WO2012022204A1 - 液压控制回路和液压马达控制系统 - Google Patents

液压控制回路和液压马达控制系统 Download PDF

Info

Publication number
WO2012022204A1
WO2012022204A1 PCT/CN2011/076992 CN2011076992W WO2012022204A1 WO 2012022204 A1 WO2012022204 A1 WO 2012022204A1 CN 2011076992 W CN2011076992 W CN 2011076992W WO 2012022204 A1 WO2012022204 A1 WO 2012022204A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic motor
oil
valve
main oil
hydraulic
Prior art date
Application number
PCT/CN2011/076992
Other languages
English (en)
French (fr)
Inventor
郭海保
张劲
谢海波
李美香
左春庚
魏星
简桃凤
Original Assignee
长沙中联重工科技发展股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙中联重工科技发展股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 长沙中联重工科技发展股份有限公司
Publication of WO2012022204A1 publication Critical patent/WO2012022204A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/042Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in"
    • F15B11/0423Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the feed line, i.e. "meter in" by controlling pump output or bypass, other than to maintain constant speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50509Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means
    • F15B2211/50536Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure upstream of the pressure control means using unloading valves controlling the supply pressure by diverting fluid to the return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7058Rotary output members

Definitions

  • the invention relates to a hydraulic control circuit and a hydraulic motor control system. Background technique
  • some actuators have certain requirements on the flow rate of the oil supply.
  • the hydraulic motor when the oil supply flow value is lower than its minimum stable flow value, the hydraulic motor may not work stably due to the leakage of oil inside the hydraulic motor, especially when the hydraulic motor operates. In the heavy load state, hydraulic motor reversal and jitter may occur, which seriously threatens the safety of people and equipment.
  • One object of the present invention is to provide a hydraulic control circuit that provides a desired initial flow rate value for an actuator or other application where flow rate values are specifically required by a simple configuration.
  • Another object of the present invention is to provide a hydraulic motor control system which can avoid the problem that the hydraulic motor is unstable due to its oil supply flow value being less than the minimum steady flow value by a simple structure.
  • a hydraulic control circuit includes a main oil passage, an automatic reversing unit, and a fuel tank, the main oil passage having an oil inlet and an oil outlet, and the automatic reversing unit Connected to the oil tank in series and bypassed on the main oil passage, wherein: when the flow value of the oil inlet of the main oil passage is less than a predetermined value, the automatic reversing unit is turned on, so that the main oil passage is advanced The oil flows back to the oil tank through the automatic reversing unit; when the flow value of the oil inlet of the main oil passage reaches a predetermined value, the automatic reversing unit is turned off, so that the oil flow of the main oil passage flows to the outlet oil
  • the initial flow value referred to herein refers to the flow value from the oil inlet port of the main oil passage to the oil outlet port 0 after the automatic commutation unit is turned off, or the flow rate value flowing out through the oil outlet port.
  • the automatic reversing unit may include a first liquid resistance element and a normally open liquid control reversing valve connected in series, the first liquid resistance element being connected to the main oil passage, a normally open hydraulically controlled reversing valve is connected to the oil tank, and a control port of the normally open hydraulically controlled reversing valve is connected to an oil inlet of the main oil passage and the first liquid resistance through a control line On the line between the components.
  • the required initial flow rate value can be provided for the oil outlet of the main oil passage, which is not only simple in structure but also reliable in operation.
  • the first liquid resistance element may be a fixed orifice, an adjustable orifice, a pressure relief valve or a throttle valve.
  • a second liquid resistance element can be connected in series on the control line, so that the working performance of the normally open liquid control type reversing valve can be adjusted to make the operation smooth.
  • the second liquid-resisting element may be a fixed orifice, an adjustable orifice, a pressure relief valve or a throttle valve.
  • a damping hole communicating with the control port may be integrated inside the normally open hydraulically operated reversing valve.
  • the normally open hydraulically controlled directional control valve may be a two-position two normally open hydraulically controlled directional control valve.
  • the automatic reversing unit may include an electromagnetic reversing valve, a flow sensor, and a controller, wherein: the electromagnetic reversing valve is connected between the main oil passage and the oil tank; The flow sensor is disposed on a pipeline between the oil inlet of the main oil passage and the electromagnetic reversing valve, and is configured to detect a flow value on the pipeline and send a signal indicating the flow value to the control The controller is electrically connected to the electromagnetic reversing valve for receiving the flow transmission The signal from the sensor controls the action of the electromagnetic reversing valve.
  • the automatic commutation of the electromagnetic reversing valve can be achieved by a simple combination of the electromagnetic reversing valve, the flow sensor and the controller, and the required initial flow rate value is provided for the oil outlet of the main oil passage.
  • the electromagnetic reversing valve may be a two-position two-way electromagnetic reversing valve.
  • the oil outlet of the main oil passage can be connected to the actuator.
  • the actuator can be a hydraulic cylinder or a hydraulic motor.
  • a hydraulic motor control system including a hydraulic motor and a hydraulic control circuit connected to the hydraulic motor, the hydraulic control circuit including a main oil passage, an automatic reversing unit, and a fuel tank, the main oil passage has an oil inlet and an oil outlet, the oil outlet is connected to the hydraulic motor, and the automatic reversing unit is connected in series with the oil tank and bypassed on the main oil passage, wherein : when the flow value of the oil inlet of the main oil passage is smaller than the minimum stable flow value of the hydraulic motor, the automatic reversing unit is turned on, so that the oil of the main oil passage passes through the automatic reversing unit flow Returning to the oil tank; when the flow rate value of the oil inlet of the main oil passage reaches the minimum steady flow value of the hydraulic motor, the automatic reversing unit is turned off, so that the oil inflow of the main oil passage flows to the hydraulic motor.
  • the hydraulic motor may cause the hydraulic motor to not work stably due to the phenomenon that the oil leaks inside the hydraulic motor when the oil supply flow value is less than a predetermined value. Therefore, the technical parameters of a general hydraulic motor are marked with a minimum stable flow value, and the hydraulic motor is required to operate under the condition that the oil supply flow value is greater than the minimum stable flow value.
