WO2012022141A1 - 绝对位置测量容栅位移测量方法、传感器及其运行方法 - Google Patents

绝对位置测量容栅位移测量方法、传感器及其运行方法 Download PDF

Info

Publication number
WO2012022141A1
WO2012022141A1 PCT/CN2011/070977 CN2011070977W WO2012022141A1 WO 2012022141 A1 WO2012022141 A1 WO 2012022141A1 CN 2011070977 W CN2011070977 W CN 2011070977W WO 2012022141 A1 WO2012022141 A1 WO 2012022141A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
gate
displacement
signal
measurement
Prior art date
Application number
PCT/CN2011/070977
Other languages
English (en)
French (fr)
Inventor
陆取辉
Original Assignee
桂林广陆数字测控股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 桂林广陆数字测控股份有限公司 filed Critical 桂林广陆数字测控股份有限公司
Priority to EP11817669.2A priority Critical patent/EP2618101B1/en
Priority to DK11817669.2T priority patent/DK2618101T3/da
Priority to US13/125,528 priority patent/US9024642B2/en
Priority to PL11817669T priority patent/PL2618101T3/pl
Publication of WO2012022141A1 publication Critical patent/WO2012022141A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • G01D5/2415Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap adapted for encoders

Definitions

  • the invention relates to a capacitive displacement measuring technology, in particular to an absolute position measuring capacitive displacement measuring method, a sensor and a running method thereof.
  • the capacitive grid displacement sensor has been widely used in the field of linear/angular displacement measurement due to its low cost, small volume and micro power consumption. From the realization principle, the current capacitive displacement sensor can be divided into two categories: relative position measurement (incremental) and absolute position measurement (absolute). The application of the incremental capacitive displacement sensor has been around for 30 years. This type of sensor needs to accumulate the displacement quickly, so there is a measurement speed limit (less than 1. 5m / s @ 150KHz) and continuous uninterrupted measurement (thus limiting the operating current) Further reductions) two shortcomings are being phased out.
  • the absolute capacitive displacement sensor is the first of its kind by Japan Mitutoyo Corporation.
  • the sensor drive signal is a static (time-independent) spatially distributed waveform.
  • the demodulated received signal is time-independent (DC signal), and the harmonic influence cannot be weakened by signal processing techniques;
  • the amount of displacement in each wavelength determines the analog-to-digital conversion of two orthogonal signals
  • the amount of displacement in each wavelength is determined to be subjected to arctangent (arctg) operation, which is beyond the real-time processing capability of a general microcontroller (MCU).
  • arctg arctangent
  • MCU general microcontroller
  • the displacements in each wavelength are determined to be mutually restrained and interact with each other.
  • the algorithm does not converge when moving fast.
  • the existing absolute capacitive displacement sensor needs to be based on a microcontroller (MCU), and the software relies on low-efficiency testing.
  • the method requires complex analog/digital conversion, sinusoidal waveform electrodes and other technical support.
  • the conventional single-chip application system can meet the above requirements of software and hardware, but the system should be integrated (made into a single-chip ASIC). On the measurement tool, it is not easy to obtain a product that meets both low cost, small size, and micro power consumption and can be mass-produced. Things.
  • Patent ZL200710050658 introduces a circular capacitive grid sensor for absolute position measurement. This patented scheme can be used for angle measurement with large layout space; however, the measurement results of two independent incremental capacitive grid systems are used twice by the single-chip microcomputer. Processing, cost, volume, and power consumption are several times that of a typical incremental capacitive grid system. Although the function of the incremental capacitive gate system has been extended, it has not solved the inherent weakness of incremental measurement.
  • the object of the present invention is to disclose an absolute position measurement capacitive grid displacement measuring method, wherein a sensor driving signal having a fluctuating property passes through a capacitive coupling of an emission gate and a reflective gate, a pitch conversion of a reflective gate and a conversion gate, a conversion gate and a receiving gate. After capacitive coupling, it is transformed into a received signal that changes with time, and the displacement of the measured position in each wavelength is converted into the initial phase of the fundamental time of the received signal.
  • the fundamental signal is negative to positive zero crossing and preset.
  • the time difference between the phase zeros is the displacement of the measured position within the measured wavelength, and the time difference is obtained by the addition counter, thereby obtaining the displacement of the measured position within the measured wavelength.
  • Another object of the present invention is to design an absolute position measurement capacitive grid displacement sensor using the absolute position measurement capacitance displacement measurement method of the present invention and a method for operating the same, and the capacitance gate displacement sensor has a conversion gate and a reception grid for realizing multi-wavelength localization. Under the excitation of the driving signal with wave characteristics, the measured position is transformed into the initial phase of the sine wave, and then the displacement of the measured position in each wavelength is obtained by the addition counter.
  • the circuit is simple and easy to integrate, enabling low-cost, large-scale production.
  • the absolute position measurement capacitive grid displacement measuring method designed by the invention is to excite the electrodes of the emission grating by using a driving signal having a wave property, the capacitive coupling of the emission grating and the reflection grating, the pitch conversion of the reflection grating and the conversion gate, the conversion gate and After the capacitive coupling of the receiving gate is transformed into a received signal that changes with time, and the displacement of the measured position in each wavelength is converted into the initial phase of the fundamental time of the received signal, from the negative to the positive of the fundamental signal
  • the time difference between the zero point and the preset phase zero point is the displacement of the measured position within the measured wavelength, and the time difference is obtained by the addition counter, thereby obtaining the displacement of the measured position within the measured wavelength.
  • the absolute position measurement capacitive displacement sensor designed by the absolute position measurement capacitive displacement measurement method of the present invention includes a relatively movable emission plate and a reflection plate and a measurement circuit, and at least one of the emission plate and the reflection plate is movable along the measurement axis.
  • a row of electrodes arranged in the direction of the measurement axis is arranged as an emission grid; and a column of periodically arranged electrodes is arranged along the direction of the measurement axis on the reflection plate as a reflection grid.
  • the relative positional change between the emitter and reflector causes the capacitive coupling between the emitter and reflector to change.
  • the reflector is also provided with two columns of periodically arranged electrodes in an orderly connection with the reflective grid, which is a conversion gate for generating the required
  • the measuring wavelength is also provided on the transmitting board with two columns of periodically arranged electrodes capacitively coupled to the switching grid, which are receiving grids for generating a received signal reflecting the displacement of the measured position within each wavelength.
  • Each of the emission gate electrodes is N, N is an integer, 3 N 16, generally 8, and the electrodes are arranged at a pitch of Pt/N.
  • the electrodes are connected in sequence.
  • the shapes of the emission gate, the receiving gate, the reflective gate, and the switching gate electrode are rectangular, triangular, sinusoidal, etc., and a rectangular shape that is easy to manufacture is generally selected.
  • the electrode layout of each column refers to the common reference line. For convenient connection, the reference line should be selected in the middle area.
  • the electrode layouts of the emitter grating, the receiving grid, the reflective grid and the switching grid are developed along the concentric circumference.
  • the electrode pitch is calculated according to the angle, and the relative displacement between the emitter plate and the reflector is the relative rotation of the two with the center of the concentric circle as a base point.
  • the invention can be applied to angular displacement measurement.
  • the measuring circuit of the absolute position measuring capacitive displacement sensor designed by the invention is divided into two parts: an interface unit and a measuring unit.
  • the measurement unit includes a drive signal generator and a signal processing circuit.
  • the interface unit includes a timer, a button interface circuit, a measurement interface circuit, a display drive circuit, and an arithmetic logic unit (ALU).
  • the measuring unit further includes an oscillator, a frequency divider, and a controller, the driving signal generator is a driving signal generator that generates a sensor driving signal having a wave property; the main clock of the oscillator output of the measuring unit is divided The frequency converter is connected to the driving signal generator, and the N signal output signals generated by the driving signal generator having fluctuating properties are respectively connected to the N electrodes of each group of the transmitting gates;
  • the signal processing circuit of the measuring unit of the present invention includes an analog processing circuit, a zero-crossing detecting circuit, a synchronous delay circuit, an adding counter, a synchronous capturing circuit, and a random access memory.
  • the analog processing circuit includes a signal selection switch group, a differential amplifier, a synchronous demodulation circuit, and a low pass filter. The two outputs of the measured wavelength receiving gate are connected to the differential amplifier through the signal selection switch group, and the differential amplification is sequentially connected to the synchronous demodulation circuit, the low pass filter, the zero crossing detection circuit, and then input to the synchronous capture circuit;
  • the main clock of the oscillator output is also connected to the controller, the synchronous demodulation circuit, the synchronous capture circuit, and the addition counter; the phase synchronization signal from the drive signal generator is connected to the synchronous delay circuit;
  • the output of the synchronous delay circuit is connected to the synchronous capture circuit and the addition counter, and the output of the zero-crossing detection circuit is connected a step capture circuit, an output of the synchronization capture circuit is connected to the controller and the random access memory, and an output of the addition counter is used as a data input of the random access memory;
  • the measurement interface circuit of the interface unit is connected to the controller of the measurement unit and the random access memory;
  • the controller generates various control signals including initialization, displacement measurement, memory address and request processing signals, and each output is connected to a random access memory, a drive signal generator, a signal selection switch group, and a measurement interface circuit of the interface unit.
  • the input of the controller is connected to the output of the synchronous capture circuit, and its input clock is connected to the main clock of the oscillator output.
  • the driving signal generator of the measuring unit of the invention can adopt a twist ring counter scheme, and is mainly composed of a twist ring counter, a driving sequence selection switch and an exclusive OR modulator.
  • the output of the oscillator is connected to the drive signal generator via the frequency divider as the input clock of the torsion ring counter and the XOR modulator.
  • the torsion ring counter generates N output signals with fluctuating properties, and inputs the XOR through the drive sequence selection switch.
  • the modulator in order to form the two driving signal application sequences required for the coarse/medium wavelength measurement and the fine wavelength measurement, the N outputs of the XOR modulator are connected to the N electrodes of each group of the emission gates.
  • the drive signal generator of the measuring unit of the present invention can also adopt a read only memory (ROM) scheme, and is mainly composed of an address addition counter, a read only memory (ROM), and an exclusive OR modulator.
  • the main clock of the oscillator output is connected to the address addition counter as its count clock after the frequency divider, and the output of the address addition counter and the fine wavelength measurement signal together form the read address of the read-only memory, and the N-bit data input of the read-only memory output.
  • the XOR modulator, the X-output of the XOR modulation is connected to the N electrodes of each group of the emission gates.
  • Two or three wavelength measurements can be selected depending on the maximum measurement range desired.
  • the conversion gate and the reception gate are each provided with two columns, and the two columns of conversion gates of the reflection plate are respectively referred to as a medium wavelength conversion gate and a coarse wavelength conversion gate.
  • the two columns of receiving gates of the corresponding transmitting plate are referred to as a medium wavelength receiving gate and a coarse wavelength receiving gate, respectively.
  • the medium wavelength conversion gate electrode on the reflector is arranged along the measuring axis at a pitch P m period, and the intermediate wavelength conversion gate pitch is smaller than the reflection grating pitch P".
  • the corresponding medium-wavelength receiving gate electrode on the emitter board is divided into two identical groups, which are staggered along the measuring axis by the distance N t P m
  • the periodic arrangement, the same group of receiving gate electrodes are connected by wires.
  • N t is an odd number of 3 to 7
  • the coarse wavelength conversion gate electrode pitch Pc N c W f / (N c + N t )
  • the coarse wavelength receiving gate electrode is also divided into two identical groups of pitches N t P.
  • the staggered period is arranged, and the same group of receiving gate electrodes are connected by wires.
  • the conversion gate and the reception gate are also set to two pairs.
  • the electrode layout is similar to the three-wavelength measurement, except that The original medium wavelength conversion gate and medium wavelength reception grid are modified into a fine wavelength auxiliary conversion grid and a fine wavelength auxiliary receiving grid.
  • the method for operating the absolute position measurement capacitive displacement sensor of the present invention is as follows:
  • the interface unit activates the measuring unit at a predetermined measuring frequency, and the driving signal having the fluctuating property is converted into a capacitive coupling by the capacitive coupling of the transmitting gate and the reflective gate, the pitch conversion of the reflective gate and the switching gate, and the capacitive coupling of the switching gate and the receiving gate.
  • the time-varying received signal (after synchronous demodulation), and the displacement of the measured position within each wavelength is converted into the initial phase of the time fundamental of the received signal (after synchronous demodulation).
  • the two received signals outputted by the respective wavelength receiving gate electrodes are input to the differential amplifier through the signal selection switch group, and the differentially amplified signals are sequentially processed by the synchronous demodulation circuit, the low pass filter, and the zero crossing detection circuit to be converted into a square wave signal.
  • the synchronous capture circuit generates a synchronous capture signal according to the square wave signal and the output of the synchronous delay circuit, captures the counting result of the addition counter on the non-counting edge of the main clock and writes it to the designated unit of the random access memory, and the controller utilizes the synchronous capture
  • the signal produces a control signal required to measure the displacement within the next wavelength or request the interface unit for subsequent processing.
  • the synchronous delay circuit controls the counting of the addition counter, and the addition counter is allowed to start counting only after a predetermined time of applying the effective driving signal and at a predetermined phase of the driving signal, that is, the preset phase zero, and the main clock of the addition counter to the oscillator output count.
  • the controller (state machine) generates various control signals, including initialization, fine wavelength displacement measurement, medium wavelength displacement measurement, coarse wavelength displacement measurement, memory address and request processing signal, to coordinate the operation of the measurement circuit or request the interface unit for subsequent deal with.
  • the controller After the measuring unit sequentially performs the measurement of the displacement of the measured position in the coarse wavelength, the medium wavelength, and the fine wavelength, the controller requests the interface unit to perform subsequent processing.
  • the interface unit reads the displacement value in each wavelength from the random access memory of the measurement unit and then turns off the measurement unit, and then calculates the absolute position according to the displacement value in each wavelength, and performs other conventional processing according to the user's request (by key input) (eg: Measurement unit conversion, setting measurement origin, etc.), driving the liquid crystal display (LCD) to display measurement results.
  • key input eg: Measurement unit conversion, setting measurement origin, etc.
  • the reflector for the absolute position measurement capacitive displacement sensor of this step is provided with a coarse wavelength conversion grid and a medium wavelength conversion grid, and the corresponding emission plate is provided with a coarse wavelength receiving grid and a medium wavelength receiving grid, which are thick, medium and thin. Absolute measurements are made at three wavelengths.
  • the timer of the interface unit starts the measuring unit at a predetermined measurement frequency
  • a sensor drive signal (exclusive OR modulation) that sweeps through a firing grid pitch at a constant rate T over time t X
  • the signal of the expression (b) is sampled by the space x and the time t at the periods P t /N, T/N, respectively, to obtain the sequence B (x m , :
  • N N where: m, n are integers, and 0 m N-l, 0 ⁇ ⁇ _1.
  • the expression (a) can be regenerated by the discrete signal sequence (c). Therefore, the discrete signal sequence B(x m , t n ) is used as the sensor driving signal, after being regenerated and filtered.
  • the response signal is exactly equivalent to being driven by the expression (a).
