., Ltd. trade name OX-SQ manufactured by Toagosei Co., Ltd.
  • n 1 or 2
  • examples of the monomer having an epoxy group and the oligomer having an epoxy group include the following.
  • the monomer and oligomer having an epoxy group are polymerized by ring-opening in the presence of an acid.
  • the monomer having an epoxy group and the oligomer having an epoxy group those represented by the following formulas (34) to (39) can be used.
  • the compound represented by the formula (34) is epoxy norbornene, and as such a compound, for example, EpNB manufactured by Promeras Corporation can be used.
  • the compound represented by the formula (35) is ⁇ -glycidoxypropyltrimethoxysilane, and as this compound, for example, Z-6040 manufactured by Toray Dow Corning Silicone can be used.
  • the compound represented by the formula (36) is 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. As this compound, for example, E0327 manufactured by Tokyo Chemical Industry can be used.
  • the compound represented by the formula (37) is 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexenecarboxylate, and for example, Celoxide 2021P manufactured by Daicel Chemical Industries, Ltd. is used. can do.
  • the compound represented by the formula (38) is 1,2-epoxy-4-vinylcyclohexane, and as this compound, for example, Celoxide 2000 manufactured by Daicel Chemical Industries, Ltd. can be used.
  • the compound represented by the formula (39) is 1,2: 8,9 diepoxy limonene.
  • this compound for example, (Celoxide 3000 manufactured by Daicel Chemical Industries, Ltd.) can be used.
  • a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group may be used in combination.
  • the monomer having an oxetanyl group and the oligomer having an oxetanyl group have a slow initiation reaction for initiating polymerization but a fast growth reaction.
  • a monomer having an epoxy group and an oligomer having an epoxy group have a fast initiation reaction for initiating polymerization, but have a slow growth reaction. Therefore, by using a monomer having an oxetanyl group, an oligomer having an oxetanyl group, a monomer having an epoxy group, and an oligomer having an epoxy group, when irradiated with light, the light irradiated portion and the unirradiated portion A difference in refractive index can be reliably generated.
  • the monomer represented by the formula (20) is “first monomer” and the monomer containing the component B is “second monomer”, it is preferable to use the first monomer and the second monomer in combination.
  • the ratio of the combined use is defined by (weight of second monomer) / (weight of first monomer), it is preferably about 0.1 to 1, more preferably about 0.1 to 0.6. preferable.
  • the combined ratio is within the above range, the balance between the reactivity of the monomer and the heat resistance of the optical waveguide 1 is improved.
  • the monomer corresponding to the second monomer includes a monomer having an oxetanyl group different from the monomer represented by the formula (20) and a monomer having a vinyl ether group.
  • a monomer having an oxetanyl group different from the monomer represented by the formula (20) at least one of an epoxy compound (particularly an alicyclic epoxy compound) and a bifunctional oxetane compound (a monomer having two oxetanyl groups) is preferably used.
  • the second monomer include the compound of the above formula (15), the compound of the above formula (12), the compound of the above formula (11), the compound of the above formula (18), and the above formula (19). And compounds of the above formulas (34) to (39).
  • norbornene-based monomer is a generic term for monomers containing at least one norbornene skeleton represented by the following structural formula A, and examples thereof include compounds represented by the following structural formula C.
  • R 12 to R 15 each independently represents a hydrogen atom, a substituted or unsubstituted hydrocarbon group, or a functional substituent, An integer of 0 to 5 is represented. However, when a is a double bond, either one of R 12 and R 13 or one of R 14 and R 15 does not exist. ]
  • Examples of the unsubstituted hydrocarbon group include, for example, a linear or branched alkyl group having 1 to 10 carbon atoms (C 1 to C 10 ), a linear or branched carbon number of 2 -10 (C 2 -C 10 alkenyl group, linear or branched alkynyl group having 2 to 10 carbon atoms (C 2 -C 10 ), cycloalkyl having 4 to 12 carbon atoms (C 4 -C 12 ) Group, a cycloalkenyl group having 4 to 12 carbon atoms (C 4 to C 12 ), an aryl group having 6 to 12 carbon atoms (C 6 to C 12 ), and an aralkyl group having 7 to 24 carbon atoms (C 7 to C 24 )
  • R 12 and R 13 , R 14 and R 15 may each be an alkylidenyl group having 1 to 10 carbon atoms (C 1 to C 10 ).
  • acrylic acid (methacrylic acid) monomers include acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, acrylic acid amide, methacrylic acid amide, acrylonitrile, and the like. These can be used alone or in combination of two or more.
  • vinyl ether monomers include methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, tert-butyl vinyl ether, n-pentyl vinyl ether, n-hexyl vinyl ether, n-octyl.
  • alkyl vinyl ethers or cycloalkyl vinyl ethers such as vinyl ether, n-dodecyl vinyl ether, 2-ethylhexyl vinyl ether, and cyclohexyl vinyl ether, and one or more of these can be used in combination.
  • examples of the styrene monomer include styrene and divinylbenzene, and one or two of these can be used in combination.
  • the monomer may be oligomerized as described above.
  • the addition amount of these monomers is preferably 1 part by weight or more and 50 parts by weight or less, and more preferably 2 parts by weight or more and 20 parts by weight or less with respect to 100 parts by weight of the polymer.
  • the polymerization initiator acts on the monomer with irradiation of actinic radiation to promote the reaction of the monomer, and is added as necessary in consideration of the reactivity of the monomer.
  • the polymerization initiator to be used is appropriately selected according to the type of monomer polymerization reaction or crosslinking reaction.
  • radical polymerization initiators are preferably used exclusively for acrylic acid (methacrylic acid) monomers and styrene monomers
  • cationic polymerization initiators are preferably used exclusively for epoxy monomers, oxetane monomers, and vinyl ether monomers.
  • radical polymerization initiators examples include benzophenones and acetophenones.
  • examples of the cationic polymerization initiator include Lewis acid generating type such as diazonium salt, Bronsted acid generating type such as iodonium salt and sulfonium salt.
  • the following cationic polymerization initiator photoacid generator
  • photoacid generator photoacid generator
  • sulfonium salts such as triphenylsulfonium trifluoromethanesulfonate, tris (4-t-butylphenyl) sulfonium-trifluoromethanesulfonate, diazonium salts such as p-nitrophenyldiazonium hexafluorophosphate, ammonium salts, phosphonium salts, diphenyliodonium Iodonium salts such as trifluoromethanesulfonate, (triccumyl) iodonium-tetrakis (pentafluorophenyl) borate, quinonediazides, diazomethanes such as bis (phenylsulfonyl) diazomethane, 1-phenyl-1- (4-methylphenyl) sulfonyloxy- Sulfos such as 1-benzoylmethane, N-hydroxynaphthalimide-trifluoromethanes, di
  • the content of the polymerization initiator is preferably 0.01 parts by weight or more and 0.3 parts by weight or less, more preferably 0.02 parts by weight or more and 0.2 parts by weight or less with respect to 100 parts by weight of the polymer. . Thereby, there exists an effect of a reactive improvement.
  • the sensitizer increases the sensitivity of the polymerization initiator to light and is suitable for the function of reducing the time and energy required for the activation (reaction or decomposition) of the polymerization initiator and for the activation of the polymerization initiator. It has a function of changing the wavelength of light to a wavelength.
  • Such a sensitizer is appropriately selected according to the sensitivity of the polymerization initiator and the peak wavelength of absorption of the sensitizer, and is not particularly limited.
  • 9,10-dibutoxyanthracene (CAS No. 76275) is selected. 14-4)), anthracenes, xanthones, anthraquinones, phenanthrenes, chrysenes, benzpyrenes, fluoranthenes, rubrenes, pyrenes, indanthrines, thioxanthen-9-ones (Thioxanthen-9-ones) and the like, and these can be used alone or as a mixture.
  • sensitizer examples include, for example, 2-isopropyl-9H-thioxanthen-9-one, 4-isopropyl-9H-thioxanthen-9-one, 1-chloro-4-propoxythioxanthone, and phenothiazine. Or a mixture thereof.
  • the content of the sensitizer in the core layer forming composition 900 is preferably 0.01% by weight or more, more preferably 0.5% by weight or more, and 1% by weight or more. Is more preferable. In addition, it is preferable that an upper limit is 5 weight% or less.
  • the additive 920 includes a catalyst precursor, a co-catalyst, an antioxidant, an ultraviolet absorber, a light stabilizer, a silane coupling agent, a coating surface improver, a thermal polymerization inhibitor, a leveling agent, and a surfactant. , Colorants, storage stabilizers, plasticizers, lubricants, fillers, inorganic particles, anti-aging agents, wettability improvers, antistatic agents, and the like.
  • the layer 910 containing the polymer 915 and the additive 920 as described above has a predetermined refractive index due to the action of the additive 920 dispersed uniformly in the polymer 915.
  • a mask (masking) 935 in which an opening (window) 9351 is formed is prepared, and the layer 910 is irradiated with active radiation 930 through the mask 935 (see FIG. 7).
  • the irradiation region 925 of the active radiation 930 is mainly the side cladding portion 15.
  • an opening (window) 9351 equivalent to the pattern of the side cladding portion 15 to be formed is mainly formed in the mask 935.
  • This opening 9351 forms a transmission part through which the active radiation 930 to be irradiated passes.
  • the pattern of the core part 14 and the side clad part 15 is determined based on the refractive index distribution W formed according to irradiation of the active radiation 930, the pattern of the opening 9351 and the pattern of the side clad part 15 are completely There is a case in which there is a slight deviation between the two patterns.
  • the mask 935 may be formed in advance (separately formed) (for example, plate-shaped) or may be formed on the layer 910 by, for example, a vapor deposition method or a coating method.
  • Preferred examples of the mask 935 include a photomask made of quartz glass or a PET base material, a stencil mask, a metal thin film formed by a vapor deposition method (evaporation, sputtering, etc.), etc.
  • a photomask or a stencil mask it is particularly preferable to use a photomask or a stencil mask. This is because a fine pattern can be formed with high accuracy, and handling is easy, which is advantageous in improving productivity.
  • the opening (window) 9351 of the mask 935 is shown by partially removing the mask along the pattern of the irradiation region 925 of the active radiation 930.
  • the quartz glass, the PET base material, etc. it is also possible to use a photomask provided with a shielding portion of active radiation 930 made of a shielding material made of metal such as chromium.
  • the part other than the shielding part is the window (transmission part).
  • the actinic radiation 930 to be used is not particularly limited as long as it can cause a photochemical reaction (change) with respect to the polymerization initiator and can release the leaving group contained in the polymer 915.
  • visible light In addition to ultraviolet light, infrared light, and laser light, electron beams, X-rays, and the like can also be used.
  • the actinic radiation 930 is appropriately selected depending on the kind of the sensitizer when it contains a polymerization initiator, a leaving group, and a sensitizer, and is not particularly limited, but has a wavelength of 200 to 450 nm. It is preferable to have a peak wavelength in the range. As a result, the polymerization initiator can be activated relatively easily and the leaving group can be removed relatively easily.
  • the dose of the active radiation 930 is preferably about 0.1 to 9 J / cm 2 , more preferably about 0.2 to 6 J / cm 2, and about 0.2 to 3 J / cm 2. More preferably.
  • the polymerization initiator When the layer 910 is irradiated with the active radiation 930 through the mask 935, the polymerization initiator is activated in the irradiated region 925. Thereby, the monomer is polymerized in the irradiation region 925. When the monomer is polymerized, the amount of monomer in the irradiated region 925 decreases, and accordingly, the monomer in the unirradiated region 940 diffuses and moves to the irradiated region 925.
  • the polymer 915 and the monomer are appropriately selected so that a difference in refractive index is generated between them, a refractive index difference is generated between the irradiated region 925 and the non-irradiated region 940 as the monomer diffuses and moves.
  • FIG. 11 is a diagram for explaining a state in which a difference in refractive index occurs between the irradiated region 925 and the non-irradiated region 940.
  • the horizontal axis indicates the position of the cross section of the layer 910, and the refractive index of the horizontal section indicates the vertical index. It is a figure which shows refractive index distribution when it takes on an axis
  • the refractive index of the unirradiated region 940 becomes higher and the refractive index of the irradiated region 925 becomes lower as the monomer diffuses and moves ( (See FIG. 11 (a)).
  • the diffusion movement of the monomer occurs due to the consumption of the monomer in the irradiation region 925 and the concentration gradient of the monomer formed accordingly. For this reason, the monomers in the entire unirradiated region 940 do not move toward the irradiated region 925 all at once, but gradually move from a portion close to the irradiated region 925 and outward from the center of the unirradiated region 940 to compensate for this. Monomer migration also occurs. As a result, as shown in FIG.
  • the high refractive index portion H on the non-irradiated region 940 side and the low refractive index portion L on the irradiated region 925 side across the boundary between the irradiated region 925 and the non-irradiated region 940. Is formed. Since the high refractive index portion H and the low refractive index portion L are formed in accordance with the diffusion movement of the monomer as described above, they are necessarily constituted by smooth curves. Specifically, the high refractive index portion H has, for example, a substantially U shape that is convex upward, and the low refractive index portion L has, for example, a substantially U shape that is convex downward.
  • the refractive index of the polymer obtained by polymerizing the monomers as described above is almost the same as the refractive index of the monomer before polymerization (the difference in refractive index is about 0 to 0.001). As the polymerization proceeds, the refractive index decreases according to the amount of the monomer and the amount of the substance derived from the monomer. Therefore, the shape of the refractive index distribution W can be controlled by appropriately adjusting the amount of monomer with respect to the polymer.
  • the monomer is not polymerized because the polymerization initiator is not activated.
  • the ease of monomer diffusion transfer gradually decreases as the polymerization of the monomer proceeds.
  • the distribution shape of the low refractive index portion L formed in the irradiated region 925 is likely to be asymmetrical left and right, and the gradient on the non-irradiated region 940 side becomes steeper. Thereby, the refractive index distribution W which the optical waveguide of this invention has is formed.
  • the polymer 915 preferably has a leaving group as described above. This leaving group is released upon irradiation with actinic radiation 930 and decreases the refractive index of the polymer 915. Therefore, when the irradiation region 925 is irradiated with the actinic radiation 930, the above-described diffusion movement of the monomer is started, the leaving group is released from the polymer 915, and the refractive index of the irradiation region 925 decreases from before the irradiation. (See FIG. 11B).
  • This decrease in the refractive index occurs uniformly in the entire irradiation region 925, so that the refractive index difference between the high refractive index portion H and the low refractive index portion L described above is further enlarged. As a result, a refractive index distribution W shown in FIG. 11B is obtained. Note that the change in refractive index in FIG. 11A and the change in refractive index in FIG. 11B occur almost simultaneously. Such a refractive index change further expands the refractive index difference.
  • the refractive index of the core layer after energy irradiation is adjusted by appropriately adjusting the components of the core layer before energy irradiation, the irradiation amount of energy irradiation, or the degree of drying of the core layer before energy irradiation.
  • the shape of the distribution can be controlled.
  • the refractive index difference and the shape of the refractive index distribution to be formed can be controlled by adjusting the dose of the active radiation 930. For example, the refractive index difference can be enlarged by increasing the irradiation amount.
  • the shape of the refractive index distribution can be controlled by adjusting the content and irradiation amount of the photoacid generator.
  • the layer 910 may be dried before the irradiation with the active radiation 930, but the shape of the refractive index distribution can be controlled by adjusting the degree of drying at that time. For example, by increasing the degree of drying, the diffusion transfer amount of the monomer can be suppressed. Also, by increasing the drying temperature, the amount of diffusion can be increased and the refractive index distribution can be controlled.
  • the layer 910 is subjected to heat treatment.
  • the monomer in the irradiation region 925 irradiated with light is further polymerized.
  • the monomer in the unirradiated region 940 is volatilized. Thereby, in the unirradiated region 940, the monomer is further reduced, the refractive index is increased, and the refractive index is close to that of the polymer 915.
  • the heating temperature in this heat treatment is not particularly limited, but is preferably about 30 to 180 ° C, more preferably about 40 to 160 ° C.
  • the heating time is preferably set so that the polymerization reaction of the monomer in the irradiation region 925 is almost completed.
  • the heating time is preferably about 0.1 to 2 hours, preferably 0.1 to 1 hour. More preferred is the degree.
  • the refractive index distribution W there are minimum values Ws1, Ws2, Ws3, and Ws4 converted from the low refractive index portion L (see FIG. 2B), and the positions of these minimum values are the core portion 14 and the side surface. This corresponds to the boundary with the clad portion 15.
  • the refractive index distribution W has a certain correlation with the monomer-derived structure concentration in the core layer 13. Therefore, it is possible to indirectly specify the refractive index distribution W of the optical waveguide 1 by measuring the concentration of the monomer-derived structure.
  • the concentration of the structure can be measured using, for example, FT-IR or TOF-SIMS line analysis, surface analysis, or the like.
  • the refractive index distribution W can be indirectly specified even if the intensity distribution of the emitted light from the optical waveguide 1 has a certain correlation with the refractive index distribution W.
  • the refractive index distribution W can be directly specified by a refraction near field method, a differential interference method, or the like.
  • the refractive index of the movement destination increases with the diffusion movement of the monomer.
  • the irradiation area 940 may be set.
  • the use of the mask 935 may be omitted.
  • the clad layers 11 and 12 are laminated on both surfaces of the core layer 13. Thereby, the optical waveguide 1 is obtained.
  • the clad layer 11 (12) is formed on the support substrate 952 (see FIG. 9).
  • a varnish (cladding layer forming composition) containing a clad material is applied and cured (solidified), and a curable monomer composition is applied and cured (solidified). Any method may be used.
  • the core layer 13 is peeled from the support substrate 951, and the core layer 13 is sandwiched between the support substrate 952 on which the clad layer 11 is formed and the support substrate 952 on which the clad layer 12 is formed (FIG. 10A). )reference).
  • the clad layers 11 and 12 and the core layer 13 are joined and integrated (see FIG. 10B).
  • the support substrate 952 is peeled off and removed from the cladding layers 11 and 12, respectively. Thereby, the optical waveguide 1 is obtained.
  • a support film 2 is laminated on the lower surface of the optical waveguide 1 and a cover film 3 is laminated on the upper surface.
  • the core layer 13 may be formed not on the support substrate 951 but on the cladding layer 11. Further, the clad layer 12 may be formed by applying a material on the core layer 13 instead of being laminated on the core layer 13.
  • the second manufacturing method is the same as the first manufacturing method except that the composition of the core layer forming composition 900 is different.
  • the second method of manufacturing the optical waveguide 1 is as follows: [1] After applying the core layer forming composition 900 on the support substrate 951 to form a liquid film, the support substrate 951 is placed on a level table to form the liquid film. While flattening, the solvent is evaporated (desolvent). Thereby, the layer 910 is obtained. [2] Next, after irradiating a part of the layer 910 with actinic radiation, the layer 910 is subjected to a heat treatment to cause a refractive index difference, and the core layer 13 having the core portion 14 and the side cladding portion 15 is formed. obtain. [3] Next, the cladding layers 11 and 12 are laminated on both surfaces of the core layer 13 to obtain the optical waveguide 1.
  • a core layer forming composition 900 is prepared.
  • the core layer forming composition 900 used in the second production method contains a catalyst precursor and a cocatalyst instead of the polymerization initiator.
  • the catalyst precursor is a substance capable of initiating a monomer reaction (polymerization reaction, crosslinking reaction, etc.), and is a substance whose activation temperature changes due to the action of a promoter activated by light irradiation. Due to this change in the activation temperature, a difference occurs in the temperature at which the monomer reaction starts between the light irradiation region 925 and the non-irradiation region 940, and as a result, the monomer can be reacted only in the irradiation region 925. .
  • any compound may be used as long as the activation temperature changes (increases or decreases) with irradiation of actinic radiation, and in particular, irradiation with actinic radiation. Along with this, the activation temperature decreases.
  • the core layer 13 optical waveguide 1 can be formed by heat treatment at a relatively low temperature, and unnecessary heat is applied to the other layers, so that the characteristics (optical transmission performance) of the optical waveguide 1 are deteriorated. Can be prevented.
  • a catalyst precursor containing (mainly) at least one of the compounds represented by the following formulas (Ia) and (Ib) is preferably used.
  • E (R) 3 represents a neutral electron donor ligand of group 15, respectively, E represents an element selected from group 15 of the periodic table, and R represents , Represents a moiety containing a hydrogen atom (or one of its isotopes) or a hydrocarbon group, and Q represents an anionic ligand selected from carboxylate, thiocarboxylate and dithiocarboxylate.
  • LB represents a Lewis base
  • WCA represents a weakly coordinating anion
  • a represents an integer of 1 to 3
  • b represents an integer of 0 to 2
  • p and r represent numbers that balance the charge of the palladium cation and the weakly coordinated anion.
  • Typical catalyst precursors according to Formula Ia include Pd (OAc) 2 (P (i-Pr) 3 ) 2 , Pd (OAc) 2 (P (Cy) 3 ) 2 , Pd (O 2 CCMe 3 ) 2 (P (Cy) 3 ) 2 , Pd (OAc) 2 (P (Cp) 3 ) 2 , Pd (O 2 CCF 3 ) 2 (P (Cy) 3 ) 2 , Pd (O 2 CC 6 H 5 ) 3 (P (Cy) 3 ) 2 may be mentioned, but is not limited thereto.
  • Cp represents a cyclopentyl group
  • Cy represents a cyclohexyl group.
  • the catalyst precursor represented by the formula Ib is preferably a compound in which p and r are selected from integers of 1 and 2, respectively.
  • Typical catalyst precursors according to such formula Ib include Pd (OAc) 2 (P (Cy) 3 ) 2 .
  • Cy represents a cyclohexyl group
  • Ac represents an acetyl group.
  • catalyst precursors can efficiently react with a monomer (in the case of a norbornene-based monomer, an efficient polymerization reaction, a crosslinking reaction, etc. by an addition polymerization reaction).
  • the catalyst precursor in a state where the activation temperature is lowered (active latent state), has an activation temperature lower by about 10 to 80 ° C. (preferably about 10 to 50 ° C.) than the original activation temperature. Is preferred. Thereby, the refractive index difference between the core part 14 and the side clad part 15 can be produced reliably.
  • Such a catalyst precursor includes (mainly) one containing at least one of Pd (OAc) 2 (P (i-Pr) 3 ) 2 and Pd (OAc) 2 (P (Cy) 3 ) 2. Is preferred.
  • the co-catalyst is a substance that can be activated by irradiation with actinic radiation to change the activation temperature of the catalyst precursor (procatalyst) (the temperature at which the monomer reacts).
  • any compound can be used as long as it has a molecular structure that changes (reacts or decomposes) when activated by irradiation with actinic radiation.
  • a compound (photoinitiator) that decomposes upon irradiation with actinic radiation and generates a cation such as a proton or other cation and a weakly coordinated anion (WCA) that can be substituted with a leaving group of the catalyst precursor ( (Mainly) is preferably used.
  • weakly coordinating anions examples include tetrakis (pentafluorophenyl) borate ion (FABA ⁇ ), hexafluoroantimonate ion (SbF 6 ⁇ ), and the like.
  • cocatalyst examples include tetrakis (pentafluorophenyl) gallium in addition to tetrakis (pentafluorophenyl) borate and hexafluoroantimonate represented by the following formula: Acid salts, aluminates, antimonates, other borates, gallates, carboranes, halocarboranes and the like.
  • PHOTOINITIATOR 2074 (CAS No. 178233-72-2) available from Rhodia USA, Cranberry, New Jersey.
  • TAG-372R ((dimethyl (2- (2-naphthyl) -2-oxoethyl) sulfonium tetrakis (pentafluorophenyl) borate: CAS No. 193957) available from Toyo Ink Manufacturing Co., Ltd., Tokyo, Japan” -54-9)
  • MPI-103 CAS No.
  • UV light ultraviolet rays
  • actinic radiation actinic radiation
  • mercury lamp high pressure mercury lamp
  • the layer 910 is irradiated with the active radiation 930 through the mask 935.
  • the co-catalyst reacts (bonds) or decomposes by the action of the active radiation 930 to release (generate) cations (protons or other cations) and weakly coordinated anions (WCA).
  • the catalyst precursor in the active latent state (or the latent active state) has an activation temperature lower than the original activation temperature, but there is no temperature increase, that is, at about room temperature, the irradiation region.
  • the optical waveguide 1 (for example, the core layer 13) can be obtained by preparing a plurality of layers 910 after the irradiation with the active radiation 930 and subjecting them to a heat treatment to be described later. Is expensive.
  • the leaving group is detached from the polymer 915 as in the first production method. This creates a refractive index difference between the irradiated region 925 and the unirradiated region 940 of the layer 910.
  • the layer 910 is subjected to heat treatment (first heat treatment).
  • first heat treatment first heat treatment
  • the catalyst precursor in the active latent state is activated (becomes active), and monomer reaction (polymerization reaction or cross-linking reaction) occurs.
  • the monomer concentration in the irradiation region 925 gradually decreases.
  • a difference in monomer concentration occurs between the irradiated region 925 and the unirradiated region 940, and the monomer diffuses from the unirradiated region 940 and collects in the irradiated region 925 in order to eliminate this.
  • a refractive index profile similar to that in the first manufacturing method is formed in the layer 910.
  • the heating temperature in this heat treatment is not particularly limited, but is preferably about 30 to 80 ° C., more preferably about 40 to 60 ° C.
  • the heating time is preferably set so that the reaction of the monomer in the irradiation region 925 is almost completed.
  • the heating time is preferably about 0.1 to 2 hours, preferably 0.1 to 1 hour. More preferred is the degree.
  • second heat treatment is performed on the layer 910.
  • the catalyst precursor remaining in the unirradiated region 940 and / or the irradiated region 925 is activated (activated) directly or with activation of the cocatalyst, thereby causing the regions 925 and 940 to be activated.
  • the remaining monomer is reacted.
  • the heating temperature in the second heat treatment is not particularly limited as long as it can activate the catalyst precursor or the cocatalyst, but is preferably about 70 to 100 ° C., and is preferably about 80 to 90 ° C. Is more preferable.
  • the heating time is preferably about 0.5 to 2 hours, and more preferably about 0.5 to 1 hour.
  • the layer 910 is subjected to a third heat treatment. Thereby, reduction of the internal stress which arises in the core layer 13 obtained, and the further stabilization of the core part 14 and the side clad part 15 can be aimed at.
  • the heating temperature in the third heat treatment is preferably set to 20 ° C. or more higher than the heating temperature in the second heat treatment, specifically, preferably about 90 to 180 ° C., and preferably 120 to 160 ° C. More preferred is the degree.
  • the heating time is preferably about 0.5 to 2 hours, more preferably about 0.5 to 1 hour.
  • the clad layers 11 and 12 are laminated on both surfaces of the core layer 13. Thereby, the optical waveguide 1 is obtained.
  • the mirror 17 shown in FIG. 5 it digs into a part of obtained optical waveguide 1, and this forms the recessed part 170 which makes the mirror 17 an inner wall surface.
  • the digging process for the optical waveguide 1 can be performed by, for example, a laser processing method, a dicing method using a dicing saw, or the like.
  • the optical waveguide of the present invention as described above is excellent in optical transmission efficiency and long-term reliability. For this reason, by providing the optical waveguide of the present invention, a highly reliable electronic device (electronic device of the present invention) capable of performing high-quality optical communication between two points can be obtained.