  • the fuel supply flow entering it always increases gradually from zero (for example, as the opening of the control valve gradually increases). Therefore, when the hydraulic motor's oil supply flow value has not reached its minimum stable flow value, the hydraulic motor is always in an unstable working state, especially when the hydraulic motor is operating in a heavy load state, the hydraulic motor may be reversed and shaken.
  • the automatic reversing unit may include a first liquid resistance element and a normally open liquid control reversing valve connected in series, the first liquid resistance element being connected to the main oil passage, a normally open hydraulically controlled reversing valve is connected to the oil tank, and a control port of the normally open hydraulically controlled reversing valve is connected to an oil inlet of the main oil passage and the first liquid resistance through a control line On the line between the components.
  • the first liquid resistance element may be a fixed orifice, an adjustable orifice, a pressure relief valve or a throttle valve.
  • a second liquid resistance element can be connected in series on the control line, so that the working performance of the normally open liquid control type reversing valve can be adjusted to make the operation smooth.
  • the second liquid-resisting element may be a fixed orifice, an adjustable orifice, a pressure relief valve or a throttle valve.
  • a damping hole communicating with the control port may be integrated inside the normally open hydraulically operated reversing valve.
  • the normally open hydraulically controlled reversing valve is a two-position two normally open hydraulically controlled reversing valve.
  • the automatic reversing unit may include an electromagnetic reversing valve, a flow sensor, and a controller, wherein: the electromagnetic reversing valve is connected between the main oil passage and the oil tank; The flow sensor is disposed on a pipeline between the oil inlet of the main oil passage and the electromagnetic reversing valve, and is configured to detect a flow value on the pipeline and send a signal indicating the flow value to the control The controller is electrically connected to the electromagnetic reversing valve for receiving a signal from the flow sensor and controlling the electromagnetic reversing valve to operate.
  • the electromagnetic reversing valve may be a two-position two-way electromagnetic reversing valve.
  • the hydraulic motor may be a one-way hydraulic motor, and the hydraulic control circuit is connected to an oil inlet of the one-way hydraulic motor.
  • the hydraulic motor may also be a two-way hydraulic motor, and the hydraulic control circuit is connected to the oil inlet or the oil discharge port of the two-way hydraulic motor, or the oil inlet and the oil discharge port of the two-way hydraulic motor are respectively connected. There is the hydraulic control circuit.
  • FIG. 1 is a schematic illustration of a hydraulic control circuit in accordance with the present invention
  • FIG. 2 is a schematic diagram of a hydraulic control circuit in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic illustration of a hydraulic control circuit in accordance with another embodiment of the present invention.
  • Figure 4 is a schematic illustration of a hydraulic motor control system in accordance with the present invention.
  • FIG. 5 is a schematic diagram of a hydraulic motor control system according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a hydraulic motor control system according to another embodiment of the present invention
  • FIG. 7 is a hydraulic pressure according to still another embodiment of the present invention. Schematic diagram of the motor control system. Description of the reference numerals
  • the present invention firstly provides a hydraulic control circuit, which mainly includes a main oil passage 1, an automatic reversing unit 2, and a fuel tank 3, and the main oil passage 1 has an oil inlet port I and an oil outlet port.
  • the automatic reversing unit 2 is connected in series with the oil tank 3 and is bypassed on the main oil passage 1.
  • the automatic reversing unit 2 is turned on, so that the oil inflow of the main oil passage 1 flows back to the oil tank 3 through the automatic reversing unit 2.
  • the automatic reversing unit 2 is turned off, so that the oil inlet of the main oil passage 1 flows to the oil outlet 0.
  • the above technical solution can ensure that the main oil passage 1 passes through the oil outlet. 0 provides the required initial flow value for this actuator or other application.
  • the automatic reversing unit 2 includes a first liquid resistance element 21 and a normally open liquid control switching valve 22 connected in series, and the first liquid resistance element 21 Connected to the main oil passage 1, the normally open hydraulically controlled directional control valve 22 is connected to the oil tank 3, and the control port K of the normally open hydraulic directional control valve 22 is connected to the control line 23 through The oil inlet I of the main oil passage 1 and the pipeline between the first liquid resistance element 21 are on the pipeline.
  • q KAAp m , where q is the flow rate through the first liquid-resistance element 21, K is the throttle coefficient, A is the orifice flow area, ⁇ is the pressure difference, and m is the orifice shape and the structure-determined index. That is, there is a proportional relationship between the flow rate q and the pressure difference ⁇ .
  • the pressure difference ⁇ on both sides of the first liquid-resistance element 21 is substantially equal to the pressure ⁇ on the left side thereof, that is, the main oil
  • the pressure ⁇ on the line between the oil inlet I of the road 1 and the first liquid resistance element 21 has a proportional relationship between the pressure ⁇ and the flow rate q flowing through the first liquid resistance element 21. Gp, as the oil flow rate of the oil inlet I of the main oil passage 1 continues to increase, the pressure P on the left side of the first liquid resistance element 21 also increases.
  • the control port K of the normally open hydraulically controlled directional control valve 22 is connected to the pipeline between the oil inlet I of the main oil passage 1 and the first liquid resistance element 21 through the control line 23 Therefore, the pressure at the control port K is also substantially equal to the above pressure P. Therefore, when the oil inlet flow value of the oil inlet I of the main oil passage 1 increases to a predetermined value, the pressure P established at the control port K of the normally open hydraulically operated directional control valve 22 will overcome the directional control valve. The preload of the spring within 22 causes the spool in the diverter valve 22 to act, changing from an on state to an off state. As a result, the oil entering from the oil inlet I of the main oil passage 1 will all flow out through its oil outlet 0 to be supplied to the actuator 4 or other desired application.
  • the automatic reversing circuit 2 composed of the first liquid resistance element 21, the normally open liquid control switching valve 22 and the oil tank 3 is bypassed on the main oil passage 1, and can be based on the main oil passage 1
  • the inlet flow value automatically opens the path to its outlet 0, which is not only simple in construction, reliable in operation, but also ensures that the required initial flow value is provided for its outlet 0.
  • the preload of the spring in the normally open pilot directional control valve 22 it is possible to provide different initial flow values for the oil outlet 0 of the main oil passage 1.
  • the liquid resistance of the first liquid resistance element 21 e.g., the flow area A of the orifice
