WO2012025979A1 - 電気加熱式触媒 - Google Patents

電気加熱式触媒 Download PDF

Info

Publication number
WO2012025979A1
WO2012025979A1 PCT/JP2010/064192 JP2010064192W WO2012025979A1 WO 2012025979 A1 WO2012025979 A1 WO 2012025979A1 JP 2010064192 W JP2010064192 W JP 2010064192W WO 2012025979 A1 WO2012025979 A1 WO 2012025979A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
case
insulating member
ehc
condensed water
Prior art date
Application number
PCT/JP2010/064192
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
典昭 熊谷
高木 直也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/814,676 priority Critical patent/US9060387B2/en
Priority to PCT/JP2010/064192 priority patent/WO2012025979A1/ja
Priority to JP2012530435A priority patent/JP5590127B2/ja
Publication of WO2012025979A1 publication Critical patent/WO2012025979A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/005Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for draining or otherwise eliminating condensates or moisture accumulating in the apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/24Concentric tubes or tubes being concentric to housing, e.g. telescopically assembled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst provided in an exhaust passage of an internal combustion engine.
  • an electrically heated catalyst (hereinafter referred to as EHC) in which the catalyst is heated by a heating element that generates heat when energized has been developed.
  • an insulating member that insulates electricity is provided between a heating element that generates heat when energized and a case that accommodates the heating element.
  • Patent Document 1 discloses a technique for providing an insulating mat between a carrier that generates heat when energized and a case that houses the carrier in EHC. By providing such an insulating member, it is possible to suppress a short circuit between the heating element and the case.
  • an electrode chamber which is a space for passing an electrode connected to the heating element is formed.
  • the electrode chamber is formed by being surrounded by an insulating member and a heating element.
  • condensed water may be generated due to condensation of moisture in the exhaust on the wall of the exhaust pipe.
  • condensed water is generated in the exhaust pipe upstream of the EHC, the condensed water is pushed by the exhaust gas and flows on the inner wall surface of the exhaust pipe. Condensed water that has flowed through the inner wall surface of the exhaust pipe and reached EHC tends to flow into the lower part of the EHC case.
  • the condensed water When condensed water flows into the lower part of the EHC case, the condensed water may accumulate near the upstream end face of the insulating member. When condensed water accumulates in this portion, the condensed water easily enters the insulating member. When condensed water enters the insulating member, condensed water that has passed through the insulating member (or vapor generated by evaporation of the condensed water) may enter the electrode chamber. If condensed water exists in the electrode chamber, there is a possibility that the electrode and the case are short-circuited by the condensed water. In addition, when the condensed water evaporates and steam is generated, thereby increasing the humidity in the electrode chamber, the insulation resistance between the electrode and the case may be significantly reduced.
  • the condensed water may flow into the heating element due to vibration or the like.
  • the condensed water may pass through the outer wall surface of the heating element and enter the electrode chamber from the heating element side.
  • the present invention has been made in view of the above-described problems, and an object thereof is to suppress the intrusion of condensed water into the insulating member and the heating element in the EHC.
  • a bypass passage in which condensed water flows by bypassing the insulating member is provided in the lower part of the EHC case.
  • the electrically heated catalyst (EHC) is A heating element that generates heat when energized and heats the catalyst by generating heat;
  • An insulating member provided between the heating element and the case, supporting the heating element and insulating electricity; It is a space located between the inner wall surface of the case and the outer peripheral surface of the heating element and is connected to the heating element through an electrode chamber in which the side wall surface is formed by the insulating member.
  • the condensed water flowing into the lower part of the case flows through the bypass passage. Therefore, it is difficult for the condensed water to collect near the upstream end face of the insulating member. Therefore, infiltration of condensed water into the insulating member and the heating element can be suppressed.
  • the EHC according to the present invention may further include a water absorbing member filled in the bypass passage.
  • a water absorbing member filled in the bypass passage.
  • the EHC according to the present invention may further include a closing member that is formed of a highly airtight insulating material that has higher airtightness than the heating element and the insulating member and insulates electricity and covers the end surface of the insulating member.
  • a closing member that is formed of a highly airtight insulating material that has higher airtightness than the heating element and the insulating member and insulates electricity and covers the end surface of the insulating member.
  • the condensate does not easily enter the insulating member due to the closing member, but the condensate easily collects in the vicinity of the upstream end face of the insulating member in the lower part of the case.