  • Examples of the electronic device including the optical waveguide of the present invention include electronic devices such as a mobile phone, a game machine, a router device, a WDM device, a personal computer, a television, and a home server. In any of these electronic devices, it is necessary to transmit a large amount of data at high speed between an arithmetic device such as an LSI and a storage device such as a RAM. Therefore, by providing such an electronic device with the optical waveguide of the present invention, problems such as noise and signal degradation peculiar to electrical wiring are eliminated, and a dramatic improvement in performance can be expected.
  • the amount of heat generated in the optical waveguide portion is greatly reduced compared to electrical wiring. For this reason, the electric power required for cooling can be reduced and the power consumption of the whole electronic device can be reduced.
  • the optical waveguide of the present invention has small transmission loss and pulse signal dullness, and interference does not easily occur even when the number of channels is increased and the density is increased. For this reason, an optical waveguide having high density and a small area and high reliability can be obtained. By mounting the optical waveguide, the reliability of electronic equipment can be improved and the size can be reduced.
  • optical waveguide and the electronic device of the present invention have been described above.
  • present invention is not limited to this, and for example, an arbitrary component may be added to the optical waveguide.
  • a transmission device such as a router device or a WDM (Wavelength Division Multiplexing) device is used as a device for transmitting information to a broadband line (broadband) capable of communicating a large amount of information at high speed.
  • a broadband line broadband line
  • a large number of signal processing boards in which arithmetic elements such as LSIs and storage elements such as memories are combined are installed, and each line is interconnected.
  • the optical waveguide of the present embodiment has excellent optical transmission characteristics such as few optical defects and reduced crosstalk. As a result, it is possible to suppress the occurrence of crosstalk, high frequency noise, deterioration of electric signals, and the like as information transmission is accelerated. Therefore, information can be transmitted with high throughput in each signal processing board. In addition, information can be transmitted with high throughput even by a super computer or a large-scale server.
  • the method for producing the optical waveguide of the present invention is not limited to the above-described method.
  • a method of cutting a molecular bond by irradiation with actinic radiation and changing a refractive index (photo bleach method), a core layer is formed.
  • a method in which a photocrosslinkable polymer having an unsaturated bond capable of photoisomerization or photodimerization is contained in the composition to be formed, and this is irradiated with actinic radiation to change the molecular structure and change the refractive index (photoisomerization).
  • photoisomerization photocrosslinkable polymer having an unsaturated bond capable of photoisomerization or photodimerization
  • other methods such as photodimerization method).
  • the amount of change in the refractive index can be adjusted according to the irradiation amount of the active radiation, the irradiation amount of the active radiation applied to each part of the layer according to the shape of the target refractive index distribution W is set. By making them different, a core layer having a refractive index distribution W can be formed.
  • Example 1 Production of optical waveguide (Example 1) (1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) Then, 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • Ni catalyst represented by the following chemical formula (A) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip, tightly plugged, and thoroughly agitate the catalyst. Dissolved in.
  • the molar ratio of each structural unit in polymer # 1 was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the diphenylmethylnorbornenemethoxysilane structural unit, as determined by NMR.
  • composition for forming core layer 10 g of the purified polymer # 1 was weighed into a 100 mL glass container, and 40 g of mesitylene, 0.01 g of antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (formula) 1st monomer shown in (20), Toagosei Co., Ltd.
  • the core layer-forming composition was uniformly applied on the lower clad layer with a doctor blade, and then placed in a dryer at 55 ° C. for 10 minutes. After the solvent was completely removed, a photomask was pressed and selectively irradiated with ultraviolet rays at 1300 mJ / cm 2 . The mask was removed, and heating was performed at 150 ° C. in a dryer for 1.5 hours. It was confirmed that a very clear waveguide pattern appeared after heating. Moreover, formation of the core part and the side clad part was confirmed.
  • the formed optical waveguide has eight core portions formed in parallel. The width of the core portion was 50 ⁇ m, the width of the side cladding portion was 80 ⁇ m, and the thickness of the core layer was 50 ⁇ m.
  • a dry film in which Avatrel 2000P is laminated in advance on a polyethersulfone (PES) film so as to have a dry thickness of 20 ⁇ m is bonded to the above core layer, and put into a vacuum laminator set at 140 ° C. for thermocompression bonding. It was. Thereafter, 100 mJ was irradiated on the entire surface and heated in a dryer at 120 ° C. for 1 hour to cure Avatrel 2000P to form an upper clad layer to obtain an optical waveguide. A length of 10 cm was cut out from the obtained optical waveguide.
  • PES polyethersulfone
  • the refractive index distribution W of the width direction was acquired using the interference microscope along the centerline of the thickness direction.
  • the refractive index distribution W has a plurality of minimum values and maximum values, were those in which the refractive index continuously changed.
  • a method for measuring a refractive index distribution using an interference microscope will be described.
  • the optical waveguide was sliced in the cross-sectional direction of the optical waveguide to obtain an optical waveguide fragment.
  • the optical waveguide was sliced so that the length was 200 ⁇ m to 300 ⁇ m.
  • a chamber filled with oil having a refractive index of 1.536 was created in a space surrounded by two glass slides.
  • a measurement sample in which the optical waveguide fragment was sandwiched in the space in the chamber and a blank sample without the optical waveguide fragment were prepared.
  • using an interference microscope to obtain an interference fringe photograph of the cross-sectional direction of the optical waveguide fragments.
  • the interference fringe photograph was subjected to image analysis to obtain a refractive index distribution.
  • the image analysis of the interference fringe photograph was performed as follows. First, change the optical path length of the interference microscope, and the image data with different locations that can fringes continuously acquired.
  • the refractive index at each measurement point in the interlayer direction and the in-layer direction was calculated from a plurality of image data. In this example, the interval between measurement points was 2.5 ⁇ m.
  • a refractive index distribution T in the thickness direction was obtained using an interference microscope along the center line passing through the center of the width of the core portion in the vertical direction.
  • the refractive index distribution T changes at a substantially constant value in the region corresponding to the core portion, and also at a substantially constant value lower than the refractive index of the region corresponding to the core portion in the region corresponding to each cladding layer. It changed. That is, the refractive index distribution in the thickness direction of the obtained optical waveguide was a so-called step index type.
  • Example 2 An optical waveguide was obtained in the same manner as in Example 1 except that the irradiation amount of ultraviolet rays was increased to 1500 mJ / cm 2 .
  • Example 3 While increasing the irradiation amount of ultraviolet rays to 2000 mJ / cm 2 and changing the molar ratio of each structural unit of polymer # 1 to 40 mol% for the hexyl norbornene structural unit and 60 mol% for the diphenylmethyl norbornene methoxysilane structural unit as the polymer An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 4 The amount of UV irradiation was reduced to 500 mJ / cm 2 and the polymer molar ratio of each structural unit of polymer # 1 was changed to 45 mol% for hexylnorbornene structural units and 55 mol% for diphenylmethylnorbornenemethoxysilane structural units.
  • An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 5 Except that the molar ratio of each structural unit of polymer # 1 was changed to 30 mol% for the hexylnorbornene structural unit and 70 mol% for the diphenylmethylnorbornenemethoxysilane structural unit as the polymer, the same as in Example 1. Thus, an optical waveguide was obtained.
  • Example 8 In addition to reducing the amount of UV irradiation to 300 mJ / cm 2 and changing the molar ratio of each structural unit of polymer # 1 to 40 mol% for the hexylnorbornene structural unit and 60 mol% for the diphenylmethylnorbornenemethoxysilane structural unit as the polymer An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 9 In addition to reducing the amount of UV irradiation to 500 mJ / cm 2 , the polymer has a molar ratio of each structural unit of polymer # 1 changed to 30 mol% for hexylnorbornene structural units and 70 mol% for diphenylmethylnorbornenemethoxysilane structural units.
  • An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 10 In addition to reducing the irradiation amount of ultraviolet rays to 100 mJ / cm 2 and changing the molar ratio of each structural unit of polymer # 1 to 60 mol% for the hexyl norbornene structural unit and 40 mol% for the diphenylmethylnorbornene methoxysilane structural unit as the polymer An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 11 In addition to increasing the irradiation amount of ultraviolet rays to 1500 mJ / cm 2 , as a polymer, the molar ratio of each structural unit of polymer # 1 was changed to 10 mol% for the hexyl norbornene structural unit and 90 mol% for the diphenylmethyl norbornene methoxysilane structural unit. An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 12 In addition to increasing the irradiation amount of ultraviolet rays to 3000 mJ / cm 2 , as a polymer, the molar ratio of each structural unit of polymer # 1 was changed to 5 mol% for the hexylnorbornene structural unit and 95 mol% for the diphenylmethylnorbornenemethoxysilane structural unit.
  • An optical waveguide was obtained in the same manner as in Example 1 except that was used.
  • Example 13 An optical waveguide was obtained in the same manner as in Example 1 except that the core layer forming composition was manufactured by the method shown below.
  • Example 14 An optical waveguide was obtained in the same manner as in Example 1 except that the core layer forming composition was manufactured by the method shown below.
  • Example 15 An optical waveguide was obtained in the same manner as in Example 1 except that the core layer forming composition was manufactured by the method shown below.
  • 10 g of the purified polymer # 1 is weighed into a 100 mL glass container, 40 g of mesitylene, 0.01 g of an antioxidant Irganox 1076 (manufactured by Ciba Geigy), cyclohexyl oxetane monomer (shown by Formula 20, CHOX manufactured by Toagosei Co., Ltd.) 1 g, 1 g of alicyclic epoxy monomer (manufactured by Daicel Chemical Industries, Celoxide 2021P), photoacid generator Rhodorsil Photoinitiator 2074 (manufactured by Rhodia, CAS # 178233-72-2) (1.36E-2 g in 0.1 mL of ethyl acetate) And then uniformly dissolved, followed by filtration with a 0.2 ⁇ m PTFE filter to obtain a clean composition for forming a core layer.
  • an antioxidant Irganox 1076 manufactured by Ciba Geigy
  • Example 16 An optical waveguide was obtained in the same manner as in Example 1 except that the polymer synthesized by the method shown below was used.
  • a polymer was synthesized in the same manner as in Example 1 except that 10.4 g (40.1 mmol) of phenyldimethylnorbornenemethoxysilane was used instead of 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane.
  • the structural unit of the obtained polymer is shown in the following formula (103).
  • the molar ratio of each structural unit was 50 mol% for the hexylnorbornene structural unit and 50 mol% for the phenyldimethylnorbornenemethoxysilane structural unit, as determined by NMR.
  • Example 17 The core layer-forming composition was prepared by the following method, and the core layer-forming composition was uniformly applied on the lower clad layer with a doctor blade, and then a dryer at 60 ° C. An optical waveguide was obtained in the same manner as in Example 1 except that the optical waveguide was added for 10 minutes.
  • Example 18 Except with reduced irradiation of the ultraviolet to 500 mJ / cm 2, thereby obtaining the optical waveguide in the same manner as in Example 15.
  • a core layer forming composition in which the cyclohexyloxetane monomer was omitted from polymer # 1 was applied thereon, and then exposed and heated to obtain a core layer. Thereafter, an optical waveguide was obtained by forming an upper cladding layer.
  • the refractive index of the core part was almost constant, and the refractive index of the side cladding part was also almost constant. That is, the refractive index distribution W in the width direction of the core layer of the obtained optical waveguide is a so-called step index type.
  • Comparative Example 2 An optical waveguide was obtained in the same manner as in Comparative Example 1 except that exposure was performed using a photomask whose transmittance was continuously changed so that the exposure amount was continuously changed during exposure.
  • the refractive index of the side cladding portion was almost constant, while the refractive index of the core portion continuously decreased from the central portion toward the periphery. That is, the refractive index distribution of the core layer of the obtained optical waveguide is a so-called graded index type.
  • Comparative Example 3 An optical waveguide was obtained in the same manner as in Comparative Example 1 except that exposure was performed using a photomask whose transmittance was continuously changed so that the exposure amount was continuously changed during exposure.
  • the refractive index distribution has a plurality of minimum values and maximum values, and the refractive index of the core portion continuously decreases from the central portion toward the periphery, reaching a minimum value.
  • the refractive index continuously increased as the distance from the minimum value increased.
  • the shape of the refractive index distribution was substantially V-shaped, and the change in the refractive index in the vicinity thereof was discontinuous.
  • the refractive index distribution was measured by the refractive near field method along the center line in the thickness direction. A refractive index profile in the width direction was obtained.
  • the obtained refractive index distribution has the same refractive index distribution pattern repeated for every core part, a part was cut out from the obtained refractive index distribution, and this was made into the refractive index distribution W.
  • the shape of the refractive index distribution W was a shape in which four minimum values and five maximum values were alternately arranged as shown in FIG.
  • each local minimum value Ws1, Ws2, Ws3, Ws4 and each local maximum value Wm1, Wm2, Wm3, Wm4, Wm5 were obtained, and an average refractive index WA in the cladding part was obtained.
  • the width a [ ⁇ m] of the portion where the refractive index in the vicinity of the maximum values Wm2 and Wm4 formed in the core portion has a value equal to or greater than the average refractive index WA, and each minimum value
  • the width b [ ⁇ m] of the portion where the refractive index in the vicinity of Ws1, Ws2, Ws3, and Ws4 has a value less than the average refractive index WA was measured.
  • the refractive index distribution was measured using an interference microscope under the above conditions along the center line passing through the center of the width of the core portion in the vertical direction, and the optical waveguide A refractive index distribution T in the thickness direction of the transverse section of the waveguide was obtained.
  • the refractive index distribution W of the optical waveguide obtained in each example had a continuous change in the refractive index as a whole.
  • the refractive index distribution T of the optical waveguide obtained in each example was a step index type. Further, in the examples, the refractive index distribution P over the first cladding layer, the cladding portion, and the cladding layer was SI type.
  • the refractive index distribution W of the optical waveguide obtained in Comparative Example 1 was a step index type as described above, and the refractive index distribution T was also a step index type.
  • the refractive index distribution W of the optical waveguide obtained in Comparative Example 2 was a graded index type, while the refractive index distribution T was a step index type.
  • the refractive index distribution W of the optical waveguide obtained in Comparative Example 3 has a refractive index discontinuously changing between the core portion and the side cladding portion, while the refractive index distribution T has a step index. It was a mold.
  • the refractive index distribution W of the optical waveguide obtained in Reference Example 1 is the same shape as the refractive index distribution W of the optical waveguide obtained in each example, while the clad layer is omitted.
  • the refractive index distribution T was not measured.
  • FIG. 12 is a diagram for explaining a method of measuring the intensity distribution of the outgoing light on the outgoing side end face of the optical waveguide.
  • the incident-side optical fiber 21 having a diameter of 50 ⁇ m is disposed so as to face one of the core portions 14 of the incident-side end face 1a of the optical waveguide 1 to be measured.
  • the incident-side optical fiber 21 is connected to a light emitting element (not shown) for making light incident on the optical waveguide 1, and is arranged so that the optical axis thereof coincides with the optical axis of the core portion 14. Yes.
  • an output side optical fiber 22 having a diameter of 62.5 ⁇ m was disposed so as to face the end surface 1b.
  • the emission-side optical fiber 22 is connected to a light receiving element (not shown) for receiving the emitted light emitted from the optical waveguide 1, and its optical axis is the center in the thickness direction of the core layer of the optical waveguide 1. It is aligned with the line.
  • the exit-side optical fiber 22 is configured to be able to scan the plane including this center line while maintaining a constant distance from the exit-side end face 1b.
  • the light exiting optical fiber 22 is scanned while light is incident on one of the core portions from the light incident side optical fiber 21. Then, by measuring the intensity of the emitted light measured by the light receiving element with respect to the position of the emission side optical fiber 22, the intensity distribution of the emitted light with respect to the position of the emission side end face 1b can be obtained.
  • FIG. 13 shows the intensity distribution of the emitted light measured as described above.
  • FIG. 13 representatively shows the intensity distribution of the emitted light measured by the optical waveguides obtained in Example 1, Comparative Example 1, and Comparative Example 2.
  • the crosstalk was sufficiently suppressed in all the optical waveguides obtained in Example 1. Further, in the optical waveguide obtained in Example 1, the intensity of the emitted light in the core portion 14 adjacent to the core portion 14 (the core portion 14 in the center of FIG. 13) where light is incident is adjacent to the core portion 14. It was confirmed that the intensity of the emitted light was smaller than that of the side clad portion 15 located on the side opposite to the core portion 14 where the light was incident. This is because, in the optical waveguide obtained in Example 1, the side cladding portion 15 has a maximum value smaller than the core portion 14 and the refractive index distribution continuously changes.
  • the light receiving elements connected to the optical waveguide are each core portion 14. Are connected so as to face the end surface of the light-emitting side, and are not connected to the side clad portion 15. Therefore, even if light gathers in the side cladding part 15, crosstalk does not occur and interference is suppressed.
  • the maximum value of the intensity distribution of the emitted light is located in the core portion 14 adjacent to the core portion 14 where the light is incident, and the leaked light is observed. (Crosstalk).
  • a recess having a V-shaped cross section was formed by laser processing on the vicinity of one end of the obtained optical waveguide. Thereby, the mirror shown in FIG. 5 was formed for each optical waveguide.
  • the mirror loss is measured by the mirror loss measurement method specified in 4.6.3 of the JPCA (Japan Electronic Circuits Association) standard and the optical waveguide test method (JPCA-PE02-05-01S). did.
  • the output side optical fiber is aligned with the vertical end face of the optical waveguide, and the incident side optical fiber is set at a position optically connected to the core portion of the optical waveguide via a mirror. Then, light is incident on the optical waveguide from the incident side optical fiber, and the light intensity detected by the output side optical fiber is defined as P1 (dBm).
  • the mirror loss (dB) was calculated from P0-P1. As a result, in each of the optical waveguides obtained in each of the examples and the comparative examples, the mirror loss was suppressed to a small value, whereas in the optical waveguide obtained in the reference example, the mirror loss was large.
  • the photosensitive resin composition F1 was uniformly applied on the lower clad with a doctor blade, and then placed in a dryer at 50 ° C. for 10 minutes. After completely removing the solvent, a photomask on which a linear pattern with a line of 50 ⁇ m and a space of 50 ⁇ m is drawn is pressure-bonded and irradiated with ultraviolet rays using a parallel exposure machine so that the irradiation dose is 500 mJ / cm 2. did. After that, the mask was removed, and when it was put in an oven at 150 ° C. for 30 minutes and taken out, it was confirmed that a clear waveguide pattern appeared. The thickness of the obtained core layer was 50 ⁇ m.
  • Example B (1) Polymer synthesis 20.0 g of methyl methacrylate, 30.0 g of benzyl methacrylate, and 450 g of methyl isobutyl ketone were charged into a separable flask, mixed with stirring, and then replaced with nitrogen gas to obtain a monomer solution. On the other hand, 0.25 g of azobisisobutyronitrile as a polymerization initiator was dissolved in 10 g of methyl isobutyl ketone and replaced with nitrogen gas to obtain an initiator solution. Thereafter, the monomer solution was heated to 80 ° C. while stirring, and the initiator solution was added to the monomer solution using a syringe. The mixture was heated and stirred at 80 ° C. for 1 hour and then cooled to obtain a polymer solution.
  • the photosensitive resin composition C1 was uniformly applied on the lower clad with a doctor blade, and then placed in a dryer at 50 ° C. for 10 minutes. After completely removing the solvent, a photomask on which a linear pattern with a line of 50 ⁇ m and a space of 50 ⁇ m was drawn was pressure-bonded and irradiated with ultraviolet rays using a parallel exposure machine so that the irradiation dose was 500 mJ / cm 2 . . After that, when the mask was removed, and it was taken out for 30 minutes in a nitrogen dryer at 150 ° C., it was confirmed that a clear waveguide pattern appeared. The thickness of the obtained core layer was 50 ⁇ m.
  • Example C First, a polymer A2 synthesized in the same manner as (1) of Example B was obtained except that 2- (perfluorohexyl) ethyl methacrylate was used instead of benzyl methacrylate. Thereafter, an optical waveguide was obtained in the same manner as in Example B except that the polymer A2 was used instead of the polymer A1.
  • Comparative Example 4 (1) Synthesis of norbornene-based resin having a leaving group In a glove box filled with dry nitrogen in which the water and oxygen concentrations are both controlled to 1 ppm or less, 7.2 g (40.1 mmol) of hexylnorbornene (HxNB) ), 12.9 g (40.1 mmol) of diphenylmethylnorbornenemethoxysilane was weighed into a 500 mL vial, 60 g of dehydrated toluene and 11 g of ethyl acetate were added, and the top was sealed with a silicon sealer.
  • HxNB hexylnorbornene
  • Ni catalyst represented by the following formula (4) and 10 mL of dehydrated toluene are weighed in a 100 mL vial, put a stirrer chip, and tightly plugged. Dissolved in.
  • 1 mL of the Ni catalyst solution represented by the chemical formula (A) is accurately weighed with a syringe, quantitatively injected into the vial bottle in which the two types of norbornene are dissolved, and stirred at room temperature for 1 hour, a marked increase in viscosity is observed. confirmed.
  • the stopper was removed, 60 g of tetrahydrofuran (THF) was added, and the mixture was stirred to obtain a reaction solution.
  • THF tetrahydrofuran
  • a norbornene-based resin A (polymer # 1) having a leaving group in the side chain was obtained by heating and drying for 12 hours.
  • the diphenylmethylnorbornenemethoxysilane structural unit was 50 mol%.
  • the refractive index was 1.55 (measurement wavelength: 633 nm) by Metricon.
  • the present embodiment includes the following.
  • the refractive index of the top part of the first recess may be smaller than the average refractive index in the cladding part.
  • the refractive index distribution W may have the top of the second convex portion in addition to the vicinity of the boundary between the first core portion and the cladding portion.
  • the refractive index distribution W has a top portion of the second convex portion at the center portion of the cladding portion, and the refractive index continuously decreases from the top portion of the second convex portion toward the first concave portion. You may have a region.
  • the refractive index difference between the first core portion and the first cladding layer in the refractive index distribution T may be larger than the refractive index difference between the top of the first concave portion and the top of the first convex portion in the refractive index distribution W.
  • the refractive index of the top portion the maximum value or the refractive index of the central portion of the flat portion can be used.
  • the top of the third convex portion in the refractive index distribution T may be located at the center of the core portion.
  • the maximum value of the third convex portion may be larger than the maximum value of the first convex portion.
  • the refractive index distribution T has a top portion of the third convex portion at the center of the core portion, and the refractive index continuously decreases from the top portion of the third convex portion toward the second concave portion. You may have.
  • the refractive index distribution T located in the first cladding layer has a maximum value of the refractive index in a region other than the vicinity of the boundary between the first cladding layer and the first core portion, and in the vicinity of the boundary between the first cladding layer and the core portion.
  • the refractive index difference between the refractive index of the top of the second concave portion and the average refractive index of the cladding layer is 3 of the refractive index difference between the refractive index of the top of the second concave portion and the refractive index of the top of the third convex portion. It may be up to 80%.
  • the refractive index difference between the refractive index of the top of the second concave portion and the refractive index of the top of the third convex portion may be 0.005 to 0.07.
  • the difference between the refractive index of the top of the first recess and the average refractive index of the cladding is 3 to 80% of the difference between the refractive index of the top of the first recess and the refractive index of the top of the first projection. There may be.
  • the refractive index difference between the refractive index of the top of the first concave portion and the refractive index of the top of the first convex portion may be 0.005 to 0.07.
  • the width of the portion where the refractive index of the first convex portion has a value greater than or equal to the average refractive index of the cladding portion is a [ ⁇ m]
  • the refractive index of the first concave portion is the cladding.
  • the present embodiment includes the following. (1) a core layer comprising a core portion and side clad portions adjacent to both side surfaces of the core portion; An optical waveguide having a clad layer laminated on both sides of the core layer,
  • the refractive index distribution W in the width direction of the cross section of the core layer has at least two minimum values, at least one first maximum value, and at least two second maximum values smaller than the first maximum value.
  • the refractive index distribution T in the thickness direction of the cross section of the optical waveguide has a substantially constant refractive index in each of a region corresponding to the core portion and a region corresponding to the cladding layer, and the core portion and the An optical waveguide characterized in that the refractive index changes discontinuously at the interface with the cladding layer.
  • the second maximum value is located at the center of the region, and the minimum value is determined from the second maximum value.
  • the difference between the minimum value and the average refractive index in the side cladding portion is 3 to 80% of the difference between the minimum value and the first maximum value.
  • the refractive index distribution W has a substantially U shape that protrudes upward in the vicinity of the first maximum value, and a substantially U shape that protrudes downward in the vicinity of the minimum value.
  • the width of the portion where the refractive index in the vicinity of the first maximum value has a value equal to or greater than the average refractive index in the side cladding portion is a [ ⁇ m]
  • the refractive index difference between the core portion and the cladding layer in the refractive index distribution T is greater than the refractive index difference between the minimum value and the first maximum value in the refractive index distribution W (1) Thru
  • the above has a hole provided so as to cross the core part and the cladding layer, and a reflection surface configured to reflect light transmitted through the core part is configured by the inner surface of the hole (The optical waveguide according to any one of 1) to (9).