  • the initial flow value referred to herein refers to the normally open hydraulically controlled directional control valve 22 After the automatic shutoff, the flow value from the oil inlet I of the main oil passage 1 to the outlet port 0 thereof, or the flow rate value through the oil outlet 0.
  • a second liquid-resistance element 24 may be connected in series to the control line 23.
  • the performance of the normally open type liquid-controlled reversing valve 22 can be adjusted by the second liquid-repellent member 24, for example, the operating speed of the spool in the reversing valve 22 can be adjusted to reduce the commutation impact.
  • a damping hole communicating with the control port K may be integrated in the normally-open type liquid-controlled reversing valve 22, which also functions to adjust the performance of the reversing valve 22.
  • the internally integrated orifice can also be used in combination with the second liquid-blocking element 24 described above, or can be used alone, and the invention is not limited thereto.
  • the first liquid resistance element 21 and/or the second liquid resistance element 24 may be any combination of hydraulic components or hydraulic components that can establish a pressure drop value, for example, a variable orifice, a fixed orifice, or Throttle valve, proportional pressure reducing valve, etc.
  • the normally open hydraulically controlled directional control valve 22 is preferably a two-position two normally open hydraulically controlled directional control valve.
  • the automatic reversing unit 2 may include an electromagnetic reversing valve 25, a flow sensor 26, and a controller 27, wherein the electromagnetic reversing valve 25 is connected.
  • the flow sensor 26 is disposed on a pipeline between the oil inlet I of the main oil passage 1 and the electromagnetic reversing valve 25, and is used for detecting a flow rate value on the pipeline and a signal indicating the flow rate value is sent to the controller 27;
  • the controller 27 is electrically connected to the electromagnetic directional control valve 25 for receiving a signal from the flow sensor 26 and The electromagnetic reversing valve 25 is controlled to operate.
  • the reversing action of the electromagnetic reversing valve 25 can be automatically realized according to the oil inlet flow value of the oil inlet I of the main oil passage 1, so as to provide the required oil outlet 0 of the main oil passage 1. Initial flow value.
  • the flow sensor 26 will detect the flow value in real time and send the detected signal indicating the flow value to the controller 27.
  • the flow rate sensor 26 detects the predetermined value and transmits a signal indicating the predetermined value to the controller 27.
  • the controller 27 receives the signal, it will control the electromagnetic reversing valve 25 to actuate, that is, the electromagnetic reversing valve 25 is turned off.
  • the oil entering from the oil inlet I of the main oil passage 1 will all flow out through its oil outlet 0 to provide the actuator 4 or other desired application thereto.
  • the initial flow rate value referred to herein refers to the flow rate value from the oil inlet port I of the main oil passage 1 to the oil outlet port 0 after the electromagnetic switching valve 25 is automatically turned off, or the flow rate flowing out through the oil outlet port 0. value.
  • the electromagnetic reversing valve 25 is preferably a two-position two-way electromagnetic reversing valve.
  • the oil outlet 0 of the main oil passage 1 can be connected to the actuator 4 or other required applications as needed, which is not limited by the present invention.
  • the actuator 4 can be a hydraulic cylinder or a hydraulic motor.
  • the present invention also provides a hydraulic motor control system including a hydraulic motor 4 and a hydraulic control circuit connected to the hydraulic motor, the hydraulic control circuit including a main oil passage 1
  • the automatic reversing unit 2 and the oil tank 3 has an oil inlet port I and an oil outlet port 0, the oil outlet port 0 is connected to the hydraulic motor 4, and the automatic reversing unit 2 and the The oil tanks 3 are connected in series and bypassed on the main oil passage 1, wherein:
  • the automatic reversing unit 2 When the flow value of the oil inlet I of the main oil passage 1 is smaller than the minimum steady flow value of the hydraulic motor 4, the automatic reversing unit 2 is turned on, so that the oil of the main oil passage 1 passes through the automatic The reversing unit 2 flows back to the oil tank 3; When the flow rate value of the oil inlet I of the main oil passage 1 reaches the minimum steady flow value of the hydraulic motor 4, the automatic reversing unit 2 is turned off, so that the oil flow of the main oil passage 1 flows to the hydraulic pressure Motor 4.
  • the hydraulic motor is a typical actuator in the hydraulic system, which can convert the hydraulic energy of the system into mechanical energy for external work, for example, to drive the hoisting mechanism to achieve lifting of the load.
  • the hydraulic motor may cause the hydraulic motor to not work stably due to the leakage of oil inside the hydraulic motor when the oil supply flow value is less than a predetermined value. Therefore, the technical parameters of a general hydraulic motor are marked with a minimum stable flow value, and the hydraulic motor is required to operate under the condition that the oil supply flow value is greater than the minimum stable flow value.
  • the fuel supply flow entering it always increases from zero (for example, as the opening of the control valve gradually increases).
  • the automatic commutation unit 2 is the same as the automatic reversing unit 2 described above, and the present invention will not be described again.
  • the automatic reversing unit 2 shown in Fig. 5 is substantially the same as that shown in Fig. 2, and is mainly composed of a first liquid-repellent member 21 and a normally-open hydraulically operated reversing valve 22.
  • the automatic reversing unit 2 shown in Fig. 6 is basically the same as that shown in Fig. 3, and is mainly composed of an electromagnetic reversing valve 25, a flow sensor 26, and a controller 27.
  • the automatic reversing unit 2 includes a first liquid resistance element 21 and a normally open liquid control switching valve 22 connected in series, and the first liquid resistance element 21 is connected to the main oil passage 1
  • the normally open hydraulically controlled directional control valve 22 is connected to the oil tank 3, and the control port K of the normally open hydraulic directional control valve 22 is connected to the main oil passage 1 through a control line 23.
  • the normally open hydraulically controlled directional control valve 22 can be selected or set according to the minimum steady flow value of the hydraulic motor 4 such that the flow rate of the oil inlet I of the main oil passage 1 reaches the minimum stable state. At the flow rate value, the normally open hydraulically controlled directional control valve 22 can be automatically shut off, so that the oil flow rate of the main oil passage 1 flows through the oil outlet port 0 to the hydraulic motor 4.
  • the hydraulic motor 4 may be a one-way hydraulic motor or a two-way hydraulic motor, and may be a quantitative motor or a variable motor, which is not limited in the present invention.
  • the hydraulic control circuit described above can be connected to the oil inlet of the one-way hydraulic motor.
  • the hydraulic control circuit described above may be respectively connected to the oil inlet and the oil discharge port of the two-way hydraulic motor, but may be only in advance as needed.
  • a port or an oil drain is connected to the hydraulic control circuit.