  • R and S are integers, ⁇ .
  • The distance from the front edge of the reflection grid electrode set of the emitter plate reference line to each of the three pitches, y.
  • y The distance between the launch pad reference line and the leading edge of the set of switching gate electrodes for each of the three pitches.
  • the voltage distribution on the coarse wavelength conversion gate can be considered to vary according to the expression (h) when the fundamental component of the received signal is derived.
  • the coarse wavelength receiving gate is capacitively coupled to the coarse wavelength conversion gate.
  • the induced voltages on the two receiving electrodes are obtained:
  • the controller of the measuring unit outputs a coarse wavelength measurement signal, and cuts the signal selection switch group to a position required to measure the displacement in the coarse wavelength;
  • the controller outputs an initialization signal, and sets the timing logic of the driving signal generator, the synchronous delay circuit, and the synchronous capture circuit of the measuring unit to a predetermined initial state, and at the same time specifies the storage of the coarse wavelength shift in the random access memory.
  • the drive signal generator starts to output a valid sensor drive signal
  • the sensor drive signal output from the drive signal generator is the result of XOR modulation of the expression (c).
  • the synchronous delay circuit allows the addition counter to start counting at a predetermined phase of the drive signal, that is, a preset phase zero, after the drive signal is applied for a predetermined time.
  • the function of the synchronous delay circuit is to set the phase reference point of the measurement, and the second is to wait for the signal to stabilize before starting counting.
  • the synchronous capture circuit synchronously captures the counting result of the addition counter on the valid edge of the zero-crossing detection signal and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the coarse wavelength (with fixed offset) Transfer amount);
  • the driving signal of the fluctuating nature is transmitted through the electrode layout of the present invention, and two sets of inverted signals are induced in the two sets of coarse wavelength receiving gates, and the fundamental wave components of the following formula (k) are obtained by differential, demodulating and filtering:
  • Wc is a coarse wavelength
  • P t 3P" d
  • C 2 is assumed to be two received signals of coarse wavelength, (is the amplitude of the fundamental component of the coarse wavelength received signal)
  • the time difference between the negative zero point of the signal and the preset phase zero point (the time when the addition counter starts counting) is the displacement of the measured position within the coarse wavelength (with a fixed offset), so The valid edge of the zero-crossing detection signal captures the count result of the addition counter, which is the displacement of the measured position within the coarse wavelength.
  • the controller outputs the medium wavelength measurement signal, and cuts the signal selection switch group to the position required for measuring the displacement in the medium wavelength;
  • the controller outputs an initialization signal, and sets the timing logic of the driving signal generator, the synchronous delay circuit, and the synchronous capturing circuit of the measuring unit to a preset initial state, and specifies the storage of the medium wavelength displacement in the random access memory.
  • the drive signal generator begins to output an effective sensor drive signal
  • the synchronous delay circuit allows the addition counter to start counting
  • the synchronous capture circuit captures the count result of the addition counter and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the medium wavelength (with a fixed offset);
  • the emission gate pitch P t is different from the reflection gate pitch.
  • A shows the conventional three sets of emitter gate electrodes, when sequential sensing is applied. When the signal is driven, a voltage signal having a wavelength equal to the pitch of the reflective gate is induced on the reflective gate electrode.
  • One of each of the three sets of emitter gate electrodes shown in A is extracted to obtain an electrode layout as shown in B.
  • the driving signals of the electrodes in B are the same as A, and the number just constitutes a group, so, for example, the corresponding three reflections
  • the signals on the gate electrode are superimposed, and the electrode layout in B is equivalent to a set of emission gratings having a pitch equal to the pitch of the reflective gate, and the induced signal wavelength is also equal to the reflective gate pitch P.
  • c and D are the results of shifting B space/8 (/4 spatial angle) and P r /4 (/2 spatial angle), respectively, so that the induced signal wavelength is the same as ⁇ , and the phase is shifted by /4.
  • the space of 8, C, D is synthesized.
  • the premise is: 1 The order of application of the driving signal is adjusted to 1-4-7-2-5-8-3-6 or 1-6-3-8-5-2-7-4; 2 will be on the reflective gate electrode The induced signal is superimposed. Therefore, when determining the displacement of the measured position within the fine wavelength, in addition to adjusting the application sequence of the driving signal, the two sets of electrodes of the coarse wavelength receiving gate are electrically connected (combined into a complete rectangle) to form a fine wavelength receiving electrode.
  • a set of electrodes electrically connecting the two sets of electrodes of the medium wavelength receiving gate to form another set of fine wavelength receiving electrodes (optional) to ensure that the induced signal on the reflective gate electrode can pass through the coarse and medium wavelength conversion gates at the receiving gate Superimposed on.
  • W f is a fine wavelength and ⁇ is a constant.
  • the controller outputs a fine wavelength measurement signal, and cuts the signal selection switch group to a position required to measure the displacement in the fine wavelength;
  • the controller outputs an initialization signal, and sets the timing logic of the driving signal generator, the synchronous delay circuit, and the synchronous capture circuit of the measuring unit to a preset initial state, and specifies the storage of the fine wavelength shift in the random access memory.
  • the synchronous delay circuit allows the addition counter to start counting
  • the synchronous capture circuit captures the count result of the addition counter and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the fine wavelength (with a fixed offset);
  • the two sets of receiving electrodes of the coarse wavelength are short-circuited as a set of receiving electrodes of a fine wavelength
  • the two sets of receiving electrodes of the medium wavelength are short-circuited by the switch as another set of receiving electrodes of a fine wavelength, and the driving after the application sequence is adjusted.
  • the signal induces two inverting received signals on the two sets of receiving electrodes, and the fundamental wave components of the following equation (q) are obtained by differential, demodulating and filtering:
  • K - F 2F sin(2;r ⁇ " h ⁇ ⁇ 2;r—— ) ( q)
  • W f is a fine wavelength
  • W f P T
  • F 2 is two received signals of fine wavelength
  • F m is the amplitude of the fundamental component of the fine wavelength received signal.
  • the time difference between the negative zero crossing of the signal and the preset phase zero is the displacement of the measured position within the fine wavelength (with a fixed offset).
  • the controller requests the interface unit to perform subsequent processing
  • the interface unit reads out the displacement data stored in the random access memory of the measuring unit, and then closes the measuring circuit;
  • the interface unit processes and displays the measurement result
  • the distance between the measured position and the measured origin within the coarse, medium, and fine wavelengths is determined.
  • the distance between the measured position and the measurement origin in the coarse, medium and fine wavelengths be x m
  • the coarse, medium and fine wavelengths are respectively W.
  • W m , W f the subdivision number of each wavelength is 2 M
  • the measured length X can be expressed as:
  • K m , ! ⁇ is an integer representing the number of medium and fine wavelengths, respectively.
  • the displacement information is transformed into the initial phase of the time fundamental wave, and the displacement of the measured position in each wavelength can be determined by a simple zero-crossing detection and addition counter, thereby no longer Requires analog-to-digital conversion and linear approximation, and also completely eliminates the inefficient trial and error method; easy to control and easy to implement;
  • the received signal is converted into a periodic waveform of time, and the harmonic component can be eliminated by a low-pass filter (second-order or second-order or higher), thus eliminating the need for a complicated sinusoidal waveform.
  • the receiving electrode can also be appropriately increased in the fine wavelength length to improve the signal-to-noise ratio (for example, 2.56 hidden pitch when using 0. 01mm resolution).
  • the displacement information is converted into an initial phase of the received signal time fundamental wave, and the measured position is determined by a simple zero-crossing detection and addition counter.
  • the displacement in each wavelength, the circuit is simple, the control is convenient, and easy to implement;
  • DRAWINGS 1 is an electrode layout diagram of Embodiment 1 of an absolute position measurement capacitive grid displacement sensor
  • Embodiment 2 is a schematic diagram of a measurement circuit of Embodiment 1 of an absolute position measurement capacitive grid displacement sensor
  • FIG. 3 is a circuit diagram of the driving signal generator torsion ring counter scheme of FIG. 2;
  • Embodiment 4 is an electrode layout diagram of Embodiment 2 of the absolute position measurement capacitive grid displacement sensor
  • Embodiment 5 is a schematic diagram of a measurement circuit of Embodiment 2 of the absolute position measurement capacitive grid displacement sensor
  • FIG. 6 is a circuit diagram of a read signal memory scheme of the driving signal generator of FIG. 5;
  • FIG. 7 is an electrode layout diagram of an embodiment 3 of an absolute position measurement capacitive grid displacement sensor
  • Embodiment 8 is a flow chart of Embodiment 1 of an absolute position measurement capacitive grid displacement sensor operation method
  • FIG. 9 is a schematic diagram showing relative positions of a measured position X and a set of emission gate electrodes and corresponding reflective gate electrodes, switching gate electrodes, and receiving gate electrodes in the operation method of the absolute position measuring capacitance displacement sensor;
  • Figure 10 is an exploded view of the emission gate electrode for fine wavelength measurement in the operation method of the absolute position measurement capacitive grid displacement sensor
  • Figure 11 is a signal waveform diagram of each step of the operation method of the absolute position measurement capacitive grid displacement sensor
  • FIG. 12 is a flow chart of Embodiment 2 of the method for operating the absolute position measurement capacitive grid displacement sensor.
  • Emitter board 1. 1. Emitter grid, 1. 2. Medium wavelength receiving grid, 1. 3. Thick wavelength receiving grid, 2. Reflector, 2. 1. Reflecting grid, 2. 2 medium wavelength conversion grid, 2. 3, coarse wavelength conversion gate, 3, first frequency divider, 4, second frequency divider, 5, drive signal generator, 5. 1, torsion ring counter, 5. 2, drive sequence selection switch, 5 3. XOR modulator, 6. Signal selection switch group, 7. Differential amplifier.
  • a sensor driving signal having a fluctuating property excites each electrode of the emission gate, and after being capacitively coupled between the emitter gate and the reflective gate, pitch conversion of the reflective gate and the switching gate, capacitive coupling of the switching gate and the receiving gate, and converted into a time-dependent period Receiving a signal, and the displacement of the measured position in each wavelength is converted into an initial phase of the fundamental time of the received signal, and the time difference between the zero-crossing point of the fundamental signal from negative to positive and the preset phase zero is obtained.
  • the displacement of the measured position within the measured wavelength is counted by an addition counter to obtain the displacement of the measured position within the measured wavelength.
  • the present absolute position measurement capacitive displacement sensor embodiment 1 is a sensor for linear displacement measurement, which provides measurement of three wavelengths of coarse, medium and fine. Its electrode layout is shown in Figure 1, including two relatively movable components, the launching plate 1 and reflection The plate 2, at least one of the transmitting plate 1 and the reflecting plate 2 is movable along the measuring axis. In this example, the transmitting plate 1 is movable along the measuring axis, and the reflecting plate 2 is fixed.
  • the second and the coarse wavelengths are respectively arranged in the direction of the measuring axis, and the two columns are arranged in the direction of the measuring axis.
  • N t is an odd number of 3 7
  • P m N m W f / (N m + N t )
  • the layout of the coarse wavelength conversion gate electrode is similar to that of the medium wavelength, and the coarse wavelength conversion gate on the reflection plate 2 is 2.3. Periodic arrangement, coarse wavelength , N.
  • N t is an odd number of 3 7
  • the second and second wavelength-connected gate electrodes are connected in series with the medium-wavelength conversion gate electrode 2.2, and the other two are connected to each other. 5 ⁇ A set of reflective gate electrodes 2. 1B through the wire and the coarse wavelength conversion gate electrode 2.3 are sequentially connected.
  • the middle-wavelength receiving gate electrode of the transmitting plate 1 is divided into two identical groups: 1. 2A and 1. 2B, arranged along the measuring axis at a pitch of 3 ⁇ staggered periods, and the electrodes of the same group are connected by wires.
  • the coarse wavelength receiving gate electrode 1. 3 is also divided into two identical groups: 1. 3A and 1. 3B, with a pitch of 3P. Arranged in staggered periods, the same group of receiving gate electrodes are connected by wires.
  • the electrodes of the emitter gate, the receiving gate, the emitter gate, and the switching grid are all rectangular in shape, and each column electrode layout has a common reference line located in the middle.
  • Thick wavelength W Limiting the maximum measurement range of the capacitive sensor, the fine wavelength W f determines the highest measurement accuracy of the capacitive sensor.
  • the ratio W / W f to the fine wavelength W f is too large. If it is larger than 32, it is easy to make an error when directly determining the integer fine wavelength included in the measured position by the coarse wavelength shift.
  • the sensor of this example reduces the ratio of adjacent wavelengths by means of the medium wavelength W m , that is, W / W m W m / W f are all less than 32, and a wide range of absolute position measurement can be realized.
  • the eight output signals of the driving signal generator 5 are respectively connected to the eight electrodes of each group of the transmitting gate, and the two outputs of the receiving gate are connected to the signal processing circuit.
  • the measurement circuit of the absolute position measurement capacitive displacement sensor of this example is shown in Fig. 2, which is divided into two parts: the interface unit and the measuring unit.
  • the measuring unit includes an oscillator, a frequency divider, a controller, a drive signal generator 5, and a signal processing circuit.
  • the interface unit includes a timer, a button interface circuit, a measurement interface circuit, a liquid crystal display drive circuit, and an arithmetic logic unit (ALU).
  • the measurement interface circuit is connected to the controller of the measurement unit and the random access memory.
  • the controller of this example is a finite state machine, and generates the following control signals: initialization signal INI, fine wavelength measurement signal FINE, medium wavelength measurement signal MED, coarse wavelength measurement signal C0ARSE, memory address ADDR, request processing signal REQo controller input connection
  • initialization signal INI fine wavelength measurement signal FINE
  • medium wavelength measurement signal MED medium wavelength measurement signal MED
  • coarse wavelength measurement signal C0ARSE memory address ADDR
  • request processing signal REQo controller input connection The output of the synchronous capture circuit, the signal WRITE receiving the output of the synchronous capture circuit, and the input clock is the master clock output by the oscillator.
  • the FINE, MED, and COARSE signals are connected to the control terminal of the signal selection switch group 6 for switching to the position required for the corresponding wavelength measurement; the drive signal generator 5 of the INI connection measurement unit, the synchronous delay circuit, and the synchronization capture circuit , used to make it in the preset initial state; ADDR connection random access memory RAM, used to specify the displacement of each wavelength in the random access memory storage address (ADDR can also be used by FINE, MED, COARSE signals); REQ connection interface unit , is used to notify the interface unit that the measurement task has been completed, and requests subsequent processing.
  • the signal processing circuit of the measuring unit comprises an analog processing circuit, a zero-crossing detecting circuit, a synchronous delay circuit, an adding counter, a synchronous capturing circuit and a random access memory; the analog processing circuit includes a signal selection switch group 6, a differential amplifier 7, and a synchronous solution.
  • the modulation circuit and the low-pass filter; the two outputs of the measured wavelength receiving gate are connected to the differential amplifier 7 via the signal selection switch group 6, and are differentially amplified and sequentially connected to the synchronous demodulation circuit, the low-pass filter, and the zero-cross detection circuit, and then Enter the sync capture circuit.
  • the signal selection switch group 6 includes a first switch Si, a second switch S 2 , a third switch S 3 , and a fourth switch S 4 .
  • the output of the set of electrodes of the coarse-wavelength receiving gates 1. 3 and the output of the set of electrodes of the intermediate wavelength receiving gates 1. 2 are connected to the two inputs of the third switch ⁇ , the coarse wavelength receiving
  • the output of the other set of the electrodes of the first and third wavelengths of the first and second wavelengths of the second switch S, the output of the second set of electrodes a common terminal 3 connected to the input terminal of the differential amplifier 7, a common terminal of the fourth switch S 4 is connected to the other input terminal of the differential amplifier 7.
  • the first switch Si is connected in two wavelength reception gate electrode output terminal 1.2 and 1. 2B 1. 2A
  • the second switch S 2 connected to the gate coarse wavelength reception of two sets of electrodes 1.3 and 1 1. 3A.
