WO2012023215A1 - 蓄電デバイスの状態検知方法及びその装置 - Google Patents

蓄電デバイスの状態検知方法及びその装置 Download PDF

Info

Publication number
WO2012023215A1
WO2012023215A1 PCT/JP2010/064753 JP2010064753W WO2012023215A1 WO 2012023215 A1 WO2012023215 A1 WO 2012023215A1 JP 2010064753 W JP2010064753 W JP 2010064753W WO 2012023215 A1 WO2012023215 A1 WO 2012023215A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
voltage
state detection
soh
state
Prior art date
Application number
PCT/JP2010/064753
Other languages
English (en)
French (fr)
Inventor
克弥 温井
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201080002326.8A priority Critical patent/CN102428379B/zh
Publication of WO2012023215A1 publication Critical patent/WO2012023215A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to a state detection method and apparatus for a power storage device, and more particularly to a state detection method and apparatus related to the discharge capability of a power storage device.
  • power storage devices are used for leveling generated power and storing surplus power when using natural energy such as solar power generation and wind power generation. Furthermore, the power storage device is also used as a backup power source such as a stabilized power source and an auxiliary power source for supplying power to an electric device during a power failure.
  • a device that accompanies movement of an electrolyte such as a secondary battery or a capacitor is used.
  • FIG. 36 and 37 are diagrams illustrating an example of a transient change in OCV when the SOC and temperature of the storage battery are constant.
  • FIG. 36 shows that even if the SOC is constant, it takes time for the OCV (reference numeral 82) to stabilize at a constant value.
  • FIG. 37 shows changes in the OCV (reference numerals 83, 84, 85) in the storage battery when the SOH (degradation degree, State of health) is different. Even when the discharge conditions are the same, it does not converge to the same OCV if the SOH is different.
  • transient changes after stopping charging / discharging include those with short reaction times such as ion formation / annihilation reactions, and those with long reaction times such as electrolyte diffusion and convection. ing. Such transient changes with different reaction times also differ depending on the SOC and SOH.
  • the COD of the electricity storage device is determined by whether or not the voltage of the electricity storage device can always be maintained higher than the lower limit voltage for any load.
  • An example of the voltage change of the electrical storage device at the time of discharge is shown in FIG. FIG. 38 schematically shows the change over time of the battery voltage 33 when a load is connected to the storage battery and discharged.
  • the battery voltage 33 at the time of discharge decreases with time.
  • the lower limit voltage required for the system that is, the limit point of the discharge capacity
  • the amount of voltage drop from the initial battery voltage 31 can be expressed as the following equation.
  • Voltage drop reaction resistance (increase) x current + internal potential (decrease)
  • the voltage drop (arrow D) due to the reaction resistance is accompanied by energy necessary for causing the electrochemical reaction, and changes due to deterioration (SOH) of the electricity storage device.
  • the internal potential drop (arrow C) is due to a change in the active material due to the electrochemical reaction, and changes depending on the remaining capacity (SOC) of the electricity storage device. From FIG. 38, even if the internal potential 34 is higher than the lower limit voltage 35, if the decrease due to the discharge reaction resistance is large, the limit point of the discharge capacity is reached.
  • the discharge capability COD is determined by the internal potential C of the storage battery, the discharge reaction resistance D, and the lower limit voltage 35 defined by the system specifications, so that the discharge capability is accurately determined. For this purpose, it is necessary to judge separately the discharge reaction resistance D (deterioration) and the internal potential C (remaining capacity).
  • a method for determining a deterioration state of an electricity storage device As a method for determining a deterioration state of an electricity storage device, a method is known in which an internal state is estimated by an impedance method and a discharge capacity is estimated based on the information.
  • this method can be applied when the power storage device is used at or near the full charge, but cannot be applied when the power storage device is operated in a partially charged state (PSOC: Partial State of Charge).
  • PSOC Partial State of Charge
  • FIG. 4A shows state detection in the conventional operation method
  • FIG. 4B shows state detection in the PSOC operation method.
  • the conventional operation method it is required to detect the decrease 42a of the deterioration margin 42 due to deterioration and determine the remaining deterioration margin 42b.
  • the PSOC operation method the decrease 44a, 45a of the charging area 44 and the deterioration margin 45 due to deterioration is detected, and the range of the operation area 43 is set in order to secure necessary charging capacity and discharging capacity. It is necessary to perform control such as changing and newly providing a charging area 44b and a deterioration margin 45b.
  • the impedance of the electricity storage device is affected only by deterioration. Therefore, the degree of deterioration (SOH) of the electricity storage device can be known by measuring the impedance.
  • SOH degree of deterioration
  • transient changes with different reaction times occur after charging and discharging.
  • transient changes are made up of three time constants.
  • a method for evaluating the components separately is described.
  • the transient response changes according to the charge / discharge time, and there is a mention of the resistance component, the polarization component according to the internal reaction of the battery, and the diffusion rate of the electrolytic solution.
  • the voltage at the end of charging when charging / discharging at which the current integrated value is the same between charging and discharging is displayed with the horizontal axis as the number of repeated cycles.
  • the remaining capacity (SOC) at the start of charging / discharging of the electricity storage device is 90% (reference numeral 51 to 53), 80% (reference numeral 54), 70% (reference numeral 55 to 60), 60% (reference numeral 61). Shows the case.
  • FIG. 40 shows that the voltage at the end of charging increases as the number of charge / discharge cycles increases. This indicates that the state quantity inside the electricity storage device changes as the charge / discharge cycle is repeated. Further, even when the change amount of the current integrated value is 0, the state amount of the electricity storage device is changing.
  • the data shown in FIG. 40 is experimental data obtained using a Furukawa Battery liquid lead storage battery (JIS standard 55D23).
  • An object of the present invention is to provide a device state detection method and apparatus.
  • 1st aspect of the state detection method of the electrical storage device of this invention is a state detection method of the electrical storage device which determines the discharge capability during charging / discharging and charging / discharging stop for every predetermined
  • the deterioration degree SOH is a deterioration degree SOH_n1 calculated when the number of cycles n1 (n1 ⁇ n) during the charge / discharge stop closest to the present time
  • the discharge capacity correction amount COD_SOH_n reads the discharge capacity correction function F (SOH_n1, x) (x is a variable) corresponding to the deterioration degree SOH_n1 from the storage unit, and substitutes the voltage change amount ⁇ Va_n for the variable x. It is characterized by being calculated.
  • the discharge capacity correction function F (SOH, ⁇ Va) is 2 or more (m).
  • the voltage measurement value is stored in the storage unit while charging / discharging of the electricity storage device is stopped, and is stored for each reaction rate.
  • the relaxation function fi is optimized using the voltage measurement value stored in the storage unit according to the elapsed time from the charge / discharge stop.
  • the relaxation function fi for each reaction rate corresponding to a fast transient change is optimized using the voltage measurement value stored in the storage unit, and the fast transition change is made using the optimized relaxation function for each reaction rate fi.
  • a dependent deterioration degree SOH_fast_n is calculated, and a predetermined degree is calculated from the deterioration degree SOH_slow_n2 and the deterioration degree SOH_fast_n depending on the slow transient change calculated when the number of cycles n2 (n2 ⁇ n) during the charge / discharge stop closest to the present time.
  • the discharge capacity correction amount COD_SOH_n is calculated by reading the discharge capacity correction function F (SOH_n, x) corresponding to the deterioration degree SOH_n from the storage unit and substituting the voltage change amount ⁇ Va_n into the variable x. It is calculated.
  • the electricity storage device is in a charge / discharge stop and the elapsed time from the charge / discharge stop exceeds a predetermined second relaxation time longer than the first relaxation time.
  • the relaxation function fi for each reaction rate depending on a slow transient change is optimized using the measured voltage value stored in the storage unit, and the optimized relaxation function for each reaction rate fi is used.
  • the voltage measurement is performed immediately after the charge before the state detection is completed by charging the power storage device with a predetermined capacity immediately after the charge / discharge stop (charging before the state detection).
  • a value is stored in the storage unit as the charge / discharge stop voltage V_end.
  • a first aspect of the state detection device for an electricity storage device is a state detection device for an electricity storage device that determines the discharge capability during charge / discharge and during charge / discharge stop for each predetermined cycle, and the voltage of the electricity storage device
  • a storage unit that stores measurement values, a state detection unit that reads data stored in the storage unit and determines the discharge capability of the power storage device for each cycle, and inputs determination results from the state detection unit State output means for outputting to the outside, and the storage unit stores the voltage measurement value of the electricity storage device measured immediately after the last charge / discharge stop as a charge / discharge stop voltage V_end, and the state detection unit Reads the charge / discharge stop voltage V_end from the storage unit, and subtracts the current voltage measurement value V_now (assuming the number of cycles is n) from the charge / discharge stop voltage V_end to calculate the current voltage change amount ⁇ Va_n.
  • a discharge capacity correction amount COD_SOH_n of the power storage device is calculated using a discharge capacity correction function F (SOH, ⁇ Va_n) created in advance from the deterioration degree SOH of the power storage device and the voltage change amount ⁇ Va_n, and
  • Another aspect of the state detection method of the power storage device of the present invention is a method for detecting the state of the power storage device, wherein the power storage device stops charging / discharging and reaches a state satisfying a predetermined stability condition. Is the stable voltage at the time of stop, and the amount of change from the stable voltage at the time of stop when the time t has elapsed since the storage device has stopped charging / discharging, A relaxation function F (t) for calculating a voltage change amount is created in advance as a function of a predetermined state quantity of the power storage device, and the voltage at the end of charging immediately before stopping the charging of the power storage device or discharging is stopped.
  • the relaxation function F (t) is a reaction of 2 or more (assumed to be m) created in advance corresponding to the reaction rate inside the electricity storage device.
  • the amount of change in voltage at the time of stoppage is optimized by being separated into components corresponding to the reaction rate.
  • the electricity storage device when the current due to the charge / discharge is minute or constant and the influence on the transient change inside the electricity storage device is limited within a predetermined range, the electricity storage device Is characterized in that charging / discharging is determined to have been stopped.
  • a voltage correction amount for correcting a voltage change due to the current is created in advance, and the relaxation is performed using a voltage obtained by adding the voltage correction amount to the voltage measurement value. It is characterized by optimizing the function F (t).
  • the remaining capacity increase / decrease amount ( ⁇ SOC) at the time of charge / discharge stop is calculated from the current integrated value obtained by integrating the current during charge / discharge immediately before the charge / discharge stop.
  • the remaining capacity increase / decrease amount is added to the remaining capacity when charging / discharging is stopped to calculate the remaining capacity (SOC) when charging / discharging is stopped, and the voltage at the end of discharging or the voltage at the end of charging and the relaxation function F ( The COD is determined based on the state quantity estimated from t) and the SOC.
  • a charging efficiency calculation formula using a predetermined state quantity and a charging end voltage as variables is created in advance, and the SOC at the time of charge / discharge stop is the relaxation It is calculated by correcting the remaining capacity increase / decrease amount by charging efficiency calculated by substituting the state quantity calculated using the function F (t) and the charging end voltage into the charging efficiency calculation formula. It is characterized by.
  • Another aspect of the method for detecting a state of a power storage device of the present invention is characterized in that the state quantity is a remaining capacity of the power storage device.
  • Another aspect of the method for detecting a state of an electricity storage device according to the present invention is characterized in that the state quantity is a degree of deterioration (SOH) of the electricity storage device.
  • SOH degree of deterioration
  • the relaxation function F (t) has a fast relaxation rate component f fast (t) and the slow component f slow (t), the f fast (T), f slow (t) and the ratio f fast (t) / f slow (t) of each reference value are created in advance and calculated from the optimized F (t).
  • the COD is determined using f fast (t), f slow (t), f fast (t) / f slow (t), and the respective reference values.
  • the state quantity is a degradation degree SOH of the electricity storage device, and the f fast (t), the f slow (t), and the f fast (t ) / F slow (t) and each of the reference values to calculate the degree of deterioration.
  • a fast transient change correction amount calculation formula using the remaining capacity and the voltage at the end of charging as variables is created in advance, and the remaining capacity when the charge / discharge is stopped and the by substituting a charge end voltage to the high speed transient correction value calculation formula to calculate the correction amount with respect to the f fast (t), wherein the deterioration degree by using the corrected the f fast (t) in the correction amount Is calculated.
  • the relaxation function F (t) with respect to the f fast (t), the f slow (t), and the f fast (t) / f slow (t) A concentration change calculation formula for calculating the concentration change amount of the electrolytic solution of the electricity storage device is created in advance, and the concentration of the electrolyte solution is calculated from the concentration change calculation equation using the optimized relaxation function F (t). A change amount is calculated and used for the state amount.
  • the amount of bias (stratification) change in the concentration distribution of the electrolyte solution of the electricity storage device is defined as the amount of stratification change, and the f fast of the relaxation function F (t) (T), a stratification change amount calculation formula for calculating the stratification change amount for the f slow (t) and the f fast (t) / f slow (t) is created in advance, and the optimized The stratification change amount is calculated from the stratification change amount calculation formula using a relaxation function F (t) and used as the state quantity.
  • the amount of change in the concentration distribution bias (lateral stratification) in the lateral direction with respect to the liquid level of the electrolyte solution of the electricity storage device is defined as the amount of lateral stratification change
  • An equation is created in advance, and the lateral stratification change amount is calculated from the lateral stratification change amount calculation formula using the optimized relaxation function F (t) and used for the state quantity. To do.
  • the amount of change in the concentration distribution in the lateral direction and the longitudinal direction (lateral stratification, vertical stratification) with respect to the electrolyte surface of the electricity storage device is calculated.
  • the vertical and horizontal stratification change amount is calculated, and the vertical and horizontal stratification change amount with respect to the f fast (t), the f slow (t), and the f fast (t) / f slow (t) of the relaxation function F (t) is calculated.
  • a vertical and horizontal stratification variation calculation formula is created in advance, and the horizontal stratification variation and vertical stratification variation are calculated from the vertical and horizontal stratification variation calculation formula using the optimized relaxation function F (t). Is used for the state quantity.
  • the relaxation function F (t) is further created in advance as a function of the temperature of the electricity storage device, and the relaxation function is measured by measuring the temperature of the electricity storage device. It is used for calculation of F (t).
  • the stable voltage at the time of stop is a stable OCV
  • the stable OCV calculated from a stable OCV calculation formula created in advance is calculated from the measured voltage value.
  • the OCV change amount is calculated by subtraction, and the OCV change amount is set as the stop-time voltage change amount.
  • the state quantity is calculated by estimating the state quantity for each reaction rate from the relaxation function fi (t) for each reaction rate, and summing the state quantities. It is characterized by.
  • the relaxation function fi (t) for each reaction rate in a predetermined state, the SOC, and the SOH for each reaction rate are represented by fi ref (t) and SOC ref , respectively.
  • G (T) is the dependence on the temperature T of the electricity storage device
  • the voltage and current of the power storage device are measured, and it is determined that the power storage device has stopped charging / discharging from the current or a predetermined charge / discharge stop signal. Then, the voltage change amount at the time of stop corresponding to the elapsed time from the charge / discharge stop is calculated from the voltage measurement value, and the relaxation rate fi for each reaction rate corresponding to the reaction rate having a time constant shorter than the elapsed time. (T) is optimized using the amount of change in voltage at the time of stop, and the immediately preceding one is used for the relaxation rate fi (t) for each reaction rate corresponding to the reaction rate longer than the time constant. The state quantity is estimated from the optimized relaxation function fi (t) for each reaction rate, the discharge end voltage, and the charge end voltage.
  • the stable voltage at the time of stop is the voltage when the voltage after the charge / discharge stop of the electricity storage device becomes a fluctuation amount of 5 mV or less per hour. It is characterized by that.
  • Another aspect of the state detection method for an electricity storage device of the present invention is a state detection method for an electricity storage device, wherein the electricity storage device that has stopped charging and discharging is charged with a predetermined capacity before state detection, and before the state detection.
  • the voltage of the power storage device is measured at a predetermined period when time t has elapsed since the end of charging, and the voltage measurement from the stable voltage at the stop when charging and discharging of the power storage device is stopped and becomes substantially constant
  • a value change amount (voltage change amount at the time of stoppage) is optimally approximated by a relaxation function F (t) that is a function of a predetermined state quantity of the power storage device, and the state is calculated from the optimally approximated relaxation function F (t).
  • a quantity is estimated, and the estimated state quantity is compared with a predetermined threshold value to determine the discharge capability of the power storage device.
  • Another aspect of the method for detecting the state of the electricity storage device of the present invention is characterized in that in the charge before state detection, the electricity storage device is charged at a 5% rated capacity.
  • the discharge capacity of the electricity storage device is It is characterized by determining that it has fallen.
  • Another aspect of the method for detecting a state of an electricity storage device according to the present invention is characterized in that the stable voltage at the time of stop is updated using the optimally approximated relaxation function F (t).
  • the relaxation function F (t) is a reaction of 2 or more (assumed to be m) created in advance corresponding to the reaction rate inside the electricity storage device.
  • Another aspect of the method for detecting a state of an electricity storage device according to the present invention is characterized in that the state quantity is a remaining capacity (SOC) of the electricity storage device.
  • SOC remaining capacity
  • Another aspect of the method for detecting a state of an electricity storage device according to the present invention is characterized in that the state quantity is a degree of deterioration (SOH) of the electricity storage device.
  • SOH degree of deterioration
  • the relaxation function f i (t) for each reaction rate, the remaining capacity, and the degree of deterioration for each reaction rate in a predetermined reference state are respectively expressed as f i ref ( t), SOC ref , and SOH i ref, and G (T) as the dependence of the electricity storage device on the temperature T
  • the relaxation function f i for each reaction rate optimally approximated in the n period of the voltage measurement n (t) has the following relationship with the remaining capacity SOC n estimated in the n period and the degradation rate SOH i n for each reaction rate:
  • f i n (t) f i ref ( t) * ⁇ SOC n / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * G (T) It is characterized by that.
  • Another aspect of the state detection method for an electricity storage device according to the present invention is characterized in that, before performing the pre-state detection charge, another state detection is performed by performing pulse discharge on the electricity storage device.
  • Another aspect of the method for detecting the state of the electricity storage device of the present invention is characterized in that, before performing the pre-state detection charging, the impedance measurement of the electricity storage device is performed to further detect another state.
  • Another aspect of the power storage device status detection device of the present invention is a power storage device status detection device configured to be rechargeable using an internal charger controlled by a control unit, and inputs a status detection mode start signal.
  • the state detection unit outputs a predetermined request signal to the control unit, and the control unit controls the internal charger. It is characterized by performing.
  • Another aspect of the state detection device for a power storage device according to the present invention is characterized in that the pre-state detection charging is performed by connecting an external charger to the power storage device.
  • an electrical storage device state detection method and apparatus capable of determining whether an appropriate discharge capacity is maintained regardless of whether charging / discharging is stopped or not. It becomes possible.
  • a power storage device state detection method and apparatus will be described in detail with reference to the drawings.
  • symbol is attached
  • the state detection method and state detection device of the power storage device of the present invention will be described by taking a storage battery such as a liquid lead storage battery mounted on a vehicle as the power storage device as an example.
  • the contents described below are not limited to in-vehicle storage batteries, but can be similarly applied to power storage devices used for solar power generation, wind power generation, and the like, and power storage devices used for backup power sources such as a stabilized power source and an auxiliary power source. Is.
  • the method and apparatus for detecting the state of an electricity storage device of the present invention enables determination of the discharge capability of the electricity storage device regardless of whether the electricity storage device is being charged or discharged or stopped.
  • the basic processing contents related to the method for detecting the state of the electricity storage device of the present invention will be described in the case of state detection when transient change after charge / discharge stop is mitigated (hereinafter referred to as mitigation state detection).
  • mitigation state detection the voltage when the power storage device stops charging / discharging and reaches a state satisfying a predetermined stability condition is defined as a stable voltage at stop, and voltage measurement when time t has elapsed since the power storage device stopped charging / discharging.
  • the amount of change from the stable voltage when the value is stopped is defined as the amount of change in voltage when stopped.
  • a relaxation function F (t) that depends on a predetermined amount of state of the electricity storage device is created and used in advance as a function for calculating the amount of voltage change at stop. Then, the relaxation function F (t) is optimized using the amount of change in the stop voltage obtained from the voltage measurement value, and the state detection is performed by estimating a predetermined state quantity from the optimized relaxation function F (t).
  • the discharge capability (COD) is estimated using the relaxation function F (t), and the estimated COD is compared with a preset threshold value. It is determined whether the discharge capacity is properly maintained.
  • the battery voltage when the electricity storage device is stable is estimated using the relaxation function F (t).
  • the estimated COD is larger than this threshold, a voltage value set so that the battery voltage does not become lower than the lower limit voltage required by the system is used even when charging / discharging from that state.
  • This threshold value is set so that the battery voltage does not fall below the system-required lower limit voltage due to at least the amount of voltage fluctuation due to normal charge / discharge.
  • state quantities that can be estimated from the relaxation function F (t) include SOH (State of health), which is an indicator of the degree of deterioration of the power storage device, and SOC indicating the remaining capacity.
  • a change in state quantity for each reaction rate is estimated using the relaxation function F (t), and these are integrated to determine the state quantity.
  • the open-circuit voltage of the electricity storage device (hereinafter referred to as the stable OCV) when a sufficient time has elapsed since charging / discharging is stopped can be used.
  • the open end voltage OCV is a voltage between terminals when the terminal of the electricity storage device is opened and the discharge is stopped.
  • the stable voltage at the time of stop used in the method for detecting the state of the electricity storage device of the present invention is not limited to the stable OCV, and when the transient influence on the electricity storage device is limited, the stable voltage at that time can be used. .
  • a minute current may be supplied to the load control device while the power supply from the power storage device to the load is stopped. Even when the load is stopped, the voltage when a sufficient time elapses after the load is stopped can be set as the stable voltage at the time of stop.
  • the transient effect on the electricity storage device is considered to be sufficiently small, so the voltage when sufficient time has elapsed since the load was stopped. Can be a stable voltage when stopped. In this way, when the current due to charging / discharging is small or constant and the influence on the transient change inside the electricity storage device is limited within a predetermined range, when the power supply to the load is stopped, In addition to determining that the discharge has stopped, the voltage when a long time has elapsed after stopping the charge / discharge in a state where a minute current or a constant current is continued can be set as a stable voltage at the time of stop. In this case, it is preferable that a voltage correction amount for correcting a voltage change due to a minute current or a constant current is determined in advance, and the voltage measurement value is corrected using this.
  • OCV s is a stable OCV calculated this time
  • OCV ′ is a previously calculated OCV stable time
  • t is an elapsed time since charge / discharge stop
  • SOC ′ is a remaining capacity calculated last time
  • V mes (t) is an elapsed time.
  • the measured voltage value at t and T represents the temperature of the electricity storage device.
  • Lim in the equation (2) indicates that the elapsed time t from the charge / discharge stop is infinite, and the right side of the equation (2) indicates the power storage when the elapsed time t after the charge / discharge stop is infinite.
  • the device voltage measurement V mes (t) is shown. Even when a stop stable voltage other than the stable OCV is used, a relational expression similar to the above can be created and used in advance with the SOC.
  • the SOC is determined depending on the previously calculated OCVs ′, and at the same time, the OCVs also depends on the SOC, and further changes depending on the state quantity SOH and the temperature T of the power storage device. It shows that Further, since OCVs depends on the state quantity SOH, the state quantity SOC also depends on SOH, and it is necessary to perform each update at an appropriate timing.
  • OCV s is V mes (t) when the elapsed time t from charge / discharge stop is infinite as shown in the equation (2), but in practice, when the change in V mes (t) becomes sufficiently small. It can be V mes (t) at the time of a possible elapsed time t. Further, when the electricity storage device is a liquid lead acid battery, OCV s is V mes (t) when the amount of change in OCV per hour is 5 mV or less, or when 20 hours have elapsed since charging / discharging was stopped. It can be.
  • V mes (t) when 20 hours have elapsed from the stop of charging / discharging of the storage battery is defined as OCV 20hr of the following formula, and this is used for OCV s .
  • the factors of voltage change include the state of the electrode plate, the ion concentration in the vicinity of the electrode plate, their solid-phase reaction, solid-liquid reaction, and the movement of ions accompanying the precipitation, convection and diffusion of the electrolyte.
  • the OCV variation ⁇ V (t) is considered to be caused by a combination of relaxation processes having different reaction rates.
  • the OCV variation ⁇ V (t) is expressed by the following equation using a function F (t) composed of m polynomials according to the difference in reaction rate.
  • F m (t) ⁇ f i (t) (5)
  • each term f i (t) is shows the contribution to the voltage change for each relaxation processes having different reaction rates of the electric storage device, in the following each reaction rate relaxation function f i ( t).
  • Each f i (t) is a function that depends on the deterioration amount SOH, the remaining capacity SOC, and the temperature T, which are state quantities of the power storage device.
  • the relaxation function f i (t) for each reaction rate in the equation (5) is optimized by using the OCV change amount ⁇ V (t) calculated from the voltage measurement value V mes (t) after the charge / discharge stop. Can be determined.
  • the initial values SOC 0 , SOH i 0 , and OCV 20hr 0 of SOC, SOH, and OCV 20hr before the state detection is started are stored in the state detection device.
  • SOC ref (0) , SOH i ref (0) , and OCV 20hr ref (0) stored in advance, the following settings can be made.
  • SOC 0 SOC ref (0)
  • SOH i 0 SOH i ref (0)
  • OCV 20hr 0 OCV 20hr ref (0)
  • the relaxation function F of the equation (5) representing the OCV variation ⁇ V (t) after the nth (n is an integer of 1 or more) charge / discharge stop after the state detection of the state of the power storage device is started by the state detection device.
  • (t) and the relaxation function f i (t) for each reaction rate are respectively F n (t) and f i n (t), SOH corresponding to the SOC and the i-th reaction rate (SOC n , SOH respectively) i n )
  • the relaxation function fi n (t) for each reaction rate is expressed by the following equation.
  • f in (t) f i ref (t) * ⁇ SOC n / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * g (T) (6)
  • f i ref (t), SOC ref, SOH i ref is, f i (t) in the predetermined initial state (e.g. unused state)
  • SOC, a SOH i, g (T) is It is a function representing temperature dependence.
  • Expression (8-1) is an example representing the relational expression of Expression (8), and is not limited to this.
  • SOH n which is another state quantity can be calculated using the optimized relaxation function F (t).
  • f i n (t) f i ref (t) * ⁇ SOC i n ⁇ 1 / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * g (T) (6-1)
  • OCV 20hr can be calculated by the following equation.
  • OCV 20 hr V mes (t) ⁇ [f i ref (t) * ⁇ SOC n ⁇ 1 / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ ] * g (T) (9)
  • SOC n can be calculated and used for SOC state detection.
  • SOC ref the reference value of one remaining capacity
  • OCV, SOC, and SOH reflecting the degree of deterioration corresponding to different reaction rates and to perform highly accurate state detection.
  • the state detection method of the power storage device of the present invention is limited to the state detection at the time of relaxation.
  • the state detection when the system is in operation and the power storage device is charging / discharging is referred to as state detection during charging / discharging.
  • the number n of state detection cycles is the number of charge / discharge stops.
  • the cycle number n is set to a predetermined time interval, for example. It is good to set the number of cycles when the state detection is performed periodically.
  • the relaxation function can be simply expressed as a function F (t) of the elapsed time t.
  • the discharge capability COD of the electricity storage device during charge / discharge is strongly affected by the amount of voltage change from the voltage at the time of charge / discharge stop when the elapsed time from the latest charge / discharge stop is short, and deteriorates when the elapsed time becomes long Highly affected by SOH.
  • the function F used as the relaxation function in the state detection at the time of relaxation after the charge / discharge stop is hereinafter referred to as a discharge capacity correction function F as a function used in both the state detection at the time of relaxation and the state detection at the time of charge / discharge.
  • ⁇ Va (t) is used to distinguish the amount of voltage change from the voltage at the time of stopping charging / discharging from the amount of change ⁇ V (t) in equation (4).
  • the discharge capacity correction function F is expressed as F (SOH, ⁇ Va) as a function of the voltage change amount ⁇ Va (t) and the deterioration degree SOH.
  • the dependency on the elapsed time t is included in the time dependency of the voltage change amount ⁇ Va (t).
  • the voltage at the last charge / discharge stop that is, the voltage at the last charge / discharge stop when viewed from the state detection time (current) is defined as the charge / discharge stop voltage, and this is represented as V_end.
  • the voltage change amount ⁇ Va (t) V_end ⁇ V_now (10) Is calculated by
  • the charging / discharging stop voltage V_end is V_cha_end when charging is stopped, and V_dis_end when discharging.
  • the discharge capacity COD_now is a value obtained by subtracting the discharge capacity correction amount, that is, the value of the discharge capacity correction function F (SOH, ⁇ Va) from the current voltage V_now.
  • the discharging capability COD_now during charging / discharging can also be calculated using the equation (12).