Description

液压控制回路和液压马达控制系统 技术领域
本发明涉及一种液压控制回路和液压马达控制系统。 背景技术
在液压控制系统中, 一些执行元件对供油的流量值有一定的要求。 例 如, 对于液压马达而言, 当其供油流量值低于其最小稳定流量值时, 由于 存在油液在液压马达内部泄漏的现象, 会导致液压马达不能稳定工作, 尤 其是当液压马达工作于重载状态时, 还可能出现液压马达逆转、 抖动等现 象, 严重威胁人身和设备安全。
在现有技术中, 目前还没有简单可行的方法来解决这一技术问题。 发明内容
本发明的一个目的是提供一种液压控制回路, 其可以通过简单的结构 为执行元件或者其他对流量值有特定要求的场合提供需要的初始流量值。
本发明的另一个目的是提供一种液压马达控制系统, 其可以通过简单 的结构避免液压马达由于其供油流量值小于最小稳定流量值而出现工作不 稳定的问题。
根据本发明的一个方面, 提供一种液压控制回路, 该液压控制回路包 括主油路、 自动换向单元和油箱, 所述主油路具有进油口和出油口, 所述 自动换向单元与所述油箱串联并旁接在所述主油路上, 其中: 当所述主油 路的进油口的流量值小于预定值时, 所述自动换向单元导通, 使得主油路 的进油经过所述自动换向单元流回油箱; 当所述主油路的进油口的流量值 达到预定值时, 所述自动换向单元关断, 使得主油路的进油流向所述出油
□。 当主油路的出油口连接到某个执行元件如液压马达, 或者连接到其他 对流量值具有特定要求的场合时, 通过上述技术方案, 可以保证主油路通 过其出油口为该执行元件或者其他应用场合提供所需的初始流量值。 此处 所指的初始流量值是指在自动换向单元关断之后, 从主油路的进油口流向 其出油口 0的流量值, 或者通过该出油口流出的流量值。
作为一种具体的实施方式, 所述自动换向单元可以包括相互串联的第 一液阻元件和常开式液控换向阀, 所述第一液阻元件连接到所述主油路上, 所述常开式液控换向阀连接到所述油箱, 所述常开式液控换向阀的控制口 通过控制管路连接到所述主油路的进油口与所述第一液阻元件之间的管路 上。
在此实施方式中, 通过第一液阻元件和常开式液控换向阀的简单组合, 可以为主油路的出油口提供所需的初始流量值, 不仅结构简单, 而且工作 可靠。
作为选择, 所述第一液阻元件可以为固定阻尼孔、 可调阻尼孔、 减压 阀或节流阀。
优选地, 在所述控制管路上可以串接有第二液阻元件, 从而可以调节 所述常开式液控换向阀的工作性能, 使之动作平稳。
作为选择, 所述第二液阻元件可以为固定阻尼孔、 可调阻尼孔、 减压 阀或节流阀。 此外, 作为替换或者补充, 在所述常开式液控换向阀内部可 以集成有与所述控制口相通的阻尼孔。
优选地, 所述常开式液控换向阀可以为二位二通常开式液控换向阀。 作为另一种具体的实施方式, 所述自动换向单元可以包括电磁换向阀、 流量传感器和控制器, 其中: 所述电磁换向阀连接在所述主油路和所述油 箱之间; 所述流量传感器设置在所述主油路的进油口与所述电磁换向阀之 间的管路上, 用于检测该管路上的流量值并将表示该流量值的信号发送给 所述控制器; 所述控制器与所述电磁换向阀电连接, 用于接收所述流量传 感器发出的信号并控制所述电磁换向阀动作。
在此实施方式中, 通过电磁换向阀、 流量传感器和控制器的简单组合, 同样可以实现电磁换向阀的自动换向, 为主油路的出油口提供所需的初始 流量值。
优选地, 所述电磁换向阀可以为二位二通电磁换向阀。
作为一种典型的应用, 所述主油路的出油口可以连接到执行元件。 所 述执行元件可以为液压缸或者液压马达。
根据本发明的另一个方面, 提供一种液压马达控制系统, 该液压马达 控制系统包括液压马达和与该液压马达相连的液压控制回路, 所述液压控 制回路包括主油路、 自动换向单元和油箱, 所述主油路具有进油口和出油 口, 所述出油口连接到所述液压马达, 所述自动换向单元与所述油箱串联 并旁接在所述主油路上, 其中: 当所述主油路的进油口的流量值小于所述 液压马达的最小稳定流量值时, 所述自动换向单元导通, 使得主油路的进 油经过所述自动换向单元流回油箱; 当所述主油路的进油口的流量值达到 所述液压马达的最小稳定流量值时, 所述自动换向单元关断, 使得主油路 的进油流向所述液压马达。
液压马达由于构造方面的原因, 在其供油流量值小于某个预定值时, 由于存在油液在液压马达内部泄漏的现象, 会导致液压马达不能稳定工作。 因此, 一般的液压马达的技术参数中均标有最小稳定流量值, 要求液压马 达在其供油流量值大于该最小稳定流量值的条件下工作。 然而, 在液压马 达工作时, 进入其中的供油流量总是从零开始逐渐增加的 (例如随着控制 阀的开口逐渐增大)。 因此, 在液压马达的供油流量值还未达到其最小稳定 流量值时, 液压马达始终处于不稳定的工作状态, 尤其是当液压马达工作 于重载状态时, 还可能出现液压马达逆转、 抖动等现象, 严重威胁人身和 设备安全。 通过本发明提供的上述液压马达控制系统, 可以有效地解决这 一问题。 作为一种具体的实施方式, 所述自动换向单元可以包括相互串联的第 一液阻元件和常开式液控换向阀, 所述第一液阻元件连接到所述主油路上, 所述常开式液控换向阀连接到所述油箱, 所述常开式液控换向阀的控制口 通过控制管路连接到所述主油路的进油口与所述第一液阻元件之间的管路 上。 该实施方式的效果与上文对应部分所述的相同, 不再重复。
作为选择, 所述第一液阻元件可以为固定阻尼孔、 可调阻尼孔、 减压 阀或节流阀。
优选地, 在所述控制管路上可以串接有第二液阻元件, 从而可以调节 所述常开式液控换向阀的工作性能, 使之动作平稳。
作为选择, 所述第二液阻元件可以为固定阻尼孔、 可调阻尼孔、 减压 阀或节流阀。 此外, 作为替换或者补充, 在所述常开式液控换向阀内部可 以集成有与所述控制口相通的阻尼孔。
优选地, 所述常开式液控换向阀为二位二通常开式液控换向阀。
作为另一种具体的实施方式, 所述自动换向单元可以包括电磁换向阀、 流量传感器和控制器, 其中: 所述电磁换向阀连接在所述主油路和所述油 箱之间; 所述流量传感器设置在所述主油路的进油口与所述电磁换向阀之 间的管路上, 用于检测该管路上的流量值并将表示该流量值的信号发送给 所述控制器; 所述控制器与所述电磁换向阀电连接, 用于接收所述流量传 感器发出的信号并控制所述电磁换向阀动作。
优选地, 所述电磁换向阀可以为二位二通电磁换向阀。