  • the oscillator generates a main clock of the measuring unit, divides the main clock 16 by the first frequency divider 3, and then accesses the sensor driving signal generator as a modulation pulse MOD, and then divides the modulation pulse MOD 2 by the second frequency divider 4.
  • the main clock of the oscillator output is also connected to the controller, the synchronous demodulation circuit, the synchronous capture circuit, and the addition counter; the phase synchronization signal of the drive signal generator 5 is connected to the synchronous delay circuit.
  • the output of the synchronous delay circuit is connected to the synchronous capture circuit and the addition counter.
  • the output of the zero-cross detection circuit C0UT is connected to the synchronous capture circuit, and the output of the synchronous capture circuit is simultaneously input to the controller and the random access memory RAM, and the output of the addition counter is used as random access. Data input to the memory RAM.
  • the measurement interface circuit of the interface unit is connected to the controller of the measurement unit and the random access memory wakes up.
  • the output order of the drive signal generator 5 is 1-2-3-4-5-6-7-8
  • the second difference of the sigma of the singularity of the singularity of the singularity of the singularity of the singularity of the singularity of the sigma The eighth output terminal Q 6 ( ) of the OR gate and the twist ring counter, the fourth XOR gate of the XOR modulator 5.3 and the eighth output terminal Q 8 (Q 4 ) of the twist ring counter 5.1.
  • the driving signal generator outputs a driving signal in the order of 1-6-3-8-5-2-7-4.
  • the driving signal generator 5 of the measuring unit of this example generates eight output signals having fluctuation properties, and forms Two drives required for coarse/medium wavelength measurements and fine wavelength measurements
  • the dynamic signal application sequence drives the eight electrodes of each group of the emitter grid.
  • the absolute position measurement capacitive displacement sensor embodiment 2 is also a sensor for linear displacement measurement, and its electrode layout is shown in FIG. 4 for two-wavelength measurement.
  • the first and second rows of coarse-grained wavelengths are provided on the radiant panel 1. 1.
  • a row of coarse-wavelength-converting gate electrodes is provided. 2 ⁇
  • the second switching gate electrode is connected to the fine-wavelength auxiliary switching gate electrode 2.2. 2 is a complete rectangle.
  • the coarse-wavelength-receiving gate electrode is divided into two identical groups: 1. 3A and 1. 3B, and a pitch of 3P. Arranged in a staggered period, the same group of receiving gate electrodes are connected by wires. Others are the same as in the first embodiment.
  • the measurement circuit of the absolute position measurement capacitive displacement sensor of this example is shown in Fig. 5, which is divided into two parts: interface unit and measurement unit.
  • the interface circuit is the same as that of Embodiment 1, and the measuring unit of this example is similar to Embodiment 1, and includes an oscillator, a frequency divider, a controller, a drive signal generator 5, and a signal processing circuit.
  • the drive signal generator 5 is as shown in FIG. 6.
  • the circuit uses an address addition counter and a read only memory ROM instead of the twist ring counter and the drive sequence selection switch of the first embodiment, and the 3-bit address addition counter and the 16-bit 8-bit only Read memory ROM and XOR modulator.
  • the data pre-stored in read-only memory is shown in Table 1 below.
  • the output Q A to Q C of the address addition counter and the control signal FINE form a 4-bit address A of the read only memory ROM.
  • ⁇ A 3 input signal, the 8-bit output of the read-only memory ROM is XOR-modulated to drive the 8 electrodes of each group of the emission gate.
  • the input signals DCLK, INI, FINE, MOD of the circuit and the functions implemented thereby are all identical to the drive signal generator of Embodiment 1, and therefore, the two can be interchanged.
  • the signal processing circuit of this example is as shown in FIG. 5. Similar to Embodiment 1, it includes an analog processing circuit, a zero-crossing detection circuit, a synchronous delay circuit, an addition counter, a synchronization capture circuit, and a random access memory.
  • the analog processing circuit includes a signal selection switch group 6, a differential amplifier 7, a synchronous demodulation circuit, and a low pass filter.
  • the signal selection switch group 6 of this example includes a first switch Si and a second switch S 2 , an output end of the fine wavelength auxiliary receiving gate electrode 1.2 and a set of electrodes of the coarse wavelength receiving gate 1.
  • the output ends of the 3A are respectively connected 2, the two inputs of the switch ⁇ , the common end of the second switch ⁇ is connected to one input of the differential amplifier, the other set of electrodes of the coarse wavelength receiving gate 1.3 is 1.
  • the output of the 3B is connected to the other input of the differential amplifier .
  • the input of the two sets of electrodes 1. 3A, 1. 3B of the coarse wavelength receiving gate and the output of the electrode of the fine wavelength auxiliary receiving gate 1.2 are connected to the input of the differential amplifier 7 End, providing two inverted receive signals for fine wavelength measurements.
  • the absolute position measurement capacitive displacement sensor embodiment 3 is a sensor for angular displacement measurement, and its electrode layout is as shown in FIG. 7.
  • the electrode layouts of the emission grating, the receiving gate, the reflection grating, and the conversion grid are spread along a concentric circumference, and the electrode section Calculated from the angle of the center of the concentric circle of the arc.
  • the other electrode layout is the same as in the first embodiment.
  • the measurement circuit of this example is the same as that of the first embodiment.
  • the operation method of the absolute position measurement capacitive displacement sensor is directed to the above-described absolute position measurement capacitive displacement sensor embodiment 1.
  • the flow chart of the method is shown in FIG. 8
  • the waveform diagram of the signal in each step is as shown in FIG. 11 . as follows:
  • the timer of the interface unit starts the measuring unit at a predetermined measurement frequency
  • the output of the two sets of electrodes 1. 3A and 1. 3B of the receiving gate 1.3 is connected to the input of the differential amplifier;
  • the controller outputs the initialization signal INI, and sets the timing logic of the driving signal generator, the synchronous delay circuit and the synchronous capture circuit of the measuring unit to a preset initial state; the initialization signal INI of the controller will be synchronously delayed.
  • the output of the circuit SDLY is cleared.
  • the low level SDLY keeps the addition counter clear.
  • the initialization signal INI also clears the output of the synchronous capture circuit WRITE.
  • the controller also outputs the ADDR signal, specifying the coarse wavelength shift in random access.
  • the drive signal generator starts to output a valid sensor drive signal
  • the main components of the driving signal generator of this example are a twist ring counter, a drive sequence selection switch and an exclusive OR modulator.
  • the signal generated by the twist ring counter is of the formula (c)
  • Two drive sequence selection switches are connected to the second XOR gate and the second output terminal Q 2 of the torsion ring counter, and the other is connected to the fourth XOR gate and the fourth output terminal Q 4 of the torsion ring counter,
  • the output signal of the XOR-modulated drive signal generator is applied in the order of 1-2-3-4-5-6-7-8; the output signal of the drive signal generator is the drive signal of the sensor.
  • the driving signal of the fluctuating nature passes through the capacitive coupling of the transmitting gate and the reflective gate, the pitch conversion of the reflective gate and the switching gate, the capacitive coupling of the switching gate and the receiving gate, and the two receiving signals of the receiving gate electrode of the coarse wavelength pass through the analog processing circuit
  • the processing of the differential amplifier, the synchronous demodulation circuit, and the low-pass filter is regenerated and restored to the fundamental wave signal of the time period as described in the expression (k) (see the Summary of the Invention), and the fundamental signal has been
  • the displacement of the measured position within the coarse wavelength is converted to its initial phase.
  • the synchronous delay circuit allows the addition counter to start counting at a predetermined phase of the driving signal, that is, a preset phase zero after a predetermined time of applying the driving signal;
  • the rising edge of the selected Q N is the preset phase zero, and the delay time NJ is used to wait for the signal to stabilize.
  • the synchronous capture circuit synchronously captures the count result of the addition counter on the valid edge of the zero-cross detection signal and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the coarse wavelength (with fixed offset Transfer amount);
  • the zero-crossing detection circuit converts the fundamental wave signal processed by the analog processing circuit into a square wave signal COUT for digital processing.
  • the effective edge of the square wave signal corresponds to the zero-crossing of the fundamental signal from negative to positive, so the time difference between the effective edge of the square wave signal and the preset phase zero represents the displacement of the measured position within the coarse wavelength (with fixed Offset), this time difference can be measured with the addition counter.
  • a driving signal having a wave property is transmitted through the electrode layout of the present invention, and two sets of inverted signal receiving signals d, C 2 are induced in two sets of coarse wavelength receiving gates, which are differentially, demodulated, and filtered to obtain equation (k).
  • the time difference between the zero-crossing of the signal from negative to positive and the preset phase zero (the time at which the addition counter starts counting) is the displacement of the measured position within the coarse wavelength (with a fixed offset), so
  • the result of counting the addition counter of the valid edge of the zero-crossing detection signal is the displacement of the measured position within the coarse wavelength ( Xl , 3 ⁇ 4 in Fig. 11, and the two are equal after 2 M ).
  • the initialization signal INI clears the output WRITE of the synchronous capture circuit. Only when the output SDLY of the synchronous delay circuit is active (high level), the valid edge (rising edge) of the output C0UT of the zero-crossing detection circuit can be in the non-main clock.
  • the counting edge (falling edge) triggers the valid WRITE signal, and the valid edge (rising edge) of the WRITE signal writes the counting result of the addition counter to the specified unit of the random access memory, which is the displacement of the measured position within the coarse wavelength (with Fixed offset).
  • the controller When the WRITE signal has a valid edge (rising edge) transition, indicating that the current wavelength measurement has been completed, the controller performs state transition according to the set order:
  • the sequence set in this example is COARSE ⁇ MED ⁇ FINE ⁇ REQ, coarse
  • the order of displacement measurement in the medium, medium and fine wavelengths can be arbitrarily selected.
  • the third switch S 3 is connected to the output terminal 1. 2A
  • the first switch 4 is connected to the output terminal ⁇ 1. 2B, i.e., the signal selection switch 6 sets the reception wavelength of the gate 1.2
  • the output terminals of the two sets of electrodes 1. 2A and 1.2B are connected to the input of the differential amplifier;
  • the controller output initialization signal INI, sets the timing logic of the measurement unit to a preset initial state, and specifies the address of the memory cell whose medium wavelength shift is in the random access memory;
  • the drive signal generator begins to output a valid sensor drive signal ⁇ 6 8;
  • the synchronous delay circuit allows the addition counter to start counting
  • the synchronous capture circuit captures the count result of the addition counter and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the medium wavelength (with a fixed offset);
  • the third switch S 3 is connected to the output end of the 1. 2A
  • the fourth switch is connected to the output end of the 1. 3B
  • the first and second switches S 2 respectively receive the coarse and medium wavelength receiving gates 1. 2, 1. 3
  • the two sets of electrodes 1. 3A, 1. 3B, the two groups of electrodes 1. 3A, 1. 3B The combined output and the combined output of the two sets of electrodes 1. 2A, 1. 2B of the medium wavelength receiving gate 1.2 are connected to the input of the differential amplifier to provide two inverted receiving signals for fine wavelength measurement;
  • the controller outputs an initialization signal, sets the timing logic circuit of the measurement unit to a preset initial state, and specifies the address of the storage unit with a fine wavelength shift in the random access memory;
  • the drive signal generator begins to output a valid sensor drive signal
  • the output ⁇ drives the eight electrodes of each group of the sensor emission grid.
  • the synchronous delay circuit allows the addition counter to start counting
  • the synchronous capture circuit captures the count result of the addition counter and writes it to the designated unit of the random access memory, that is, the displacement of the measured position within the fine wavelength (with a fixed offset);
  • the two sets of receiving electrodes of the coarse wavelength are short-circuited by a switch as a set of receiving electrodes of a fine wavelength, and the two groups of the middle wavelength are connected.
  • the collector switch is short-circuited as another set of receive electrodes of fine wavelength, and the drive signal after the application sequence is adjusted to induce two inverted receive signals on the two sets of receive electrodes, after being differentially, demodulated, and filtered.
  • W f is a fine wavelength
  • W f , and ⁇ is a constant.
  • the time difference between the negative zero crossing of the signal and the preset phase zero is the displacement of the measured position within the fine wavelength (with a fixed offset).
  • the controller requests the interface unit to perform subsequent processing
  • the interface unit reads out the wavelength shift data stored in the random access memory of the measuring unit, and then closes the measuring circuit;
  • the distance between the measured position and the measured origin within the coarse, medium, and fine wavelengths is determined.
  • the distance between the measured position and the measurement origin in the coarse, medium and fine wavelengths be x m
  • the coarse, medium and fine wavelengths are respectively W.
  • W m , W f the subdivision number of each wavelength is 2 M
  • the measured length X can be expressed as:
  • K m and K f are integers, representing the number of medium and fine wavelengths, respectively.
  • (r) is two simultaneous equations, which can uniquely determine the two unknowns K m , K f , and therefore the measured length with the highest measurement accuracy:
  • the interface unit displays the measurement results via a liquid crystal display (LCD) according to user requirements.
  • LCD liquid crystal display
  • the two received signals of the respective wavelengths of the receiving gate electrode are input to the differential amplifier through the signal selection switch group, and the differentially amplified signals are sequentially processed by the synchronous demodulation circuit, the low pass filter, and the zero crossing detection circuit.
  • the synchronous capture circuit Converted into a square wave signal, the synchronous capture circuit generates a synchronous capture signal according to the square wave signal and the output of the synchronous delay circuit, captures the counting result of the addition counter on the non-counting edge of the main clock and writes it to the designated unit of the random access memory
  • the controller uses the synchronous capture signal to generate a control signal required to measure the displacement within the next wavelength or to request an interface unit for subsequent processing.
  • the controller After the measuring unit sequentially performs the measurement of the displacement of the measured position in the coarse wavelength, the medium wavelength, and the fine wavelength, the controller requests the interface unit to perform subsequent processing.
  • the interface unit reads the displacement value in each wavelength from the random access memory of the measurement unit and then turns off the measurement unit, and then calculates the absolute position according to the displacement value in each wavelength, and performs other conventional processing according to the user's request (by key input) (eg: Measurement unit conversion, setting measurement origin, etc.), driving the liquid crystal display (LCD) to display measurement results.
  • key input eg: Measurement unit conversion, setting measurement origin, etc.
  • the operation method of the absolute position measurement capacitive displacement sensor is directed to the above embodiment 2 of the absolute position measurement capacitive displacement sensor.
  • the flow chart of the method is shown in FIG. 12, and the main steps are as follows:
  • step II - ii the same as step II - ii of embodiment 1;
  • the drive signal generator starts to output a valid sensor drive signal
  • the main components of the drive signal generator of this example are a read only memory, a 3-bit address addition counter, and an exclusive OR modulator.
  • the read only memory (ROM) sequentially and cyclically outputs the data stored in the first 8 cells. , 8-bit data D output from the read-only memory (ROM).
  • the drive signal generator After XOR modulation, the drive signal generator outputs a sensor drive signal with a sequence of 1-2-3-4-5-6-7-8.
  • the drive signal generator begins to output an effective sensor drive signal
  • the read only memory (ROM) sequentially and cyclically outputs the data stored in the last 8 cells. , 8-bit data D output from the read only memory (ROM).
  • the sensor application signals ⁇ 6 8 in the order of 1-6-3-8-5-2-7-4 are output.
  • the controller requests the interface unit to perform subsequent processing
  • the interface unit reads off the displacement data stored in the random access memory of the measuring unit, and then closes the measuring circuit;
  • the measured length X can be expressed as:
  • is an integer representing the number of fine wavelengths. Therefore the measured length with the highest measurement accuracy:
  • the interface unit displays the measurement results via the liquid crystal display (LCD) according to user requirements.
  • the operation method of the absolute position measurement capacitive displacement sensor is directed to the above-described absolute position measurement capacitive displacement sensor embodiment 3.
  • the operation method of this example is the same as that of the operation method embodiment 1, except that the relative relationship between the emission plate 1 and the reflection plate 2 is The displacement is caused by the rotation of the two centers of the same concentric circle.