  • the discharge capacity correction amount which is the value of the discharge capacity correction function F (SOH, ⁇ Va)
  • COD_SOH the state detection method of the storage device of the present invention performs both state detection during charge / discharge and state detection during relaxation.
  • the discharge capacity COD_now can be calculated by the following equation.
  • FIG. 1 is a flowchart for explaining the processing flow of the method for detecting the state of an electricity storage device of this embodiment
  • FIG. 2 is a block diagram showing the configuration of the state detection device for the electricity storage device of this embodiment.
  • the state detection apparatus 100 of this embodiment shown in FIG. 2 detects the state of the electricity storage device (storage battery) 10 mounted on the vehicle 1 of the target system.
  • the vehicle 1 includes a charging unit (alternator) 11 for charging the storage battery 10 during engine operation, and a control unit 12 for controlling charging by the charging unit 11.
  • a load 2 of various electrical components is mounted on the vehicle 1 and is connected to a storage battery 10 to receive power.
  • the storage battery 10 is provided with a voltage measuring means 20, a current measuring means 21, and a temperature measuring means 22, and the state detection device 100 inputs each measurement value and performs state detection.
  • the state detection apparatus 100 includes a state detection unit 110, a storage unit 120, and a state output unit 130.
  • the state detection unit 110 inputs the voltage measurement value, the current measurement value, and the temperature measurement value of the storage battery 10 from the voltage measurement unit 20, the current measurement unit 21, and the temperature measurement unit 22, respectively, and performs processing by the state detection method of the present embodiment.
  • the state of the storage battery 10 is detected.
  • the storage unit 120 stores various reference data and measurement data necessary for the state detection process.
  • the state output means 130 is means for notifying a driver or the like of a state detection result or the like.
  • the state detection method of the power storage device of this embodiment is periodically executed at predetermined time intervals in the state detection unit 110 after the state detection device 100 is activated, regardless of whether the storage battery 10 is being charged or discharged.
  • the voltage measurement value of the storage battery 10 is acquired using the voltage measuring means 20 in step S2, and this is set as the current voltage V_now.
  • step S3 it is determined whether the storage battery 10 is charging / discharging (determination result is YES) or charging / discharging is stopped (determination result is NO). If the determination result is YES, the process proceeds to step S8, and the determination result is NO. In step S4, the process proceeds to step S4. In this determination, a current measurement value of the storage battery 10 is acquired using the current measurement means 21, and when the value is 0, it is determined that charging / discharging is stopped, and when it is not 0, charging / discharging is determined. Alternatively, it may be determined that charging / discharging is stopped when the absolute value of the current measurement value is equal to or less than a predetermined current threshold, and that charging / discharging is determined otherwise.
  • step S4 If it is determined in step S3 that charging / discharging is stopped (determination result is NO), it is next determined in step S4 whether the storage battery 10 is immediately after stopping charging / discharging. If the determination result is YES, the process proceeds to step S5. If NO, the process proceeds to step S7. This determination can be made immediately after stopping charging / discharging when it is determined that charging / discharging is being performed in the previous (n-1th) state detection.
  • step S4 If it is determined in step S4 that it is immediately after the charge / discharge stop (the determination result is YES), the current voltage V_now is changed to the voltage V_end at the time of charge / discharge stop (V_cha_end at the time of charge stop, V_dis_end at the time of stop of discharge) in step S5. After setting and storing this in the storage unit 120, the process proceeds to step S7.
  • step S7 the voltage V_end at the time of the charge / discharge stop preserve
  • the voltage V_end when charging / discharging is stopped is stored in the storage unit 120 in step S5 when charging / discharging is closest to the present time.
  • step S8 the deterioration degree SOH_n1 stored in the storage unit 120 is read.
  • n1 indicates the number of cycles when the SOH is last updated (n1 ⁇ n), and the deterioration degree SOH_n1 is the last SOH updated last time.
  • the initial value SOH_0 of SOH_n the characteristic value of the new storage battery 10 is stored in advance in the storage unit 120 as reference data, and the SOH is read from the reference data and used.
  • a characteristic value of a general power storage device is stored in advance in the storage unit 120 as reference data, and the SOH of this reference data is set to SOH_0.
  • This SOH_0 is rewritten with SOH_1 calculated at the time of initial state detection after the storage battery 10 is mounted.
  • the discharge capability correction function F (SOH_n1, x) corresponding to the deterioration degree SOH_n1 read in step S8 is read from the storage unit 120.
  • step S10 the discharge capacity correction amount COD_SOH_n is calculated by substituting ⁇ Va_n calculated in step S7 for the variable x of the discharge capacity correction function F (SOH_n1, x).
  • COD_soh_n F (SOH_n1, ⁇ Va_n)
  • step S11 the current discharge capacity COD_now is calculated from the current voltage V_now and the discharge capacity correction amount COD_SOH_n calculated in step S10 using the following equation.
  • COD_now V_now-COD_SOH_n
  • step S12 the current discharge capacity COD_now calculated in step S11 is compared with the discharge capacity threshold value COD_Th, and when the current discharge capacity COD_now is greater than the threshold value COD_Th, it is determined that the discharge capacity of the storage battery 10 is maintained (step).
  • step S13) On the other hand, when the current discharge capacity COD_now is less than or equal to the threshold value COD_Th, it is determined that the discharge capacity is insufficient (step S14). This determination result can be appropriately output to the state output means 130 to notify the driver or the like.
  • the state detection method and state detection device for the electricity storage device of the present embodiment it is determined whether the discharge capability is appropriately maintained regardless of whether charging / discharging is stopped or not. It becomes possible.
  • the previous SOH_n1 closest to the present stored in the storage unit is used as the deterioration degree SOH required for calculating the discharge capacity correction amount, but the change in SOH is sufficiently small in the short term. Therefore, even if SOH_n1 is used, the current discharge capacity COD_now can be estimated with high accuracy.
  • FIG. 3 is a flowchart for explaining the flow of processing of the state detection method for the power storage device of the present embodiment.
  • determination of the discharge capability reflecting the short-term transient change after charge / discharge stop is possible.
  • FIG. 4 shows the relationship between the SOH during discharge and the discharge capacity COD.
  • the voltage measurement value (D1) when the storage device is stabilized after 20 hours have elapsed after the discharge is stopped is shown on the vertical axis as the discharge capacity COD, and the SOH calculated under the conditions is shown on the horizontal axis.
  • the broken line L1 which approximates a voltage measurement value was shown together, it turns out that there exists a one-to-one relationship between SOH and COD as the broken line L1 shows. From this, it can be seen that the COD can be obtained with high accuracy by calculating the stable SOH with high accuracy.
  • FIG. 5 shows a transient change in the OCV after the charging is stopped.
  • FIG. 4A shows the change in the OCV when the horizontal time axis is shown in a logarithmic scale
  • FIG. 4B shows the same graph when the horizontal time axis is a linear scale. The change of OCV of this is typically shown.
  • the transient change due to the charging gradually relaxes, and the OCV gradually converges to the stable OCV.
  • FIG. 6 shows the change over time in the amount of voltage drop when discharging is performed at a plurality of time points with different elapsed times after stopping charging.
  • the elapsed time from the stop of charging is 30 seconds (reference t1), 100 seconds (reference t2), 300 seconds (reference t3), 3600 seconds (reference t4), 36000 seconds (reference t5), and 72000 seconds (reference) It shows the change over time in the amount of voltage drop when discharging is performed at time t6).
  • the discharge of 100 [A] is continued for 30 seconds as the discharge.
  • FIG. 6 shows that the amount of voltage drop increases as the elapsed time after charging stops.
  • the amount of voltage drop (symbol t1) when discharging is performed when 30 seconds have elapsed after stopping charging is larger than when the elapsed time from stopping charging to starting discharging is made longer. If the elapsed time from the stop of charging is increased to a certain extent, the difference in voltage drop is hardly observed. Since the difference in the voltage drop amount ⁇ Va affects the COD, when determining the COD when the elapsed time from the stop of charging is short, the correction of the COD corresponding to the difference in the voltage drop amount ⁇ Va is performed. preferable.
  • the difference in the voltage drop amount ⁇ Va is caused by a change in the deterioration degree SOH_fast due to a fast transient change
  • SOH_fast is calculated based on the equation (7), further created in advance and stored in the storage unit 120.
  • the SOH is calculated using the function G (SOH_fast, SOH_slow) shown in the stored equation (8).
  • SOH_slow indicates a degree of deterioration due to a slow transient change calculated when the most recent charge / discharge stop.
  • a voltage measurement value is used for a fast reaction rate among the relaxation rate f i (t) for each reaction rate of the discharge capacity correction function F (SOH, ⁇ Va). To optimize. This optimization is possible after a predetermined time (first relaxation time) has elapsed since the charge / discharge stop.
  • FIG. 7A shows the time change of the OCV (reference numeral 71) and the OCV change amount ⁇ V (reference numeral 72) after the charge is stopped in the lead-acid storage battery (battery capacity 48 [Ah]), and FIG.
  • step S3 A method for detecting the state of the electricity storage device of the present embodiment will be described below using the flowchart shown in FIG. From the start of the n-th state detection to the determination of whether or not charging / discharging is stopped in step S3, the same processing as steps S1 to S3 shown in the flowchart of FIG. 1 is performed. Further, when it is determined in step S3 that charging / discharging is being performed, steps S7 to S10 (the above is referred to as processing block A), steps S11 and S12 to S14 (the above is referred to as processing block B) in FIG. Do the same process.
  • step S3 if it is determined in step S3 that charging / discharging is not being performed (charging / discharging is stopped), the same processing as in steps S4 and S5 in FIG. It is determined whether or not it is longer than the relaxation time. Then, when the elapsed time is equal to or shorter than the first relaxation time, the processing block A, step S11, and processing block B are performed as in the first embodiment. On the other hand, if it is determined in step S20 that the elapsed time from the charge / discharge stop is longer than the first relaxation time, the following steps S21 to S27 are performed in the present embodiment.
  • step S21 the voltage change amount ⁇ Va_n is calculated in the same manner as in step S7 of the processing block A.
  • step S22 the deterioration degree SOH_fast_n due to a fast transient change is calculated using equation (7).
  • step S23 the deterioration degree SOH_slow_n due to the slow transient change stored in the storage unit 120 is read.
  • step S24 the SOH calculation formula G (SOH_fast, SOH_slow) is read from the storage unit 120.
  • step S25 the current SOH_n is calculated by substituting the calculated SOH_fast_n and the read SOH_slow_n into SOH_fast and SOH_slow of the SOH calculation formula G (SOH_fast, SOH_slow), respectively.
  • step S26 as in step S9, the discharge capacity correction function F (SOH_n, x) corresponding to the deterioration degree SOH_n calculated in step S25 is read from the storage unit 120.
  • step S27 the discharge capacity correction amount COD_SOH_n is calculated by substituting ⁇ Va_n calculated in step S21 for the variable x of the discharge capacity correction function F (SOH_n, x).
  • COD_soh_n F (SOH_n1, ⁇ Va_n)
  • step S11 the current discharge capacity COD_now is calculated from the current voltage V_now and the discharge capacity correction amount COD_SOH_n calculated in step S27. Further, the processing of the processing block B is performed using the current discharge capacity COD_now.
  • the state detection method of the electricity storage device of the present embodiment and the state detection device of the electricity storage device of the present embodiment using the state detection method it is possible to appropriately discharge regardless of whether charging / discharging is stopped or not.
  • the deterioration degree SOH is calculated based on fast transient characteristics when the charge / discharge stop time is short. It is possible to estimate the current discharge capacity COD_now with higher accuracy.
  • FIG. 8 is a flowchart for explaining the flow of processing of the state detection method for the power storage device of this embodiment.
  • the discharge capability reflecting the transient change after the charge / discharge stop can be calculated. That is, during charging / discharging of the electricity storage device, not only the deterioration degree SOH_fast due to the fast transient change but also the deterioration degree SOH_slow due to the slow transient change is calculated to obtain the deterioration degree SOH with high accuracy, and this is used to discharge the electricity storage device.
  • Ability is estimated with high accuracy.
  • the elapsed time corresponding to the slow transient change is referred to as a second relaxation time.
  • step S20 the state detection method of the second embodiment shown in the flowchart of FIG. Perform the same process as Then, when it is determined in step S20 that the elapsed time is equal to or shorter than the first relaxation time, the processing block A, step S11, and processing block B in FIG. 3 are performed. On the other hand, when it is determined in step S20 that the elapsed time is longer than the first relaxation time, the voltage change amount ⁇ Va_n is calculated in step 21 as in the second embodiment, and then the process proceeds to step S30.
  • step S30 it is determined whether or not the elapsed time from the charge / discharge stop is longer than the second relaxation time. As a result, when the elapsed time is equal to or shorter than the second relaxation time, the processing of steps S22 to S27 (referred to as processing block C) is performed as in the second embodiment. On the other hand, when it is determined in step S30 that the elapsed time from the charge / discharge stop is longer than the second relaxation time, the following steps S31 to S34 are performed in the present embodiment.
  • step S31 the OCV change amount ⁇ V_n is calculated based on the equation (4), and using this, the discharge capacity correction function F (SOH, ⁇ Va) is optimized from the relationship of the equation (5) in step S32.
  • step S33 the current deterioration degree SOH_n is calculated using equations (7) and (8).
  • step S34 the discharge capacity correction amount COD_SOH_n is calculated by substituting ⁇ Va_n calculated in step S21 and SOH_n calculated in step S33 into the optimized discharge capacity correction function F (SOH, ⁇ Va).
  • step S11 the current discharge capacity COD_now is calculated from the current voltage V_now and the discharge capacity correction amount COD_SOH_n calculated in step S27. Further, the processing of the processing block B is performed using the current discharge capacity COD_now.
  • the discharge capacity is appropriate regardless of whether charging / discharging is stopped or not.
  • FIG. 9 is a flowchart for explaining the flow of processing of the state detection method for the power storage device of this embodiment.
  • the present embodiment has been made to solve these problems, and provides a state detection method and apparatus for a storage device that performs state detection by reducing the influence of charging / discharging before stopping the storage device.
  • the storage battery 10 is charged with a predetermined capacity immediately after the charge / discharge stop (hereinafter referred to as pre-state detection charge), and after the pre-state detection charge is completed, the power storage device. Detect the state of For example, 5% of the rated capacity may be charged as the pre-state detection charging.
  • the flowchart shown in FIG. 9 has the same processing flow as the state detection method of the third embodiment shown in FIG. 8 except immediately after the charge / discharge stop.
  • the flow depends on the elapsed time after the stop. It is possible to estimate the current discharge capacity COD_now with high accuracy by calculating the deterioration degree SOH with high accuracy.
  • charging before state detection is performed in step S40. By performing such pre-state detection charging, the power storage device shifts to a reproducible transient change state. This makes it possible to detect the state in a reproducible transient state that can be regarded as equivalent or have the same tendency, and to detect the state of the power storage device with higher accuracy.
  • the state detection method and apparatus for the electricity storage device of the present invention described above are not limited to the electricity storage device mounted on a conventional engine-driven vehicle, but include an electric vehicle, a mobile phone, a backup battery that operates during a power failure, and It can be applied to a power storage device used for leveling power of natural energy generated by sunlight or wind power in cooperation with a power system, and a system incorporating the power storage device.
  • the state detection method and apparatus for an electricity storage device of the present invention are not limited to the above applications as long as the electricity storage device is mounted and monitoring or state determination is necessary.
  • Examples of the power storage device include a storage battery and a capacitor, and an apparatus capable of increasing or decreasing the energy inside the device via movement of electrons or ions and taking out the internal energy as power from the outside is an object.
  • a Li ion battery a Ni hydrogen battery, a sodium-sulfur battery, a lead battery, a capacitor, and the like, which can be applied to a power storage system that combines these.
  • the example of the said electrical storage device is a part, and is not limited to the said storage battery or a capacitor.
  • the discharge capability of the storage device can be determined even when the system is not stopped. Disappear.
  • the method for determining the discharge capability of the power storage device is constructed with an algorithm that calculates the condition that is strongly influenced by factors external to the power storage device and other conditions, it is possible to use the method according to the situation. As a result, the selection range of the control method based on the determination result is widened, and a more flexible system operation is possible.
  • the transient change of the electricity storage device after the stop of charge / discharge is viewed as the change in voltage measurable from the electricity storage device. That is, the voltage when the storage device stops charging / discharging and reaches a state where the predetermined stability condition is satisfied is defined as the stable voltage at stop, and the amount of change from the stable voltage at stop after the charge / discharge stop is used.
  • the voltage change at stop the amount of change from the stable voltage at the stop of the voltage measurement value when the time t has elapsed since the storage device stopped charging / discharging.
  • a relaxation function F (t) that depends on a predetermined amount of state of the electricity storage device is created in advance and used as a function for calculating the amount of voltage change at the time of stop. . Then, the relaxation function F (t) is optimized using the amount of change in the stop voltage obtained from the voltage measurement value, and the state is detected by estimating a predetermined state quantity from the optimized relaxation function F (t). Yes.
  • the voltage state immediately before the charge / discharge stop is detected, the predetermined state quantity is estimated using the above relaxation function F (t), and the estimated state quantity is set in advance.
  • the discharge capability (COD) of the electricity storage device is appropriately maintained.
  • COD discharge capability
  • SOH state of health
  • SOC state of health
  • the change in the state quantity for each reaction rate is estimated using the relaxation function F (t), and these are integrated to determine the state quantity. For example, the state quantity at the time when the elapsed time after the end of charge / discharge is short is determined in consideration of the influence of the slow reaction rate.
  • an open-circuit voltage OCV (hereinafter referred to as “stable OCV”) of the electricity storage device when a sufficient time has elapsed after stopping charging and discharging is known.
  • OCV is a voltage between terminals when the terminal of the electricity storage device is opened and discharge is stopped.
  • the stable voltage at the time of stop used in the method for detecting the state of the power storage device of the present embodiment is not limited to the OCV, and when the transient influence on the power storage device is limited, the stable voltage at that time can be used. .
  • a minute current may be supplied to the load control device while the power supply from the power storage device to the load is stopped. Even when the load is stopped, the voltage when a sufficient time elapses after the load is stopped can be set as the stable voltage at the time of stop.
  • the transient effect on the electricity storage device is considered to be sufficiently small, so when sufficient time has passed since the load was stopped.
  • the voltage can be a stable voltage when stopped. In this way, when the current due to charging / discharging is small or constant and the influence on the transient change inside the electricity storage device is limited within a predetermined range, when the power supply to the load is stopped, In addition to determining that the discharge has stopped, the voltage when a long time has elapsed after stopping the charge / discharge in a state where a minute current or a constant current is continued can be set as a stable voltage at the time of stop. In this case, it is preferable that a voltage correction amount for correcting a voltage change due to a minute current or a constant current is determined in advance, and the voltage measurement value is corrected using this.
  • OCV s represents the stable OCV calculated this time
  • OCV ′ represents the previously calculated stable OCV
  • SOC ′ represents the remaining capacity of the previous calculation
  • T represents the temperature of the power storage device.
  • the SOC is determined depending on the previously calculated OCVs ′, and at the same time, the OCVs also depends on the SOC, and further changes depending on the state quantity SOH and the temperature T of the power storage device. It shows that Moreover, since OCVs depends on another state quantity SOH, the state quantity SOC also depends on SOH, and it is necessary to perform each update at an appropriate timing.
  • OCV s as shown in equation (1-2), but the elapsed time t from the discharge stop is infinite V mes when the (t), practically sufficient change of V mes (t) is It can be set to V mes (t) at the time of elapsed time t that is considered to be smaller.
  • OCV s is V mes (t) when the amount of change in OCV per hour is 5 mV or less, or when 20 hours have elapsed since charging / discharging was stopped. It can be.
  • the storage device state detection method of the present invention will be described by taking as an example the case where the storage device is a storage battery such as a liquid lead storage battery.
  • V mes (t) when 20 hours have elapsed from the stop of charging / discharging of the storage battery is defined as OCV 20hr of the following formula, and this is used for OCV s .
  • Factors of voltage change include the electrode plate state, the ion concentration in the vicinity of the electrode plate, their solid-phase reaction, solid-liquid reaction, and precipitation and convection of the electrolyte solution, and ion movement accompanying diffusion.
  • ⁇ V (t) is considered to be caused by a combination of relaxation processes having different reaction rates. Therefore, since the transient change after the charge / discharge stop of the electricity storage device 11 includes reaction processes with different speeds, in order to determine the discharge capability of the electricity storage device 11 after the charge / discharge stop with high accuracy, the reaction rate It is preferable to detect the state using a method capable of evaluating the state change for each.
  • ⁇ V (t) is expressed as follows using a function F (t) made up of m polynomials according to the difference in reaction rate.
  • F (t) F 1 (t) + f 2 (t) +...
  • F m (t) ⁇ f i (t) (1-5)
  • the above relaxation function F in (t) each term f i (t) is shows the contribution to the change in voltage different relaxation reaction rate of the storage battery, the following every reaction rate relaxation function f i (t) And
  • Each f i (t) the deterioration degree SOH is a state of the storage battery is a function that depends remaining capacity SOC (ion concentration), and the temperature T.
  • the relaxation function f i (t) for each reaction rate in the equation (1-5) is optimized by using ⁇ V (t) calculated from the measured voltage value V mes (t) after stopping the charge / discharge. Can be determined.
  • the initial values SOC 0 , SOH i 0 , and OCV 20hr 0 of SOC, SOH, and OCV 20hr before the state detection is started are stored in the state detection system.
  • SOC 0 SOC ref (0)
  • SOH i 0 SOH i ref (0)
  • OCV 20hr 0 OCV 20hr ref (0)
  • the reference values SOC ref (0) , SOH i ref (0) , and OCV 20hr ref (0) are values acquired in advance by different batteries.
  • the relaxation function F (1-5) representing the OCV variation ⁇ V (t) t) and the relaxation function for each reaction rate f i (t) are F n (t) and f i n (t), respectively, and SOC and SOH corresponding to the i-th reaction rate (respectively SOC n and SOH i n ), the relaxation function fi n (t) for each reaction rate is expressed by the following equation.
  • f i n (t) f i ref (t) * ⁇ SOC n / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * g (T) (1-6)
  • f i ref (t) SOC ref, SOH i ref is, f i (t) in the predetermined initial state (e.g. unused state)
  • SOC, a SOH i, g (T) is It is a function representing temperature dependence.
  • SOH i n ⁇ f i n (t) / f i ref (t) ⁇ * SOH i ref (1-7) It can be calculated from Therefore, to optimize the f i n (t) of formula (1-5) to [Delta] V (t) that is calculated from the voltage measured value V mes (t), SOH i n from the equation (1-7) by using the Can be calculated.
  • the relaxation function F (t) shown in the equation (1-5) has a relaxation function f i (t) for each reaction rate with different reaction rates, the elapsed time after the nth charge / discharge stop. Is short, f i n (t) corresponding to a slow reaction rate cannot be optimized. As a result, SOC n by using the relaxation function F (t), it is not possible to update the SOH i n. Therefore, until the optimization of f i n (t) corresponding to the slow reaction rate is possible, instead of SOC n and SOH i n , the values SOC n ⁇ 1 and SOH i n ⁇ at the previous charge / discharge stop time are used.
  • equation (1-6-1) can be used for f i n (t) corresponding to a slow reaction rate
  • state detection can be performed from a short time after charge / discharge stop. It becomes.
  • the relaxation function F n (t) using SOC n ⁇ 1 and SOH i n ⁇ 1 after the end of the previous charging / discharging is used for state detection. It becomes possible.
  • f i n (t) is updated by the following formula, and this is used to calculate the SOC i n .
  • f i n (t) f i ref (t) * ⁇ SOC i n ⁇ 1 / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * g (T) (1-6-3)
  • the OCV 20hr can be calculated by the following equation.
  • OCV 20 hr V mes (t) ⁇ [f i ref (t) * ⁇ SOC n ⁇ 1 / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ ] * g (T) (1-9)
  • the SOC n can be calculated and used for SOC state detection.
  • SOC ref the reference value of one remaining capacity
  • OCV, SOC, and SOH reflecting the degree of deterioration corresponding to different reaction rates and to perform highly accurate state detection.
  • FIG. 10 is a flowchart showing a process flow according to the state detection method of the present embodiment.
  • FIG. 11 is a block diagram showing a schematic configuration of a state detection apparatus using the state detection method of the present embodiment.
  • the state detection device 210 shown in FIG. 11 is configured to detect the state of the storage battery 1 mounted on the vehicle as an example.
  • Charging means 202 and a load 203 are connected to the storage battery 201, and charging by the charging means 202 and discharging to the load 203 are possible.
  • the storage battery 201 is provided with a temperature measuring unit 201a, a voltage measuring unit 201b, and a current measuring unit 201c, and each measurement value can be input to the state detection device 210 via the input unit 204. Yes.
  • the control apparatus 205 which controls charging / discharging of the storage battery 201 is provided. It is also possible to input control information from the control device 205 via the input means 204 to the state detection device 210.
  • the state detection device 210 includes an arithmetic device 211, a fixed storage means (ROM) 212, a temporary storage means (RAM) 213, a timer 214, and a state output means 215.
  • the arithmetic device 211 inputs the temperature measurement value, the voltage measurement value, and the current measurement value of the storage battery 201 using the input unit 204, and stores them in the temporary storage unit 213.
  • the fixed storage means 212 stores a relaxation function fi (t) for each reaction rate and initial values and reference values of various state quantities.
  • the arithmetic unit 211 uses the initial value and reference value stored in the fixed storage unit 212, the voltage measurement value stored in the temporary storage unit 213, and the like to store the storage battery 201 at a predetermined time period counted by the timer 214. It is configured to detect the state and output the result to the state output means 215.
  • the output information of the status output means 215 can supply control parameter information for use by the control device 205.
  • step S ⁇ b> 201 the voltage measurement value and the current measurement value of the storage battery are input using the input unit 204.
  • step S202 it is determined from the input current measurement value whether the charge / discharge stop has been started. If it is determined that the charge / discharge stop has been started, in step S203, the previous voltage measurement value is stored in the temporary storage means 213 as the discharge end voltage V DE or the charge end voltage V CE .
  • step S204 as compared to V ref of the reference values stored discharge end voltage V DE or charging end voltage V CE in the fixed storage device 212, higher than the reference value V ref The process proceeds to S205.
  • V ref is a value (for example, 12.8 V) measured in advance with another battery.
  • step S204 If it is determined in step S204 that the discharge end voltage V DE or the charge end voltage V CE is equal to or higher than V ref, it is determined in step S205 whether charging / discharging is stopped or charging / discharging is resumed. If it is determined that charging / discharging has been resumed, the state detection is terminated. On the other hand, when the charge / discharge stop is continued, the voltage measurement value is set to V mes in step S206 and stored in the temporary storage means 213. In the next step S207, OCV 20hr which is a stable voltage at the time of stop is selected, and ⁇ V (t) is calculated in step S208 using this and the voltage measurement value V mes .
  • step S209 the relaxation function F (t) is optimized using ⁇ V (t) calculated in step S208.
  • the fitting method there are various methods of calculation using regression calculation such as the least square method.
  • step S210 a predetermined state quantity (hereinafter referred to as S) is estimated using the optimized relaxation function F (t).
  • step S211 the estimated state quantity S is compared with the reference value S ref stored in the fixed storage means 212.
  • the process proceeds to step S212, and the COD is determined. The fact that it is secured is output to the status output means 215.
  • step S213 the fact that the COD is insufficient is output to the state output means 215.
  • the SOC calculation formula (1-1) and the reference values SOC ref (0) , SOH ref (0) , and OCV 20hr corresponding to the initial values of SOC, SOH, and OCV 20 hr are used.
  • Set 20hr ref (0) is used.
  • step S201 Details of the processing in step S201 are shown in FIG. In FIG. 12, the timer count value is confirmed at a predetermined confirmation timing, and when the timer count (t_count) exceeds the measurement timing value for the predetermined measurement timing (step S201-2), The voltage and current of the storage battery 201 are input from the input unit 214 (step S201-4).
  • FIG. 13 shows an example of a method for determining whether to stop charging / discharging the storage battery 1 in step S202.
  • Charging / discharging stop is determined when the measured current value measured in step S202-2 is equal to or less than a predetermined threshold stored in the fixed storage unit 212 (step S202-4). Is determined to be parked or stopped, or information indicating that the state detection device 210 is connected to the storage battery 201 is input to the computing device 211 (step S202-1), using these pieces of information. It is also possible to determine whether to stop charging / discharging (step S202-3).
  • step S207 The OCV 20hr selection method in step S207 is shown in the flowchart of FIG.
  • the previously calculated values SOC n-1 and SOH n-1 are used as SOC n and SOH n at the start of the nth OCV 20hr calculation (step S207-1).
  • the current temperature T of the storage battery 201 uses the measured value input from the input means 204 (step S207-2).
  • Equation (1-5) is composed of the following four terms.
  • Fast relaxation rate function 2: f fast2 (t) D * exp (-E * t ⁇ F) (1-10-2)
  • Slow relaxation rate function 1: f slow1 (t) G * exp (-H * t ⁇ I) (1-10-3)
  • Slow relaxation rate function 2: f slow2 (t) -a / 72000 * t + b (1-10-4)
  • a method for obtaining F n (t) from ⁇ V (t) according to the elapsed time of the timer count (step S209) will be described with reference to FIGS.
  • the functions shown in the equations (1-10-1) to (1-10-4) are divided by four reference times (10 seconds, 1000 seconds, 36000 seconds, 72000 seconds), and each of them is dominant.
  • Each coefficient is determined by fitting as follows.
  • the reference time (10 seconds, 1000 seconds, 36000 seconds, 72000 seconds) is an example, and can be set according to the relaxation characteristics of the reaction rate of the storage battery.
  • the reference time can be changed not only by the reaction speed inside the storage battery but also by the running condition and rest condition in the actual vehicle, the required accuracy of the sensor, and the like.
  • F n (t) f fast1 n ⁇ 1 (t) + f fast2 n ⁇ 1 (t) + f slow1 n-1 (t) + f slow2 n-1 (t) ⁇ (1-11)
  • F n-1 ( Based on t) and the latest data, F n (t) is calculated by the following equation (step S209-4).
  • F n (t) f fast1 n (t) + f fast2 n ⁇ 1 (t) + f slow1 n-1 (t) + f slow2 n-1 (t) ⁇ (1-12)
  • F n-1 (t) After the end of the previous charge / discharge is completed. Based on the latest data, F n (t) is calculated by the following equation (step S209-6).
  • F n (t) f fast1 n (t) + f fast2 n (t) + f slow1 n-1 (t) + f slow2 n-1 (t) ⁇ (1-13)
  • F n-1 (t) after the end of the previous charge / discharge is completed.
  • F n (t) is calculated by the following equation (step S209-8).
  • F n (t) f fast1 n (t) + f fast2 n (t) + f slow1 n (t) + f slow2 n-1 (t) ⁇ (1-14)
  • t 20 hours for F n (t) obtained from the above equations (1-11) to (1-14)
  • OCV 20hr n F n (20hr) Is obtained (step S209-11).
  • F n (t) f fast1 n (t) + f fast2 n (t) + f slow1 n (t) + f slow2 n (t) ⁇ (1-16)