Abstract

 光導波路は、第1クラッド層と、第1クラッド層上に設けられており、層内方向に設けられたクラッド部、第1コア部、クラッド部、第2コア部、及びクラッド部をこの順番で有するコア層と、コア層上に設けられた第2クラッド層と、を備え、コア層のうち第1コア部、及びクラッド部に亘る部分の層内方向の屈折率分布Wが、連続的に変化していて、第1の凸部、第1の凹部、及び第2の凸部の順で並ぶ領域を有しており、第1コア部に位置する屈折率分布Wは、第1の凸部を有しており、クラッド部に位置する屈折率分布Wは、第1の凸部よりも屈折率の最大値が小さい第2の凸部を有しており、第1クラッド層及び第1コア部に亘る部分の層間方向の屈折率分布Tが、第1クラッド層と第1コア部との界面において不連続的に変化している。

Description

光導波路および電子機器
 本発明は、光導波路および電子機器に関するものである。
 近年、光搬送波を使用してデータを移送する光通信技術に関して、光搬送波を、一地点から他地点に導くための手段として、光導波路が普及しつつある。光導波路は、線状のコア部と、その周囲を覆うように設けられたクラッド部とを有している。
 光導波路としては、たとえば、特許文献1に記載のものが挙げられる。特許文献1には、ポリマー基体中に屈折率調整剤を拡散させることにより、横断面において、コア部の屈折率が同心円状に分布した光導波路が記載されている。一方、コア部の周囲を覆うクラッド部の屈折率は、一定であることが記載されている。コア部は、光搬送波の光に対して実質的に透明な材料によって構成され、クラッド部は、コア部より屈折率が低い材料によって構成されている。
特開2006-276735号公報
 上記技術において、複数のコア部を形成した場合、隣接したコア部の間でクロストークが発生することがあった。
 本発明は、以下のものを含む。
[1]
 第1クラッド層と、
 前記第1クラッド層上に設けられており、層内方向に設けられたクラッド部、第1コア部、クラッド部、第2コア部、及びクラッド部をこの順番で有するコア層と、
 前記コア層上に設けられた第2クラッド層と、
を備え、
 前記コア層のうち前記第1コア部、及び前記クラッド部に亘る部分の層内方向の屈折率分布Wが、連続的に変化していて、第1の凸部、第1の凹部、及び第2の凸部の順で並ぶ領域を有しており、
 前記第1コア部に位置する前記屈折率分布Wは、前記第1の凸部を有しており、
 前記クラッド部に位置する前記屈折率分布Wは、前記第1の凸部よりも屈折率の最大値が小さい前記第2の凸部を有しており、
 前記第1クラッド層及び前記第1コア部に亘る部分の層間方向の屈折率分布Tが、前記第1クラッド層と前記第1コア部との界面において不連続的に変化している、光導波路。
[2]
 [1]に記載の光導波路において、
 前記第1クラッド層、前記クラッド部及び前記第2クラッド層に亘る部分の層間方向の屈折率分布Pが、前記第1クラッド層に位置する部分と前記クラッド部に位置する部分とで相異なる、
光導波路。
[3]
 [1]または[2]に記載の光導波路において、
 前記第1クラッド層、前記第1コア部に亘る部分の層間方向の屈折率分布Tが、前記屈折率分布Wと相異なる、光導波路。
[4]
 [1]から[3]のいずれか1項に記載の光導波路において、
 前記第1コア部の屈折率の最大値と前記第1クラッド層の屈折率の最大値との屈折率差は、第1コア部の屈折率の最大値と前記クラッド部の屈折率の最大値との屈折率差よりも、大きい、光導波路。
[5]
 [1]から[4]のいずれか1項に記載の光導波路において、
 前記第2クラッド層上に設けられた、前記コア層と別部材の第2コア層を備え、
 前記第2コア層は、前記第1コア部の層間方向に位置する第3コア部を有する、光導波路。
[6]
 [1]から[5]のいずれか1項に記載の光導波路において、
 前記第1の凹部の頂部の屈折率は、前記クラッド部における平均屈折率より小さい、光導波路。
[7]
 [1]から[6]のいずれか1項に記載の光導波路において、
 前記屈折率分布Wは、前記第1コア部と前記クラッド部の界面近傍以外に前記第2の凸部の頂部を有する、光導波路。
[8]
 [1]から[7]のいずれか1項に記載の光導波路において、
 前記屈折率分布Wは、前記クラッド部の中心部に前記第2の凸部の頂部を有しており、前記第2の凸部の前記頂部から前記第1の凹部に向かって連続的に屈折率が低下している領域を有する、光導波路。
[9]
 [1]から[8]のいずれか1項に記載の光導波路において、
 前記屈折率分布Tにおける前記第1コア部と前記第1クラッド層との屈折率差は、前記屈折率分布Wにおける前記第1の凹部の頂部と前記第1の凸部の頂部との屈折率差より大きい、光導波路。
[10]
 [1]から[9]のいずれか1項に記載の光導波路において、
 前記第1コア部および前記第1クラッド層を横切るように設けられた空孔を有し、該空孔の内面により、前記コア部を伝送される光を反射する反射面が構成されている、光導波路。
[11]
 [1]から[10]のいずれか1項に記載の光導波路において、
 前記第1の凹部の頂部の屈折率と前記クラッド部における平均屈折率との差は、前記第1の凹部の頂部の屈折率と前記第1の凸部の頂部の屈折率との差の3~80%である、光導波路。
[12]
 [1]から[11]のいずれか1項に記載の光導波路において、
 前記第1の凹部の頂部の屈折率と前記第1の凸部の頂部の屈折率との屈折率差は、0.005~0.07である、光導波路。
[13]
 [1]から[12]のいずれか1項に記載の光導波路において、
 前記屈折率分布Wにおいて、前記第1の凸部の屈折率が、前記クラッド部における平均屈折率以上の値を有している部分の幅をa[μm]とし、前記第1の凹部の屈折率が、前記クラッド部における平均屈折率未満の値を有している幅をb[μm]としたとき、bは、0.01a~1.2aである、光導波路。
[14]
 コア部と、該コア部の両側面に隣接する側面クラッド部と、を備えるコア層と、
 該コア層の両面にそれぞれ積層されたクラッド層と、を有する光導波路であって、
 前記コア層の横断面の幅方向の屈折率分布Wは、少なくとも2つの極小値と、少なくとも1つの第1の極大値と、前記第1の極大値より小さい少なくとも2つの第2の極大値と、を有し、これらが、第2の極大値、極小値、第1の極大値、極小値、第2の極大値の順で並ぶ領域を有しており、この領域のうち、前記第1の極大値を含むように前記2つの極小値で挟まれる領域が前記コア部、前記各極小値から前記第2の極大値側の領域が前記側面クラッド部であり、
 前記各極小値は、前記クラッド部における平均屈折率未満であり、かつ、前記屈折率分布全体で屈折率が連続的に変化しており、
 前記光導波路の横断面の厚さ方向の屈折率分布Tは、前記コア部に対応する領域および前記クラッド層に対応する領域のそれぞれで、屈折率がほぼ一定であり、かつ前記コア部と前記クラッド層との界面で屈折率が不連続的に変化していることを特徴とする光導波路。
[15]
 [1]から[14]のいずれか1項に記載の光導波路を備えることを特徴とする電子機器。
 本発明によれば、隣接したコア部間のクロストークが抑制される。
本発明の光導波路の第1実施形態を示す(一部切り欠いて、および透過して示す)斜視図である。 図1に示すX-X線断面図について、横軸にコア層の厚さの中心線C1における位置をとり、縦軸に屈折率をとったときの屈折率分布の一例を模式的に示す図である。 図1に示す光導波路のコア部の1つに光を入射したときの出射光の強度分布の一例を示す図である。 図1に示すX-X線断面図のコア部を中心とする一部を切り出した図、および、X-X線断面図のコア部の幅方向の中心を通過する中心線C2上の屈折率分布Tの一例を模式的に示す図である。 本発明の光導波路の第2実施形態を示す(一部透過して示す)斜視図である。 図1に示す光導波路の第1の製造方法を説明するための図である。 図1に示す光導波路の第1の製造方法を説明するための図である。 図1に示す光導波路の第1の製造方法を説明するための図である。 図1に示す光導波路の第1の製造方法を説明するための図である。 図1に示す光導波路の第1の製造方法を説明するための図である。 照射領域と未照射領域との間で屈折率差が生じる様子を説明するための図であり、層の横断面の幅方向の位置を横軸にとり、横断面の屈折率を縦軸にとったときの屈折率分布を示す図である。 光導波路の出射側端面における出射光の強度分布を測定する方法を説明するための図である。 実施例1、比較例1および比較例2で得られた光導波路の出射側端面における出射光の強度分布を示す図である。
 以下、本発明の光導波路および電子機器について添付図面に示す好適実施形態に基づいて詳細に説明する。
<光導波路>
 まず、本発明の光導波路について説明する。
(第1実施形態)
 図1は、本発明の光導波路の第1実施形態を示す(一部切り欠いて、および透過して示す)斜視図、図2は、図1に示すX-X線断面図について、横軸にコア層の厚さの中心線における位置をとり、縦軸に屈折率をとったときの屈折率分布の一例を示す図、図3は、図1に示す光導波路のコア部の1つに光を入射したときの出射光の強度分布の一例を示す図である。なお、以下の説明では、図1中の上側を「上」、下側を「下」という。また、図1は、層の厚さ方向(各図の上下方向)が誇張して描かれている。
 本実施の形態の光導波路の概要を説明する。
 第1の実施の形態の光導波路は、第1クラッド層(クラッド層11)、コア層(コア層13)、第2クラッド層(クラッド層12)を備える。コア層(コア層13)は、クラッド層11上に設けられており、層内方向に設けられたクラッド部、第1コア部(コア部14)、クラッド部(クラッド部15)、第2コア部(コア部14)、及びクラッド部をこの順番で有する。第2クラッド層は、コア層上に設けられる。
 コア層のうち第1コア部(コア部14)、及びクラッド部(クラッド部15)に亘る部分の層内方向の屈折率分布Wは、連続的に変化していて、第1の凸部、第1の凹部、及び第2の凸部の順で並ぶ領域を有するものを意味する。このような屈折率分布を、「W型の屈折率分布」と呼称する。
 第1コア部に位置する屈折率分布Wは、第1の凸部を有している。クラッド部に位置する屈折率分布Wは、第1の凸部よりも屈折率の最大値が小さい第2の凸部を有している。
 第1クラッド層(クラッド層11)、及び第1コア部(コア部14)に亘る部分の層間方向の屈折率分布Tは、たとえば、「ステップインデックス型(以下、SI型という)のパターンを有する。SI型の屈折率分布Tは、コア層とクラッド層それぞれにおいて屈折率がほぼ一定で、かつ、コア層とクラッド層の境界で屈折率が不連続となっているものを意味する。
 また、第1クラッド層(クラッド層11)、クラッド部(クラッド部15)及び第2クラッド層(クラッド層12)に亘る部分の層間方向の屈折率分布Pが、少なくとも、第1クラッド層に位置する部分とクラッド部に位置する部分とで相異なる。たとえば、屈折率分布Pは、不連続的に変化してもよい。屈折率分布Pは、たとえば、屈折率分布Tと同様の屈折率パターンを有するものである。すなわち、屈折率分布Pは、クラッド部に位置する領域が第5の凸部を有することが好ましい。屈折率分布Pの第5の凸部が、屈折率分布Tの第3の凸部に相当する。また、屈折率分布Pにおいて、クラッド部に位置する領域の最大屈折率又は平均屈折率は、第1クラッド層に位置する最大屈折率又は平均屈折率よりも高い値であることが好ましい。また、本実施の形態では、屈折率分布Pを有する第1クラッド層、コア層のクラッド部、第2クラッド層の積層構造は、屈折率分布Tを有する第1クラッド層、コア層のコア部、第2クラッド層の積層構造と、同一工程で形成され得る。
 屈折率分布Pは、屈折率分布Tと同一でもよいし(たとえば、コア部を基点として隣接するクラッド部(クラッド)層までに亘る屈折率分布のうち、平面上の縦横斜めの6方向のすべてが同一であることを除く)、相異なってもよい。本実施の形態では、屈折率分布が相異なるとは、(i)屈折率分布の形状の繰り返しパターンが異なること、又は、(ii)屈折率分布の形状が同じパターンかつ屈折率値が異なることを意味する(ただし、製造上のバラツキは同一とみなしてもよい)。たとえば、隣接するクラッド部とクラッド層との層間方向の屈折率差は、隣接する第1コア部とクラッド部との層内方向の屈折率差とは、異なってもよい。
 屈折率分布Pは、たとえば、SI型とすることができる。SI型の屈折率分布Pは、コア層とクラッド層それぞれにおいて屈折率がほぼ一定で、かつ、コア層とクラッド層の境界で屈折率が不連続となっているものを意味する。
 以下、本実施形態に係る光導波路により得られる効果について説明する。
 第1の効果は、高い光伝送特性を実現できることである。
 コア部の層内方向の屈折率分布では、端部に第1の凹部が形成されるので、コア部の中心部と端部と屈折率差が大きくなる。これにより、層内方向に隣接するコア部の間のクロストークが抑制される。また、コア部から光が漏れ出したとしても、漏れ光は、クラッド部の第2の凸部に閉じこめられ得る。これにより、層内方向に隣接するコア部の間のクロストークが抑制される。
 第2の効果は、クラッド部の層間方向において光閉じこめ効果が得られることである。本実施の形態では、クラッド部からクラッド層に亘って屈折率が変化している。このため、クラッド部又はクラッド層に光を閉じこめることが可能となる。
 第3の効果は、使用態様に応じて、光損失の低減をできる設計が可能となることである。
 第1コア部を基点として、層間方向の屈折率分布Tは、層内方向の屈折率分布Wに対して、異ならせる設計が可能である。たとえば、層間方向の屈折率差を、層内方向の屈折率差よりも大きくすることにより、光導波路のフィルムを光導波路の延在方向に折り曲げる、または巻き上げるときにおける光損失を低減させることができる。詳細に説明する。フィルムを所定方向に曲げると、フィルムが引き延ばされて、屈折率差が小さくなることがある。これに対して、予め、フィルムを曲げる方向の屈折率差を大きくすることにより、屈折率差が小さくなったとしても、光損失を低減することができる。
 第4の効果は、設計自由が高いことである。
 本実施の形態の光導波路は、たとえば、フィルムを積層して得られるものである。このため、クラッド層の厚さは、コア層の厚さとの関係で任意に決定される。また、厚み制御が出来るので、光結合損失の低減などの効果を高めることができる。
 以下、本実施の形態の光導波路について詳細に説明する。
 本実施の形態の屈折率分布は、光導波路の延在方向(例えば、第1コア部の延在方向)に対して直交する方向の光導波路の断面から、測定及び特定されるものである。
 本実施の形態では、3層の例を示すが、この態様に限定されずに、5層、7層以上を有してもよい。言い換えると、第1コア層上に、1層以上の第2コア層が積層されてもよい。いずれのコア層は、クラッド層に挟まれていることが好ましい。
 たとえば、本実施の形態の光導波路は、第2クラッド層上に設けられており、コア層と別部材の第2コア層を備えてもよい。第2コア層は、第1コア部の層間方向に位置する第3コア部を有する。言い換えると、本実施の形態の光導波路は、層内方向に離間した複数のコア部を備えるとともに、層間方向に離間した複数のコア部を備えてもよい。
 たとえば、光導波路の断面において、複数のコア部が、格子状に配置されていてもよい。本実施の形態の光導波路は、たとえば、フィルムが積層される。層間方向のコア部の中心の位置ズレが少なくなるため、光結合欠損が低減される。また、本実施の形態の光導波路は、たとえば、エネルギー照射により、コア部が形成される。層間方向におけるコア部の位置ズレが低減されるため、光結合欠損が低減される。
 コア層の層内方向における屈折率分布は、少なくとも2つの隣接コア部の間の一部の領域がW型であればよく、コア部の両側に位置する領域がW型であってもよく、そのすべての領域がW型でもよい。なお、層内方向で繰り返されたW型の屈折率分布は、繰り返し単位ごとに相異なってもよい。
 コア部の層間方向における屈折率分布は、少なくともコア部と上部クラッド層(又は下部クラッド部)に亘る領域が上記屈折率分布Tであればよく、コア部の両側に位置する領域が屈折率分布Tであってもよく、そのすべての領域において屈折率分布Tが繰り返されていてもよい。なお、層間方向で繰り返された屈折率分布Tは、繰り返し単位ごとに相異なってもよい。
 クラッド部の層間方向における屈折率分布は、少なくとも第1クラッド部とクラッド部との間で相異なっていればよいが、第1クラッド部とクラッド部との間かつ第2クラッド部とクラッド部との間で相異なっていてもよい。なお、層間方向で繰り返された屈折率分布Pは、繰り返し単位ごとに相異なってもよい。
 屈折率差は、たとえば、第1コア部の最大値と、クラッド部の最大値の差分でもよく、第1コア部の平均値と、クラッド部の平均値の差分でもよい。
 連続的に屈折率分布が変化するとは、例えば、クラッド層とコア層との界面近傍領域において、屈折率が徐々に変化する遷移領域が設けられていることを指す。厚み方向に対する屈折率の連続的変化を表す関数形は様々な態様を取り得るが、たとえば、スプライン関数、指数関数などが挙げられる。本実施の形態では、たとえば、凸部と凹部との間の屈折率が連続的に変化する。
 屈折率分布の凸部(第1の凸部~第6の凸部)は、頂部が極大値を有する態様、又は頂部が平坦部を有する態様のいずれも有する。また、屈折率分布の凹部(第1の凹部~第3の凹部)は、頂部が極小値を有する態様、又は頂部が平坦部を有する態様のいずれも有する。
 第1コア部は、第1の凸部の極大値から第1の凹部の極小値までの領域とし、クラッド部は、第1の凹部の極小値から第2の凹部の極大値までの領域としてもよい。また、極大値又は極小値に代えて、頂部の平坦部の中央部を採用してもよい。
 平坦部の幅は、特に限定されないが、例えば、好ましくは100μm以下、より好ましくは20μm以下、更に好ましくは10μm以下である。平坦部の幅を小さくすることにより、光の閉じこめ効果が高くなり、隣接コア部の間のクロストークを低減することが可能となる。
 本実施の形態の屈折率分布は、例えば、(1)干渉顕微鏡(dual-beam interference microscope)を用いて屈折率依存の干渉縞を観測し、その干渉縞から屈折率分布を算出するという方法、又は(2)屈折ニアフィールド法(Refracted Near Field method; RNF)により測定することが可能となる。屈折ニアフィールド法は、特開平5-332880号公報に記載の測定条件を採用することができる。実施の形態では、測定が簡便であるため、干渉顕微鏡を使用する方法が好ましい。
 干渉顕微鏡を使用した屈折率分布の測定手順の一例について説明する。まず、光導波路の断面方向に光導波路をスライスして、光導波路断片を得る。たとえば、光導波路の長さが200μm~300μmとなるように、スライスする。次いで、2つのスライドガラスで囲まれた空間に、屈折率1.536のオイルで充填したチャンバーを作成する。ここで、チャンバー内の空間に、光導波路断片を挟み込んだ測定サンプルと、光導波路断片を入れていないブランクサンプルを作成する。次いで、干渉顕微鏡を使用して、光導波路断片の断面方向の干渉縞写真を得る。干渉縞写真を画像解析して、屈折率分布を得ることができる。たとえば、干渉顕微鏡の光路長を変更して、干渉縞の出来る場所を変えた画像データを連続的に取得する。複数の画像データから、層間方向及び層内方向の各測定ポイントの屈折率を算出する。測定ポイントの間隔は、特に限定されないが、たとえば、2.5μmとする。
 以下、本実施の形態の光導波路の一例を示す。一例では、屈折率分布の凸部に極大値が存在し、凹部に極小値が存在する。また、また、たとえば、第1の凸部の頂部は極大値Wm2、第2の凸部の頂部は極大値Wm3、第3の凸部の頂部は極大値Tm2、第4の凸部の頂部は極大値Tm3、第1の凹部の頂部は極小値Ws2、第2の凹部の頂部は極小値Ts2とする。
 図1に示す光導波路1は、一方の端部から他方の端部に光信号を伝送する光配線として機能する。
 以下、光導波路1の各部について詳述する。
 光導波路1は、図1中の下側からクラッド層11、コア層13およびクラッド層12をこの順で積層してなるものである。
 (コア層)
 このうち、コア層13には、面方向において屈折率分布が形成されている。この屈折率分布は、相対的に屈折率の高い領域と低い領域とを有しており、これにより入射された光を屈折率の高い領域に閉じ込めて伝搬することができる。
 図2(a)は、図1のX-X線断面図であり、図2(b)は、X-X線断面図のコア層13の厚さ方向の中心を通過する中心線C1上の屈折率分布の一例を模式的に示す図である。
 コア層13は、その幅方向において、図2(b)に示すような、4つの極小値Ws1、Ws2、Ws3、Ws4と、5つの極大値Wm1、Wm2、Wm3、Wm4、Wm5と、を含む屈折率分布Wを有している。また、5つの極大値には、相対的に屈折率の大きい極大値(第1の極大値)と、相対的に屈折率の小さい極大値(第2の極大値)とが存在している。
 このうち、極小値Ws1と極小値Ws2との間および極小値Ws3と極小値Ws4との間には、それぞれ相対的に屈折率の大きい極大値Wm2およびWm4が存在しており、それ以外の極大値Wm1、Wm3およびWm5は、それぞれ相対的に屈折率の小さい極大値である。
 光導波路1では、図2に示すように、極小値Ws1と極小値Ws2との間が、相対的に屈折率の大きい極大値Wm2を含んでいることからコア部14となり、同様に、極小値Ws3と極小値Ws4との間も極大値Wm4を含んでいることからコア部14となる。なお、より詳しくは、極小値Ws1と極小値Ws2との間をコア部141とし、極小値Ws3と極小値Ws4との間をコア部142とする。
 また、極小値Ws1の左側の領域、極小値Ws2と極小値Ws3との間、および極小値Ws4の右側の領域は、それぞれコア部14の両側に隣接する領域であることから側面クラッド部15となる。なお、より詳しくは、極小値Ws1の左側の領域を側面クラッド部151とし、極小値Ws2と極小値Ws3との間を側面クラッド部152とし、極小値Ws4の右側の領域を側面クラッド部153とする。
 すなわち、屈折率分布Wは、少なくとも、第2の極大値、極小値、第1の極大値、極小値、第2の極大値がこの順で並ぶ領域を有していればよい。なお、この領域は、コア部の数に応じて繰り返し設けられ、本実施形態のようにコア部14が2つである場合、屈折率分布Wは、第2の極大値、極小値、第1の極大値、極小値、第2の極大値、極小値、第1の極大値、極小値、第2の極大値のように、極大値と極小値が交互に並び、かつ極大値については第1の極大値と第2の極大値が交互に並ぶ領域を有していればよい。
 また、これら複数の極小値、複数の第1の極大値、および複数の第2の極大値は、それぞれ互いにほぼ同じ値であることが好ましいが、極小値は第1の極大値や第2の極大値より小さく、第2の極大値は第1の極大値より小さいという関係が保持されれば、互いの値が多少ずれていても差し支えない。その場合、ずれ量は、複数の極小値の平均値の10%以内に抑えられているのが好ましい。
 また、光導波路1は、細長い帯状をなしており、上記のような屈折率分布Wは、光導波路1の長手方向全体においてほぼ同じ分布が維持されている。
 以上のような屈折率分布Wに伴い、コア層13には、長尺状の2つのコア部14と、これらのコア部14の各両側に隣接する3つの側面クラッド部15とが形成されることとなる。
 より詳しくは、図1に示す光導波路1には、並列する2つのコア部141、142と、並列する3つの側面クラッド部151、152、153とが交互に設けられている。これにより、各コア部141、142は、それぞれ、各側面クラッド部151、152、153および各クラッド層11、12で囲まれた状態となる。ここで、これら2つのコア部141、142の平均屈折率は、3つの側面クラッド部151、152、153の平均屈折率より高くなっているので、各コア部141、142と各側面クラッド部151、152、153との間において光の全反射を生じさせることができる。なお、図1に示す各コア部14には密なドットを付し、各側面クラッド部15には疎なドットを付している。
 光導波路1では、コア部14の一方の端部に入射された光を、コア部14とクラッド部(各クラッド層11、12および各側面クラッド部15)との間で全反射させ、他方に伝搬させることにより、コア部14の他方の端部から取り出すことができる。
 また、図1に示すコア部14は、その横断面形状が正方形または長方形のような四角形(矩形)をなしているが、この形状は特に限定されず、例えば、真円、楕円形、長円形等の円形、三角形、五角形、六角形等の多角形であってもよい。
 コア部14の幅および高さ(コア層13の厚さ)は、特に限定されないが、それぞれ、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、20~70μm程度であるのがさらに好ましい。
 ここで、4つの極小値Ws1、Ws2、Ws3、Ws4は、それぞれ、側面クラッド部15における平均屈折率WA未満である。これにより、各コア部14と各側面クラッド部15との間に、側面クラッド部15よりもさらに屈折率の小さい領域が存在することとなる。その結果、各極小値Ws1、Ws2、Ws3、Ws4の近傍では、より急峻な屈折率の勾配が形成され、これにより、各コア部14からの光の漏れが抑制されるため、伝送損失の小さい光導波路1が得られる。
 また、屈折率分布Wは、全体で屈折率が連続的に変化している。これにより、ステップインデックス型の屈折率分布を有する光導波路に比べ、コア部14に光を閉じ込める作用がより増強されるため、伝送損失のさらなる低減が図られる。
 さらに、上述したような各極小値Ws1、Ws2、Ws3、Ws4を有するとともに、屈折率が連続的に変化している屈折率分布Wによれば、コア部14のより中心部に近い領域を伝送光が集中的に伝搬するため、光路ごとの伝搬時間に差が生じ難くなる。このため、伝送光にパルス信号が含まれている場合でも、パルス信号の鈍り(パルス信号の広がり)を抑制することができる。その結果、光通信の品質をより高め得る光導波路1が得られる。
 また、コア部14と側面クラッド部15との平均の屈折率差が小さくても、コア部14に光を確実に閉じ込めることができる。
 また、屈折率分布Wのうち、極大値Wm2、Wm4は、図2に示すようにコア部141、142に位置しているが、コア部141、142の中でもその幅の中心部に位置している。これにより、各コア部141、142では、伝送光がコア部141、142の幅の中心部に集まる確率が高くなり、相対的に側面クラッド部151、152、153に漏れ出る確率が低くなる。その結果、コア部141、142の伝送損失をより低減することができる。
 なお、例えばコア部141の幅の中心部とは、極小値Ws1と極小値Ws2の中点から両側に、コア部141の幅の30%の距離の領域とする。
 また、極大値Wm2、Wm4の位置は、できればコア部141、142の幅の中心部に位置していることが望まれるが、必ずしも中心部でなくても、コア部141、142の縁部(各側面クラッド部151、152、153に接する部分)近傍以外に位置していれば、特性の著しい低下は免れる。すなわち、コア部141、142の伝送損失をある程度抑えることができる。
 なお、例えばコア部141の縁部近傍とは、前述した縁部から内側に、コア部141の幅の5%の距離の領域とする。
 一方、屈折率分布Wのうち、極大値Wm1、Wm3、Wm5は、図2(b)に示すように側面クラッド部151、152、153中に位置しているが、特に側面クラッド部151、152、153の縁部(コア部141、142と接する部分)近傍以外に位置しているのが好ましい。これにより、コア部141、142中の極大値Wm2、Wm4と、側面クラッド部151、152、153中の極大値Wm1、Wm3、Wm5とが、互いに十分に離間したものとなるため、コア部141、142中の伝送光が、側面クラッド部151、152、153中に漏れ出る確率を十分に低くすることができる。その結果、コア部141、142の伝送損失を低減することができる。
 なお、例えば側面クラッド部151、152、153の縁部近傍とは、前述した縁部から内側に、側面クラッド部151、152、153の幅の5%の距離の領域とする。
 また、好ましくは、極大値Wm1、Wm3、Wm5は、側面クラッド部151、152、153の幅の中央部に位置しており、しかも、極大値Wm1、Wm3、Wm5から隣接する極小値Ws1、Ws2、Ws3、Ws4に向かっては、屈折率が連続的に低下しているのが好ましい。これにより、コア部141、142中の極大値Wm2、Wm4と、側面クラッド部151、152、153中の極大値Wm1、Wm3、Wm5との離間距離は、最大限確保され、しかも極大値Wm1、Wm3、Wm5近傍に光を確実に閉じ込めることができることになるため、前述したコア部141、142からの伝送光の漏出をより確実に抑制することができる。
 さらに、極大値Wm1、Wm3、Wm5は、前述したコア部141、142に位置する極大値Wm2、Wm4よりも屈折率の小さいものであるので、コア部141、142のような高い光伝送性は有しないものの、周囲よりも屈折率が高くなっているため、わずかな光伝送性を有することとなる。その結果、側面クラッド部151、152、153は、コア部141、142から漏出した伝送光を閉じ込めることで、他のコア部への波及を防止する作用を有するものとなる。すなわち、極大値Wm1、Wm3、Wm5が存在することで、クロストークを抑制することができる。
 なお、極小値Ws1、Ws2、Ws3、Ws4は、前述したように、側面クラッド部15の平均屈折率WA未満であるが、その差は、所定の範囲内であることが望まれる。具体的には、極小値Ws1、Ws2、Ws3、Ws4と側面クラッド部15の平均屈折率WAとの差は、極小値Ws1、Ws2、Ws3、Ws4とコア部141、142中の極大値Wm2、Wm4との差の3~80%程度であるのが好ましく、5~50%程度であるのがより好ましく、7~20%程度であるのがさらに好ましい(たとえば、(WA-Ws1)/(Wm2-Ws1)×100が、3~80%程度であるのが好ましく、5~50%程度であるのがより好ましく、7~20%程度であるのがさらに好ましい。(以下、「~」は、特に明示しない限り、上限値と下限値を含むことを表す))。これにより、側面クラッド部15は、クロストークを抑制するのに必要かつ十分な光伝送性を有するものとなる。なお、極小値Ws1、Ws2、Ws3、Ws4と側面クラッド部15の平均屈折率WAとの差が前記下限値以上とすることにより、クロストークを十分に抑制できる。前記上限値以下とすることにより、側面クラッド部15における光伝送性が大き過ぎて、コア部141、142の光伝送性が低下することを抑制できる。