  • the insulating member may be divided into an upstream portion and a downstream portion in the case.
  • an electrode chamber is formed over the entire outer peripheral surface of the heating element between the upstream portion and the downstream portion of the insulating member.
  • the bypass passage is formed so as to bypass the upstream and downstream portions of the insulating member and the electrode chamber.
  • EHC 1 and 2 are diagrams showing a schematic configuration of an electrically heated catalyst (EHC) according to the present embodiment.
  • the EHC 1 according to the present embodiment is provided in an exhaust pipe of an internal combustion engine mounted on a vehicle.
  • the internal combustion engine may be a diesel engine or a gasoline engine.
  • the EHC 1 according to the present embodiment can also be used in a vehicle that employs a hybrid system including an electric motor.
  • FIG. 1A is a cross-sectional view of the EHC 1 cut in the lateral direction along the central axis A of the exhaust pipe 2 of the internal combustion engine.
  • FIG. 1A is a cross-sectional view of the EHC 1 cut in the longitudinal direction along the central axis A of the exhaust pipe 2 of the internal combustion engine.
  • the EHC 1 includes a catalyst carrier 3, a case 4, a mat 5, an inner tube 6, and an electrode 7.
  • the catalyst carrier 3 is formed in a columnar shape, and is installed so that its central axis is coaxial with the central axis A of the exhaust pipe 2.
  • An exhaust purification catalyst 13 is supported on the catalyst carrier 3. Examples of the exhaust purification catalyst 13 include an oxidation catalyst, a NOx storage reduction catalyst, a selective reduction NOx catalyst, and a three-way catalyst.
  • the catalyst carrier 3 is formed of a material that generates electric resistance when heated.
  • An example of the material of the catalyst carrier 3 is SiC.
  • the catalyst carrier 3 has a plurality of passages extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows in a honeycomb shape. Exhaust gas flows through this passage.
  • the cross-sectional shape of the catalyst carrier 3 in the direction orthogonal to the central axis A may be an ellipse or the like.
  • the central axis A is a central axis common to the exhaust pipe 2, the catalyst carrier 3, the inner pipe 6, and the case 4.
  • the catalyst carrier 3 is accommodated in the case 4.
  • An electrode chamber 9 is formed in the case 4. The details of the electrode chamber 9 will be described later.
  • a pair of electrodes 7 are connected to the catalyst carrier 3 from the left and right directions through the electrode chamber 9. Electricity is supplied to the electrode 7 from a battery (not shown). When electricity is supplied to the electrode 7, the catalyst carrier 3 is energized. When the catalyst carrier 3 generates heat by energization, the exhaust purification catalyst carried on the catalyst carrier 3 is heated and its activation is promoted.
  • Case 4 is made of metal.
  • a stainless steel material can be exemplified.
  • the case 4 includes an accommodating portion 4a including a curved surface parallel to the central axis A, and a tapered portion 4b that connects the accommodating portion 4a and the exhaust pipe 2 on the upstream side and the downstream side of the accommodating portion 4a. 4c.
  • the passage cross-sectional area of the accommodating portion 4a is larger than the passage cross-sectional area of the exhaust pipe 2, and the catalyst carrier 3, the mat 5, and the inner pipe 6 are accommodated therein.
  • the tapered portions 4b and 4c have a tapered shape in which the passage cross-sectional area decreases as the distance from the accommodating portion 4a increases.
  • a mat 5 is sandwiched between the inner wall surface of the accommodating portion 4 a of the case 4 and the outer peripheral surface of the catalyst carrier 3. That is, the catalyst carrier 3 is supported by the mat 5 in the case 4.
  • An inner tube 6 is sandwiched between the mats 5. That is, the mat 5 is divided by the inner tube 6 into the case 4 side and the catalyst carrier 3 side.
  • the mat 5 is made of an electrical insulating material. Examples of the material for forming the mat 5 include ceramic fibers mainly composed of alumina.
  • the mat 5 is wound around the outer peripheral surface of the catalyst carrier 3 and the outer peripheral surface of the inner tube 6.
  • the mat 5 is divided into an upstream portion 5a and a downstream portion 5b, and a space is formed between the upstream portion 5a and the downstream portion 5b. Since the mat 5 is sandwiched between the catalyst carrier 3 and the case 4, electricity is suppressed from flowing to the case 4 when the catalyst carrier 3 is energized.
  • the inner tube 6 is made of an electrical insulating material.
  • An example of the material for forming the inner tube 6 is alumina.
  • the inner tube 6 is formed in a tubular shape centered on the central axis A. As shown in FIG. 1, the inner tube 6 is longer than the mat 5 in the direction of the central axis A. Therefore, the upstream and downstream ends of the inner tube 6 protrude from the upstream and downstream end surfaces of the mat 5.
  • An electrode chamber 9 is formed by a space in the case 4 between the upstream portion 5 a and the downstream portion 5 b of the mat 5. That is, in this embodiment, the electrode chamber 9 is formed over the entire outer peripheral surface of the catalyst carrier 3 between the upstream portion 5a and the downstream portion 5b of the mat 5.
  • a support member 8 for supporting the electrode 7 is provided in the through hole 4d opened in the case 4.