作为选择, 所述液压马达可以为单向液压马达, 在所述单向液压马达 的进油口连接有所述液压控制回路。所述液压马达也可以为双向液压马达, 在所述双向液压马达的进油口或者排油口连接有所述液压控制回路, 或者 在所述双向液压马达的进油口和排油口分别连接有所述液压控制回路。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明的具体实施方式一起用于解释本发明, 但并不构成对本发明的限 制。 在附图中:
图 1是根据本发明的液压控制回路的示意图;
图 2是根据本发明一种实施方式的液压控制回路的示意图;
图 3是根据本发明另一种实施方式的液压控制回路的示意图; 图 4是根据本发明的液压马达控制系统的示意图;
图 5是根据本发明一种实施方式的液压马达控制系统的示意图; 图 6是根据本发明另一种实施方式的液压马达控制系统的示意图; 图 7是根据本发明再一种实施方式的液压马达控制系统的示意图。 附图标记说明
1主油路
2自动换向回路
3油箱
4执行元件 (液压马达)
21第一液阻元件
22常开式液控换向阀
23控制管路
24第二液阻元件
25电磁换向阀
26流量传感器 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
如图 1所示, 本发明首先提供一种液压控制回路, 该回路主要包括主 油路 1、 自动换向单元 2和油箱 3,所述主油路 1具有进油口 I和出油口 0, 所述自动换向单元 2与所述油箱 3串联并旁接在所述主油路 1上。 当所述 主油路 1的进油口 I的流量值小于预定值时,所述自动换向单元 2导通,使 得主油路 1的进油经过所述自动换向单元 2流回油箱 3;当所述主油路 1的 进油口 I的流量值达到预定值时, 所述自动换向单元 2关断, 使得主油路 1 的进油流向所述出油口 0。
当主油路 1的出油口 0连接到某个执行元件 4如液压马达, 或者连接 到其他对流量值具有特定要求的场合时, 通过上述技术方案, 可以保证主 油路 1通过其出油口 0为该执行元件或者其他应用场合提供所需的初始流 量值。
作为一种具体的实施方式, 如图 2所示, 所述自动换向单元 2包括相 互串联的第一液阻元件 21和常开式液控换向阀 22, 所述第一液阻元件 21 连接到所述主油路 1上, 所述常开式液控换向阀 22连接到所述油箱 3, 所 述常开式液控换向阀 22的控制口 K通过控制管路 23连接到所述主油路 1 的进油口 I与所述第一液阻元件 21之间的管路上。
在此实施方式中, 当主油路 1的进油口 I的流量值小于预定值时, 由进 油口 I流入主油路 1的油液将经过常开式液控换向阀 22流回油箱 3。 当主 油路 1的出油口 0连接到执行元件 4时, 因为执行元件 4通常具有一定的 工作阻力, 所以主油路 1上基本所有的油液都会经过常开式液控换向阀 22 直接流回油箱 3, 而不会流向执行元件 4, 但是需要强调的是, 这里并不排 除因为泄漏或其他原因而出现主油路 1中的少量油液经过出油口 0流出的 情况发生。
针对第一液阻元件 21, 存在如下的孔口压力流量方程:
q=KAApm, 其中 q为流过第一液阻元件 21的流量, K为节流系数, A 为孔口过流面积, Δρ为压力差, m为孔口形状和结构决定的指数。 即流量 q与压力差 Δρ之间存在正比例关系。
因为第一液阻元件 21的右侧经过常开式换向阀 22流回油箱 3,所以第 一液阻元件 21两侧的压力差 Δρ基本上就等于其左侧的压力 Ρ,即主油路 1 的进油口 I与第一液阻元件 21之间的管路上的压力 Ρ, 该压力 Ρ与流过第 一液阻元件 21的流量 q之间存在正比例关系。 gp, 随着主油路 1的进油口 I的进油流量不断增大, 第一液阻元件 21左侧的压力 P也将不断增大。
同时, 由于所述常开式液控换向阀 22的控制口 K通过控制管路 23连 接到所述主油路 1的进油口 I与所述第一液阻元件 21之间的管路上, 所以 该控制口 K处的压力也基本上等于上述压力 P。 因此, 当主油路 1的进油 口 I的进油流量值增大到预定值时, 在所述常开式液控换向阀 22的控制口 K处所建立的压力 P将克服该换向阀 22内的弹簧的预紧力, 从而促使该换 向阀 22内的阀芯动作, 由导通状态改变为关断状态。 结果, 由主油路 1的 进油口 I进入的油液将全部通过其出油口 0流出, 以提供给与之相连的执 行元件 4或者其他所需的应用场合。
通过上述描述可以清楚, 通过在主油路 1上旁接由第一液阻元件 21、 常开式液控换向阀 22和油箱 3构成的自动换向回路 2, 可以根据主油路 1 的进油流量值自动打开流向其出油口 0的通路, 不仅结构简单, 工作可靠, 而且可以确保为其出油口 0提供所需的初始流量值。
此外, 通过调定常开式液控换向阀 22中的弹簧的预紧力, 就可以为主 油路 1的出油口 0提供不同的初始流量值。 或者, 通过调节第一液阻元件 21 的液阻大小 (如其孔口的过流面积 A) , 也可以为主油路 1 的出油口 0 提供不同的初始流量值。 此处所指的初始流量值是指常开式液控换向阀 22 自动关断之后, 从主油路 1的进油口 I流向其出油口 0的流量值, 或者通 过该出油口 0流出的流量值。
作为一种优选实施方式, 如图 2所示, 还可以在所述控制管路 23上串 接第二液阻元件 24。 通过该第二液阻元件 24, 可以调节常开式液控换向阀 22的性能,例如可以调节该换向阀 22内的阀芯的动作速度,减少换向冲击。
作为其他的实施方式, 也可以在常开式液控换向阀 22内部集成有与其 控制口 K相通的阻尼孔, 其同样可以实现调节该换向阀 22的性能的作用。 该内部集成的阻尼孔也可以与上述第二液阻元件 24组合使用, 或者单独使 用, 本发明对此不作限制。
所述第一液阻元件 21和 /或第二液阻元件 24可以是任何可以建立压降 值的液压元器件或者液压元器件的组合, 例如, 其可以采用可变阻尼孔、 固定阻尼孔、 节流阀、 比例减压阀等等。
常开式液控换向阀 22优选为二位二通常开式液控换向阀。
作为本发明的另一种具体的实施方式, 如图 3所示, 所述自动换向单 元 2可以包括电磁换向阀 25、 流量传感器 26和控制器 27, 其中所述电磁 换向阀 25连接在所述主油路 1和所述油箱 3之间; 所述流量传感器 26设 置在所述主油路 1的进油口 I与所述电磁换向阀 25之间的管路上, 用于检 测该管路上的流量值并将表示该流量值的信号发送给所述控制器 27; 所述 控制器 27与所述电磁换向阀 25电连接, 用于接收所述流量传感器 26发出 的信号并控制所述电磁换向阀 25动作。 通过这种实施方式, 同样可以根据 主油路 1的进油口 I的进油流量值自动实现电磁换向阀 25的换向动作, 以 便为主油路 1的出油口 0提供所需的初始流量值。