 また、極小値Ws1、Ws2、Ws3、Ws4と極大値Wm1、Wm3、Wm5との差は、極小値Ws1、Ws2、Ws3、Ws4と極大値Wm2、Wm4との差の6~90%程度であるのが好ましく、10~70%程度であるのがより好ましく、14~40%程度であるのがさらに好ましい。これにより、側面クラッド部15における屈折率の高さとコア部14における屈折率の高さとのバランスが最適化され、光導波路1は、特に優れた光伝送性を有するとともにクロストークをより確実に抑制し得るものとなる。
 なお、極小値Ws1、Ws2、Ws3、Ws4とコア部141、142中の極大値Wm2、Wm4との屈折率差は、できるだけ大きい方がよいが、0.005~0.07程度であるのが好ましく、0.007~0.05程度であるのがより好ましく、0.01~0.03程度であるのがさらに好ましい(たとえば、(Wm1-Ws1)/(Wm2-Ws1)×100が、0.005~0.07であるのが好ましく、0.007~0.05であるのがより好ましく、0.01~0.03であるのがさらに好ましい)。上述した屈折率差とすることにより、、コア部141、142中に光を閉じ込めることが可能となる。
 また、コア部141、142における屈折率分布Wは、図2(b)に示すように、横軸にコア層13の横断面の位置をとり、縦軸に屈折率をとったとき、極大値Wm2近傍および極大値Wm4近傍において、屈折率が連続的に変化している形状であれば上に凸の略V字状(極大値以外はほぼ直線状)をなしていてもよいが、好ましくは上に凸の略U字状(極大値近傍全体が丸みを帯びている)とされる。屈折率分布Wがこのような形状をなしていると、コア部141、142における光の閉じ込め作用がより顕著なものとなる。
 また、屈折率分布Wは、図2(b)に示すように、極小値Ws1近傍、極小値Ws2近傍、極小値Ws3近傍および極小値Ws4近傍において、屈折率が連続的に変化している形状であれば下に凸の略V字状(極大値以外はほぼ直線状)をなしていてもよいが、好ましくは下に凸の略U字状(極大値近傍全体が丸みを帯びている)とされる。
 ここで、本発明者らは、光導波路1の複数のコア部141、142のうち、所望の1つの一方の端部に光を入射し、他方の端部における出射光の強度分布を取得したとき、その強度分布が、光導波路1のクロストークを抑制するにあたって極めて有用な分布になることを見出した。
 図3は、光導波路1のコア部141に光を入射したときの出射光の強度分布を示す図である。
 コア部141に光を入射すると、出射光の強度は、コア部141の出射端の中心部において最も大きくなる。そして、コア部141の中心部から離れるにつれて出射光の強度は小さくなるが、本発明の光導波路によれば、コア部141に隣り合うコア部142において極小値をとるような強度分布が得られる。このようにコア部142の位置に出射光の強度分布の極小値が一致することで、コア部142におけるクロストークは極めて小さく抑えられることとなるため、多チャンネル化および高密度化によっても混信の発生を確実に防止し得る光導波路1が得られる。
 なお、従来の光導波路では、光を入射するコア部に隣り合うコア部において出射光の強度分布が極小値をとることはなく、むしろ極大値をとっていたので、クロストークの問題が発生していた。これに対し、上述したような本発明の光導波路における出射光の強度分布の振る舞いは、クロストークを抑制する上で極めて有用なものである。
 本発明の光導波路においてこのような強度分布が得られる詳細な理由は明らかでないものの、理由の1つとしては、屈折率分布Wが極小値Ws1、Ws2、Ws3、Ws4を有し、かつ、屈折率分布W全体で屈折率が連続的に変化している、という特徴的な屈折率分布Wが、従来であればコア部142において極大値を有していた出射光の強度分布を、コア部142に隣接する側面クラッド部153等にシフトさせていることが挙げられる。すなわち、このシフトにより、クロストークが確実に抑制されているのである。
 なお、出射光の強度分布が側面クラッド部15にシフトしたとしても、受光素子等はコア部14の位置に合わせて配置されているため、混信を招くおそれはほとんどなく、光通信の品質を劣化させることはない。
 また、上記のような出射光の強度分布は、本発明の光導波路において観測される確率は高いものの、必ず観測されるわけではなく、入射光のNA(numerical aperture)やコア部141の横断面積、コア部141、142のピッチ等によっては、明瞭な極小値が観測されなかったり、極小値の位置がコア部142から外れたりする場合もあるが、このような場合でもクロストークは十分に抑制される。
 また、図2(b)に示す屈折率分布Wにおいて、側面クラッド部15における平均屈折率をWAとしたとき、極大値Wm2、Wm4近傍における屈折率が連続して平均屈折率WA以上である部分の幅をa[μm]とし、極小値Ws1、Ws2、Ws3、Ws4近傍における屈折率が連続して平均屈折率WA未満である部分の幅をb[μm]とする。このとき、bは、0.01a~1.2a程度であるのが好ましく、0.03a~1a程度であるのがより好ましく、0.1a~0.8a程度であるのがさらに好ましい。これにより、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が、上述した作用・効果を奏することが可能となる。すなわち、bを前記下限値以上とすることにより、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が狭過ぎ、コア部141、142に光を閉じ込める作用が低下することを抑制できる。一方、bを前記上限値以下とすることにり、極小値Ws1、Ws2、Ws3、Ws4の実質的な幅が広過ぎ、コア部141、142の幅やピッチが制限され、伝送効率が低下したり多チャンネル化および高密度化が妨げられることを抑制することが出来る。
 なお、側面クラッド部15における平均屈折率WAは、例えば、極大値Wm1と極小値Ws1との中点で近似することができる。
 上述したようなコア層13の構成材料(主材料)は、上記の屈折率差が生じる材料であれば特に限定されないが、具体的には、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、ポリシラン、ポリシラザン、シリコーン系樹脂、フッ素系樹脂、また、ベンゾシクロブテン系樹脂やノルボルネン系樹脂等の環状オレフィン系樹脂のような各種樹脂材料の他、石英ガラス、ホウケイ酸ガラスのようなガラス材料等を用いることができる。なお、樹脂材料は、異なる組成のものを組み合わせた複合材料であってもよく、未重合のモノマーを含んでいてもよい。
 また、これらの中でも特にノルボルネン系樹脂が好ましい。ノルボルネン系ポリマーは、例えば、開環メタセシス重合(ROMP)、ROMPと水素化反応との組み合わせ、ラジカルまたはカチオンによる重合、カチオン性パラジウム重合開始剤を用いた重合、これ以外の重合開始剤(例えば、ニッケルや他の遷移金属の重合開始剤)を用いた重合等、公知のすべての重合方法で得ることができる。
 (クラッド層)
 クラッド層11および12は、それぞれ、コア層13の下部および上部に位置するクラッド部を構成するものである。
 クラッド層11、12の平均厚さは、コア層13の平均厚さ(各コア部14の平均高さ)の0.1~1.5倍程度であるのが好ましく、0.2~1.25倍程度であるのがより好ましく、具体的には、クラッド層11、12の平均厚さは、特に限定されないが、それぞれ、通常、1~200μm程度であるのが好ましく、5~100μm程度であるのがより好ましく、10~60μm程度であるのがさらに好ましい。これにより、光導波路1が必要以上に大型化(厚膜化)するのを防止しつつ、クラッド部としての機能が好適に発揮される。
 また、クラッド層11および12の構成材料としては、例えば、前述したコア層13の構成材料と同様の材料を用いることができるが、特にノルボルネン系ポリマーが好ましい。
 また、コア層13の構成材料およびクラッド層11、12の構成材料を選択する場合、両者の間の屈折率差を考慮して材料を選択すればよい。具体的には、コア部14とクラッド層11、12との境界において光を確実に全反射させるため、コア部14の構成材料の屈折率が十分に大きくなるように材料を選択すればよい。これにより、光導波路1の厚さ方向において十分な屈折率差が得られ、各コア部14からクラッド層11、12に光が漏れ出るのを抑制することができる。
 なお、光の減衰を抑制する観点からは、コア層13の構成材料とクラッド層11、12の構成材料との密着性(親和性)が高いことも重要である。
 また、クラッド層11、12は必要に応じて設ければよく、いずれか一方または双方を省略してもよい。この場合、コア層13の表面は大気(空気)に露出することとなるが、空気の屈折率は十分に低いため、この空気がクラッド層11、12の機能を代替することができる。
 ところで、光導波路1の厚さ方向の屈折率分布Tは、前述した幅方向の屈折率分布Wとは異なる形状を有している。
 図4(a)は、図1に示すX-X線断面図のコア部を中心とする一部を切り出した図であり、図4(b)は、X-X線断面図のコア部の幅方向の中心を通過する中心線C2上の屈折率分布Tの一例を模式的に示す図である。なお、図4(b)は、横軸に屈折率をとり、縦軸に中心線C2上の位置をとったときの屈折率分布Tの一例を示す図である。
 前述したように、光導波路1は、クラッド層11、コア層13およびクラッド層12をこの順で積層してなるものであるが、その横断面のうち、コア部14を通る厚さ方向の屈折率分布Tは、コア部14に対応する領域(部分)T1および各クラッド層11、12に対応する領域(部分)T2において、それぞれ屈折率がほぼ一定である形状を有している。また、領域T1と領域T2との境界では、屈折率が不連続的に変化している。すなわち、屈折率分布Tは、ステップインデックス型の形状を有している。このような光導波路1は、クラッド層11、コア層13およびクラッド層12を積層するだけで得られるため、製造容易性が高いという利点がある。
 ここで、屈折率分布Tのうち、コア部14における屈折率n1と、クラッド層11およびクラッド層12における屈折率n2との屈折率差の割合(屈折率n2に対する割合)は、できるだけ大きいほどよいが、好ましくは0.5%以上とされ、より好ましくは0.8%以上とされる。なお、上限値は、特に設定されなくてもよいが、好ましくは5.5%程度とされる。屈折率の差が前記下限値未満であると光を伝送する効果が低下する場合があり、一方、前記上限値を超えても、光の伝送効率のそれ以上の増大は期待できない。
 なお、屈折率n1と屈折率n2との前記屈折率差の割合は、次式で表わされる。
  屈折率差の割合(%)=|n1/n2-1|×100
 また、屈折率分布Tにおけるコア部14とクラッド層11、12との屈折率差、すなわちn1-n2は、前記屈折率差の割合の好ましい範囲に基づいて特定の範囲の値をとることになるが、より好ましくは、屈折率分布Wにおける極小値Ws1、Ws2、Ws3、Ws4と第1の極大値Wm2、Wm4との屈折率差より大きいことが好ましい。これにより、コア部14とクラッド層11、12との間における全反射が確実に生じる。その結果、光導波路1の厚さ方向での伝送損失が抑制され、伝送効率の高い光導波路1が得られる。
 なお、n1-n2は、屈折率分布Wにおける極小値Ws1、Ws2、Ws3、Ws4と第1の極大値Wm2、Wm4との屈折率差より大きければよいが、好ましくは該屈折率差の100.5%以上、より好ましくは101%以上、さらに好ましくは102%以上とされる。これにより、厚さ方向における伝送損失が必要かつ十分に抑制される。
 また、屈折率分布Tの領域T1および領域T2において、屈折率はほぼ一定であるが、具体的には、各領域T1、T2におけるそれぞれの平均屈折率に対して、屈折率のずれ量の割合が10%以下であるのが好ましく、5%以下であるのがより好ましい。
 (支持フィルム)
 光導波路1の下面には、必要に応じて、図1に示すような支持フィルム2を積層するようにしてもよい。
 支持フィルム2は、光導波路1の下面を支持して、保護・補強する。これにより、光導波路1の信頼性および機械的特性を高めることができる。
 このような支持フィルム2の構成材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリイミド、ポリアミド等の各種樹脂材料の他、銅、アルミニウム、銀等の金属材料が挙げられる。なお、金属材料の場合は、支持フィルム2として金属箔が好ましく用いられる。
 また、支持フィルム2の平均厚さは、特に限定されないが、5~200μm程度であるのが好ましく、10~100μm程度であるのがより好ましい。これにより、支持フィルム2は、適度な剛性を有するものとなるため、光導波路1を確実に支持するとともに、光導波路1の柔軟性を阻害し難くなる。
 なお、支持フィルム2と光導波路1との間は接着または接合されているが、その方法としては、熱圧着、接着剤または粘着剤による接着等が挙げられる。
 このうち、接着層としては、例えば、アクリル系接着剤、ウレタン系接着剤、シリコーン系接着剤の他、各種ホットメルト接着剤(ポリエステル系、変性オレフィン系)等が挙げられる。また、特に耐熱性の高いものとして、ポリイミド、ポリイミドアミド、ポリイミドアミドエーテル、ポリエステルイミド、ポリイミドエーテル等の熱可塑性ポリイミド接着剤が好ましく用いられる。このような材料で構成された接着層は、比較的柔軟性に富んでいるため、光導波路1の形状が変化したとしても、その変化に自在に追従することができる。その結果、形状変化に伴う剥離を確実に防止し得るものとなる。
 このような接着層の平均厚さは、特に限定されないが、1~100μm程度であるのが好ましく、5~60μm程度であるのがより好ましい。
 (カバーフィルム)
 一方、光導波路1の上面には、必要に応じて、図1に示すようなカバーフィルム3を積層するようにしてもよい。
 カバーフィルム3は、光導波路1を保護するとともに、光導波路1を上方から支持するものである。これにより、汚れや傷などから光導波路1が保護され、光導波路1の信頼性および機械的特性を高めることができる。
 このようなカバーフィルム3の構成材料としては、支持フィルム2の構成材料と同様であり、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンのようなポリオレフィン、ポリイミド、ポリアミド等の各種樹脂材料の他、銅、アルミニウム、銀等の金属材料が挙げられる。なお、金属材料の場合は、カバーフィルム3として金属箔が好ましく用いられる。また、光導波路1の途中にミラーを形成した場合には、カバーフィルム3を光が透過することになるので、カバーフィルム3の構成材料は実質的に透明であるのが好ましい。
 また、カバーフィルム3の平均厚さは、特に限定されないが、3~50μm程度であるのが好ましく、5~30μm程度であるのがより好ましい。カバーフィルム3の厚さを前記範囲内とすることにより、カバーフィルム3は光通信において十分な光透過率を有するとともに、光導波路1を確実に保護するために十分な剛性を有するものとなる。
 なお、カバーフィルム3と光導波路1との間は接着または接合されているが、その方法としては、熱圧着、接着剤または粘着剤による接着等が挙げられる。このうち、接着剤としては前述したようなものを用いることができる。
 また、本実施形態では、クラッド層11、コア層13およびクラッド層12の積層体からなる光導波路1について説明したが、これらが一体的に形成されたものでもよい。
 また、本実施形態では、コア層13が2つのコア部14を有する場合について説明したが、コア部14の数は特に限定されず、1つであっても、3つ以上であってもよい。
 なお、例えばコア部14が1つである場合には、光導波路1の横断面の屈折率分布Wが、2つの極小値を有し、その極小値が前述したように平均屈折率WA未満であり、かつ屈折率分布W全体で屈折率が連続的に変化していればよく、コア部14が3、4、5・・・と増える場合には、それに応じて、屈折率分布Wが有する極小値の数は、6、8、10・・・と増えることとなる。
 (第2実施形態)
 次に、本発明の光導波路の第2実施形態について説明する。
 図5は、本発明の光導波路の第2実施形態を示す(一部透過して示す)斜視図である。なお、図を見易くするため、一部のコア部14の図示を省略するとともに、支持フィルム2およびカバーフィルム3の図示を省略している。
 以下、光導波路の第2実施形態について説明するが、第1実施形態との相違点を中心に説明し、同様の事項については、その説明を省略する。なお、図5において、第1実施形態と同様の構成部分については、先に説明したのと同様の符号を付し、その詳細な説明を省略する。
 第2実施形態は、コア部14を伝搬する光の進行方向を変更するミラー(反射面)17が設けられている以外、第1実施形態と同様である。
 ミラー17は、光導波路1を厚さ方向に一部貫通するように、横断面がV字状をなす凹部(空孔)170が形成され、この凹部170の側面(内面)の一部で構成されている。この側面は、平面状であり、かつ、コア部14の軸線に対して45°傾斜している。このミラー17にコア部14を伝搬してきた光が反射され、図5の下方に光路が90°変換される。また、図5の下方から伝搬してきた光は、ミラー17で反射され、コア部14に入射される。すなわち、ミラー17は、コア部14を伝搬する光の光路を変換する光路変換手段としての機能を有する。
 また、ミラー17には、クラッド層11、コア層13およびクラッド層12の加工面が露出しており、ミラー17のほぼ中心部には、コア部14の加工面が位置している。
 このようなミラー17によれば、光反射の際の損失が抑制される。これは、本実施形態では、屈折率分布Tのコア部14に対応する領域T1(図4参照)において、その屈折率がほぼ一定であるため、入射光がどの部分に入っても一定の反射特性を示し、その結果、光の反射率が向上するためであると推察される。
 なお、ミラー17は、コア部14のみを横断するように設けられていてもよいが、図5(a)に示すように各クラッド層11、12およびコア部14の周辺の側面クラッド部15を横断するように設けられているのが好ましい。これにより、ミラー17において反射に寄与する有効面積が広くなり、ミラー損失が抑えられる。
 また、必要に応じて、ミラー17を構成する加工面の表面に反射膜が成膜されていてもよい。この反射膜としては、例えば、Au、Ag、Al等の金属膜や、コア部14より低屈折率の材料の膜等が挙げられる。
 金属膜の形成方法としては、例えば、真空蒸着のような物理蒸着法、CVDのような化学蒸着法、めっき法等が挙げられる。
 また、ミラー17ではなく、光導波路1の垂直な端面に光を入射する、あるいは、端面からの出射光を受光する場合、本発明の光導波路は、発光素子あるいは受光素子(いずれも光ファイバー等を含む。)と、端面との位置ズレの許容範囲が広いという利点も有している。これは、光導波路1の厚さ方向の屈折率分布Tが、屈折率がほぼ一定の領域T1を有しているため、この領域T1内ではどの位置でも入射効率がほぼ同等になるからである。したがって、光導波路1は、発光素子や受光素子との光結合が容易であり、かつ、光結合損失が小さいものである。
 一方、図5(b)には、第2実施形態の他の構成例を示す。
 図5(b)に示す光導波路1では、その一方の端部において、コア部14が光導波路1の端面まで到達せず、途中で途切れている。そして、コア部14が途切れた箇所から端面までは、側面クラッド部15が形成されている。なお、このコア部14が途切れた部分を、コア部欠損部16とする。
 そして、ミラー17は、このコア部欠損部16中に形成されている。このようなミラー17には、クラッド層11、コア層13およびクラッド層12の加工面が露出しているが、このうち、コア層13の加工面には、側面クラッド部15の加工面のみが露出することとなる。一方、前述の図5(a)の場合、コア層13の加工面には、コア部14の加工面と側面クラッド部15の加工面の双方が露出している。
 このように図5(b)に示すミラー17は、コア層13の露出面が単一材料のみで構成されているため、均一な平滑性を有するものとなる。これは、加工の際、単一材料を加工することになるため、加工レートが面内で均一になるからである。このため、ミラー17は、優れた反射特性を有するものとなり、ミラー損失の小さいものとなる。
 また、コア部欠損部16は、コア部14と離れているため、モノマー由来の物質の濃度ムラを含んでいない。このため、厚さ方向はもちろん、幅方向における反射特性についてもバラツキが少なくなり、ミラー17は特に優れた反射特性を有するものとなる。
<光導波路の製造方法>
 次に、上述した光導波路1の製造方法の一例について説明する。
 (第1の製造方法)
 まず、光導波路1の第1の製造方法について説明する。
 図6~10は、それぞれ図1に示す光導波路1の第1の製造方法を説明するための図である。なお、以下の説明では、図6~10中の上側を「上」、下側を「下」という。
 光導波路1は、クラッド層11と、コア層13と、クラッド層12をそれぞれ用意し、これらを積層することにより製造される。
 光導波路1の第1の製造方法は、[1]支持基板951上にコア層形成用組成物900を塗布して液状被膜を形成した後、この支持基板951をレベルテーブルに置いて液状被膜を平坦化するとともに、溶媒を蒸発(脱溶媒)させる。これにより、層910を得る。[2]次いで、層910の一部に活性放射線を照射することで屈折率差を生じさせ、コア部14と側面クラッド部15とを形成したコア層13を得る。[3]次いで、コア層13の両面にクラッド層11、12を積層し、光導波路1を得る。
 以下、各工程について順次説明する。
 [1]まず、コア層形成用組成物900を用意する。
 コア層形成用組成物900は、ポリマー915と、添加剤920(本実施形態では、少なくともモノマーを含む。)とを含有するものである。このようなコア層形成用組成物900は、活性放射線の照射により、ポリマー915中において少なくともモノマーの反応が生じ、それに伴って屈折率分布に変化を生じさせる材料である。すなわち、コア層形成用組成物900は、ポリマー915とモノマーの存在比率の偏りによって屈折率分布に変化が生じ、その結果、コア層13中にコア部14と側面クラッド部15とを形成することのできる材料である。
 次いで、支持基板951上にコア層形成用組成物900を塗布して液状被膜を形成する(図6(a)参照)。そして、支持基板951をレベルテーブルに置いて、液状被膜を平坦化するとともに、溶媒を蒸発(脱溶媒)させる。これにより、層910を得る(図6(b)参照)。
 支持基板951には、例えば、シリコン基板、二酸化ケイ素基板、ガラス基板、ポリエチレンテレフタレート(PET)フィルム等が用いられる。
 液状被膜を形成するための塗布法としては、例えば、ドクターブレード法、スピンコート法、ディッピング法、テーブルコート法、スプレー法、アプリケーター法、カーテンコート法、ダイコート法等の方法が挙げられる。
 得られた層910中では、ポリマー(マトリックス)915が実質的に一様かつランダムに存在し、添加剤920は、ポリマー915中に実質的に一様かつランダムに分散している。これにより、層910中には、添加剤920が実質的に一様かつランダムに分散している。
 層910の平均厚さは、形成すべきコア層13の厚さに応じて適宜設定され、特に限定されないが、5~300μm程度であるのが好ましく、10~200μm程度であるのがより好ましい。
 (ポリマー)
 ポリマー915は、コア層13のベースポリマーとなるものである。
 ポリマー915には、透明性が十分に高く(無色透明であり)、かつ、後述するモノマーと相溶性を有するもの、さらに、その中でも後述するようにモノマーが反応(重合反応や架橋反応)可能であり、モノマーが重合した後においても十分な透明性を有するものが好適に用いられる。
 ここで、「相溶性を有する」とは、モノマーが少なくとも混和して、コア層形成用組成物900中や層910中においてポリマー915と相分離を起こさないことをいう。
 このようなポリマー915としては、例えば、ノルボルネン系樹脂やベンゾシクロブテン系樹脂等の環状オレフィン系樹脂、アクリル系樹脂、メタクリル系樹脂、ポリカーボネート、ポリスチレン、エポキシ系樹脂、ポリアミド、ポリイミド、ポリベンゾオキサゾール、シリコーン系樹脂、フッ素系樹脂等が挙げられ、これらのうちの1種または2種以上を組み合わせて(ポリマーアロイ、ポリマーブレンド(混合物)、共重合体など)用いることができる。
 これらの中でも、特に、環状オレフィン系樹脂を主とするものが好ましい。ポリマー915として環状オレフィン系樹脂を用いることにより、優れた光伝送性能や耐熱性を有するコア層13を得ることができる。
 環状オレフィン系樹脂は、無置換のものであってもよいし、水素が他の基により置換されたものであってもよい。
 環状オレフィン系樹脂としては、例えばノルボルネン系樹脂、ベンゾシクロブテン系樹脂等が挙げられる。
 中でも、耐熱性、透明性等の観点からノルボルネン系樹脂を使用することが好ましい。また、ノルボルネン系樹脂は、高い疎水性を有するため、吸水による寸法変化等を生じ難いコア層13を得ることができる。
 ノルボルネン系樹脂としては、単独の繰り返し単位を有するもの(ホモポリマー)、2つ以上のノルボルネン系繰り返し単位を有するもの(コポリマー)のいずれであってもよい。
 このようなノルボルネン系樹脂としては、例えば、
(1)ノルボルネン型モノマーを付加(共)重合して得られるノルボルネン型モノマーの付加(共)重合体、
(2)ノルボルネン型モノマーとエチレンやα-オレフィン類との付加共重合体、
(3)ノルボルネン型モノマーと非共役ジエン、および必要に応じて他のモノマーとの付加共重合体のような付加重合体、
(4)ノルボルネン型モノマーの開環(共)重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(5)ノルボルネン型モノマーとエチレンやα-オレフィン類との開環(共)重合体、および必要に応じて該(共)重合体を水素添加した樹脂、
(6)ノルボルネン型モノマーと非共役ジエン、または他のモノマーとの開環共重合体、および必要に応じて該(共)重合体を水素添加したポリマーのような開環重合体が挙げられる。これらの重合体としては、ランダム共重合体、ブロック共重合体、交互共重合体等が挙げられる。
 これらのノルボルネン系樹脂は、例えば、開環メタセシス重合(ROMP)、ROMPと水素化反応との組み合わせ、ラジカルまたはカチオンによる重合、カチオン性パラジウム重合開始剤を用いた重合、これ以外の重合開始剤(例えば、ニッケルや他の遷移金属の重合開始剤)を用いた重合等、公知のすべての重合方法で得ることができる。
 これらの中でも、ノルボルネン系樹脂としては、下記構造式Bで表される少なくとも1個の繰り返し単位を有するもの、すなわち、付加(共)重合体が好ましい。付加(共)重合体は、透明性、耐熱性および可撓性に富むことから、例えば光導波路1を形成した後、これに電気部品等を半田を介して実装することがあるが、このような場合においても光導波路1に、高い耐熱性、すなわち、耐リフロー性を付与することができるためである。
Figure JPOXMLDOC01-appb-C000001
 かかるノルボルネン系ポリマーは、例えば、後述するノルボルネン系モノマー(後述する構造式Cで表されるノルボルネン系モノマーや、架橋性ノルボルネン系モノマー)を用いることにより好適に合成される。
 また、光導波路1を各種製品に組み込んだ際には、例えば、80℃程度の環境下で製品が使用される場合がある。このような場合においても、耐熱性を確保するという観点から、付加(共)重合体が好ましい。
 中でも、ノルボルネン系樹脂は、重合性基を含む置換基を有するノルボルネンの繰り返し単位や、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むものが好ましい。
 重合性基を含む置換基を有するノルボルネンの繰り返し単位としては、エポキシ基を含む置換基を有するノルボルネンの繰り返し単位、(メタ)アクリル基を含む置換基を有するノルボルネンの繰り返し単位、および、アルコキシシリル基を含む置換基を有するノルボルネンの繰り返し単位のうちの少なくとも1種が好適である。これらの重合性基は、各種重合性基の中でも、反応性が高いことから好ましい。
 また、このような重合性基を含むノルボルネンの繰り返し単位を、2種以上含むものを用いれば、可撓性と耐熱性の両立を図ることができる。
 一方、アリール基を含む置換基を有するノルボルネンの繰り返し単位を含むことにより、アリール基に由来する極めて高い疎水性によって、吸水による寸法変化等をより確実に防止することができる。
 さらに、ノルボルネン系樹脂は、アルキルノルボルネンの繰り返し単位を含むものが好ましい。なお、アルキル基は、直鎖状または分岐状のいずれであってもよい。
 アルキルノルボルネンの繰り返し単位を含むことにより、ノルボルネン系樹脂は、柔軟性が高くなるため、高いフレキシビリティ(可撓性)を付与することができる。
 また、アルキルノルボルネンの繰り返し単位を含むノルボルネン系樹脂は、特定の波長領域(特に、850nm付近の波長領域)の光に対する透過率が優れることからも好ましい。
 上記のようなノルボルネンの繰り返し単位を含むノルボルネン系樹脂の具体例としては、ヘキシルノルボルネンのホモポリマー、フェニルエチルノルボルネンのホモポリマー、ベンジルノルボルネンのホモポリマー、ヘキシルノルボルネンとフェニルエチルノルボルネンとのコポリマー、ヘキシルノルボルネンとベンジルノルボルネンとのコポリマー等が挙げられる。
 このようなことから、ノルボルネン系樹脂としては、以下の式(1)~(4)、(8)~(10)で表されるものが好適である。
Figure JPOXMLDOC01-appb-C000002