  • the support member 8 is formed of an electrical insulating material, and is provided between the case 4 and the electrode 7 without a gap.
  • a bypass passage 10 is provided in the lower part of the case 4.
  • One end of the bypass passage 10 is connected to the upstream side of the upstream end surface of the upstream portion 5 a of the mat 5 in the lower portion of the housing portion 4 a of the case 4.
  • the other end of the bypass passage 10 is connected to the downstream side of the downstream end surface of the downstream portion 5 b of the mat 5 in the lower portion of the housing portion 4 a of the case 4.
  • the bypass passage 10 is formed so as to bypass the upstream side portion 5 a and the downstream side portion 5 b of the mat 5 and the electrode chamber 9 through the outside of the lower outer peripheral wall of the housing portion 4 a of the case 4. .
  • the other end of the bypass passage 10 does not necessarily need to be connected to the accommodating portion 4a of the case 4 and may be provided at any position as long as the bypass passage 10 is formed so as to bypass the mat 5. Also good.
  • the other end of the bypass passage 10 may be connected to the exhaust pipe 2 on the downstream side of the EHC 1. Further, the bypass passage 10 may be formed of a pipe-like thing.
  • the bypass passage 10 is filled with a water absorbing member 11.
  • the water absorbing member 11 may be formed of the same material as that for forming the mat 5.
  • the catalyst carrier 3 corresponds to the heating element according to the present invention.
  • the heating element according to the present invention is not limited to the carrier supporting the catalyst.
  • the heating element may be a structure installed on the upstream side of the catalyst.
  • the case 4 corresponds to the case according to the present invention
  • the mat 5 corresponds to the insulating member according to the present invention.
  • FIG. 4 is a diagram showing a schematic configuration of a conventional EHC.
  • the conventional EHC 20 does not include a bypass passage like the EHC 1 according to the present embodiment.
  • the configuration of the EHC 20 other than the bypass passage is the same as that of the EHC 1 according to the present embodiment.
  • the condensed water If the condensed water accumulates in this part, the condensed water easily enters the mat 5. Further, the accumulated condensed water may flow into the catalyst carrier 3 due to vibration or the like. When condensed water enters the mat 5 or the catalyst carrier 3, condensed water that has passed through the mat 5 or vapor generated by evaporation of the condensed water may enter the electrode chamber 9. If condensed water or steam enters the electrode chamber 9, the insulation resistance between the electrode 7 and the case 4 in the electrode chamber 9 may be significantly reduced. Further, when a large amount of condensed water flows into the catalyst carrier 3 at a time, there is a possibility that problems such as damage to the catalyst carrier 3 occur due to local cooling of the catalyst carrier 3.
  • the bypass passage 10 is provided in the lower part of the case 4 of the EHC 1.
  • the condensed water generated in the exhaust pipe 2 and reaching the EHC 1 flows into the bypass passage 10.
  • the condensed water flowing into the bypass passage 10 flows toward the downstream side in the bypass passage 10 while being absorbed by the water absorbing member 11. That is, the condensed water flows by bypassing the mat 5 and the electrode chamber 9.
  • the water absorbing member 11 is not an essential component for allowing the condensed water to flow into the bypass passage 10.
  • the water absorbing member 11 in the bypass passage 10, it is possible to suppress exhaust gas from flowing through the bypass passage 10. Therefore, it is possible to suppress the deterioration of the exhaust characteristics accompanying the provision of the bypass passage 10.
  • the electrode chamber is not necessarily formed over the entire outer peripheral surface of the catalyst carrier.
  • a through hole may be formed in a part of the mat so that only the periphery of the electrode is a space without dividing the mat into an upstream portion and a downstream portion. in this case.
  • An electrode chamber is formed only around the electrodes. Even in this case, by providing a bypass passage similar to the above in the EHC, the condensed water flows bypassing the mat. For this reason, it is possible to suppress the intrusion of condensed water into the mat and the catalyst carrier.
  • FIG. 3 is a diagram illustrating a schematic configuration of an EHC according to a modification of the present embodiment.
  • the closing member 12 is formed of a highly airtight insulating material that has higher airtightness than the material forming the catalyst carrier 3 and the material forming the mat 5 and insulates electricity.
  • the high airtight insulating material forming the closing member 12 needs to have heat resistance.
  • the highly airtight insulating material include a black body coating agent and a glass coating agent.
  • occlusion member 12 can also be formed by apply
  • the intrusion of condensed water into the mat 5 can be suppressed.
  • the condensed water is hardly absorbed by the mat 5. Therefore, if the bypass passage 10 is not provided, the condensed water is more likely to accumulate near the upstream end face of the mat 5 in the lower part of the case 4.
  • Electric heating catalyst (EHC) 3 Electric heating catalyst (EHC) 3 .
  • Catalyst carrier 4 Case 5 .
  • Mat 6 Inner tube 7 .
  • Water absorbing member 12 ... Closing member