具体而言, 当主油路 1的进油口 I的流量值小于预定值时, 由进油口 I 流入主油路 1的油液将经过电磁换向阀 25流回油箱 3。 此时, 流量传感器 26将实时检测该流量值,并将检测的表示该流量值的信号发送给控制器 27。
与上述第一种实施方式相同, 当主油路 1的出油口 0连接到执行元件 4时, 因为执行元件 4通常具有一定的工作阻力, 所以主油路 1上基本所有 的油液都会经过电磁换向阀 25直接流回油箱 3, 而不会流向执行元件 4, 但是需要强调的是, 这里并不排除因为泄漏或其他原因而出现主油路 1 中 的少量油液经过出油口 0流出的情况发生。
当主油路 1的进油口 I的进油流量值增大到预定值时, 流量传感器 26 检测到该预定值并将表示该预定值的信号发送给控制器 27。当控制器 27接 收到该信号时,将控制电磁换向阀 25动作,即关断该电磁换向阀 25。结果, 由主油路 1的进油口 I进入的油液将全部通过其出油口 0流出, 以提供给 与之相连的执行元件 4或者其他所需的应用场合。
通过这种实施方式, 同样可以实现根据主油路 1 的进油流量值自动打 开流向其出油口 0的通路, 以便为主油路 1的出油口 0 (即与之相连的执 行元件 4或者其他应用场合) 提供所需的初始流量值。 此处所指的初始流 量值是指电磁换向阀 25自动关断之后, 从主油路 1的进油口 I流向其出油 口 0的流量值, 或者通过该出油口 0流出的流量值。
电磁换向阀 25优选为二位二通电磁换向阀。
如图 1至图 3所示, 根据需要, 所述主油路 1的出油口 0可以连接到 执行元件 4, 或者其他所需的应用场合, 本发明对此不作限制。 通常, 执行 元件 4可以是液压缸或者液压马达。
如图 4至图 7所示, 本发明还提供一种液压马达控制系统, 该液压马 达控制系统包括液压马达 4和与该液压马达相连的液压控制回路, 所述液 压控制回路包括主油路 1、 自动换向单元 2和油箱 3, 所述主油路 1具有进 油口 I和出油口 0,所述出油口 0连接到所述液压马达 4,所述自动换向单 元 2与所述油箱 3串联并旁接在所述主油路 1上, 其中:
当所述主油路 1的进油口 I的流量值小于所述液压马达 4的最小稳定流 量值时, 所述自动换向单元 2导通, 使得主油路 1的进油经过所述自动换 向单元 2流回油箱 3; 当所述主油路 1的进油口 I的流量值达到所述液压马达 4的最小稳定流 量值时, 所述自动换向单元 2关断, 使得主油路 1的进油流向所述液压马 达 4。
液压马达是液压系统中的一种典型的执行元件, 其可以将系统的液压 能转换成机械能对外做功, 例如用于驱动卷扬机构实现负载的起升。 液压 马达由于构造方面的原因, 在其供油流量值小于某个预定值时, 由于存在 油液在液压马达内部泄漏的现象, 会导致液压马达不能稳定工作。 因此, 一般的液压马达的技术参数中均标有最小稳定流量值, 要求液压马达在其 供油流量值大于该最小稳定流量值的条件下工作。 然而, 在液压马达工作 时, 进入其中的供油流量总是从零开始逐渐增加的 (例如随着控制阀的开 口逐渐增大)。 因此, 在液压马达的供油流量值还未达到其最小稳定流量值 时, 液压马达始终处于不稳定的工作状态, 尤其是当液压马达工作于重载 状态时, 还可能出现液压马达逆转、 抖动等现象, 严重威胁人身和设备安 全。 通过本发明提供的液压马达控制系统, 可以有效地解决这一问题。
在此液压马达控制系统中, 采用的自动换向单元 2与上文所述的自动 换向单元 2相同, 本发明不再赘述。 例如, 图 5中所示的自动换向单元 2 与图 2中所示的基本相同, 主要是由第一液阻元件 21和常开式液控换向阀 22构成。 图 6中所示的自动换向单元 2与图 3中所示的基本相同, 主要是 由电磁换向阀 25、 流量传感器 26和控制器 27构成。
下面, 以图 5 中所示的实施方式为例, 对本发明的液压马达控制系统 进行简单描述。
如图 5所示, 所述自动换向单元 2包括相互串联的第一液阻元件 21和 常开式液控换向阀 22, 所述第一液阻元件 21连接到所述主油路 1上,所述 常开式液控换向阀 22连接到所述油箱 3,所述常开式液控换向阀 22的控制 口 K通过控制管路 23连接到所述主油路 1的进油口 I与所述第一液阻元件 21之间的管路上。 在此实施方式中, 可以根据液压马达 4 的最小稳定流量值来选择或者 调定所述常开式液控换向阀 22, 使得当主油路 1的进油口 I的流量值达到 该最小稳定流量值时, 常开式液控换向阀 22可以自动关断, 使主油路 1的 进油流量全部通过其出油口 0流向液压马达 4。
具体而言, 当主油路 1的进油口 I的流量值小于最小稳定流量值时, 由 进油口 I流入主油路 1的油液将经过常开式液控换向阀 22流回油箱 3。 此 时, 由于液压马达 4 中通常会存在少量的泄露, 所以会存在少量的油液经 过主油路 1的出油口 0流向液压马达 4, 但由于该油液的量很小, 所以可 忽略不计。
当主油路 1 的进油口 I的进油流量值不断增大而达到最小稳定流量值 时,在所述常开式液控换向阀 22的控制口 K处所建立的压力 P将克服该换 向阀 22内的弹簧的预紧力, 从而促使该换向阀 22内的阀芯动作, 由导通 状态改变为关断状态。结果, 由主油路 1的进油口 I进入的油液将全部通过 其出油口 0流向液压马达 4, 以驱动液压马达 4稳定运行。
在本发明的液压马达控制系统中, 所述液压马达 4可以是单向液压马 达, 也可以是双向液压马达, 可以是定量马达, 也可以是变量马达, 本发 明不作限制。
如图 4至图 6所示, 当液压马达 4是单向液压马达时, 可以在单向液 压马达的进油口连接上文所述的液压控制回路。如图 7所示, 当液压马达 4 为双向液压马达时, 可以在双向液压马达的进油口和排油口分别连接上文 所述的液压控制回路, 但根据需要, 也可以仅在其进油口或者排油口连接 所述液压控制回路。
需要说明的是, 在上述具体实施方式中所描述的各个具体技术特征, 可以通过任何合适的方式进行任意组合, 其同样落入本发明所公开的范围 之内。 另外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只 要其不违背本发明的思想, 其同样应当视为本发明所公开的内容。 以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。