Description

绝对位置测量容栅位移测量方法、 传感器及其运行方法 技术领域
本发明涉及电容式位移测量技术, 具体是一种绝对位置测量容栅位移测量方法、 传 感器及其运行方法。
背景技术
容栅位移传感器以其低成本、小体积、微功耗等特点在线性 /角度位移测量领域获得 了广泛的应用。 从实现原理上分, 目前的容栅位移传感器可分为相对位置测量 (增量式) 和绝对位置测量(绝对式)两大类。增量式容栅位移传感器的应用已约三十年, 该类传感 器需快速累加位移量, 故存在测量速度限制 (小于 1. 5m/s @150KHz ) 和连续不间断测量 (从而限制了工作电流的进一步降低)两个缺点, 正被逐步淘汰。绝对式容栅位移传感器 由日本三丰公司首创, 其实现方法详见专利 CN8910605U US5053715、 CN92101246、 CN93117701 o 该类传感器采用两个或两个以上的码道(波长)进行绝对定位, 消除了对位 移量的快速累加要求, 工作在间歇测量状态(约 8次 /秒), 从而克服了增量式测量的主要 缺陷。 但现有的绝对式容栅位移传感器存在以下不足:
1、 传感器驱动信号为静态的(与时间无关)空间分布波形, 解调后的接收信号与时 间无关 (直流信号), 不能通过信号处理技术削弱谐波影响;
2、 为减小谐波分量需采用制作难度大的正弦波形电极;
3、 各波长内的位移量确定需要对两个正交的信号进行模 /数转换;
4、 各波长内的位移量确定需进行反正切 (arctg) 运算, 超出一般微控制器 (MCU) 的实时处理能力。 为减轻 MCU的处理负荷, 只得使用线性近似;
5、 为减小线性近似误差需反复试探传感器驱动信号, 以使接收信号处于零点附近;
6、 为减小线性近似误差和弥补谐波分量影响需采用较小的细波长 (0. 01mm分辨率 时 1· 024mm);
7、 各波长内的位移量确定彼此牵制, 相互影响, 快速移动时算法不收敛; 总之现有的绝对式容栅位移传感器需要以微控制器(MCU)为核心, 软件依赖于低效 率的试探方法, 外围需要复杂的模 /数转换、 正弦波形电极等技术支持, 常规的单片机应 用系统确实可满足上述软、 硬件要求, 但要将该系统集成 (做成单片 ASIC) 安装在手持 式的测量工具上, 得到同时满足低成本、 小体积、微功耗且能规模化生产的产品, 并非易 事。
专利 ZL200710050658介绍了一种用于绝对位置测量的圆容栅传感器,该专利方案可 用于布局空间较大的角度测量;但利用单片机对两套独立的增量式容栅系统的测量结果进 行二次处理, 成本、体积、功耗均是一般增量式容栅系统的数倍, 虽然对增量式容栅系统 的功能有所扩展, 但并未能解决增量式测量的固有弱点。
发明内容
本发明的目的是公开一种绝对位置测量容栅位移测量方法, 具有波动性质的传感器 驱动信号经过发射栅与反射栅的电容耦合、反射栅和转换栅的节距转换、转换栅和接收栅 的电容耦合后被变换成随时间周期变化的接收信号,并且被测位置在各波长内的位移被转 化为接收信号时间基波的初相位,该基波信号从负到正的过零点与预设的相位零点之间的 时间差即为被测位置在所测波长内的位移,用加法计数器计数得到该时间差, 由此得到被 测位置在所测波长内的位移。
本发明的另一目的是设计一种采用本发明绝对位置测量容栅位移测量方法的绝对位 置测量容栅位移传感器及其运行方法,本容栅位移传感器有实现多波长定位的转换栅和接 收栅, 在具有波动性质的驱动信号激励下, 将被测位置变换成正弦波的初相位, 然后通过 加法计数器得到被测位置在各波长内的位移。 电路简单, 易于集成, 可实现低成本的规模 化生产。
本发明设计的绝对位置测量容栅位移测量方法,是采用具有波动性质的驱动信号激励 发射栅各电极, 经过发射栅与反射栅的电容耦合、反射栅和转换栅的节距转换、转换栅和 接收栅的电容耦合后,变换成随时间周期变化的接收信号,并且被测位置在各波长内的位 移被转化为接收信号时间基波的初相位,由该基波信号从负到正的过零点与预设的相位零 点之间的时间差即得到被测位置在所测波长内的位移, 用加法计数器计数得到该时间差, 从而得到被测位置在所测波长内的位移。
采用本发明的绝对位置测量容栅位移测量方法设计的绝对位置测量容栅位移传感器 包括可相对移动的发射板和反射板以及测量电路,发射板和反射板中至少有一个能沿测量 轴线移动。在发射板沿测量轴线方向布有一列周期排列的电极, 为发射栅; 在反射板上沿 测量轴线方向布有一列周期排列的电极,为反射栅。发射板和反射板之间的相对位置变化 使发射栅与反射栅之间的电容耦合随之变化。
反射板上还布有与反射栅有序连接的两列周期排列的电极,为转换栅,用于产生所需 的测量波长; 发射板上也布有与转换栅进行电容耦合的两列周期排列的电极, 为接收栅, 用于产生反映被测位置在各波长内位移的接收信号。
发射栅电极每 N个一组, N为整数, 3 N 16, 一般取 8, 电极按间距 Pt/N周期排列, N个一组的发射栅节距为 Pt, Pt为细波长 Wf的 Nt倍, Nt为 3〜7的奇数, 兼顾信号合成和 波长转换要求, 一般优选 Nt=3, 即 Pt=3Wf
反射板上的反射栅电极分为 2组按间距 交错周期排列, = Wf ; 反射板上的转换 栅电极沿测量轴线按各自间距周期排列, 2组反射栅电极通过导线分别与 2列转换栅电 极依次相连。
所述发射栅、 接收栅、 反射栅、 转换栅电极的形状为矩形、 三角形、 正弦波等形状, 一般选择易于制作的矩形。各列电极布局均参照共同的基准线, 为方便连线, 基准线宜选 在中部区域。
将发射栅、接收栅、 反射栅、转换栅的电极布局沿同心园周展开, 电极节距按角度计 算,发射板和反射板之间的相对位移是二者以同心圆圆心为基点的相对转动,本发明即可 应用于角位移测量。
本发明设计的绝对位置测量容栅位移传感器的测量电路分为接口单元和测量单元两 部分。测量单元包括驱动信号发生器和信号处理电路。接口单元包括定时器、按键接口电 路、 测量接口电路、 显示驱动电路及算术逻辑部件 (ALU)。
所述测量单元还包括振荡器、分频器和控制器,所述驱动信号发生器是产生具有波动 性质的传感器驱动信号的驱动信号发生器;所述测量单元的振荡器输出的主时钟经分频器 接入该驱动信号发生器,该驱动信号发生器产生的具有波动性质的 N路输出信号,分别与 发射栅各组的 N个电极相连;
本发明测量单元的信号处理电路包括模拟处理电路、 过零检测电路、 同步延时电路、 加法计数器、 同步捕捉电路和随机访问存储器。模拟处理电路包括信号选择开关组、差分 放大器、同步解调电路和低通滤波器。所测波长接收栅的两路输出经信号选择开关组接入 差分放大器, 差分放大后依次连接同步解调电路、低通滤波器、过零检测电路, 之后输入 同步捕捉电路;
振荡器输出的主时钟还接入控制器、 同步解调电路、 同步捕捉电路、加法计数器; 来 自驱动信号发生器的相位同步信号接入同步延时电路;
同步延时电路的输出与同步捕捉电路和加法计数器相连,过零检测电路的输出接入同 步捕捉电路, 同步捕捉电路的输出连接控制器和随机访问存储器,加法计数器的输出作为 随机访问存储器的数据输入;
接口单元的测量接口电路连接测量单元的控制器和随机访问存储器;
所述控制器产生各种控制信号,包括初始化、位移测量、存储器地址及请求处理信号, 各输出分别连接随机访问存储器、驱动信号发生器、信号选择开关组以及接口单元的测量 接口电路。 控制器的输入端连接同步捕捉电路的输出端,其输入时钟连接振荡器输出的主 时钟。
本发明测量单元的驱动信号发生器可以采用扭环计数器方案, 主要组成为扭环计数 器、驱动顺序选择开关和异或调制器。振荡器的输出经分频器后接入驱动信号发生器, 作 为扭环计数器和异或调制器的输入时钟, 扭环计数器产生具有波动性质的 N路输出信号, 通过驱动顺序选择开关输入异或调制器, 以形成粗 /中波长测量和细波长测量所需的两种 驱动信号施加顺序, 异或调制器的 N路输出连接发射栅各组的 N个电极。
本发明测量单元的驱动信号发生器也可以采用只读存储器 (ROM) 方案, 主要组成为 地址加法计数器、 只读存储器 (ROM) 和异或调制器。 振荡器输出的主时钟经分频器后接 入地址加法计数器作为其计数时钟,地址加法计数器的输出和细波长测量信号一起构成只 读存储器的读出地址,只读存储器输出的 N位数据输入异或调制器,异或调制后的 N路输 出连接发射栅各组的 N个电极。
根据期望的最大测量范围, 可选择两波长或三波长测量。采用三波长测量时, 转换栅 和接收栅各设两列,反射板的两列转换栅分别称为中波长转换栅和粗波长转换栅。与之对 应的发射板的两列接收栅分别称为中波长接收栅和粗波长接收栅。反射板上的中波长转换 栅电极沿测量轴按间距 Pm周期排列, 中波长转换栅节距 ^小于反射栅节距 P" 通过电极 排列和激励方法, 可得中波长 Wm=PtPm/ (P「Pm), 设 = \^, Pt=NtWf, 为整数, 为3〜 7的奇数, 则 Pm =Nm Wf/ (Nm+ Nt) , 当 Nm=16, Nt=3, 则 Pm =16 Wf /19。 与之对应的发射板 上的中波长接收栅电极分为完全相同的 2组沿测量轴按间距 NtPm交错周期排列,同属一组 的接收栅电极通过导线相连。 粗波长转换栅和粗波长接收栅的电极布局与中波长情况类 似, 设粗波长 W。= N , Pt=NtWf, N。为整数, Nt为 3〜7的奇数, 则粗波长转换栅电极间距 Pc =NcWf/ (Nc+ Nt) , 当 Nc=256, Nt=3, 则 P。 =256 Wf /259, 粗波长接收栅电极也分为完全 相同的两组按间距 NtP。交错周期排列, 同属一组的接收栅电极通过导线相连。
采用两波长测量时, 转换栅和接收栅也设 2对。 电极布局与三波长测量类似, 只是将 原来的中波长转换栅和中波长接收栅改作细波长辅助转换栅和细波长辅助接收栅。
本发明绝对位置测量容栅位移传感器的运行方法如下:
接口单元按预定的测量频率启动测量单元,具有波动性质的驱动信号经过发射栅与反 射栅的电容耦合、反射栅和转换栅的节距转换、转换栅和接收栅的电容耦合后被变换成随 时间周期变化的接收信号 (同步解调后), 并且被测位置在各波长内的位移被转化为接收 信号 (同步解调后) 时间基波的初相位。
各波长接收栅电极输出的两路接收信号经信号选择开关组输入差分放大器,差分放大 后的信号依次经过同步解调电路、 低通滤波器、 过零检测电路处理后被转换成方波信号, 同步捕捉电路根据该方波信号和同步延时电路的输出产生同步捕捉信号,在主时钟的非计 数沿捕捉加法计数器的计数结果并将其写入随机访问存储器的指定单元,控制器利用同步 捕捉信号产生测量下一个波长内位移所需的控制信号或请求接口单元进行后续处理。
同步延时电路控制加法计数器的计数,仅当施加有效驱动信号预定时间之后且在驱动 信号的预定相位, 即预设的相位零点, 才允许加法计数器开始计数, 加法计数器对振荡器 输出的主时钟计数。
控制器(状态机)产生各种控制信号, 包括初始化、 细波长位移测量、 中波长位移测 量、粗波长位移测量、存储器地址及请求处理信号, 用来协调测量电路的工作或请求接口 单元进行后续处理。
测量单元依次完成被测位置在粗波长、 中波长、细波长内位移的测量后, 控制器请求 接口单元进行后续处理。接口单元从测量单元的随机访问存储器读出各波长内的位移值后 随即关闭测量单元, 然后根据各波长内的位移值计算绝对位置、按照用户要求(通过按键 输入)进行其它常规处理(如: 测量单位转换、设置测量原点等)、驱动液晶显示器(LCD) 显示测量结果。
本发明绝对位置测量容栅位移传感器的运行方法主要步骤如下:
本步骤针对的绝对位置测量容栅位移传感器的反射板设有粗波长转换栅和中波长转 换栅, 与之对应的发射板设有粗波长接收栅和中波长接收栅, 采用粗、 中、 细三种波长进 行绝对测量。
I、 接口单元的定时器按预定测量频率启动测量单元;
II、 确定被测位置在粗波长内的位移;
随时间 t以周期 T匀速扫过一个发射栅节距的传感器驱动信号 (异或调制前) 可表 X
E(x,t) = E ύη(2π一― 2π—) (a)
Ρ Τ
由傅里叶级数理论可知, 表达式 (a) 是下列函数的基波分邐
il E(x,t)>0
B(x,t) = \ (b)
[θ E(x,t)<0
将表达式 (b)的信号对空间 x和时间 t分别以周期 Pt/N、T/N采样,可得序列 B (xm, :
. . m ft、 ^
1 siniz^" 2π— ) > ϋ
N N
B(xm „) (c)
0 sin(2^-—— 2^-— )≤0
N N 式中: m、 n为整数, 且 0 m N-l, 0 η Ν_1。
根据采样定理, 当N 3时, 表达式 (a)可由离散后的信号序列 (c)再生还原, 因 此, 将离散信号序列 B(xm,tn)用作传感器驱动信号, 经再生滤波后的响应信号完全等同于 用表达式 (a) 驱动。
参见图 9, 设发射栅一个节距 Pt上的驱动信号按表达式 (a) 变化, Pt=3P" 被测位 置 (即发射板基准线) 距反射板基准线的距离为 X:
x = Rx3P +y0 =Sx3P +x0 (d)
式中 R、 S为整数, χ。为发射板基准线与每 3个节距一组的反射栅电极组前沿的距离, y。为发射板基准线与每 3个节距一组的转换栅电极组前沿的距离。
由电容分压公式可知粗波长转换栅三个转换电极上感生的电压为:
— W2 t χ
U, =K \ E(x,t)dx = Um sin(2^-- +— + 2π^) (e)
l I m τ f, 3
2π..
E(x, t)dx = Um sin(2^— +— + 2π— (f)
T 6 3P 3
0+5Pr/2
、 , " . , Ϊ xx0(、 4 Aπn .、
t)dx = Um sin(2^— +— + 2π— ) (g)
2 T 6 3P 3 ^ 式中 K为比例系数, 并已假定 Pt=3 。
Ι 、 U2、 U3的相位彼此相差 2n/3, 与其电极的空间位置一致, 故可认为是下列函数 以周期 Ρ。对变量 X采样后的结果: U(x,t) = U 5Ϊη(2π- +— + 2π^ ■2π—) (h)
T 6 3P 3P
因此, 推导接收信号基波分量时可认为粗波长转换栅上的电压分布按表达式(h)变 化。 粗波长接收栅与粗波长转换栅进行电容耦合, 同理可得两组接收电极上的感生电压:
Cx =Kt \ U (x, t)dx = Cm sin[(2^-- + - - 2π (; )] (i)
J T 3 3P 3P
+3
U (x,t)dx -C sin[(2^—— h --2π(^-^)]
m T T 3 3P 3P 式中 Kt为比例系数。 粗波长接收栅两组接收电极上的基波信号大小相等、 相位相反, 故信号处理时对两路接收信号差分 (d-c , 将 (d) 式代入:
C -C2 = 2C sin[(2;r丄 + - _ 2π (―——―)]
1 2 m T 3 3P 3P
2C sin(2^—— I 2π—— ) (k) m T 3 W
PPc
式中: W =3- (1)
P -P 为粗波长。 j
确定粗波长内位移的具体步骤如下:
II- i、 测量单元的控制器输出粗波长测量信号, 将信号选择开关组切至测量粗波长 内位移所需的位置;
II-ii、 控制器输出初始化信号, 将测量单元的驱动信号发生器、 同步延时电路、 同 步捕捉电路的时序逻辑均置为预定的初始状态,同时指定粗波长位移在随机访问存储器中 的存储单元的地址;
II_iii、 驱动信号发生器开始输出有效的传感器驱动信号;
驱动信号发生器输出的传感器驱动信号是对表达式 (c) 进行异或调制后的结果。
II_iv、 同步延时电路在施加驱动信号预定时间后, 在驱动信号的预定相位, 即预设 的相位零点,允许加法计数器开始计数。同步延时电路的作用一是设定测量的相位参考点, 二是等待信号稳定后才开始计数。
II-v、 同步捕捉电路在过零检测信号的有效沿同步捕捉加法计数器的计数结果并将 其写入随机访问存储器的指定单元,此即被测位置在粗波长内的位移(带有固定偏移量); 波动性质的驱动信号通过本发明的电极布局传递,在两组粗波长接收栅感生两路反相 的接收信号, 对其差分、 解调、 滤波后得下式 (k) 的基波分量:
C「C2= 2Cm 8ϊη[(2π + ^-2π( - )
=2C sin(2;r丄 + _2;τ丄) (k)
m T 3 Wc p p
式中: w =3~^^ (1)
P -Pc
Wc为粗波长, 且已假定 Pt=3P" d、 C2是粗波长的两路接收信号, ( 是粗波长接收信 号基波分量幅值
该信号从负到正的过零点与预设的相位零点 (加法计数器开始计数的时刻) 之间的 时间差即为被测位置在粗波长内的位移 (带有固定的偏移量), 因此在过零检测信号的有 效沿同步捕捉加法计数器的计数结果即为被测位置在粗波长内的位移。
III、 确定中波长内的位移;
III- i、 控制器输出中波长测量信号, 将信号选择开关组切至测量中波长内位移所需 的位置;
III- ii、 控制器输出初始化信号, 将测量单元的驱动信号发生器、 同步延时电路、 同 步捕捉电路的时序逻辑置为预设的初始状态,同时指定中波长位移在随机访问存储器中的 存储单元的地址;
III-iii、 驱动信号发生器开始输出有效的传感器驱动信号;
III- iv、 同步延时电路允许加法计数器开始计数;
III- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在中波长内的位移 (带有固定偏移量);
与步骤 Π-ν类似, 中波长:
ρ ρ
W =3-^≡- (m)
P -Pm
IV、 确定细波长内的位移;