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 本発明は、EHCにおける、絶縁部材及び発熱体への凝縮水の浸入を抑制することを目的とする。本発明に係るEHC1は、通電によって発熱し触媒を加熱する発熱体3と、発熱体を収容するケース4と、発熱体3とケース4との間に設けられ電気を絶縁する絶縁部材5と、ケース4の内壁面と発熱体3の外周面との間に位置する空間である電極室9を通って発熱体3に接続される電極7と、を備えている。さらに、EHC1に、ケース4の下方部分における絶縁部材5の上流側端面より上流側に一端が接続され、絶縁部材5をバイパスするバイパス通路10が設けられている。

Description

電気加熱式触媒
 本発明は、内燃機関の排気通路に設けられる電気加熱式触媒に関する。
 従来、内燃機関の排気通路に設けられる排気浄化触媒として、通電されることで発熱する発熱体によって触媒が加熱される電気加熱式触媒(Electric Heating Catalyst:以下、EHCと称する)が開発されている。
 EHCにおいては、通電によって発熱する発熱体と、該発熱体の収容するケースとの間に、電気を絶縁する絶縁部材が設けられる。例えば、特許文献1には、EHCにおいて、通電により発熱する担体と、該担体を収容するケースとの間に、絶縁体のマットを設ける技術が開示されている。このような絶縁部材を設けることで、発熱体とケースとの間が短絡することを抑制することができる。
特開平05-269387号公報
 EHCにおける発熱体のケース内には、発熱体に接続する電極を通すための空間である電極室が形成される。該電極室は、絶縁部材及び発熱体によって囲まれることで形成される。
 排気管内においては、排気管壁面で排気中の水分が凝縮されることで凝縮水が発生することがある。EHCより上流側の排気管内で凝縮水が発生すると、該凝縮水は排気に押されて排気管の内壁面を流れる。排気管の内壁面を流れてEHCに到達した凝縮水は、EHCのケース内の下方部分に流れ込みやすい。
 EHCのケース内の下方部分に凝縮水が流れ込むと、該凝縮水が絶縁部材の上流側端面付近に溜まる場合がある。この部分に凝縮水が溜まると、該凝縮水が絶縁部材に浸入しやすくなる。凝縮水が絶縁部材に浸入すると、それを通過した凝縮水(又は該凝縮水が蒸発することで生じた蒸気)が電極室内に浸入する場合がある。電極室内に凝縮水が存在すると、該凝縮水によって電極とケースとの間が短絡する虞がある。また、凝縮水が蒸発することで蒸気が発生し、それによって電極室内の湿度が上昇した場合も、電極とケースとの間の絶縁抵抗が大幅に低下する虞がある。
 また、EHCのケース内の下方部分における絶縁部材の上流側端面付近に凝縮水が溜まる場合が溜まると、振動等によって該溜まった凝縮水が発熱体に流れ込む虞がある。これにより一度に多くの凝縮水が発熱体に流れ込むと、発熱体が局部的に冷却されることによって該発熱体が破損する等の問題が生じる可能性がある。また、発熱体に凝縮水が浸入すると、該凝縮水(又は該凝縮水が蒸発することで生じた蒸気)が発熱体の外壁面を通過し、発熱体側から電極室内に浸入する場合もある。
 本発明は、上記のような問題に鑑みてなされたものであって、EHCにおける、絶縁部材及び発熱体への凝縮水の浸入を抑制することを目的とする。
 本発明は、EHCのケースの下方部分に、凝縮水が絶縁部材をバイパスして流れるバイパス通路を設けるものである。
 より詳しくは、本発明に係る電気加熱式触媒(EHC)は、
 通電により発熱し、発熱することで触媒を加熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられ、前記発熱体を支持すると共に電気を絶縁する絶縁部材と、
 前記ケースの内壁面と前記発熱体の外周面との間に位置する空間であって前記絶縁部材によってその側壁面が形成された電極室を通って前記発熱体に接続され、前記発熱体に電気を供給する電極と、
 前記ケースの下方部分における前記絶縁部材の上流側端面より上流側に一端が接続され、前記絶縁部材をバイパスするように形成されたバイパス通路と、
 を備える。
 本発明によれば、ケース内の下方部分に流れ込んだ凝縮水がバイパス通路を流れる。そのため、絶縁部材の上流側端面付近に凝縮水が溜まり難くなる。従って、絶縁部材及び発熱体への凝縮水の浸入を抑制することができる。
 本発明に係るEHCは、バイパス通路に充填された吸水部材をさらに備えてもよい。バイパス通路に吸水部材を充填することで、該バイパス通路における凝縮水の流通を確保しつつ、排気がバイパス通路を流通することを抑制することができる。これにより、バイパス通路を設けることに伴う排気特性の悪化を抑制することができる。
 本発明に係るEHCは、発熱体及び絶縁部材よりも気密性が高く且つ電気を絶縁する高気密絶縁材よって形成され絶縁部材の端面を覆う閉塞部材をさらに備えてもよい。この場合、閉塞部材によって絶縁部材に凝縮水が浸入し難くなるが、ケース内の下方部分における絶縁部材の上流側端面付近に凝縮水が溜まり易くなる。しかしながら、本発明によれば、このような場合でも、絶縁部材の上流側面付近に凝縮水が溜まることを抑制することができる。その結果、発熱体への凝縮水の浸入を抑制することができる。
 本発明では、ケース内において、絶縁部材が上流側部分と下流側部分とに分割されていてもよい。この場合、絶縁部材の上流側部分と下流側部分との間における発熱体の外周面全周にわたって電極室が形成される。そして、この場合は、バイパス通路が、絶縁部材の上流側部分及び下流側部分と、電極室とをバイパスするように形成される。