  • FIG. 17 shows f i (t) calculated in the processing of FIGS. 15 and 16 and stored in the temporary storage unit 213, the reference value f i ref (t) previously stored in the fixed storage unit 212, and SOH i. with ref, it shows a flow of processing in step S210 of calculating SOH i n, the SOC.
  • the OCV 20hr n , the reference value f i ref (t), the SOH i ref, and the temperature T n obtained above are read from the storage means 212 and 213 (steps S210-1 and 2) and stored in the fixed storage means 212.
  • Reference numerals 251 to 254 denote the equations (1-10), respectively.
  • the change of each term ( ffast1 (t), ffast2 (t), fslow1 (t), fslow2 (t)) is shown.
  • Reference numeral 250 represents a true value
  • reference numeral 255 represents a value of F (t) calculated from the expression (1-10). It is shown that ⁇ V (t) can be predicted with high accuracy by using F (t) of the present embodiment.
  • SOH 1 50 ⁇ f slow1 50 (5hr) + f slow2 50 (5hr) ⁇ / ⁇ F slow1 20 (5 hr) + f slow2 20 (5 hr) ⁇ * SOH 1 20 (1-18)
  • SOH 1 100 ⁇ f slow1 100 (5 hr) + f slow2 100 (5 hr) ⁇ / ⁇ F slow1 20 (5 hr) + f slow2 20 (5 hr) ⁇ * SOH 1 20 (1-19)
  • FIG. 19 shows f slow n (t) / f slow 20 (t) calculated from the measurement data.
  • FIG. 20 shows the relationship between f slow n (t) / f slow 20 (t) and OCV 20hr 20 described above. The results shown in FIG. 20 can be used in a stable OCV estimation formula for estimating the OCV 20 hr of the same type of storage battery.
  • the present invention it is possible to provide a state detection method for a storage battery that performs state detection by evaluating deterioration due to reaction processes having different speeds. By detecting the deterioration degree SOH of the battery, it is possible to accurately detect the remaining capacity SOC.
  • FIG. 21 is a flowchart showing a process flow according to the state detection method of the present embodiment.
  • the remaining capacity SOC stop n at the time of charge / discharge stop in step S221. Is used to determine the COD. That is, in step 221, the remaining capacity SOC stop n is compared with the reference value SOC stop ref stored in the fixed storage means 212. If the remaining capacity SOC stop n is greater than or equal to the reference value SOC stop ref , the next step is performed. Proceeding to S205 and thereafter, if it is smaller than the reference value SOC stop ref, it is determined that the COD is insufficient, and the process proceeds to step S213. Thereby, the discharge capability of the storage battery 201 can be determined with higher accuracy.
  • a method of calculating the remaining capacity SOC stop n when charging / discharging is stopped will be described with reference to FIG.
  • the SOC increased / decreased after the charging / discharging is restarted until the current charging / discharging stop (this is set as the remaining capacity increase / decrease amount ⁇ SOC) is corrected.
  • the remaining capacity SOC stop n at the current charge / discharge stop can be calculated.
  • the remaining capacity increase / decrease amount ⁇ SOC can be calculated by integrating the charge / discharge current of the storage battery 1 from the previous charge / discharge restart to the current charge / discharge stop.
  • the ⁇ SOC calculated as described above is further subjected to a predetermined correction so that the remaining capacity increase / decrease amount can be calculated with higher accuracy.
  • the remaining capacity SOC stop n when charging / discharging is stopped is calculated by the following equation.
  • SOC stop n SOC stop n-1 + ⁇ SOC * ⁇ 1 n-1 * ⁇ 2 n-1 (1-20)
  • ⁇ 1 n-1 is a function of slow relaxation rate f slow (10 hr) (f slow1 in formula (1-10-3) or formula (1-10-4) as shown in FIG.
  • a correction coefficient which is determined depending of the f slow2), ⁇ 2 n- 1 , as shown in FIG. 22 (b) is a correction coefficient determined in dependence on the charging end voltage V CE n .
  • FIG. 23 is a flowchart illustrating a process flow according to the state detection method of the present embodiment.
  • the processing method of steps S210 and S211 is changed to step S230 in the processing of the sixth embodiment shown in FIG.
  • steps S210 and S211 of the sixth embodiment (the same applies to the fifth embodiment), a predetermined state quantity S is calculated and compared with a reference value S ref stored in the fixed storage unit 212. It was determined whether or not the amount S satisfies the condition indicating that the discharge capacity is maintained.
  • step S230 of the present embodiment the state quantity S is evaluated for each reaction rate, and it is determined whether the condition for maintaining the discharge capacity is satisfied for each reaction rate. Also, the determination based on the ratio between the slow reaction rate and the fast reaction rate is performed.
  • the degree of deterioration SOH fast n and SOH slow n for each reaction rate can be calculated as follows using equation (1-7).
  • SOH fast n ' ⁇ f fast n (t) / f fast ref_n (t) ⁇ * SOH fast ref (1-21)
  • SOH slow n ⁇ f slow n (t) / f slow ref_n (t) ⁇ * SOH slow ref (1-22)
  • the total SOH n obtained by integrating the deterioration degrees SOH fast n and SOH slow n for each reaction rate is expressed as in equation (1-8), and can be calculated from equation (1-8-1), for example. it can.
  • the degree of deterioration SOH fast / slown calculated based on the ratio between the slow reaction rate and the fast reaction rate can also be calculated by the following equation in the same manner as described above.
  • SOH fast / slow n ⁇ f fast / slow n (t) / f fast / slow ref_n (t) ⁇ * SOH fast / slow _ref (1-23)
  • the degradation degree SOH fast / slow n calculated based on the ratio of the slow reaction rate and the fast reaction rate is obtained by using the ratio of the slow reaction rate and the fast reaction rate as shown in FIG. It becomes possible to evaluate a change in the degree of deterioration based on a large change event, either a speed transient event or a slow reaction rate transient event.
  • SOH fast n ′ calculated by the above equation (1-21), in order to correct the influence of the remaining capacity SOC stop n, which is the state quantity at the time of charge / discharge stop, and the voltage V CE n at the end of charge,
  • the corrected deterioration degree SOH fast n is calculated by the following equation. This correction corrects the fact that SOH fast n changes as shown in FIG. 25 with respect to a fast reaction rate.
  • SOH fast n SOH fast n '* ⁇ 1 n * ⁇ 2 n (1-24)
  • the correction parameters ⁇ 1 n and ⁇ 2 n show changes as shown in FIGS. 26A and 26B, for example, with respect to the remaining capacity SOC stop n and the charging end voltage V CE n .
  • the change shown in FIGS. 26A and 26B is expressed by a predetermined function (high-speed transient change correction amount calculation formula), so that the correction parameter ⁇ 1 can be calculated from the remaining capacity SOC stop n and the charging end voltage V CE n. n and ⁇ 2 n can be calculated.
  • the SOD fast n , SOH slow n , and SOH fast / slow n calculated as described above are used, and the COD of the storage battery 1 can be determined by comparing with the respective reference values as shown in FIG. .
  • the state quantity is represented by S fast or the like, but when SOH is evaluated, it is replaced with SOH fast n or the like.
  • SOH slow n is calculated using equation (1-22), and in step S232, it is compared with the reference value SOH slow ref_n .
  • SOH slow n proceeds to step S213 to determine the COD insufficient when less than SOH slow REF_N, proceeds to the next step S233 when otherwise.
  • SOH fast n is determined in steps S233 and S234, and SOH fast / slow n is determined in steps S235 and S236.
  • the process proceeds to step S212 and it is determined that the COD is maintained.
  • it is possible to detect the state of the storage battery 1 with high accuracy by performing the processing as shown in FIGS.
  • SOC and SOH are calculated as the state quantities of the electricity storage device, and the state detection is performed using them.
  • the state detection method of the electricity storage device of the present invention is not limited to this, and other state quantities relating to the discharge capability of the electricity storage device can be used.
  • SOC and SOH as a state quantity that can be used for determining the discharge capability of the electricity storage device, there is a concentration change amount of the electrolytic solution in the electricity storage device.
  • concentration of electrolyte solution is changing with charging / discharging, and it takes time until it stabilizes even after charging / discharging stops.
  • a density change amount calculation formula for calculating the density change amount is created in advance and stored in the fixed storage unit 212. Then, an electrolyte solution concentration change amount is calculated from the concentration change amount calculation formula using the optimized relaxation function F (t), and state detection is performed by determining whether or not this satisfies a predetermined condition. Can be.
  • FIG. 28 schematically shows a state in which the stratification 294 is formed by changing the concentration distribution of the electrolytic solution 293 around the positive electrode 291 and the negative electrode 292.
  • the concentration distribution of the electrolytic solution changes with charge / discharge, and a stratification 294 as shown in the figure is formed.
  • the lateral stratification which is a deviation of the concentration distribution in the lateral direction (arrow 295) with respect to the liquid surface of the electrolytic solution, and the concentration distribution in the vertical direction (arrow 296) with respect to the liquid surface of the electrolytic solution.
  • concentration distribution in the vertical direction (arrow 296) with respect to the liquid surface of the electrolytic solution.
  • There is vertical stratification that is biased. This change in stratification occurs as the electrolyte concentration changes due to charge / discharge, and it takes time to stabilize after stopping the charge / discharge, similar to the change in electrolyte concentration.
  • the stratification change amount for state detection, the stratification change with respect to the terms f fast (t), f slow (t) and f fast (t) / f slow (t) of the relaxation function F (t).
  • a stratification change amount calculation formula for calculating the amount is created in advance and stored in the fixed storage unit 212. Then, the stratification change amount is calculated from the stratification change amount calculation formula using the optimized relaxation function F (t), and the state detection is performed by determining whether or not this satisfies a predetermined condition. Can be.
  • Another state quantity that can be used to determine the discharge capability of the electricity storage device is a change in the concentration distribution (lateral stratification) in the lateral direction with respect to the electrolyte surface. This change in lateral stratification occurs as the electrolyte concentration changes due to charging / discharging, and it takes time to stabilize after stopping the charging / discharging, similar to the change in electrolyte concentration.
  • the lateral stratification change amount for state detection, the lateral stratification with respect to the terms f fast (t), f slow (t) and f fast (t) / f slow (t) of the relaxation function F (t).
  • a lateral stratification change amount calculation formula for calculating the change amount of stratification is created in advance and stored in the fixed storage means 212. Then, using the optimized relaxation function F (t), the lateral stratification change amount is calculated from the lateral stratification change amount calculation formula, and the state detection is performed by determining whether or not this satisfies a predetermined condition. Can be done.
  • the amount of lateral stratification change in the state detection method of the power storage device it is possible to detect the state with high accuracy.
  • Another state quantity that can be used for determining the discharge capability of the electricity storage device is a change in the concentration distribution (horizontal stratification, vertical stratification) in the horizontal and vertical directions with respect to the liquid surface of the electrolyte.
  • concentration distribution horizontal stratification, vertical stratification
  • the amount of vertical and horizontal stratification change occurs as the electrolyte concentration changes due to charge and discharge. take time.
  • the vertical and horizontal stratification change amount for the state detection, the vertical and horizontal stratification with respect to the terms f fast (t), f slow (t) and f fast (t) / f slow (t) of the relaxation function F (t).
  • a vertical and horizontal stratification change amount calculation formula for calculating the change amount is generated in advance and stored in the fixed storage unit 12. Then, using the optimized relaxation function F (t), the vertical / horizontal stratification change amount is calculated from the vertical / horizontal stratification change calculation formula, and the state detection is performed by determining whether or not this satisfies a predetermined condition. Can be done.
  • the amount of vertical and horizontal stratification change in the state detection method of the power storage device it is possible to detect the state with high accuracy.
  • a state detection method and apparatus for a storage device that performs state detection by reducing the influence of charging and discharging before the storage device is stopped are provided.
  • a state detection mode for appropriately detecting the state of the power storage device is provided in order to appropriately maintain the discharge capability of the power storage device.
  • the state detection mode is a system that includes an electricity storage device.For example, when the operation is stopped and charging / discharging of the electricity storage device is stopped, or when a considerable time has elapsed after the charging / discharging is stopped, It is executed by maintenance personnel.
  • the state detection mode is requested for the power storage device, the state of the power storage device is detected with high accuracy.
  • the state detection method and state detection device of the power storage device according to the present embodiment will be described by taking a battery mounted on the vehicle as an example of the power storage device.
  • the contents described below are not limited to in-vehicle batteries, but can be similarly applied to power storage devices used for photovoltaic power generation, wind power generation, and the like, and power storage devices used for backup power sources such as a stabilized power source and an auxiliary power source. Is.
  • FIG. 29 is a flowchart for explaining the outline of the state detection method for the power storage device of the present embodiment
  • FIG. 30 is a block diagram of the state detection device for the power storage device of the present embodiment.
  • the state detection device 400 is mounted on the vehicle 310 and detects the state of the power storage device (storage battery) 311, and includes a signal input unit 401, an output display unit 402, a measurement unit 403, and a state detection unit 410. It has.
  • a load 312 such as an in-vehicle electric device is connected to the power storage device 311, and an in-vehicle charger 314 such as an alternator is further connected.
  • the signal input unit 401 is used to input a signal (hereinafter referred to as a state detection mode start signal) for a user such as a driver to request a state detection mode
  • the output display unit 402 is a state detection unit. This is used to notify the user of the result of performing the Since both the signal input unit 401 and the output display unit 402 are used by the driver, it is preferable to provide the signal input unit 401 and the output display unit 402 at or near the driver's seat.
  • the state detection unit 410 inputs measurement values such as voltage and current of the power storage device 311 from the measurement unit 403, and performs processing for detecting the state of the power storage device 311 with high accuracy using the measurement values.
  • the state detection unit 410 includes a state detection mode switch 411. Instead of inputting the state detection mode start signal from the signal input unit 401, the state detection mode switch 411 is turned on to detect the state. A mode start signal is output to the state detection unit 410.
  • the state detection mode switch 411 is provided so that maintenance personnel can quickly detect the state of the power storage device 311 during maintenance such as during periodic inspection.
  • the state detection unit 410 is configured to cause the power storage device 311 to charge a predetermined capacity (hereinafter referred to as pre-state detection charging) before performing state detection. That is, when the state detection unit 410 requests the control unit 313 to charge the power storage device 311 before detecting the state, the control unit 313 starts the engine and operates the on-vehicle charger 314, thereby causing the power storage device 311 to have a predetermined capacity. Control to allow charging. Alternatively, maintenance personnel or the like can perform charging before detecting the state of the power storage device 311. In this case, a maintenance person or the like connects the battery charger 311 to the external charger 320 and charges it before detecting the state.
  • pre-state detection charging a predetermined capacity
  • the state detection unit 410 is configured to detect the state of the power storage device 311 after the pre-state detection charging by the in-vehicle charger 314 or the external charger 320 is performed.
  • a communication bus such as LIN (Local Interconnect Network) or CAN (Controller Area Network) is used as a communication unit between the state detection unit 410 and the signal input unit 401, the output display unit 402, the measurement unit 403, and the control unit 313. Can be used.
  • a state detection mode start signal is input to the state detection unit 410 (step S301).
  • the state detection unit 410 determines whether a predetermined state detection permission condition is satisfied (step S302).
  • This state detection permission condition includes that at least the power storage device 311 stops charging / discharging.
  • step S302 If it is determined in step S302 that the state detection permission condition is satisfied, the state detection mode is set to ON in step S303, and the storage device 311 is charged before state detection in the next step S304.
  • the state detection unit 410 detects the state of the power storage device 311 (step S305).
  • the state detection for example, the remaining capacity SOC of the power storage device 311 can be estimated, and the discharge capacity of the power storage device 311 can be determined based on this.
  • the discharge capability of the power storage device 311 is determined by the state detection process, the result is output to the output display unit 402 and notified to the user, maintenance personnel, and the like (step S306).
  • step S302 determines the condition detection permission condition is not satisfied, the process ends without performing the processes in steps S303 to S306.
  • the transient change after stopping charging / discharging of the battery 311 includes reaction processes with different speeds, in order to determine the discharging capability of the battery 311 after stopping charging / discharging with high accuracy, the state change for each reaction speed. It is better to detect the state using a method that can evaluate the above.
  • the battery voltage change ⁇ V (t) after stopping charging / discharging is expressed by the following equation using a function (hereinafter referred to as a relaxation function) F (t) consisting of m polynomials depending on the difference in reaction rate.
  • F (t) consisting of m polynomials depending on the difference in reaction rate.
  • the voltage change amount ⁇ V (t) is a voltage measurement value V mes (t) when the time t has elapsed since the completion of the pre-state detection charging, and a sufficient time (for example, 20 hours) after the charge / discharge stop. It represents the difference from the stable voltage at the time of stop (hereinafter referred to as OCV 20 hr ) when it becomes substantially constant after elapse.
  • ⁇ V (t) V mes ( t) -OCV 20hr (2-2)
  • state detection is performed using the above equation.
  • each term f i (t) represents the contribution to the voltage change in the relaxation process with different reaction speeds of the battery 311.
  • Each f i (t) is a function depending on the deterioration degree SOH, which is the state quantity of the battery 311, the remaining capacity SOC (ion concentration), and the temperature T.
  • ⁇ V (t) is calculated from the voltage measurement value V mes (t)
  • the equation (2-1) is optimized with ⁇ V (t) calculated from the voltage measurement value V mes (t).
  • a relaxation function f i (t) can be determined.
  • the voltage measurement value of the power storage device 311 is input at a predetermined cycle after the completion of the pre-state detection charging, and the relaxation function F (t) is optimized every time the voltage measurement value is input. Have been updated.
  • the relaxation function for each reaction rate when optimized using the voltage measurement value measured for the nth time is f i n (t)
  • f i n (t) can be expressed as the following equation.
  • f i n (t) f i ref (t) * ⁇ SOC n / SOC ref ⁇ * ⁇ SOH i n / SOH i ref ⁇ * G (T) (2-3)
  • f i ref (t), SOC ref , and SOH i ref respectively represent a relaxation function for each reaction rate, a remaining capacity SOC, and a deterioration degree SOH for each reaction rate in a predetermined reference state
  • G (T) Represents the dependence on the temperature T of the electricity storage device.
  • the equation (2-3) it is possible to calculate the residual capacity SOC n and the reaction rate per degree of degradation SOH i n is estimated using the n-th voltage measurement.
  • the discharge capacity of the electricity storage device 311 can be determined from the SOC n . Further, the reaction rate per degree of degradation SOH i n from degradation degree SOH obtained by integrating the total reaction rate, it is possible to determine the degree of deterioration of power storage device 311.
  • the state detection method for the power storage device 311 of this embodiment the state of charge / discharge is shifted to a reproducible state as much as possible before performing state detection, and then state detection is performed.
  • charging of a predetermined capacity is performed in step S304 of FIG.
  • State detection is performed by measuring changes and the like.
  • the state detection method of the present embodiment instead of determining the charge capacity before state detection using the accumulated charge and discharge during traveling, the transient change during charging is examined in advance for each target power storage device. Based on this, the pre-state detection charge capacity is determined in advance.
  • the charge / discharge capacity ( ⁇ SOC) of the traveling battery ( ⁇ SOC) (Absolute value) is 0.5% or less.
  • the storage battery state when performing state detection is governed by a transient change caused by charging before state detection, and thus it can be said that the state is a reproducible transient state. . It will be described with reference to FIG. 31 how the transient change of the storage battery after charging before state detection changes depending on the charge / discharge capacity at the time of the previous run.
  • the charging capacity before state detection is set to 5% of the rated capacity.
  • FIG. 31A shows changes in current and voltage when the pre-state detection charge capacity is larger than the charge / discharge capacity during operation
  • FIG. 31B shows the charge / discharge capacity and state detection during operation
  • FIG. 31 (c) shows changes in current and voltage when the charge / discharge capacity during operation is larger than the charge capacity before state detection.
  • the charge / discharge capacity during operation is set to 1% or less. In this case, the influence of charging / discharging during operation is reduced by the pre-state detection charging, and as a result, the voltage change after the pre-state detection charging monotonously decreases and converges to a stable voltage.
  • the charge / discharge capacity during operation is set to 1% to 5%. Also in this case, the influence of charging / discharging during operation can be reduced by the pre-state detection charging, and the voltage change after the pre-state detection charging decreases monotonously to a stable voltage as in FIG. Shows a tendency to converge. Further, when the charge / discharge capacity during operation shown in FIG. 31 (c) is larger than the pre-state detection charge capacity, the voltage tends to increase monotonously after the completion of the pre-state detection charge, as shown in FIG. 31 (a). , (B) shows a completely different tendency.
  • Charging / discharging capacity during vehicle travel is usually about 1% or less, and when the pre-state detection charge capacity is 5%, the effect of charge / discharge polarization due to charge / discharge during normal vehicle travel is sufficiently reduced. can do.
  • the discharge capability is detected based on the transient change shown in FIGS. 31A and 31B due to the 5% capacity charging.
  • the relaxation function F (t) in the equation (2-1) by using a function form that can optimally approximate the transient change due to the charge of 5% capacity, the state detection using the relaxation function F (t) is improved. It becomes possible to carry out with accuracy.
  • the capacity for charging before state detection can be set to a different value depending on what type of driving is targeted for normal vehicle driving, and also considers the size, characteristics, etc. of the storage battery installed in the vehicle. It is better to decide. For example, in the case of setting the capacity for state pre-charge detection for discharge due to idling stop, it is preferable to set a charge capacity that is equal to or greater than the capacity discharged at idling stop. By performing charging that is larger than the discharge capacity during operation, state detection can be performed in a transient state in which the voltage at the time of state detection monotonously decreases as shown in FIGS. 31 (a) and 31 (b). it can.
  • FIG. 32 is a flowchart for explaining processing from when the state detection mode is requested to when charging before state detection ends.
  • FIG. 32A shows the flow of processing when a driver or the like inputs a state detection mode start signal from the signal input means 401
  • FIG. 32B shows a state detection mode switch by a maintenance person or the like. The flow of processing when 411 is turned on is shown.
  • FIG. 32A describes the flow of processing when configured to prevent erroneous operations
  • FIG. 32B describes the flow of processing when no erroneous operations are taken into consideration.
  • FIG. 32 (b) can be configured to prevent erroneous operation as in FIG. 32 (a), and erroneous operation prevention processing can be omitted in FIG. 32 (a).
  • step S311 when a state detection mode start signal is input from the signal input unit 401 (step S311), this signal is output to the state detection unit 410.
  • the state detection unit 410 displays a confirmation message on the output display unit 402 to confirm that the state detection is requested (step S312). Based on the confirmation message, for example, when a confirmation signal is input from the signal input means 401 (step S313), it is next determined whether a predetermined state detection permission condition is satisfied (step S314).
  • the storage battery 311 is required not to be charged / discharged.
  • a method for determining that the storage battery 311 is not charging / discharging for example, it is confirmed that the vehicle 310 is in a stopped state (the key switch is in the OFF position). Further, whether the state detection unit 410 and the peripheral device can communicate with each other, whether the measurement value from the measurement unit 403 indicates a value within the normal range, or can start the engine and operate the in-vehicle charger 314 normally. If any of them is abnormal, the state detection permission condition may not be established.
  • step S314 If the result of determination in step S314 is that the condition detection permission condition is satisfied, the condition detection mode is set to ON in step S315. At this time, the output display unit 402 may display that the state detection mode is turned on.
  • step S316 the on-vehicle charger 314 is used to cause the storage battery 311 to start pre-state detection charging.
  • the pre-state detection charging using the in-vehicle charger 314 is performed by the state detection unit 410 requesting the control unit 313 to charge a predetermined capacity, and the control unit 313 starts the engine and operates the in-vehicle charger 314. .
  • step S314 when the state detection permission condition is not satisfied in the determination in step S314, the process ends without performing the processes in steps S315 and S316. At this time, which of the state detection permission conditions is not satisfied may be displayed on the output display unit 402.
  • a state detection mode start signal is output to the state detection unit 410.
  • the state detection unit 410 receives the state detection mode start signal, it next determines whether a predetermined state detection permission condition is satisfied (step S322).
  • the condition detection permission condition can be the same as in the case of FIG.
  • step S322 If the state detection permission condition is satisfied as a result of the determination in step S322, the state detection mode is set to ON in step S323, and in step S324, the state is detected before the state is detected for the storage battery 311 using the external charger 320. Start charging. Charging by the external charger 320 is performed by maintenance personnel or the like. Therefore, in step S324, it is preferable to display a charge start request message on the output display means 402, so that a maintenance staff or the like confirms this and performs charging. When charging of a predetermined capacity is completed, maintenance personnel or the like operate the state detection mode switch 411, or input a signal notifying that pre-state detection charging has ended from the signal input unit 401. Good.
  • step S322 when the state detection permission condition is not satisfied in the determination in step S322, the process ends without performing the processes in steps S323 and S324. At this time, which of the state detection permission conditions is not satisfied may be displayed on the output display unit 402.
  • step S331 it is determined whether the state detection mode is on. As a result, if the state detection mode is on, the process proceeds to step S332, and if the state detection mode is off, the process ends without performing the following processing.
  • step S332 it is determined whether the condition detection permission condition is satisfied. The confirmation of the condition detection permission condition is always performed during the condition detection mode period. As a result, if the state detection permission condition is satisfied, the process proceeds to the next step S333. If the state detection permission condition is not satisfied, the process proceeds to step S339. In this case, which of the state detection permission conditions is not satisfied may be displayed on the output display unit 402.
  • step S333 it is determined whether or not charging before state detection is completed.
  • the pre-state detection charging is performed using the in-vehicle charger 314.
  • it can be determined by checking whether the charging is completed with respect to the control unit 313. Alternatively, the determination can be made based on the elapsed time from the start of charging. Further, when the pre-state detection charging is performed using the external charger 320, the determination is made by inputting a charge end signal from the state detection mode switch 411 or the signal input unit 401. If the result of determination in step S333 is that pre-state detection charging has been completed, processing proceeds to the next step S334. On the other hand, if it is determined that the pre-state detection charging has not ended, the processing ends without performing the following processing.
  • step S334 the current voltage measurement value V mes (t) is input using the measuring unit 403.
  • step S335 the relaxation function F (t) is input using the voltage measurement value V mes (t) input so far.
  • the discharge capacity of the storage battery 311 is estimated using the optimized F (t).
  • the estimated value of the stop stable voltage OCV 20hr is updated from the equations (2-1) and (2-2), and the SOC obtained from the relationship between the OCV 20hr and the SOC as shown in FIG. Can be used.
  • step S337 the SOC estimated in this way is temporarily stored in a predetermined storage unit.
  • step S3308 it is determined whether or not the elapsed time t from the start of state detection has reached a predetermined time. If the elapsed time t has reached the predetermined time, the process proceeds to step S339. On the other hand, if the elapsed time t has not reached the predetermined time, the process ends without performing the following processing.
  • step S339 the discharge capability temporarily stored in step S337 is read, and when this is equal to or greater than a predetermined threshold, it is determined that the discharge capability is normal, and when it is less than the predetermined threshold, it is determined that the discharge capability is abnormal.
  • step S340 the result of determining the discharge capability is output to the output display means 402. Further, in step S341, the state detection mode is turned off and the process is terminated.
  • step S351 state detection by pulse discharge (step S351) and state detection by impedance measurement (step S352) are performed before performing state detection of the storage battery 311 in the state detection mode.
  • the state detection by pulse discharge measures the current and voltage when the storage battery 311 is pulse-discharged, and detects the discharge capacity and the deterioration state of the storage battery 311 based on the measured current and voltage.
  • the state detection by impedance measurement the internal impedance of the storage battery 311 is estimated from measured values of current and voltage, and the deterioration state of the storage battery 311 is detected based on this.
  • the state detection method by the state detection mode of the present embodiment may be performed independently as in the eighth embodiment, or state detection by pulse discharge and state detection by impedance measurement as in the present embodiment. It can also be done in combination. In addition, it is not always necessary to combine state detection by pulse discharge and state detection by impedance measurement, and one of state detection by pulse discharge and state detection by impedance measurement is combined with state detection by state detection mode. Is also possible.
  • the state detection is performed immediately after the charge / discharge of the storage battery 311 is stopped.
  • the present invention is not limited to this, and for example, the state detection is performed even when the charge / discharge of the storage battery 311 is stopped for a long time. Can do.
  • the discharge capability of the storage battery 311 can be confirmed by executing the state detection mode at a frequency of about once a month.
  • recovery charging (5% charging) of the storage battery 311 can be performed safely and efficiently even when parking for a long time by charging before state detection in the state detection mode.
  • the control unit 313 starts the engine and operates the in-vehicle charger 314 in response to a request from the state detection unit 410 to charge the storage battery 311.
  • a state detection mode start signal may be input immediately before the driver finishes traveling and stops the engine. In this case, for example, even if the key switch is turned off, the on-vehicle charger 314 immediately performs the pre-state detection charging without stopping the engine, and when the charging is completed, the engine is automatically stopped.
  • the present invention is not limited to this, and it is also easy to determine deterioration such as SOH. is there. Since the relaxation function F (t) also has dependency on the SOH, an equation for calculating the SOH can be derived from the relaxation function F (t). By using such an expression, it is possible to estimate the SOH and determine the deterioration state of the electricity storage device.
  • the state of the power storage device is a reproducible transient change by charging a predetermined capacity before performing the state detection. It has moved to.
  • insufficient charging or failure of the power storage device can be detected at an early stage, and the reliability as a backup of vehicle operation or auxiliary equipment can be improved.
  • the charging before the state detection can prevent a large capacity shortage and reduce the deterioration of the power storage device, thereby realizing stable operation of the system and extending the life of the power storage device.