发射栅节距 Pt与反射栅节距 不同, 欲使细波长 Wf=PT, 需要调整传感器驱动信号的 施加顺序。 参见图 10的电极分解图, A所示为常规的三组发射栅电极, 当顺序施加传感 器驱动信号时, 反射栅电极上将感生波长等于反射栅节距 的电压信号。 从 A所示的三 组发射栅电极中每三个电极抽出一个得到电极布局如 B所示, B中电极的驱动信号与 A相 同, 数量刚好构成一组, 因此, 如将对应的三个反射栅电极上的信号叠加, B中的电极布 局等效于一组节距等于反射栅节距 的发射栅,感生的信号波长也等于反射栅节距 P。 c、 D分别是对 B空间移位 /8 ( /4空间角)、 Pr/4 ( /2空间角) 的结果, 因而其感生的 信号波长与 Β相同, 相位依次移位 /4。 将8、 C, D空间合成得 Ε, Ε的发射栅电极节距 已展宽为 3Pr= Pt, 驱动信号与 A 相同, 但施加顺序已变成 1-4-7-2-5-8-3-6 或 1-6-3-8-5-2-7-4 (反序)。
综上所述, 由发射栅节距?4=3 可以感生波长等于反射栅节距 的信号。 前提是: ①驱动信号的施加顺序调整为 1-4-7-2-5-8-3-6或 1-6-3-8-5-2-7-4;②将反射栅电极上 的感生信号叠加。 因此, 当确定被测位置在细波长内的位移时, 除需调整驱动信号的施加 顺序外, 还需将粗波长接收栅的两组电极电气连接(合并成完整的矩形)构成细波长接收 电极的一组、将中波长接收栅的两组电极电气连接构成细波长接收电极的另一组(可选), 以确保反射栅电极上的感生信号能够通过粗、 中波长转换栅在接收栅上叠加。
经过以上处理后, 表达式(a)按施加顺序 1-4-7-2-5-8-3-6驱动传感器时的等效信
E (x, t) = E sin(2;r 2π—) ( n )
E P T
此时在细波长两组接收电极上的感生电压:
E = -F2 = K[ ί Ee ( , t)dx + ί Ee ( , t)dx + 3TT
F sin(2^—— I l· 2π— ) ( o)
M T 4 P
同理可得按施加顺序 1-6-3-8-5-2-7-4驱动传感器时在细波长两组接收电极上的感 压:
Fx = -F2 = K[ J Ee (-x, t)dx + J Ee (-x, t)dx + J Ee (-x, t)dx]
F sin(2^-—— T (P)
M T P
综合 (0)、 (p), 可得细波长差分信号: K - F0 = 2F sin(2;r―" h < ± 2;r—— ) ( q)
1 2 m T Wf
式中: Wf= 为细波长, α为常数。
确定细波长内位移的具体步骤如下:
IV- i、 控制器输出细波长测量信号, 将信号选择开关组切至测量细波长内位移所需 的位置;
IV- ii、 控制器输出初始化信号, 将测量单元的驱动信号发生器、 同步延时电路、 同 步捕捉电路的时序逻辑置为预设的初始状态,同时指定细波长位移在随机访问存储器中的 存储单元的地址;
IV-iii、 驱动信号发生器开始输出有效的传感器驱动信号; 为合成所需的接收信号, 其施加顺序在 N=8、 Pt=3Pr 时由粗 /中波长测量时的 1-2-3-4-5-6-7-8 调整为 1-6-3-8-5-2-7-4 (反序) 或 1-4-7-2-5-8-3-6。
IV_iv、 同步延时电路允许加法计数器开始计数;
IV- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在细波长内的位移 (带有固定偏移量);
将粗波长的两组接收电极用开关短接作为细波长的一组接收电极,将中波长的两组接 收电极用开关短接作为细波长的另一组接收电极,则调整施加顺序后的驱动信号在这两组 接收电极上感生两路反相的接收信号, 对其差分、解调、滤波后可得下式 (q)的基波分量:
K - F = 2F sin(2;r―" h < ± 2;r—— ) ( q)
1 2 m T Wf
式中: Wf为细波长, Wf=PT, F2是细波长的两路接收信号, Fm是细波长接收信号 基波分量幅值。
该信号从负到正的过零点与预设的相位零点 (加法计数器开始计数的时刻) 之间的 时间差即为被测位置在细波长内的位移 (带有固定偏移量)。
V、 控制器请求接口单元进行后续处理;
VI、 接口单元读出保存在测量单元随机访问存储器中的位移数据后关闭测量电路;
VII、 接口单元处理、 显示测量结果;
当被测位置在粗、 中、 细波长内的位移确定以后, 被测位置与测量原点在粗、 中、 细波长内的距离随之确定。 设被测位置与测量原点在粗、 中、 细波长内的距离分别为 、 xm , 粗、 中、 细波长分别为 W。、 Wm、 Wf, 各波长的细分数均为 2M, 则被测长度 X可表示 为: 式中: Km、 !^为整数, 分别表示中波长和细波长的个数。
因此具有最高测量精度的被测长度:
w
X ~ K W + KfWf + Xf ^r ( S ) 代入 0. 01隱分辨率时的优选参数: Wc=256Wf, Wm=16Wf, Wf=2. 56mm, 2M=256 :
jc [(16^ + ^ ) x 256 + ] x 0.01mm。 所述确定粗、 中、 细波长内位移的步骤 II、 III、 IV的顺序先后是任意的。
本发明绝对位置测量容栅位移测量方法的优点为:
1、在具有波动性质的传感器驱动信号的激励下, 位移信息被变换为时间基波的初相 位,可通过简单的过零检测和加法计数器确定被测位置在各波长内的位移,从而不再需要 模 /数转换和线性近似, 同时也完全摆脱了低效率的反复试探方法; 控制方便、易于实现;
2、在具有波动性质的传感器驱动信号的激励下,接收信号被转换成时间的周期波形, 可通过低通滤波器(二阶或二阶以上)消除谐波分量, 因而无需复杂的正弦波形的接收电 极,同时还可适当增大细波长长度以提高信噪比(如: 0. 01mm分辨率时采用 2. 56隱节距)。
本发明的绝对位置测量容栅位移传感器及其运行方法的优点为:
1、在扭环计数器或只读存储器产生的具有波动性质的传感器驱动信号的激励下, 将 位移信息变换为接收信号时间基波的初相位,通过简单的过零检测和加法计数器确定被测 位置在各波长内的位移, 电路简单、 控制方便、 易于实现;
2、 通过低通滤波器(二阶或二阶以上)消除接收信号中的谐波分量, 接收电极可选 择易于制作的矩形, 大大降低制作难度, 同时也减小了测量误差, 因此还可适当增大细波 长长度以提高信噪比 (如: 0. 01隱分辨率时采用 2. 56隱节距);
3、 由于采用间歇工作的多波长定位, 克服了增量式测量的不足, 功耗低且无测量速 度限制;
4、 各波长内的位移量确定均由硬件完成, 彼此独立, 既简化了处理, 也消除了软件 算法不收敛问题;
5、 确定被测位置在粗、 中、 细波长内的位移共用相同的测量电路和方法, 所有处理 均顺序执行, 无需循环反复, 控制简便;
6、 无需依赖复杂的微控制器 (MCU ) , 测量电路由硬连逻辑实现, 易于系统集成制 作专用 IC (ASIC), 可规模化生产, 得到低成本、 小体积、 微功耗的手持测量工具产品。 附图说明 图 1为本绝对位置测量容栅位移传感器实施例 1电极布局图;
图 2为本绝对位置测量容栅位移传感器实施例 1测量电路示意图;
图 3为图 2中驱动信号发生器扭环计数器方案的电路示意图;
图 4为本绝对位置测量容栅位移传感器实施例 2电极布局图;
图 5为本绝对位置测量容栅位移传感器实施例 2测量电路示意图;
图 6为图 5中驱动信号发生器只读存储器方案的电路示意图;
图 7为本绝对位置测量容栅位移传感器实施例 3电极布局图;
图 8为本绝对位置测量容栅位移传感器运行方法实施例 1流程图;
图 9为本绝对位置测量容栅位移传感器运行方法中被测位置 X与一组发射栅电极及 相应的反射栅电极、 转换栅电极、 接收栅电极的相对位置示意图;
图 10 为本绝对位置测量容栅位移传感器运行方法中细波长测量的发射栅电极分解 图;
图 11为本绝对位置测量容栅位移传感器运行方法各步骤的信号波形图;
图 12为本绝对位置测量容栅位移传感器运行方法实施例 2流程图。
图中标号为:
1、 发射板, 1. 1、 发射栅, 1. 2、 中波长接收栅, 1. 3、 粗波长接收栅, 2、 反射板, 2. 1、 反射栅, 2. 2中波长转换栅, 2. 3、 粗波长转换栅, 3、 第一分频器, 4、 第二分频器, 5, 驱动信号发生器, 5. 1、 扭环计数器, 5. 2、 驱动顺序选择开关, 5. 3、 异或调制器, 6、 信号选择开关组, 7、 差分放大器。
具体实施方式
绝对位置测量容栅位移测量方法实施例
具有波动性质的传感器驱动信号激励发射栅各电极, 经过发射栅与反射栅的电容耦 合、反射栅和转换栅的节距转换、转换栅和接收栅的电容耦合后, 变换成随时间周期变化 的接收信号,并且被测位置在各波长内的位移被转化为接收信号时间基波的初相位, 由该 基波信号从负到正的过零点与预设的相位零点之间的时间差即得到被测位置在所测波长 内的位移, 用加法计数器计数得到该时间差, 由此得到被测位置在所测波长内的位移。 绝对位置测量容栅位移传感器实施例 1
本绝对位置测量容栅位移传感器实施例 1是用于线性位移测量的传感器,提供粗、中、 细三种波长的测量。其电极布局如图 1所示,包括两个可相对移动的部件发射板 1和反射 板 2, 发射板 1和反射板 2中至少有一个能沿测量轴线移动, 本例发射板 1可沿测量轴线 移动, 反射板 2固定。
在发射板 1沿测量轴线方向布有一列周期排列的发射栅电极 1. 1,还布有两列周期排 列的接收栅电极,分别为中波长接收栅 1. 2和粗波长接收栅 1. 3。发射栅电极每 N个一组, 本例 N=8,电极按间距 Pt/8周期排列, 8个一组的发射栅节距为 Pt Pt为细波长 Wf的 Nt倍, 本例 Nt=3, 即 Pt=3Wf
在反射板 2上沿测量轴线方向布有一列周期排列的反射栅电极 2. 1,还布有两列沿测 量轴周期排列的转换栅电极, 分别为中波长转换栅电极 2. 2和粗波长转换栅电极 2. 3; 反 射栅电极按间距 周期排列, 细波长 Wf=PT。 中波长转换栅电极 2. 2按间距 Pm周期排列, 中波长 Wm=PtPm/ (Pr-Pm), 设 Wm= NmWf, Pt=NtWf, 为整数, Nt为 3 7的奇数,则 Pm =Nm Wf/ (Nm+ Nt) , 当 =16 Nt=3, 则 Pm =16 Wf /19 = 16 Pr/19。 粗波长转换栅电极 2. 3布局与中波长 情况类似, 反射板 2 上的粗波长转换栅 2. 3 电极沿测量轴按间距 P。周期排列, 粗波长
Figure imgf000015_0001
, N。为整数, Nt为 3 7的奇数, 则粗波长转换 栅电极 2. 3间距 Pc =NcWf/ (Nc+ Nt), 当 Nc=256 Nt=3, 则 Pc =256 Wf /259 =256Pr/259。 反 射栅电极 2. 1分为完全相同的 2组 2. 1A和 2. 1B按间距 交错周期排列, 一组的反射栅 电极 2. 1A通过导线与中波长转换栅电极 2. 2依次相连,另一组的反射栅电极 2. 1B通过导 线与粗波长转换栅电极 2. 3依次相连。
在发射板 1的中波长接收栅电极 1. 2分为完全相同的 2组 1. 2A和 1. 2B、沿测量轴按 间距 3^交错周期排列, 同属一组的电极通过导线相连。 粗波长接收栅电极 1. 3也分为完 全相同的两组 1. 3A和 1. 3B、 按间距 3P。交错周期排列, 同属一组的接收栅电极通过导线 相连。
所述发射栅、接收栅、发射栅、转换栅的电极的形状均为矩形, 各列电极布局有共同 的位于中部的基准线。
粗波长 W。限定本容栅传感器的最大测量范围, 细波长 Wf决定容栅传感器的最高测量 精度。 当要求的粗波长 W。与细波长 Wf之比 W /Wf过大,如大于 32时, 则由粗波长位移直接 确定被测位置所包含的整数细波长时容易出错。 本例的传感器借助中波长 Wm减小相邻波 长的比值, 即 W /Wm Wm/Wf均小于 32, 可实现较大范围的绝对位置测量。 本绝对位置测量 容栅位移传感器相邻的波长比一般宜取 16 BP : W =16Wm Wm=16Wf。如测量分辨率为 0. 01 细波长 Wf=2. 56mm, 则最大测量范围为 W =16Wm=256 Wf=655. 36mm 驱动信号发生器 5的 8路输出信号分别与发射栅各组的 8个电极相连, 接收栅的两 路输出接入信号处理电路。
本例的绝对位置测量容栅位移传感器的测量电路如图 2所示,分为接口单元和测量单 元两部分。 测量单元包括振荡器、 分频器、 控制器、 驱动信号发生器 5和信号处理电路。 接口单元包括定时器、按键接口电路、测量接口电路、液晶显示驱动电路及算术逻辑部件 (ALU) o 测量接口电路连接测量单元的控制器和随机访问存储器。
本例控制器为有限状态机, 产生以下控制信号:初始化信号 INI、 细波长测量信号 FINE, 中波长测量信号 MED、 粗波长测量信号 C0ARSE、 存储器地址 ADDR、 请求处理信号 REQo控制器的输入端连接同步捕捉电路的输出端、接收同步捕捉电路输出的信号 WRITE, 其输入时钟为振荡器输出的主时钟。 FINE、 MED、 COARSE信号接入信号选择开关组 6的控 制端,用于使其切换到相应波长测量所需的位置; INI连接测量单元的驱动信号发生器 5、 同步延时电路和同步捕捉电路, 用于使其处于预设的初始状态; ADDR连接随机访问存储 器 RAM, 用于指定各波长内位移在随机访问存储器的存放地址 (ADDR也可由 FINE、 MED、 COARSE信号兼任); REQ连接接口单元, 用于通知接口单元测量任务已经完成, 请求进行 后续处理。
所述测量单元的信号处理电路包括模拟处理电路、过零检测电路、 同步延时电路、加 法计数器、 同步捕捉电路和随机访问存储器; 模拟处理电路含有信号选择开关组 6、 差分 放大器 7、 同步解调电路和低通滤波器; 所测波长接收栅的两路输出经信号选择开关组 6 接入差分放大器 7, 差分放大后依次连接同步解调电路、 低通滤波器、 过零检测电路, 之 后输入同步捕捉电路。
如图 2所示, 信号选择开关组 6包括第 1开关 Si、 第 2开关 S2 、 第 3开关 S3、 第 4 开关 S4。粗波长接收栅 1. 3的一组电极 1. 3A的输出端和中波长接收栅 1. 2的一组电极 1. 2A 的输出端分别连接第 3开关 ^的两个输入端, 粗波长接收栅 1. 3的另一组电极 1. 3B的输 出端和中波长接收栅 1. 2的另一组电极 1. 2B的输出端分别连接第 4开关 ^的两个输入端, 第 3开关 S3的公共端连接差分放大器 7的一个输入端, 第 4开关 S4的公共端连接差分放 大器 7的另一个输入端。 第 1开关 Si连接中波长接收栅 1. 2的两组电极 1. 2A和 1. 2B的 输出端, 第 2开关 S2连接粗波长接收栅 1. 3的两组电极 1. 3A和 1. 3B的输出端。
振荡器产生测量单元的主时钟,经第一分频器 3将主时钟 16分频后接入传感器驱动 信号发生器、 作为调制脉冲 MOD, 再经第二分频器 4对调制脉冲 MOD 2分频后接入驱动信 号发生器 5的四位扭环计数器、 作为其计数时钟 DCLK, 因此一个波长被细分为 16 X 2 X 8=256=28份, 可用 8位加法计数器确定被测位置在各波长内的位移, 细分数可根据需要选 择, 一般宜取 2的幂次以方便处理。 振荡器输出的主时钟还接入控制器、 同步解调电路、 同步捕捉电路、 加法计数器; 驱动信号发生器 5的相位同步信号接入同步延时电路。
同步延时电路的输出与同步捕捉电路和加法计数器相连, 过零检测电路的输出 C0UT 接入同步捕捉电路, 同步捕捉电路的输出同时输入控制器和随机访问存储器 RAM, 加法计 数器的输出作为随机访问存储器 RAM的数据输入。
接口单元的测量接口电路连接测量单元的控制器和随机访问存储器醒。
本例测量单元的驱动信号发生器 5如图 3所示, 主要组成为扭环计数器 5. 1、驱动顺 序选择开关 5. 2和异或调制器 5. 3。本例的扭环计数器 5. 1为 4位扭环计数器, 8路异或 调制器 5. 3包括 4个异或门和 4个非门。 驱动信号发生器 5的 8路输出顺序连接发射栅 1. 1各组的 8个电极。 2个驱动顺序选择开关 5. 2其一连接异或调制器 5. 3的第 2异或门 和扭环计数器 5. 1的第 2输出端 Q2或第 6输出端 Q6 ( Q2 ), 另一连接异或调制器 5. 3的第 4异或门和扭环计数器 5. 1的第 4输出端 Q4或第 8输出端 Q8 ( )。 进行粗波长或中波长 内位移测量时, 2个驱动顺序选择开关 5. 2其一连接异或调制器 5. 3的第 2异或门和扭环 计数器 5. 1的第 2输出端 Q2, 另一连接异或调制器 5. 3的第 4异或门和扭环计数器 5. 1 的第 4输出端 ,四位扭环计数器 5. 1的输出 01〜¾对应(()式的111=0〜3,05〜¾ (即 〜 )对应(c )式的 m=4〜7。驱动信号发生器 5输出施加顺序为 1-2-3-4-5-6-7-8的驱动 信号; 在确定细波长内的位移时, 控制器输出的 FINE=1切换 2个驱动顺序选择开关 5. 2 的导通触点,其一连接异或调制器 5. 3的第 2异或门和扭环计数器的第 6输出端 Q6 ( ), 另一连接异或调制器 5. 3的第 4异或门和扭环计数器 5. 1的第 8输出端 Q8 ( Q4 ), 驱动信 号发生器输出施加顺序为 1-6-3-8-5-2-7-4的驱动信号。本例测量单元的驱动信号发生器 5产生具有波动性质的 8路输出信号, 并形成粗 /中波长测量和细波长测量所需的两种驱 动信号施加顺序, 驱动发射栅各组的 8个电极。
绝对位置测量容栅位移传感器实施例 2
本绝对位置测量容栅位移传感器实施例 2也是用于线性位移测量的传感器,其电极布 局如图 4所示, 用于两波长测量。 反射板 2上设一列反射栅电极 2. 1、 一列粗波长转换栅 电极 2. 3及一列细波长辅助转换栅电极 2. 2; 发射板 1上设一列发射栅电极 1. 1、 一列粗 波长接收栅电极 1. 3及一列细波长辅助接收栅电极 1. 2。 2组反射栅 2. 1中的 1组与粗波 长转换栅电极 2. 3相连,另 1组与细波长辅助转换栅电极 2. 2相连。细波长辅助转换栅电 极 2. 2以节距 PT=Wf周期排列, 细波长辅助接收栅电极 1. 2为一完整矩形。 粗波长接收栅 电极 1. 3分为完全相同的两组 1. 3A和 1. 3B、 按间距 3P。交错周期排列, 同属一组的接收 栅电极通过导线相连。 其它与实施例 1相同。