Claims

权利要求
1、一种液压控制回路, 其特征在于, 该液压控制回路包括主油路(1)、 自动换向单元 (2) 和油箱 (3), 所述主油路 (1) 具有进油口 (I) 和出油 口 (0), 所述自动换向单元 (2) 与所述油箱 (3) 串联并旁接在所述主油 路 (1) 上, 其中:
当所述主油路(1) 的进油口 (I) 的流量值小于预定值时, 所述自动换 向单元 (2) 导通, 使得主油路 (1) 的进油经过所述自动换向单元 (2) 流 回油箱 (3);
当所述主油路(1) 的进油口 (I) 的流量值达到预定值时, 所述自动换 向单元 (2) 关断, 使得主油路 (1) 的进油流向所述出油口 (0)。
2、 根据权利要求 1所述的液压控制回路, 其特征在于, 所述自动换向 单元 (2) 包括相互串联的第一液阻元件 (21) 和常开式液控换向阀 (22), 所述第一液阻元件 (21) 连接到所述主油路 (1) 上, 所述常开式液控换向 阀(22)连接到所述油箱(3), 所述常开式液控换向阀(22)的控制口 (K) 通过控制管路(23)连接到所述主油路(1) 的进油口 (I)与所述第一液阻 元件 (21) 之间的管路上。
3、 根据权利要求 2所述的液压控制回路, 其特征在于,
Figure imgf000015_0001
元件 (21) 为固定阻尼孔、 可调阻尼孔、 减压阀或节流阀。
4、 根据权利要求 2所述的液压控制回路, 其特征在于, 在所述控制 路 (23) 上串接有第二液阻元件 (24)。
5、 根据权利要求 4所述的液压控制回路, 其特征在于, 所述第二液 元件 (24) 为固定阻尼孔、 可调阻尼孔、 减压阀或节流阀。
6、 根据权利要求 2所述的液压控制回路, 其特征在于, 在所述常开式 液控换向阀 (22) 内部集成有与所述控制口 (K) 相通的阻尼孔。
7、 根据权利要求 2所述的液压控制回路, 其特征在于, 所述常开式液 控换向阀 (22) 为二位二通常开式液控换向阀。
8、 根据权利要求 1所述的液压控制回路, 其特征在于, 所述自动换向 单元(2)包括电磁换向阀 (25 )、 流量传感器(26)和控制器(27 ), 其中: 所述电磁换向阀 (25 )连接在所述主油路 (1 ) 和所述油箱 (3 ) 之间; 所述流量传感器(26)设置在所述主油路(1 ) 的进油口 (I)与所述电 磁换向阀 (25 ) 之间的管路上, 用于检测该管路上的流量值并将表示该流 量值的信号发送给所述控制器 (27);
所述控制器 (27 ) 与所述电磁换向阀 (25 ) 电连接, 用于接收所述流 量传感器 (26) 发出的信号并控制所述电磁换向阀 (25 ) 动作。
9、 根据权利要求 8所述的液压控制回路, 其特征在于, 所述电磁换向 阀 (25 ) 为二位二通常开式电磁换向阀。
10、 根据权利要求 1-9中任意一项所述的液压控制回路, 其特征在于, 所述主油路 (1 ) 的出油口 (0) 连接到执行元件 (4)。
11、 根据权利要求 10所述的液压控制回路, 其特征在于, 所述执行元 件 (4) 为液压缸或者液压马达。
12、 一种液压马达控制系统, 该液压马达控制系统包括液压马达 (4) 和与该液压马达相连的液压控制回路, 其特征在于: 所述液压控制回路包 括主油路 (1)、 自动换向单元 (2) 和油箱 (3), 所述主油路 (1) 具有进 油口 (I) 和出油口 (0), 所述出油口 (0) 连接到所述液压马达 (4), 所 述自动换向单元 (2) 与所述油箱 (3) 串联并旁接在所述主油路 (1) 上, 其中:
当所述主油路 (1) 的进油口 (I) 的流量值小于所述液压马达 (4) 的 最小稳定流量值时, 所述自动换向单元 (2) 导通, 使得主油路 (1) 的进 油经过所述自动换向单元 (2) 流回油箱 (3);
当所述主油路 (1) 的进油口 (I) 的流量值达到所述液压马达 (4) 的 最小稳定流量值时, 所述自动换向单元 (2) 关断, 使得主油路 (1) 的进 油流向所述液压马达 (4)。
13、 根据权利要求 12所述的液压马达控制系统, 其特征在于, 所述自 动换向单元 (2) 包括相互串联的第一液阻元件 (21) 和常开式液控换向阀
(22), 所述第一液阻元件 (21) 连接到所述主油路 (1) 上, 所述常开式 液控换向阀 (22) 连接到所述油箱 (3), 所述常开式液控换向阀 (22) 的 控制口 (K) 通过控制管路 (23)连接到所述主油路 (1) 的进油口 (I) 与 所述第一液阻元件 (21) 之间的管路上。
14、 根据权利要求 13所述的液压马达控制系统, 其特征在于, 所述第 一液阻元件 (21) 为固定阻尼孔、 可调阻尼孔、 减压阀或节流阀。
15、 根据权利要求 13所述的液压马达控制系统, 其特征在于, 在所述 控制管路 (23) 上串接有第二液阻元件 (24)。
16、 根据权利要求 15所述的液压马达控制系统, 其特征在于, 所述第 二液阻元件 (24) 为固定阻尼孔、 可调阻尼孔、 减压阀或节流阀。
17、 根据权利要求 13所述的液压马达控制系统, 其特征在于, 在所述 常开式液控换向阀 (22) 内部集成有与所述控制口 (K) 相通的阻尼孔。
18、 根据权利要求 13所述的液压马达控制系统, 其特征在于, 所述常 开式液控换向阀 (22) 为二位二通常开式液控换向阀。
19、 根据权利要求 12所述的液压马达控制系统, 其特征在于, 所述自 动换向单元(2)包括电磁换向阀 (25 )、 流量传感器(26)和控制器(27), 其中:
所述电磁换向阀 (25 ) 连接在所述主油路 (1 ) 和所述油箱 (3 ) 之间; 所述流量传感器(26)设置在所述主油路(1 ) 的进油口 (I)与所述电 磁换向阀 (25 ) 之间的管路上, 用于检测该管路上的流量值并将表示该流 量值的信号发送给所述控制器 (27);
所述控制器 (27 ) 与所述电磁换向阀 (25 ) 电连接, 用于接收所述流 量传感器 (26) 发出的信号并控制所述电磁换向阀 (25 ) 动作。
20、 根据权利要求 19所述的液压马达控制系统, 其特征在于, 所述电 磁换向阀 (25 ) 为二位二通常开式电磁换向阀。
21、根据权利要求 12-20中任意一项所述的液压马达控制系统,其特征 在于, 所述液压马达 (4) 为单向液压马达, 在所述单向液压马达的进油口 连接有所述液压控制回路。
22、根据权利要求 12-20中任意一项所述的液压马达控制系统,其特征 在于, 所述液压马达 (4) 为双向液压马达, 在所述双向液压马达的进油口 或者排油口连接有所述液压控制回路。
23、根据权利要求 12-20中任意一项所述的液压马达控制系统,其特征 在于, 所述液压马达 (4) 为双向液压马达, 在所述双向液压马达的进油口 和排油口分别连接有所述液压控制回路。
PCT/CN2011/076992 2010-08-19 2011-07-08 液压控制回路和液压马达控制系统 WO2012022204A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010260108.6 2010-08-19
CN 201010260108 CN102042274B (zh) 2010-08-19 2010-08-19 液压控制回路和液压马达控制系统

Publications (1)

Publication Number Publication Date
WO2012022204A1 true WO2012022204A1 (zh) 2012-02-23

Family

ID=43908709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076992 WO2012022204A1 (zh) 2010-08-19 2011-07-08 液压控制回路和液压马达控制系统

Country Status (2)

Country Link
CN (1) CN102042274B (zh)
WO (1) WO2012022204A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102042274B (zh) * 2010-08-19 2013-03-27 中联重科股份有限公司 液压控制回路和液压马达控制系统
EP2674626B1 (de) * 2012-06-12 2015-09-30 HAWE Hydraulik SE Hydraulikschaltung
CN102877786B (zh) * 2012-10-09 2015-02-11 大元建业集团股份有限公司 一种提高旋挖钻机成孔效率的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050356A (en) * 1974-03-11 1977-09-27 Haeny & Cie Ag Apparatus for controlling a fluid medium
CN87100435A (zh) * 1986-01-25 1987-09-16 日立建机株式会社 工程机械的液压传动装置
JPH07269508A (ja) * 1994-01-25 1995-10-17 Linde Ag ハイドロスタティック式の駆動系
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置
JP2000179502A (ja) * 1998-12-14 2000-06-27 Komatsu Ltd 油圧ポンプの制御装置
CN102042274A (zh) * 2010-08-19 2011-05-04 长沙中联重工科技发展股份有限公司 液压控制回路和液压马达控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106507A (ja) * 2000-07-27 2002-04-10 Komatsu Ltd 液圧アクチュエータの流量制御装置
CN100427771C (zh) * 2006-12-14 2008-10-22 浙江大学 一种液压配重可变的节能液压升降系统
CN201554710U (zh) * 2009-11-02 2010-08-18 北京海纳创为液压系统技术有限公司 自动换向控制阀组系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050356A (en) * 1974-03-11 1977-09-27 Haeny & Cie Ag Apparatus for controlling a fluid medium
CN87100435A (zh) * 1986-01-25 1987-09-16 日立建机株式会社 工程机械的液压传动装置
JPH07269508A (ja) * 1994-01-25 1995-10-17 Linde Ag ハイドロスタティック式の駆動系
JPH11303809A (ja) * 1998-04-20 1999-11-02 Komatsu Ltd 油圧駆動機械のポンプ制御装置
JP2000179502A (ja) * 1998-12-14 2000-06-27 Komatsu Ltd 油圧ポンプの制御装置
CN102042274A (zh) * 2010-08-19 2011-05-04 长沙中联重工科技发展股份有限公司 液压控制回路和液压马达控制系统

Also Published As

Publication number Publication date
CN102042274B (zh) 2013-03-27
CN102042274A (zh) 2011-05-04

Similar Documents

Publication Publication Date Title
US20120285152A1 (en) Hydraulic driving apparatus for working machine
US9249812B2 (en) Hydraulic circuit for pipe layer
US8510000B2 (en) Hybrid construction machine
JP5661084B2 (ja) 作業機械の油圧駆動装置
WO2012019498A1 (zh) 液压控制回路及方法
WO2014000386A1 (zh) 液压系统、液压系统的控制方法和工程机械
WO2018117029A1 (ja) 油圧ショベル駆動システム
WO2013123792A1 (zh) 一种液压控制系统及挖掘机
JP2012237423A (ja) 作業用油圧制御装置
WO2012022204A1 (zh) 液压控制回路和液压马达控制系统
WO2014005396A1 (zh) 一种液压系统及掘进机
JP2013515936A5 (zh)
JP2007255506A (ja) 建設機械の操作制御回路
US9021796B2 (en) Pipelayer
WO2014180189A1 (zh) 一种节能控制系统、挖掘机及方法
KR20080045314A (ko) 굴삭기 선회장치
JP2009036300A (ja) 旋回制御装置
RU2012102256A (ru) Клапанное устройство
KR100640538B1 (ko) 굴삭기 유압펌프 유량제어장치
JP2010112493A (ja) 作業機械の制御装置
JP5219691B2 (ja) 油圧ショベルの油圧回路
WO2018043401A1 (ja) 建設機械の油圧駆動システム
WO2013063997A1 (zh) 液压控制回路
JP2016223484A (ja) 油圧回路
JP2010047983A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11817731

Country of ref document: EP

Kind code of ref document: A1