Abstract

 充放電中か充放電を停止しているかによらず適切な放電能力が維持されているかを判定することが可能な蓄電デバイスの状態検知方法及びその装置を提供する。 ステップS7では、記憶部120に保存されていた充放電停止時の電圧V_endと現在の電圧V_nowから電圧変化量ΔVa_nを算出する。ステップS9では、ステップS8で読み込んだ劣化度SOH_n1に対応する放電能力補正関数F(SOH_n1、x)を記憶部120から読み込み、ステップS10で変数xにΔVa_nを代入して放電能力補正量COD_SOH_nを算出する。ステップS11では、現在の電圧V_nowとステップS10で算出した放電能力補正量COD_SOH_nから、現在の放電能力COD_nowを算出する。

Description

蓄電デバイスの状態検知方法及びその装置
 本発明は、蓄電デバイスの状態検知方法及びその装置に関し、特に蓄電デバイスの放電能力に係る状態検知方法及びその装置に関するものである。
 近年、蓄電デバイスに対するニーズが高まっており、例えば自動車では蓄電デバイスである蓄電池から電源供給を受けて動作する電気機器が多く搭載されるようになり、蓄電池の重要度がますます高まっている。近年はバイワイヤー化が進み、電動ブレーキ(EPB)に代表される安全系の部品を電気で制御するようになってきている。また、省エネや二酸化炭素の排出規制に伴って、交差点などでの短時間停止時のアイドリングストップ機能とその再始動能力の確保が求められている。
 自動車以外の分野でも、例えば太陽光発電や風力発電などの自然エネルギーの利用を進める上で、発電電力量の平準化や余剰電力の蓄電のために蓄電デバイスが用いられる。さらに、停電時等に電気機器に電力供給を行うための安定化電源、補助電源等のバックアップ電源にも蓄電デバイスが用いられる。このような蓄電デバイスには、二次電池やキャパシタ等の電解液の移動を伴うものが用いられている。
 一般に、蓄電デバイスが充放電停止後十分に安定した条件下では、その開放端電圧(OCV)と残容量(SOC:State of charge)との間に、図35の符号81に示すような1:1に対応する関係がある。しかしながら、このような1:1の関係は、実験室のような安定した条件下で得られるものである。充放電後の蓄電デバイスは、例えば電解液を含む蓄電池の場合、電気化学反応による極板表面でのイオンの生成・消滅反応、及び電解液の拡散や対流等によるイオンの移動、のそれぞれの影響を受けている。
 このような影響は、Liイオン電池や鉛蓄電池のような電解液中をイオンが移動する蓄電デバイスでは必ず生じる。また、キャパシターの類であっても、蓄電の媒体として電解液を利用する場合には、その媒体の濃度変化が生じるため、やはりイオンの拡散などの影響を受ける。電解液の代わりに媒体として固体電解質を用いた場合であっても、その電解質中のイオンは、蓄電作用によって偏りが生じる。そのため、媒質または媒体に応じて安定した状態に到達するのに時間がかかり、安定したOCVが得られるまでに、蓄電デバイスごとの特性に応じた収束時間が必要になる(例えば液式鉛蓄電池の場合は20時間程度)。
 上記のように、電解質又は電解液中のイオン濃度が過渡的に変化する場合には、イオン濃度が十分に均質な状態になるまでに長時間を必要とするため、限られた測定時間内で電池電圧を測定した結果では、OCVとSOCとの間で1:1の関係が成立していない。図36、37は、蓄電池のSOC及び温度が一定のときのOCVの過渡変化の一例を示す図である。図36は、SOCが一定であってもOCV(符号82)が一定値に安定するまでに時間がかかることを示している。また、図37では、SOH(劣化度、State of health)が異なるときの蓄電池におけるOCV(符号83、84、85)の変化を示しているが、SOCや温度を同一条件に調整し直近の充放電条件も同一とした場合でも、SOHが異なると同じOCVには収束しないことを示している。
 このように、OCVからSOCを高精度に求めるためには、蓄電デバイスのSOHを適切に反映したSOCを用いる必要がある。また、充放電停止後の過渡変化は、イオンの生成消滅反応のような反応時間が短く変化の速いものと、電解液の拡散や対流等のような反応時間が長く変化の遅いものが含まれている。このような反応時間の異なる過渡変化も、それぞれSOCやSOHによって異なってくる。
 蓄電デバイスを安定して利用できるようにするには、その状態検知を高精度に行って放電能力の不足等が発生するおそれがある場合には、これを早期に検知して対応できるようにする必要がある。蓄電デバイスを用いたシステムでは、システム内の電気機器等を正常に動作させるために、充放電中も維持することが要求される蓄電デバイスの下限電圧(放電能力の限界点)が設定されている。そこで、蓄電デバイスの状態検知では、その放電能力((COD:Capability of Discharge)の判定として、蓄電デバイスの電圧が上記の下限電圧より高いかを精度よく判定することが重要となる。
 蓄電デバイスのCODは、どのような負荷に対しても蓄電デバイスの電圧を常に下限電圧より高く維持できるか否かで判定される。放電時の蓄電デバイスの電圧変化の一例を図38に示す。図38は、蓄電池に負荷を接続して放電させたときの電池電圧33の時間変化を模式的に示している。放電時の電池電圧33は、時間とともに低下していくが、システム要求の下限電圧、すなわち放電能力の限界点に達すると、システムの電気機器等に適切な電力を供給できなくなってしまう。
 初期電池電圧31からの電圧降下量は、次式のように表すことができる。
   電圧降下量=反応抵抗(増大)x電流+内部電位(低下)
 ここで、反応抵抗による電圧降下(矢印D)は、電気化学反応を起こさせるのに必要なエネルギーに伴うものであり、蓄電デバイスの劣化(SOH)によって変化する。また、内部電位低下(矢印C)は、電気化学反応が行われたことによる活物質の変化等によるものであり、蓄電デバイスの残容量(SOC)によって変化する。図38より、内部電位34が下限電圧35より高くても放電反応抵抗による低下分が大きいと放電能力の限界点に達してしまう。このように、電気化学反応を伴う蓄電デバイスでは、蓄電池の内部電位C、放電反応抵抗D、及びシステム仕様で定められた下限電圧35によって放電能力CODが決まることから、放電能力を精度よく判定するためには、放電反応抵抗D(劣化)と内部電位C(残容量)を分けて判断する必要がある。
 蓄電デバイスの放電能力を判定する方法として、システムを休止させて蓄電デバイスを完全に放電させ、その後再び満充電させることで、残容量を直接測定して判定する方法が考えられる。しかしながら、この方法では、残容量測定のために蓄電デバイスが使用不可の状態となってしまい、特に蓄電デバイスがバックアップ用途で用いられるシステムでは本来の機能を実現できなくなるおそれがある。また、全容量を放電して実測するには、放電時間と充電時間の両方で相当の時間がかかるため、システムの稼動効率を大幅に低下させてしまう。
 蓄電デバイスの劣化状態を判定する方法として、インピーダンス法により内部状態を推定し、その情報に基づいて放電能力を推定する方法が知られている。しかしながら、この方法は、蓄電デバイスが満充電あるいはそれに近い状態で用いられるときに適用できるが、蓄電デバイスが部分充電状態(PSOC:Partial State of charge)で運用されるような場合には適用できない。近年、蓄電デバイスが自然エネルギーの平準化用途に利用されるようになっており、このような用途では、残容量が満充電から大きく異なる部分充電状態で蓄電デバイスが運用される。
 蓄電デバイスを満充電で運用するときと、PSOCで運用するときの運用方式の相違を、図39を用いて説明する。同図(a)は従来の運用方法における状態検知を示し、同図(b)はPSOCの運用方法における状態検知を示している。従来の運用方法では、劣化による劣化マージン42の減少分42aを検知して残された劣化マージン42bを判定することが要求される。これに対し、PSOCの運用方法では、劣化による充電領域44及び劣化マージン45のそれぞれの減少分44a、45aを検知し、必要な充電容量及び放電容量を確保するために、運用領域43の範囲を変更して新たに充電領域44b及び劣化マージン45bを設ける、といった制御が必要となる。
 常にほぼ満充電の状態で用いられる従来の蓄電デバイスの運用方法では、蓄電デバイスのインピーダンスが劣化のみの影響を受けて変化していると考えられる。そこで、インピーダンスを測定することで蓄電デバイスの劣化度(SOH)を知ることができる。これに対し、PSOCによる運用では、インピーダンスが劣化と残容量の両方の影響を受けているため、インピーダンスから劣化度を求めることはできない。
 蓄電デバイスでは、充放電後に反応時間の異なる過渡変化が生じることを上記で説明したが、このような反応時間の違いを反映するために、例えば特許文献1では、過渡変化を3つの時定数の成分に分けて評価する方法が記載されている。ここでは、充放電時間に応じて過渡応答が変わり、抵抗成分や電池の内部反応に応じた分極成分や電解液の拡散速度についての言及がある。
特開平2005-106615号公報
 しかしながら、システム運用中の充放電を行っているときの蓄電デバイスの状態検知を精度良く行う方法がこれまで知られていなかった。システム運用中の残容量を判定するための補足手段として、蓄電デバイスの充放電時の電流積算値をもとに現在の残容量を推定し、これを用いて放電能力を判定する方法がある。しかしながら、充電電流及び放電電流の積算値だけでは、蓄電デバイスの劣化等の内部の状態量の変化に伴う充放電効率の低下を反映させることはできず、電流積算値から算出される蓄電デバイスの残容量と実際に利用できる蓄電デバイスの残容量との間に差が生じ、放電能力が正確に算出できないことがある。また、残容量を監視するだけでは、蓄電デバイスの電圧がシステム要求の電圧より高くなるように維持できるかといった放電能力の判定を行うことはできない。
 電流積算値が同じであっても蓄電デバイスの電圧が異なってしまう一例を、図40を用いて以下に説明する。同図は、充電と放電とで電流積算値が同じになる充放電を繰り返したときの充電終了時の電圧を、横軸を繰返しサイクル数として表示したものである。1回のサイクルにおける充電積算量及び放電積算量はともに5%(ΔSOC=5%)としており、各サイクルの充放電積算量が0となるようにしている。また、図40では蓄電デバイスの充放電開始時の残容量(SOC)が90%(符号51~53)、80%(符号54)、70%(符号55~60)、60%(符号61)の場合について示している。
 図40より、充放電サイクル数が増加するとともに充電終了時の電圧が上昇することがわかる。これは、充放電サイクルを繰り返すに伴って蓄電デバイス内部の状態量が変化することを示している。また、電流積算値の変化量が0であっても蓄電デバイスの状態量は変化していることを示している。なお、図40に示すデータは、古河電池製液式鉛蓄電池(JIS規格55D23)を用いて行った実験データである。
 一方、充放電停止後の状態検知においても、蓄電デバイスの内部で反応時間の異なる過渡変化が生じていることから、これらの過渡変化による影響を適切に推定して状態検知を行う方法がこれまで知られていない。特許文献1に記載の状態検知方法のように、充放電停止後の過渡変化を異なる時定数の成分に分けて状態検知を行う場合でも、蓄電デバイスのSOCやSOHが変化すると、各時定数もそれに合わせて調整する必要があるが、異なるSOCやSOHに対する時定数を高精度に求めることが難しく、蓄電池の状態検知を高精度に行うのが困難になるといった問題があった。
 そこで、本発明はこれらの問題を解決するためになされたものであり、充放電中か充放電を停止しているかによらず適切な放電能力が維持されているかを判定することが可能な蓄電デバイスの状態検知方法及びその装置を提供することを目的とする。
 本発明の蓄電デバイスの状態検知方法の第1の態様は、充放電中及び充放電停止中の放電能力を所定の周期毎に判定する蓄電デバイスの状態検知方法であって、最後の充放電停止直後に測定された前記蓄電デバイスの電圧測定値が充放電停止時電圧V_endとして所定の記憶部に保存されており、前記記憶部から前記充放電停止時電圧V_endを読み込み、前記充放電停止時電圧V_endから現在(サイクル数nとする)の電圧測定値V_nowを減算して現在の電圧変化量ΔVa_nを算出し、前記蓄電デバイスの劣化度SOH及び前記電圧変化量ΔVa_nから事前に作成された放電能力補正関数F(SOH、ΔVa_n)を用いて前記蓄電デバイスの放電能力補正量COD_SOH_nを算出し、前記蓄電デバイスの現在の放電能力COD_nowを次式
   COD_now=V_now-COD_SOH_n
で算出し、前記放電能力COD_nowが所定の閾値COD_Thより大きいときに前記蓄電デバイスの放電能力が維持されていると判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記劣化度SOHは、現在に最も近い充放電停止中のサイクル数n1(n1≦n)のときに算出された劣化度SOH_n1であり、前記放電能力補正量COD_SOH_nは、前記劣化度SOH_n1に対応する前記放電能力補正関数F(SOH_n1、x)(xは変数)を前記記憶部から読み込み、前記変数xに前記電圧変化量ΔVa_nを代入して算出されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記放電能力補正関数F(SOH、ΔVa)は、前記蓄電デバイス内部の過渡変化の速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(i=1~m)の線形結合で表され、前記蓄電デバイスの充放電停止中は前記電圧測定値を前記記憶部に保存し、前記反応速度毎緩和関数fiは、前記充放電停止からの経過時間に応じて前記記憶部に保存されている前記電圧測定値を用いて最適化されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスが充放電停止中でかつ充放電停止からの経過時間が所定の時間(第1緩和時間とする)を超えているとき、
 速い過渡変化に対応する前記反応速度毎緩和関数fiを前記記憶部に保存されている前記電圧測定値を用いて最適化し、前記最適化された反応速度毎緩和関数fiを用いて速い過渡変化に依存する劣化度SOH_fast_nを算出し、現在に最も近い充放電停止中のサイクル数n2(n2≦n)のときに算出された遅い過渡変化に依存する劣化度SOH_slow_n2と前記劣化度SOH_fast_nとから所定の関数Gを用いて現在の劣化度SOH_nを次式
   SOH_n=G(SOH_fast_n,SOH_slow_n2)
で算出し、前記放電能力補正量COD_SOH_nは、前記劣化度SOH_nに対応する前記放電能力補正関数F(SOH_n、x)を前記記憶部から読み込み、前記変数xに前記電圧変化量ΔVa_nを代入して算出されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスが充放電停止中でかつ充放電停止からの経過時間が前記第1緩和時間より長い所定の第2緩和時間を超えているとき、さらに、遅い過渡変化に依存する前記反応速度毎緩和関数fiを前記記憶部に保存されている前記電圧測定値を用いて最適化し、前記最適化された反応速度毎緩和関数fiを用いて遅い過渡変化に依存する劣化度SOH_slow_nを算出し、算出された前記速い過渡変化に依存する劣化度SOH_fast_nと前記遅い過渡変化に依存する劣化度SOH_slow_nとから前記関数Gを用いて現在の劣化度SOH_nを次式
   SOH_n=G(SOH_fast_n,SOH_slow_n)
より算出することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、充放電停止直後に前記蓄電デバイスに所定容量の充電(状態検知前充電)を行い、前記状態検知前充電終了直後に測定した前記電圧測定値を前記充放電停止時電圧V_endとして前記記憶部に保存することを特徴とする。
 本発明の蓄電デバイスの状態検知装置の第1の態様は、充放電中及び充放電停止中の放電能力を所定の周期毎に判定する蓄電デバイスの状態検知装置であって、前記蓄電デバイスの電圧測定値を保存する記憶部と、前記記憶部に保存されているデータを読み込んで前記蓄電デバイスの放電能力を前記周期毎に判定する状態検知部と、前記状態検知部から判定結果を入力して外部に出力する状態出力手段と、を備え、前記記憶部は、最後の充放電停止直後に測定された前記蓄電デバイスの前記電圧測定値を充放電停止時電圧V_endとして保存し、前記状態検知部は、前記記憶部から前記充放電停止時電圧V_endを読み込み、前記充放電停止時電圧V_endから現在(サイクル数nとする)の電圧測定値V_nowを減算して現在の電圧変化量ΔVa_nを算出し、前記蓄電デバイスの劣化度SOH及び前記電圧変化量ΔVa_nから事前に作成された放電能力補正関数F(SOH、ΔVa_n)を用いて前記蓄電デバイスの放電能力補正量COD_SOH_nを算出し、前記蓄電デバイスの現在の放電能力COD_nowを次式
   COD_now=V_now-COD_SOH_n
で算出し、前記放電能力COD_nowが所定の閾値COD_Thより大きいときに前記蓄電デバイスの放電能力が維持されていると判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、蓄電デバイスの状態検知方法であって、前記蓄電デバイスが充放電を停止して所定の安定条件を満たす状態に達したときの前記蓄電デバイスの電圧を停止時安定電圧とし、前記蓄電デバイスが充放電を停止してから時間t経過したときの電圧の前記停止時安定電圧からの変化量を停止時電圧変化量とするとき、前記停止時電圧変化量を算出する緩和関数F(t)を、前記蓄電デバイスの所定の状態量の関数として事前に作成し、前記蓄電デバイスの充電を停止する直前の充電終了時電圧、または放電を停止する直前の放電終了時電圧を測定し、前記蓄電デバイスの前記充電または前記放電停止後の電圧を測定し、前記電圧測定値から前記停止時電圧変化量を算出して前記緩和関数F(t)を最適化し、前記最適化された緩和関数F(t)から前記状態量を推定し、前記放電終了時電圧または前記充電終了時電圧と前記推定された状態量とを用いて前記蓄電デバイスの放電能力(COD)を判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記緩和関数F(t)は、前記蓄電デバイス内部の反応速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(t)(i=1~m)の線形結合で表され、前記反応速度毎緩和関数fi(t)(i=1~m)は、前記電圧測定値から算出された前記停止時電圧変化量を前記反応速度に対応する成分に分離して最適化されていることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記充放電による電流が微小あるいは一定値で前記蓄電デバイス内部の過渡変化に与える影響が所定の範囲内に限定される場合、前記蓄電デバイスは充放電を停止したと判定されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記電流による電圧変化を補正する電圧補正量を事前に作成し、前記電圧測定値に前記電圧補正量を加算した電圧を用いて前記緩和関数F(t)を最適化することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、充放電停止直前の充放電中の電流を積算した電流積算値から充放電停止時の残容量増減量(ΔSOC)を算出し、前回の充放電停止時の残容量に前記残容量増減量を加算して今回の充放電停止時の残容量(SOC)を算出し、前記放電終了時電圧または前記充電終了時電圧と前記緩和関数F(t)から推定された状態量と前記SOCとに基づいて前記CODを判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、所定の状態量と充電終了時電圧とを変数とする充電効率算出式を事前に作成し、前記充放電停止時のSOCは、前記緩和関数F(t)を用いて算出される前記状態量と前記充電終了時電圧とを前記充電効率算出式に代入して算出される充電効率で前記残容量増減量を補正して算出されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記蓄電デバイスの残容量であることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記蓄電デバイスの劣化度(SOH)であることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記緩和関数F(t)は、緩和速度の速い成分ffast(t)と遅い成分fslow(t)とを有し、前記ffast(t)、前記fslow(t)及び両者の比率ffast(t)/fslow(t)のそれぞれの参照値を事前に作成し、前記最適化されたF(t)から算出される前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)とそれぞれの前記参照値とを用いて前記CODを判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記蓄電デバイスの劣化度SOHであって、前記ffast(t)、前記fslow(t)、前記ffast(t)/fslow(t)、及びそれぞれの前記参照値を用いて前記劣化度を算出することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、残容量と充電終了時電圧とを変数とする高速過渡変化補正量算出式を事前に作成し、前記充放電停止時の残容量と前記充電終了時電圧とを前記高速過渡変化補正量算出式に代入して前記ffast(t)に対する補正量を算出し、前記補正量で補正された前記ffast(t)を用いて前記劣化度を算出することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記蓄電デバイスの電解液の濃度変化量を算出する濃度変化量算出式を事前に作成し、前記最適化された緩和関数F(t)を用いて前記濃度変化量算出式から前記電解液の濃度変化量を算出して前記状態量に用いることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスの電解液の濃度分布の偏り(成層化)変化量を成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記成層化変化量を算出する成層化変化量算出式を事前に作成し、前記最適化された前記緩和関数F(t)を用いて前記成層化変化量算出式から前記成層化変化量を算出して前記状態量に用いることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスの電解液の液面に対して横方向の濃度分布の偏り(横成層化)の変化量を横成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記横成層化変化量を算出する横成層化変化量算出式を事前に作成し、前記最適化された前記緩和関数F(t)を用いて前記横成層化変化量算出式から前記横成層化変化量を算出して前記状態量に用いることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスの電解液の液面に対して横方向及び縦方向の濃度分布の偏り(横成層化、縦成層化)の変化量を縦横成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記縦横成層化変化量を算出する縦横成層化変化量算出式を事前に作成し、前記最適化された前記緩和関数F(t)を用いて前記縦横成層化変化量算出式から前記横成層化変化量及び縦成層化変化量を算出して前記状態量に用いることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記緩和関数F(t)は、さらに前記蓄電デバイスの温度の関数として事前に作成され、前記蓄電デバイスの温度を測定して前記緩和関数F(t)の算出に用いることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記停止時安定電圧は安定時OCVであり、事前に作成された安定時OCV算出式から算出した前記安定時OCVを前記電圧測定値から減算して前記OCV変化量を算出し、前記OCV変化量を前記停止時電圧変化量とすることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記反応速度毎緩和関数fi(t)から前記反応速度毎の状態量を推定し、これを総計して算出することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、所定の状態における前記反応速度毎緩和関数fi(t)、前記SOC,および反応速度毎の前記SOHをそれぞれfiref(t)、SOCref,およびSOHirefとし、前記蓄電デバイスの温度Tに対する依存性をG(T)とするとき、n回目の充放電終了後の前記反応速度毎緩和関数fin(t)は、
 fin(t)=firef(t)*{SOCn/SOCref
        *{SOHin/SOHiref}*g(T)
 (ここで、SOHinは前記反応速度毎のSOH)
 と表されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記蓄電デバイスの電圧および電流を測定し、前記電流又は所定の充放電停止信号から前記蓄電デバイスが充放電を停止していると判定されると、前記充放電停止からの経過時間に対応する前記停止時電圧変化量を前記電圧測定値から算出し、前記経過時間より時定数の短い前記反応速度に対応する前記反応速度毎緩和関数fi(t)を前記停止時電圧変化量を用いて最適化し、前記時定数より長い前記反応速度に対応する前記反応速度毎緩和関数fi(t)に対しては直前のものを用い、これと前記最適化された前記反応速度毎緩和関数fi(t)と前記放電終了時電圧と、前記充電終了時電圧とから前記状態量を推定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記停止時安定電圧は、前記蓄電デバイスの充放電停止後の電圧が1時間当たり5mV以下の変動量となったときの前記電圧であることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、蓄電デバイスの状態検知方法であって、充放電を停止している前記蓄電デバイスに所定容量の状態検知前充電を行い、前記状態検知前充電を終了してから時間t経過したときの前記蓄電デバイスの電圧を所定周期で測定し、前記蓄電デバイスの充放電を停止させて略一定となったときの停止時安定電圧からの前記電圧測定値の変化量(停止時電圧変化量)を、前記蓄電デバイスの所定の状態量の関数である緩和関数F(t)で最適近似し、前記最適近似された緩和関数F(t)から前記状態量を推定し、前記推定された状態量を所定の閾値と比較して前記蓄電デバイスの放電能力を判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態検知前充電では、前記蓄電デバイスの5%定格容量の充電を行うことを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態検知前充電を終了して最初に取得した前記電圧測定値が前記停止時安定電圧より低いときは、前記蓄電デバイスの放電能力が低下していると判定することを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記停止時安定電圧は、前記最適近似された緩和関数F(t)を用いて更新されることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記緩和関数F(t)は、前記蓄電デバイス内部の反応速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(t)(i=1~m)の線形結合で表わされ、前記反応速度毎緩和関数fi(t)(i=1~m)は、前記停止時電圧変化量を前記反応速度に対応する成分に分離して最適化されていることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記蓄電デバイスの残容量(SOC)であることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態量は、前記蓄電デバイスの劣化度(SOH)であることを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、所定の基準状態における前記反応速度毎緩和関数fi(t)、前記残容量,および反応速度毎の前記劣化度をそれぞれfi ref(t)、SOCref,およびSOHi refとし、前記蓄電デバイスの温度Tに対する依存性をG(T)とするとき、前記電圧測定のn周期目に最適近似された前記反応速度毎緩和関数fi n(t)は、前記n周期目に推定される前記残容量SOCn、前記反応速度毎劣化度SOHi nと次式の関係を有している
 fi n(t)=fi ref(t)*{SOCn/SOCref
        *{SOHi n/SOHi ref}*G(T)
 ことを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態検知前充電を行う前に、前記蓄電デバイスにパルス放電を行って別の状態検知を行うことを特徴とする。
 本発明の蓄電デバイスの状態検知方法の他の態様は、前記状態検知前充電を行う前に、前記蓄電デバイスのインピーダンス測定を行ってさらに別の状態検知を行うことを特徴とする。
 本発明の蓄電デバイスの状態検知装置の他の態様は、制御手段で制御される内部充電器を用いて充電可能に構成された蓄電デバイスの状態検知装置であって、状態検知モード開始信号を入力するための信号入力手段と、外部に所定の情報を出力する出力表示手段と、前記蓄電デバイスの電圧を測定する測定手段と、状態検知モード用スイッチを備え、前記制御手段、前記信号入力手段、前記出力表示手段、及び前記測定手段に接続された状態検知部と、を備え、前記状態検知部は、前記信号入力手段から前記状態検知モード開始信号を入力すると、前記蓄電デバイスに状態検知前充電が行われた後の経過時間tにおける前記蓄電デバイスの電圧を前記測定手段から入力し、前記蓄電デバイスの充放電を停止させて略一定となったときの停止時安定電圧からの前記電圧測定値の変化量(停止時電圧変化量)を前記蓄電デバイスの所定の状態量の関数である緩和関数F(t)で最適近似し、前記最適近似された緩和関数F(t)から前記状態量を推定し、前記推定された状態量を所定の閾値と比較して前記蓄電デバイスの放電能力を判定し、判定結果を前記出力表示手段に出力することを特徴とする。
 本発明の蓄電デバイスの状態検知装置の他の態様は、前記状態検知前充電は、前記状態検知部が前記制御手段に所定の要求信号を出力し、前記制御手段が前記内部充電器を制御して行うことを特徴とする。
 本発明の蓄電デバイスの状態検知装置の他の態様は、前記状態検知前充電は、前記蓄電デバイスに外部充電器を接続して行うことを特徴とする。
 本発明によれば、充放電中か充放電を停止しているかによらず適切な放電能力が維持されているかを判定することが可能な蓄電デバイスの状態検知方法及びその装置を提供することが可能となる。
本発明の第1の実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。 第1実施形態の蓄電デバイスの状態検知装置の構成を示すブロック図である。 本発明の第2の実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。 安定時の蓄電デバイスの放電時電圧とSOHの関係を示すグラフである。 第1の放電を停止後のOCVの過渡変化を示すグラフである。 第1の放電停止後の経過時間の異なる時点で第2の放電を行ったときの電圧降下量の経時変化を示すグラフである。 充電停止後のOCV及びOCV変化量の時間変化を示すグラフである。 本発明の第3の実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。 本発明の第4の実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。 第1参照例の状態検知方法を説明する流れ図である。 第1参照例の状態検知方法を用いた状態検知装置の概略構成を示すブロック図である。 状態検知に必要なデータ測定を行うタイミングを判定する流れ図である。 充放電停止を判定する方法を説明する流れ図である。 OCV20hrの選択方法を説明する流れ図である。 F(t)の最適化を行う方法を説明する流れ図である。 F(t)の最適化を行う方法を説明する流れ図である。 状態量SOH、SOCを算出する方法を説明する流れ図である。 緩和関数および反応速度毎緩和関数の一例を示すグラフである。 反応速度毎緩和関数およびその比の一例を示すグラフである。 安定OCV推定式の一例を示すグラフである。 第2参照例の状態検知方法を説明する流れ図である。 充電効率η1、η2の一例を示すグラフである。 第3参照例の状態検知方法を説明する流れ図である。 反応速度毎緩和関数の変化の一例を示すグラフである。 速い反応速度に対するSOHの変化の一例を示すグラフである。 SOHに対する補正係数の一例を示すグラフである。 第3参照例における状態量の判定方法を説明する流れ図である。 蓄電デバイスの成層化を説明するための模式図である。 第4参照例に係る蓄電デバイスの状態検知方法の概略を説明する流れ図である。 第4参照例に係る蓄電デバイスの状態検知装置のブロック図である。 運転中の充放電と状態検知前充電による電流、電圧の変化を示すグラフである。 状態検知モードが要求されてから状態検知前充電が終了するまでの処理を説明する流れ図である。 状態検知モードが成立しているときの処理を説明する流れ図である。 本発明の他の実施形態に係る蓄電デバイスの状態検知方法の概略を説明する流れ図である。 安定開放端電圧とSOCとの関係を示すグラフである。 SOCが一定のときのOCVの変化を示すグラフである。 SOHが異なるときのOCVの変化を示すグラフである。 蓄電池に負荷を接続して放電させたときの電池電圧の時間変化を模式的に示す図である。 蓄電デバイスを満充電で運用するときとPSOCで運用するときの運用方式の相違を説明する説明図である。 電流積算値が同じ充電と放電とを繰り返したときの充放電終了時の電圧を示すグラフである。