本例的绝对位置测量容栅位移传感器的测量电路如图 5所示, 分为接口单元和测量 单元两部分。其接口电路与实施例 1相同,本例的测量单元与实施例 1相似,包括振荡器、 分频器、 控制器、 驱动信号发生器 5和信号处理电路。
其驱动信号发生器 5如图 6所示, 该电路采用地址加法计数器和只读存储器 ROM替 代实施例 1的扭环计数器和驱动顺序选择开关, 由 3位地址加法计数器、 16单元的 8位 只读存储器 ROM和异或调制器组成, 只读存储器中预存的数据详见下表 1。地址加法计数 器的输出 QA〜QC与控制信号 FINE—起构成只读存储器 ROM的 4位地址 A。〜A3的输入信号, 只读存储器 ROM的 8位输出经异或调制后驱动发射栅各组的 8个电极。该电路的输入信号 DCLK、 INI , FINE, MOD及其实现的功能均与实施例 1的驱动信号发生器完全相同, 因此, 两者可以互换。 表 1 只读存储器 ROM预存数据表
地址 DO Dl D2 D3 D4 D5 D6 D7
0 1 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0
2 0 0 1 1 1 1 0 0
3 0 0 0 1 1 1 1 0
4 0 0 0 0 1 1 1 1
5 1 0 0 0 0 1 1 1
6 1 1 0 0 0 0 1 1
7 1 1 1 0 0 0 0 1
8 1 0 1 0 0 1 0 1
9 0 0 1 0 1 1 0 1
A 0 1 1 0 1 0 0 1
B 0 1 0 0 1 0 1 1
C 0 1 0 1 1 0 1 0
D 1 1 0 1 0 0 1 0
E 1 0 0 1 0 1 1 0
F 1 0 1 1 0 1 0 0 本例信号处理电路如图 5所示, 与实施例 1相似, 包括模拟处理电路、 过零检测电 路、 同步延时电路、加法计数器、 同步捕捉电路和随机访问存储器。模拟处理电路包括信 号选择开关组 6、 差分放大器 7、 同步解调电路和低通滤波器。 本例的信号选择开关组 6 包括第 1开关 Si和第 2开关 S2, 细波长辅助接收栅电极 1. 2的输出端和粗波长接收栅的 一组电极 1. 3A的输出端分别连接第 2开关 ^的两个输入端,第 2开关 ^的公共端连接差 分放大器的一个输入端, 粗波长接收栅 1. 3的另一组电极 1. 3B的输出端连接差分放大器 的另一个输入端。第 1开关 Si连接粗波长接收栅 1. 3的两组电极 1. 3A和 1. 3B的输出端。
在粗波长测量时, 控制器对信号选择开关组 6发送控制信号 C0ARSE=1、 FINE=0, 第 1开关 Si断开, 第 2开关 与 1. 34的输出端连接, 即信号选择开关组 6将粗波长接收栅 1. 3的两组电极 1. 3A和 1. 3B的输出端与差分放大器 7的输入端连接; 在细波长测量时, 控制器对信号选择开关组 6发送控制信号 FINE=1、 C0ARSE=0, 第 1开关 Si接通, 第 2开 关 ^与 1. 2的输出端连接, 第 1开关 粗波长接收栅 1. 3的两组电极 1. 3A、 1. 3B合并 成完整的矩形, 即信号选择开关组 6将粗波长接收栅的两组电极 1. 3A、 1. 3B合并的输出 端和细波长辅助接收栅 1. 2的电极的输出端接入差分放大器 7的输入端,为细波长测量提 供两路反相的接收信号。
绝对位置测量容栅位移传感器实施例 3
本绝对位置测量容栅位移传感器实施例 3是用于角度位移测量的传感器, 其电极布 局如图 7所示, 发射栅、 接收栅、 反射栅、 转换栅的电极布局沿同心圆周展开, 电极节距 按其弧所对的同心圆的圆心角角度计算。 其它电极布局与实施例 1相同。
本例的测量电路与实施例 1相同。
绝对位置测量容栅位移传感器运行方法实施例 1
本例绝对位置测量容栅位移传感器的运行方法针对上述绝对位置测量容栅位移传感 器实施例 1, 本方法流程图如图 8所示, 各步骤中信号的波形图如图 11所示, 主要步骤 如下:
I、 接口单元的定时器按预定测量频率启动测量单元;
II、 确定粗波长内的位移
II - i 测量单元的控制器输出粗波长测量信号 C0ARSE=1、 MED=0、 FINE=0, 将信号 选择开关组 6切至测量粗波长内位移所需的位置: 第 1、 2开关 S2断开, 第 3开关 S3 与 1. 3A的输出端连接, 第 4开关 ^与 1. 3B的输出端连接, 即信号选择开关组将粗波长 接收栅 1. 3的两组电极 1. 3A和 1. 3B的输出端与差分放大器的输入端连接;
Π - ϋ、 控制器输出初始化信号 INI, 将测量单元的驱动信号发生器、 同步延时电路、 同步捕捉电路的时序逻辑均置为预设的初始状态;控制器的初始化信号 INI将同步延时电 路的输出 SDLY清零, 低电平的 SDLY使加法计数器一直处于清零状态, 初始化信号 INI 还将同步捕捉电路的输出 WRITE清零; 同时控制器还输出 ADDR信号, 指定粗波长位移在 随机访问存储器中的存储单元的地址;
II _iii、 驱动信号发生器开始输出有效的传感器驱动信号;
本例驱动信号发生器的主要组成为扭环计数器、 驱动顺序选择开关和异或调制器。 扭环计数器产生的信号如式 (c )
Figure imgf000020_0001
2个驱动顺序选择开关其一连接第 2异或门和扭环计数器的第 2输出端 Q2,另一连接 第 4异或门和扭环计数器的第 4输出端 Q4, 对 ( , 进行异或调制后的驱动信号发生 器的输出信号的施加顺序为 1-2-3-4-5-6-7-8 ; 驱动信号发生器的输出信号 ^〜^是本传 感器的驱动信号。
波动性质的驱动信号经过发射栅与反射栅的电容耦合、反射栅和转换栅的节距转换、 转换栅和接收栅的电容耦合后粗波长的接收栅电极输出的两路接收信号经过模拟处理电 路的差分放大器、同步解调电路和低通滤波器的处理后被再生还原成表达式(k ) (请见发 明内容部分)所述的随时间周期变化的基波信号,该基波信号已将被测位置在粗波长内的 位移转化成它的初相位。
II _iv、 同步延时电路在施加驱动信号预定时间后, 在驱动信号的预定相位, 即预设 的相位零点, 允许加法计数器开始计数;
驱动信号发生器中扭环计数器的第 4输出端 Q4 (也可选其它输出端, 以下用 QN表示) 用作同步延时电路的输入时钟, 经过预定的驱动周期 NJ ( ND 3, 优选 ND=4 T=2M/fM 2M 为细分数, fM为主时钟频率)后使输出 SDLY有效(高电平), 从而允许加法计数器开始对 主时钟计数。 所选 QN的上升沿即为预设的相位零点, 延时时间 NJ用于等待信号稳定。
II - v、同步捕捉电路在过零检测信号的有效沿同步捕捉加法计数器的计数结果并将 其写入随机访问存储器的指定单元,此即被测位置在粗波长内的位移(带有固定偏移量); 过零检测电路将经过模拟处理电路处理后所得的基波信号转化为方波信号 C0UT, 以 便数字化处理。方波信号的有效沿对应基波信号从负到正的过零点, 因此方波信号的有效 沿与预设的相位零点之间的时间差表示被测位置在粗波长内的位移 (带有固定的偏移量), 该时间差可用加法计数器测量。
具有波动性质的驱动信号通过本发明的电极布局传递,在两组粗波长接收栅感生两路 反相的接收信号 d、 C2, 对其差分、 解调、 滤波后得式 (k ) 的基波分量:
Figure imgf000021_0001
= 2C sin(2^- - + - - 2π—) ( k )
m T 3 Wc p p
式中: w = 3_^£^ ( l )
Pr - Pc
Wc为粗波长, 且 Pt=3 。
由该信号从负到正的过零点与预设的相位零点 (加法计数器开始计数的时刻) 之间 的时间差即得到被测位置在粗波长内的位移 (带有固定的偏移量), 因此在过零检测信号 的有效沿同步捕捉加法计数器的计数结果即为被测位置在粗波长内的位移(图 11中的 Xl、 ¾, 二者模 2M后相等)。
初始化信号 INI将同步捕捉电路的输出 WRITE清零, 仅当同步延时电路的输出 SDLY 有效 (高电平) 后, 过零检测电路的输出 C0UT的有效沿 (上升沿) 才能在主时钟的非计 数沿 (下降沿)触发有效的 WRITE信号, WRITE信号的有效沿 (上升沿)将加法计数器的 计数结果写入随机访问存储器的指定单元,此即被测位置在粗波长内的位移(带有固定偏 移量)。
当 WRITE信号出现有效沿 (上升沿) 跳变, 表示当前波长的测量已经完成, 控制器 据此按设定的顺序进行状态转移: 本例设定的顺序为 COARSE→MED→FINE→REQ, 粗、 中、 细波长内位移测量的顺序可任意选择。
III、 确定中波长内的位移
III- i、控制器输出中波长测量信号 C0ARSE=0、 MED=1、 FINE=0, 将信号选择开关组 6 切至测量中波长内位移所需的位置, 第 1、 2开关 S2断开, 第 3开关 S3与 1. 2A的输出 端连接, 第 4开关 ^与 1. 2B的输出端连接, 即信号选择开关组 6将中波长接收栅 1. 2的 两组电极 1. 2A和 1. 2B的输出端与差分放大器的输入端连接;
III- ii、 控制器输出初始化信号 INI, 将测量单元的时序逻辑电路置为预设的初始状 态, 同时指定中波长位移在随机访问存储器中的存储单元的地址;
III-iii、 驱动信号发生器开始输出有效的传感器驱动信号 ^〜68;
III- iv、 同步延时电路允许加法计数器开始计数;
III- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在中波长内的位移 (带有固定偏移量);
与步骤 II中第 V步类似, 中波长:
Figure imgf000022_0001
IV、 确定细波长内的位移
IV- i、 控制器输出细波长测量信号 C0ARSE=0、 MED=0、 FINE=1, 将信号选择开关组 6切至测量细波长内位移所需的位置, 第 1、 2开关 S2接通, 第 3开关 S3与 1. 2A的输 出端连接, 第 4开关 ^与 1. 3B的输出端连接; 第 1、 2开关 S2分别将粗、 中波长接收 栅 1. 2、 1. 3的两组电极 1. 2A、 1. 28及 1. 3 、 1. 3B合并成完整的矩形, 即信号选择开关 组 6将粗波长接收栅 1. 3的两组电极 1. 3A、 1. 3B合并的输出端以及将中波长接收栅 1. 2 的两组电极 1. 2A、 1. 2B合并的输出端接入差分放大器的输入端, 为细波长测量提供两路 反相的接收信号;
IV_ ii、 控制器输出初始化信号, 将测量单元的时序逻辑电路置为预设的初始状态, 同时指定细波长位移在随机访问存储器中的存储单元的地址;
IV_iii、 驱动信号发生器开始输出有效的传感器驱动信号;
控制信号 FINE=1切换驱动信号发生器中的两个驱动顺序选择开关的导通触点,其一 连接第 2异或门和扭环计数器的第 6输出端 Q6 ( Q2 ), 另一连接第 4异或门和扭环计数器 的第 8输出端 ( ), 得到细波长的驱动信号施加顺序为 1-6-3-8-5-2-7-4, 异或调制 后的 8路输出 ^〜^驱动传感器发射栅各组的 8个电极。
IV_iv、 同步延时电路允许加法计数器开始计数;
IV- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在细波长内的位移 (带有固定偏移量);
将粗波长的两组接收电极用开关短接作为细波长的一组接收电极,将中波长的两组接 收电极用开关短接作为细波长的另一组接收电极,则调整施加顺序后的驱动信号在这两组 接收电极上感生两路反相的接收信号, 对其差分、 解调、 滤波后可得下式的基波分量:
Figure imgf000023_0001
式中: Wf为细波长, Wf= , α为常数。
该信号从负到正的过零点与预设的相位零点 (加法计数器开始计数的时刻) 之间的 时间差即为被测位置在细波长内的位移 (带有固定偏移量)。
V、 控制器请求接口单元进行后续处理;
VI、接口单元读出保存在测量单元随机访问存储器中的各波长位移数据后关闭测量电 路;
νπ、 接口单元处理、 显示测量结果;
当被测位置在粗、 中、 细波长内的位移确定以后, 被测位置与测量原点在粗、 中、 细波长内的距离随之确定。 设被测位置与测量原点在粗、 中、 细波长内的距离分别为 、 xm , 粗、 中、 细波长分别为 W。、 Wm、 Wf, 各波长的细分数均为 2M, 则被测长度 X可表示 为:
Figure imgf000023_0002
式中: Km、 Kf为整数, 分别表示中波长和细波长的个数。 (r)为两个联立方程组, 可 唯一确定二个未知数 Km、 Kf, 因此具有最高测量精度的被测长度:
Figure imgf000023_0003
代入 0. 01隱分辨率时的优选参数: Wc=256Wf, Wm=16Wf, Wf=2. 56mm, 28=256:
;c [(16^ + ^ ) x 256 + ] x 0.01mm。 最后, 接口单元按照用户要求通过液晶显示器 (LCD) 显示测量结果。
综上所述,接收栅电极输出的各波长的两路接收信号经信号选择开关组输入差分放大 器, 差分放大后的信号依次经过同步解调电路、低通滤波器、过零检测电路处理后被转换 成方波信号, 同步捕捉电路根据该方波信号和同步延时电路的输出产生同步捕捉信号,在 主时钟的非计数沿捕捉加法计数器的计数结果并将其写入随机访问存储器的指定单元,控 制器利用同步捕捉信号产生测量下一个波长内位移所需的控制信号或请求接口单元进行 后续处理。 测量单元依次完成被测位置在粗波长、 中波长、细波长内位移的测量后, 控制器请求 接口单元进行后续处理。接口单元从测量单元的随机访问存储器读出各波长内的位移值后 随即关闭测量单元, 然后根据各波长内的位移值计算绝对位置、按照用户要求(通过按键 输入)进行其它常规处理(如: 测量单位转换、设置测量原点等)、驱动液晶显示器(LCD) 显示测量结果。
绝对位置测量容栅位移传感器运行方法实施例 2
本例绝对位置测量容栅位移传感器的运行方法针对上述绝对位置测量容栅位移传感 器实施例 2, 本方法流程图如图 12所示, 主要步骤如下:
I、 与实施例 1的步骤 I相同;
II、 确定粗波长内的位移
II - i 测量单元的控制器输出粗波长测量信号 C0ARSE=1、 FINE=0, 将信号选择开关 组 6切至测量粗波长内位移所需的位置, 开关 Si断开, 开关 与 1. 34的输出端连接;
II - ii、 与实施例 1的步骤 II - ii相同;
II _iii、 驱动信号发生器开始输出有效的传感器驱动信号;
本例驱动信号发生器的主要组成为只读存储器、 3位地址加法计数器和异或调制器。
3位地址加法计数器的输出信号和控制信号 FINE=0—起作为只读存储器(ROM)的 4 位读出地址, 只读存储器 (ROM) 顺序、 循环地输出存储在前 8个单元内的数据, 只读存 储器 (ROM) 输出的 8 位数据 D。至 经异或调制后, 驱动信号发生器输出施加顺序为 1-2-3-4-5-6-7-8的传感器驱动信号
II _iv、 与实施例 1的步骤 Π -iv相同;
II - v、 与实施例 1的步骤 Π - ν相同;
III、 确定细波长内的位移
III- i、 控制器输出细波长测量信号 C0ARSE=0、 FINE=1, 将信号选择开关组 6切至测 量细波长内位移所需的位置, 开关 Si接通, 开关 ^与 1. 2的输出端连接;
III- ϋ、 与实施例 1的步骤 IV- ii相同;
III-iii、 驱动信号发生器开始输出有效的传感器驱动信号;
3位地址加法计数器的输出信号和控制信号 FINE=1—起作为只读存储器 (ROM) 的 4 位读出地址, 只读存储器 (ROM) 顺序、 循环地输出存储在后 8个单元内的数据, 只读存 储器(ROM)输出的 8位数据 D。至 经异或调制后, 输出施加顺序为 1-6-3-8-5-2-7-4的 传感器驱动信号 ^〜68。 III-iv、 与实施例 1的步骤 IV-iv相同;
III- v、 与实施例 1的步骤 IV-iv相同;
IV、 控制器请求接口单元进行后续处理;
V、 接口单元读出保存在测量单元随机访问存储器中的位移数据后关闭测量电路;
VI、 接口单元处理、 显示测量结果;
当被测位置在粗、 细波长内的位移确定以后, 被测位置与测量原点在粗、 细波长内 的距离随之确定。 设被测位置与测量原点在粗、 细波长内的距离分别为 、 , 粗、 细波 长分别为 W。、 Wf, 各波长的细分数均为 2M, 则被测长度 X可表示为:
Figure imgf000025_0001
式中: ^为整数, 表示细波长的个数。 因此具有最高测量精度的被测长度:
Figure imgf000025_0002
代入 0. 01隱分辨率时的优选参数: Wc=16Wf, Wf=2. 56mm, 28=256:
x ¾ (Kf x 256 + JC^ X 0.01 mm。 最后, 接口单元按照用户要求通过液晶显示器 (LCD) 显示测量结果。
绝对位置测量容栅位移传感器运行方法实施例 3
本例绝对位置测量容栅位移传感器的运行方法针对上述绝对位置测量容栅位移传感 器实施例 3, 本例的运行方法与运行方法实施例 1相同, 只是发射板 1和反射板 2之间的 相对位移是二者以相同的同心圆圆心为基点转动产生的。
上述实施例, 仅为对本发明的目的、 技术方案和有益效果进一步详细说明的具体个 例, 本发明并非限定于此。 凡在本发明公开的范围之内所做的任何修改、等同替换、 改进 等, 均包含在本发明的保护范围之内。