 本発明によれば、EHCにおける、マット及び発熱体への凝縮水の浸入を抑制することができる。
実施例に係るEHCの概略構成を示す第一の図である。 実施例に係るEHCの概略構成を示す第二の図である。 実施例の変形例に係るEHCの概略構成を示すである。 従来のEHCの概略構成を示す図である。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例>
 [EHCの概略構成]
 図1及び2は、本実施例に係る電気加熱式触媒(EHC)の概略構成を示す図である。本実施例に係るEHC1は、車両に搭載される内燃機関の排気管に設けられる。内燃機関は、ディーゼル機関であっても、ガソリン機関であってもよい。また、電気モータを備えたハイブリッドシステムを採用した車両においても本実施例に係るEHC1を用いることができる。
 図1(a)は、内燃機関の排気管2の中心軸Aに沿ってEHC1を横方向に切断した断面図である。図1(a)は、内燃機関の排気管2の中心軸Aに沿ってEHC1を縦方向に切断した断面図である。
 本実施例に係るEHC1は、触媒担体3、ケース4、マット5、内管6、及び電極7を備えている。触媒担体3は、円柱状に形成されており、その中心軸が排気管2の中心軸Aと同軸となるように設置されている。触媒担体3には排気浄化触媒13が担持されている。排気浄化触媒13としては、酸化触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒及び三元触媒等を例示することができる。
 触媒担体3は、通電されると電気抵抗となって発熱する材料によって形成されている。触媒担体3の材料としては、SiCを例示することができる。触媒担体3は、排気の流れる方向(すなわち、中心軸Aの方向)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流通する。尚、中心軸Aと直交する方向の触媒担体3の断面形状は楕円形等であっても良い。中心軸Aは、排気管2、触媒担体3、内管6、及びケース4で共通の中心軸である。
 触媒担体3はケース4に収容されている。ケース4内には電極室9が形成されている。尚、電極室9の詳細については後述する。触媒担体3には、該電極室9を通して左右方向から一対の電極7が接続されている。電極7にはバッテリ(図示せず)から電気が供給される。電極7に電気が供給されると、触媒担体3に通電される。通電によって触媒担体3が発熱すると、触媒担体3に担持された排気浄化触媒が加熱され、その活性化が促進される。
 ケース4は、金属によって形成されている。ケース4を形成する材料としては、ステンレス鋼材を例示することができる。ケース4は、中心軸Aと平行な曲面を含んで構成される収容部4aと、該収容部4aよりも上流側及び下流側で該収容部4aと排気管2とを接続するテーパ部4b,4cと、を有している。収容部4aの通路断面積は排気管2の通路断面積よりも大きくなっており、その内側に、触媒担体3、マット5、及び内管6が収容されている。テーパ部4b,4cは、収容部4aから離れるに従って通路断面積が縮小するテーパ形状をしている。
 ケース4の収容部4aの内壁面と触媒担体3の外周面との間にはマット5が挟み込まれている。つまり、ケース4内において、触媒担体3がマット5によって支持されている。また、マット5には内管6が挟み込まれている。つまり、マット5が、内管6によってケース4側と触媒担体3側とに分割されている。
 マット5は、電気絶縁材によって形成されている。マット5を形成する材料としては、アルミナを主成分とするセラミックファイバーを例示することができる。マット5は、触媒担体3の外周面及び内管6の外周面に巻きつけられている。また、マット5は、上流側部分5aと下流側部分5bとに分割されており、該上流側部分5aと下流側部分5bとの間には空間が形成されている。マット5が、触媒担体3とケース4との間に挟み込まれていることで、触媒担体3に通電したときに、ケース4へ電気が流れることが抑制される。
 内管6は、電気絶縁材によって形成されている。内管6を形成する材料としては、アルミナを例示することができる。内管6は、中心軸Aを中心とした管状に形成されている。図1に示すように、内管6は、中心軸A方向の長さがマット5より長い。そのため、内管6の上流側及び下流側の端部は、マット5の上流側及び下流側の端面から突出している。
 ケース4及び内管6には、電極7を通すために、貫通孔4d,6aが開けられている。そして、ケース4内における、マット5の上流側部分5aと下流側部分5bとの間の空間によって、電極室9が形成されている。つまり、本実施例においては、マット5の上流側部分5aと下流側部分5bとの間における触媒担体3の外周面全周にわたって電極室9が形成される。
 ケース4に開けられている貫通孔4dには、電極7を支持する支持部材8が設けられている。この支持部材8は電気絶縁材によって形成されており、ケース4と電極7との間に隙間なく設けられている。
 さらに、本実施例においては、ケース4の下方部分にバイパス通路10が設けられている。バイパス通路10の一端は、ケース4の収容部4aの下方部分における、マット5の上流側部分5aの上流側端面より上流側に接続されている。また、バイパス通路10の他端は、ケース4の収容部4aの下方部分における、マット5の下流側部分5bの下流側端面より下流側に接続されている。そして、バイパス通路10は、ケース4の収容部4aの下側外周壁の外側を通って、マット5の上流側部分5a及び下流側部分5bと電極室9とをバイパスするように形成されている。