 本発明の好ましい実施の形態における蓄電デバイスの状態検知方法及びその装置について、図面を参照して詳細に説明する。なお、同一機能を有する各構成部については、図示及び説明簡略化のため、同一符号を付して示す。以下では、蓄電デバイスとして車両に搭載される液式鉛蓄電池等の蓄電池を一例に、本発明の蓄電デバイスの状態検知方法及び状態検知装置について説明する。但し、以下で説明する内容は、車載蓄電池に限らず、太陽光発電や風力発電などに用いられる蓄電デバイスや、安定化電源、補助電源等のバックアップ電源に用いられる蓄電デバイスにも同様に適用できるものである。
 本発明の蓄電デバイスの状態検知方法及びその装置は、蓄電デバイスが充放電中かあるいは充放電停止中かにかかわらず、蓄電デバイスの放電能力の判定を可能にするものである。初めに、本発明の蓄電デバイスの状態検知方法に係る基本的な処理内容を、充放電停止後の過渡変化が緩和しているときの状態検知(以下では、緩和時状態検知という)の場合を対象に説明する。以下では、蓄電デバイスが充放電を停止して所定の安定条件を満たす状態に達したときの電圧を停止時安定電圧とし、蓄電デバイスが充放電を停止してから時間t経過したときの電圧測定値の停止時安定電圧からの変化量を停止時電圧変化量とする。
 上記の停止時電圧変化量を算出するための関数として、蓄電デバイスの所定の状態量に依存する緩和関数F(t)を事前に作成して用いる。そして、電圧測定値から得られる停止時電圧変化量を用いて緩和関数F(t)を最適化し、最適化された緩和関数F(t)から所定の状態量を推定して状態検知を行う。本発明の蓄電デバイスの状態検知方法では、上記の緩和関数F(t)を用いて放電能力(COD)を推定し、この推定したCODをあらかじめ設定された閾値と比較することにより、蓄電デバイスの放電能力が適切に維持されているかを判定する。
 本発明では、放電能力の判定に用いるCODとして、蓄電デバイスの安定時の電池電圧を緩和関数F(t)を用いて推定する。また、閾値として、推定されたCODがこの閾値より大きいときには、その状態から充放電を行っても電池電圧がシステムで要求される下限電圧以下とならないように設定された電圧値を用いる。この閾値は、少なくとも通常の充放電による電圧変動量により、電池電圧がシステム要求の下限電圧以下となることがないように設定される。また、緩和関数F(t)から推定可能な状態量として、例えば蓄電デバイスの劣化度の指標であるSOH(State of health)や残容量を示すSOCなどがある。
 充放電停止後の蓄電デバイスの過渡変化には、イオンの生成・消滅反応のように反応速度の速いものから、電解液の移動等の反応速度の遅いものまであり、これらが充放電停止後の上記の状態量の変化に影響している。そこで、本発明の蓄電デバイスの状態検知方法では、緩和関数F(t)を用いて反応速度毎の状態量の変化を推定し、これらを統合して状態量の判定を行う。
 上記の停止時安定電圧として、充放電を停止してから十分な時間が経過したときの蓄電デバイスの開放端電圧(以下では安定時OCVとする)を用いることができる。開放端電圧OCVは、蓄電デバイスの端子が開放されて放電が停止されているときの端子間電圧である。本発明の蓄電デバイスの状態検知方法で用いる停止時安定電圧は、安定OCVに限らず、蓄電デバイスへの過渡的な影響が限定されている場合には、そのときの安定電圧を用いることができる。一例として、蓄電デバイスから負荷への電力供給を停止している間に、負荷の制御装置等に微小な電流(暗電流)が供給されている場合があるが、このような暗電流等が供給されている場合でも、負荷を停止してから十分な時間が経過したときの電圧を停止時安定電圧とすることができる。
 また、蓄電デバイスからの充放電量が常に一定値の場合でも、蓄電デバイスに与える過渡的な影響が十分に小さいと考えられることから、負荷を停止してから十分な時間が経過したときの電圧を停止時安定電圧とすることができる。このように、充放電による電流が微小あるいは一定値で蓄電デバイス内部の過渡変化に与える影響が所定の範囲内に限定される場合には、負荷への電力供給を停止したときに蓄電デバイスからの放電を停止したと判定するとともに、微小電流あるいは一定電流を継続した状態で充放電停止後長時間経過したときの電圧を停止時安定電圧とすることができる。この場合、微小電流あるいは一定電流による電圧変化を補正する電圧補正量を事前に決定し、これを用いて電圧測定値を補正するようにするのが好ましい。
 以下では、停止時安定電圧の一例として、安定時OCVを用いて説明する。安定時OCVを用いた場合には、図35に示した関係を用いて状態量SOCを次式のように表すことができる。
 SOC=FS(OCVs’(SOC’,SOH,T))      (1)
 OCVs(SOC,SOH,T)=lim(Vmes(t))      (2)
ここで、OCVsは今回算出の安定時OCV、OCV’は前回算出の安定時OCV、tは充放電停止からの経過時間、SOC’は前回算出の残容量、Vmes(t)は経過時間tにおける電圧測定値、Tは蓄電デバイスの温度、をそれぞれ表している。式(2)のlimは、充放電停止からの経過時間tを無限大にすることを示しており、式(2)の右辺は、充放電停止後の経過時間tが無限大のときの蓄電デバイスの電圧測定値Vmes(t)を示している。安定時OCV以外の停止時安定電圧を用いる場合にも、SOCとの間に上記と同様の関係式を事前に作成して用いることができる。
 上式では、SOCが前回算出のOCVs’に依存して決定されると同時に、OCVsもSOCに依存しており、さらに別の状態量であるSOHと蓄電デバイスの温度Tにも依存して変化することを示している。また、OCVsが状態量SOHに依存していることから、状態量SOCもSOHに依存していることになり、それぞれの更新を適切なタイミングで行う必要がある。
 OCVsは、式(2)に示すように、充放電停止からの経過時間tが無限大のときのVmes(t)であるが、実用上はVmes(t)の変化が十分小さくなると考えられる経過時間tの時点のVmes(t)とすることができる。また、蓄電デバイスが液式鉛蓄電池の場合には、OCVsは、OCVの1時間当たりの変化量が5mV以下となるか、あるいは、充放電停止から20時間経過したときのVmes(t)とすることができる。以下では、蓄電池の充放電停止から20時間経過したときのVmes(t)を次式のOCV20hrとし、これをOCVsに用いるものとする。
 OCV20hr=Vmes(t=20hr)
 OCVs(SOC,SOH,T)≒OCV20hr            (3)
 充放電停止後の電圧測定値Vmes(t)の安定時OCVからの変化量、すなわちOCV変化量(停止時電圧変化量)をΔV(t)とするとき、
 ΔV(t)=Vmes(t)-OCV20hr               (4)
と表すことができる。このOCV変化量ΔV(t)は、従来の電気化学の定義では「分極」という言葉を用いて全ての過渡変化を含めて扱われてきた。しかしながら、ΔV(t)は安定OCVに近づくまでの緩和過程によって生じる電圧変化であることから、以下に挙げる電圧変化の要因による影響を受けている。
 電圧変化の要因として、極板状態、極板近傍でのイオン濃度、それらの固相反応、固液反応、さらには電解液の沈殿や対流、拡散に伴うイオンの移動などがある。OCV変化量ΔV(t)は、これらの反応速度の異なる緩和過程が組み合わさって生じていると考えられる。このように、蓄電デバイスの充放電停止後の過渡変化は速度の異なる反応過程を含んでいることから、充放電停止後の蓄電デバイスの放電能力を高精度に判定するためには、反応速度毎の状態変化を評価する方法を用いて状態検知を行うのがよい。
 反応速度の違いに応じてm個の多項式からなる関数F(t)を用いて、OCV変化量ΔV(t)を次式のように表すものとする。
 ΔV(t)=F(t)
      =f1(t)+f2(t)+・・・fm(t)=Σfi(t) (5)
 上記の緩和関数F(t)では、各項fi(t)が蓄電デバイスの反応速度の異なる緩和過程毎の電圧変化への寄与分を示しており、以下では反応速度毎緩和関数fi(t)とする。各fi(t)は、蓄電デバイスの状態量である劣化度SOH、残容量SOC、および温度Tに依存する関数である。式(5)の反応速度毎緩和関数fi(t)は、充放電停止後の電圧測定値Vmes(t)から算出されるOCV変化量ΔV(t)を用いて、これに最適化されるように決定することができる。
 本発明の状態検知方法を用いた状態検知装置では、状態検知が開始される前のSOC,SOH、OCV20hrのそれぞれの初期値SOC0、SOHi 0、OCV20hr 0を、状態検知装置内に事前に保存されているそれぞれの参照値SOCref(0)、SOHi ref(0)、OCV20hr ref(0)を用いて、下記のように設定することができる。
  SOC0=SOCref(0)
  SOHi 0=SOHi ref(0)
  OCV20hr 0=OCV20hr ref(0)
 状態検知装置で蓄電デバイスの状態検知が開始された後の、n回目(nは1以上の整数)の充放電停止後において、OCV変化量ΔV(t)を表す式(5)の緩和関数F(t)および反応速度毎緩和関数fi(t)を、それぞれFn(t)、fi n(t)としたとき、SOCおよびi番目の反応速度に対応するSOH(それぞれSOCn、SOHi nとする)から、反応速度毎緩和関数fin(t)が次式で表わされるものとする。
 fin(t)=fi ref(t)*{SOCn/SOCref
        *{SOHi n/SOHi ref}*g(T)       (6) 
 ここで、fi ref(t)、SOCref、SOHi refは、あらかじめ設定された初期状態(たとえば未使用状態)でのfi(t)、SOC、SOHiであり、g(T)は温度依存性を表す関数である。
 式(6)において温度TとSOCが時間によらず一定とした場合には、SOHi n
 SOHi n={fi n(t)/fi ref(t)}*SOHi ref        (7)
 から算出することができる。よって、電圧測定値Vmes(t)から算出されたΔV(t)に式(5)のfi n(t)を最適化し、これを用いて式(7)からSOHi nを算出することができる。
 反応速度の異なる過渡応答毎のSOHi nを式(7)から算出すると、これらを統合して算出される全体のSOHnは、所定の関数Gを用いて
 SOHn=G(SOH1 n、SOH2 n、・・・、SOHm n)       (8)
のように表すことができる。例えば、m個のSOHiに対して、それぞれの係数をA~Mとすると、
 SOHn=A*SOH1 n+B*SOH2 n+・・・+M*SOHm n
     =A*{f1 n(t)/f1 ref(t)}SOH1 ref
      B*{f2 n(t)/f2 ref(t)}SOH2 ref+・・・+
      M*{fm n(t)/fm ref(t)}SOHm ref     (8-1)
と表すことができる。但し、式(8-1)は式(8)の関係式を表す一例であり、これに限定されるものではない。上記のようにして算出されたSOHnを用いて、蓄電デバイスの劣化状態の検知を行うことができる。同様にして、別の状態量であるSOCnを、最適化された緩和関数F(t)を用いて算出することができる。
 式(7)で算出されたSOHi nを用いて次式でfi n(t)を更新し、これをSOCi nの算出に用いる。
 fi n(t)=fi ref(t)*{SOCi n-1/SOCref
        *{SOHi n/SOHi ref}*g(T)     (6-1)
 式(4)と式(6-1)から、OCV20hrは次式によって算出できる。
 OCV20hr=Vmes(t)―Σ[fi ref(t)*{SOCn-1/SOCref
        *{SOHi n/SOHi ref}]*g(T)      (9)
 このOCV20hrを(式1)に代入することによりSOCnを算出することができ、SOCの状態検知に用いることができる。
 上記のとおり、m種類の反応速度に対応するm個の参照値fi ref(t)(i=1~m)と、m個の劣化度の参照値SOHi ref(i=1~m)と、1個の残容量の参照値SOCrefをもとに、n回目の充放電停止後のm個の反応速度毎緩和関数fi n(t)(i=1~m)を算出することができる。これより、異なる反応速度に応じた劣化度を反映したOCV、SOCおよびSOHを求めて精度の高い状態検知を行うことが可能となる。
 上記では、充放電停止後の緩和時状態検知を対象に、状態検知方法に係る基本的な処理内容を説明したが、本発明の蓄電デバイスの状態検知方法は、緩和時状態検知に限定されるものではなく、充放電中であっても蓄電デバイスの状態検知を行うことが可能となっている。以下では、システムが運用中で蓄電デバイスが充放電を行っているときの状態検知を充放電時状態検知とする。上記説明では、緩和時状態検知のみを対象としたため、状態検知のサイクル数nを充放電停止の回数としたが、充放電時状態検知を含む状態検知では、サイクル数nを例えば所定の時間間隔で周期的に状態検知を行うときのサイクル数とするのがよい。
 また、緩和時状態検知では、OCVが充放電停止からの経過時間tとともに安定時OCVに収束していく(OCV変化量ΔV(t)が0に収束していく)緩和過程における状態検知に限られていたことから、緩和関数を単に経過時間tの関数F(t)と表すことができた。しかしながら、充放電中の蓄電デバイスの放電能力CODは、直近の充放電停止からの経過時間が短いときは充放電停止時の電圧からの電圧変化量の影響を強く受け、経過時間が長くなると劣化度SOHの影響を強く受ける。
 そこで、充放電停止後の緩和時状態検知で緩和関数として用いていた関数Fを、以下では緩和時状態検知と充放電時状態検知の両方で用いる関数として放電能力補正関数Fとする。また、充放電停止時の電圧からの電圧変化量を、式(4)のOCV変化量ΔV(t)と区別するために、ΔVa(t)とする。このとき、放電能力補正関数Fは、電圧変化量ΔVa(t)と劣化度SOHの関数としてF(SOH,ΔVa)と表わされる。ここで、経過時間tに対する依存性は、電圧変化量ΔVa(t)の時間依存性に含まれている。
 直近の充放電停止時の電圧、すなわち状態検知時点(現在)から見て最後の充放電停止がなされたときの電圧を充放電停止時電圧とし、これをV_endと表す。また、最後の充放電停止から状態検知時点(現在)までの経過時間をtとし、現在の電圧をV_nowとするとき、電圧変化量ΔVa(t)は
   ΔVa(t)=V_end-V_now             (10)
 で算出される。ここで、充放電停止時電圧V_endは、充電停止のときはV_cha_endとし、放電のときはV_dis_endとする。
 充放電停止中におけるOCV変化量ΔV(t)と上記の電圧変化量ΔVa(t)との関係を以下に説明する。式(4)のVmes(t)は、ここではV_nowとなることから、式(4)に示すOCV変化量ΔV(t)の算出式は、次式のように書き換えることができる。
 ΔV(t)=V_now-OCV20hr             (4-1)
      =F(SOH,ΔVa)
 式(10)と式(4-1)より、電圧変化量ΔVa(t)とOCV変化量ΔV(t)との間には
 ΔVa(t)+ΔV(t)=V_end-OCV20hr       (11)
 の関係がある。
 充放電停止中の放電能力(COD_nowとする)は、安定したときのOCV、すなわちOCV20hrに等しいことから、式(4-1)より、
 COD_now=OCV20hr=V_now-ΔV(t)
      =V_now-F(SOH,ΔVa)         (12)
で与えられる。すなわち、放電能力COD_nowは、現在の電圧V_nowから放電能力補正量、すなわち放電能力補正関数F(SOH,ΔVa)の値を減じた値となる。
 上記の充放電停止中と同様に、充放電中の放電能力COD_nowも式(12)を用いて算出することができる。放電能力補正関数F(SOH,ΔVa)の値である放電能力補正量をCOD_SOHと表すとき、本発明の蓄電デバイスの状態検知方法では、充放電時状態検知及び緩和時状態検知とも、蓄電デバイスの放電能力COD_nowを次式で算出することができる。
 ΔVa(t)=V_end-V_now
 COD_SOH=F(SOH,ΔVa)
 COD_now=V_now-COD_SOH
 上式で算出された放電能力COD_nowが閾値COD_Thより大きいときを放電能力が維持されていると判定し、閾値COD_Th以下のときを放電能力不足と判定する。
 (第1実施形態)
 本発明の第1の実施形態に係る蓄電デバイスの状態検知方法及びその装置を、図1、2を用いて説明する。図1は、本実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートであり、図2は、本実施形態の蓄電デバイスの状態検知装置の構成を示すブロック図である。
 図2に示す本実施形態の状態検知装置100は、対象システムの車両1に搭載された蓄電デバイス(蓄電池)10の状態検知を行うものである。車両1は、エンジン作動中に蓄電池10を充電するための充電手段(オルタネータ)11と、充電手段11による充電等を制御する制御手段12を備えている。また、車両1には各種電装品の負荷2が搭載されており、蓄電池10に接続されて受電が可能となっている。蓄電池10には電圧測定手段20、電流測定手段21及び温度測定手段22が設けられており、状態検知装置100はそれぞれの測定値を入力して状態検知を行う。
 状態検知装置100は、状態検知部110と、記憶部120と、状態出力手段130とを備えている。状態検知部110は、電圧測定手段20、電流測定手段21及び温度測定手段22からそれぞれ蓄電池10の電圧測定値、電流測定値及び温度測定値を入力し、本実施形態の状態検知方法による処理を行って蓄電池10の状態検知を行う。記憶部120は、状態検知の処理に必要な各種参照データや測定データ等を保存する。さらに、状態出力手段130は、状態検知結果等を運転者等に通知する手段である。
 本実施形態の蓄電デバイスの状態検知方法は、蓄電池10が充放電中か否かにかかわらず、状態検知装置100の起動後、状態検知部110において所定の時間間隔で周期的に実行される。図1において、ステップS1でn回目の状態検知が開始されると、ステップS2で蓄電池10の電圧測定値を電圧測定手段20を用いて取得し、これを現在の電圧V_nowとする。
 ステップS3では、蓄電池10が充放電中(判定結果がYES)か、あるいは充放電停止中(判定結果がNO)かを判定し、判定結果がYESのときはステップS8に進み、判定結果がNOのときはステップS4に進む。この判定は、蓄電池10の電流測定値を電流測定手段21を用いて取得し、その値が0のときを充放電停止中と判定し、0以外のときを充放電中と判定する。あるいは、電流測定値の絶対値が所定の電流閾値以下のときを充放電停止中と判定し、それ以外のときを充放電中と判定するようにしてもよい。
 ステップS3で充放電停止中(判定結果がNO)と判定されると、次にステップS4で蓄電池10が充放電停止直後か否かの判定を行い、判定結果がYESのときはステップS5に進み、NOのときはステップS7に進む。この判定は、前回(n-1回目)の状態検知で充放電中と判定されているときに充放電停止直後と判定することができる。ステップS4で充放電停止直後(判定結果がYES)であると判定されると、ステップS5において現在の電圧V_nowを充放電停止時の電圧V_end(充電停止時はV_cha_end、放電停止時はV_dis_end)に設定し、これを記憶部120に記憶した後ステップS7に進む。
 ステップS7では、記憶部120に保存されている充放電停止時の電圧V_endを読み出す。この充放電停止時の電圧V_endは、現在に最も近い充放電停止時にステップS5で記憶部120に保存されたものである。この充放電停止時の電圧V_endと現在の電圧V_nowから次式を用いて電圧変化量ΔVa_nを算出する。
 ΔVa_n=V_end-V_now
 ステップS8では、記憶部120に保存されている劣化度SOH_n1を読み込む。ここで、n1はSOHが最後に更新されたときのサイクル数を示し(n1≦n)、劣化度SOH_n1は最後に更新された前回のSOHである。SOH_nの初期値SOH_0は、新品時の蓄電池10の特性値を参照データとして予め記憶部120に保存させておき、この参照データからSOHを読み込んで用いる。あるいは、一般的な蓄電デバイスの特性値を参照データとして予め記憶部120に保存させておき、この参照データのSOHをSOH_0とする。このSOH_0は、蓄電池10を搭載した後の初回の状態検知時に算出されたSOH_1で書き換えられる。ステップS9では、ステップS8で読み込んだ劣化度SOH_n1に対応する放電能力補正関数F(SOH_n1、x)を記憶部120から読み込む。
 ステップS10では、放電能力補正関数F(SOH_n1、x)の変数xにステップS7で算出したΔVa_nを代入して放電能力補正量COD_SOH_nを算出する。
 COD_soh_n=F(SOH_n1, ΔVa_n)
 ステップS11では、現在の電圧V_nowとステップS10で算出した放電能力補正量COD_SOH_nから、次式を用いて現在の放電能力COD_nowを算出する。
 COD_now=V_now-COD_SOH_n
 ステップS12では、ステップS11で算出した現在の放電能力COD_nowを放電能力の閾値COD_Thと比較し、現在の放電能力COD_nowが閾値COD_Thより大きいときには蓄電池10の放電能力が維持されていると判定する(ステップS13)一方、現在の放電能力COD_nowが閾値COD_Th以下ときには放電能力が不足していると判定する(ステップS14)。この判定結果は、適宜状態出力手段130に出力して運転者等に通知することができる。
 上記のように、本実施形態の蓄電デバイスの状態検知方法及び状態検知装置によれば、充放電中か充放電を停止しているかによらず、放電能力が適切に維持されているかを判定することが可能となる。本実施形態では、放電能力補正量の算出に必要な劣化度SOHとして、記憶部に記憶されている現在に最も近い前回のSOH_n1を用いているが、短期的にはSOHの変化が十分小さいことから、SOH_n1を用いても現在の放電能力COD_nowを高精度に推定することが可能となっている。
 (第2実施形態)
 本発明の第2の実施形態に係る蓄電デバイスの状態検知方法を、図3を用いて説明する。図3は、本実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。本実施形態では、充放電停止時の状態検知において、充放電停止後の短期間の過渡変化を反映させた放電能力の判定が可能となっている。
 以下ではまず、蓄電デバイスのCODが充放電停止後の過渡変化から受ける影響を説明する。放電時のSOHと放電能力CODとの関係を図4に示す。図4では、放電停止後20時間経過して蓄電デバイスが安定したときの電圧測定値(D1)を放電能力CODとして縦軸に示し、そのときの条件で算出したSOHを横軸に示している。また、電圧測定値を近似する破線L1を併せて示したが、破線L1が示すように、SOHとCODとの間にはほぼ1対1の関係があることがわかる。これより、安定時のSOHを精度良く算出することで、CODを高精度に求めることができることがわかる。
 一方、充電停止後の蓄電デバイスが安定していないときの過渡変化の影響を以下に検討する。充電停止後のOCVの過渡変化を図5に示す。同図(a)は横軸の時間軸を対数目盛で示したときのOCVの変化を示しており、同図(b)は横軸の時間軸を線形目盛としたときの同図(a)のOCVの変化を模式的に示したものである。同図に示すように、充電を停止した後は充電による過渡変化が徐々に緩和していき、OCVが安定OCVに漸次収束していく。
 しかし、充電停止後の経過時間が短いほど充電による過渡変化の影響が大きいことから、その時点で放電を行うと、先の充電の影響を強く受けると考えられる。そこで、充電停止後の経過時間の異なる複数時点で放電を行ったときの電圧降下量の経時変化を図6に示す。ここでは、充電停止からの経過時間が30秒(符号t1),100秒(符号t2),300秒(符号t3),3600秒(符号t4),36000秒(符号t5)、及び72000秒(符号t6)の時点で放電を行ったときの電圧降下量の経時変化を示している。ここでは、放電として、100[A]の放電を30秒間継続させている。
 図6より、充電停止後の経過時間が短いほど電圧降下量が大きくなることがわかる。特に、充電停止後30秒経過した時点で放電を行ったときの電圧降下量(符号t1)は、充電停止から放電開始までの経過時間をより長くした場合に比べて大きくなっている。充電停止からの経過時間をある程度以上長くしていくと、電圧降下量はほとんど差が見られなくなる。このような電圧降下量ΔVaの差がCODに影響することから、充電停止からの経過時間が短い時点でCODを判定するときは、電圧降下量ΔVaの差に対応するCODの補正を行うのが好ましい。
 本実施形態では、上記の電圧降下量ΔVaの差が、速い過渡変化による劣化度SOH_fastの変化によるものと考え、式(7)に基づいてSOH_fastを算出し、さらに予め作成して記憶部120に記憶させた式(8)に示す関数G(SOH_fast,SOH_slow)を用いてSOHを算出する。ここで、SOH_slowは、直近の充放電停止時に算出された遅い過渡変化による劣化度を示す。速い過渡変化による劣化度SOH_fastを精度よく算出するために、放電能力補正関数F(SOH,ΔVa)の反応速度毎緩和関数fi(t)のうち反応速度の速いものについて、電圧測定値を用いて最適化を行う。この最適化は、充放電停止から所定の時間(第1緩和時間とする)経過した後可能となる。
 これに対し、放電停止からの経過時間が長い時点でCODを判定するときは、電圧降下量ΔVaによる影響は小さく、図4を用いて説明したSOHの精度が大きな影響を与える。なお、上記の図4~6では充電停止後の過渡変化の影響について説明したが、放電停止後の過渡変化の影響についても同様である。
 本実施形態の蓄電デバイスの状態検知方法では、充放電停止からの経過時間が短いときは、速い過渡変化に伴う電圧変化量ΔVaの差に対応するSOH_fastを精度良く算出し、これを用いて放電能力CODを推定している。ここで、速い過渡変化を区分するための充放電停止からの経過時間について、図7を用いて以下に説明する。上記の第1緩和時間は、この速い過渡変化を区分する経過時間とすることができる。図7(a)は、鉛液式蓄電池(電池容量48[Ah])における充電停止後のOCV(符号71)及びOCV変化量ΔV(符号72)の時間変化を示し、図7(b)は、鉛小型シール式蓄電池(電池容量5.5[Ah])における充電停止後のOCV(符号73)及びOCV変化量(符号74)の時間変化を示す。
 図7(a)に示す液式の蓄電池では、その構造上電解液の安定にかかる時間が長く、OCV変化量ΔVの絶対値が0.2Vより小さくならないと安定したとはいえない。そこで、図7(a)においてOCV変化量ΔVの絶対値が略0.2Vに低下するときの充放電停止からの経過時間t_fastを、速い過渡変化に対応する経過時間とする。一方、図7(b)に示すシール式の蓄電池では、その構造上電解液の安定にかかる時間が短く、OCV変化量ΔVの絶対値が0.3Vに低下するときの充放電停止からの経過時間t_fastを、速い過渡変化に対応する経過時間とする。速い過渡変化に対応する経過時間t_fastを、以下では第1緩和時間として用いる。
 本実施形態の蓄電デバイスの状態検知方法を、図3に示すフローチャートを用いて以下に説明する。n回目の状態検知が開始してからステップS3の充放電停止中か否かの判定までは、図1のフローチャートに示したステップS1~S3と同じ処理を行う。また、ステップS3で充放電中と判定されたときは、図1のステップS7~S10(以上を処理ブロックAとする)、ステップS11、及びステップS12~S14(以上を処理ブロックBとする)と同じ処理を行う。
 一方、ステップS3で充放電中でない(充放電停止中)と判定されたときは、図1のステップS4、S5と同じ処理を行った後、ステップS20で充放電停止からの経過時間が第1緩和時間より長いか否かを判定する。そして、経過時間が第1緩和時間以下のときは、第1実施形態と同様に、処理ブロックA、ステップS11、及び処理ブロックBの処理を行う。これに対し、ステップS20で充放電停止からの経過時間が第1緩和時間より長いと判定されると、本実施形態では以下のステップS21~S27の処理を行う。
 ステップS21では、処理ブロックAのステップS7と同様にして電圧変化量ΔVa_nを算出する。次のステップS22では、式(7)を用いて速い過渡変化による劣化度SOH_fast_nを算出する。ステップS23では、記憶部120に保存されている遅い過渡変化による劣化度SOH_slow_nを読み込み、ステップS24でSOH算出式G(SOH_fast、SOH_slow)を記憶部120から読み込む。ステップS25では、上記で算出したSOH_fast_nと読み込んだSOH_slow_nを、SOH算出式G(SOH_fast、SOH_slow)のSOH_fast及びSOH_slowにそれぞれ代入することにより、現在のSOH_nを算出する。
 ステップS26では、ステップS9と同様に、ステップS25で算出した劣化度SOH_nに対応する放電能力補正関数F(SOH_n、x)を記憶部120から読み込む。そして、ステップS27において、放電能力補正関数F(SOH_n、x)の変数xにステップS21で算出したΔVa_nを代入して放電能力補正量COD_SOH_nを算出する。
 COD_soh_n=F(SOH_n1, ΔVa_n)
 その後、ステップS11において、現在の電圧V_nowとステップS27で算出した放電能力補正量COD_SOH_nから現在の放電能力COD_nowを算出する。さらに、現在の放電能力COD_nowを用いて処理ブロックBの処理を行う。
 本実施形態の蓄電デバイスの状態検知方法及び該状態検知方法を用いた本実施形態の蓄電デバイスの状態検知装置によれば、充放電中か充放電を停止しているかによらず適切な放電能力が維持されているかを判定することが可能となるのに加えて、充放電停止時間が短いときには速い過渡特性に基づいて劣化度SOHを算出することにより、第1実施形態のSOH_n1を用いる場合よりもさらに高精度に現在の放電能力COD_nowを推定することが可能となる。
 (第3実施形態)
 本発明の第3の実施形態に係る蓄電デバイスの状態検知方法を、図8を用いて説明する。図8は、本実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。本実施形態では、充放電停止時の状態検知として、充放電停止後の過渡変化を反映した放電能力を算出できるようにしている。すなわち、蓄電デバイスの充放電停止中は、速い過渡変化による劣化度SOH_fastだけでなく、遅い過渡変化による劣化度SOH_slowも算出して劣化度SOHを高精度に求め、これを用いて蓄電デバイスの放電能力を高精度に推定して判定する。以下では、遅い過渡変化に対応する経過時間を第2緩和時間とする。
 図8のフローチャートにおいて、n回目の状態検知が開始してからステップS20の経過時間が第1緩和時間より大きいかの判定までは、図3のフローチャートに示した第2の実施形態の状態検知方法と同じ処理を行う。そして、ステップS20で経過時間が第1緩和時間以下と判定されたときは、図3の処理ブロックA、ステップS11、及び処理ブロックBの処理を行う。一方、ステップS20で経過時間が第1緩和時間より長いと判定されたときは、第2実施形態と同様に、ステップ21において電圧変化量ΔVa_nを算出し、その後ステップS30の処理に進む。
 ステップS30では、充放電停止からの経過時間が第2緩和時間より長いか否かを判定する。その結果、経過時間が第2緩和時間以下のときは、第2実施形態と同様に、ステップS22~S27(処理ブロックCとする)の処理を行う。これに対し、ステップS30で充放電停止からの経過時間が第2緩和時間より長いと判定されると、本実施形態では以下のステップS31~S34の処理を行う。
 ステップS31では、式(4)に基づいてOCV変化量ΔV_nを算出し、これを用いてステップS32において式(5)の関係より放電能力補正関数F(SOH, ΔVa)を最適化する。ステップS33では、式(7)及び式(8)を用いて現在の劣化度SOH_nを算出する。さらに、ステップS34では、最適化された放電能力補正関数F(SOH, ΔVa)にステップS21で算出したΔVa_n及びステップS33で算出したSOH_nを代入して放電能力補正量COD_SOH_nを算出する。
 その後、ステップS11において、現在の電圧V_nowとステップS27で算出した放電能力補正量COD_SOH_nから現在の放電能力COD_nowを算出する。さらに、現在の放電能力COD_nowを用いて処理ブロックBの処理を行う。
 本実施形態の蓄電デバイスの状態検知方法及び該状態検知方法を用いた本実施形態の蓄電デバイスの状態検知装置によれば、充放電中か充放電を停止しているかによらず放電能力が適切に維持されているかを判定することが可能となるのに加えて、充放電停止時には停止後の経過時間によらず劣化度SOHを高精度に算出することにより、さらに高精度に現在の放電能力COD_nowを推定することが可能となる。
 (第4実施形態)
 本発明の第4の実施形態に係る蓄電デバイスの状態検知方法を、図9を用いて説明する。図9は、本実施形態の蓄電デバイスの状態検知方法の処理の流れを説明するためのフローチャートである。
 充放電停止後に蓄電デバイスの状態検知を行う場合、それ以前の充放電履歴等によって過渡変化が大きく異なってくる。例えば、自動車に搭載された蓄電池では、車両運行中にさまざまな充放電が繰り返されるため、蓄電池中の電解液に生じる泳動、沈殿、対流、拡散なども車両運行条件によってさまざまに異なってくる。そのため、充放電停止後の蓄電池の過渡変化は、それまでの車両運行条件によって異なり、同等あるいは傾向が同じとみなせるような再現性のある停止状態を作り出すことはできない。
 本実施形態はこれらの問題を解決するためになされたものであり、蓄電デバイスの停止前の充放電の影響を低減させて状態検知を行う蓄電デバイスの状態検知方法及びその装置を提供する。本実施形態では、充放電停止後に状態検知を行うとき、充放電停止直後に蓄電池10に対し所定容量の充電(以下では状態検知前充電と称する)行い、状態検知前充電が終了した後に蓄電デバイスの状態検知を行う。状態検知前充電として、例えば定格容量の5%の充電を行わせるのがよい。