 (式(1)中、Rは、炭素数1~10のアルキル基を表し、aは、0~3の整数を表し、bは、1~3の整数を表し、p/qが20以下である。)
 式(1)のノルボルネン系樹脂は、以下のようにして製造することができる。
 Rを有するノルボルネンと、側鎖にエポキシ基を有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒として用いて溶液重合させることで(1)を得る。
Figure JPOXMLDOC01-appb-C000003

 なお、側鎖にエポキシ基を有するノルボルネンの製造方法は、たとえば、(i)(ii)の通りである。
(i)ノルボルネンメタノール(NB-CH-OH)の合成
 DCPD(ジシクロペンタジエン)のクラッキングにより生成したCPD(シクロペンタジエン)とαオレフィン(CH=CH-CH-OH)を高温高圧下で反応させる。
Figure JPOXMLDOC01-appb-C000004

(ii)エポキシノルボルネンの合成
 ノルボルネンメタノールとエピクロルヒドリンとの反応により生成する。
Figure JPOXMLDOC01-appb-C000005

 なお、式(1)において、bが2または3の場合には、エピクロルヒドリンのメチレン基がエチレン基、プロピレン基等になったものを使用する。
 式(1)で表されるノルボルネン系樹脂の中でも、可撓性と耐熱性の両立を図ることが可能との観点から、特に、Rが炭素数4~10のアルキル基であり、aおよびbがそれぞれ1である化合物、例えば、ブチルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、ヘキシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー、デシルノルボルネンとメチルグリシジルエーテルノルボルネンとのコポリマー等が好ましい。
Figure JPOXMLDOC01-appb-C000006


 (式(2)中、Rは、炭素数1~10のアルキル基を表し、Rは、水素原子またはメチル基を表し、cは、0~3の整数を表し、p/qが20以下である。)
 式(2)のノルボルネン系樹脂は、Rを有するノルボルネンと、側鎖にアクリルおよびメタクリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。
 なお、式(2)で表されるノルボルネン系樹脂の中でも、可撓性と耐熱性との両立の観点から、特に、Rが炭素数4~10のアルキル基であり、cが1である化合物、例えば、ブチルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、ヘキシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー、デシルノルボルネンとアクリル酸2-(5-ノルボルネニル)メチルとのコポリマー等が好ましい。
Figure JPOXMLDOC01-appb-C000007


(式(3)中、Rは、炭素数1~10のアルキル基を表し、各Xは、それぞれ独立して、炭素数1~3のアルキル基を表し、dは、0~3の整数を表し、p/qが20以下である。)
 式(3)の樹脂は、Rを有するノルボルネンと、側鎖にアルコキシシリル基を有するノルボルネンとをトルエンに溶かし、上述したNi化合物(A)を触媒に用いて溶液重合させることで得ることができる。
 なお、式(3)で表されるノルボルネン系ポリマーの中でも、特に、Rが炭素数4~10のアルキル基であり、dが1または2、Xがメチル基またはエチル基である化合物、例えば、ブチルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ヘキシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、デシルノルボルネンとノルボルネニルエチルトリメトキシシランとのコポリマー、ブチルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリエトキシシリルノルボルネンとのコポリマー、ブチルボルネンとトリメトキシシリルノルボルネンとのコポリマー、ヘキシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー、デシルノルボルネンとトリメトキシシリルノルボルネンとのコポリマー等が好ましい。
Figure JPOXMLDOC01-appb-C000008


 (式(4)中、Rは、炭素数1~10のアルキル基を表し、AおよびAは、それぞれ独立して、下記式(5)~(7)で表される置換基を表すが、同時に同一の置換基であることはない。また、p/q+rが20以下である。)
 式(4)の樹脂は、Rを有するノルボルネンと、側鎖にAおよびAを有するノルボルネンとをトルエンに溶かし、Ni化合物(A)を触媒に用いて溶液重合させることで得ることができる。
Figure JPOXMLDOC01-appb-C000009


 (式(5)中、eは、0~3の整数を表し、fは、1~3の整数を表す。)


 (式(6)中、Rは、水素原子またはメチル基を表し、gは、0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000011


 (式(7)中、Xは、それぞれ独立して、炭素数1~3のアルキル基を表し、hは、0~3の整数を表す。)
 なお、式(4)で表されるノルボルネン系樹脂としては、例えば、ブチルノルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、アクリル酸2-(5-ノルボルネニル)メチルと、メチルグリシジルエーテルノルボルネンとのターポリマー、ブチルボルネン、ヘキシルノルボルネンまたはデシルノルボルネンのいずれかと、メチルグリシジルエーテルノルボルネン、ノルボルネニルエチルトリメトキシシラン、トリエトキシシリルノルボルネンまたはトリメトキシシリルノルボルネンのいずれかとのターポリマー等が挙げられる。
Figure JPOXMLDOC01-appb-C000012


 (式(8)中、Rは、炭素数1~10のアルキル基を表し、Rは、水素原子、メチル基またはエチル基を表し、Arは、アリール基を表し、Xは、酸素原子またはメチレン基を表し、Xは、炭素原子またはシリコン原子を表し、iは、0~3の整数を表し、jは、1~3の整数を表し、p/qが20以下である。)
 式(8)の樹脂は、Rを有するノルボルネンと、側鎖に-(CH)-X-X(R3-j(Ar)を含むノルボルネンとをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで得ることができる。
 なお、式(8)で表されるノルボルネン系樹脂の中でも、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが好ましい。
 さらには、可撓性、耐熱性および屈折率制御の観点から特に、Rが炭素数4~10のアルキル基であり、Xが酸素原子、Xがシリコン原子、Arがフェニル基、Rがメチル基、iが1、jが2である化合物、例えば、ブチルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、ヘキシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー、デシルノルボルネンとジフェニルメチルノルボルネンメトキシシランとのコポリマー等が好ましい。
 具体的には、以下のようなノルボルネン系樹脂を使用することが好ましい。
Figure JPOXMLDOC01-appb-C000013


 (式(9)におけるR、p、q、iは、式(8)と同じである。)
 また、可撓性と耐熱性および屈折率制御の観点から、式(8)において、Rが炭素数4~10のアルキル基であり、Xがメチレン基、Xが炭素原子、Arがフェニル基、Rが水素原子、iが0、jが1である化合物、例えば、ブチルボルネンとフェニルエチルノルボルネンとのコポリマー、ヘキシルノルボルネンとフェニルエチルノルボルネンとのコポリマー、デシルノルボルネンとフェニルエチルノルボルネンとのコポリマー等であってもよい。
 さらに、ノルボルネン系樹脂として、次のようなものを使用してもよい。
Figure JPOXMLDOC01-appb-C000014


 (式(10)において、R10は、炭素数1~10のアルキル基を表し、R11は、アリール基を示し、kは0以上、4以下である。p/qは20以下である。)
 また、p/q~p/q、p/q、p/qまたはp/q+rは、20以下であればよいが、15以下であるのが好ましく、0.1~10程度がより好ましい。これにより、複数種のノルボルネンの繰り返し単位を含む効果が如何なく発揮される。
 一方、ポリマー915は、前述したようにアクリル系樹脂、メタクリル系樹脂、エポキシ系樹脂、ポリイミド、シリコーン系樹脂、フッ素系樹脂等であってもよい。
 このうち、アクリル系樹脂およびメタクリル系樹脂としては、例えば、ポリ(メチルアクリレート)、ポリ(メチルメタクリレート)、ポリ(エポキシアクリレート)、ポリ(エポキシメタクリレート)、ポリ(アミノアクリレート)、ポリ(アミノメタクリレート)、ポリアクリル酸、ポリメタクリル酸、ポリ(イソシアナートアクリレート)、ポリ(イソシアナートメタクリレート)、ポリ(シアナートアクリレート)、ポリ(シアナートメタクリレート)、ポリ(チオエポキシアクリレート)、ポリ(チオエポキシメタクリレート)、ポリ(アリルアクリレート)、ポリ(アリルメタクリレート)、アクリレート・エポキシアクリレート共重合体(メチルメタクリレートとグリシジルメタクリレートの共重合体)、スチレン・エポキシアクリレート共重合体等が挙げられ、これらの1種または2種以上の複合材料が用いられる。
 また、エポキシ系樹脂としては、例えば、脂環式エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル骨格を有するビフェニル型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ジシクロペンタジエン骨格を有するジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂肪族系エポキシ樹脂およびトリグリシジルイソシアヌレート等が挙げられ、これらのうちの1種または2種以上の複合材料が用いられる。
 また、ポリイミドとしては、ポリイミド樹脂前駆体であるポリアミド酸を閉環し、硬化(イミド化)させることにより得られる樹脂であれば、特に限定されない。
 ポリアミド酸としては、例えば、N,N-ジメチルアセトアミド中、テトラカルボン酸二無水物とジアミンとを等モル比にて反応させることにより、溶液として得ることができる。
 このうち、テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,2-ビス(2,3-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン酸二無水物等が挙げられる。
 一方、ジアミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルエーテル、4,4'-ジアミノジフェニルスルホン、3,3'-ジアミノジフェニルスルホン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、2,2-ビス(4-アミノフェノキシフェニル)ヘキサフルオロプロパン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,4-ジアミノトルエン、2,6-ジアミノトルエン、ジアミノジフェニルメタン、4,4'-ジアミノ-2,2-ジメチルビフェニル、2,2-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル等が挙げられる。
 また、シリコーン系樹脂としては、例えば、シリコーンゴム、シリコーンエラストマー等が挙げられる。これらのシリコーン系樹脂は、シリコーンゴムモノマーまたはオリゴマーと硬化剤とを反応させることにより得られるものである。
 シリコーンゴムモノマーまたはオリゴマーとしては、例えば、メチルシロキサン基、エチルシロキサン基、フェニルシロキサン基を含むものが挙げられる。
 また、シリコーンゴムモノマーまたはオリゴマーとしては、光反応性を付与するため、例えば、エポキシ基、ビニルエーテル基、アクリル基等の官能基を導入してなるものが好ましく用いられる。
 また、フッ素系樹脂としては、例えば、含フッ素脂肪族環構造を有するモノマーから得られる重合体、2つ以上の重合性不飽和結合を有する含フッ素モノマーを環化重合して得られる重合体、含フッ素系モノマーとラジカル重合性単量体とを共重合して得られる重合体等が挙げられる。
 含フッ素脂肪族環構造としては、例えば、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、ペルフルオロ(4-メチル-1,3-ジオキソール)、ペルフルオロ(4-メトキシ-1,3-ジオキソール)等が挙げられる。
 また、含フッ素モノマーとしては、例えば、ペルフルオロ(アリルビニルエーテル)、ペルフルオロ(ブテニルビニルエーテル)等が挙げられる。
 また、ラジカル重合性モノマーとしては、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、ペルフルオロ(メチルビニルエーテル)等が挙げられる。
 なお、コア層13の各部の屈折率は、各部におけるポリマー915の屈折率とモノマーの屈折率の相対的な大小関係とその存在比率に応じて決定されるため、用いるモノマーの種類に応じてポリマー915の屈折率を適宜調整するようにしてもよい。
 例えば、比較的高い屈折率を有するポリマー915を得るためには、分子構造中に、芳香族環(芳香族基)、窒素原子、臭素原子や塩素原子を有するモノマーを一般的に選択して、ポリマー915が合成(重合)される。一方、比較的低い屈折率を有するポリマー915を得るためには、分子構造中に、アルキル基、フッ素原子やエーテル構造(エーテル基)を有するモノマーを一般的に選択して、ポリマー915が合成(重合)される。
 比較的高い屈折率を有するノルボルネン系樹脂としては、アラルキルノルボルネンの繰り返し単位を含むものが好ましい。かかるノルボルネン系樹脂は、特に高い屈折率を有する。
 アラルキルノルボルネンの繰り返し単位が有するアラルキル基(アリールアルキル基)としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ナフチルエチル基、ナフチルプロピル基、フルオレニルエチル基、フルオレニルプロピル基等が挙げられるが、ベンジル基やフェニルエチル基が特に好ましい。かかる繰り返し単位を有するノルボルネン系樹脂は、極めて高い屈折率を有するものであることから好ましい。
 また、以上のようなポリマー915は、主鎖から分岐し、活性放射線の照射により、その分子構造の少なくとも一部が主鎖から離脱し得る離脱性基(離脱性ペンダントグループ)を有しているのが好ましい。離脱性基の離脱によりポリマー915の屈折率が低下するため、ポリマー915は、活性放射線の照射の有無によって屈折率差を形成することができる。
 このような離脱性基を有するポリマー915としては、例えば、分子構造中に、-O-構造、-Si-アリール構造および-O-Si-構造のうちの少なくとも1つを有するものが挙げられる。かかる離脱性基は、カチオンの作用により比較的容易に離脱する。
 このうち、離脱により樹脂の屈折率に低下を生じさせる離脱性基としては、-Si-ジフェニル構造および-O-Si-ジフェニル構造の少なくとも一方が好ましい。
 ここで、側鎖に離脱性基を有するポリマー915としては、例えばシクロヘキセン、シクロオクテン等の単環体モノマーの重合体、ノルボルネン、ノルボルナジエン、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、テトラシクロドデセン、トリシクロペンタジエン、ジヒドロトリシクロペンタジエン、テトラシクロペンタジエン、ジヒドロテトラシクロペンタジエン等の多環体モノマーの重合体等の環状オレフィン系樹脂が挙げられる。これらの中でも多環体モノマーの重合体の中から選ばれる1種以上の環状オレフィン系樹脂が好ましく用いられる。これにより、樹脂の耐熱性を向上することができる。
 なお、重合形態としては、ランダム重合、ブロック重合等の公知の形態を適用することができる。例えばノルボルネン型モノマーの重合の具体例としては、ノルボルネン型モノマーの(共)重合体、ノルボルネン型モノマーとα-オレフィン類などの共重合可能な他のモノマーとの共重合体、およびこれらの共重合体の水素添加物などが具体例に該当する。これら環状オレフィン系樹脂は、公知の重合法により製造することが可能であり、その重合方法には付加重合法と開環重合法とがあり、前述の中でも付加重合法で得られる環状オレフィン系樹脂(特にノルボルネン系樹脂)が好ましい(すなわち、ノルボルネン系化合物の付加重合体)。これにより、透明性、耐熱性および可撓性に優れる。
 さらに、側鎖に離脱性基を有するノルボルネン系樹脂としては、例えば、式(8)で表されるノルボルネン系樹脂の中で、Xが酸素原子、Xがシリコン原子、Arがフェニル基であるものが挙げられる。
 また、式(3)においては、アルコキシシリル基のSi-O-Xの部分で脱離する場合がある。
 また、例えば、式(9)のノルボルネン系樹脂を使用した場合、光酸発生剤(PAGと表記)から発生した酸により、以下のように反応が進むと推測される。なお、ここでは、離脱性基の部分のみを示し、また、i=1の場合で説明している。
Figure JPOXMLDOC01-appb-C000015

 さらに、式(9)の構造に加えて、側鎖にエポキシ基を有するものであってもよい。このようなものを使用することでクラッド層11、12や基材に対して密着性に優れたコア層13が形成可能という効果がある。
 具体例として以下のようなものが挙げられる。
Figure JPOXMLDOC01-appb-C000016


 (式(31)において、p/q+rは、20以下である。)
 式(31)で示される化合物は、たとえば、ヘキシルノルボルネンと、ジフェニルメチルノルボルネンメトキシシラン(側鎖に-CH-O-Si(CH)(Ph)を含むノルボルネン)およびエポキシノルボルネンをトルエンに溶かし、Ni化合物を触媒に用いて溶液重合させることで得ることができる。
 一方、別の離脱性基としては、例えば、末端にアセトフェノン構造を有する置換基が挙げられる。この離脱性基は、フリーラジカルの作用により比較的容易に離脱する。
 前記離脱性基の含有量は、特に限定されないが、前記側鎖に脱離性基を有するポリマー915中の10~80重量%であるのが好ましく、特に20~60重量%であるのがより好ましい。含有量が前記範囲内であると、特に可撓性と屈折率変調機能(屈折率差を変化させる効果)との両立に優れる。
 例えば、離脱性基の含有量を多くすることにより、屈折率を変化させる幅を拡張することができる。
 (添加剤)
 添加剤920は、モノマーおよび重合開始剤を含んでいる。
 ((モノマー))
 モノマーは、後述する活性放射線の照射により、活性放射線の照射領域において反応して反応物を形成し、それとともにモノマーが拡散移動することで、層910において照射領域と未照射領域との間に屈折率差を生じさせ得るような化合物である。
 モノマーの反応物としては、モノマーがポリマー915中で重合して形成されたポリマー(重合体)、モノマーがポリマー915同士を架橋してなる架橋構造、および、モノマーがポリマー915に重合してポリマー915から分岐した分岐構造のうちの少なくとも1つが挙げられる。
 ところで、照射領域と未照射領域との間に生じる屈折率差は、ポリマー915の屈折率とモノマーの屈折率との差に基づいて生じることから、添加剤920中に含まれるモノマーは、ポリマー915の屈折率との大小関係を考慮して選択される。
 具体的には、層910において、照射領域の屈折率が高くなることが望まれる場合には、比較的低い屈折率を有するポリマー915と、このポリマー915に対して高い屈折率を有するモノマーとを組み合わせて使用される。一方、照射領域の屈折率が低くなることが望まれる場合には、比較的高い屈折率を有するポリマー915と、このポリマー915に対して低い屈折率を有するモノマーとを組み合わせて使用される。
 なお、屈折率が「高い」または「低い」とは、屈折率の絶対値を意味するものではなく、ある材料同士の相対的な関係を意味するものである。
 そして、モノマーの反応(反応物の生成)により、層910において照射領域の屈折率が低下する場合、当該部分が屈折率分布Wの極小値を形成し、照射領域の屈折率が上昇する場合、当該部分が屈折率分布の極大値を構成する。
 なお、モノマーとしては、ポリマー915との相溶性を有し、ポリマー915との屈折率差が0.01以上であるものが好ましく用いられる。
 このようなモノマーとしては、重合可能な部位を有する化合物であればよく、特に限定されないが、例えば、ノルボルネン系モノマー、アクリル酸(メタクリル酸)系モノマー、エポキシ系モノマー、オキセタン系モノマー、ビニルエーテル系モノマー、スチレン系モノマー等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 これらの中でも、モノマーとしては、オキセタニル基またはエポキシ基等の環状エーテル基を有するモノマーまたはオリゴマー、あるいはノルボルネン系モノマーを用いるのが好ましい。環状エーテル基を有するモノマーまたはオリゴマーを用いることにより、環状エーテル基の開環が起こり易いため、速やかに反応し得るモノマーが得られる。また、ノルボルネン系モノマーを用いることにより、光伝送性能に優れ、かつ、耐熱性および柔軟性に優れるコア層13(光導波路1)が得られる。
 このうち、環状エーテル基を有するモノマーの分子量(重量平均分子量)またはオリゴマーの分子量(重量平均分子量)は、それぞれ100以上400以下であるのが好ましい。
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーとしては、下記式(11)~(20)の群から選ばれるものが好ましい。これらを使用することで波長850nm近傍での透明性に優れ、可撓性と耐熱性の両立が可能という利点がある。また、これらを単独でも混合して用いても差し支えない。
Figure JPOXMLDOC01-appb-C000017

Figure JPOXMLDOC01-appb-C000018

Figure JPOXMLDOC01-appb-C000019

Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023

Figure JPOXMLDOC01-appb-C000024


 (式(18)においてnは0以上、3以下である。)
Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

 以上のようなモノマーおよびオリゴマーの中でも、ポリマー915との屈折率差を確保する観点から式(13)、(15)、(16)、(17)、(20)で表される化合物を使用することが好ましい。
 さらには、ポリマー915の樹脂との屈折率差がある点、分子量が小さく、モノマーの運動性が高い点、モノマーが容易に揮発しない点を考慮すると、式(20)、式(15)で表される化合物を使用することが特に好ましい。
 また、オキセタニル基を有する化合物としては、以下の式(32)、式(33)で表される化合物を使用することができる。式(32)で表される化合物としては、東亞合成製の商品名TESOX等、式(33)で表される化合物としては、東亞合成製の商品名OX-SQ等を使用することができる。
Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028


 (式(33)において、nは1または2である)
 また、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、例えば、以下のようなものが挙げられる。このエポキシ基を有するモノマー、オリゴマーは、酸の存在下において開環により重合するものである。
 エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとしては、以下の式(34)~(39)で表されるものを使用することができる。中でも、エポキシ環のひずみエネルギーが大きく反応性に優れるという観点から式(36)~(39)で表される脂環式エポキシモノマーを使用することが好ましい。
 なお、式(34)で表される化合物は、エポキシノルボルネンであり、このような化合物としては、例えば、プロメラス社製 EpNBを使用することができる。式(35)で表される化合物は、γ-グリシドキシプロピルトリメトキシシランであり、この化合物としては、例えば、東レ・ダウコーニング・シリコーン社製 Z-6040を使用することができる。また、式(36)で表される化合物は、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランであり、この化合物としては、例えば、東京化成製 E0327を使用することができる。
 さらに、式(37)で表される化合物は、3、4-エポキシシクロヘキセニルメチル-3'、4'-エポキシシクロヘキセンカルボキシレートであり、この化合物としては、例えば、ダイセル化学社製 セロキサイド2021Pを使用することができる。また、式(38)で表される化合物は、1,2-エポキシ-4-ビニルシクロヘキサンであり、この化合物としては、例えば、ダイセル化学社製 セロキサイド2000を使用することができる。
 さらに、式(39)で表される化合物は、1,2:8,9ジエポキシリモネンであり、この化合物としては、例えば、(ダイセル化学社製 セロキサイド3000)を使用することができる。
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

Figure JPOXMLDOC01-appb-C000032

Figure JPOXMLDOC01-appb-C000033

Figure JPOXMLDOC01-appb-C000034

 さらに、モノマーとしては、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとが併用されていてもよい。
 オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーは重合を開始する開始反応が遅いが、生長反応が速い。これに対し、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーは、重合を開始する開始反応が速いが、生長反応が遅い。そのため、オキセタニル基を有するモノマー、オキセタニル基を有するオリゴマーと、エポキシ基を有するモノマー、エポキシ基を有するオリゴマーとを併用することで、光を照射した際に、光照射部分と、未照射部分との屈折率差を確実に生じさせることができる。
 具体的には、式(20)で表わされるモノマーを「第1モノマー」とし、上記成分Bを含むモノマーを「第2モノマー」とすると、第1モノマーと第2モノマーとを併用するのが好ましく、その併用割合を(第2モノマーの重量)/(第1モノマーの重量)で規定するとき、0.1~1程度であるのが好ましく、0.1~0.6程度であるのがより好ましい。併用割合が前記範囲内であると、モノマーの反応性の速さと光導波路1の耐熱性とのバランスが向上する。
 なお、第2モノマーに相当するモノマーには、式(20)で表わされるモノマーと異なるオキセタニル基を有するモノマーやビニルエーテル基を有するモノマーが挙げられる。これらの中でも、エポキシ化合物(特に脂環式エポキシ化合物)および2官能のオキセタン化合物(オキセタニル基を2つ有するモノマー)の少なくとも1種が好ましく用いられる。これらの第2モノマーを用いることにより、第1モノマーとポリマー915との反応性を向上させることができ、それによって透明性を保持しつつ、導波路の耐熱性を向上させることができる。
 このような第2モノマーの具体例としては、上記式(15)の化合物、上記式(12)の化合物、上記式(11)の化合物、上記式(18)の化合物、上記式(19)の化合物、上記式(34)~(39)の化合物が挙げられる。
 また、ノルボルネン系モノマーとは、下記構造式Aで示されるノルボルネン骨格を少なくとも1つ含むモノマーを総称し、例えば、下記構造式Cで表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000035