 尚、バイパス通路10の他端は、必ずしもケース4の収容部4aに接続される必要はなく、バイパス通路10がマット5をバイパスするように形成されるのであればどのような位置に設けられてもよい。例えば、バイパス通路10の他端を、EHC1より下流側の排気管2に接続してもよい。また、バイパス通路10は、パイプ状のものによって形成されてもよい。
 また、バイパス通路10には、吸水部材11が充填されている。該吸水部材11は、マット5を形成する材料と同一の材料によって形成されてもよい。
 尚、本実施例においては、触媒担体3が本発明に係る発熱体に相当する。ただし、本発明に係る発熱体は触媒を担持する担体に限られるものではなく、例えば、発熱体は触媒の上流側に設置された構造体であってもよい。また、本実施例においては、ケース4が本発明に係るケースに相当し、マット5が本発明に係る絶縁部材に相当する。
 [本実施例に係るEHCの構成の作用効果]
 図4は、従来のEHCの概略構成を示す図である。図4に示すように、従来のEHC20は本実施例係るEHC1のようなバイパス通路を備えていない。尚、EHC20におけるバイパス通路以外の構成は本実施例に係るEHC1と同様である。
 EHC20より上流側の排気管2内で発生した凝縮水がEHC20に到達すると、該凝縮水は、EHC20のケース4内の下方部分に流れ込みやすい。そのため、EHC20においては、ケース4内の下方部分におけるマット5の上流側端面付近に凝縮水が溜まる場合ある。
 この部分に凝縮水が溜まると、該凝縮水がマット5に浸入しやすくなる。また、振動等によって、該溜まった凝縮水が触媒担体3に流れ込むこともある。マット5又は触媒担体3に凝縮水が浸入すると、これらを通過した凝縮水あるいは該凝縮水が蒸発することで生じた蒸気が電極室9内に浸入する虞がある。電極室9内に凝縮水あるいは蒸気が浸入すると、電極室9内における電極7とケース4との間の絶縁抵抗の大幅な低下を招く場合がある。また、一度に多くの凝縮水が触媒担体3に流れ込むと、触媒担体3が局部的に冷却されることによって該触媒担体3が破損する等の問題が生じる可能性がある。
 そこで、本実施例においては、EHC1のケース4の下方部分にバイパス通路10を設ける。該バイパス通路10を設けることで、排気管2内で発生しEHC1に到達した凝縮水が該バイパス通路10に流入する。バイパス通路10に流入した凝縮水は、吸水部材11に吸収されつつ、バイパス通路10内を下流側に向かって流れる。つまり、凝縮水がマット5及び電極室9をバイパスして流れることになる。
 そのため、マット5の上流側端面付近に凝縮水が溜まり難くなる。従って、マット5及び触媒担体3への凝縮水の浸入を抑制することができる。その結果、電極室9内への凝縮水あるいはその蒸気の浸入を抑制できるため、電極7とケース4との間の絶縁抵抗が大幅に低下することを抑制することができる。また、一度に多くの凝縮水が触媒担体3に流れ込むことを抑制できるため、触媒担体3が局部的に冷却されることによる該触媒担体3の破損等の発生を抑制することができる。
 また、本実施例に係るEHC1において、凝縮水をバイパス通路10に流すためには、吸水部材11は必須の構成ではない。しかしながら、バイパス通路10内に該吸水部材11を設けることで、バイパス通路10を排気が流れることを抑制することができる。そのため、バイパス通路10を設けることに伴う排気特性の悪化を抑制することができる。
 尚、本実施例に係るEHCにおいて、電極室は必ずしも触媒担体の外周面全周に渡って形成される必要はない。例えば、マットを上流側部分と下流側部分とに分割せずに、電極の周囲のみが空間となるようにマットの一部に貫通孔を形成してもよい。この場合。電極の周囲にのみ電極室が形成される。この場合でも、上記と同様のバイパス通路をEHCに設けることで、凝縮水がマットをバイパスして流れることになる。そのため、マット及び触媒担体への凝縮水の浸入を抑制することができる。
 [変形例]
 図3は、本実施例の変形例に係るEHCの概略構成を示す図である。本変形例では、マット5の上流側及び下流側端面が、閉塞部材12によって覆われている。閉塞部材12は、触媒担体3を形成する材料及びマット5を形成する材料よりも気密性が高く且つ電気を絶縁する高気密絶縁材によって形成されている。
 閉塞部材12を形成する高気密絶縁材は耐熱性を有する必要がある。該高気密絶縁材としては、例えば、黒体コーティング剤や、ガラスコーティング剤等を例示することができる。また、マット5の上流側及び下流側端面に、陶器等に用いる釉薬を塗布して焼成することで、閉塞部材12を形成させることもできる。
 マット5の上流側及び下流側の端面を気密性の高い閉塞部材12で覆うことで、マット5への凝縮水の浸入を抑制することができる。しかしながら、この場合、マット5に凝縮水が吸収され難くなる。そのため、バイパス通路10が設けられていないと、ケース4内の下方部分におけるマット5の上流側端面付近に凝縮水がより溜まり易くなる。
 しかしながら、本実施例によれば、このような場合であっても、凝縮水がバイパス通路10に流入するため、マット5の上流側端面付近に凝縮水が溜まるのを抑制することができる。その結果、触媒担体3への凝縮水の浸入を抑制することができる。
1・・・電気加熱式触媒(EHC)
3・・・触媒担体
4・・・ケース
5・・・マット
6・・・内管
7・・・電極
9・・・電極室
10・・バイパス通路
11・・吸水部材
12・・閉塞部材