 図9に示すフローチャートは、充放電停止直後を除いて、図8に示した第3の実施形態の状態検知方法と同じ処理の流れとなっており、本実施形態でも停止後の経過時間によらず劣化度SOHを高精度に算出して現在の放電能力COD_nowを高精度に推定することが可能となっている。これに加えて、本実施形態ではステップS4で充放電停止直後と判定されると、ステップS40で状態検知前充電を行う。このような状態検知前充電を行うことにより、蓄電デバイスが再現性のある過渡変化の状態に移行する。これにより、同等あるいは傾向が同じとみなせるような再現性のある過渡状態で状態検知を行うことが可能となり、蓄電デバイスの状態検知をさらに高精度に行うことが可能となる。
上記説明の本発明の蓄電デバイスの状態検知方法及びその装置は、従来のエンジン駆動の車両に搭載された蓄電デバイスに限定されず、電気自動車、携帯電話、停電時に稼動するバックアップ用バッテリ、さらには、電力系統との連携において太陽光や風力による自然エネルギーの発電の電力の平準化に用いられる蓄電装置、およびそれを組み込んだシステムに適用可能である。本発明の蓄電デバイスの状態検知方法及びその装置は、蓄電デバイスが搭載され、監視または状態判断が必要な装置であれば、上記用途に限定されない。蓄電デバイスとしては、蓄電池やキャパシタなどがあり、電子またはイオンの移動を経由してデバイス内部のエネルギーを増加または低下させ、その内部エネルギーを外部から電力として取り出すことができる装置が対象となる。例えばLiイオン電池、Ni水素電池、ナトリウムー硫黄電池、鉛電池、キャパシタなどがあり、これらを複合した蓄電システムにも適用できる。上記蓄電デバイスの例は一部であり、上記蓄電池またはキャパシタに限定されない。
本発明の蓄電デバイスの状態検知方法及びその装置によれば、必ずしもシステムが停止中でなくとも蓄電デバイスの放電能力判定が可能なため、放電能力の誤判定に起因する蓄電デバイス搭載システムの誤動作がなくなる。また、蓄電デバイスの放電能力判定方法が、蓄電デバイスの外部の要因を強く受ける条件とそれ以外の条件に分けて算出するアルゴリズムを構築しているため、状況に応じた使い分けが可能になる。その結果、判定結果に基づく制御方法の選択の幅が広がり、より柔軟なシステム運用が可能となる。
 (第5実施形態)
 本発明の第5の実施形態に係る蓄電デバイスの状態検知方法を以下に説明する。
 本実施形態の蓄電デバイスの状態検知方法では、充放電停止後の蓄電デバイスの過渡変化を、蓄電デバイスから測定可能な電圧の変化で見ている。すなわち、蓄電デバイスが充放電を停止して所定の安定条件を満たす状態に達したときの電圧を停止時安定電圧とし、充放電停止後の電圧測定値の停止時安定電圧からの変化量を用いて蓄電デバイスの過渡的な状態における状態検知を行う。以下では、蓄電デバイスが充放電を停止してから時間t経過したときの電圧測定値の停止時安定電圧からの変化量を、停止時電圧変化量とする。
 本実施形態の蓄電デバイスの状態検知方法では、上記の停止時電圧変化量を算出する関数として、蓄電デバイスの所定の状態量に依存する緩和関数F(t)を事前に作成して用いている。そして、電圧測定値から得られる停止時電圧変化量を用いて緩和関数F(t)を最適化し、最適化された緩和関数F(t)から所定の状態量を推定して状態検知を行っている。本実施形態の状態検知方法では、充放電停止直前の電圧状態を検知するとともに、上記の緩和関数F(t)を用いて所定の状態量を推定し、この推定した状態量をあらかじめ設定されたそれぞれの判定基準と比較することにより、蓄電デバイスの放電能力(COD)が適切に維持されているかを判定している。所定の状態量として、例えば蓄電デバイスの劣化度の指標であるSOH(State of health)や残容量を示すSOCなどを用いることができる。
 充放電停止後の蓄電デバイスの過渡変化には、イオンの生成・消滅反応のように反応速度の速いものから、電解液の移動等の反応速度の遅いものまであり、これらが充放電停止後の上記の状態量の変化に影響している。そこで、本実施形態の蓄電デバイスの状態検知方法では、緩和関数F(t)を用いて反応速度毎の状態量の変化を推定し、これらを統合して状態量の判定を行っている。例えば、充放電終了後の経過時間が短い時点における状態量を、遅い反応速度の影響も考慮して判定している。
 上記の停止時安定電圧として、充放電を停止してから十分な時間が経過したときの蓄電デバイスの開放端電圧OCV(以下では安定時OCVとする)が知られている。OCVは、蓄電デバイスの端子が開放されて放電が停止されているときの端子間電圧である。本実施形態の蓄電デバイスの状態検知方法で用いる停止時安定電圧は、OCVに限らず、蓄電デバイスへの過渡的な影響が限定されている場合には、そのときの安定電圧を用いることができる。一例として、蓄電デバイスから負荷への電力供給を停止している間に、負荷の制御装置等に微小な電流(暗電流)が供給されている場合があるが、このような暗電流等が供給されている場合でも、負荷を停止してから十分な時間が経過したときの電圧を停止時安定電圧とすることができる。
 また、蓄電デバイスからの充放電量が常に一定値の場合にも、蓄電デバイスに与える過渡的な影響が十分に小さいと考えられることから、負荷を停止してから十分な時間が経過したときの電圧を停止時安定電圧とすることができる。このように、充放電による電流が微小あるいは一定値で蓄電デバイス内部の過渡変化に与える影響が所定の範囲内に限定される場合には、負荷への電力供給を停止したときに蓄電デバイスからの放電を停止したと判定するとともに、微小電流あるいは一定電流を継続した状態で充放電停止後長時間経過したときの電圧を停止時安定電圧とすることができる。この場合、微小電流あるいは一定電流による電圧変化を補正する電圧補正量を事前に決定し、これを用いて電圧測定値を補正するようにするのが好ましい。
 以下では、停止時安定電圧の一例として、安定時OCVを用いて説明する。安定時OCVを用いた場合には、図35に示した関係を用いて状態量SOCを次式のように表すことができる。
 SOC=FS(OCVs’(SOC’,SOH,T))    (1-1)
 OCVs(SOC,SOH,T)=lim(Vmes(t))   (1-2)
ここで、OCVsは今回算出の安定時OCV、OCV’は前回算出の安定時OCVを表しており、SOC’は前回算出の残容量、Tは蓄電デバイスの温度を示している。また、上式のlimは、充放電停止からの経過時間tを無限大にすることを示しており、式(1-2)の右辺は、充放電停止後の経過時間が無限大のときの蓄電デバイスの電圧測定値Vmes(t)を示している。同様に、安定時OCV以外の停止時安定電圧を用いる場合にも、SOCとの間に上記と同様の関係式を事前に作成することができる。
 上式では、SOCが前回算出のOCVs’に依存して決定されると同時に、OCVsもSOCに依存しており、さらに別の状態量であるSOHと蓄電デバイスの温度Tにも依存して変化することを示している。また、OCVsが別の状態量SOHに依存していることから、状態量SOCもSOHに依存していることになり、それぞれの更新を適切なタイミングで行う必要がある。
 OCVsは、式(1-2)に示すように、充放電停止からの経過時間tが無限大のときのVmes(t)であるが、実用上はVmes(t)の変化が十分小さくなると考えられる経過時間tの時点のVmes(t)とすることができる。また、蓄電デバイスが液式鉛蓄電池の場合には、OCVsは、OCVの1時間当たりの変化量が5mV以下となるか、あるいは、充放電停止から20時間経過したときのVmes(t)とすることができる。以下では、蓄電デバイスが液式鉛蓄電池等の蓄電池の場合を一例に、本発明の蓄電デバイスの状態検知方法を説明する。
 以下では、蓄電池の充放電停止から20時間経過したときのVmes(t)を次式のOCV20hrとし、これをOCVsに用いるものとする。
 OCV20hr=Vmes(t=20hr)
 OCVs(SOC,SOH,T)≒OCV20hr         (1-3)
 充放電停止後の電圧測定値Vmes(t)の安定時OCVからの変化量、すなわちOCV変化量(停止時電圧変化量)をΔV(t)とするとき、
 ΔV(t)=Vmes(t)-OCV20hr            (1-4)
と表すことができる。この電圧変化量ΔV(t)は、従来の電気化学の定義では「分極」という言葉を用いて全ての過渡変化を含めて扱われてきた。しかしながら、ΔV(t)は安定OCVに近づくまでの緩和過程によって生じる電圧変化であることから、以下に挙げる電圧変化の要因の影響を受けている。電圧変化の要因として、極板状態、極板近傍でのイオン濃度、それらの固相反応、固液反応、さらには電解液の沈殿や対流、拡散に伴うイオンの移動などがある。ΔV(t)は、これらの反応速度の異なる緩和過程が組み合わさって生じていると考えられる。そこで、蓄電デバイス11の充放電停止後の過渡変化は、速度の異なる反応過程を含んでいることから、充放電停止後の蓄電デバイス11の放電能力を高精度に判定するためには、反応速度毎の状態変化を評価することができる方法を用いて状態検知を行うのがよい。
 反応速度の違いに応じてm個の多項式からなる関数F(t)を用いて、ΔV(t)を次式のように表すものとする。
 ΔV(t)=F(t)
      =f1(t)+f2(t)+・・・fm(t)=Σfi(t)(1-5)
 上記の緩和関数F(t)では、各項fi(t)が蓄電池の反応速度の異なる緩和過程の電圧変化への寄与分を示しており、以下では反応速度毎緩和関数fi(t)とする。各fi(t)は、蓄電池の状態量である劣化度SOH、残容量SOC(イオン濃度)、および温度Tに依存する関数である。式(1-5)の反応速度毎緩和関数fi(t)は、充放電停止後の電圧測定値Vmes(t)から算出されるΔV(t)を用いて、これに最適化されるように決定することができる。
 本実施形態の状態検知方法を用いた状態検知システムでは、状態検知が開始される前のSOC,SOH、OCV20hrのそれぞれの初期値SOC0、SOHi 0、OCV20hr 0を、状態検知システム内に事前に保存されているそれぞれの参照値SOCref(0)、SOHi ref(0)、OCV20hr ref(0)を用いて、下記のように設定することができる。
  SOC0=SOCref(0)
  SOHi 0=SOHi ref(0)
  OCV20hr 0=OCV20hr ref(0)
 ここで、参照値SOCref(0)、SOHi ref(0)、OCV20hr ref(0)は、それぞれ予め別の電池で取得した値である。
 状態検知システムで状態検知が開始された後の、n回目(nは1以上の整数)の充放電停止後において、OCV変化量ΔV(t)を表す式(1-5)の緩和関数F(t)および反応速度毎緩和関数fi(t)を、それぞれFn(t)、fi n(t)としたとき、i番目の反応速度に対応するSOCおよびSOH(それぞれSOCn、SOHi nとする)から、反応速度毎緩和関数fin(t)が次式で表わされるものとする。
 fi n(t)=fi ref(t)*{SOCn/SOCref
        *{SOHi n/SOHi ref}*g(T)       (1-6)
 ここで、fi ref(t)、SOCref、SOHi refは、あらかじめ設定された初期状態(たとえば未使用状態)でのfi(t)、SOC、SOHiであり、g(T)は温度依存性を表す関数である。
 式(1-6)において温度TとSOCが時間によらず一定とした場合には、SOHi n
 SOHi n={fi n(t)/fi ref(t)}*SOHi ref       (1-7)
 から算出することができる。よって、電圧測定値Vmes(t)から算出されたΔV(t)に式(1-5)のfi n(t)を最適化し、これを用いて式(1-7)からSOHi nを算出することができる。
 反応速度の異なる過渡応答毎のSOHi nを式(1-7)から算出すると、これらを統合して算出される全体のSOHnは、
 SOHn=(SOH1 n、SOH2 n、・・・、SOHm n)      (1-8)
のように表すことができる。例えば、m個のSOHiに対して、それぞれの係数をA~Mとすると、
SOHn=A*SOH1 n+B*SOH2 n+・・・+M*SOHm n
     =A*{f1 n(t)/f1 ref(t)}SOH1 ref
      B*{f2 n(t)/f2 ref(t)}SOH2 ref+・・・+
      M*{fm n(t)/fm ref(t)}SOHm ref    (1-8-1)
 と表すことができる。但し、式(1-8-1)は式(1-8)の関係式を表す一例であり、これに限定されるものではない。上記のようにして算出されたSOHnを用いて、蓄電池の劣化状態の検知を行うことができる。同様にして、別の状態量であるSOCnを、最適化された緩和関数F(t)を用いて算出することができる。
 式(1-5)で示した緩和関数F(t)は、反応速度の異なる反応速度毎緩和関数fi(t)を有していることから、n回目の充放電停止後において、経過時間が短い場合には、遅い反応速度に対応するfi n(t)を最適化して求めることができない。その結果、緩和関数F(t)を用いてSOCn、SOHi nを更新することができない。そこで、遅い反応速度に対応するfi n(t)の最適化が可能となるまでは、SOCn、SOHi nに代えて前回の充放電停止時の値SOCn-1、SOHi n-1を用いることとし、式(1-6)を近似的に次式のように表すものとする。
 fi n(t)=fi ref(t)*{SOCn-1/SOCi ref
        *{SOHi n-1/SOHi ref}*g(T)   (1-6-1)
 遅い反応速度に対応するfi n(t)に対して式(1-6-1)を用いることができる場合には、充放電停止後の短時間経過した時点から状態検知を行うことが可能となる。特に、充放電が所定の閾値以下でしか行われない場合には、前回の充放電終了後のSOCn-1、SOHi n-1を用いた緩和関数Fn(t)を状態検知に用いることが可能となる。
 一方、蓄電池の残容量SOCについては、前回(n-1回目)の充放電停止を終了してから今回(n回目)の充放電停止までの期間の充放電については、その間の充放電電流を積算して残容量変化分ΔSOCを算出することができ、これを用いて前回の残容量SOCn-1を補正してSOCnを算出することができる。すなわち、
 SOCn-1’=SOCn-1+ΔSOC
 とし、これをSOCnの代わりに用いて式(1-6)を近似的に次式のようにすることができる。
 fi n(t)=fi ref(t)*{SOCn-1'/SOCref
        *{SOHi n-1/SOHi ref}*g(T)   (1-6-2) 
 式(1-7)で算出されたSOHi nを用いて次式でfi n(t)を更新し、これをSOCi nの算出に用いる。
 fi n(t)=fi ref(t)*{SOCi n-1/SOCref
        *{SOHi n/SOHi ref}*g(T)    (1-6-3)
 式(1-4)と式(1-6-3)から、OCV20hrは次式によって算出できる。
 OCV20hr=Vmes(t)―Σ[fi ref(t)*{SOCn-1/SOCref
        *{SOHi n/SOHi ref}]*g(T)    (1-9)
 このOCV20hrを式(1-1)に代入することによりSOCnを算出することができ、SOCの状態検知に用いることができる。
 上記のとおり、m種類の反応速度に対応するm個の参照値fi ref(t)(i=1~m)と、m個の劣化度の参照値SOHi ref(i=1~m)と、1個の残容量の参照値SOCrefをもとに、n回目の充放電停止後のm個の反応速度毎緩和関数fi n(t)(i=1~m)を算出することができる。これより、異なる反応速度に応じた劣化度を反映したOCV、SOCおよびSOHを求めて精度の高い状態検知を行うことが可能となる。
 本発明の第5実施形態の蓄電デバイスの状態検知方法を、図10、11を用いて以下に説明する。図10は、本実施形態の状態検知方法による処理の流れを示す流れ図である。また、図11は、本実施形態の状態検知方法を用いた状態検知装置の概略構成を示すブロック図である。図11に示す状態検知装置210は、一例として、車両に搭載された蓄電池1の状態検知を行うように構成されている。蓄電池201には、充電手段202と負荷203が接続されており、充電手段202による充電と負荷203への放電が可能となっている。また、蓄電池201には温度測定手段201a、電圧測定手段201b及び電流測定手段201cが設けられており、入力手段204を介してそれぞれの測定値を状態検知装置210へ入力することが可能となっている。さらに、蓄電池201の充放電を制御する制御装置205が設けられている。制御装置205から状態検知装置210への入力手段204を介して、制御情報を入力することも可能となっている。
 状態検知装置210は、演算装置211と、固定記憶手段(ROM)212と、一時記憶手段(RAM)213と、タイマ214と状態出力手段215とを備えている。演算装置211は、入力手段204を用いて蓄電池201の温度測定値、電圧測定値及び電流測定値を入力し、これを一時記憶手段213に保存する。また、固定記憶手段212には、反応速度毎緩和関数fi(t)や各種状態量の初期値や参照値が格納されている。演算装置211は、固定記憶手段212に保存された初期値や参照値、及び一時記憶手段213に保存された電圧測定値などを用いて、タイマ214でカウントされる所定の時間周期で蓄電池201の状態検知を行い、結果を状態出力手段215に出力するように構成されている。状態出力手段215の出力情報は制御装置205が用いるための制御パラメータの情報を供給することも可能となっている。
 本実施形態の状態検知方法を、図10に示す流れ図を用いて以下に説明する。まず、ステップS201において、入力手段204を用いて蓄電池の電圧測定値及び電流測定値を入力する。次のステップS202では、入力した電流測定値から充放電停止が開始されたかを判定する。充放電停止が開始されたと判定されると、ステップS203では直前の電圧測定値を放電終了時電圧VDEまたは充電終了時電圧VCEとして一時記憶手段213に保存する。そして、ステップS204において、放電終了時電圧VDEまたは充電終了時電圧VCEを固定記憶手段212に保存されている参照値のVrefと比較し、参照値Vrefより高い場合には次のステップS205に進む。一方、放電終了時電圧VDEまたは充電終了時電圧VCEが参照値Vrefより低い場合には、放電能力CODが不足していると判定し、ステップS213に進んでCOD不足を状態出力手段215に出力して終了する。
 ここでVrefは、予め別の電池で測定した値(例えば、12.8V)である。
 ステップS204で放電終了時電圧VDEまたは充電終了時電圧VCEがVref以上と判定された場合には、ステップS205で充放電停止中かあるいは充放電が再開されたかを判定する。充放電が再開されたと判定された場合には、状態検知を終了する。一方、充放電停止が継続されている場合には、ステップS206において電圧測定値をVmesに設定して一時記憶手段213に保存する。次のステップS207では、停止時安定電圧であるOCV20hrを選択し、これと電圧測定値をVmesを用いてステップS208でΔV(t)を算出する。
 ステップS209では、ステップS208で算出されたΔV(t)を用いて緩和関数F(t)を最適化する。フィッティング方法に関しては、最小二乗法などの回帰計算を利用して算出する方法が種々考えられるが、本フィッティングではΔV(20hr)=0となってしまうため、単純に指数関数の和を用いて回帰計算を行うと誤差が大きくなってしまう。そこで、ΔV(20hr)=0付近での接線の傾きを差し引き、ΔV(20hr)>0が常に成り立つような関数(例えば、後述する式(1-10-4))を導入し、その差分に対して指数関数の和によるフィッティングを行うのが望ましい。
 ステップS210において、最適化された緩和関数F(t)を用いて所定の状態量(以下ではSで表す)を推定する。ステップS211では、推定した状態量Sを固定記憶手段212に保存されている参照値Srefと比較し、状態量Sが所定の条件を満たしていると判定したときはステップS212に進んでCODが確保されていることを状態出力手段215に出力する。一方、ステップS211の判定において、状態量Sが所定の条件を満たしていないと判定したときはステップS213に進んでCODが不足していることを状態出力手段215に出力する。
 本実施形態の蓄電池の状態検知方法では、式(1-1)のSOC算出式及びSOC、SOH、OCV20hrの初期値に対応した参照値SOCref(0)、SOHref(0)、OCV20hr ref(0)を固定記憶手段212に予め保存しておき、これを用いてそれぞれの初期値をSOC0=SOCref(0)、SOHi 0=SOHi ref(0)、OCV20hr 0=OCV20hr ref(0)と設定する。
 ステップS201の処理の詳細を図12に示す。図12では、予め定められた確認タイミングにタイマーカウント値の確認を行い、決められた測定タイミングに対して、タイマーカウント(t_count)がその測定タイミング値を超えたときに(ステップS201-2)、入力手段214から蓄電池201の電圧、電流を入力する(ステップS201-4)。
 ステップS202において、蓄電池1の充放電停止を判定する方法の一例を図13に示す。充放電停止は、ステップS202-2で測定した電流測定値が固定記憶手段212に保存されている所定の閾値以下のときに判定される(ステップS202-4)が、例えば、制御装置205で自動車が駐車又は停車していると判断されたり、あるいは状態検知装置210が蓄電池201に接続されたことを示す情報が演算装置211に入力された場合(ステップS202-1)、これらの情報を用いて充放電停止を判定することもできる(ステップS202-3)。
 ステップS207のOCV20hrの選択方法を図14の流れ図に示す。n回目のOCV20hr算出開始時のSOCn、SOHnには、前回の算出値SOCn-1、SOHn-1を用いる(ステップS207-1)。蓄電池201の現在の温度Tは入力手段204から入力される測定値を用いる(ステップS207-2)。これにより選択されるOCV20hrをOCV20hr tempとすると、複数のSOC、SOHの値および温度を組み合わせたh種類の条件で事前に作成された関係式
 H(SOC_j,SOH_k,T_l) =OCV20hr ref(h) (h,j,k,lは自然数)
を用いて(ステップS207-4)、OCV20hr tempを次式で設定する(ステップS207-5)。
 OCV20hr temp=OCV20hr ref(h)
以下では、簡単のため式(1-5)を下記の4項からなるものとする。
 F(t)=ffast(t)+fslow(t)
     ={ffast1(t)+ffast2(t)}+
      {fslow1(t)+fslow2(t)}         (1-10)
 1例として例えば、(式1-10)を
  速い緩和速度の関数1:ffast1(t)= A*exp(-B*t^C) (1-10-1)
  速い緩和速度の関数2:ffast2(t)= D*exp(-E*t^F) (1-10-2)
  遅い緩和速度の関数1:fslow1(t)= G*exp(-H*t^I) (1-10-3)
  遅い緩和速度の関数2:fslow2(t)= -a /72000*t+b (1-10-4)
と表すことによって、ΔV(t)を最適化する関数を作成することが容易となる。但し、演算装置211の演算速度や固定記憶手段212、一時記憶手段213のメモリ容量と、測定センサに要求される精度の条件等によって、この関数を複雑化したもの、あるいは簡略化したものを用いてもよい。
 タイマカウントの経過時間に応じて、ΔV(t)からFn(t)を求める方法(ステップS209)を、図15および図16を用いて説明する。式(1-10-1)~(1-10-4)で示した関数は、4つの基準時間(10秒、1000秒、36000秒、72000秒)で分けられる区間で、それぞれが支配的となるようにフィッティングして各係数が決定される。ここで、基準時間(10秒、1000秒、36000秒、72000秒)は一例であり、蓄電池の反応速度の緩和特性に応じて設定することができる。また、蓄電池内部の反応速度だけでなく、実車での走行条件や休止条件、センサの要求精度等によって、この基準となる時間を変更することができる。
 充放電停止後の経過時間が20時間より短い場合に、ΔV(t)からFn(t)を求める方法を図15を用いて説明する。時間tが第1の基準時間(10秒)より短いと判定されたときは(ステップS209-1)、前回の充放電停止後の算出値Fn-1(t)をもとに、Fn(t)を次式で算出する(ステップS209-2)。
 Fn(t)=ffast1 n-1(t)+ffast2 n-1(t)+
       fslow1 n-1(t)+fslow2 n-1(t)}       (1-11) 
 以下同様に、時間tが第1の基準時間以上で第2の基準時間(1000秒)より短いと判定されたときは(ステップS209-3)、前回の充放電終了後のFn-1(t)と最新のデータをもとに、Fn(t)を次式で算出する(ステップS209-4)。
 Fn(t)=ffast1 n(t)+ffast2 n-1(t)+
       fslow1 n-1(t)+fslow2 n-1(t)}       (1-12) 
 また、時間tが第2の基準時間以上で第3の基準時間(36000秒)より短いと判定されたときは(ステップS209-5)、前回の充放電終了後のFn-1(t)と最新のデータをもとに、Fn(t)を次式で算出する(ステップS209-6)。
 Fn(t)=ffast1 n(t)+ffast2 n(t)+
       fslow1 n-1(t)+fslow2 n-1(t)}       (1-13) 
 また、時間tが第3の基準時間以上で第4の基準時間(72000秒)より短いと判定されたときは(ステップS209-7)、前回の充放電終了後のFn-1(t)と最新のデータをもとに、Fn(t)を次式で算出する(ステップS209-8)。
 Fn(t)=ffast1 n(t)+ffast2 n(t)+
       fslow1 n(t)+fslow2 n-1(t)}        (1-14)
上記の式(1-11)~(1-14)から求まったFn(t)に対し、t=20時間を代入して
   OCV20hr n=Fn(20hr)
が得られる(ステップS209-11)。
 時間tが第4の基準時間以上(例えば20時間)と判定されたときは(ステップS209-7)、図16に示すように、最新のVmes(20hr)から求められたOCV20hr tempと、これまで記録したΔV(t)(ΔV(t)tempとする)をもとに
 ΔVn(t)=ΔV(t)temp+OCV20hr temp-OCV20hr n     (1-15)
として、ΔVn(t)を算出し(ステップS209-13)、Fn(t)を次式で算出する(ステップS209-15)。
 Fn(t)=ffast1 n(t)+ffast2 n(t)+
       fslow1 n(t)+fslow2 n(t)}         (1-16) 
 図17は、図15及び図16の処理で算出されて一時記憶手段213に保存されたfi(t)と、予め固定記憶手段212に保存された参照値fi ref(t)、SOHi refを用いて、SOHi n、SOCを算出するステップS210の処理の流れを示している。上記で得られたOCV20hr nと参照値fi ref(t)とSOHi refと温度Tnとを各記憶手段212,213から読み出し(ステップS210-1、2)、固定記憶手段212に保存されている関数I(OCV20hr_ n, SOHi n,Tn)=SOCref_nの関係式にそれぞれの値を代入することによってSOCref_nを算出し(ステップS210-6)、これからSOCn=SOCref_nを算出する(ステップS210-7)。
 本実施形態の蓄電池の状態検知方法における緩和関数F(t)の最適化の一例として、緩和関数F(t)を式(1-10)のように表したときの各項の変化の一例を図18に示す。図18は、横軸を充放電終了からの経過時間としたときのΔV(t)(=F(t))の変化を示すグラフであり、符号251~254はそれぞれ式(1-10)の各項(ffast1(t)、ffast2(t)、fslow1(t)、fslow2(t))の変化を示している。また、符号250が真値を示しており、符号255が式(1-10)から算出されたF(t)の値を示している。本実施形態のF(t)を用いることにより、ΔV(t)を高精度に予測できることが示されている。
 以下では、遅い反応速度の成層化度合い(電解液の拡散等)を式(1-7)のSOH1(i=1)とし、n回目の充放電後のSOH1 nを、
 SOH1 n=fslow n(t)/fslow ref*SOH1 ref
     ={fslow1 n(t)+fslow2 n(t)}/
      {fslow1  ref(t)+fslow2  ref(t)}*SOH1 ref
                              (1-17)
で算出するものとする。上記では、式(1-7)のfi n(t)、fi ref(t)をさらに2つの項の和{fslow1 n(t)+fslow2 n(t)}、{fslow1  ref(t)+fslow2  ref(t)}から算出されるものとしている。
 一例として、古河バッテリー製のサイズ型番:55D23の液式鉛蓄電池を用いて、環境温度25℃、DOD(Depth of discharge)10%の条件下で、未使用状態から充放電サイクルを20回、50回および100回実施した。20サイクルの充放電後、50サイクルの充放電後、および100サイクルの充放電後の測定データをもとに、20サイクル時を基準として、充放電停止から5時間経過(t=5時間)したときのOCV変化量fi n(5hr)からSOH1 nが次式のように算出される。
 SOH1 50={fslow1 50(5hr)+fslow2 50(5hr)}/
    {fslow1 20(5hr)+fslow2 20(5hr)}*SOH1 20  (1-18)
 SOH1 100={fslow1 100(5hr)+fslow2 100(5hr)}/
    {fslow1 20(5hr)+fslow2 20(5hr)}*SOH1 20  (1-19)
 図19に、測定データから算出したfslow n(t)/fslow 20(t)を示す。符号261、262、263がそれぞれfslow 20(t)、fslow 50(t)、fslow 100(t)を示しており、符号264、265がそれぞれfslow 50(t)/fslow 20(t)、fslow 100(t)/fslow 20(t)を示している。同図より、例えばt=18000秒の時点で
 {fslow1 50(5hr)+fslow2 50(5hr)}/
 {fslow1 20(5hr)+fslow2 20(5hr)}
 =Fslow 50(5hr)/Fslow 20(5hr)
 =1.52
 同様に、
 fslow 100(5hr)/fslow 20(5hr)
 =1.63
 が得られる。このように、充放電サイクル数に応じた電池状態の変化をOCVの変化量F(t)から捉えることが可能となる。
 また、一例として充放電終了後20時間経過したときのOCVは、充放電サイクル数20、50、100に対し
 OCV20hr 20=12.896[V]
 OCV20hr 50=13.032[V]
 OCV20hr 100=13.036[V]
 上記のfslow n(t)/fslow 20(t)とOCV20hr 20との関係を図20に示す。図20に示す結果を、同種の蓄電池のOCV20hrを推定する安定OCV推定式に用いることができる。
 上記説明の通り、本発明によれば速度の異なる反応過程による劣化を評価して状態検知を行う蓄電池の状態検知方法を提供することができる。電池の劣化度SOHを検知することによって、残容量SOCを精度良く検知することが可能になる。
 (第6実施形態)
 本発明の第6実施形態に係る蓄電デバイスの状態検知方法を、図21を用いて以下に説明する。図21は、本実施形態の状態検知方法による処理の流れを示す流れ図である。本実施形態では、第5の実施形態のステップS204で放電終了時電圧VDEまたは充電終了時電圧VCEをもとにCODを判定した後に、ステップS221で充放電停止時の残容量SOCstop nを用いてCODを判定するようにしている。すなわち、ステップ221では、残容量SOCstop nを固定記憶手段212に保存されている参照値のSOCstop refと比較し、残容量SOCstop nが参照値SOCstop ref以上の場合には次のステップS205以降に進み、参照値SOCstop refより小さい場合にはCODが不足していると判定してステップS213に進む。これにより、蓄電池201の放電能力をさらに高精度に判定することができる。
 充放電停止時の残容量SOCstop nの算出方法を、図22を用いて説明する。前記の充放電停止時に算出されたSOCstop n-1に対し、その後充放電を再開してから今回の充放電停止までの間に増減したSOC(これを残容量増減量ΔSOCとする)を補正することで、今回の充放電停止時の残容量SOCstop nを算出することができる。残容量増減量ΔSOCは、前回の充放電再開から今回の充放電停止までの間の蓄電池1の充放電電流を積算することで算出することができる。
 本実施形態では、上記のように算出したΔSOCに対し、さらに所定の補正を行うことで、残容量増減量をさらに高精度に算出できるようにしている。本実施形態の状態検知方法においては、充放電停止時の残容量SOCstop nを次式で算出している。
  SOCstop n=SOCstop n-1+ΔSOC*η1 n-1*η2 n-1   (1-20)
ここで、η1 n-1は図22(a)に示すように、遅い緩和速度の関数fslow(10hr)(式(1-10-3)のfslow1または式(1-10-4)のfslow2)に依存して決定される補正係数であり、η2 n-1は図22(b)に示すように、充電終了時電圧VCE nに依存して決定される補正係数である。これらの補正係数は、蓄電池201の充電効率を補正するものである。
 (第7実施形態)
 本発明の第7の実施形態に係る蓄電デバイスの状態検知方法を、図23を用いて以下に説明する。図23は、本実施形態の状態検知方法による処理の流れを示す流れ図である。本実施形態では、図23に示した第6の実施形態の処理において、ステップS210、S211の処理方法を変更してステップS230としている。第6の実施形態のステップS210、S211では(第5の実施形態でも同じ)、所定の状態量Sを算出して固定記憶手段212に保存されている参照値Srefと比較することで、状態量Sが放電能力を維持していることを示す条件を満たしているかを判定していた。これに対し、本実施形態のステップS230では、状態量Sを反応速度毎に評価して反応速度毎に放電能力維持の条件を満たしているかを判定するようにしている。また、遅い反応速度と速い反応速度の比率に基づく判定も行うようにしている。