Figure JPOXMLDOC01-appb-C000036


 [式中、aは、単結合または二重結合を表し、R12~R15は、それぞれ独立して、水素原子、置換もしくは無置換の炭化水素基、または官能置換基を表し、mは、0~5の整数を表す。ただし、aが二重結合の場合、R12およびR13のいずれか一方、R14およびR15のいずれか一方は存在しない。]
 無置換の炭化水素基(ハイドロカルビル基)としては、例えば、直鎖状または分岐状の炭素数1~10(C~C10)のアルキル基、直鎖状または分岐状の炭素数2~10(C~C10のアルケニル基、直鎖状または分岐状の炭素数2~10(C~C10)のアルキニル基、炭素数4~12(C~C12)のシクロアルキル基、炭素数4~12(C~C12)のシクロアルケニル基、炭素数6~12(C~C12)のアリール基、炭素数7~24(C~C24)のアラルキル基(アリールアルキル基)等が挙げられ、その他、R12およびR13、R14およびR15が、それぞれ炭素数1~10(C~C10)のアルキリデニル基であってもよい。
 なお、上記以外のモノマー、例えばアクリル酸(メタクリル酸)系モノマーとしては、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル、アクリル酸アミド、メタクリル酸アミド、アクリロニトリル等が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 具体的には、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-ブトキシエチル等が挙げられる。
 また、ビニルエーテル系モノマーとしては、例えば、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル、n-ペンチルビニルエーテル、n-ヘキシルビニルエーテル、n-オクチルビニルエーテル、n-ドデシルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル類またはシクロアルキルビニルエーテル類が挙げられ、これらのうちの1種または2種以上を組み合わせて用いることができる。
 また、スチレン系モノマーとしては、例えば、スチレン、ジビニルベンゼン等が挙げられ、これらのうちの1種または2種を組み合わせて用いることができる。
 なお、これらのモノマーと前述したポリマー915との組み合わせは、特に限定されず、いかなる組み合わせであってもよい。
 また、モノマーは、その少なくとも一部が上述したようにオリゴマー化していてもよい。
 これらのモノマーの添加量は、ポリマー100重量部に対し、1重量部以上50重量部以下であることが好ましく、2重量部以上20重量部以下であることがより好ましい。これにより、コア/クラッド間の屈折率変調を可能にし、可撓性と耐熱性との両立が図れるという効果がある。
 ((重合開始剤))
 重合開始剤は、活性放射線の照射に伴ってモノマーに作用し、モノマーの反応を促すものであり、モノマーの反応性を考慮し、必要に応じて添加される。
 用いる重合開始剤としては、モノマーの重合反応または架橋反応の種類に応じて適宜選択される。例えば、アクリル酸(メタクリル酸)系モノマー、スチレン系モノマーには専らラジカル重合開始剤が、エポキシ系モノマー、オキセタン系モノマー、ビニルエーテル系モノマーには専らカチオン重合開始剤が好ましく用いられる。
 ラジカル重合開始剤としては、例えば、ベンゾフェノン類、アセトフェノン類等が挙げられる。
 一方、カチオン重合開始剤としては、例えば、ジアゾニウム塩のようなルイス酸発生型のもの、ヨードニウム塩、スルホニウム塩のようなブレンステッド酸発生型のもの等が挙げられる。
 特に、モノマーとして環状エーテル基を有するモノマーを用いる場合には、以下のようなカチオン重合開始剤(光酸発生剤)が好ましく用いられる。
 例えば、トリフェニルスルフォニウムトリフルオロメタンスルホネート、トリス(4-t-ブチルフェニル)スルホニウム-トリフルオロメタンスルホネートなどのスルホニウム塩類、p-ニトロフェニルジアゾニウムヘキサフルオロホスフェートなどのジアゾニウム塩類、アンモニウム塩類、ホスホニウム塩類、ジフェニルヨードニウムトリフルオロメタンスルホネート、(トリキュミル)ヨードニウム-テトラキス(ペンタフルオロフェニル)ボレートなどのヨードニウム塩類、キノンジアジド類、ビス(フェニルスルホニル)ジアゾメタンなどのジアゾメタン類、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、N-ヒドロキシナフタルイミド-トリフルオロメタンサルホネートなどのスルホン酸エステル類、ジフェニルジスルホンなどのジスルホン類、トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-(3.4-メチレンジオキシフェニル)-4,6-ビス-(トリクロロメチル)-s-トリアジンなどのトリアジン類等の化合物が、光酸発生剤として用いられる。なお、これらの光酸発生剤は、単独または複数を組み合わせて用いられる。
 重合開始剤の含有量は、ポリマー100重量部に対し0.01重量部以上0.3重量部以下であることが好ましく、0.02重量部以上0.2重量部以下であることがより好ましい。これにより、反応性の向上という効果がある。
 なお、モノマーの反応性が著しく高い場合には、重合開始剤の添加を省略してもよい。
 このうち、増感剤は、光に対する重合開始剤の感度を増大して、重合開始剤の活性化(反応または分解)に要する時間やエネルギーを減少させる機能や、重合開始剤の活性化に適する波長に光の波長を変化させる機能を有するものである。
 このような増感剤としては、重合開始剤の感度や増感剤の吸収のピーク波長に応じて適宜選択され、特に限定されないが、たとえば、9,10-ジブトキシアントラセン(CAS番号第76275-14-4番)のようなアントラセン類、キサントン類、アントラキノン類、フェナントレン類、クリセン類、ベンツピレン類、フルオラセン類(fluoranthenes)、ルブレン類、ピレン類、インダンスリーン類、チオキサンテン-9-オン類(thioxanthen-9-ones)等が挙げられ、これらを単独または混合物として用いることができる。
 増感剤の具体例としては、例えば、2-イソプロピル-9H-チオキサンテン-9-オン、4-イソプロピル-9H-チオキサンテン-9-オン、1-クロロ-4-プロポキシチオキサントン、フェノチアジン(phenothiazine)またはこれらの混合物が挙げられる。
 増感剤の含有量は、コア層形成用組成物900中で、0.01重量%以上であるのが好ましく、0.5重量%以上であるのがより好ましく、1重量%以上であるのがさらに好ましい。なお、上限値は、5重量%以下であるのが好ましい。
 なお、添加剤920はこの他に、触媒前駆体、助触媒、酸化防止剤、紫外線吸収剤、光安定剤、シランカップリング剤、塗面改良剤、熱重合禁止剤、レベリング剤、界面活性剤、着色剤、保存安定剤、可塑剤、滑剤、フィラー、無機粒子、老化防止剤、濡れ性改良剤、帯電防止剤等を含んでいてもよい。
 以上のようなポリマー915と添加剤920とを含有する層910は、ポリマー915中に一様に分散する添加剤920の作用により、所定の屈折率を有している。
 [2]次に、開口(窓)9351が形成されたマスク(マスキング)935を用意し、このマスク935を介して、層910に対して活性放射線930を照射する(図7参照)。
 以下では、モノマーとして、ポリマー915より低い屈折率を有するものを用いる場合を一例に説明する。
 すなわち、ここで示す例では、活性放射線930の照射領域925が主に側面クラッド部15となる。
 ここで示す例では、マスク935には、主に、形成すべき側面クラッド部15のパターンと等価な開口(窓)9351が形成される。この開口9351は、照射する活性放射線930が透過する透過部を形成するものである。なお、コア部14や側面クラッド部15のパターンは、活性放射線930の照射に応じて形成される屈折率分布Wに基づいて決まるため、開口9351のパターンと側面クラッド部15のパターンとは完全に一致するものではなく、前記両パターンには多少のずれが生じる場合もある。
 マスク935は、予め形成(別途形成)されたもの(例えばプレート状のもの)でも、層910上に例えば気相成膜法や塗布法により形成されたものでもよい。
 マスク935として好ましいものの例としては、石英ガラスやPET基材等で作製されたフォトマスク、ステンシルマスク、気相成膜法(蒸着、スパッタリング等)により形成された金属薄膜等が挙げられるが、これらの中でもフォトマスクやステンシルマスクを用いるのが特に好ましい。微細なパターンを精度良く形成することができるとともに、ハンドリングがし易く、生産性の向上に有利であるからである。
 また、図7においては、マスク935の開口(窓)9351は、活性放射線930の照射領域925のパターンに沿ってマスクを部分的に除去したものを示したが、前記石英ガラスやPET基材等で作製されたフォトマスクを用いる場合、該フォトマスク上に例えばクロム等の金属による遮蔽材で構成された活性放射線930の遮蔽部を設けたものを用いることもできる。このマスクでは、遮蔽部以外の部分が前記窓(透過部)となる。
 用いる活性放射線930は、重合開始剤に対して光化学的な反応(変化)を生じさせ得るもの、および、ポリマー915に含まれる離脱性基を離脱させ得るものであればよく、例えば、可視光、紫外光、赤外光、レーザー光の他、電子線やX線等を用いることもできる。
 これらの中でも、活性放射線930は、重合開始剤や離脱性基の種類、増感剤を含有する場合には、増感剤の種類等によって適宜選択され、特に限定されないが、波長200~450nmの範囲にピーク波長を有するものであるのが好ましい。これにより、重合開始剤を比較的容易に活性化させるとともに、離脱性基を比較的容易に離脱させることができる。
 また、活性放射線930の照射量は、0.1~9J/cm程度であるのが好ましく、0.2~6J/cm程度であるのがより好ましく、0.2~3J/cm程度であるのがさらに好ましい。
 マスク935を介して層910に活性放射線930を照射すると、照射領域925において重合開始剤が活性化される。これにより、照射領域925においてモノマーが重合する。モノマーが重合すると、照射領域925におけるモノマーの量が減少するため、それに応じて未照射領域940中のモノマーが照射領域925に拡散移動する。前述したように、ポリマー915とモノマーは、互いに屈折率差が生じるように適宜選択されるため、モノマーの拡散移動に伴って照射領域925と未照射領域940との間に屈折率差が生じる。
 図11は、照射領域925と未照射領域940との間で屈折率差が生じる様子を説明するための図であり、層910の横断面の位置を横軸にとり、横断面の屈折率を縦軸にとったときの屈折率分布を示す図である。
 本実施形態では、モノマーとしてポリマー915より屈折率が小さいものを用いているため、モノマーの拡散移動に伴い、未照射領域940の屈折率が高くなるとともに、照射領域925の屈折率は低くなる(図11(a)参照)。
 モノマーの拡散移動は、照射領域925においてモノマーが消費され、それに応じて形成されたモノマーの濃度勾配がきっかけとなって起こると考えられる。このため、未照射領域940全体のモノマーが一斉に照射領域925に向かうのではなく、照射領域925に近い部分から徐々に移動が始まり、これを補うように未照射領域940の中央部から外側へのモノマーの移動も生起される。その結果、図11(a)に示すように、照射領域925と未照射領域940との境界を挟んで、未照射領域940側に高屈折率部H、照射領域925側に低屈折率部Lが形成される。これら高屈折率部Hおよび低屈折率部Lは、それぞれ上述したようなモノマーの拡散移動に伴って形成されるため、必然的に滑らかな曲線で構成されることとなる。具体的には、高屈折率部Hは、例えば上に凸の略U字状となり、低屈折率部Lは、例えば下に凸の略U字状となる。
 なお、上述したようなモノマーが重合してなるポリマーの屈折率は、重合前のモノマーの屈折率とほぼ同じ(屈折率差が0~0.001程度)であるため、照射領域925では、モノマーの重合が進むにつれ、モノマーの量およびモノマー由来の物質の量に応じて屈折率の低下が進むこととなる。したがって、ポリマーに対するモノマーの量等を適宜調整することにより、屈折率分布Wの形状を制御することができる。
 一方、未照射領域940では、重合開始剤が活性化されないため、モノマーは重合しない。
 また、照射領域925ではモノマーの重合が進むにつれてモノマーの拡散移動の容易性が徐々に低下する。これにより、照射領域925では、未照射領域940に近いほど自ずとモノマーの濃度が高くなり、屈折率の低下量が大きくなる。その結果、照射領域925に形成される低屈折率部Lの分布形状は、左右非対称になり易く、未照射領域940側の勾配はより急峻なものとなる。これにより、本発明の光導波路が有する屈折率分布Wが形成される。
 また、ポリマー915は前述したように離脱性基を有しているのが好ましい。この離脱性基は活性放射線930の照射に伴って離脱し、ポリマー915の屈折率を低下させる。したがって、照射領域925に活性放射線930が照射されると、前述したモノマーの拡散移動が開始されるとともに、ポリマー915から離脱性基が離脱し、照射領域925の屈折率は照射前から低下することとなる(図11(b)参照)。
 この屈折率の低下は、照射領域925全体で一律に生じるため、前述した高屈折率部Hと低屈折率部Lの屈折率差は、より拡大される。その結果、図11(b)に示す屈折率分布Wが得られる。なお、図11(a)における屈折率の変化と、図11(b)における屈折率の変化は、ほぼ同時に起こる。このような屈折率変化によってこの屈折率差は、さらに拡大することとなる。
 本実施の形態では、エネルギー照射前のコア層の構成成分、エネルギー照射の照射量、又はエネルギー照射前のコア層の乾燥度合いなどを適切に調整することにより、エネルギー照射後のコア層の屈折率分布の形状を制御することができる。
 また、活性放射線930の照射量を調整することにより、形成される屈折率差および屈折率分布の形状を制御することができる。例えば、照射量を多くすることで、屈折率差を拡大することができる。また、光酸発生剤の含有量と照射量とを調整することにより、屈折率分布の形状を制御することができる。また、活性放射線930の照射前に層910を乾燥させてもよいが、その際の乾燥の程度を調整することにより、屈折率分布の形状を制御することもできる。例えば、乾燥の程度を大きくすることで、モノマーの拡散移動量を抑えることができる。また、乾燥温度を高めることにより、拡散量を増加させて、屈折率分布を制御することができる。
 次に、層910に加熱処理を施す。この加熱処理において、光を照射した照射領域925中のモノマーがさらに重合する。一方で、この加熱工程において、未照射領域940のモノマーは揮発することとなる。これにより、未照射領域940ではモノマーがさらに少なくなり、屈折率が高くなってポリマー915に近い屈折率となる。
 この加熱処理における加熱温度は、特に限定されないが、30~180℃程度であるのが好ましく、40~160℃程度であるのがより好ましい。
 また、加熱時間は、照射領域925のモノマーの重合反応がほぼ完了するように設定するのが好ましく、具体的には、0.1~2時間程度であるのが好ましく、0.1~1時間程度であるのがより好ましい。
 なお、この加熱処理は必要に応じて行えばよく、省略してもよい。
 以上のような原理で、屈折率分布Wを有するコア層13が得られる(図8参照)。
 屈折率分布Wにおいては、低屈折率部Lが転化した極小値Ws1、Ws2、Ws3、Ws4が存在しており(図2(b)参照)、これらの極小値の位置がコア部14と側面クラッド部15との境界に相当する。
 なお、屈折率分布Wは、コア層13中のモノマー由来の構造体濃度に一定の相関関係を有している。したがって、このモノマー由来の構造体の濃度を測定することにより、光導波路1が有する屈折率分布Wを間接的に特定することが可能である。
 構造体の濃度の測定は、例えば、FT-IR、TOF-SIMSの線分析、面分析等を用いて行うことができる。
 さらには、光導波路1の出射光の強度分布が、屈折率分布Wと一定の相関関係を有していることを利用しても、屈折率分布Wを間接的に特定することができる。
 もちろん、屈折率分布Wは、屈折ニアフィールド法、微分干渉法等により、直接特定することもできる。
 また、モノマーとしてポリマー915より高い屈折率を有するものを用いる場合には、上記と反対に、モノマーの拡散移動に伴って移動先の屈折率が高くなるため、それに応じて、照射領域925および未照射領域940を設定するようにすればよい。
 また、活性放射線930として、レーザー光のように指向性の高い光を用いる場合には、マスク935の使用を省略してもよい。
 [3]次に、コア層13の両面にクラッド層11、12を積層する。これにより、光導波路1が得られる。
 これにはまず、支持基板952上に、クラッド層11(12)を形成する(図9参照)。
 クラッド層11(12)の形成方法としては、クラッド材を含むワニス(クラッド層形成用組成物)を塗布し硬化(固化)させる方法、硬化性を有するモノマー組成物を塗布し硬化(固化)させる方法等、いかなる方法でもよい。
 次に、コア層13を支持基板951から剥離し、コア層13を、クラッド層11が形成された支持基板952と、クラッド層12が形成された支持基板952とで挟持する(図10(a)参照)。
 そして、図10(a)中の矢印で示すように、クラッド層12が形成された支持基板952の上面側から加圧し、クラッド層11、12とコア層13とを圧着する。
 これにより、クラッド層11、12とコア層13とが接合、一体化される(図10(b)参照)。
 次いで、クラッド層11、12から、それぞれ支持基板952を剥離、除去する。これにより、光導波路1が得られる。
 その後、必要に応じて、光導波路1の下面に支持フィルム2を積層し、上面にカバーフィルム3を積層する。
 なお、コア層13は、支持基板951上ではなく、クラッド層11上に成膜するようにしてもよい。さらに、クラッド層12は、コア層13上に張り合わせるのではなく、コア層13上に材料を塗布して形成するようにしてもよい。
 (第2の製造方法)
 次に、光導波路1の第2の製造方法について説明する。
 以下、第2の製造方法について説明するが、前記第1の製造方法との相違点を中心に説明し、同様の事項については、その説明を省略する。
 第2の製造方法では、コア層形成用組成物900の組成が異なる以外は、第1の製造方法と同様である。
 光導波路1の第2の製造方法は、[1]支持基板951上にコア層形成用組成物900を塗布して液状被膜を形成した後、この支持基板951をレベルテーブルに置いて液状被膜を平坦化するとともに、溶媒を蒸発(脱溶媒)させる。これにより、層910を得る。[2]次いで、層910の一部に活性放射線を照射した後、層910に加熱処理を施すことで屈折率差を生じさせ、コア部14と側面クラッド部15とを形成したコア層13を得る。[3]次いで、コア層13の両面にクラッド層11、12を積層し、光導波路1を得る。
 以下、各工程について順次説明する。
 [1]まず、コア層形成用組成物900を用意する。
 第2の製造方法で用いられるコア層形成用組成物900は、重合開始剤に代えて、触媒前駆体および助触媒を含有している。
 触媒前駆体は、モノマーの反応(重合反応、架橋反応等)を開始させ得る物質であり、光の照射により活性化した助触媒の作用により、活性化温度が変化する物質である。この活性化温度の変化により、光の照射領域925と未照射領域940との間で、モノマーの反応を開始させる温度に差が生じ、その結果、照射領域925のみにおいてモノマーを反応させることができる。
 触媒前駆体(プロカタリスト:procatalyst)としては、活性放射線の照射に伴って活性化温度が変化(上昇または低下)するものであれば、いかなる化合物を用いてもよいが、特に、活性放射線の照射に伴って活性化温度が低下するものが好ましい。これにより、比較的低温による加熱処理でコア層13(光導波路1)を形成することができ、他の層に不要な熱が加わって、光導波路1の特性(光伝送性能)が低下するのを防止することができる。
 このような触媒前駆体としては、下記式(Ia)および(Ib)で表わされる化合物の少なくとも一方を含む(主とする)ものが好適に用いられる。
Figure JPOXMLDOC01-appb-C000037

 [式Ia、Ib中、それぞれ、E(R)は、第15族の中性電子ドナー配位子を表し、Eは、周期律表の第15族から選択される元素を表し、Rは、水素原子(またはその同位体の1つ)または炭化水素基を含む部位を表し、Qは、カルボキシレート、チオカルボキシレートおよびジチオカルボキシレートから選択されるアニオン配位子を表す。また、式Ib中、LBは、ルイス塩基を表し、WCAは、弱配位アニオンを表し、aは、1~3の整数を表し、bは、0~2の整数を表し、aとbとの合計は、1~3であり、pおよびrは、パラジウムカチオンと弱配位アニオンとの電荷のバランスをとる数を表す。]
 式Iaに従う典型的な触媒前駆体としては、Pd(OAc)(P(i-Pr)、Pd(OAc)(P(Cy)、Pd(OCCMe(P(Cy)、Pd(OAc)(P(Cp)、Pd(OCCF(P(Cy)、Pd(OCC(P(Cy)が挙げられるが、これらに限定されるわけではない。ここで、Cpは、シクロペンチル(cyclopentyl)基を表し、Cyは、シクロヘキシル基を表す。
 また、式Ibで表される触媒前駆体としては、pおよびrが、それぞれ1および2の整数から選択される化合物が好ましい。
 このような式Ibに従う典型的な触媒前駆体としては、Pd(OAc)(P(Cy)が挙げられる。ここで、Cyは、シクロヘキシル基を表し、Acは、アセチル基を表す。
 これらの触媒前駆体は、モノマーを効率よく反応(ノルボルネン系モノマーの場合、付加重合反応によって効率よく重合反応や架橋反応等)することができる。
 また、活性化温度が低下した状態(活性潜在状態)において、触媒前駆体としては、その活性化温度が本来の活性化温度よりも10~80℃程度(好ましくは、10~50℃程度)低くなるものが好ましい。これにより、コア部14と側面クラッド部15との間の屈折率差を確実に生じさせることができる。
 かかる触媒前駆体としては、Pd(OAc)(P(i-Pr)およびPd(OAc)(P(Cy)のうちの少なくとも一方を含む(主とする)ものが好適である。
 助触媒は、活性放射線の照射によって活性化して、前記の触媒前駆体(プロカタリスト)の活性化温度(モノマーに反応を生じさせる温度)を変化させ得る物質である。
 この助触媒(コカタリスト:cocatalyst)としては、活性放射線の照射により、その分子構造が変化(反応または分解)して活性化する化合物であれば、いかなるものでも用いることができるが、特定波長の活性放射線の照射によって分解し、プロトンや他の陽イオン等のカチオンと、触媒前駆体の離脱性基に置換し得る弱配位アニオン(WCA)とを発生する化合物(光開始剤)を含む(主とする)ものが好適に用いられる。
 弱配位アニオンとしては、例えば、テトラキス(ペンタフルオロフェニル)ホウ酸イオン(FABA)、ヘキサフルオロアンチモン酸イオン(SbF )等が挙げられる。
 この助触媒(光酸発生剤または光塩基発生剤)としては、例えば、下記式で表されるテトラキス(ペンタフルオロフェニル)ホウ酸塩やヘキサフルオロアンチモン酸塩の他、テトラキス(ペンタフルオロフェニル)ガリウム酸塩、アルミン酸塩類、アンチモン酸塩類、他のホウ酸塩類、ガリウム酸塩類、カルボラン類、ハロカルボラン類等が挙げられる。
Figure JPOXMLDOC01-appb-C000038

 このような助触媒の市販品としては、例えば、ニュージャージ州クランベリーのRhodia USA社から入手可能な「RHODORSIL(登録商標、以下同様である。) PHOTOINITIATOR 2074(CAS番号第178233-72-2番)」、日本国東京の東洋インキ製造株式会社から入手可能な「TAG-372R((ジメチル(2-(2-ナフチル)-2-オキソエチル)スルフォニウムテトラキス(ペンタフルオロフェニル)ボレート:CAS番号第193957-54-9番))、日本国東京のみどり化学株式会社から入手可能な「MPI-103(CAS番号第87709-41-9番)」、日本国東京の東洋インキ製造株式会社から入手可能な「TAG-371(CAS番号第193957-53-8番)」、日本国東京の東洋合成工業株式会社から入手可能な「TTBPS-TPFPB(トリス(4-tert-ブチルフェニル)スルフォニウムテトラキス(ペンタペンタフルオロフェニル)ボレート)」、日本国東京のみどり化学工業株式会社より入手可能な「NAI-105(CAS番号第85342-62-7番)」等が挙げられる。
 なお、助触媒として、RHODORSIL PHOTOINITIATOR 2074を用いる場合、後述する活性放射線(化学線)としては、紫外線(UV光)が好適に用いられ、紫外線の照射手段としては、水銀灯(高圧水銀ランプ)が好適に用いられる。これにより、層910に対して、300nm未満の十分なエネルギーの紫外線(活性放射線)を供給することができ、RHODORSIL PHOTOINITIATOR 2074を効率よく分解して、上記のカチオンおよびWCAを発生させることができる。
 [2]
 [2-1]次に、第1の製造方法と同様に、マスク935を介して層910に活性放射線930を照射する。
 照射領域925では、助触媒が活性放射線930の作用により反応(結合)または分解して、カチオン(プロトンまたは他の陽イオン)と、弱配位アニオン(WCA)とを遊離(発生)する。
 そして、これらのカチオンや弱配位アニオンは、照射領域925内に存在する触媒前駆体の分子構造に変化(分解)を生じさせ、これを活性潜在状態(潜在的活性状態)に変化させる。
 ここで、活性潜在状態(または潜在的活性状態)の触媒前駆体とは、本来の活性化温度より活性化温度が低下しているが、温度上昇がないと、すなわち、室温程度では、照射領域925内においてモノマーの反応を生じさせることができない状態にある触媒前駆体のことをいう。
 したがって、活性放射線930照射後においても、例えば-40℃程度で、層910を保管すれば、モノマーの反応を生じさせることなく、その状態を維持することができる。このため、活性放射線930照射後の層910を複数用意しておき、これらに一括して後述する加熱処理を施すことにより、光導波路1(たとえば、コア層13)を得ることができ、利便性が高い。
 また、上記のような触媒前駆体の分子構造の変化に加え、第1の製造方法と同様、ポリマー915から離脱性基が離脱する。これにより、層910の照射領域925と未照射領域940との間に屈折率差が生じる。
 [2-2]次に、層910に対して加熱処理(第1の加熱処理)を施す。
 これにより、照射領域925内では、活性潜在状態の触媒前駆体が活性化して(活性状態となって)、モノマーの反応(重合反応や架橋反応)が生じる。
 そして、モノマーの反応が進行すると、照射領域925内におけるモノマー濃度が徐々に低下する。これにより、照射領域925と未照射領域940との間には、モノマー濃度に差が生じ、これを解消すべく、未照射領域940からモノマーが拡散移動して照射領域925に集まってくる。
 その結果、層910には、第1の製造方法と同様の屈折率分布が形成される。
 この加熱処理における加熱温度は、特に限定されないが、30~80℃程度であるのが好ましく、40~60℃程度であるのがより好ましい。
 また、加熱時間は、照射領域925内におけるモノマーの反応がほぼ完了するように設定するのが好ましく、具体的には、0.1~2時間程度であるのが好ましく、0.1~1時間程度であるのがより好ましい。
 次に、層910に対して第2の加熱処理を施す。
 これにより、未照射領域940および/または照射領域925に残存する触媒前駆体を、直接または助触媒の活性化を伴って、活性化させる(活性状態とする)ことにより、各領域925、940に残存するモノマーを反応させる。
 このように、各領域925、940に残存するモノマーを反応させることにより、得られるコア部14および側面クラッド部15の安定化を図ることができる。
 この第2の加熱処理における加熱温度は、触媒前駆体または助触媒を活性化し得る温度であればよく、特に限定されないが、70~100℃程度であるのが好ましく、80~90℃程度であるのがより好ましい。
 また、加熱時間は、0.5~2時間程度であるのが好ましく、0.5~1時間程度であるのがより好ましい。
 次に、層910に対して第3の加熱処理を施す。
 これにより、得られるコア層13に生じる内部応力の低減や、コア部14および側面クラッド部15の更なる安定化を図ることができる。
 この第3の加熱処理における加熱温度は、第2の加熱処理における加熱温度より20℃以上高く設定するのが好ましく、具体的には、90~180℃程度であるのが好ましく、120~160℃程度であるのがより好ましい。
 また、加熱時間は、0.5~2時間程度であるのが好ましく、0.5~1時間程度であるのがより好ましい。
 以上の工程を経て、光導波路1(たとえばコア層13)が得られる。
 なお、例えば、第2の加熱処理や第3の加熱処理を施す前の状態で、コア部14と側面クラッド部15との間に十分な屈折率差が得られている場合等には、第2の加熱処理以降または第3の加熱処理を省略してもよい。
 [3]次に、第1の製造方法と同様に、コア層13の両面にクラッド層11、12を積層する。これにより、光導波路1が得られる。
 なお、図5に示すミラー17を形成する場合、得られた光導波路1の一部に掘り込み加工を施し、これによりミラー17を内壁面とする凹部170を形成する。
 光導波路1に対する掘り込み加工は、例えば、レーザー加工法、ダイシングソーによるダイシング加工法等により行うことができる。
 <電子機器>
 上述したような本発明の光導波路は、光伝送効率および長期信頼性に優れたものである。このため、本発明の光導波路を備えることにより、2点間で高品質の光通信を行い得る信頼性の高い電子機器(本発明の電子機器)が得られる。
 本発明の光導波路を備える電子機器としては、例えば、携帯電話、ゲーム機、ルーター装置、WDM装置、パソコン、テレビ、ホーム・サーバー等の電子機器類が挙げられる。これらの電子機器では、いずれも、例えばLSI等の演算装置とRAM等の記憶装置との間で、大容量のデータを高速に伝送する必要がある。したがって、このような電子機器が本発明の光導波路を備えることにより、電気配線に特有なノイズ、信号劣化等の不具合が解消され、その性能の飛躍的な向上が期待できる。
 さらに、光導波路部分では、電気配線に比べて発熱量が大幅に削減される。このため、冷却に要する電力を削減することができ、電子機器全体の消費電力を削減することができる。
 また、本発明の光導波路は、伝送損失およびパルス信号の鈍りが小さく、多チャンネル化および高密度化しても混信が生じ難い。このため、高密度かつ小面積でも信頼性の高い光導波路が得られ、この光導波路を搭載することで、電子機器の信頼性向上および小型化が図られる。
 以上、本発明の光導波路および電子機器について説明したが、本発明は、これに限定されるものではなく、例えば光導波路には、任意の構成物が付加されていてもよい。
 本実施の形態の電子機器は、大容量の情報を高速で通信可能な広帯域回線(ブロードバンド)に情報を伝送する装置として、ルーター装置、WDM(Wavelength Division Multiplexing)装置等の伝送装置が用いられている。これらの伝送装置内には、LSIのような演算素子、メモリーのような記憶素子等が組み合わされた信号処理基板が多数設置されており、各回線の相互接続を担っている。
 本実施の形態の光導波路は、光欠損が少なく、かつクロストークが低減される等、光伝送特性に優れる。これにより、情報伝送の高速化に伴い、クロストークや高周波ノイズの発生、電気信号の劣化等を抑制するこができる。したがって、各信号処理基板において高いスループットで情報を伝送することが可能となる。また、スーパーコンピューターや大規模サーバー等でも高いスループットで情報を伝送することが可能となる。
 また、本発明の光導波路を製造する方法は、上記の方法に限定されず、例えば、活性放射線の照射線により分子結合を切断し、屈折率を変化させる方法(フォトブリーチ法)、コア層を形成する組成物に光異性化または光二量化可能な不飽和結合を有する光架橋性ポリマーを含有させ、これに活性放射線を照射して分子構造を変化させるとともに屈折率を変化させる方法(光異性化法・光二量化法)等の方法を用いることもできる。
 これらの方法では、活性放射線の照射量に応じて屈折率の変化量を調整することができるので、目的とする屈折率分布Wの形状に応じて層の各部に照射する活性放射線の照射量を異ならせることにより、屈折率分布Wを有するコア層を形成することができる。
 次に、本発明の実施例について説明する。
1.光導波路の製造
(実施例1)
(1)離脱性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で満たされたグローブボックス中において、ヘキシルノルボルネン(HxNB)7.2g(40.1mmol)、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
 次に、100mLバイアルビン中に下記化学式(A)で表わされるNi触媒1.56g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。
 この下記化学式(A)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、ポリマー#1を得た。ポリマー#1の分子量分布は、GPC測定により、Mw=10万、Mn=4万であった。また、ポリマー#1中の各構造単位のモル比は、NMRによる同定により、ヘキシルノルボルネン構造単位が50mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が50mol%であった。
Figure JPOXMLDOC01-appb-C000039