Claims (4)

  1.  通電により発熱し、発熱することで触媒を加熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられ、前記発熱体を支持すると共に電気を絶縁する絶縁部材と、
     前記ケースの内壁面と前記発熱体の外周面との間に位置する空間であって前記絶縁部材によってその側壁面が形成された電極室を通って前記発熱体に接続され、前記発熱体に電気を供給する電極と、
     前記ケースの下方部分における前記絶縁部材の上流側端面より上流側に一端が接続され、前記絶縁部材をバイパスするように形成されたバイパス通路と、
     を備える電気加熱式触媒。
  2.  前記バイパス通路に充填された吸水部材をさらに備える請求項1に記載の電気加熱式触媒。
  3.  前記発熱体及び前記絶縁部材よりも気密性が高く且つ電気を絶縁する高気密絶縁材よって形成され前記絶縁部材の端面を覆う閉塞部材をさらに備える請求項1または2に記載の電気加熱式触媒。
  4.  前記ケース内において、前記絶縁部材が上流側部分と下流側部分とに分割され、該絶縁部材の上流側部分と下流側部分との間における前記発熱体の外周面全周にわたって前記電極室が形成されており、
     前記バイパス通路が、前記絶縁部材の上流側部分及び下流側部分と、前記電極室とをバイパスするように形成されている請求項1から3のいずれか一項に記載の電気加熱式触媒。
PCT/JP2010/064192 2010-08-23 2010-08-23 電気加熱式触媒 WO2012025979A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/814,676 US9060387B2 (en) 2010-08-23 2010-08-23 Electric heating catalyst
PCT/JP2010/064192 WO2012025979A1 (ja) 2010-08-23 2010-08-23 電気加熱式触媒
JP2012530435A JP5590127B2 (ja) 2010-08-23 2010-08-23 電気加熱式触媒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/064192 WO2012025979A1 (ja) 2010-08-23 2010-08-23 電気加熱式触媒

Publications (1)

Publication Number Publication Date
WO2012025979A1 true WO2012025979A1 (ja) 2012-03-01

Family

ID=45723009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064192 WO2012025979A1 (ja) 2010-08-23 2010-08-23 電気加熱式触媒

Country Status (3)

Country Link
US (1) US9060387B2 (ja)
JP (1) JP5590127B2 (ja)
WO (1) WO2012025979A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001704A (ja) * 2012-06-20 2014-01-09 Toyota Motor Corp 電気加熱式触媒コンバーター