 状態量Sとして劣化度SOHを一例に、反応速度毎の判定及び遅い反応速度と速い反応速度の比率に基づく判定の方法を以下に説明する。反応速度毎の劣化度SOHfast n、SOHslow nは、式(1-7)を用いて以下のように算出することができる。
 SOHfast n’={ffast n(t)/ffast ref_n(t)}*SOHfast ref (1-21)
 SOHslow n={fslow n(t)/fslow ref_n(t)}*SOHslow ref     (1-22)
 さらに、反応速度毎の劣化度SOHfast n、SOHslow nを統合した全体のSOHnは、式(1-8)のように表され、例えば式(1-8-1)から算出することができる。
 遅い反応速度と速い反応速度の比率に基づいて算出される劣化度SOHfast/slownについても、上記と同様に次式で算出することができる。
 SOHfast/slow n={ffast/slow n(t)/ffast/slow ref_n(t)}
            *SOHfast/slow _ref         (1-23)
 遅い反応速度と速い反応速度の比率に基づいて算出される劣化度SOHfast/slow nは、図24に一例を示すように、遅い反応速度と速い反応速度との比率を用いることによって、速い反応速度の過渡事象または遅い反応速度の過渡事象のいずれか変化の大きな事象に基づく劣化度の変化を評価することが可能となる。
 上記の式(1-21)で算出したSOHfast n’に対しては、充放電停止時の状態量である残容量SOCstop n及び充電終了時電圧VCE nの影響を補正するために、補正後の劣化度SOHfast nを次式で算出している。この補正は、速い反応速度に対してSOHfast nが図25に示すような変化を示すことを補正するものである。
 SOHfast n=SOHfast n’*α1 n*α2 n           (1-24)
 補正パラメータα1 n、α2 nは、残容量SOCstop n及び充電終了時電圧VCE nに対し、例えば図26(a)、(b)に示すような変化を示す。そこで、図26(a)、(b)に示す変化を所定の関数(高速過渡変化補正量算出式)で表すことで、残容量SOCstop n及び充電終了時電圧VCE nから補正パラメータα1 n、α2 nを算出するようにすることができる。
 上記では、SOHfast nの補正について説明したが、SOHslow nについても、例えば補正パラメータβ1 n、β2 nを算出する式を事前に作成し、これを用いて同様に補正するようにすることが可能である。
 上記のようにして算出したSOHfast n、SOHslow n、及びSOHfast/slow nを用い、図27に示すようにそれぞれの参照値と比較することで、蓄電池1のCODを判定することができる。図27では状態量をSfast等で表しているが、SOHを評価するときはこれをSOHfast n等に置き換えて用いる。ステップS231では、式(1-22)を用いてSOHslow nを算出し、ステップS232では参照値SOHslow ref_nと比較する。その結果、SOHslow nがSOHslow ref_n未満のときはCODが不足と判定してステップS213に進み、それ以外のときは次のステップS233に進む。
 同様にして、ステップS233、S234ではSOHfast nを判定し、ステップS235、S236ではSOHfast/slow nを判定する。そして、いずれでも所定の条件を満たす場合に、ステップS212に進んでCODが維持されていると判定する。本実施形態では、図23及び27に示すような処理を行うことにより、蓄電池1の状態検知を高精度に行うことが可能となる。
 上記では、蓄電デバイスの状態量としてSOC,SOHを算出し、これを用いて状態検知を行う実施形態について説明した。本発明の蓄電デバイスの状態検知方法では、これに限らず蓄電デバイスの放電能力に関わるその他の状態量を用いることができる。SOC,SOH以外に、蓄電デバイスの放電能力の判定に利用可能な状態量として、蓄電デバイス内の電解液の濃度変化量がある。電解液の濃度は充放電に伴って変化しており、充放電停止後も安定するまでに時間がかかる。
 そこで、電解液濃度変化量を状態検知に用いるために、緩和関数F(t)の各項ffast(t)、fslow(t)及びffast(t)/fslow(t)に対する電解液濃度変化量を算出する濃度変化量算出式を事前に作成して固定記憶手段212に保存しておく。そして、最適化された緩和関数F(t)を用いて濃度変化量算出式から電解液濃度変化量を算出し、これが所定の条件を満たしているか否かを判定することで状態検知を行うようにすることができる。蓄電デバイスの状態検知方法に、さらに電解液濃度変化量を用いるようにすることで、高精度な状態検知が可能となる。
 蓄電デバイスの放電能力の判定に利用可能な別の状態量として、電解液の濃度分布の偏り(成層化)の変化がある。蓄電デバイスの電解液の濃度分布の一例を図28に示す。図28は、正極291と負極292とを中心に電解液293の濃度分布が変化して成層化294が形成されている状態を模式的に示している。蓄電デバイスでは、充放電に伴って電解液の濃度分布が変化して同図に示すような成層化294が形成される。この成層化には、電解液の液面に対して横方向(矢印295)の濃度分布の偏りである横成層化と、電解液の液面に対して縦方向(矢印296)の濃度分布の偏りである縦成層化がある。この成層化の変化は、充放電によって電解液濃度が変化するのに伴って生じており、電解液濃度の変化と同様に充放電停止後安定するまでに時間がかかる。
 そこで、成層化変化量を状態検知に用いるために、緩和関数F(t)の各項ffast(t)、fslow(t)及びffast(t)/fslow(t)に対する成層化変化量を算出する成層化変化量算出式を事前に作成して固定記憶手段212に保存しておく。そして、最適化された緩和関数F(t)を用いて成層化変化量算出式から成層化変化量を算出し、これが所定の条件を満たしているか否かを判定することで状態検知を行うようにすることができる。蓄電デバイスの状態検知方法に、さらに成層化変化量を用いるようにすることで、高精度な状態検知が可能となる。
 蓄電デバイスの放電能力の判定に利用可能なさらに別の状態量として、電解液の液面に対して横方向の濃度分布の偏り(横成層化)の変化がある。この横成層化の変化は、充放電によって電解液濃度が変化するのに伴って生じており、電解液濃度の変化と同様に充放電停止後安定するまでに時間がかかる。
 そこで、横成層化変化量を状態検知に用いるために、緩和関数F(t)の各項ffast(t)、fslow(t)及びffast(t)/fslow(t)に対する横成層化変化量を算出する横成層化変化量算出式を事前に作成して固定記憶手段212に保存しておく。そして、最適化された緩和関数F(t)を用いて横成層化変化量算出式から横成層化変化量を算出し、これが所定の条件を満たしているか否かを判定することで状態検知を行うようにすることができる。蓄電デバイスの状態検知方法に、さらに横成層化変化量を用いるようにすることで、高精度な状態検知が可能となる。
 蓄電デバイスの放電能力の判定に利用可能なさらに別の状態量として、電解液の液面に対して横方向及び縦方向の濃度分布の偏り(横成層化、縦成層化)の変化がある。これを縦横成層化変化量とするとき、縦横成層化変化量は充放電によって電解液濃度が変化するのに伴って生じており、電解液濃度の変化と同様に充放電停止後安定するまでに時間がかかる。
 そこで、縦横成層化変化量を状態検知に用いるために、緩和関数F(t)の各項ffast(t)、fslow(t)及びffast(t)/fslow(t)に対する縦横成層化変化量を算出する縦横成層化変化量算出式を事前に作成して固定記憶手段12に保存しておく。そして、最適化された緩和関数F(t)を用いて縦横成層化変化量算出式から縦横成層化変化量を算出し、これが所定の条件を満たしているか否かを判定することで状態検知を行うようにすることができる。蓄電デバイスの状態検知方法に、さらに縦横成層化変化量を用いるようにすることで、高精度な状態検知が可能となる。
 (第8実施形態)
 充放電停止後の別の状態検知方法について、さらに詳細に説明する。
 充放電停止後に蓄電デバイスの状態検知を行う場合、それ以前の充放電履歴等によって過渡変化が大きく異なってくるため、充放電履歴の影響を強く受けて放電能力等を高精度に判定することが困難になるといった問題があった。
 例えば、自動車に搭載された蓄電池では、車両運行中にさまざまな充放電が繰り返されるため、蓄電池中の電解液に生じる泳動、沈殿、対流、拡散なども車両運行条件によってさまざまに異なっている。そのため、充放電停止後の蓄電池の過渡変化は、それまでの車両運行条件によって異なり、同等あるいは傾向が同じとみなせるような再現性のある停止状態を作り出すことはできない。特許文献1に記載の状態検知方法のように、充放電停止後の過渡変化を異なる時定数の成分に分けて状態検知を行う場合でも、充放電停止後の蓄電池の過渡変化が大きく異なると、各時定数成分を高精度に求めることが困難となり、蓄電池の状態検知を高精度に行うのが困難になるといった問題があった。
 そこで、これらの問題を解決するために、蓄電デバイスの停止前の充放電の影響を低減させて状態検知を行う蓄電デバイスの状態検知方法及びその装置を提供する。
 第8実施形態の蓄電デバイスの状態検知方法では、蓄電デバイスの放電能力を適切に維持できるようにするために、蓄電デバイスの状態検知を適宜行うための状態検知モードを設けている。状態検知モードは、蓄電デバイスを備えたシステムにおいて、例えば運転を停止して蓄電デバイスの充放電が停止された時点や、充放電が停止された後相当の時間が経過した時点等において、ユーザあるいは保守員等によって実行されるものである。蓄電デバイスに対し状態検知モードが要求されると、該蓄電デバイスの状態検知を高精度に行うものである。
 以下では、蓄電デバイスとして車両に搭載されたバッテリを一例に、本実施形態の蓄電デバイスの状態検知方法及び状態検知装置について説明する。但し、以下で説明する内容は、車載バッテリに限らず、太陽光発電や風力発電などに用いられる蓄電デバイスや、安定化電源、補助電源等のバックアップ電源に用いられる蓄電デバイスにも同様に適用できるものである。
 本実施形態の蓄電デバイスの状態検知方法及びその装置を、図29、図30を用いて以下に説明する。図29は、本実施形態の蓄電デバイスの状態検知方法の概略を説明するための流れ図であり、図30は、本実施形態の蓄電デバイスの状態検知装置のブロック図である。
 本実施形態の状態検知装置400は、車両310に搭載されて蓄電デバイス(蓄電池)311の状態検知を行うものであり、信号入力手段401、出力表示手段402、測定手段403、及び状態検知部410を備えている。蓄電デバイス311には車載電気機器等の負荷312が接続されており、さらにオルタネータ等の車載充電器314が接続されている。信号入力手段401は、運転者等のユーザが状態検知モードを要求するための信号(以下では状態検知モード開始信号と称する)を入力するのに用いるものであり、出力表示手段402は、状態検知を行った結果等をユーザに通知するのに用いる。信号入力手段401及び出力表示手段402は、ともに運転者が使用するものであることから、運転席またはその近傍に設けるのがよい。
 状態検知部410は、測定手段403から蓄電デバイス311の電圧、電流等の測定値を入力し、これを用いて蓄電デバイス311の状態検知を高精度に行う処理を行っている。また、状態検知部410は状態検知モード用スイッチ411を具備しており、信号入力手段401から状態検知モード開始信号を入力する代わりに、状態検知モード用スイッチ411をオンにすることで、状態検知モード開始信号が状態検知部410に出力される。状態検知モード用スイッチ411は、定期点検時等のメンテナンス時に保守員等が蓄電デバイス311の状態検知を速やかに行えるように設けられたものである。
 状態検知部410は、状態検知を行う前に蓄電デバイス311に対し所定容量の充電(以下では状態検知前充電と称する)を行わせるように構成されている。すなわち、状態検知部410が制御手段313に対し蓄電デバイス311の状態検知前充電を要求すると、制御手段313がエンジンを起動させて車載充電器314を動作させ、これにより蓄電デバイス311に所定容量の充電を行わせるように制御する。あるいは、上記の蓄電デバイス311の状態検知前充電を保守員等が行うことも可能となっている。この場合には、状態検知前に保守員等が蓄電デバイス311に外部充電器320を接続して充電させる。状態検知部410は、車載充電器314あるいは外部充電器320による状態検知前充電が行われた後に、蓄電デバイス311の状態検知を行うように構成されている。なお、状態検知部410と信号入力手段401、出力表示手段402、測定手段403、及び制御手段313との間の通信手段として、LIN(Local Interconnect Network)またはCAN(Controller Area Network)等の通信バスを用いることができる。
 次に、図29に示す流れ図を用いて、本実施形態の状態検知方法の概要を説明する。本実施形態の状態検知装置400を用いて蓄電デバイス311の状態検知を行う場合には、まず、状態検知部410に状態検知モード開始信号を入力する(ステップS301)。これにより、状態検知部410では、所定の状態検知許可条件が成立しているかの判定を行う(ステップS302)。この状態検知許可条件として、少なくとも蓄電デバイス311が充放電を停止していることを含む。
 ステップS302で状態検知許可条件が成立していると判定されると、ステップS303で状態検知モードがオンに設定され、次のステップS304で蓄電デバイス311に対し状態検知前充電が行われる。状態検知前充電が終了すると、状態検知部410で蓄電デバイス311の状態検知が行われる(ステップS305)。状態検知として、例えば蓄電デバイス311の残容量SOCを推定し、これをもとに蓄電デバイス311の放電能力を判定することができる。状態検知の処理により蓄電デバイス311の放電能力が判定されると、その結果が出力表示手段402に出力され、ユーザや保守員等に通知される(ステップS306)。一方、ステップS302で状態検知許可条件が不成立と判定されると、ステップS303~S306の処理を行わないで終了する。
 以下では、状態検知部410において行われる蓄電デバイス311の状態検知方法について説明する。バッテリ311の充放電停止後の過渡変化は、速度の異なる反応過程を含んでいることから、充放電停止後のバッテリ311の放電能力を高精度に判定するためには、反応速度毎の状態変化を評価することができる方法を用いて状態検知を行うのがよい。例えば、充放電停止後のバッテリの電圧変化ΔV(t)を、反応速度の違いに応じてm個の多項式からなる関数(以下では緩和関数と称する)F(t)を用いて次式のように表すことができる。
ΔV(t)=F(t)
     =f1(t)+f2(t)+・・・fm(t)=Σfi(t)(2-1)
 ここで、電圧変化量ΔV(t)は、状態検知前充電を終了してから時間tが経過したときの電圧測定値Vmes(t)と、充放電停止後十分な時間(例えば20時間)経過して略一定となったときの停止時安定電圧(以下ではOCV20hrとする)との差を表している。
   ΔV(t)=Vmes(t)―OCV20hr           (2-2) 
 本実施形態では、上式を用いて状態検知を行うものとする。
 上記の緩和関数F(t)では、各項fi(t)がバッテリ311の反応速度の異なる緩和過程の電圧変化への寄与分を示しており、以下では反応速度毎緩和関数fi(t)とする。各fi(t)は、バッテリ311の状態量である劣化度SOH、残容量SOC(イオン濃度)、および温度Tに依存する関数である。電圧測定値Vmes(t)からΔV(t)を算出し、式(2-1)を電圧測定値Vmes(t)から算出したΔV(t)で最適化することで、各反応速度毎緩和関数fi(t)を決定することができる。
 本実施形態の状態検知方法は、状態検知前充電の終了後所定の周期で蓄電デバイス311の電圧測定値を入力し、電圧測定値を入力する毎に緩和関数F(t)の最適化を行って更新している。n回目に測定した電圧測定値を用いて最適化されたときの反応速度毎緩和関数をfi n(t)とするとき、fi n(t)は次式のように表すことができる。
 fi n(t)=fi ref(t)*{SOCn/SOCref
        *{SOHi n/SOHi ref}*G(T)     (2-3)
 ここで、fi ref(t)、SOCref,およびSOHi refは、それぞれ所定の基準状態における反応速度毎緩和関数、残容量SOC,および反応速度毎の劣化度SOHを表し、G(T)は蓄電デバイスの温度Tに対する依存性を表している。式(2-3)より、n回目の電圧測定値を用いて推定される残容量SOCn及び反応速度毎劣化度SOHi nを算出することができる。SOCnより蓄電デバイス311の放電能力を判定することができる。また、反応速度毎劣化度SOHi nを全反応速度について積算した劣化度SOHより、蓄電デバイス311の劣化度を判定することができる。
 式(2-1)に示す緩和関数F(t)の最適化を高精度に行うためには、状態検知を行う時点の過渡変化が、常に同等あるいは傾向が同じとみなせるような再現性のある状態であることが好ましい。そこで、本実施形態の蓄電デバイス311の状態検知方法では、状態検知を行う前にその充放電状態をできるだけ再現性のある状態に移行させ、その後に状態検知を行うようにしている。状態検知開始前の充放電状態をできるだけ再現性のある状態に移行させるために、本実施形態では、図29のステップS304において所定容量の充電(状態検知前充電)を行っており、その後に電圧変化等の測定を行って状態検知を行うようにしている。
 蓄電デバイス311を再現性のある状態に移行させるための適切な状態検知前充電の容量として、車両運行中の充放電に伴う電解液の電気泳動のうち、放電に伴う電気泳動の影響を打ち消すのに十分な容量とするのが好ましい。これにより、状態検知前充電が車両運行中の放電による影響を低減し、状態検知時は充電分極に伴う電圧変化を測定するようにすることができる。以下では、状態検知前充電として適切な容量を、自動車の蓄電池を対象として説明する。
 自動車の実際の走行では、充放電容量が任意にかつ頻繁に変化するため、走行中の充放電容量を測定して積算し、これをもとに状態検知前充電の容量を決定する方法が考えられる。しかしながら、走行中の充放電容量を積算する方法では、必ずしも精度の高い充放電容量が得られず、状態検知モードに移行したときに適切な充電容量を決定するのが難しい。また、アイドリングストップが繰り返し行われるなど、大容量の放電が行われた後に状態検知モードに移行した場合には、状態検知前充電の必要容量が大きくなってしまうおそれがあり、その場合には充電に要する時間が長くなってしまう等の問題がある。
 そこで、本実施形態の状態検知方法では、走行中の充放電を積算したものを用いて状態検知前充電の容量を決めるのではなく、対象の蓄電デバイス毎に充電時の過渡変化を事前に調べ、それをもとに状態検知前充電の容量を予め決めておくようにしている。一例として、古河電池製蓄電池55B24(36[Ah])を搭載した車両の場合では、1~2時間程度通常の走行を行ったとき、走行中の蓄電池の充放電容量(ΔSOC)の大きさ(絶対値)が0.5%以下となる。
 そこで、状態検知前充電の容量として、このような走行時の充放電量より十分大きい容量とすることで、状態検知モードに移行する前の充放電の影響を十分に低減することができる。その結果、本実施形態の状態検知方法では、状態検知を行うときの蓄電池状態が、状態検知前充電によって生じる過渡変化に支配されるため、再現性のある過渡状態になっているということができる。状態検知前充電を行った後の蓄電池の過渡変化が、直前の走行時の充放電容量の大きさによってどのように変化するかを、図31を用いて説明する。図31は、運転中から停止後の状態検知時の蓄電池の電流及び電圧の変化を示しており、運転中の充放電容量と状態検知前充電容量との大小関係によって過渡変化がどのように変化するかを模式的に示したグラフである。ここでは、状態検知前充電容量を定格容量の5%としている。
 図31(a)は、運転中の充放電容量に比べて状態検知前充電の容量が大きい場合の電流、電圧の変化を示し、図31(b)は、運転中の充放電容量と状態検知前充電容量が同程度の場合の電流、電圧の変化を示し、図31(c)は、運転中の充放電容量が状態検知前充電容量より大きい場合の電流、電圧の変化を示している。図31(a)に示す状態検知前充電容量の方が大きい場合として、運転中の充放電容量を1%以下としている。この場合には、運転中の充放電の影響が状態検知前充電によって低減される結果、状態検知前充電後の電圧変化が単調に減少して安定電圧に収束する傾向を示す。
 また、図31(b)に示す運転中の充放電容量と状態検知前充電容量が同程度の場合として、運転中の充放電容量を1%以上5%以下としている。この場合にも、運転中の充放電の影響を状態検知前充電によって低減することができ、状態検知前充電後の電圧変化は、図31(a)と同様に単調に減少して安定電圧に収束する傾向を示す。さらに、図31(c)に示す運転中の充放電容量が状態検知前充電容量より大きい場合には、状態検知前充電を終了した後も電圧が単調増加の傾向にあり、図31(a)、(b)と全く異なる傾向を示す。
 車両走行時の充放電容量は、通常は1%程度以下であり、状態検知前充電容量を5%とした場合には、通常の車両走行時の充放電による充放電分極の影響を十分に低減することができる。その結果、状態検知前充電を行った後の状態検知では、5%容量の充電による図31(a)、(b)に示すような過渡変化をもとに放電能力を検知することになる。式(2-1)の緩和関数F(t)として、5%容量の充電による過渡変化を最適に近似できるような関数形を用いることで、緩和関数F(t)を用いた状態検知を高精度に行うことが可能となる。
 これに対し、図31(c)に示すような運転中の充放電容量が状態検知前充電容量より大きくなる場合には、安定電圧より低い電圧が測定されるので、これを検知することで放電能力が低下していることをユーザ等に通知することができる。運転中の放電容量が大きくなる一例として、アイドリングストップを短期間に繰り返し行った後に運転を停止した場合がある。電圧測定値が安定電圧より低くなるのは、運転中の放電量が特に大きい場合のほか、蓄電池11の劣化が進んでいたり、長期間放置されていた場合等もある。このような場合でも、本実施形態の状態検知方法により容量低下(容量不足)や劣化の増大を検出することができる。
 なお、状態検知前充電の容量は、通常の車両走行としてどのような走行形態までを対象とするかによって異なる値を設定することができ、また車両に搭載される蓄電池のサイズ、特性等を考慮して決定するのがよい。例えば、アイドリングストップによる放電も対象として状態検知前充電の容量を設定する場合には、アイドリングストップ時に放電される容量以上の充電容量を設定するのが好ましい。運転中の放電容量より大きな充電を行うようにすることで、図31(a)、(b)に示すように、状態検知時の電圧が単調減少するような過渡状態で状態検知を行うことができる。
 図29を用いて概略を説明した本実施形態の状態検知方法について、以下では図32、33を用いてさらに詳細に説明する。図32は、状態検知モードが要求されてから状態検知前充電が終了するまでの処理を説明するための流れ図である。図32(a)は、運転者等が信号入力手段401から状態検知モード開始信号を入力したときの処理の流れを示しており、図32(b)は、保守員等が状態検知モード用スイッチ411をオンにしたときの処理の流れを示している。
 信号入力手段401から状態検知モード開始信号を入力する場合、あるいは状態検知モード用スイッチ411をオンにする場合のいずれも、誤操作で信号入力が行われるおそれがある。そこで、図32(a)では誤操作を防止するように構成したときの処理の流れについて説明し、図32(b)では誤操作防止を考慮しないときの処理の流れについて説明する。但し、図32(b)でも図32(a)と同様に誤操作を防止するように構成することができ、また図32(a)で誤操作防止の処理を省略することも可能である。
 図32(a)において、信号入力手段401から状態検知モード開始信号が入力されると(ステップS311)、この信号が状態検知部410に出力される。状態検知部410は、状態検知モード開始信号を入力すると、状態検知が要求されたことを確認するための確認メッセージを出力表示部402に表示する(ステップS312)。確認メッセージに基づき、例えば信号入力手段401から確認信号が入力されると(ステップS313)、次に所定の状態検知許可条件が成立しているか判定する(ステップS314)。
 上記の状態検知許可条件として、少なくとも蓄電池311が充放電を行っていないことが要求される。蓄電池311が充放電を行っていないことを判定する方法として、例えば車両310が停止状態にある(キースイッチがオフの位置にある)ことを確認する。また、状態検知部410と周辺装置との通信が可能か、測定手段403からの測定値が正常範囲内の値を示すか、エンジンを起動させて車載充電器314を正常に動作させることができるか、等を確認させるようにし、いずれかが異常となっている場合も、状態検知許可条件を不成立にするようにしてもよい。
 ステップS314の判定の結果、状態検知許可条件が成立している場合には、ステップS315で状態検知モードをオンに設定する。このとき、状態検知モードがオンになったことを出力表示手段402に表示させるようにしてもよい。ステップS316では、車載充電器314を用いて蓄電池311に対し状態検知前充電を開始させる。車載充電器314を用いた状態検知前充電は、状態検知部410が制御手段313に対して所定容量の充電を要求し、制御手段313がエンジンを起動して車載充電器314を動作させて行う。
 一方、ステップS314の判定で状態検知許可条件が不成立の場合には、ステップS315、S316の処理を行わないで終了する。このとき、状態検知許可条件のどれが不成立となったかを出力表示手段402に表示させるようにしてもよい。
 次に、状態検知モード用スイッチ411をオンにして状態検知を開始する処理の流れを、図32(b)を用いて説明する。保守員等が状態検知モード用スイッチ411をオンにすると(ステップS321)、状態検知モード開始信号が状態検知部410に出力される。状態検知部410は、状態検知モード開始信号を入力すると次に所定の状態検知許可条件が成立しているか判定する(ステップS322)。状態検知許可条件は、図32(a)の場合と同じとすることができる。
 ステップS322の判定の結果、状態検知許可条件が成立している場合には、ステップS323で状態検知モードをオンに設定し、ステップS324では、外部充電器320を用いて蓄電池311に対し状態検知前充電を開始させる。外部充電器320による充電は、保守員等が行う。そこで、ステップS324では出力表示手段402に充電開始要求のメッセージを表示し、保守員等がこれを確認して充電を行うようにするのがよい。また、所定容量の充電が終了すると、保守員等が状態検知モード用スイッチ411を操作するか、あるいは信号入力手段401から状態検知前充電が終了したことを通知する信号を入力するようにしてもよい。
 一方、ステップS322の判定で状態検知許可条件が不成立の場合には、ステップS323、S324の処理を行わないで終了する。このとき、状態検知許可条件のどれが不成立となったかを出力表示手段402に表示させるようにしてもよい。
 次に、状態検知モードが成立しているときの処理の流れを、図33を用いて説明する。図33に示す処理は、所定の周期で実行される。まず、ステップS331において、状態検知モードがオンになっているかを判定する。その結果、状態検知モードがオンの場合にはステップS332に進み、状態検知モードがオフの場合には以下の処理を行わずに終了する。次のステップS332では、上記の状態検知許可条件が成立しているかを判定する。状態検知許可条件の確認は、状態検知モード期間中は常に行うものとする。その結果、状態検知許可条件が成立している場合には、次のステップS333に進む一方、態検知許可条件が不成立の場合には、ステップS339に進む。この場合、状態検知許可条件のどれが不成立となったかを出力表示手段402に表示させるようにしてもよい。
 ステップS333では、状態検知前充電が終了したか否かを判定する。状態検知前充電が車載充電器314を用いて行われている場合には、制御手段313に対し充電が終了したかを確認して判定することができる。あるいは、充電開始からの経過時間で判定させるようにすることもできる。また、状態検知前充電が外部充電器320を用いて行われている場合には、状態検知モード用スイッチ411あるいは信号入力手段401から充電終了の信号が入力されることで判定する。ステップS333での判定の結果、状態検知前充電が終了している場合には、次のステップS334に進む。一方、状態検知前充電が終了していないと判定された場合には、以下の処理を行わずに処理を終了する。
 ステップS334では、測定手段403を用いて現時点の電圧測定値Vmes(t)を入力し、ステップS335では、それまでに入力した電圧測定値Vmes(t)を用いて緩和関数F(t)を最適化する。次のステップS336では、最適化されたF(t)を用いて蓄電池311の放電能力を推定する。放電能力として、例えば式(2-1)、(2-2)から停止時安定電圧OCV20hrの推定値を更新し、これと図35に示すようなOCV20hrとSOCとの関係から求めたSOCを用いることができる。ステップS337では、このようにして推定されたSOCを、所定の記憶部に一時的に保存する。
 ステップS338では、状態検知を開始してからの経過時間tが所定時間に達したかを判定し、経過時間tが所定時間に達している場合にはステップS339に進む。一方、経過時間tが所定時間に達していない場合には、以下の処理を行わずに終了する。ステップS339では、ステップS337で一時保存された放電能力を読み出し、これが所定の閾値以上のときを放電能力が正常と判定し、所定の閾値未満のときを放電能力が異常と判定する。ステップS340では、放電能力を判定した結果を出力表示手段402に出力する。さらに、ステップS341で状態検知モードをオフにして処理を終了する。
 (第9実施形態)
 本発明の蓄電デバイスの状態検知方法の別の実施形態を、図34に示す流れ図を用いて以下に説明する。本実施形態の状態検知方法では、状態検知モードによる蓄電池311の状態検知を行う前に、パルス放電による状態検知(ステップS351)とインピーダンス測定による状態検知(ステップS352)を行っている。パルス放電による状態検知は、蓄電池311をパルス放電させたときの電流、電圧を測定し、それをもとに蓄電池311の放電能力や劣化状態を検知するものである。また、インピーダンス測定による状態検知では、電流、電圧の測定値から蓄電池311の内部インピーダンスを推定し、これをもとに蓄電池311の劣化状態を検知するものである。
 本実施形態の状態検知モードによる状態検知方法は、第8の実施形態のようにこれを単独に行ってもよく、あるいは本実施形態のように、パルス放電による状態検知及びインピーダンス測定による状態検知と組み合わせて行うこともできる。また、パルス放電による状態検知及びインピーダンス測定による状態検知の両方と組み合わせる必要は必ずしもなく、パルス放電による状態検知及びインピーダンス測定による状態検知のいずれか一方と状態検知モードによる状態検知とを組み合わせて行うことも可能である。
 上記では、蓄電池311の充放電を停止した直後に状態検知を行う場合について説明したが、これに限らず、例えば長期間蓄電池311の充放電が停止されている場合にも状態検知を行わせることができる。例えば、1か月に1回程度の頻度で状態検知モードを実行することで、蓄電池311の放電能力を確認することができる。それと同時に、状態検知モードによる状態検知前充電によって、長時間駐車時も安全に効率よく蓄電池311の回復充電(5%充電)を実施することができる。
 なお、本実施形態では、状態検知前充電を行う方法として、状態検知部410からの要求により、制御手段313がエンジンを起動して車載充電器314を動作させることで蓄電池311に充電を行わせるようにしたが、これに代えて、運転者が走行を終了してエンジンを停止する直前に状態検知モード開始信号を入力するようにしてもよい。この場合には、例えばキースイッチをオフにしてもエンジンを停止させずに車載充電器314による状態検知前充電を直ちに行わせ、充電が終了するとエンジンを自動停止させるようにすることができる。
 また、上記実施形態では、蓄電デバイスの状態検知として放電能力が確保されているかを検知する場合について説明したが、これに限定されず、さらにSOH等の劣化を判定するようにすることも容易である。緩和関数F(t)は、SOHに対する依存性も有していることから、緩和関数F(t)からSOHを算出する式を導出することができる。このような式を用いることで、SOHを推定して蓄電デバイスの劣化状態を判定することが可能となる。
 上記説明のように、本実施形態の蓄電デバイスの状態検知方法および状態検知装置によれば、状態検知を行う前に所定容量の充電を行うことで、蓄電デバイスが再現性のある過渡変化の状態に移行している。これにより、同等あるいは傾向が同じとみなせるような再現性のある過渡状態で状態検知を行うことが可能となり、蓄電デバイスの状態検知を高精度に行うことが可能となる。その結果、蓄電デバイスの充電不足や故障等を早期に検知することができ、車両運行や補機のバックアップとしての信頼性を高めることができる。さらに、状態検知前充電により、大幅な容量不足を防止して蓄電デバイスの劣化を低減することができ、システムの安定運用の実現や蓄電デバイスの長寿命化を図ることも可能となる。
 なお、本実施の形態における記述は、本発明に係る蓄電デバイスの状態検知方法の一例を示すものであり、これに限定されるものではない。本実施の形態における蓄電デバイスの状態検知方法の細部構成及び詳細な動作等に関しては、本発明の趣旨を逸脱しない範囲で適宜変更可能である。
 1:車両
 2:負荷
 10:蓄電池
 11:充電手段
 12:制御手段
 20:電圧測定手段
 21:電流測定手段
 22:温度測定手段
 100:状態検知装置
 110:状態検知部
 120:記憶部
 130:状態出力手段
 