Figure JPOXMLDOC01-appb-C000040

(2)コア層形成用組成物の製造
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式(20)で示した第1モノマー、東亞合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、重合開始剤(光酸発生剤) RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(2.50E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。
(3)光導波路の製造
(下側クラッド層の作製)
 シリコンウエハー上に感光性ノルボルネン樹脂組成物(プロメラス社製 Avatrel2000Pワニス)をドクターブレードにより均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、塗布された全面に紫外線を80mJ照射し、乾燥機中120℃で1時間加熱して、塗膜を硬化させて、下側クラッド層を形成させた。形成された下側クラッド層は、厚みが20μmであり、無色透明であった。
(コア層の作製)
 上記下側クラッド層上にコア層形成用組成物をドクターブレードによって均一に塗布した後、55℃の乾燥機に10分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を1300mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中150℃で1.5時間の加熱を行った。加熱後、非常に鮮明な導波路パターンが現れているのが確認された。また、コア部および側面クラッド部の形成が確認された。なお、形成した光導波路は、コア部が8本並列に形成されたものである。また、コア部の幅を50μm、側面クラッド部の幅を80μm、コア層の厚さを50μmとした。
(上側クラッド層の作製)
 ポリエーテルスルホン(PES)フィルム上に、予め乾燥厚み20μmになるようにAvatrel2000Pを積層させたドライフィルムを、上記コア層に貼り合わせ、140℃に設定された真空ラミネーターに投入して熱圧着を行った。その後、紫外線を100mJ全面照射し乾燥機中120℃で1時間加熱して、Avatrel2000Pを硬化させて、上側クラッド層を形成させ、光導波路を得た。
 なお、得られた光導波路から、長さ10cm分を切り出した。
(屈折率分布の評価)
 そして、得られた光導波路のコア層の横断面について、その厚さ方向の中心線に沿って干渉顕微鏡を使用して、幅方向の屈折率分布Wを取得した。その結果、屈折率分布Wは、複数の極小値および極大値を有し、屈折率が連続的に変化したものであった。
 以下、干渉顕微鏡を使用した屈折率分布の測定方法を示す。
 まず、光導波路の断面方向に光導波路をスライスして、光導波路断片を得た。光導波路の長さが200μm~300μmとなるように、スライスした。次いで、2つのスライドガラスで囲まれた空間に、屈折率1.536のオイルで充填したチャンバーを作成した。このチャンバー内の空間に、光導波路断片を挟み込んだ測定サンプルと、光導波路断片を入れていないブランクサンプルを作成した。次いで、干渉顕微鏡を使用して、光導波路断片の断面方向の干渉縞写真を得た。この後、干渉縞写真を画像解析して、屈折率分布を得た。ここで、干渉縞写真の画像解析は、次のように行った。まず、干渉顕微鏡の光路長を変更して、干渉縞の出来る場所を変えた画像データを連続的に取得した。複数の画像データから、層間方向及び層内方向の各測定ポイントの屈折率を算出した。本実施例では、測定ポイントの間隔は、2.5μmとした。
 一方、光導波路の横断面について、そのコア部の幅の中心を上下方向に通過する中心線に沿って、干渉顕微鏡を使用して、厚さ方向の屈折率分布Tを取得した。その結果、屈折率分布Tは、コア部に対応する領域においてほぼ一定の値で推移し、各クラッド層に対応する領域においても、コア部に対応する領域の屈折率より低いほぼ一定の値で推移した。すなわち、得られた光導波路の厚さ方向の屈折率分布は、いわゆるステップインデックス型になっていた。
(実施例2)
 紫外線の照射量を1500mJ/cmに高めた以外は、実施例1と同様にして光導波路を得た。
(実施例3)
 紫外線の照射量を2000mJ/cmに高めるとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が40mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が60mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例4)
 紫外線の照射量を500mJ/cmに減らすとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が45mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が55mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例5)
 ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が30mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が70mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例8)
 紫外線の照射量を300mJ/cmに減らすとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が40mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が60mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例9)
 紫外線の照射量を500mJ/cmに減らすとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が30mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が70mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例10)
 紫外線の照射量を100mJ/cmに減らすとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が60mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が40mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例11)
 紫外線の照射量を1500mJ/cmに高めるとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が10mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が90mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例12)
 紫外線の照射量を3000mJ/cmに高めるとともに、ポリマーとして、ポリマー#1の各構造単位のモル比を、ヘキシルノルボルネン構造単位が5mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が95mol%に変更したものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
(実施例13)
 コア層形成用組成物として、以下に示す方法で製造されたものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、2官能オキセタンモノマー(式(15)で示したもの、東亞合成製、DOX、CAS#18934-00-4、分子量214、沸点119℃/0.67kPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。
(実施例14)
 コア層形成用組成物として、以下に示す方法で製造されたものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、脂環式エポキシモノマー(式(37)で示したもの、ダイセル化学製、セロキサイド2021P、CAS#2386-87-0、分子量252、沸点188℃/4hPa)2g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。
(実施例15)
 コア層形成用組成物として、以下に示す方法で製造されたものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式20で示したもの、東亞合成製 CHOX)1g、脂環式エポキシモノマー(ダイセル化学製、セロキサイド2021P)1g、光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。
(実施例16)
 ポリマーとして、以下に示す方法で合成されたものを用いるようにした以外は、実施例1と同様にして光導波路を得た。
 まず、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)に代えて、フェニルジメチルノルボルネンメトキシシラン10.4g(40.1mmol)を用いた以外は実施例1と同様にしてポリマーを合成した。得られたポリマーの構造単位を下記式(103)に示す。このポリマーの分子量は、GPC測定により、Mw=11万、Mn=5万であった。また、各構造単位のモル比は、NMRによる同定により、ヘキシルノルボルネン構造単位が50mol%、フェニルジメチルノルボルネンメトキシシラン構造単位が50mol%であった。
(実施例17)
 コア層形成用組成物として、以下に示す方法で製造されたものを用いた点、及び下側クラッド層上にコア層形成用組成物をドクターブレードによって均一に塗布した後、60℃の乾燥機に10分間投入した点以外は、実施例1と同様にして光導波路を得た。
 精製した上記ポリマー#1 10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式(20)で示したもの、東亞合成製 CHOX)2g光酸発生剤 RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(2.72E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層形成用組成物を得た。
(実施例18)
 紫外線の照射量を500mJ/cmに減らした以外は、実施例15と同様にして光導波路を得た。
Figure JPOXMLDOC01-appb-C000041

(比較例1)
 下記のようにした以外は、実施例1と同様にして光導波路を得た。
 まず、下側クラッド層を形成後、その上にポリマー#1からシクロヘキシルオキセタンモノマーを省略してなるコア層形成用組成物を塗布し、露光、加熱してコア層を得た。
 その後、上側クラッド層を形成することにより、光導波路を得た。
 なお、得られた光導波路では、コア部の屈折率がほぼ一定であり、側面クラッド部の屈折率もほぼ一定であった。すなわち、得られた光導波路のコア層の幅方向の屈折率分布Wは、いわゆるステップインデックス型になっていた。
(比較例2)
 露光の際に、露光量が連続的に変化するよう、透過率が連続的に変化したフォトマスクを用いて露光するようにした以外は、比較例1と同様にして光導波路を得た。
 なお、得られた光導波路では、側面クラッド部の屈折率がほぼ一定である一方、コア部の屈折率は中央部から周辺に向かって連続的に低下していた。すなわち、得られた光導波路のコア層の屈折率分布は、いわゆるグレーテッドインデックス型になっていた。
(比較例3)
 露光の際に、露光量が連続的に変化するよう、透過率が連続的に変化したフォトマスクを用いて露光するようにした以外は、比較例1と同様にして光導波路を得た。
 なお、得られた光導波路では、屈折率分布が複数の極小値および極大値を有し、コア部の屈折率は中央部から周辺に向かって連続的に低下し、極小値に至っており、一方、側面クラッド部では極小値から離れるにつれて屈折率が連続的に増加していた。なお、極小値では、屈折率分布の形状が略V字状をなしており、その近傍における屈折率の変化は不連続的であった。
(参考例1)
 クラッド層の積層を省略し、コア層のみで光導波路を構成するようにした以外は、実施例1と同様にして光導波路を得た。
2.評価
2.1 光導波路の屈折率分布
 得られた光導波路のコア層の横断面について、その厚さ方向の中心線に沿って屈折ニアフィールド法により屈折率分布を測定し、コア層の横断面の幅方向の屈折率分布を得た。なお、得られた屈折率分布は、コア部ごとに同様の屈折率分布パターンが繰り返されているので、得られた屈折率分布から一部を切り出し、これを屈折率分布Wとした。屈折率分布Wの形状は、図2に示すような、4つの極小値と5つの極大値とが交互に並んだ形状であった。
 そして、得られた屈折率分布Wから、各極小値Ws1、Ws2、Ws3、Ws4および各極大値Wm1、Wm2、Wm3、Wm4、Wm5を求めるとともに、クラッド部における平均屈折率WAを求めた。
 また、屈折率分布Wにおいて、コア部に形成された極大値Wm2、Wm4近傍における屈折率が、平均屈折率WA以上の値を有している部分の幅a[μm]、および、各極小値Ws1、Ws2、Ws3、Ws4近傍における屈折率が、平均屈折率WA未満の値を有している部分の幅b[μm]をそれぞれ測定した。
 また、得られた光導波路の横断面について、そのコア部の幅の中心を上下方向に通過する中心線に沿って、上記の条件で干渉顕微鏡を使用して、屈折率分布を測定し、光導波路の横断面の厚さ方向の屈折率分布Tを得た。
 その結果、各実施例で得られた光導波路の屈折率分布Wは、それぞれ、その全体において屈折率の変化が連続的であった。
 一方、各実施例で得られた光導波路の屈折率分布Tは、それぞれ、ステップインデックス型であった。また、実施例において、第1クラッド層、クラッド部、クラッド層に亘る屈折率分布Pは、SI型であった。
 また、比較例1で得られた光導波路の屈折率分布Wは、上述したように、ステップインデックス型であり、屈折率分布Tも、同様にステップインデックス型であった。
 また、比較例2で得られた光導波路の屈折率分布Wは、上述したように、グレーテッドインデックス型であり、一方、屈折率分布Tは、ステップインデックス型であった。
 さらに、比較例3で得られた光導波路の屈折率分布Wは、コア部と側面クラッド部との間で屈折率が不連続的に変化しており、一方、屈折率分布Tは、ステップインデックス型であった。
 また、参考例1で得られた光導波路の屈折率分布Wは、各実施例で得られた光導波路の屈折率分布Wと同等の形状であり、一方、クラッド層が省略されていたので、屈折率分布Tは測定しなかった。
2.2 光導波路の伝送損失
 850nmVCSEL(面発光レーザー)より発せられた光を50μmφの光ファイバーを経由して得られた光導波路に導入し、200μmφの光ファイバーで受光を行って光の強度を測定した。なお、測定にはカットバック法を採用した。光導波路の長手方向を横軸にとり、挿入損失を縦軸にとって測定値をプロットしたところ、測定値は直線上に並んだ。そこで、その直線の傾きから伝送損失を算出した。
2.3 パルス信号の波形の保持性
 得られた光導波路に対して、レーザーパルス光源からパルス幅1nsのパルス信号を入射し、出射光のパルス幅を測定した。
 そして、測定した出射光のパルス幅について、比較例1で得られた光導波路(ステップインデックス型の光導波路)の測定値を1としたときの相対値を算出し、これを以下の評価基準にしたがって評価した。
 <パルス幅の評価基準>
 ◎:パルス幅の相対値が0.5未満である
 ○:パルス幅の相対値が0.5以上0.8未満である
 △:パルス幅の相対値が0.8以上1未満である
 ×:パルス幅の相対値が1以上である
 以上、2.2および2.3の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、各実施例で得られた光導波路では、各比較例で得られた光導波路に比べ、伝送損失およびパルス信号の鈍りがそれぞれ抑えられていることが認められた。また、実施例のクラッド部における伝送損失およびパルス信号の鈍りは、第1クラッド層、クラッド部、及び第2クラッド層がすべて均一の屈折率を有する場合のクラッド部と比較して、それぞれ抑えられていることが分かった。
2.4 光導波路の出射光の強度分布
 得られた光導波路の出射側端面について、8つのコア部のうちの一方に光を入射したときの出射光の強度分布を測定した。
 なお、出射光の強度分布の測定は、以下のようにして行った。
 図12は、光導波路の出射側端面における出射光の強度分布を測定する方法を説明するための図である。
 図12に示す方法では、まず、測定対象の光導波路1の入射側端面1aのコア部14の1つに対向するように、直径50μmの入射側光ファイバー21を配置する。この入射側光ファイバー21は、光導波路1に光を入射するための発光素子(図示せず)に接続されており、その光軸と、コア部14の光軸とが一致するように配置されている。
 一方、光導波路1の出射側端面1bには、これに対向するように直径62.5μmの出射側光ファイバー22を配置した。この出射側光ファイバー22は、光導波路1から出射した出射光を受光するための受光素子(図示せず)に接続されており、その光軸は、光導波路1のコア層の厚さ方向の中心線に合わせてある。そして、出射側光ファイバー22は、出射側端面1bとの離間距離を一定に維持しつつ、この中心線を含む面内を走査し得るよう構成されている。
 そして、入射側光ファイバー21からコア部の1つに光を入射しつつ、出射側光ファイバー22を走査させる。そして、出射側光ファイバー22の位置に対して受光素子で測定された出射光の強度を測定することにより、出射側端面1bの位置に対する出射光の強度分布を取得することができる。
 以上のようにして測定した出射光の強度分布を図13に示す。なお、図13には、実施例1、比較例1および比較例2で得られた光導波路で測定された出射光の強度分布を代表に示す。
 図13から明らかなように、実施例1で得られた光導波路では、いずれもクロストークが十分に抑えられていることが認められた。また、実施例1で得られた光導波路では、光を入射したコア部14(図13の中央のコア部14)に隣り合うコア部14における出射光の強度は、そのコア部14に隣接した、前記光を入射したコア部14とは反対側に位置する側面クラッド部15における出射光の強度より小さいことが認められた。これは、実施例1で得られた光導波路では、側面クラッド部15に、コア部14より小さい値の極大値を有しており、かつ、屈折率分布が連続的に変化しているため、従来であれば隣り合うコア部14に漏れ出て「クロストーク」になってしまう光が、側面クラッド部15に集まり、結果的にクロストークの発生を防止しているためであると推察される。したがって、実施例1で得られた光導波路では、チャンネル間での混信を防止することができる。
 なお、実施例1で得られた光導波路では、出射光の一部が側面クラッド部15に集まっている様子が観測されたが、通常、光導波路に接続される受光素子は、各コア部14の出射側端面に対向するように接続され、側面クラッド部15には接続されない。よって、側面クラッド部15に光が集まったとしても、クロストークとはならず、混信が抑制される。
 また、図示していないが、他の実施例で得られた光導波路でも、実施例1と同様、クロストークが十分に抑えられていた。
 一方、比較例1、2で得られた光導波路では、光を入射したコア部14に隣り合うコア部14において、出射光の強度分布の極大値が位置しており、漏れ出た光が観測された(クロストーク)。
 また、図示していないが、比較例3で得られた光導波路でも、クロストークが観測された。
2.5 ミラー損失
 得られた光導波路の一方の端部近傍に対して、レーザー加工法により、横断面がV字状をなす凹部を形成した。これにより、各光導波路に対して図5に示すミラーを形成した。
 そして、JPCA(社団法人 日本電子回路工業会)規格、高分子光導波路の試験方法(JPCA-PE02-05-01S)の4.6.3に規定されたミラー損失の測定方法によりミラー損失を測定した。
 具体的には、出射側光ファイバーを光導波路の垂直端面に合わせるとともに、ミラーを介して光導波路のコア部と光学的に接続される位置に入射側光ファイバーをセットする。そして、入射側光ファイバーから光導波路に光を入射し、出射側光ファイバーで検出された光強度をP1(dBm)とする。
 次いで、ミラー部のみをダイシングソーによるダイシング加工により切断して垂直端面を形成し、この垂直端面に出射側光ファイバーをセットして、再び出射光の光強度を測定する。測定された光強度をP0(dBm)とする。
 そして、P0-P1によりミラー損失(dB)を算出した。
 その結果、各実施例および各比較例で得られた光導波路では、いずれもミラー損失が小さく抑えられていたのに対し、参考例で得られた光導波路では、ミラー損失が大きかった。
(3.その他の実施例)
3.1 光導波路の製造
(実施例A)
(1)クラッド溶液の製造
 ダイセル化学工業(株)製セロキサイド2081 20g、(株)ADEKA社製アデカオプトマーSP-170 0.6g、メチルイソブチルケトン80gを撹拌混合し、0.2μm孔径のPTFEフィルターでろ過して清浄で無色透明なクラッド溶液E1を得た。
(2)感光性樹脂組成物の製造
 新日鐵化学(株)製YP-50S 20gと、ダイセル化学工業(株)製セロキサイド2021P 5gと、(株)ADEKA製アデカオプトマーSP-170 0.2gと、をメチルイソブチルケトン80g中に投入し撹拌溶解し、0.2μm孔径のPTFEフィルターでろ過して清浄で無色透明な感光性樹脂組成物F1を得た。
(3)下層クラッドの作製
 厚み25μmのポリイミドフィルム上に前記クラッド溶液E1をドクターブレードにより均一に塗布した後、50℃の乾燥機に10分間投入した。溶媒を完全に除去した後、UV露光機で全面に紫外線を500mJ/cmとなるように照射し、硬化させて無色透明な下層クラッドを形成した。得られたクラッド層の厚みは10μmであった。
(4)コア層の形成、コア領域およびクラッド領域のパターニング
 前記下層クラッド上に前記感光性樹脂組成物F1をドクターブレードにて均一に塗布した後、50℃の乾燥機に10分間投入した。溶剤を完全に除去した後に、ラインが50μm、スペースが50μmの直線パターンが全面に描かれたフォトマスクを圧着し、平行露光機を用いて照射量が500mJ/cmとなるように紫外線を照射した。その後、マスクを取り去り、150℃のオーブンに30分間投入して取り出すと鮮明な導波路パターンが現れているのが確認された。得られたコア層の厚みは50μmであった。
(5)上層クラッドの形成
 前記コア層上に前記クラッド溶液E1を用いて下層クラッドと同様の条件にて上層クラッドを形成した。得られた上層クラッドの厚みは10μmであった。
(実施例B)
(1)ポリマーの合成
 セパラブルフラスコにメタクリル酸メチル20.0g、ベンジルメタクリレート30.0g、およびメチルイソブチルケトン450gを投入し、撹拌混合したのち、窒素ガスで置換してモノマー溶液を得た。一方、重合開始剤としてアゾビスイソブチロニトリル0.25gをメチルイソブチルケトン10gに溶解し、窒素ガスで置換して開始剤溶液を得た。その後、前記モノマー溶液を撹拌しながら80℃に加熱し前記開始剤溶液をシリンジを用いてモノマー溶液に添加した。そのまま80℃で1時間加熱撹拌したのちに冷却し重合体溶液を得た。
 次いで、5Lのイソプロパノールをビーカーに準備し常温で撹拌機で撹拌しながら、前記重合体溶液を滴下した。滴下が完了してからも引き続き30分間撹拌し、その後沈殿したポリマーを取り出し、真空乾燥機にて減圧下60℃で8時間乾燥してポリマーA1を得た。
(2)クラッド溶液の製造
 互応化学工業(株)製の水性アクリレート樹脂溶液RD-180 20g、イソプロパノール20g、および日清紡ケミカル(株)製カルボジライトV-02-L2 0.4gを撹拌混合し、0.2μm孔径のPTFEフィルターでろ過して清浄で無色透明なクラッド溶液B1を得た。
(3)感光性樹脂組成物の製造
 (1)の方法で得られたポリマーA1 20gと、メタクリル酸シクロヘキシル5gと、BASFジャパン(株)製イルガキュア651 0.2gと、をメチルイソブチルケトン80g中に投入し撹拌溶解し、0.2μm孔径のPTFEフィルターでろ過して清浄で無色透明な感光性樹脂組成物C1を得た。
(4)下層クラッドの作製
 厚み25μmのポリイミドフィルム上に前記クラッド溶液B1をドクターブレードにより均一に塗布した後、80℃の乾燥機に10分間投入した。溶媒を完全に除去した後、さらに150℃のオーブンに10分間投入し硬化させて無色透明な下層クラッドを形成した。得られたクラッド層の厚みは10μmであった。
(5)コア層の形成、コア領域およびクラッド領域のパターニング
 前記下層クラッド上に前記感光性樹脂組成物C1をドクターブレードにて均一に塗布した後、50℃の乾燥機に10分間投入した。溶剤を完全に除去した後に、ライン50μm、スペースが50μmの直線パターンが全面に描かれたフォトマスクを圧着し、平行露光機を用いて照射量が500mJ/cmとなるように紫外線を照射した。その後、マスクを取り去り、150℃の窒素乾燥機に30分間投入して取り出すと鮮明な導波路パターンが現れているのが確認された。得られたコア層の厚みは50μmであった。
(6)上層クラッドの形成
 前記コア層上に前記クラッド溶液B1を用いて下層クラッドと同様の条件にて上層クラッドを形成した。得られた上層クラッドの厚みは10μmであった。
(実施例C)
 まず、ベンジルメタクリレートの代わりに2-(パーフルオロヘキシル)エチルメタクリレートを用いたこと以外は実施例Bの(1)と同様にして合成されたポリマーA2を得た。
 以下、ポリマーA1に代えてポリマーA2を用いるようにした以外は、実施例Bと同様にして光導波路を得た。
3.2 評価
(光導波路の伝送損失)
 850nmVCSEL(面発光レーザー)より発せられた光を50μm径の光ファイバーを経由し、実施例A~C得られた光導波路に導入し、200μm径の光ファイバーで受光して光の強度を測定した。そして、カットバック法により伝送損失を測定した。その後、導波路長を横軸にとり、挿入損失を縦軸にプロットすると測定値は直線上に並び、その傾きから各光導波路の伝搬損失はいずれも0.05dB/cmと算出することができた。
 また、実施例A~Cにおいて、屈折率分布のパラメーターを1.の実施例と同様にして変更したところ、2.と同じ傾向の評価結果が得られた。
(パルス信号の波形の保持性)
 実施例A~Cで得られた光導波路について、2.3と同様の方法でパルス信号の波形の保持性を評価したところ、いずれもパルス信号の鈍りが小さいことが認められた。
 また、実施例A~Cにおいて、屈折率分布のパラメーターを1.の実施例と同様にして変更したところ、2.と同じ傾向の評価結果が得られた。
 比較例4 
(1)脱離性基を有するノルボルネン系樹脂の合成
 水分および酸素濃度がいずれも1ppm以下に制御され、乾燥窒素で充満されたグローブボックス中において、ヘキシルノルボルネン(HxNB)7.2g(40.1mmol)、ジフェニルメチルノルボルネンメトキシシラン12.9g(40.1mmol)を500mLバイアル瓶に計量し、脱水トルエン60gと酢酸エチル11gを加え、シリコン製のシーラーを被せて上部を密栓した。
 次に、100mLバイアルビン中に下記式(4)で表わされるNi触媒1.56g(3.2mmol)と脱水トルエン10mLを計量し、スターラーチップを入れて密栓し、触媒を十分に撹拌して完全に溶解させた。
 この化学式(A)で表わされるNi触媒溶液1mLをシリンジで正確に計量し、上記2種のノルボルネンを溶解させたバイアル瓶中に定量的に注入し室温で1時間撹拌したところ、著しい粘度上昇が確認された。この時点で栓を抜き、テトラヒドロフラン(THF)60gを加えて撹拌を行い、反応溶液を得た。
 100mLビーカーに無水酢酸9.5g、過酸化水素水18g(濃度30%)、イオン交換水30gを加えて撹拌し、その場で過酢酸水溶液を調製した。次にこの水溶液全量を上記反応溶液に加えて12時間撹拌してNiの還元処理を行った。
 次に、処理の完了した反応溶液を分液ロートに移し替え、下部の水層を除去した後、イソプロピルアルコールの30%水溶液を100mL加えて激しく撹拌を行った。静置して完全に二層分離が行われた後で水層を除去した。この水洗プロセスを合計で3回繰り返した後、油層を大過剰のアセトン中に滴下して生成したポリマーを再沈殿させ、ろ過によりろ液と分別した後、60℃に設定した真空乾燥機中で12時間加熱乾燥を行うことにより、側鎖に脱離性基を有するノルボルネン系樹脂A(ポリマー#1)を得た。ノルボルネン系樹脂Aの分子量は、GPC測定によりMw=10万、Mn=4万、ノルボルネン系樹脂A中の各構造単位のモル比は、NMRによる同定により、ヘキシルルボルネン構造単位が50mol%、ジフェニルメチルノルボルネンメトキシシラン構造単位が50mol%であった。また屈折率はメトリコンにより1.55(測定波長;633nm)であった。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
(2)感光性樹脂組成物の調製
 精製したノルボルネン系樹脂A10gを100mLのガラス容器に秤量し、これにメシチレン40g、酸化防止剤Irganox1076(チバガイギー社製)0.01g、シクロヘキシルオキセタンモノマー(式(20)で示した第1モノマー、東亜合成製 CHOX、CAS#483303-25-9、分子量186、沸点125℃/1.33kPa)2g、光酸発生剤RhodorsilPhotoinitiator 2074(Rhodia社製、CAS# 178233-72-2)(1.36E-2g、酢酸エチル0.1mL中)を加え均一に溶解させた後、0.2μmのPTFEフィルターによりろ過を行い、清浄なコア層用の感光性樹脂組成物ワニスV1を調製した。
(3)光導波路の製造
(下層クラッドの作製)
 シリコンウエハ上に感光性ノルボルネン樹脂組成物(プロメラス社製 Avatrel2000Pワニス)をドクターブレードにより均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、塗布された全面に紫外線を100mJ照射し、乾燥機中120℃で1時間加熱して、塗膜を硬化させて、下層クラッドを形成させた。形成された下層クラッドは、厚みが20μmであり、無色透明であり、屈折率は1.52(測定波長;633nm)であった。
(コア領域、クラッド領域の作製)
 上記下層クラッド上に、調製して得られた上述の感光性樹脂組成物ワニスV1をドクターブレードによって均一に塗布した後、45℃の乾燥機に15分間投入した。溶剤を完全に除去した後、フォトマスクを圧着して紫外線を500mJ/cmで選択的に照射した。マスクを取り去り、乾燥機中45℃で30分間、85℃で30分間、150℃で1時間と三段階で加熱を行った。加熱後、非常に鮮明な導波路パターンが現れたコア層が確認された。
(上層クラッドの作製)
 ポリエーテルスルホン(PES)フィルム上に、予め乾燥厚み20μmになるように感光性ノルボルネン樹脂組成物(プロメラス社製 Avatrel2000Pワニス)を積層して上層クラッド用フィルムを得た。
(光導波路の作製)
 下層クラッド層上に形成したコア層と、上述の上層クラッド用フィルムとを、貼り合わせて、140℃に設定された真空ラミネーターに投入して熱圧着を行った後、紫外線を100mJ全面照射し乾燥機中120℃で1時間加熱して、Avatrel2000Pを硬化させて、上層クラッドを形成させ、光導波路を得た。
 比較例4の光導波路のコア層の層内方向の屈折率分布は、W型ではないことを確認した。
本実施の形態は以下のものを含む。
 第1の凹部の頂部の屈折率は、クラッド部における平均屈折率より小さくてもよい。
 屈折率分布Wは、第1コア部とクラッド部の境界近傍以外に第2の凸部の頂部を有してもよい。
 屈折率分布Wは、クラッド部の中心部に第2の凸部の頂部を有しており、第2の凸部の頂部から第1の凹部に向かって連続的に屈折率が低下している領域を有してもよい。屈折率分布Tにおける第1コア部と第1クラッド層との屈折率差は、屈折率分布Wにおける第1の凹部の頂部と第1の凸部の頂部との屈折率差より大きくてもよい。ここで、頂部の屈折率としては、極大値又は平坦部の中央部の屈折率を用いることができる。
 第1コア部および第1クラッド層を横切るように設けられた空孔を有し、該空孔の内面により、前記コア部を伝送される光を反射する反射面が構成されてもよい。
 屈折率分布Tにおける第3の凸部の頂部は、コア部の中心部に位置してもよい。
 第3の凸部の最大値は、第1の凸部の最大値より大きくてもよい。
 屈折率分布Tは、コア部の中心に第3の凸部の頂部を有しており、第3の凸部の頂部から第2の凹部に向かって連続的に屈折率が低下している領域を有してもよい。
 第1クラッド層に位置する屈折率分布Tは、第1クラッド層と第1コア部との境界近傍以外の領域に屈折率の最大値を有し、第1クラッド層とコア部との境界近傍に位置する領域に屈折率の最小値を有しており、かつ、当該最大値を示す部分から当該最小値を示す部分まで連続的に屈折率が低下している領域を有してもよい。
 第2の凹部の頂部の屈折率とクラッド層における平均屈折率との屈折率差は、第2の凹部の頂部の屈折率と第3の凸部の頂部の屈折率との屈折率差の3~80%であってもよい。
 第2の凹部の頂部の屈折率と第3の凸部の頂部の屈折率との屈折率差は、0.005~0.07であってもよい。
 第1の凹部の頂部の屈折率とクラッド部における平均屈折率との差は、第1の凹部の頂部の屈折率と第1の凸部の頂部の屈折率との差の3~80%であってもよい。
 第1の凹部の頂部の屈折率と第1の凸部の頂部の屈折率との屈折率差は、0.005~0.07であってもよい。
 屈折率分布Wにおいて、第1の凸部の屈折率が、クラッド部における平均屈折率以上の値を有している部分の幅をa[μm]とし、第1の凹部の屈折率が、クラッド部における平均屈折率未満の値を有している幅をb[μm]としたとき、bは、0.01a~1.2aであってもよい。
 また、本実施の形態は以下のものを含む。
 (1) コア部と、該コア部の両側面に隣接する側面クラッド部と、を備えるコア層と、
 該コア層の両面にそれぞれ積層されたクラッド層と、を有する光導波路であって、
 前記コア層の横断面の幅方向の屈折率分布Wは、少なくとも2つの極小値と、少なくとも1つの第1の極大値と、前記第1の極大値より小さい少なくとも2つの第2の極大値と、を有し、これらが、第2の極大値、極小値、第1の極大値、極小値、第2の極大値の順で並ぶ領域を有しており、この領域のうち、前記第1の極大値を含むように前記2つの極小値で挟まれる領域が前記コア部、前記各極小値から前記第2の極大値側の領域が前記側面クラッド部であり、
 前記各極小値は、前記クラッド部における平均屈折率未満であり、かつ、前記屈折率分布全体で屈折率が連続的に変化しており、
 前記光導波路の横断面の厚さ方向の屈折率分布Tは、前記コア部に対応する領域および前記クラッド層に対応する領域のそれぞれで、屈折率がほぼ一定であり、かつ前記コア部と前記クラッド層との界面で屈折率が不連続的に変化していることを特徴とする光導波路。
 (2) 前記屈折率分布Wのうち、前記側面クラッド部に対応する領域では、前記第2の極大値が前記コア部との界面近傍以外に位置している上記(1)に記載の光導波路。
 (3) 前記屈折率分布Wのうち、前記側面クラッド部に対応する領域では、前記第2の極大値が該領域の中心部に位置しており、かつ、前記第2の極大値から前記極小値に向かって連続的に低下するよう屈折率が変化している上記(2)に記載の光導波路。
 (4) 前記極小値と前記側面クラッド部における平均屈折率との差は、前記極小値と前記第1の極大値との差の3~80%である上記(1)ないし(3)のいずれかに記載の光導波路。
 (5) 前記極小値と前記第1の極大値との屈折率差は、0.005~0.07である上記(4)に記載の光導波路。
 (6) 前記横断面の幅方向の位置を横軸にとり、前記横断面における屈折率を縦軸にとったとき、
 前記屈折率分布Wは、前記第1の極大値近傍において上に凸の略U字状をなし、前記極小値近傍において下に凸の略U字状をなしている上記(1)ないし(5)のいずれかに記載の光導波路。
 (7) 前記屈折率分布Wにおいて、前記第1の極大値近傍における屈折率が、前記側面クラッド部における平均屈折率以上の値を有している部分の幅をa[μm]とし、前記極小値近傍における屈折率が、前記側面クラッド部における平均屈折率未満の値を有している幅をb[μm]としたとき、bは、0.01a~1.2aである上記(1)ないし(6)のいずれかに記載の光導波路。
 (8) 前記屈折率分布Tにおける前記コア部と前記クラッド層との屈折率差は、前記屈折率分布Wにおける前記極小値と前記第1の極大値との屈折率差より大きい上記(1)ないし(7)のいずれかに記載の光導波路。
 (9) 前記コア層は、複数の前記コア部と、該各コア部の両側面にそれぞれ隣接する複数の前記側面クラッド部と、を有している上記(1)ないし(8)のいずれかに記載の光導波路。
 (10) 前記コア部および前記クラッド層を横切るように設けられた空孔を有し、該空孔の内面により、前記コア部を伝送される光を反射する反射面が構成されている上記(1)ないし(9)のいずれかに記載の光導波路。
 (11) 前記コア部は、ノルボルネン系樹脂で構成されている上記(1)ないし(10)のいずれかに記載の光導波路。
 (12) 上記(1)ないし(11)のいずれかに記載の光導波路を備えることを特徴とする電子機器。
 この出願は、平成22年8月27日に出願された日本特許出願特願2010-191294を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  第1クラッド層と、
     前記第1クラッド層上に設けられており、層内方向に設けられたクラッド部、第1コア部、クラッド部、第2コア部、及びクラッド部をこの順番で有するコア層と、
     前記コア層上に設けられた第2クラッド層と、
    を備え、
     前記コア層のうち前記第1コア部、及び前記クラッド部に亘る部分の層内方向の屈折率分布Wが、連続的に変化していて、第1の凸部、第1の凹部、及び第2の凸部の順で並ぶ領域を有しており、
     前記第1コア部に位置する前記屈折率分布Wは、前記第1の凸部を有しており、
     前記クラッド部に位置する前記屈折率分布Wは、前記第1の凸部よりも屈折率の最大値が小さい前記第2の凸部を有しており、
     前記第1クラッド層及び前記第1コア部に亘る部分の層間方向の屈折率分布Tが、前記第1クラッド層と前記第1コア部との界面において不連続的に変化している、光導波路。
  2.  請求項1に記載の光導波路において、
     前記第1クラッド層、前記クラッド部及び前記第2クラッド層に亘る部分の層間方向の屈折率分布Pが、前記第1クラッド層に位置する部分と前記クラッド部に位置する部分とで相異なる、
    光導波路。
  3.  請求項1または2に記載の光導波路において、
     前記第1クラッド層、前記第1コア部に亘る部分の層間方向の屈折率分布Tが、前記屈折率分布Wと相異なる、光導波路。
  4.  請求項1から3のいずれか1項に記載の光導波路において、
     前記第1コア部の屈折率の最大値と前記第1クラッド層の屈折率の最大値との屈折率差は、前記第1コア部の屈折率の最大値と前記クラッド部の屈折率の最大値との屈折率差よりも、大きい、光導波路。
  5.  請求項1から4のいずれか1項に記載の光導波路において、
     前記第2クラッド層上に設けられた、前記コア層と別部材の第2コア層を備え、
     前記第2コア層は、前記第1コア部の層間方向に位置する第3コア部を有する、光導波路。
  6.  請求項1から5のいずれか1項に記載の光導波路において、
     前記第1の凹部の頂部の屈折率は、前記クラッド部における平均屈折率より小さい、光導波路。
  7.  請求項1から6のいずれか1項に記載の光導波路において、
     前記屈折率分布Wは、前記第1コア部と前記クラッド部の界面近傍以外に前記第2の凸部の頂部を有する、光導波路。
  8.  請求項1から7のいずれか1項に記載の光導波路において、
     前記屈折率分布Wは、前記クラッド部の中心部に前記第2の凸部の頂部を有しており、前記第2の凸部の前記頂部から前記第1の凹部に向かって連続的に屈折率が低下している領域を有する、光導波路。
  9.  請求項1から8のいずれか1項に記載の光導波路において、
     前記屈折率分布Tにおける前記第1コア部と前記第1クラッド層との屈折率差は、前記屈折率分布Wにおける前記第1の凹部の頂部と前記第1の凸部の頂部との屈折率差より大きい、光導波路。
  10.  請求項1から9のいずれか1項に記載の光導波路において、
     前記第1コア部および前記第1クラッド層を横切るように設けられた空孔を有し、該空孔の内面により、前記コア部を伝送される光を反射する反射面が構成されている、光導波路。
  11.  請求項1から10のいずれか1項に記載の光導波路において、
     前記第1の凹部の頂部の屈折率と前記クラッド部における平均屈折率との差は、前記第1の凹部の頂部の屈折率と前記第1の凸部の頂部の屈折率との差の3~80%である、光導波路。
  12.  請求項1から11のいずれか1項に記載の光導波路において、
     前記第1の凹部の頂部の屈折率と前記第1の凸部の頂部の屈折率との屈折率差は、0.005~0.07である、光導波路。
  13.  請求項1から12のいずれか1項に記載の光導波路において、
     前記屈折率分布Wにおいて、前記第1の凸部の屈折率が、前記クラッド部における平均屈折率以上の値を有している部分の幅をa[μm]とし、前記第1の凹部の屈折率が、前記クラッド部における平均屈折率未満の値を有している幅をb[μm]としたとき、bは、0.01a~1.2aである、光導波路。
  14.  コア部と、該コア部の両側面に隣接する側面クラッド部と、を備えるコア層と、
     該コア層の両面にそれぞれ積層されたクラッド層と、を有する光導波路であって、
     前記コア層の横断面の幅方向の屈折率分布Wは、少なくとも2つの極小値と、少なくとも1つの第1の極大値と、前記第1の極大値より小さい少なくとも2つの第2の極大値と、を有し、これらが、第2の極大値、極小値、第1の極大値、極小値、第2の極大値の順で並ぶ領域を有しており、この領域のうち、前記第1の極大値を含むように前記2つの極小値で挟まれる領域が前記コア部、前記各極小値から前記第2の極大値側の領域が前記側面クラッド部であり、
     前記各極小値は、前記クラッド部における平均屈折率未満であり、かつ、前記屈折率分布全体で屈折率が連続的に変化しており、
     前記光導波路の横断面の厚さ方向の屈折率分布Tは、前記コア部に対応する領域および前記クラッド層に対応する領域のそれぞれで、屈折率がほぼ一定であり、かつ前記コア部と前記クラッド層との界面で屈折率が不連続的に変化していることを特徴とする光導波路。
  15.  請求項1から14のいずれか1項に記載の光導波路を備えることを特徴とする電子機器。
PCT/JP2011/004773 2010-08-27 2011-08-26 光導波路および電子機器 WO2012026135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/819,600 US9151888B2 (en) 2010-08-27 2011-08-26 Optical waveguide and electronic device
CN201180041360.0A CN103080798B (zh) 2010-08-27 2011-08-26 光波导和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010191294 2010-08-27
JP2010-191294 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012026135A1 true WO2012026135A1 (ja) 2012-03-01