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112012007041B4 (de) * 2012-10-23 2017-11-16 Toyota Jidosha Kabushiki Kaisha Fahrzeug und Fahrzeugsteuerungsverfahren für einen Katalysator
JP6626524B2 (ja) * 2018-03-29 2019-12-25 日本碍子株式会社 電気加熱型触媒用担体
DE102019133509A1 (de) * 2019-12-09 2021-06-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben einer Abgasanlage und Abgasanlage
US20220106896A1 (en) * 2020-10-05 2022-04-07 Ford Global Technologies, Llc Catalytic converter heating element
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
EP4337810A1 (en) * 2021-05-14 2024-03-20 Amogy Inc. Systems and methods for processing ammonia
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
JP2024521417A (ja) 2021-06-11 2024-05-31 アモジー インコーポレイテッド アンモニアを処理するためのシステムおよび方法
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
FR3138164A1 (fr) * 2022-07-25 2024-01-26 Renault S.A.S Convertisseur catalytique, système de traitement de gaz d’échappement et véhicule associés.
US11834334B1 (en) 2022-10-06 2023-12-05 Amogy Inc. Systems and methods of processing ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia
DE102023102561A1 (de) 2023-02-02 2024-08-08 Volkswagen Aktiengesellschaft Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
DE102023108927A1 (de) * 2023-04-06 2024-10-10 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zum Abführen von Kondenswasser aus einem Abgasstrang

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105519U (ja) * 1989-02-08 1990-08-22
JPH04140413A (ja) * 1990-10-01 1992-05-14 Yamaha Motor Co Ltd 内燃機関の排気ガス浄化装置
JPH08210127A (ja) * 1995-02-02 1996-08-20 Nissan Motor Co Ltd 内燃機関の触媒浄化装置
JPH09192453A (ja) * 1996-01-19 1997-07-29 Ngk Insulators Ltd 触媒コンバーター
JPH09317456A (ja) * 1996-05-28 1997-12-09 Toyota Motor Corp ハニカム体を用いた触媒装置
JPH10506167A (ja) * 1994-09-28 1998-06-16 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング 電気的に加熱可能な触媒反応装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
DE60230996D1 (de) * 2001-11-15 2009-03-12 Riken Keiki Kk Gassensor
JP4442678B2 (ja) * 2007-10-25 2010-03-31 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2011220323A (ja) 2010-03-26 2011-11-04 Toyota Motor Corp 電気加熱式触媒

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105519U (ja) * 1989-02-08 1990-08-22
JPH04140413A (ja) * 1990-10-01 1992-05-14 Yamaha Motor Co Ltd 内燃機関の排気ガス浄化装置
JPH10506167A (ja) * 1994-09-28 1998-06-16 エミテク・ゲゼルシャフト・フュール・エミシオーンテクノロギー・ミット・ベシュレンクテル・ハフツング 電気的に加熱可能な触媒反応装置
JPH08210127A (ja) * 1995-02-02 1996-08-20 Nissan Motor Co Ltd 内燃機関の触媒浄化装置
JPH09192453A (ja) * 1996-01-19 1997-07-29 Ngk Insulators Ltd 触媒コンバーター
JPH09317456A (ja) * 1996-05-28 1997-12-09 Toyota Motor Corp ハニカム体を用いた触媒装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001704A (ja) * 2012-06-20 2014-01-09 Toyota Motor Corp 電気加熱式触媒コンバーター

Also Published As

Publication number Publication date
JPWO2012025979A1 (ja) 2013-10-28
US20130140295A1 (en) 2013-06-06
JP5590127B2 (ja) 2014-09-17
US9060387B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5590127B2 (ja) 電気加熱式触媒
US20130025267A1 (en) Electrically-heated catalytic converter
JP5263456B2 (ja) 電気加熱式触媒
JP5287990B2 (ja) 電気加熱式触媒
JP2015132256A (ja) 内燃機関の触媒装置
JPWO2013057792A1 (ja) 電気加熱式触媒
JP5387777B2 (ja) 電気加熱式触媒
JP5626371B2 (ja) 電気加熱式触媒
JP5354032B2 (ja) 電気加熱式触媒
JP5673683B2 (ja) 電気加熱式触媒
JP5397550B2 (ja) 電気加熱式触媒
US11946407B2 (en) Catalyst device
JP2019074044A (ja) 内燃機関の排気浄化装置
US8894942B2 (en) Electrically heated catalyst
JP5601240B2 (ja) 触媒コンバータ装置
JP5472468B2 (ja) 電気加熱式触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856388

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012530435

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13814676

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856388

Country of ref document: EP

Kind code of ref document: A1