Claims

权 利 要 求
1、 绝对位置测量容栅位移测量方法, 其特征在于:
具有波动性质的传感器驱动信号激励发射栅各电极, 经过发射栅与反射栅的电容耦 合、反射栅和转换栅的节距转换、转换栅和接收栅的电容耦合后, 变换成随时间周期变化 的接收信号,并且被测位置在各波长内的位移被转化为接收信号时间基波的初相位, 由该 基波信号从负到正的过零点与预设的相位零点之间的时间差即得到被测位置在所测波长 内的位移, 用加法计数器计数得到该时间差, 由此得到被测位置在所测波长内的位移。
2、 根据权利要求 1所述的绝对位置测量容栅位移测量方法设计的绝对位置测量容栅 位移传感器, 包括两个可相对移动的发射板(1 )和反射板(2) 以及测量电路; 在发射板
( 1 )沿测量轴线方向布有一列周期排列的电极, 为发射栅(1. 1 ); 在反射板(2)上沿测 量轴线方向布有一列周期排列的电极, 为反射栅 (2. 1 ); 反射板 (2) 上还布有与反射栅
( 2. 1 )有序连接的两列周期排列的电极, 为转换栅; 发射板(1 )上也布有与转换栅进行 电容耦合的两列周期排列的电极, 为接收栅; 发射栅 (1. 1 ) 的电极每 N个一组, N为整 数, 3 N 16, 电极按间距 Pt/N周期排列, N个一组的发射栅 (1. 1 ) 的电极节距为 Pt, Pt为细波长 Wf的 Nt倍, Nt为 3〜7的奇数; 反射栅 (2. 1 ) 的电极分为 2组按间距 Ρτ交错 周期排列, = Wf; 反射板 (2) 上的转换栅电极沿测量轴线按各自间距周期排列, 2组 反射栅 (2. 1 ) 的电极通过导线分别与 2列转换栅电极依次相连; 所述测量电路分为接口 单元和测量单元两部分; 接口单元包括定时器、 按键接口电路、测量接口电路、 显示驱动 电路及算术逻辑部件; 所述测量单元包括驱动信号发生器和信号处理电路; 其特征在于: 所述测量单元还包括振荡器、 分频器和控制器, 所述驱动信号发生器 (5) 为产生具 有波动性质的传感器驱动信号的驱动信号发生器;所述测量单元的振荡器输出的主时钟经 分频器接入所述驱动信号发生器 (5), 驱动信号发生器 (5) 的 N路输出信号, 分别与发 射栅 (1. 1 ) 各组的 N个电极相连;
所述测量单元的信号处理电路包括模拟处理电路、过零检测电路、 同步延时电路、加 法计数器、 同步捕捉电路和随机访问存储器; 模拟处理电路含有信号选择开关组(6)、 差 分放大器(7)、 同步解调电路和低通滤波器; 所测波长接收栅的两路输出经信号选择开关 组 (6) 接入差分放大器 (7), 差分放大后依次连接同步解调电路、 低通滤波器、 过零检 测电路, 之后输入同步捕捉电路; 振荡器输出的主时钟还接入控制器、 同步解调电路、 同步捕捉电路、加法计数器; 驱 动信号发生器 (5) 的相位同步信号接入同步延时电路;
同步延时电路的输出与同步捕捉电路和加法计数器相连,过零检测电路的输出接入同 步捕捉电路, 同步捕捉电路的输出同时输入控制器和随机访问存储器,加法计数器的输出 作为随机访问存储器的数据输入;
接口单元的测量接口电路连接测量单元的控制器和随机访问存储器;
产生各种控制信号的所述控制器,其各路输出分别连接随机访问存储器、驱动信号发 生器 (5)、 信号选择开关组 (6) 以及接口单元的测量接口电路, 控制器的输入端连接同 步捕捉电路的输出端,振荡器输出的主时钟连接控制器的时钟输入端。
3、 根据权利要求 2所述的绝对位置测量容栅位移传感器, 其特征在于:
所述驱动信号发生器 (5) 主要组成为扭环计数器 (5.1)、 驱动顺序选择开关 (5.2) 和异或调制器(5.3); 振荡器的输出经分频器后接入驱动信号发生器(5), 作为扭环计数 器 (5.1) 和异或调制器 (5.3) 的输入时钟, 扭环计数器 (5.1) 产生具有波动性质的 N 路输出信号, 通过驱动顺序选择开关 (5.2) 输入异或调制器 (5.3), 异或调制器 (5.3) 的 N路输出连接发射栅 (1.1) 各组的 N个电极。
4、 根据权利要求 2所述的绝对位置测量容栅位移传感器, 其特征在于:
所述驱动信号发生器 (5) 主要组成为地址加法计数器、 只读存储器和异或调制器; 振荡器输出的主时钟经分频器后接入地址加法计数器作为其计数时钟,地址加法计数器的 输出和细波长测量信号一起构成只读存储器的读出地址,只读存储器输出的 N位数据输入 异或调制器, 异或调制后的 N路输出连接发射栅 (1.1) 各组的 N个电极。
5、 根据权利要求 2所述的绝对位置测量容栅位移传感器, 其特征在于:
所述发射栅、接收栅、 反射栅、转换栅的电极布局沿同心园周展开, 电极节距按角度 计算,发射板(1)和反射板(2)之间的相对位移是二者以同心圆圆心为基点的相对转动。
6、根据权利要求 2至 5中任一项所述的绝对位置测量容栅位移传感器,其特征在于: 所述转换栅和接收栅各设两列,反射板 ( 2 )的两列转换栅分别称为中波长转换栅( 2.2 ) 和粗波长转换栅(2.3),与之对应的发射板(1)的两列接收栅分别称为中波长接收栅(1.2 和粗波长接收栅 (1.3); 反射板 (2) 上的中波长转换栅 (2.2) 电极沿测量轴按间距 Pm 周期排列, 中波长 Wm=PtPm/(Pr-Pm), ¾ Wm= ΝΛ, Pt=NtWf, 为整数、 Nt为 3〜7的奇数, PJPm =NmWf/(Nm+ Nt), 与之对应的发射板 (1) 上的中波长接收栅 (1.2) 电极分为完全相 同的 2组(1.2A、 1.2B)沿测量轴按间距 ^交错周期排列, 同属一组的接收栅电极通过 导线相连; 反射板 (2) 上的粗波长转换栅 (2.3) 电极沿测量轴按间距 P。周期排列, 粗 波长 =PtPc/(Pr_Pc), 设粗波长 W。=N , Pt=NtWf, N。为整数、 Nt为 3〜7的奇数, 则粗波长 转换栅 (2.3) 的电极间距 P。 =NcWf/(Nc+ Nt), 与之对应的发射板 (1) 上的粗波长接收栅 (1.3) 电极也分为完全相同的两组 (1.3A、 1.3B) 按间距 NtP。交错周期排列, 同属一组 的接收栅电极通过导线相连。
7、 根据权利要求 6所述的绝对位置测量容栅位移传感器, 其特征在于:
所述信号选择开关组 (6)包括第 1开关《 、 第 2开关(S2)、 第 3开关(S3)、 第 4 开关 (S4); 粗波长接收栅 (1.3) 的一组电极 (1.3A) 的输出端和中波长接收栅 (1.2) 的一组电极(1.2A)的输出端分别连接第 3开关(S3)的两个输入端,粗波长接收栅(1.3) 的另一组电极 (1.3B) 的输出端和中波长接收栅 (1.2) 的另一组电极 (1.2B) 的输出端 分别连接第 4开关(S4) 的两个输入端, 第 3开关(S3) 的公共端连接差分放大器(7) 的 一个输入端, 第 4开关 (S4) 的公共端连接差分放大器 (7) 的另一个输入端; 第 1开关
(S 连接中波长接收栅 (1.2) 的两组电极 (1.2A 、 1.2B) 的输出端, 第 2开关 (S2) 连接粗波长接收栅 (1.3) 的两组电极 (1.3A 、 1.3B) 的输出端。
8、根据权利要求 2至 5中任一项所述的绝对位置测量容栅位移传感器,其特征在于: 所述转换栅和接收栅各设两列,反射板 (2)的两列转换栅分别称为粗波长转换栅 (2.3) 和细波长辅助转换栅 (2.2), 与之对应的发射板 (1) 的两列接收栅分别称为粗波长接收 栅 (1.3) 和细波长辅助接收栅 (1.2); 反射板 (2) 上的细波长辅助转换栅 (2.2) 电极 沿测量轴按间距 P=Wf周期排列, 与之对应的发射板 (1) 上的细波长辅助接收栅 (1.2) 电极为一完整矩形; 反射板 (2) 上的粗波长转换栅 (2.3) 电极沿测量轴按间距 P。周期 排列, 粗波长 =PtPc/(P「Pj, 设粗波长 Wf, Pt=NtWf, 为整数、 Nt为 3〜7的奇数, 则粗波长转换栅 (2.3) 电极间距 =NcWf/(Nc+ Nt), 与之对应的发射板 (1) 上的粗波长 接收栅 (1.3) 电极也分为完全相同的两组 (1.3A、 1.3B) 按间距 NtP。交错周期排列, 同 属一组的接收栅电极通过导线相连。
9、 根据权利要求 2至 5中任一项所述的绝对位置测量容栅位移传感器运行方法, 其 特征在于:
接口单元按预定的测量频率启动测量单元, 测量单元的控制器陆续产生各种控制信 号, 包括初始化、位移测量、存储器地址及请求处理信号, 其各路输出分别送入随机访问 存储器、 驱动信号发生器 (5)、 信号选择开关组 (6) 以及接口单元的测量接口电路; 驱动信号发生器 (5) 产生的具有波动性质的传感器驱动信号经过发射栅与反射栅的 电容耦合、反射栅和转换栅的节距转换、转换栅和接收栅的电容耦合后被变换成随时间周 期变化的接收信号,并且被测位置在所测波长内的位移被转化为接收信号时间基波的初相 位;
所测波长接收栅电极输出的两路接收信号经信号选择开关组 (6)输入差分放大器 (7), 差分放大后的信号依次经过同步解调电路、低通滤波器、过零检测电路处理后被转换成方 波信号, 同步捕捉电路根据该方波信号和同步延时电路的输出产生同步捕捉信号,在主时 钟的非计数沿捕捉加法计数器的计数结果并将其写入随机访问存储器的指定单元,控制器 利用同步捕捉信号产生测量下一个波长内位移所需的控制信号或请求接口单元进行后续 处理;
同步延时电路控制加法计数器的计数,仅当施加有效驱动信号预定时间之后且在驱动 信号的预定相位, 才允许加法计数器开始计数, 加法计数器对振荡器输出的主时钟计数; 测量单元依次完成被测位置在各波长内的位移的测量后,控制器请求接口单元进行后 续处理;接口单元从测量单元的随机访问存储器读出各波长内的位移值后随即关闭测量单 元, 然后根据各波长内的位移值计算绝对位置、 显示测量结果。
10、根据权利要求 9所述的绝对位置测量容栅位移传感器运行方法,其特征在于主要 步骤如下:
该绝对位置测量容栅位移传感器反射板(2)设有粗波长转换栅(2. 3)和中波长转换 栅 (2. 2), 与之对应的发射板 1设有粗波长接收栅 (1. 3) 和中波长接收栅 (1. 2); 采用 粗、 中、 细三种波长进行绝对位置测量;
I、 接口单元的定时器按预定测量频率启动测量单元;
11、 确定被测位置在粗波长内的位移;
II - i、测量单元的控制器输出粗波长测量信号, 将信号选择开关组(6)切至测量粗 波长内位移所需的位置;
II _ ii、控制器输出初始化信号, 将测量单元的驱动信号发生器(5)、 同步延时电路、 同步捕捉电路的时序逻辑均置为预设的初始状态,同时指定粗波长位移在随机访问存储器 中的存储单元的地址;
II _iii、 驱动信号发生器 (5) 开始输出有效的传感器驱动信号; II -iv、 同步延时电路在施加驱动信号预定时间后, 在驱动信号的预定相位, 即预设 的相位零点, 允许加法计数器开始计数;
II - v、 同步捕捉电路在过零检测信号的有效沿同步捕捉加法计数器的计数结果并将 其写入随机访问存储器的指定单元, 此即被测位置在粗波长内的位移;
III、 确定中波长内的位移;
III- i、控制器输出中波长测量信号, 将信号选择开关组(6)切至测量中波长内位移 所需的位置;
III- ii、控制器输出初始化信号, 将测量单元的驱动信号发生器(5)、 同步延时电路、 同步捕捉电路的时序逻辑置为预设的初始状态,同时指定中波长位移在随机访问存储器中 的存储单元的地址;
III-iii、 驱动信号发生器 (5) 开始输出有效的传感器驱动信号;
III- iv、 同步延时电路允许加法计数器开始计数;
III- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在中波长内的位移;
IV、 确定细波长内的位移;
IV- i、控制器输出细波长测量信号, 将信号选择开关组(6)切至测量细波长内位移 所需的位置;
IV_ ii、控制器输出初始化信号, 将测量单元的驱动信号发生器(5)、 同步延时电路、 同步捕捉电路的时序逻辑置为预设的初始状态,同时指定细波长位移在随机访问存储器中 的存储单元的地址;
IV_iii、 驱动信号发生器 (5) 开始输出有效的传感器驱动信号;
IV_iv、 同步延时电路允许加法计数器开始计数;
IV- V、 同步捕捉电路捕捉加法计数器的计数结果并将其写入随机访问存储器的指定 单元, 此即被测位置在细波长内的位移;
V、 控制器请求接口单元进行后续处理;
VI、 接口单元读出保存在测量单元随机访问存储器中的位移数据后关闭测量电路; νπ、 接口单元处理、 显示测量结果;
所述确定粗、 中、 细波长内位移的步骤 II、 III、 IV的顺序先后是任意的。
PCT/CN2011/070977 2010-08-14 2011-02-14 绝对位置测量容栅位移测量方法、传感器及其运行方法 WO2012022141A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11817669.2A EP2618101B1 (en) 2010-08-14 2011-02-14 Sensor and running method thereof for absolute position measuring the displacement of a capacitive grating
DK11817669.2T DK2618101T3 (da) 2010-08-14 2011-02-14 Sensor og driftsfremgangsmåde deraf til absolut positionsmåling af forskydningen af et kapacitivt gitter
US13/125,528 US9024642B2 (en) 2010-08-14 2011-02-14 Absolute position measurement capacitive grating displacement measurement method, sensor, and operating method thereof
PL11817669T PL2618101T3 (pl) 2010-08-14 2011-02-14 Czujnik i jego sposób działania przeznaczony do pomiaru pozycji bezwzględnej przemieszczenia na siatce pojemnościowej