Claims (41)

  1.  充放電中及び充放電停止中の放電能力を所定の周期毎に判定する蓄電デバイスの状態検知方法であって、
     最後の充放電停止直後に測定された前記蓄電デバイスの電圧測定値が充放電停止時電圧V_endとして所定の記憶部に保存されており、
     前記記憶部から前記充放電停止時電圧V_endを読み込み、
     前記充放電停止時電圧V_endから現在(サイクル数nとする)の電圧測定値V_nowを減算して現在の電圧変化量ΔVa_nを算出し、
     前記蓄電デバイスの劣化度SOH及び前記電圧変化量ΔVa_nから事前に作成された放電能力補正関数F(SOH、ΔVa_n)を用いて前記蓄電デバイスの放電能力補正量COD_SOH_nを算出し、
     前記蓄電デバイスの現在の放電能力COD_nowを次式
       COD_now=V_now-COD_SOH_n
    で算出し、
     前記放電能力COD_nowが所定の閾値COD_Thより大きいときに前記蓄電デバイスの放電能力が維持されていると判定する
     ことを特徴とする蓄電デバイスの状態検知方法。
  2.  前記劣化度SOHは、現在に最も近い充放電停止中のサイクル数n1(n1≦n)のときに算出された劣化度SOH_n1であり、
     前記放電能力補正量COD_SOH_nは、前記劣化度SOH_n1に対応する前記放電能力補正関数F(SOH_n1、x)(xは変数)を前記記憶部から読み込み、前記変数xに前記電圧変化量ΔVa_nを代入して算出される
     ことを特徴とする請求項1に記載の蓄電デバイスの状態検知方法。
  3.  前記放電能力補正関数F(SOH、ΔVa)は、前記蓄電デバイス内部の過渡変化の速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(i=1~m)の線形結合で表され、
     前記蓄電デバイスの充放電停止中は前記電圧測定値を前記記憶部に保存し、
    前記反応速度毎緩和関数fiは、前記充放電停止からの経過時間に応じて前記記憶部に保存されている前記電圧測定値を用いて最適化される
     ことを特徴とする請求項1または2に記載の蓄電デバイスの状態検知方法。
  4.  前記蓄電デバイスが充放電停止中でかつ充放電停止からの経過時間が所定の時間(第1緩和時間とする)を超えているとき、
     速い過渡変化に対応する前記反応速度毎緩和関数fiを前記記憶部に保存されている前記電圧測定値を用いて最適化し、
     前記最適化された反応速度毎緩和関数fiを用いて速い過渡変化に依存する劣化度SOH_fast_nを算出し、
     現在に最も近い充放電停止中のサイクル数n2(n2≦n)のときに算出された遅い過渡変化に依存する劣化度SOH_slow_n2と前記劣化度SOH_fast_nとから所定の関数Gを用いて現在の劣化度SOH_nを次式
       SOH_n=G(SOH_fast_n,SOH_slow_n2)
    で算出し、
     前記放電能力補正量COD_SOH_nは、前記劣化度SOH_nに対応する前記放電能力補正関数F(SOH_n、x)を前記記憶部から読み込み、前記変数xに前記電圧変化量ΔVa_nを代入して算出される
     ことを特徴とする請求項3に記載の蓄電デバイスの状態検知方法。
  5.  前記蓄電デバイスが充放電停止中でかつ充放電停止からの経過時間が前記第1緩和時間より長い所定の第2緩和時間を超えているとき、
     さらに、遅い過渡変化に依存する前記反応速度毎緩和関数fiを前記記憶部に保存されている前記電圧測定値を用いて最適化し、
     前記最適化された反応速度毎緩和関数fiを用いて遅い過渡変化に依存する劣化度SOH_slow_nを算出し、
     算出された前記速い過渡変化に依存する劣化度SOH_fast_nと前記遅い過渡変化に依存する劣化度SOH_slow_nとから前記関数Gを用いて現在の劣化度SOH_nを次式
       SOH_n=G(SOH_fast_n,SOH_slow_n)
    より算出する
     ことを特徴とする請求項4に記載の蓄電デバイスの状態検知方法。
  6.  充放電停止直後に前記蓄電デバイスに所定容量の充電(状態検知前充電)を行い、前記状態検知前充電終了直後に測定した前記電圧測定値を前記充放電停止時電圧V_endとして前記記憶部に保存する
     ことを特徴とする請求項1乃至5にいずれか1項に記載の蓄電デバイスの状態検知方法。
  7.  充放電中及び充放電停止中の放電能力を所定の周期毎に判定する蓄電デバイスの状態検知装置であって、
     前記蓄電デバイスの電圧測定値を保存する記憶部と、
     前記記憶部に保存されているデータを読み込んで前記蓄電デバイスの放電能力を前記周期毎に判定する状態検知部と、
     前記状態検知部から判定結果を入力して外部に出力する状態出力手段と、を備え、
     前記記憶部は、最後の充放電停止直後に測定された前記蓄電デバイスの前記電圧測定値を充放電停止時電圧V_endとして保存し、
     前記状態検知部は、
     前記記憶部から前記充放電停止時電圧V_endを読み込み、
     前記充放電停止時電圧V_endから現在(サイクル数nとする)の電圧測定値V_nowを減算して現在の電圧変化量ΔVa_nを算出し、
     前記蓄電デバイスの劣化度SOH及び前記電圧変化量ΔVa_nから事前に作成された放電能力補正関数F(SOH、ΔVa_n)を用いて前記蓄電デバイスの放電能力補正量COD_SOH_nを算出し、
     前記蓄電デバイスの現在の放電能力COD_nowを次式
       COD_now=V_now-COD_SOH_n
    で算出し、
     前記放電能力COD_nowが所定の閾値COD_Thより大きいときに前記蓄電デバイスの放電能力が維持されていると判定する
     ことを特徴とする蓄電デバイスの状態検知装置。
  8.  蓄電デバイスの状態検知方法であって、
     前記蓄電デバイスが充放電を停止して所定の安定条件を満たす状態に達したときの前記蓄電デバイスの電圧を停止時安定電圧とし、前記蓄電デバイスが充放電を停止してから時間t経過したときの電圧の前記停止時安定電圧からの変化量を停止時電圧変化量とするとき、
     前記停止時電圧変化量を算出する緩和関数F(t)を、前記蓄電デバイスの所定の状態量の関数として事前に作成し、
     前記蓄電デバイスの充電を停止する直前の充電終了時電圧、または放電を停止する直前の放電終了時電圧を測定し、
     前記蓄電デバイスの前記充電または前記放電停止後の電圧を測定し、
     前記電圧測定値から前記停止時電圧変化量を算出して前記緩和関数F(t)を最適化し、
     前記最適化された緩和関数F(t)から前記状態量を推定し、
     前記放電終了時電圧または前記充電終了時電圧と前記推定された状態量とを用いて前記蓄電デバイスの放電能力(COD)を判定する
     ことを特徴とする蓄電デバイスの状態検知方法。
  9.  前記緩和関数F(t)は、前記蓄電デバイス内部の反応速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(t)(i=1~m)の線形結合で表され、
     前記反応速度毎緩和関数fi(t)(i=1~m)は、前記電圧測定値から算出された前記停止時電圧変化量を前記反応速度に対応する成分に分離して最適化されている
     ことを特徴とする請求項8に記載の蓄電デバイスの状態検知方法。
  10.  前記充放電による電流が微小あるいは一定値で前記蓄電デバイス内部の過渡変化に与える影響が所定の範囲内に限定される場合、前記蓄電デバイスは充放電を停止したと判定される
     ことを特徴とする請求項8または9に記載の蓄電デバイスの状態検知方法。
  11.  前記電流による電圧変化を補正する電圧補正量を事前に作成し、
     前記電圧測定値に前記電圧補正量を加算した電圧を用いて前記緩和関数F(t)を最適化する
     ことを特徴とする請求項10に記載の蓄電デバイスの状態検知方法。
  12.  充放電停止直前の充放電中の電流を積算した電流積算値から充放電停止時の残容量増減量(ΔSOC)を算出し、前回の充放電停止時の残容量に前記残容量増減量を加算して今回の充放電停止時の残容量(SOC)を算出し、
     前記放電終了時電圧または前記充電終了時電圧と前記緩和関数F(t)から推定された状態量と前記SOCとに基づいて前記CODを判定する
     ことを特徴とする請求項8乃至11のいずれか一項に記載の蓄電デバイスの状態検知方法。
  13.  所定の状態量と充電終了時電圧とを変数とする充電効率算出式を事前に作成し、
     前記充放電停止時のSOCは、前記緩和関数F(t)を用いて算出される前記状態量と前記充電終了時電圧とを前記充電効率算出式に代入して算出される充電効率で前記残容量増減量を補正して算出される
     ことを特徴とする請求項12に記載の蓄電デバイスの状態検知方法。
  14.  前記状態量は、前記蓄電デバイスの残容量である
     ことを特徴とする請求項8乃至13のいずれか1項に記載の蓄電デバイスの状態検知方法。
  15.  前記状態量は、前記蓄電デバイスの劣化度(SOH)である
     ことを特徴とする請求項8乃至13のいずれか1項に記載の蓄電デバイスの状態検知方法。
  16.  前記緩和関数F(t)は、緩和速度の速い成分ffast(t)と遅い成分fslow(t)とを有し、
     前記ffast(t)、前記fslow(t)及び両者の比率ffast(t)/fslow(t)のそれぞれの参照値を事前に作成し、
     前記最適化されたF(t)から算出される前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)とそれぞれの前記参照値とを用いて前記CODを判定する
     ことを特徴とする請求項8乃至15のいずれか1項に記載の蓄電デバイスの状態検知方法。
  17.  前記状態量は、前記蓄電デバイスの劣化度SOHであって、
     前記ffast(t)、前記fslow(t)、前記ffast(t)/fslow(t)、及びそれぞれの前記参照値を用いて前記劣化度を算出する
     ことを特徴とする請求項16に記載の蓄電デバイスの状態検知方法。
  18.  残容量と充電終了時電圧とを変数とする高速過渡変化補正量算出式を事前に作成し、
     前記充放電停止時の残容量と前記充電終了時電圧とを前記高速過渡変化補正量算出式に代入して前記ffast(t)に対する補正量を算出し、前記補正量で補正された前記ffast(t)を用いて前記劣化度を算出する
     ことを特徴とする請求項17に記載の蓄電デバイスの状態検知方法。
  19.  前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記蓄電デバイスの電解液の濃度変化量を算出する濃度変化量算出式を事前に作成し、
     前記最適化された緩和関数F(t)を用いて前記濃度変化量算出式から前記電解液の濃度変化量を算出して前記状態量に用いる
     ことを特徴とする請求項16に記載の蓄電デバイスの状態検知方法。
  20.  前記蓄電デバイスの電解液の濃度分布の偏り(成層化)変化量を成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記成層化変化量を算出する成層化変化量算出式を事前に作成し、
     前記最適化された前記緩和関数F(t)を用いて前記成層化変化量算出式から前記成層化変化量を算出して前記状態量に用いる
     ことを特徴とする請求項16に記載の蓄電デバイスの状態検知方法。
  21.  前記蓄電デバイスの電解液の液面に対して横方向の濃度分布の偏り(横成層化)の変化量を横成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記横成層化変化量を算出する横成層化変化量算出式を事前に作成し、
     前記最適化された前記緩和関数F(t)を用いて前記横成層化変化量算出式から前記横成層化変化量を算出して前記状態量に用いる
     ことを特徴とする請求項16に記載の蓄電デバイスの状態検知方法。
  22.  前記蓄電デバイスの電解液の液面に対して横方向及び縦方向の濃度分布の偏り(横成層化、縦成層化)の変化量を縦横成層化変化量とし、前記緩和関数F(t)の前記ffast(t)、前記fslow(t)及び前記ffast(t)/fslow(t)に対する前記縦横成層化変化量を算出する縦横成層化変化量算出式を事前に作成し、
     前記最適化された前記緩和関数F(t)を用いて前記縦横成層化変化量算出式から前記横成層化変化量及び縦成層化変化量を算出して前記状態量に用いる
     ことを特徴とする請求項16に記載の蓄電デバイスの状態検知方法。
  23.  前記緩和関数F(t)は、さらに前記蓄電デバイスの温度の関数として事前に作成され、
     前記蓄電デバイスの温度を測定して前記緩和関数F(t)の算出に用いる
     ことを特徴とする請求項8乃至22のいずれか1項に記載の蓄電デバイスの状態検知方法。
  24.  前記停止時安定電圧は安定時OCVであり、事前に作成された安定時OCV算出式から算出した前記安定時OCVを前記電圧測定値から減算して前記OCV変化量を算出し、
     前記OCV変化量を前記停止時電圧変化量とする
     ことを特徴とする請求項8乃至23のいずれか1項に記載の蓄電デバイスの状態検知方法。
  25.  前記状態量は、前記反応速度毎緩和関数fi(t)から前記反応速度毎の状態量を推定し、これを総計して算出する
     ことを特徴とする請求項8乃至24のいずれか1項に記載の蓄電デバイスの状態検知方法。
  26.  所定の状態における前記反応速度毎緩和関数fi(t)、前記SOC,および反応速度毎の前記SOHをそれぞれfiref(t)、SOCref,およびSOHirefとし、前記蓄電デバイスの温度Tに対する依存性をG(T)とするとき、n回目の充放電終了後の前記反応速度毎緩和関数fin(t)は、
     fin(t)=firef(t)*{SOCn/SOCref
            *{SOHin/SOHiref}*g(T)
     (ここで、SOHinは前記反応速度毎のSOH)
     と表される
     ことを特徴とする請求項8乃至25のいずれか1項に記載の蓄電デバイスの状態検知方法。
  27.  前記蓄電デバイスの電圧および電流を測定し、
     前記電流又は所定の充放電停止信号から前記蓄電デバイスが充放電を停止していると判定されると、
     前記充放電停止からの経過時間に対応する前記停止時電圧変化量を前記電圧測定値から算出し、
     前記経過時間より時定数の短い前記反応速度に対応する前記反応速度毎緩和関数fi(t)を前記停止時電圧変化量を用いて最適化し、
     前記時定数より長い前記反応速度に対応する前記反応速度毎緩和関数fi(t)に対しては直前のものを用い、これと前記最適化された前記反応速度毎緩和関数fi(t)と前記放電終了時電圧と、前記充電終了時電圧とから前記状態量を推定する
     ことを特徴とする請求項9に記載の蓄電デバイスの状態検知方法。
  28.  前記停止時安定電圧は、前記蓄電デバイスの充放電停止後の電圧が1時間当たり5mV以下の変動量となったときの前記電圧である
    ことを特徴とする請求項8乃至27のいずれか1項に記載の蓄電デバイスの状態検知方法。
  29.  蓄電デバイスの状態検知方法であって、
     充放電を停止している前記蓄電デバイスに所定容量の状態検知前充電を行い、
     前記状態検知前充電を終了してから時間t経過したときの前記蓄電デバイスの電圧を所定周期で測定し、
     前記蓄電デバイスの充放電を停止させて略一定となったときの停止時安定電圧からの前記電圧測定値の変化量(停止時電圧変化量)を、前記蓄電デバイスの所定の状態量の関数である緩和関数F(t)で最適近似し、
     前記最適近似された緩和関数F(t)から前記状態量を推定し、
     前記推定された状態量を所定の閾値と比較して前記蓄電デバイスの放電能力を判定する
     ことを特徴とする蓄電デバイスの状態検知方法。
  30.  前記状態検知前充電では、前記蓄電デバイスの5%定格容量の充電を行う
     ことを特徴とする請求項29に記載の蓄電デバイスの状態検知方法。
  31.  前記状態検知前充電を終了して最初に取得した前記電圧測定値が前記停止時安定電圧より低いときは、前記蓄電デバイスの放電能力が低下していると判定する
     ことを特徴とする請求項29または30に記載の蓄電デバイスの状態検知方法。
  32.  前記停止時安定電圧は、前記最適近似された緩和関数F(t)を用いて更新される
     ことを特徴とする請求項29乃至31のいずれか1項に記載の蓄電デバイスの状態検知方法。
  33.  前記緩和関数F(t)は、前記蓄電デバイス内部の反応速度に対応して事前に作成された2以上(m個とする)の反応速度毎緩和関数fi(t)(i=1~m)の線形結合で表わされ、
     前記反応速度毎緩和関数fi(t)(i=1~m)は、前記停止時電圧変化量を前記反応速度に対応する成分に分離して最適化されている
     ことを特徴とする請求項29乃至32のいずれか1項に記載の蓄電デバイスの状態検知方法。
  34.  前記状態量は、前記蓄電デバイスの残容量(SOC)である
     ことを特徴とする請求項29乃至33のいずれか1項に記載の蓄電デバイスの状態検知方法。
  35.  前記状態量は、前記蓄電デバイスの劣化度(SOH)である
     ことを特徴とする請求項29乃至33のいずれか1項に記載の蓄電デバイスの状態検知方法。
  36.  所定の基準状態における前記反応速度毎緩和関数fi(t)、前記残容量,および反応速度毎の前記劣化度をそれぞれfi ref(t)、SOCref,およびSOHi refとし、前記蓄電デバイスの温度Tに対する依存性をG(T)とするとき、前記電圧測定のn周期目に最適近似された前記反応速度毎緩和関数fi n(t)は、前記n周期目に推定される前記残容量SOCn、前記反応速度毎劣化度SOHi nと次式の関係を有している
     fi n(t)=fi ref(t)*{SOCn/SOCref
            *{SOHi n/SOHi ref}*G(T)
     ことを特徴とする請求項29乃至35のいずれか1項に記載の蓄電デバイスの状態検知方法。
  37.  前記状態検知前充電を行う前に、
     前記蓄電デバイスにパルス放電を行って別の状態検知を行う
     ことを特徴とする請求項29乃至36のいずれか1項に記載の蓄電デバイスの状態検知方法。
  38.  前記状態検知前充電を行う前に、
     前記蓄電デバイスのインピーダンス測定を行ってさらに別の状態検知を行う
     ことを特徴とする請求項29乃至37のいずれか1項に記載の蓄電デバイスの状態検知方法。
  39.  制御手段で制御される内部充電器を用いて充電可能に構成された蓄電デバイスの状態検知装置であって、
     状態検知モード開始信号を入力するための信号入力手段と、
     外部に所定の情報を出力する出力表示手段と、
     前記蓄電デバイスの電圧を測定する測定手段と、
     状態検知モード用スイッチを備え、前記制御手段、前記信号入力手段、前記出力表示手段、及び前記測定手段に接続された状態検知部と、を備え、
     前記状態検知部は、前記信号入力手段から前記状態検知モード開始信号を入力すると、前記蓄電デバイスに状態検知前充電が行われた後の経過時間tにおける前記蓄電デバイスの電圧を前記測定手段から入力し、前記蓄電デバイスの充放電を停止させて略一定となったときの停止時安定電圧からの前記電圧測定値の変化量(停止時電圧変化量)を前記蓄電デバイスの所定の状態量の関数である緩和関数F(t)で最適近似し、前記最適近似された緩和関数F(t)から前記状態量を推定し、前記推定された状態量を所定の閾値と比較して前記蓄電デバイスの放電能力を判定し、判定結果を前記出力表示手段に出力する
     ことを特徴とする蓄電デバイスの状態検知装置。
  40.  前記状態検知前充電は、前記状態検知部が前記制御手段に所定の要求信号を出力し、前記制御手段が前記内部充電器を制御して行う
     ことを特徴とする請求項39に記載の蓄電デバイスの状態検知装置。
  41.  前記状態検知前充電は、前記蓄電デバイスに外部充電器を接続して行う
     ことを特徴とする請求項39に記載の蓄電デバイスの状態検知装置。
     
     

     
PCT/JP2010/064753 2010-08-18 2010-08-30 蓄電デバイスの状態検知方法及びその装置 WO2012023215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080002326.8A CN102428379B (zh) 2010-08-18 2010-08-30 蓄电设备的状态检测方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010183279A JP4845066B1 (ja) 2010-08-18 2010-08-18 蓄電デバイスの状態検知方法及びその装置
JP2010-183279 2010-08-18

Publications (1)

Publication Number Publication Date
WO2012023215A1 true WO2012023215A1 (ja) 2012-02-23

Family

ID=45475272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064753 WO2012023215A1 (ja) 2010-08-18 2010-08-30 蓄電デバイスの状態検知方法及びその装置

Country Status (3)

Country Link
JP (1) JP4845066B1 (ja)
CN (1) CN102428379B (ja)
WO (1) WO2012023215A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158706A1 (ja) * 2016-03-14 2017-09-21 株式会社 東芝 蓄電池評価装置、蓄電システムおよび蓄電池評価方法
CN113646949A (zh) * 2019-04-02 2021-11-12 东洋系统株式会社 蓄电池剩余价值确定系统
EP4131568A4 (en) * 2021-01-12 2024-02-21 Lg Energy Solution Ltd BATTERY MANAGEMENT APPARATUS AND METHOD
CN113646949B (zh) * 2019-04-02 2024-04-30 东洋系统株式会社 蓄电池剩余价值确定系统

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608537B (zh) * 2012-03-02 2014-09-17 北京优科利尔能源设备有限公司 一种馈网型大功率电池测试装置
CN104335058A (zh) * 2012-06-05 2015-02-04 株式会社丰田自动织机 充电率推断方法以及充电率推断装置
CN104823065B (zh) * 2012-11-28 2017-12-29 索尼公司 控制装置、控制方法、电源系统与电动车辆
JPWO2014083856A1 (ja) * 2012-11-30 2017-01-05 三洋電機株式会社 電池管理装置、電源装置およびsoc推定方法
JP6182025B2 (ja) * 2013-09-05 2017-08-16 カルソニックカンセイ株式会社 バッテリの健全度推定装置および健全度推定方法
CN104656021B (zh) * 2013-11-19 2018-05-01 维谛技术有限公司 一种蓄电池剩余容量的预估方法及装置
CN103605079B (zh) * 2013-11-20 2015-10-07 浙江工业大学 公交电动汽车及其梯次利用电池集群的v2g可用容量评估方法
JP6355919B2 (ja) * 2013-12-25 2018-07-11 古河電気工業株式会社 バッテリの放電能力制御方法及びその装置
CN103823189B (zh) * 2014-02-25 2016-06-08 宁德时代新能源科技股份有限公司 动力电池组的剩余容量的计算方法
JP6011578B2 (ja) * 2014-05-14 2016-10-19 トヨタ自動車株式会社 車両制御装置、車両および車両制御方法
CN105372594B (zh) * 2014-08-25 2018-06-26 广州汽车集团股份有限公司 一种估算车用动力电池健康状态数值的方法及装置
CN105403835B (zh) * 2014-08-29 2018-11-16 展讯通信(深圳)有限公司 一种测量电池电量的系统及方法
KR102468895B1 (ko) 2015-07-21 2022-11-21 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
JP6264362B2 (ja) * 2015-12-01 2018-01-24 トヨタ自動車株式会社 電動車両の電池システム
JP6308223B2 (ja) * 2016-01-06 2018-04-11 トヨタ自動車株式会社 電動車両の電池システム
CN105891730B (zh) * 2016-06-24 2018-09-28 安徽江淮汽车集团股份有限公司 一种汽车动力电池容量的计算方法
CN106405424B (zh) * 2016-08-19 2020-04-03 上海绿耳新能源科技有限公司 锂离子电池剩余电量的计量方法和装置
CN106610478B (zh) * 2017-01-10 2022-04-29 中国电力科学研究院 一种基于海量数据的储能电池特性评估方法及系统
CN106855611B (zh) * 2017-01-20 2022-01-07 深圳安鼎新能源技术开发有限公司 一种电池soc估算方法及系统
JP7021660B2 (ja) * 2019-04-03 2022-02-17 株式会社デンソー 制御装置
CN111216593B (zh) * 2020-02-29 2021-09-24 张凯 一种新能源车辆、供电控制方法及存储介质
CN111896877B (zh) * 2020-07-31 2023-07-14 Oppo广东移动通信有限公司 电池检测方法、装置、电子设备和存储介质
CN112946507B (zh) * 2021-02-01 2023-10-27 中国电力科学研究院有限公司 储能电池健康状态在线检测方法、系统、设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022596A (ja) * 2006-07-10 2008-01-31 Furukawa Electric Co Ltd:The 蓄電池の制御方法及び制御装置
JP2009257784A (ja) * 2008-04-11 2009-11-05 Furukawa Electric Co Ltd:The 蓄電池の状態検知方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109685B2 (en) * 2003-09-17 2006-09-19 General Motors Corporation Method for estimating states and parameters of an electrochemical cell
JP5220269B2 (ja) * 2005-09-16 2013-06-26 古河電気工業株式会社 蓄電池の劣化状態・充電状態の検知方法及びその装置
JP4823974B2 (ja) * 2007-06-19 2011-11-24 古河電気工業株式会社 蓄電池の残存容量検知方法及び残存容量検知装置
US8716980B2 (en) * 2009-02-04 2014-05-06 Samsung Sdi Co., Ltd. Charge and discharge system of secondary battery and method of controlling charge and discharge of secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008022596A (ja) * 2006-07-10 2008-01-31 Furukawa Electric Co Ltd:The 蓄電池の制御方法及び制御装置
JP2009257784A (ja) * 2008-04-11 2009-11-05 Furukawa Electric Co Ltd:The 蓄電池の状態検知方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158706A1 (ja) * 2016-03-14 2017-09-21 株式会社 東芝 蓄電池評価装置、蓄電システムおよび蓄電池評価方法
JPWO2017158706A1 (ja) * 2016-03-14 2018-06-21 株式会社東芝 蓄電池評価装置、蓄電システムおよび蓄電池評価方法
US10845421B2 (en) 2016-03-14 2020-11-24 Kabushiki Kaisha Toshiba Storage battery evaluation device, energy storage system, and storage battery evaluation method
CN113646949A (zh) * 2019-04-02 2021-11-12 东洋系统株式会社 蓄电池剩余价值确定系统
CN113646949B (zh) * 2019-04-02 2024-04-30 东洋系统株式会社 蓄电池剩余价值确定系统
EP4131568A4 (en) * 2021-01-12 2024-02-21 Lg Energy Solution Ltd BATTERY MANAGEMENT APPARATUS AND METHOD

Also Published As

Publication number Publication date
JP4845066B1 (ja) 2011-12-28
CN102428379A (zh) 2012-04-25
JP2012042312A (ja) 2012-03-01
CN102428379B (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP4845066B1 (ja) 蓄電デバイスの状態検知方法及びその装置
CN110914696B (zh) 用于在电池的操作期间估计电池开路池格电压、充电状态以及健康状态的方法和系统
JP4702859B2 (ja) 蓄電池の状態検知方法
JP5179047B2 (ja) 蓄電装置の異常検出装置、蓄電装置の異常検出方法及びその異常検出プログラム
US10001528B1 (en) Battery deterioration degree estimating apparatus and estimating method
JP4823974B2 (ja) 蓄電池の残存容量検知方法及び残存容量検知装置
JP5619744B2 (ja) 蓄電デバイスの状態検知方法及びその装置
CN109342950B (zh) 一种用于锂电池荷电状态的评估方法、装置及其设备
EP3002597A1 (en) Battery control device
JP5503403B2 (ja) 蓄電デバイスの充放電制御方法及び充放電制御装置
JP2008118777A (ja) 蓄電素子の異常検出装置、蓄電素子の異常検出方法及びその異常検出プログラム
JP5503318B2 (ja) 二次電池の充電受入れ限界検知方法及びその装置
JP5823292B2 (ja) 蓄電デバイスの状態検知方法及びその装置
JP4897976B2 (ja) 蓄電デバイスの状態検知方法及びその装置
CN111301219B (zh) 一种电动车电池控制方法、系统、设备及可读存储介质
JP5041442B2 (ja) 蓄電デバイスの状態検知方法
CN106029434A (zh) 车辆充电控制装置
CN111557067A (zh) 蓄电装置、蓄电系统、电源系统及蓄电装置的控制方法
JP2017143026A (ja) 燃料電池と二次電池を併用するシステムにおける二次電池の健全度推定方法、および、燃料電池と二次電池を併用するシステム
CN114503392A (zh) 涉及多个电池的判定装置、蓄电系统、判定方法和判定程序
JP7207817B2 (ja) バッテリー管理方法、バッテリー装置、およびバッテリーを含む自動車
KR101268082B1 (ko) 분극전압과 개로전압을 이용한 배터리 잔존용량 추정방법
JP2019049412A (ja) 電池パックの状態推定装置
US11585862B2 (en) Battery deterioration prediction system
JP2007333447A (ja) 二次電池の充電状態推定装置、充電状態推定方法、およびプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002326.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10856171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10856171

Country of ref document: EP

Kind code of ref document: A1