Family

ID=45723157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004773 WO2012026135A1 (ja) 2010-08-27 2011-08-26 光導波路および電子機器

Country Status (5)

Country Link
US (1) US9151888B2 (ja)
JP (1) JP2012068632A (ja)
CN (1) CN103080798B (ja)
TW (1) TWI490573B (ja)
WO (1) WO2012026135A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051406A (zh) * 2018-02-02 2018-05-18 成都信息工程大学 一种电光效应光波导检测装置
CN108303377A (zh) * 2018-02-02 2018-07-20 成都信息工程大学 一种热光效应光波导检测装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691216B2 (ja) * 2010-03-29 2015-04-01 富士通株式会社 光半導体集積素子及びその製造方法
JP2013235035A (ja) * 2012-05-02 2013-11-21 Sumitomo Bakelite Co Ltd 光導波路、光導波路の製造方法および電子機器
WO2013191175A1 (ja) * 2012-06-19 2013-12-27 住友ベークライト株式会社 光導波路、光配線部品、光モジュール、光電気混載基板および電子機器
JP6251989B2 (ja) * 2012-06-19 2017-12-27 住友ベークライト株式会社 光電気混載基板および電子機器
JP2014026268A (ja) * 2012-06-19 2014-02-06 Sumitomo Bakelite Co Ltd 光導波路、光配線部品、光モジュール、光電気混載基板および電子機器
US9720171B2 (en) 2012-06-19 2017-08-01 Sumitomo Bakelite Co., Ltd. Optical waveguide, optical interconnection component, optical module, opto-electric hybrid board, and electronic device
JP6394018B2 (ja) * 2013-03-29 2018-09-26 住友ベークライト株式会社 光導波路および電子機器
US9086551B2 (en) 2013-10-30 2015-07-21 International Business Machines Corporation Double mirror structure for wavelength division multiplexing with polymer waveguides
US20150331181A1 (en) * 2014-05-16 2015-11-19 Corning Incorporated Multimode optical fiber and system including such
US9678269B2 (en) 2014-05-16 2017-06-13 Corning Incorporated Multimode optical fiber transmission system including single mode fiber
US10168494B2 (en) 2016-11-30 2019-01-01 International Business Machines Corporation Off-axis micro-mirror arrays for optical coupling in polymer waveguides
IT201700105367A1 (it) * 2017-09-20 2019-03-20 St Microelectronics Srl Procedimento per produrre guide d'onda ottiche, sistema e dispositivo corrispondenti
US11903243B2 (en) * 2018-01-03 2024-02-13 Lg Chem, Ltd. Optical film
US10627696B1 (en) 2019-03-18 2020-04-21 Psiwuantum, Corp. Active photonic devices incorporating high dielectric constant materials
US10877218B2 (en) 2019-03-26 2020-12-29 Stmicroelectronics S.R.L. Photonic devices and methods for formation thereof
US11256115B1 (en) * 2019-06-21 2022-02-22 Psiquantum, Corp. Active photonic devices with enhanced Pockels effect via isotope substitution
WO2021168465A1 (en) * 2020-02-23 2021-08-26 Texas Tech University System Waveguides having highly suppressed crosstalk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618739A (ja) * 1992-06-30 1994-01-28 Nitto Denko Corp 導波路の製造方法
JPH11133254A (ja) * 1997-10-29 1999-05-21 Hitachi Ltd ポリマー光導波路、光集積回路、及び光モジュール
JP2001004852A (ja) * 1999-06-17 2001-01-12 Hitachi Cable Ltd 低損失光導波路及びその製造方法
JP2003014965A (ja) * 2001-06-28 2003-01-15 Hitachi Cable Ltd レーザ直接描画導波路及びその製造方法
JP2004295043A (ja) * 2003-03-28 2004-10-21 Mitsumi Electric Co Ltd 光導波路
JP2005300652A (ja) * 2004-04-07 2005-10-27 Hitachi Chem Co Ltd 光導波路及びその製造方法
WO2008105404A1 (ja) * 2007-02-27 2008-09-04 Keio University ポリマー並列光導波路とその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5037164Y2 (ja) 1971-07-02 1975-10-29
CA2007533A1 (en) * 1989-01-13 1990-07-13 Bruce Lee Booth Optical waveguide devices, elements for making the devices and methods for making the device and elements
US5243677A (en) 1990-09-20 1993-09-07 Sumitomo Electric Industries, Ltd. Quartz optical waveguide and method for producing the same
JP2855832B2 (ja) 1990-09-20 1999-02-10 住友電気工業株式会社 石英系光導波路の製造方法
US5593621A (en) 1992-08-17 1997-01-14 Koike; Yasuhiro Method of manufacturing plastic optical transmission medium
JP3168117B2 (ja) 1994-07-04 2001-05-21 トヨタ自動車株式会社 3次元形状モデル処理装置
JP3204359B2 (ja) 1995-04-28 2001-09-04 日本電信電話株式会社 フレキシブル高分子光導波路
JP3206638B2 (ja) 1996-01-24 2001-09-10 日本電信電話株式会社 フレキシブル高分子光導波路
US20030002834A1 (en) 2001-02-06 2003-01-02 Brown Thomas G. Low loss isotopic optical waveguides
US7391948B2 (en) * 2002-02-19 2008-06-24 Richard Nagler Optical waveguide structure
JPWO2004025340A1 (ja) 2002-09-12 2006-01-12 小池 康博 プラスチック光ファイバ
JP4109672B2 (ja) * 2002-09-18 2008-07-02 富士通株式会社 光導波路デバイスおよび光導波路デバイスの製造方法
US7776236B2 (en) * 2003-07-25 2010-08-17 General Electric Company Index contrast enhanced optical waveguides and fabrication methods
US7324723B2 (en) 2003-10-06 2008-01-29 Mitsui Chemicals, Inc. Optical waveguide having specular surface formed by laser beam machining
CN101308227A (zh) 2003-11-21 2008-11-19 住友电木株式会社 光波导及其形成方法
JP2005275300A (ja) * 2004-03-26 2005-10-06 Sumitomo Electric Ind Ltd 光導波路デバイスを作製する方法、および光導波路デバイス
WO2006046749A1 (en) * 2004-10-28 2006-05-04 Fujifilm Corporation Plastic optical member and producing method thereof
JP2006276735A (ja) 2005-03-30 2006-10-12 Fuji Photo Film Co Ltd 光導波路及びその製造方法
EP2083293A4 (en) 2006-11-16 2010-09-01 Sumitomo Bakelite Co GUIDE OF LIGHT AND STRUCTURE OF GUIDE OF LIGHT
US8774575B2 (en) 2008-12-04 2014-07-08 Sumitomo Bakelite Company Limited Optical waveguide and optical waveguide manufacturing member
JP5251502B2 (ja) * 2008-12-27 2013-07-31 住友ベークライト株式会社 光導波路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618739A (ja) * 1992-06-30 1994-01-28 Nitto Denko Corp 導波路の製造方法
JPH11133254A (ja) * 1997-10-29 1999-05-21 Hitachi Ltd ポリマー光導波路、光集積回路、及び光モジュール
JP2001004852A (ja) * 1999-06-17 2001-01-12 Hitachi Cable Ltd 低損失光導波路及びその製造方法
JP2003014965A (ja) * 2001-06-28 2003-01-15 Hitachi Cable Ltd レーザ直接描画導波路及びその製造方法
JP2004295043A (ja) * 2003-03-28 2004-10-21 Mitsumi Electric Co Ltd 光導波路
JP2005300652A (ja) * 2004-04-07 2005-10-27 Hitachi Chem Co Ltd 光導波路及びその製造方法
WO2008105404A1 (ja) * 2007-02-27 2008-09-04 Keio University ポリマー並列光導波路とその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROBE, Y. ET AL.: "Four-Channel Polymer Optical Waveguide with W-shaped Index Profile Cores and Its Low Inter-Channel Crosstalk Property", IEEE LASERS AND ELECTRO-OPTICS SOCIETY, 2008. LEOS 2008. 21ST ANNUAL MEETING, 25 November 2008 (2008-11-25), pages 443 - 444, XP031366294, DOI: doi:10.1109/LEOS.2008.4688681 *
TAKEYOSHI, Y. ET AL.: "Multichannel Parallel Polymer Waveguide With Circular W-Shaped Index Profile Cores", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 19, no. 22, 15 November 2007 (2007-11-15), pages 1795 - 1797, XP011196005, DOI: doi:10.1109/LPT.2007.906842 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051406A (zh) * 2018-02-02 2018-05-18 成都信息工程大学 一种电光效应光波导检测装置
CN108303377A (zh) * 2018-02-02 2018-07-20 成都信息工程大学 一种热光效应光波导检测装置
CN108051406B (zh) * 2018-02-02 2023-05-09 成都信息工程大学 一种电光效应光波导检测装置
CN108303377B (zh) * 2018-02-02 2023-05-09 成都信息工程大学 一种热光效应光波导检测装置

Also Published As

Publication number Publication date
US20130170803A1 (en) 2013-07-04
JP2012068632A (ja) 2012-04-05
TWI490573B (zh) 2015-07-01
TW201219867A (en) 2012-05-16
CN103080798A (zh) 2013-05-01
CN103080798B (zh) 2015-09-16
US9151888B2 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
WO2012026135A1 (ja) 光導波路および電子機器
JP6020169B2 (ja) 光導波路および電子機器
JP2012198488A (ja) 光導波路および電子機器
WO2012026133A1 (ja) 光導波路および電子機器
JP2012181428A (ja) 光導波路および電子機器
JP2013174839A (ja) 光導波路、光配線部品および電子機器
JP6065589B2 (ja) 光導波路形成用フィルムおよびその製造方法、光導波路およびその製造方法、電子機器
WO2012039392A1 (ja) 光導波路および電子機器
JP6020170B2 (ja) 光導波路および電子機器
JP2012181427A (ja) 光導波路および電子機器
JP2017083874A (ja) 光導波路、光配線部品および電子機器
JP2012189824A (ja) 光導波路および電子機器
JP2013174837A (ja) 光導波路構造体、光導波路モジュールおよび電子機器
JP2013174836A (ja) 光導波路構造体、光導波路モジュールおよび電子機器
JP5974483B2 (ja) 光導波路、光導波路の製造方法および電子機器
JP2013174829A (ja) 光導波路モジュールおよび電子機器
JP6108668B2 (ja) 光導波路、光配線部品および電子機器
JP2013174840A (ja) 光導波路、光配線部品および電子機器
JP6065377B2 (ja) 光導波路、光導波路の製造方法、光配線部品および電子機器
JP6108667B2 (ja) 光導波路、光配線部品および電子機器
JP2013174828A (ja) 光導波路モジュールおよび電子機器
JP2013235035A (ja) 光導波路、光導波路の製造方法および電子機器
JP2013140218A (ja) 光導波路および電子機器
JP2017083873A (ja) 光導波路、光配線部品および電子機器
JP2013174835A (ja) 光導波路構造体、光導波路モジュールおよび電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180041360.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11819611

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13819600

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11819611

Country of ref document: EP

Kind code of ref document: A1