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010254159A CN101949682B (zh) 2010-08-14 2010-08-14 绝对位置测量容栅位移测量方法、传感器及其运行方法
CN201010254159.8 2010-08-14

Publications (1)

Publication Number Publication Date
WO2012022141A1 true WO2012022141A1 (zh) 2012-02-23

Family

ID=43453263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070977 WO2012022141A1 (zh) 2010-08-14 2011-02-14 绝对位置测量容栅位移测量方法、传感器及其运行方法

Country Status (7)

Country Link
US (1) US9024642B2 (zh)
EP (1) EP2618101B1 (zh)
CN (1) CN101949682B (zh)
DK (1) DK2618101T3 (zh)
PL (1) PL2618101T3 (zh)
TR (1) TR201905544T4 (zh)
WO (1) WO2012022141A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560780A (zh) * 2013-11-11 2014-02-05 清华大学 一种绝对光栅信号处理方法
CN114545022A (zh) * 2022-01-28 2022-05-27 中国科学院电工研究所 一种高速直线电机定位测速实时仿真方法及系统

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949682B (zh) * 2010-08-14 2012-10-24 桂林广陆数字测控股份有限公司 绝对位置测量容栅位移测量方法、传感器及其运行方法
EP2757352B1 (fr) * 2013-01-17 2015-11-18 EM Microelectronic-Marin SA Système de contrôle et méthode de gestion de capteur
CN103572441B (zh) * 2013-10-24 2015-10-28 西安工程大学 用于纺纱运行状态监测的传感器、无线传感节点及其方法
JP6609411B2 (ja) * 2015-01-19 2019-11-20 株式会社ミツトヨ 変位測定装置および変位測定方法
US10345973B2 (en) * 2016-07-13 2019-07-09 Apple Inc. Capacitive sensing for determining mass displacement and direction
CN109520403B (zh) * 2017-09-20 2020-10-16 上海微电子装备(集团)股份有限公司 电容传感器测量电路及方法
CN108362206B (zh) * 2018-02-13 2024-04-09 哈工科讯(沈阳)工业技术研究院有限公司 一种基于容栅的非接触式位移传感器
CN108627184B (zh) * 2018-05-15 2023-11-14 重庆中电天时精密装备技术有限公司 反射式时栅角度位移编码器
CN108981554B (zh) * 2018-05-24 2020-02-18 河海大学 供电后能识别探针绝对位置的容珊式位移计电路及其方法
DE102019112714A1 (de) * 2019-05-15 2020-11-19 Maschinenfabrik Reinhausen Gmbh Schalteranordnung mit antriebssystem und verfahren zum antreiben einer schalteranordnung
CN110487162B (zh) 2019-09-29 2020-09-08 桂林广陆数字测控有限公司 混合定位电磁感应式位移传感器
CN113008119B (zh) * 2019-12-19 2022-11-25 通用技术集团国测时栅科技有限公司 一种分时复用的绝对式时栅直线位移传感器
CN112147942A (zh) * 2020-10-26 2020-12-29 西安工业大学 基于fpga+dsp的双运动平台同步控制系统及控制方法
CN112648916B (zh) * 2021-01-18 2022-11-18 中北大学 一种三维微小位移测量方法及系统
CN114087968B (zh) * 2021-11-18 2023-10-20 重庆理工大学 一种基于组合调制原理的拼接式绝对直线位移传感器
CN114087970B (zh) * 2021-11-18 2023-10-20 重庆理工大学 一种分时复用型拼接式绝对直线位移传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961055A (en) * 1989-01-04 1990-10-02 Vickers, Incorporated Linear capacitance displacement transducer
CN1086309A (zh) * 1992-09-14 1994-05-04 株式会社三丰 用于绝对位置测量的测量装置
JP2001004402A (ja) * 1999-06-23 2001-01-12 Mitsutoyo Corp 静電容量式変位測定装置
CN1386187A (zh) * 2000-07-20 2002-12-18 卡尔·马尔控股有限公司 用于节电测量仪器的电容式位移接收器
CN101206126A (zh) * 2007-11-26 2008-06-25 桂林市晶瑞传感技术有限公司 用于绝对位置测量的绝对型圆容栅传感器测量装置
CN101949682A (zh) * 2010-08-14 2011-01-19 桂林广陆数字测控股份有限公司 绝对位置测量容栅位移测量方法、传感器及其运行方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879508A (en) * 1986-04-04 1989-11-07 Mitutoyo Corporation Capacitance-type measuring device for absolute measurement of positions
JPS62239019A (ja) * 1986-04-11 1987-10-19 Mitsutoyo Corp 容量型位置測定トランスデユ−サ
JPS62235504A (ja) * 1986-04-04 1987-10-15 Mitsutoyo Corp 容量型位置測定トランスデユ−サ
CN1017746B (zh) 1988-05-31 1992-08-05 株式会社三丰 位置绝对测量用电容型测试装置
US5225830A (en) 1991-02-26 1993-07-06 Mitutoyo Combination optical and capacitive absolute position apparatus and method
DE4237652A1 (de) * 1992-11-07 1994-05-11 Peter Dr Bauer Absolutes kapazitives Wegmeßsystem
EP0836076B1 (fr) * 1996-10-11 2002-05-22 Brown &amp; Sharpe Tesa S.A. Dispositif de mesure de dimension capacitif
SE529249C2 (sv) * 2005-10-14 2007-06-12 Hexagon Metrology Ab Förfarande vid signalbehandling vid kapacitiva mätskalor
JP2009534147A (ja) * 2006-04-26 2009-09-24 ノボ・ノルデイスク・エー/エス 薬剤送達装置における運動エレメントの非接触式の絶対位置測定
DE102006056609A1 (de) * 2006-11-30 2008-06-05 Maxon Motor Ag Kapazitiver Winkelkodierer und Feedereinschub für Bestückungsmaschinen von Leiterplatten
CN201837401U (zh) * 2010-08-14 2011-05-18 桂林广陆数字测控股份有限公司 绝对位置测量容栅位移传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961055A (en) * 1989-01-04 1990-10-02 Vickers, Incorporated Linear capacitance displacement transducer
CN1086309A (zh) * 1992-09-14 1994-05-04 株式会社三丰 用于绝对位置测量的测量装置
JP2001004402A (ja) * 1999-06-23 2001-01-12 Mitsutoyo Corp 静電容量式変位測定装置
CN1386187A (zh) * 2000-07-20 2002-12-18 卡尔·马尔控股有限公司 用于节电测量仪器的电容式位移接收器
CN101206126A (zh) * 2007-11-26 2008-06-25 桂林市晶瑞传感技术有限公司 用于绝对位置测量的绝对型圆容栅传感器测量装置
CN101949682A (zh) * 2010-08-14 2011-01-19 桂林广陆数字测控股份有限公司 绝对位置测量容栅位移测量方法、传感器及其运行方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560780A (zh) * 2013-11-11 2014-02-05 清华大学 一种绝对光栅信号处理方法
CN103560780B (zh) * 2013-11-11 2016-06-22 清华大学 一种绝对光栅信号处理方法
CN114545022A (zh) * 2022-01-28 2022-05-27 中国科学院电工研究所 一种高速直线电机定位测速实时仿真方法及系统

Also Published As

Publication number Publication date
PL2618101T3 (pl) 2019-08-30
US20130009652A1 (en) 2013-01-10
TR201905544T4 (tr) 2019-05-21
EP2618101B1 (en) 2019-03-27
EP2618101A1 (en) 2013-07-24
CN101949682A (zh) 2011-01-19
EP2618101A4 (en) 2015-04-01
DK2618101T3 (da) 2019-05-27
US9024642B2 (en) 2015-05-05
CN101949682B (zh) 2012-10-24

Similar Documents

Publication Publication Date Title
WO2012022141A1 (zh) 绝对位置测量容栅位移测量方法、传感器及其运行方法
US5023559A (en) Capacitance-type measuring device for absolute measurement of positions
US6700391B2 (en) Capacitive displacement sensor
US20100148802A1 (en) Capacitance-type encoder
JPH0467882B2 (zh)
JP2022508323A (ja) ハイブリッド測位による電磁誘導型変位センサー
TW201142678A (en) Capacitive touch panel and ghost point determination method
EP0404980A1 (en) Capacitance-type measuring method for absolute measurement of positions
CN110375788B (zh) 一种四路正交差动信号解调仪表校准方法及系统
JPH0545151A (ja) 変位測定装置
EP0404975A1 (en) Capacitive type measurement transducer with improved electrode arrangement
JPS62239019A (ja) 容量型位置測定トランスデユ−サ
CN201837401U (zh) 绝对位置测量容栅位移传感器
CN110388870A (zh) 用于传感器装置的位移测量系统和位移测量方法
EP0413922A1 (en) Capacitance-type measuring device for absolute measurement of positions
US11150072B2 (en) Displacement measuring device
JPS62235503A (ja) 容量型位置測定トランスデユ−サ
JP4074188B2 (ja) インクリメンタルエンコーダの計数装置
CN116481574A (zh) 容栅传感器和绝对位置测量装置
JPH0545108A (ja) 変位測定装置
RU2386923C1 (ru) Устройство для измерения угловых перемещений
JPH0435690B2 (zh)
JP3422016B2 (ja) 波形測定装置
CN208171165U (zh) 用于传感器装置的位移测量系统
JP2980465B2 (ja) 偏心量測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011817669

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11817669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125528

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE