WO2012021048A2 - 유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법 - Google Patents

유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법 Download PDF

Info

Publication number
WO2012021048A2
WO2012021048A2 PCT/KR2011/006010 KR2011006010W WO2012021048A2 WO 2012021048 A2 WO2012021048 A2 WO 2012021048A2 KR 2011006010 W KR2011006010 W KR 2011006010W WO 2012021048 A2 WO2012021048 A2 WO 2012021048A2
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
fluidized bed
electrolyte
electrode
Prior art date
Application number
PCT/KR2011/006010
Other languages
English (en)
French (fr)
Other versions
WO2012021048A3 (ko
Inventor
김동국
김태환
조철희
박종수
추고연
여정구
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to CN201180043941.8A priority Critical patent/CN103109336B/zh
Priority to BR112013003263-4A priority patent/BR112013003263B1/pt
Priority to EP11816664.4A priority patent/EP2605326B1/en
Priority to US13/816,888 priority patent/US9963363B2/en
Priority to JP2013524057A priority patent/JP2013541407A/ja
Publication of WO2012021048A2 publication Critical patent/WO2012021048A2/ko
Publication of WO2012021048A3 publication Critical patent/WO2012021048A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/4604Treatment of water, waste water, or sewage by electrochemical methods for desalination of seawater or brackish water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F1/46114Electrodes in particulate form or with conductive and/or non conductive particles between them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/225Fuel cells in which the fuel is based on materials comprising particulate active material in the form of a suspension, a dispersion, a fluidised bed or a paste
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/227Dialytic cells or batteries; Reverse electrodialysis cells or batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4611Fluid flow
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Definitions

  • the present invention utilizes the electrochemical ion adsorption (charge) and desorption (discharge) principles, and the slurry-like electrode materials (Electrode Materials) and the electrolyte (Electrolyte) in the micro-channel structure formed on the electrode at the same time continuously flowing a large amount of electrical energy
  • It relates to a fluidized bed electrode system for storing, a large-capacity energy storage system and a water treatment method using the same.
  • the present invention relates to a fluidized bed electrode system, an energy storage system, and a water treatment method capable of easily achieving large capacity without requiring large area or stacking of electrodes for large capacity by continuously flowing an electrode active material in a slurry state.
  • the biggest problem in the power storage and water treatment system using the same principle is the efficiency reduction and the high cost of the device at the time of large capacity. That is, due to the large area of the electrode for scale-up, the nonuniformity of the electric field distribution in the electrode, the limited amount of active material of the thin film electrode coated on the current collector, the reduction of the contact area between the active material and the electrolyte by the binder during the coating process, and the decrease of the charge and discharge efficiency. A large number of unit cell stacks are required, and as a result, the high cost of the device, particularly in the case of a CDI (Capacitive Deionization) process, has been pointed out as an increase in operating costs due to pressure loss of water (electrolyte) flow in the stack.
  • CDI Capacitive Deionization
  • An object of the present invention is to provide a fluidized bed electrode system that can easily achieve a large capacity without the need for a large area or a stack of electrodes for a large capacity.
  • Another object of the present invention is to provide an efficient and economical large capacity energy storage system.
  • Another object of the present invention is to provide a water treatment method capable of water treatment at a low energy cost only.
  • the invention according to claim 1 is a fluidized bed electrode system, comprising: a fluidized bed anode comprising a flowing anode active material; A fluidized bed negative electrode including a flowing negative electrode active material; And electrolytes.
  • the positive electrode active material and the negative electrode active material flow continuously, these can be continuously supplied, and a large capacity can be easily achieved without large area or stacking of the electrode.
  • the invention according to claim 2 is the fluidized bed electrode system according to claim 1, wherein the positive electrode is a positive electrode current collector; An anode separator; A positive electrode channel formed between the positive electrode current collector and the positive electrode separator; And a cathode active material flowing through the cathode channel, wherein the anode is a cathode collector; A cathode separator; A negative electrode channel formed between the negative electrode current collector and the negative electrode separator; And a negative electrode active material flowing through the negative electrode channel, wherein the electrolyte flows through an insulating spacer that is an electrolyte channel formed between the positive electrode separator and the negative electrode separator.
  • energy can be stored and / or generated by ion adsorption (charging) and / or desorption (discharging) through ion exchange between the positive electrode active material and the electrolyte, and the negative electrode active material and the electrolyte.
  • the invention according to claim 3 is the fluidized bed electrode system according to claim 2, wherein the anode separation membrane is a microporous insulation membrane or a cation exchange (conduction) membrane, and the cathode separation membrane is a microporous insulation membrane or anion exchange (conduction). )
  • ions can be transferred or exchanged from the active material to the electrolyte by the microporous insulating membrane or the ion exchange membrane to store and / or generate energy.
  • the invention according to claim 4 is the fluidized bed electrode system according to claim 2, wherein the cathode active material or the anode active material is a slurry-like active material mixed with the electrolyte.
  • the fluidized bed electrode system According to the fluidized bed electrode system according to claim 4, it is easy to control the flow rate, and the active material can be supplied to the unit fluidized bed electrode system in a constant and continuous manner, so that energy can be stored and / or generated constantly.
  • the invention according to claim 5 is the fluidized bed electrode system according to claim 2, wherein the positive electrode active material or the negative electrode active material is the same material.
  • the positive electrode active material and the negative electrode active material can be stored and supplied as one device, the inconvenience of having to store and store them separately and the cost of having each device can be reduced. Can be.
  • the invention according to claim 6 is the fluidized bed electrode system according to claim 2, wherein the separator is a microporous insulating separator, and the positive electrode active material or the negative electrode active material is microencapsulated.
  • the contact area with the electrolyte is increased due to the microencapsulated electrode active material, thereby increasing the reactivity.
  • the invention according to claim 7 is a direction opposite to the flow direction of the flow direction of the electrolyte and the flow direction of the positive electrode active material of the fluidized anode flowing in the same direction and the negative electrode active material of the fluidized cathode.
  • the invention according to claim 8 has an asymmetric electrode having a different flow rate between the cathode active material of the fluidized anode and the cathode active material of the fluidized cathode. That is, since the flow velocity is different, the absolute value of the flow velocity may be different or the flow direction may be the opposite direction. This enables the design of various types of fluidized bed electrode systems.
  • the invention according to claim 9 is a fluidized bed electrode system without a separator. Therefore, there is an advantage that the structure is simple. However, in order to prevent the positive electrode active material and the negative electrode active material from being mixed with the electrolyte, the positive electrode active material or the negative electrode active material may be microencapsulated.
  • the invention according to claim 10 is the fluidized bed electrode system according to any one of claims 1 to 9, and the fluidized bed electrode system is a secondary battery or an electric double layer capacitor (EDLC).
  • EDLC electric double layer capacitor
  • the invention according to claim 11 is a large-capacity energy storage system, comprising: at least one fluidized bed electrode system of any one of claims 1 to 9; A supply device for supplying the cathode active material, the anode active material and the electrolyte, respectively; A power supply for supplying power to the fluidized bed electrode system; A switching switch for adjusting a potential difference generated from the power supply device; And a storage tank for storing the cathode active material, the anode active material, and the electrolyte.
  • the positive electrode active material, the negative electrode active material, and the electrolyte are stored and supplied in a separate and installed storage tank instead of in the fluidized bed electrode system, so that there is no need for a large area or a large size of the electrode.
  • Energy can be stored in a large capacity, so it is easy to scale up for various capacities, and can greatly reduce device manufacturing and operating costs, and thus may be useful for future energy industries.
  • the invention according to claim 12 is the large-capacity energy storage system according to claim 11, and further includes a resistor connected to the changeover switch.
  • ion-adsorbed (charged) power stored in the storage tank can be output.
  • the invention according to claim 13 is the large-capacity energy storage system according to claim 11, wherein the supply device comprises a supply tank and a supply pump for supplying the cathode active material, the anode active material and the electrolyte, respectively.
  • the supply tank can be installed separately from the fluidized bed electrode system, thereby achieving a large capacity at a low cost regardless of the size of the fluidized bed electrode system.
  • the invention according to claim 14 is the large-capacity energy storage system according to claim 13, wherein a cathode active material supply tank for supplying the cathode active material and a cathode active material supply tank for supplying the anode active material are one supply tank.
  • the invention according to claim 15 is the large-capacity energy storage system according to claim 13, wherein the fluidized bed electrode system is two or more, some of the fluidized bed electrode systems are used as charging devices, and the rest are used as discharge devices.
  • the positive electrode active material and the negative electrode active material discharged and discharged from the discharge energy storage device are recycled to the positive electrode active material supply tank and the negative electrode active material supply tank.
  • charging and discharging can be carried out continuously and simultaneously, and the installation cost of the cathode active material and the cathode active material supply tank do not need to be separately installed.
  • the invention according to claim 16 is the mass energy storage system according to claim 8, wherein the storage tank is a storage container in an electrically insulated state.
  • the power stored in the storage tank is stably stored without counting.
  • Invention of Claim 17 is a large-capacity energy storage system of Claim 13, and the said electrolyte is seawater or industrial wastewater.
  • seawater and wastewater are used as electrolytes, the cost can be reduced and can be used for desalination of seawater and purification of wastewater.
  • the invention according to claim 18 is a water treatment method by capacitive deionization, and uses the energy storage system of claim 10.
  • the water treatment can be performed at a large capacity while the facility equipment cost and the operation cost are low.
  • the invention according to claim 19 is a desalination method of seawater by capacitive desalination, and the electrolyte is seawater using the energy storage system of claim 7.
  • the invention according to claim 20 is a wastewater purification method by capacitive desalination, and the electrolyte is industrial wastewater using the energy storage system of claim 7.
  • the fine electrode active material of several tens of nm to several tens of micrometers separated from the current collector continuously flows in a slurry state mixed with the electrolyte, thereby requiring a large area or stacking of electrodes for large capacity. It is possible to easily increase the capacity by only a unit cell having a fine flow path structure and an insulating storage container. This energy storage and CDI desalination unit can be easily scaled up for various capacities and can greatly reduce the device manufacturing and operating costs.
  • FIG. 1 is a schematic diagram of a fluidized bed electrode system according to one embodiment of the invention.
  • FIG. 2 is a cross-sectional view of a microcapsule including an electrode material according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a large capacity fluidized bed electrode system according to one embodiment of the invention.
  • FIG. 4 is a schematic diagram of a fluidized bed electrode system according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a fluidized bed electrode system according to another embodiment of the present invention.
  • a fluidized bed electrode system of the present invention includes a fluidized bed anode including a flowing anode active material; A fluidized bed negative electrode including a flowing negative electrode active material; And a flowing electrolyte.
  • the positive electrode active material, the negative electrode active material, and the electrolyte may be any of those used in a fluidized bed electrode system, for example, a battery or a storage battery, and may be used by those skilled in the art according to the purpose and environment of use. You can choose to.
  • the positive electrode active material and the negative electrode active material may be used different materials, the same material may be used.
  • the electrode material such as the positive electrode active material and / or the negative electrode active material may be porous carbon (active carbon, carbon fiber, carbon aerogel, tanosanotube, etc.), graphite powder, metal oxide powder, etc. It can be used in a fluidized state mixed with the electrolyte.
  • the electrolyte is a water-soluble electrolyte such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , Propylene Carbonate (PC), Diethyl Carbonate (DEC) Organic electrolytes such as tetrahydrofuran (THF).
  • a water-soluble electrolyte such as NaCl, H 2 SO 4 , HCl, NaOH, KOH, Na 2 NO 3 , Propylene Carbonate (PC), Diethyl Carbonate (DEC)
  • Organic electrolytes such as tetrahydrofuran (THF).
  • the electrolyte may be a solid or stationary electrolyte.
  • the positive electrode is a positive electrode current collector; An anode separator; A positive electrode channel formed between the positive electrode current collector and the positive electrode separator; And a cathode active material flowing through the cathode channel, wherein the anode is a cathode collector; A cathode separator; A negative electrode channel formed between the negative electrode current collector and the negative electrode separator; And a negative electrode active material flowing through the negative electrode flow path, wherein the electrolyte flows in a flow path formed between the positive electrode separation membrane and the negative electrode separation membrane.
  • the electrode current collector and the electrode separator may be used as long as they have been used in a conventional fluidized bed electrode system (battery, storage battery, etc.), and a person of ordinary skill in the art may use the same according to the purpose and conditions of use. It can be selected appropriately.
  • the width of the positive electrode channel and the negative electrode channel may be formed to be equal to or less than an interval between the electrode current collector and the separator in the conventional fluidized bed electrode system. This is because there is a problem that the size of the fluidized bed electrode system is large when the electrode active material is fixed to secure the capacity of the active material required for charging and discharging, and there is a limitation in the distance between the electrode current collector and the separator in which the active material is filled. According to the present invention, since the electrode active material can be continuously supplied, the design can be freely changed according to the purpose of use, the active material used, the electrolyte, and the like without such limitation. According to an embodiment of the present invention, the width and the height of the flow path may be used in the size of several tens of micrometers.
  • the width of the insulating spacer can be continuously supplied with the electrolyte, the width can be appropriately changed without any limitation due to the size of the fluidized bed electrode system.
  • the speed of the electrolyte and the active material may be changed or the ratio of the width of the active material flow path and the width of the insulating spacer may be limited.
  • the anode separation membrane may be a microporous insulation membrane or a cation exchange (conduction) membrane
  • the cathode separation membrane may be a microporous insulation membrane or an anion exchange (conduction) membrane.
  • the separator is installed for electrophysical separation, and the micropore insulation separator may only move ions, and the ion exchange membrane may selectively move only a cation or anion.
  • the positive electrode active material or the negative electrode active material is a slurry-like active material mixed with the electrolyte.
  • the electrolyte flows in the opposite direction with respect to the positive electrode active material and the negative electrode active material.
  • the electrolyte flows in the opposite direction with respect to the positive electrode active material and the negative electrode active material.
  • the anode 10 includes a cathode current collector 11, an anode separator 13, and an anode active material 12 flowing through an anode flow path 14 formed between the anode collector 11 and the anode separator 13. ;
  • a negative electrode 20 made of a negative electrode collector 21, a negative electrode separator 23, and a negative electrode active material 22 flowing through a negative electrode channel 24 formed between the negative electrode collector 21 and the negative electrode separator 23;
  • an electrolyte 30 flowing through the insulating spacer 34 formed between the anode separator 13 and the cathode separator 23.
  • the fluidized bed electrode system may be installed and used in series of two or more unit cells, and may simultaneously fluidize the electrode material and the electrolyte at the same time.
  • the movement direction of the electrolyte 30 may be configured in the opposite directions with respect to the positive electrode active material 12 and the negative electrode active material 22.
  • the contact area between the electrolyte and the electrode material may be increased by microencapsulating the electrode material.
  • a cation separation membrane a dense membrane mainly preventing dense flow of electrolyte liquid and selectively passing only cations
  • an anion separation membrane a dense membrane selectively passing only anion
  • each selective ion membrane (FIG. 2)
  • the contact area with the encapsulated electrode active material particles of is increased.
  • the microcapsule electrode is composed of a core core and an outer cell, and the cell material has a property of exchanging ions present in the electrolyte.
  • the cell material is 1,2, which is capable of exchanging anions with a polymer membrane in which a sulfonic acid group (SO 3 ⁇ ), a carboxyl group (COO ⁇ ), a phosphoric acid group (PO 4 ⁇ ) and the like capable of exchanging cations are present.
  • Polymer membranes with tertiary and quaternary ammonium groups can be used.
  • the microcapsules can be made by solid phase or liquid phase method.
  • the core / cell structure is an emulsion method using a surfactant, a polymerization method in which a material used as a cell is polymerized from monomers, and a core and a cell are sprayed individually or simultaneously.
  • the microcapsule electrode may be manufactured by manufacturing by extrusion.
  • the microencapsulated electrode has the advantage that the electrode area per unit weight or volume is larger than that of one bulked electrode because the whole grains are surrounded by one or several individual grains.
  • the positive electrode active material, the negative electrode active material, and the electrolyte may be directly mixed by the microcapsules.
  • an energy storage system 100 includes a fluidized bed electrode system 1 that is a unit cell; A cathode active material supply tank (2a) and a supply pump (41) for supplying a cathode active material prepared in a slurry form by mixing the electrolyte (30) to the cathode active material (12); A negative electrode active material supply tank (2b) and a supply pump (42) for supplying a negative electrode active material prepared in a slurry form by mixing the electrolyte (30) with the negative electrode active material (22); An electrolyte supply tank 5 and a supply pump 43 for supplying the electrolyte 30; A power supply device (7) for supplying DC power to the fluidized bed electrode system (1); A switching switch 9 for adjusting a potential difference generated from the power supply device 7; A cation storage tank 3 in which a cathode active material ion-adsorbed (charged) is stored while passing through the fluidized bed electrode system 1 to which an electric
  • the operation of the energy storage system 100 is as follows.
  • a slurry-like positive electrode active material 12 and a negative electrode active material are applied to the fluidized bed electrode system 1 while applying a potential difference generated from the DC power supply 7, for example, a potential difference in the range of 0.5 to 2.0v, through the switch 9. 22 and the electrolyte 30 are continuously passed through the fluidized bed electrode system 1 simultaneously.
  • the positive electrode active material 12 and the negative electrode active material 22 are mixed with the electrolyte 30 in advance and supplied from the positive electrode active material supply tank 2a, the negative electrode active material supply tank 2b, and the electrolyte supply tank 5 to the supply pump 41, 42 and 43 are supplied to the fluidized bed electrode system 1.
  • the supply tanks 2a and 2b do not need to be installed respectively, but only one supply tank 2 is possible.
  • the electrolyte of the electrolyte supply tank 5 is supplied through the supply pump 44 and the control valve 45 from the sea or sewage.
  • the electrode active material 12 and 22 and the electrolyte 30 are stored in the storage tanks 3, 4, and 6, respectively.
  • the storage tank is preferably a storage container in an electrically insulated state.
  • the electrode active material is filled with ions, no further charging is possible. Therefore, in order to increase the capacity of the electrode, a large area of the electrode or a plurality of electrodes should be stacked. According to the present invention, since the active material is continuously supplied and the ion-adsorbed active material can be stored in a storage tank separately installed, it is possible to easily increase the capacity without having to enlarge or stack the size of the fluidized electrode system 1. In addition, the fluidized bed electrode system 1 can be further installed as necessary, which makes it easier to scale up for various capacities.
  • the positive electrode active material, the negative electrode active material and the electrolyte stored in the storage tanks 3, 4 and 6 through the fluidized bed electrode system 1 at the same time as connecting to the resistance device 8 (dotted direction). Ion desorption (discharge) proceeds while passing through (1).
  • the system can be configured by adding two or more fluidized bed electrode systems 1. Some of them may be used as charging devices and others as discharging devices. In this case, additionally, the storage tanks 3 and 4 of the positive electrode active material 12 and the negative electrode active material 22 need not be installed separately, and thus the fluidized bed electrode system for discharging may be added.
  • the electrode active materials deionized (discharged) in (1) are recycled directly to the supply tanks 2a and 2b without passing through the storage tank.
  • the separately installed fluidized bed electrode system 1 for discharge is composed of a separator having ion conduction characteristics for rapid desorption of storage ions and concentration of electrolytes by preventing contamination of electrode material and application of polarity reverse. Encapsulated electrode material is used.
  • the energy storage system 100 can be applied to a capacitive desalination water treatment technology.
  • a capacitive desalination water treatment technology For example, when seawater or industrial wastewater is passed through the fluidized bed electrode system 1 in which the potential difference is generated through the electrolyte supply tank 5, desalination (deionization) is stored in the electrolyte storage tank 6, thereby desalination of seawater. And purification of industrial wastewater.
  • the positive electrode and the negative electrode current collector is rectangular to have a micro channel structure (SUS316 95x52mm, contact area 22.4cm2.) Between each cation exchange membrane (-SO 3 -) and an anion exchange membrane (R 3 N + -), separated by a spacer unit A cell (fluid phase electrode system) was produced. As shown in Table 2, a water-soluble NaCl electrolyte having an electrical conductivity (concentration) of 1,030 kW was passed through the unit cell at a flow rate of 3-5 kW per minute by a micro metering pump (Minichemi Pump, Nippon Fine Chemical Co., Ltd.).
  • the electrode active material having the pore characteristics shown in Table 1 and the finely ground electrode active material, that is, the activated carbon powder were mixed in the same electrolyte and the concentrations in Table 2, respectively, at a slurry flow rate of about 20-25 kPa per minute.
  • a DC potential difference of about 1.2-1.5v was applied through the terminals of the two current collectors, the positive electrode and the negative electrode, while passing the positive electrode channel and the negative electrode channel through the electrode material portion.
  • the current change of the current collector and the concentration of the electrolyte (electric Conductivity) was measured. The results are shown in Table 2.
  • the flow of the present invention unlike the conventional fixed-phase electrode, the current flow drops sharply (e.g., Korean Patent, 2002-0076629) as the electrode active material is saturated and adsorbed (charged) with time.
  • the phase electrode shows a constant current flow when the concentration of the electrolyte to be supplied is constant, and the recycled slurry is reduced by about 30-40% of the concentration of the electrolyte (electric conductivity) that has passed through the current collector according to a given feed solution (electrolyte) concentration.
  • concentration of the phase electrode active material increases, it was confirmed that continuous adsorption and storage of electrolyte ions by the fluidized bed electrode material of the present invention was possible.
  • the present invention can easily solve the problem of the conventional fixed-phase electrode method that was limited to the coating amount of the electrode material in the field of power storage and CDI desalination technology, it is possible to drastically improve the expensive device cost and operating cost according to the large capacity. .
  • electrolyte supply tank 6 electrolyte storage tank
  • cathode separator 24 cathode flow path
  • electrolyte 34 insulating spacer

Abstract

본 발명은 전기화학적 이온흡착(충전) 및 탈착(방전) 원리를 이용하는 것으로, 전극에 형성된 미세 유로 구조 내에 슬러리상 전극물질(Electrode Materials) 및 전해질(Electrolyte)이 동시에 연속적으로 유동하면서 대용량 전기에너지를 저장하는 유동상 전극 시스템, 대용량 에너지 저장 시스템, 이를 이용하는 수처리방법에 관한 것이다. 상세하게는 전극활물질이 슬러리 상태로 연속 유동함으로써 대용량화를 위한 전극의 대면적화나 스택화가 필요없이 손쉽게 대용량화를 이룰 수 있는 유동상 전극 시스템, 에너지 저장 시스템 및 수처리 방법에 관한 것이다.

Description

유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법
본 발명은 전기화학적 이온흡착(충전) 및 탈착(방전) 원리를 이용하는 것으로, 전극에 형성된 미세 유로 구조 내에 슬러리상 전극물질(Electrode Materials) 및 전해질(Electrolyte)이 동시에 연속적으로 유동하면서 대용량 전기에너지를 저장하는 유동상 전극 시스템, 이를 이용한 대용량 에너지 저장 시스템 및 수처리방법에 관한 것이다. 상세하게는 전극활물질이 슬러리 상태로 연속 유동함으로써 대용량화를 위한 전극의 대면적화나 스택화가 필요없이 손쉽게 대용량화를 이룰 수 있는 유동상 전극 시스템, 에너지 저장 시스템 및 수처리 방법에 관한 것이다.
최근 세계 각국은 대기환경 오염 및 지구온난화 문제를 해결하기 위해 청정대체 에너지 개발과 함께 에너지 저장기술 개발에 많은 노력을 기울이고 있다. 특히 다양한 대체 에너지를 통해 생성된 전기에너지를 저장할 수 있는 대용량 전력저장장치에서부터 각종 모바일 기기 또는 대기오염 개선을 위한 미래 전기자동차 등 에 필요한 소형 고출력 전력저장장치에 이르기까지 전기 에너지 저장은 미래 녹색산업기반의 핵심으로 대두되고 있다. 이러한 미래 전력저장 기술의 대부분은 Li이온 전지 또는 슈퍼캐패시터(Super capacitor)와 같이 이온의 흡착(충전) 및 탈착(방전) 원리를 이용한 방식으로 세계 각국은 소재부품의 충방전 특성의 개선을 통한 고효율 컴팩트화와 대용량화를 위해 많은 연구개발 노력을 진행중이다.
한편, 최근에는 수질오염 및 물부족에 대비한 정수 또는 폐수처리, 해수담수화와 같은 수처리 분야에서도 이와 동일한 원리를 이용하여 기존의 증발법이나 역삼투압(RO)법에 비해 매우 낮은 에너지 비용만으로 수처리가 가능한 공정, 즉 축전식 탈염(Capacitive Deionization: CDI) 공정개발이 진행중이다.
이러한 동일 원리를 이용한 전력저장과 수처리 시스템에 있어 가장 큰 문제는 대용량화시 효율저하와 고가의 장치비용이다. 즉 스케일업을 위한 전극의 대면적화, 이에 따른 전극내 전기장 분포의 불균일, 집전체에 코팅되는 박막전극의 제한된 활물질 량, 코팅과정에서 바인더에 의한 활물질과 전해질의 접촉면적 감소 및충방전 효율저하 등으로 다수의 단위셀 스택화가 필요하고, 이에 따른 장치의 고가화, 특히 CDI(Capacitive Deionization) 공정의 경우 스택(stack) 내 물(전해질) 흐름의 압력손실에 의한 운전비용의 증가가 문제점으로 지적되고 있다.
본 발명의 과제는 대용량화를 위한 전극의 대면적화나 스택화를 할 필요없이 손쉽게 대용량화를 이룰 수 있는 유동상 전극 시스템을 제공하는 것이다.
본 발명의 또 다른 과제는 효율적이고 경제적인 대용량 에너지 저장 시스템을 제공하는 것이다.
본 발명의 또 다른 과제는 낮은 에너지 비용만으로 수처리가 가능한 수처리방법을 제공하는 것이다.
청구항 제1항에 기재된 발명은, 유동상 전극 시스템이고, 유동하는 양극활물질을 포함하는 유동상 양극; 유동하는 음극 활물질을 포함하는 유동상 음극; 및 전해질을 포함한다.
청구항 제1항에 기재된 유동상 전극 시스템에 의하면, 계속적으로 양극활물질 및 음극활물질이 유동하므로, 이들을 지속적으로 공급할 수 있어, 전극의 대면적화나 스택화를 하지 않아도 손쉽게 대용량화를 이룰 수 있다.
청구항 제2항에 기재된 발명은, 제1항의 유동상 전극 시스템이고, 상기 양극이 양극집전체; 양극분리막; 상기 양극집전체와 상기 양극분리막 사이에 형성된 양극유로; 및 상기 양극유로를 흐르는 양극활물질을 포함하고, 상기 음극이 음극집전체; 음극분리막; 상기 음극집전체와 상기 음극분리막 사이에 형성된 음극유로; 및 상기 음극유로를 흐르는 음극활물질을 포함하고, 상기 전해질이 상기 양극분리막및 상기 음극분리막 사이에 형성된 전해질 유로인 절연 스페이서(Insulating Spacer)를 흐른다.
청구항 제2항에 기재된 유동상 전극 시스템에 의하면, 양극활물질와 전해질,음극활물질과 전해질의 이온교환을 통해 이온흡착(충전) 및/또는 탈착(방전)되어 에너지가 저장 및/또는 발생시킬 수 있다.
청구항 제3항에 기재된 발명은, 제2항에 기재된 유동상 전극 시스템이고, 상기 양극분리막이 미세공 절연 분리막이거나 양이온교환(전도)막이고, 상기 음극분리막이 미세공 절연 분리막이거나 음이온교환(전도)막이다.
청구항 제3항에 기재된 유동상 전극 시스템에 의하면, 미세공 절연 분리막 또는 이온 교환막에 의해 이온이 활물질로부터 전해질로 이동되거나 교환되어 에너지를 저장 및/또는 발생시킬 수 있다.
청구항 제4항에 기재된 발명은, 청구항 제2항에 기재된 유동상 전극 시스템이고, 상기 양극활물질 또는 상기 음극활물질이 상기 전해질과 혼합된 슬러리상의 활물질이다.
청구항 제4항에 기재된 유동상 전극 시스템에 의하면, 흐름속도를 조절하기가 용이하여 일정하고 연속적으로 단위 유동상 전극 시스템에 활물질을 공급할 수 있어, 에너지를 일정하게 저장 및/또는 발생시킬 수 있다.
청구항 제5항에 기재된 발명은, 제2항에 기재된 유동상 전극 시스템이고, 상기 양극활물질 또는 상기 음극활물질이 동일 물질이다.
청구항 제5항에 기재된 유동상 전극 시스템에 의하면, 양극활물질 및 음극활물질을 하나의 장치로서 저장 및 공급이 가능하므로, 이들을 각기 구별하여 저장 및 보관해야하는 불편함을 줄이고 각 장치를 구비하는 비용을 줄일 수 있다.
청구항 제6항에 기재된 발명은, 제2항에 기재된 유동상 전극 시스템이고, 상기 분리막이 미세공 절연 분리막이고, 상기 양극활물질 또는 상기 음극활물질이 마이크로캡슐화된 것이다.
청구항 제6항에 기재된 유동상 전극 시스템에 의하면, 마이크로캡슐화된 전극활물질로 인하여 전해질과의 접촉면적이 증대되어 반응성이 높아진다.
청구항 제 7항에 기재된 발명은, 전해질의 흐름방향과, 서로 같은 방향으로 흐르는 유동상 양극의 유동하는 양극활물질과 유동상 음극의 음극활물질의 흐름방향과 반대방향인 것이다.
이를 통하여, 다양한 형태의 유동상 전극 시스템의 설계가 가능해진다.
청구항 제 8항에 기재된 발명은, 상기 유동상 양극의 양극활물질과 상기 유동상 음극의 음극활물질의 흐름속도가 상이한 비대칭 전극을 가지는 것이다. 즉, 흐름속도가 상이하므로, 흐름속도의 절대값이 상이하거나 흐름방향이 반대방향일 수 있다. 이를 통해 다양한 형태의 유동상 전극 시스템의 설계가 가능해진다.
또, 청구항 제 9항에 기재된 발명은, 분리막이 없는 상태의 유동상 전극 시스템이다. 따라서, 구조가 단순해지는 장점이 있다. 다만, 양극활물질과 음극활물질이 전해질과 섞이는 것을 방지하기 위하여 상기 양극활물질 또는 상기 음극활물질이 마이크로캡슐화된 것을 특징으로 한다.
청구항 제 10항에 기재된 발명은, 제1항 내지 제9항중 어느 한 항의 유동상 전극 시스템이고, 유동상 전극 시스템이 2차전지 또는 전기이중층 캐패시터(EDLC: Electric Double Layer Capacitor)이다.
청구항 제10항에 기재된 유동상 전극 시스템에 의하면, 그 사용 목적에 따라 다양한 형태로 이용될 수 있다.
청구항 제11항에 기재된 발명은, 대용량 에너지 저장 시스템이고, 적어도 1개 이상의 제1항 내지 제9항 중 어느 한 항의 유동상 전극 시스템; 상기 양극활물질, 상기 음극활물질 및 상기 전해질을 각각 공급하는 공급장치; 상기 유동상 전극 시스템에 전력을 공급하는 전원공급장치; 상기 전원공급장치로부터 발생한 전위차를 조절하는 절환스위치; 및 상기 양극활물질, 상기 음극활물질 및 상기 전해질을 저장하는 저장탱크를 포함한다.
청구항 제11항에 기재된 에너지 저장 시스템에 의하면, 양극활물질, 음극활물질, 전해질을 유동상 전극 시스템 내가 아닌 별도의 분리되어 설치되는 저장탱크에 저장하여 공급함으로써, 전극의 대면적화나 스팩화할 필요 없이 손쉽게 대용량으로 에너지를 저장시킬 수 있어, 다양한 용량에 적합한 스케일업이 용이하며 장치 제조및 운전 비용 등을 크게 줄일 수 있어, 미래 에너지 산업에 유용하게 사용될 수 있다.
청구항 제12항에 기재된 발명은, 제11항에 기재된 대용량 에너지 저장 시스템이고, 상기 절환스위치에 연결된 저항장치를 더 포함한다.
청구항 제12항에 기재된 대용량 에너지 저장 시스템에 의하면, 절환 스위치가 전원공급장치로부터 저항장치로 변환됨으로써, 저장탱크에 저장된 이온흡착(충전)된 전력이 출력될 수 있다.
청구항 제13항에 기재된 발명은, 제11항에 기재된 대용량 에너지 저장 시스템이고, 상기 공급장치가 상기 양극활물질, 상기 음극활물질 및 상기 전해질을 각각 공급하는 공급탱크 및 공급펌프로 이루어진다.
청구항 제13항에 기재된 대용량 에너지 저장 시스템에 의하면, 공급탱크가 유동상 전극 시스템과 별도로 설치될 수 있어, 유동상 전극 시스템의 크기와 무관하게 낮은 비용으로 대용량화를 이룰 수 있다.
청구항 제14항에 기재된 발명은, 제13항에 기재된 대용량 에너지 저장 시스템이고, 상기 양극활물질을 공급하는 양극활물질 공급탱크와 상기 음극활물질을 공급하는 음극활물질 공급탱크가 하나의 공급탱크이다.
청구항 제14항에 기재된 대용량 에너지 저장 시스템에 의하면, 양극활물질 및 음극활물질이 동일한 경우 하나의 공급탱크만으로도 공급이 가능하므로, 설치비용을 줄일 수 있다.
청구항 제15항에 기재된 발명은, 제13항에 기재된 대용량 에너지 저장 시스템이고, 상기 유동상 전극 시스템이 2개 이상이되, 상기 유동상 전극 시스템 중 일부는 충전 장치, 나머지는 방전장치로 사용되고, 상기 방전용 에너지 저장 장치로부터 방전되어 흘러나온 양극활물질 및 음극활물질은 다시 상기 양극활물질 공급탱크 및 상기 음극활물질 공급탱크로 리사이클링된다.
청구항 제15항에 기재된 대용량 에너지 저장 시스템에 의하면, 충반전을 연속해서 동시에 수행할 수 있으며, 또한 양극활물질 및 음극활물질 공급탱크를 별도로 설치하지 않아도 되므로 설비 비용을 줄일 수 있다.
청구항 제16항에 기재된 발명은, 청구항 제8항에 기재된 대용량 에너지 저장시스템이고, 상기 저장탱크가 전기적 절연상태의 저장용기이다.
청구항 제16항에 기재된 대용량 에너지 저장 시스템에 의하면, 저장탱크에 저장된 전력이 세어나가지 않고 안정적으로 보관된다.
청구항 제17항에 기재된 발명은, 청구항 제13항에 기재된 대용량 에너지 저장 시스템이고, 상기 전해질이 해수 또는 산업 폐수이다.
청구항 제17항에 기재된 대용량 에너지 저장 시스템에 의하면, 전해질로서 해수 및 폐수가 사용되므로, 비용을 줄일 수 있고 또한 해수의 담수화 및 폐수의 정화에 이용될 수 있다.
청구항 제18항에 기재된 발명은, 축전식 탈염(Capacitive Deionization)에 의한 수처리 방법이고, 제10항의 에너지 저장 시스템을 이용한다.
청구항 제18항에 기재된 수처리 방법에 의하면, 시설 설비 비용, 운전비용을 저가로 하면서도 대용량으로 수처리가 가능하다.
청구항 제19항에 기재된 발명은, 축전식 탈염에 의한 해수의 담수화 방법이고, 제7항의 에너지 저장 시스템을 이용하고, 상기 전해질이 해수이다.
청구항 제19항에 기재된 해수의 담수화 방법에 의하면, 시설 설비 비용, 운전비용을 저가로 하면서도 대용량으로 해수의 담수화가 가능하다.
청구항 제20항에 기재된 발명은, 축전식 탈염에 의한 폐수 정화 방법이고, 제7항의 에너지 저장 시스템을 이용하고, 전해질이 산업 폐수이다.
청구항 제20항에 기재된 폐수 정화 방법에 의하면, 저렴한 비용으로 대용량으로 산업 폐수의 정화가 가능하다.
기존 집전체에 코팅된 고정상 활물질 전극과는 달리 집전체와 분리된 수십㎚에서 수십 ㎛크기의 미세 전극 활물질이 전해질과 혼합된 슬러리 상태로 연속 유동함으로써, 대용량화를 위한 전극의 대면적화나 스택화가 필요 없이 미세 유로구조를 갖는 단위셀과 절연 저장용기만으로 손쉽게 대용량화를 이룰 수 있다. 이러한 에너지 저장 및 CDI탈염장치는 다양한 용량에 적합한 스케일업이 용이할 뿐 아니라 장치제작 및 운전비용을 크게 절감할 수 있다.
도 1은 본 발명의 일 실시예에 따른 유동상 전극 시스템의 개략도이다.
도 2는 본 발명의 일실시예에 따라 전극물질을 포함하는 마이크로캡슐의 단면도이다.
도 3는 본 발명의 일 실시예에 따른 대용량 유동상 전극 시스템의 개략도이다.
도 4는 본 발명의 다른 실시예에 따른 유동상 전극 시스템의 개략도이다.
도 5는 본 발명의 또 다른 실시예에 따른 유동상 전극 시스템의 개략도이다.
이하 본 발명을 더욱 상세히 설명한다. 그러나 이는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 당해 기술분야에 속하는 전문가가 적절하게 설계변경하여 사용할 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 유동상 전극 시스템은 유동하는 양극활물질을 포함하는 유동상 양극; 유동하는 음극 활물질을 포함하는 유동상 음극; 및 유동하는 전해질을 포함한다.
상기 양극활물질, 상기 음극활물질 및 상기 전해질은, 유동상 전극 시스템, 예를 들어 전지 또는 축전지 등에 사용되어 오던 것 어느 것이나 다 사용될 수 있으며, 당해 기술분야의 통상의 전문가가 사용 목적 및 환경에 따라 적절하게 선택할 수 있다.
본 발명의 일 실시예에 따르면, 양극활물질 및 음극활물질은 서로 다른 물질이 사용될 수도 있지만, 동일한 물질이 사용될 수도 있다.
본 발명의 일 실시예에 따르면, 상기 양극활물질 및/또는 음극활물질 등의 전극물질은 다공성 탄소(활성탄, 카본파이버, 탄소에어로젤, 타노사노튜브 등), 흑연분말, 금속산화물 분말등이 사용될 수 있으며, 전해질과 혼합되어 유동화된 상태로 사용될 수 있다.
본 발명의 일 실시예에 따르면 상기 전해질은 NaCl, H2SO4, HCl, NaOH, KOH, Na2NO3등 수용성 전해질과 프로필렌카보네이트(Propylene Carbonate, PC), 디에틸카보네이트(Diethyl Carbonate, DEC), 테트라히드로푸란(Tetrahydrofuran, THF)와 같은 유기성 전해질을 포함한다.
본 발명의 일 실시예에 의하면, 상기 전극활물질만 유동하고 상기 전해질은 고체상 또는 정지상 전해질일 수 있다.
본 발명의 일 실시예에 따르면, 상기 양극이 양극집전체; 양극분리막; 상기 양극집전체와 상기 양극분리막 사이에 형성된 양극유로; 및 상기 양극유로를 흐르는 양극활물질을 포함하고, 상기 음극이 음극집전체; 음극분리막; 상기 음극집전체와 상기 음극분리막 사이에 형성된 음극유로; 및 상기 음극유로를 흐르는 음극활물질을 포함하고, 상기 전해질이 상기 양극분리막 및 상기 음극분리막 사이에 형성된 유로를 흐른다.
상기 전극집전체 및 상기 전극분리막은 종래 유동상 전극 시스템(전지, 축전지 등)에 사용되어 오고 있는 것들이라면 어느 것이나 다 사용가능하며, 당해 기술분야에 속하는 통상의 전문가가 그 사용목적 및 조건에 따라 적절하게 선택하여 사용할 수 있다.
상기 양극유로 및 상기 음극유로의 폭은 종래 유동상 전극 시스템에서 전극집전체와 분리막 사이의 간격 또는 그 이하로 형성할 수 있다. 이는 종래에는 전극활물질이 고정되어 있어 충방전에 필요한 활물질의 용량을 확보하고자 할 때에는 유동상 전극 시스템의 크기가 커지는 문제점이 있어, 활물질이 충진되는 전극집전체와 분리막 사이의 간격에 제한이 있었으나, 본 발명에 따르면 전극활물질을 지속적으로 공급할 수 있으므로, 이러한 제한 없이 사용 목적이나 사용되는 활물질, 전해질 등에 따라 자유롭게 설계 변경할 수 있다. 본 발명의 일 실시예에 의하면 상기 유로의 폭과 높이는 수십 ㎛에서 수㎜ 크기로 사용될 수 있다.
상기 절연 스페이서의 폭도 마찬가지로 전해질이 지속적으로 공급될 수 있으므로, 유동상 전극 시스템의 크기로 인한 제한없이 적절하게 설계변경할 수 있다.
다만, 충방전 효율을 높이기 위하여 전해질과 활물질의 속도를 달리하거나, 활물질 유로의 폭과 절연 스페이서의 폭의 비에 제한을 둘 수도 있다.
본 발명의 일 실시예에 따르면, 상기 양극분리막이 미세공 절연 분리막이거나 양이온교환(전도)막이고, 상기 음극분리막이 미세공 절연 분리막이거나 음이온교환(전도)막일 수 있다.
상기 분리막은 전기물리적 분리를 위해 설치되는 것으로 미세공 절연 분리막(separator)은 이온 이동만이 가능하고, 상기 이온교환(전도)막은 양이온(cation) 또는 음이온(anion)만을 선택적으로 이동시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면 양극활물질 또는 음극활물질이 전해질과 혼합된 슬러리상의 활물질이다.
그리고, 본 발명의 다른 실시예에 따르면 양극활물질과 음극활물질에 대하여 전해질이 반대방향으로 흐르게 된다. 따라서, 다양한 형태의 유동상 전극 시스템을 구성하는 것이 가능하다.
또한, 양극의 양극활물질과 음극의 음극활물질의 흐름속도를 서로 달리하여, 양극활물질과 음극활물질의 전해질의 반응시간을 달리 하는 것도 가능하다. 이를 통해 다양한 설계변경이 가능해진다.
이하, 도면을 참조로 더욱 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 유동상 전극 시스템의 개략도이다. 도 1에 의하면 양극집전체(11), 양극분리막(13) 및 양극집전체(11)와 양극분리막(13)사이에 형성된 양극유로(14)를 흐르는 양극활물질(12)로 이루어지는 양극(10); 음극집전체(21), 음극분리막(23) 및 음극집전체(21)와 음극분리막(23) 사이에 형성된 음극유로(24)를 흐르는 음극활물질(22)로 이루어지는 음극(20); 및 양극분리막(13)과 음극분리막(23) 사이에 형성된 절연 스페이서(34)를 흐르는 전해질(30)로 구성된다.
상기 유동상 전극 시스템은 단위셀로서 2개 이상 연속해서 설치되어 사용될 수 있으며, 전극물질과 전해질을 동시에 연속적으로 유동화시킬 수 있다.
또, 도 4에 도시된 바와 같이, 전해질(30)의 이동방향을 상기 양극활물질(12) 및 상기 음극활물질(22)에 대하여 반대방향으로 구성하는 것도 가능하다.
도 2를 참조로 하면 전극물질을 마이크로캡슐화하여 전해질과 전극물질의 접촉면적을 증대시킬 수 있다. 구체적으로 두 전극활물질과 전해질 흐름통로 사이에 양이온 분리막(주로 전해질 액체의 유통을 막고 양이온만 선택적으로 통과시키는 치밀막 dense막)과 음이온 분리막(음이온만 선택적으로 통과 치밀막)을 사용한다.
그러나 각각의 선택적 이온막으로 캡슐화된 전극활물질(도2)을 사용하면, 양극사이에 이온전도 치밀막들을 사용할 필요가 없고, 이온만이 아닌 전해질 유통이 가능한 미세공 절연분리막을 사용하면 전해질과 각각의 캡슐화된 전극활물질 입자와의 접촉면적이 증대된다.
마이크로캡슐 전극은 중심이 되는 코어와 바깥을 둘러싸는 셀로 구성되며 셀물질은 전해질에 존재하는 이온을 교환시킬 수 있는 특성을 갖고 있다. 일 실시예에 따르면, 셀 물질은 양이온을 교환할 수 있는 술폰산기(SO3-), 카르복실기(COO-), 인산기(PO4-) 등이 존재하는 고분자 막과 음이온을 교환할 수 있는 1,2,3,4급 암모늄기가 붙어있는 고분자 막을 사용할 수 있다. 마이크로캡슐은 고상법 또는 액상법으로 만들 수 있으며, 특히 액상법에는 코어/셀 구조는 계면활성제를 이용하는 에멀전법, 셀로 사용되는 물질을 단량체에서 중합하여 제조하는 중합법, 코어와 셀을 개별적으로 혹은 동시에 분사하거나 압출시켜 제조하는 방법으로 마이크로캡슐전극을 만들 수 있다. 마이크로캡슐화된 전극은 개별 알갱이가 하나 혹은 수개가 뭉쳐서 셀이 둘러싸게 되므로 전체 알갱이가 뭉쳐 한개 벌크화된 전극보다 단위 무게당 혹은 부피당 차지하는 전극 면적이 크다는 장점이 있다.
특히, 도 5에 도시된 바와 같이, 분리막의 제거된 상태의 유동상 전극시스템(60)을 구성하는 경우에는 마이크로캡슐에 의해 양극활물질 및 음극활물질과 전해질이 직접 혼합되는 것을 방지할 수 있다.
다음으로 도 3을 참조로 하면, 본 발명의 일 실시예에 따른 에너지 저장 시스템(100)은, 단위셀인 유동상 전극 시스템(1); 상기 양극활물질(12)에 전해질(30)을 혼합하여 슬러리상으로 제조한 양극활물질을 공급하는 양극활물질 공급탱크(2a)와 공급펌프(41); 상기 음극활물질(22)에 전해질(30)을 혼합하여 슬러리상으로 제조한 음극활물질을 공급하는 음극활물질 공급탱크(2b)와 공급펌프(42); 상기 전해질(30)을 공급하는 전해질 공급탱크(5)와 공급펌프(43); 상기 유동상 전극 시스템(1)로 직류전원을 공급하는 전원공급장치(7); 상기 전원공급장치(7)로부터 발생한 전위차를 조절하는 절환스위치(9); 전위가 인가된 유동상 전극 시스템(1)을 통과하면서 이온흡착(충전)된 양극활물질이 저장되는 양이온저장탱크(3); 이온흡착(충전)된 음극활물질이 저장되는 음이온저장탱크(4); 탈이온화된 전해질저장탱크(6)로 구성된다.
상기 에너지 저장 시스템(100)의 작용은 다음과 같다.
유동상 전극 시스템(1)에 직류전원 공급장치(7)로부터 발생한 전위차, 예를 들어 0.5~2.0v 범위의 전위차를 절환스위치(9)를 통해 인가하면서, 슬러리상의 양극활물질(12), 음극활물질(22) 및 전해질(30)을 동시에 유동상 전극 시스템(1)에 연속적으로 통과시킨다.
상기 양극활물질(12) 및 음극활물질(22)은 사전에 전해질(30)과 혼합되어 양극활물질 공급탱크(2a), 음극활물질 공급탱크(2b) 및 전해질 공급탱크(5)로부터 공급펌프(41, 42, 43)에 의해 유동상 전극 시스템(1)에 공급된다. 이때 사용되는 양극활물질(12) 및 음극활물질(22)이 동일한 경우 공급탱크(2a, 2b)로 각각 설치할 필요없이 하나의 공급탱크(2)만으로도 가능하다. 상기 전해질 공급탱크(5)의 전해질은 바다 또는 오수 등으로부터 공급펌프(44) 및 조절밸브(45)를 통해 공급된다.
상기와 같이 양극활물질(12), 음극활물질(22) 및 전해질(30)을 전위가 인가된 유동상 전극 시스템(1)을 통과하도록 흘려보내면(실선방향), 통과하면서 이온흡착(충전)된 전극활물질(12,22)과 이온이 제거된 전해질(30)은 각각 저장탱크(3, 4, 6)에 저장된다. 일 실시예에 따르면, 상기 저장탱크는 전기적 절연상태의 저장용기인 것이 바람직하다.
종래 고정상 활물질 전극의 경우에는 전극활물질에 이온이 충전되면 더 이상의 충전이 불가능하므로, 대용량화를 위해서는 전극을 대면적화 하거나 여러 개의 전극을 스택화하여야 하므로, 장치 제조나 운전비용이 크게 증가하는 문제점이 있었으나, 본 발명에 의하면 활물질을 지속적으로 공급하고 이온흡착된 활물질은 따로 설치된 저장탱크에 저장할 수 있으므로, 유동상 전극 시스템(1)의 크기를 크게 하거나 스택화할 필요없이 손쉽게 대용량화가 가능하다. 또한, 유동상 전극 시스템(1)을 필요에 따라 더 설치할 수 있어, 보다 용이하게 다양한 용량에 적합한 스케일업이 가능하다.
한편, 각각의 저장탱크에 저장된 전극활물질에 이온흡착(충전)된 전력을 출력하는 방법은 이온흡착(충전) 과정과는 반대로 직류전원공급장치(7)를 끄고, 절환스위치(9)를 변환하여 저항장치(8)에 연결함과 동시에 유동상 전극 시스템(1)을 통해 저장탱크(3, 4, 6)에 저장된 양극활물질, 음극활물질, 전해질을 역으로 흘려보내면(점선방향) 유동상 전극 시스템(1)을 통과하면서 이온탈착(방전)이 진행된다.
이때, 장시간 연속적으로 충전과 방전을 동시에 수행할 필요가 있는 경우 유동상 전극 시스템(1)을 2 이상 추가하여 시스템을 구성할 수 있다. 이중 일부는 충전장치로서, 나머지는 방전장치로서 사용될 수 있으며, 이 경우 양극활물질(12)과 음극활물질(22)의 저장탱크(3,4)를 따로 설치할 필요없이 추가되어 방전용 유동상전극 시스템(1)에서 이온탈착(방전)된 전극활물질들이 저장탱크를 거치지 않고 바로 공급탱크(2a, 2b)로 리사이클링된다.
특히, 따로 설치되는 방전용 유동상 전극 시스템(1)은 전극물질의 오염방지와 역전위(polarity reverse) 인가에 의한 저장이온의 급속탈착 및 전해질 농축을 위해 이온전도 특성을 갖는 분리막으로 구성되거나 마이크로캡슐화된 전극물질을 사용한다.
본 발명에 따른 에너지 저장 시스템(100)은 축전식 탈염 수처리 기술에 적용할 수 있다. 예를 들어 해수 또는 산업 폐수를 전해질 공급탱크(5)를 통해 전위차가 발생된 유동상 전극 시스템(1)을 통과시키면, 탈염(탈이온화)되어 전해질 저장탱크(6)에 저장되므로, 해수의 담수화 및 산업 폐수의 정화가 이루어질 수 있다.
따라서, 기존의 증발법이나 역삼투압(RO)법에 비해 매우 낮은 에너지 비용만으로 수처리가 가능하며, 대용량화가 가능하다.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위를 제한하는 것으로 해석되어서는 안된다.
[실시예 1] (NaCl 전해질에서 활성탄 분말슬러리의 유동화 탈염특성)
미세유로 구조를 갖도록 직사각형의 양극 및 음극 집전체(SUS316. 95x52㎜, 접촉면적 22.4㎠) 사이에 각각 양이온 교환막(-SO3 -) 및 음이온 교환막(R3N+-), 스페이서로 분리된 단위셀(유동상 전극 시스템)을 제작하였다. 표2에서처럼 1,030에 서 11,000㎲의 전기전도도(농도)를 갖는 수용성 NaCl 전해질을 마이크로 정량펌프(일본정밀화학(주), Minichemi Pump)로 분당 3-5㏄ 유량으로 단위셀을 통과시켰다.
이와 동시에 표 1의 세공특성을 갖고 약 95㎚ 평균입도로 미분쇄된 전극활물질, 즉 활성탄 분말을 동일 전해질과 표 2의 농도로 각각 혼합하여 분당 약 20-25㏄의 슬러리상 유속으로 단위셀의 양극유로 및 음극유로를 전극물질부로 통과시키면서, 양극 및 음극의 두 집전체의 단자를 통해 약 1.2-1.5v의 DC 전위차를 인가시켰다. 이때 본 실험에서는 두 집전체를 통과하면서 이온흡착(충전)된 슬러리상의 전극활물질을 따로 저장하지 않고, 하나의 공급저장용기로 리사이클하면서 약 30분 단위로 집전체의 전류변화와 전해질의 농도(전기전도도) 변화를 측정하였다. 그 결과를 표 2에 나타내었다.
표 1
BET 비표면적 평균 세공직경 총 세공부피 미세공 부피 평균입도
(㎡/g) (Å) (㏄/g) (㏄/g) (㎚)
3,263 21 1.71 1.1 95
표 2
인가전압 측정전류 전해질농도 활물질농도
(V) (㎃) 공급액(㎲) 투과액(㎲) 초기(㎲) 종료(㎲)
1.5 30 1,030 643 135 324
1.2 50 3,290 2,230 324 887
1.2 90 11,000 7,700 887 2,762
표 2의 측정결과에 의하면, 기존의 고정상 전극이 시간에 따라 전극활물질이 포화흡착(충전)되면서 전류의 흐름이 급격히 떨어지는 것(예를 들어, 한국특허, 2002-0076629)과 달리 본 발명의 유동상 전극은 공급되는 전해질의 농도가 일정할 경우 일정한 전류흐름을 나타내고, 집전체를 투과한 전해질의 농도(전기전도도)가 주어진 공급액(전해질) 농도에 따라 약 30-40%정도 감소되면서 리사이클된 슬러리상 전극활물질의 농도가 증가하는 것으로 보아, 본 발명의 유동상 전극물질에 의한 전해질 이온의 연속적인 흡착저장이 가능함을 확인하였다. 따라서 본 발명은 전력저장 및 CDI탈염기술 분야에서 전극물질의 코팅량에 제한을 받았던 기존의 고정상 전극방식의 문제점을 용이하게 해결함으로써 대용량에 따른 고가의 장치비용 및 운전비용을 획기적으로 개선이 가능하다.
<부호의 설명>
1,60: 유동상 전극 시스템 2: 활물질 공급탱크
3: 양극활물질 저장탱크 4: 음극활물질 저장탱크
5: 전해질 공급탱크 6: 전해질 저장탱크
7: 전원공급장치 8: 저항장치
9: 절환스위치 41, 42, 43, 44: 공급펌프
10: 양극 11: 양극집전체
12: 양극활물질 13: 양극분리막
14: 양극유로 20: 음극
21: 음극집전체 22: 음극활물질
23: 음극분리막 24: 음극유로
30: 전해질 34: 절연 스페이서(Insulating spacer)
50: 캡슐막(이온막)

Claims (20)

  1. 유동하는 양극활물질을 포함하는 유동상 양극;
    유동하는 음극 활물질을 포함하는 유동상 음극; 및
    전해질을 포함하는 것을 특징으로 하는 유동상 전극 시스템.
  2. 제1항에 있어서,
    상기 양극이 양극집전체; 양극분리막; 상기 양극집전체와 상기 양극분리막 사이에 형성된 양극유로; 및 상기 양극유로를 흐르는 양극활물질을 포함하고,
    상기 음극이 음극집전체; 음극분리막; 상기 음극집전체와 상기 음극분리막 사이에 형성된 음극유로; 및 상기 음극유로를 흐르는 음극활물질을 포함하고,
    상기 전해질이 상기 양극분리막 및 상기 음극분리막 사이에 형성된 절연 스페이서를 흐르는 것을 특징으로 하는 유동상 전극 시스템.
  3. 제2항에 있어서,
    상기 양극분리막이 미세공 절연 분리막이거나 양이온교환(전도)막이고,
    상기 음극분리막이 미세공 절연 분리막이거나 음이온교환(전도)막인 것을 특징으로 하는 유동상 전극 시스템.
  4. 제2항에 있어서,
    상기 양극활물질 또는 상기 음극활물질이 상기 전해질과 혼합된 슬러리상의 활물질인 것을 특징으로 유동상 전극 시스템.
  5. 제2항에 있어서,
    상기 양극활물질 또는 상기 음극활물질이 동일 물질인 것을 특징으로 유동상 전극 시스템.
  6. 제2항에 있어서,
    상기 분리막이 미세공 절연 분리막이고,
    상기 양극활물질 또는 상기 음극활물질이 마이크로캡슐화된 것을 특징으로 유동상 전극 시스템.
  7. 제1항에 있어서,
    상기 전해질의 흐름방향은, 서로 같은 방향으로 흐르는 유동상 양극의 유동하는 양극활물질과 유동상 음극의 음극활물질의 흐름방향과 반대방향인 것을 특징으로 하는 대용량 에너지 저장 시스템.
  8. 제1항에 있어서,
    상기 유동상 양극의 양극활물질과 상기 유동상 음극의 음극활물질의 흐름속도는 상이한 것을 특징으로 하는 대용량 에너지 저장 시스템.
  9. 제1항에 있어서,
    상기 양극이 양극집전체; 및 상기 양극집전체에 근접하여 흐르는 양극활물질을 포함하고,
    상기 음극이 음극집전체; 및 상기 음극집전체에 근접하여 흐르는 음극활물질을 포함하고,
    상기 전해질이 상기 양극활물질 및 상기 음극활물질 사이로 흐르며,
    상기 양극활물질 또는 상기 음극활물질이 마이크로캡슐화된 것을 특징으로 하는 유동상 전극 시스템.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 유동상 전극 시스템이 2차전지 또는 전기이중층 캐패시터(EDLC: Electric Double Layer Capacitor)인 것을 특징으로 하는 유동상 전극 시스템.
  11. 적어도 1개 이상의 제1항 내지 제9항 중 어느 한 항의 유동상 전극 시스템;
    상기 양극활물질, 상기 음극활물질 및 상기 전해질을 각각 공급하는 공급장치;
    상기 유동상 전극 시스템에 전력을 공급하는 전원공급장치;
    상기 전원공급장치로부터 발생한 전위차를 조절하는 절환스위치; 및
    상기 양극활물질, 상기 음극활물질 및 상기 전해질을 저장하는 저장탱크를 포함하는 것을 특징으로 하는 대용량 에너지 저장 시스템.
  12. 제11항에 있어서,
    상기 절환스위치에 연결된 저항장치를 더 포함하는 것을 특징으로 하는 대용량 에너지 저장 시스템.
  13. 제11항에 있어서,
    상기 공급장치가 상기 양극활물질, 상기 음극활물질 및 상기 전해질을 각각 공급하는 공급탱크 및 공급펌프로 이루어진 것을 특징으로 하는 대용량 에너지 저장 시스템.
  14. 제13항에 있어서,
    상기 양극활물질을 공급하는 양극활물질 공급탱크와 상기 음극활물질을 공급
    하는 음극활물질 공급탱크가 하나의 공급탱크인 것을 특징으로 하는 대용량 에너지 저장 시스템.
  15. 제13항에 있어서,
    상기 유동상 전극 시스템이 2개 이상이되,
    상기 유동상 전극 시스템 중 일부는 충전 장치, 나머지는 방전장치로 사용되고,
    상기 방전용 에너지 저장 장치로부터 방전되어 흘러나온 양극활물질 및 음극활물질은 다시 상기 양극활물질 공급탱크 및 상기 음극활물질 공급탱크로 리사이클링되는 것을 특징으로 하는 에너지 저장 시스템.
  16. 제11항에 있어서,
    상기 저장탱크가 전기적 절연상태의 저장용기인 것을 특징으로 하는 대용량 에너지 저장 시스템.
  17. 제10항에 있어서,
    상기 전해질이 해수 또는 산업 폐수인 것을 특징으로 하는 대용량 에너지 저장 시스템.
  18. 제10항의 에너지 저장 시스템을 이용하는 것을 특징으로 하는 축전식 탈염(CDI, Capacitive Deionization)에 의한 수처리 방법.
  19. 제10항의 에너지 저장 시스템을 이용하고,
    상기 전해질이 해수인 것을 특징으로 하는 축전식 탈염(CDI, Capacitive Deionization)에 의한 해수담수화 방법.
  20. 제10항의 에너지 저장 시스템을 이용하고,
    상기 전해질이 산업 폐수인 것을 특징으로 하는 축전식 탈염(CDI,Capacitive Deionization)에 의한 폐수 정화 방법.
PCT/KR2011/006010 2010-08-13 2011-08-16 유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법 WO2012021048A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180043941.8A CN103109336B (zh) 2010-08-13 2011-08-16 连续流电极系统以及高容量功率存储和使用这些系统的水处理方法
BR112013003263-4A BR112013003263B1 (pt) 2010-08-13 2011-08-16 sistema de eletrodos em fluxo contínuo; sistema de armazenamento de energia de alta capacidade e uso do sistema de armazenamento de energia de alta capacidade no tratamento de água do mar e de água residual industrial
EP11816664.4A EP2605326B1 (en) 2010-08-13 2011-08-16 Fluidized-bed electrode system, high-capacity power storage and water treatment method using same
US13/816,888 US9963363B2 (en) 2010-08-13 2011-08-16 Continuous flow-electrode system, and high-capacity power storage and water treatment method using the same
JP2013524057A JP2013541407A (ja) 2010-08-13 2011-08-16 流動状システムとこれを用いた大容量電力貯蔵及び水処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20100078543A KR101233295B1 (ko) 2010-08-13 2010-08-13 흐름전극장치
KR10-2010-0078543 2010-08-13

Publications (2)

Publication Number Publication Date
WO2012021048A2 true WO2012021048A2 (ko) 2012-02-16
WO2012021048A3 WO2012021048A3 (ko) 2012-05-10

Family

ID=45568088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006010 WO2012021048A2 (ko) 2010-08-13 2011-08-16 유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법

Country Status (7)

Country Link
US (1) US9963363B2 (ko)
EP (1) EP2605326B1 (ko)
JP (2) JP2013541407A (ko)
KR (1) KR101233295B1 (ko)
CN (1) CN103109336B (ko)
BR (1) BR112013003263B1 (ko)
WO (1) WO2012021048A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20120363A1 (it) * 2012-11-30 2014-05-31 Idropan Dell Orto Depuratori S R L Apparecchiatura per la purificazione di un fluido e metodo di purificazione di un fluido, in particolare mediante la suddetta apparecchiatura
AT513929A1 (de) * 2013-02-05 2014-08-15 Vanor Wasseraufbereitungs Gmbh Verfahren und Vorrichtung zur Entsalzung von Salzwasser
EP2810922A1 (en) * 2013-06-06 2014-12-10 Centre National De La Recherche Scientifique Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101318331B1 (ko) * 2012-03-16 2013-10-16 한국에너지기술연구원 흐름전극을 이용한 농도차 발전장치
KR101340450B1 (ko) * 2012-09-19 2013-12-11 한국전력공사 해수의 흐름을 이용한 담수화 장치 및 담수화 방법
KR101394132B1 (ko) * 2012-11-20 2014-05-14 한국에너지기술연구원 고효율 염분차 발전장치
KR101582477B1 (ko) * 2013-06-28 2016-01-06 한국에너지기술연구원 전도성 폼을 구비한 축전식 탈염 장치
KR101689200B1 (ko) 2013-07-12 2016-12-26 한국에너지기술연구원 Fdfo 장치의 폐용액으로부터 인회석을 합성하는 시스템
KR101530534B1 (ko) * 2013-08-02 2015-06-22 (주) 시온텍 유로패턴과 이온선택성을 갖는 축전식 탈염전극의 제조 방법
KR101513446B1 (ko) * 2013-09-24 2015-04-21 한국에너지기술연구원 흐름전극 축전식 탈염장치용 이온 교환막 및 이를 포함하는 흐름전극 축전식 탈염장치
US10411284B2 (en) * 2013-10-03 2019-09-10 Massachusetts Institute Of Technology Flow battery with dispersion blocker between electrolyte channel and electrode
JP2017518161A (ja) * 2014-02-06 2017-07-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 脱灰装置
KR101410642B1 (ko) * 2014-02-20 2014-06-24 (주) 시온텍 축전식 탈염전극 제조방법, 이로부터 제조된 탈염전극 및 이를 포함하는 cdi 모듈
JP6278738B2 (ja) * 2014-02-26 2018-02-14 大阪瓦斯株式会社 塩溶液の処理方法及び設備
KR101637539B1 (ko) 2014-09-30 2016-07-07 한국에너지기술연구원 교차흐름을 이용한 흐름전극장치와 이를 이용한 축전식 탈염장치
KR101692387B1 (ko) 2014-09-30 2017-01-05 한국에너지기술연구원 전기적 단락에 의한 전극재생이 가능한 흐름전극장치와 이를 이용한 축전식 탈염장치
JP6598013B2 (ja) * 2014-10-23 2019-10-30 国立研究開発法人科学技術振興機構 プロトン伝導体および燃料電池
KR101596301B1 (ko) 2014-12-24 2016-02-23 한국에너지기술연구원 염도차를 이용한 복합발전장치
EP3045431A1 (en) 2015-01-16 2016-07-20 DWI - Leibniz-Institut für Interaktive Materialien e.V. Apparatus and method for continuous water desalination and ion separation by flow electrode capacitive deionization
KR102657824B1 (ko) * 2016-09-06 2024-04-18 한국에너지기술연구원 채널형 흐름 전극 단위체를 구비한 전기화학적 셀
US10522849B2 (en) 2015-03-04 2019-12-31 Korea Institute Of Energy Research Electrochemical cell comprising channel-type flowable electrode units
KR101750417B1 (ko) * 2015-03-04 2017-06-26 한국에너지기술연구원 격자형 흐름전극구조체
WO2016166168A1 (en) 2015-04-14 2016-10-20 Koninklijke Philips N.V. Electrosorption purification system with recirculation
KR101710923B1 (ko) * 2015-05-04 2017-02-28 두산중공업 주식회사 축전식 탈염장치 및 그 운전방법
EP3090988A3 (en) 2015-05-04 2017-01-25 Doosan Heavy Industries & Construction Co., Ltd. Capacitive deionization apparatus
US9673472B2 (en) * 2015-06-15 2017-06-06 Palo Alto Research Center Incorporated Redox desalination system for clean water production and energy storage
NL2015572B1 (en) * 2015-10-06 2017-05-01 Stichting Wetsus European Centre Of Excellence For Sustainable Water Tech Method for fluidized bed capacitive de-ionization of a fluid and de-ionization device there for.
KR101710006B1 (ko) 2015-12-18 2017-02-27 한국에너지기술연구원 압력지연삼투와 전위차를 이용한 발전장치
KR101896758B1 (ko) 2016-05-04 2018-09-07 현대자동차주식회사 전고체전지 및 그 제조방법
IL246694A0 (en) 2016-07-10 2016-09-29 Technion Res & Dev Foundation Electrodes for energy storage and desalination systems
CN106830227A (zh) * 2017-03-01 2017-06-13 河海大学 一种循环处理的膜电容去离子装置及处理方法
CN108689460A (zh) * 2017-04-12 2018-10-23 孙晓慰 一种连续电吸附装置及方法
CN108689459A (zh) * 2017-04-12 2018-10-23 孙晓慰 连续电吸附脱附能量回收装置、系统及方法
CN108675404B (zh) * 2018-05-17 2020-08-18 华南师范大学 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用
CN108483573B (zh) * 2018-03-28 2020-10-27 华南师范大学 一种利用流体电池除盐的方法及其应用
CN108483591B (zh) * 2018-04-24 2021-07-30 浙江工业大学 一种提取锂离子的方法
EP3647275A1 (en) 2018-11-05 2020-05-06 DWI - Leibniz-Institut für Interaktive Materialien e.V. Flexible, one-sided membrane-electrode assemblies for use in electrochemical processes, eletrochemical modules comprising the same, and methods for liquid desalination, ion separation and concentration
CN111689555A (zh) * 2019-03-15 2020-09-22 国家能源投资集团有限责任公司 一种制盐方法及装置、含盐废水处理系统
CN110028137B (zh) * 2019-04-25 2021-11-30 郑州大学 一种去除水体低价离子和cod的电吸附材料及应用
CN110255788B (zh) * 2019-07-29 2021-09-28 马鞍山市新桥工业设计有限公司 一种垃圾分拣预处理系统
KR102359398B1 (ko) 2020-04-29 2022-02-08 유재춘 연속적인 축전식 탈염 장치
CN112159902A (zh) * 2020-09-08 2021-01-01 武汉大学 一种基于电容法的电水提锂联产系统
US11339483B1 (en) 2021-04-05 2022-05-24 Alchemr, Inc. Water electrolyzers employing anion exchange membranes
CN112978874B (zh) * 2021-04-15 2022-06-21 湖南大学 利用流动电极电容去离子装置净化含碘盐废水的方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4206020A (en) * 1966-05-24 1980-06-03 National Research Development Corporation Electrochemical process using a fluidized electrode
CH468727A (de) * 1967-02-07 1969-02-15 Battelle Memorial Inst Interna Elektrischer Akkumulator
US3879225A (en) * 1968-03-06 1975-04-22 Nat Res Dev Electrochemical cells comprising fluidized bed electrodes
US3981747A (en) * 1971-08-03 1976-09-21 Societe Anonyme Automobiles Citroen Process for producing electric current by the electrochemical oxidation of an active anodic metal, especially zinc
US3766034A (en) 1972-08-01 1973-10-16 Grace W R & Co Removal of ions from liquids
JPS5265182A (en) * 1975-11-26 1977-05-30 Sanshin Seisakushiyo Kk Method and apparatus for fractional recovery by ion exchange diaphragm electrolysis
US4190703A (en) * 1977-07-07 1980-02-26 Solomon Zaromb Fluidized-bed electrodes and related apparatus and methods
US4295950A (en) * 1979-09-04 1981-10-20 Marc Cole Desalination with improved chlor-alkali production by electrolyticdialysis
JPS6059733B2 (ja) * 1980-12-10 1985-12-26 日本電気株式会社 カ−ボンペ−スト電極
JPS6122574A (ja) * 1984-07-09 1986-01-31 Sumitomo Electric Ind Ltd 電池
JPH0815093B2 (ja) * 1986-05-24 1996-02-14 住友電気工業株式会社 電解液循環型2次電池
JPH0734434B2 (ja) * 1986-06-16 1995-04-12 日産自動車株式会社 半導体基板のエツチング装置
JPH0239514A (ja) * 1988-07-29 1990-02-08 Asahi Glass Co Ltd 固体電気二重層コンデンサ
US5304432A (en) * 1992-10-13 1994-04-19 Hughes Aircraft Company Membrane flow cell battery
US5496659A (en) * 1992-10-14 1996-03-05 National Power Plc Electrochemical apparatus for energy storage and/or power delivery comprising multi-compartment cells
JPH06140062A (ja) * 1992-10-21 1994-05-20 Agency Of Ind Science & Technol 溶液流通型電池
US5434020A (en) 1993-11-15 1995-07-18 The Regents Of The University Of California Continuous-feed electrochemical cell with nonpacking particulate electrode
US6805776B2 (en) * 2001-08-07 2004-10-19 Inventqjaya Sdn Bhd Movable electrode flow through capacitor
JP3079255B2 (ja) * 1997-07-04 2000-08-21 工業技術院長 オンライン干渉成分除去装置
JP2001176498A (ja) * 1999-12-17 2001-06-29 Kansai Research Institute 複合電極材料及びそれを用いた非水系二次電池
KR100442773B1 (ko) * 2001-03-29 2004-08-04 한국에너지기술연구원 전기흡착 방식의 담수화방법 및 장치
JP2002336866A (ja) * 2001-05-18 2002-11-26 Kurita Water Ind Ltd 脱塩装置及び脱塩方法
CN1417816A (zh) * 2001-10-31 2003-05-14 友昕科技股份有限公司 独立式流通型电容器
JP2003285067A (ja) 2002-03-27 2003-10-07 Yukin Kagi Kofun Yugenkoshi 全自動・省エネルギーの脱イオン装置
JP2004039372A (ja) * 2002-07-02 2004-02-05 Toyo Tanso Kk 窒素とホウ素を含有し導電性を有するダイヤモンド粒状体及びこれを用いた流動床電極
EP2297810B1 (en) * 2008-06-12 2014-12-24 Massachusetts Institute of Technology High energy density redox flow device
US7820321B2 (en) * 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
KR20110019573A (ko) * 2009-08-20 2011-02-28 삼성전자주식회사 전기 흡착 탈이온 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20120363A1 (it) * 2012-11-30 2014-05-31 Idropan Dell Orto Depuratori S R L Apparecchiatura per la purificazione di un fluido e metodo di purificazione di un fluido, in particolare mediante la suddetta apparecchiatura
WO2014083413A1 (en) * 2012-11-30 2014-06-05 Idropan Dell'orto Depuratori S.R.L. Apparatus and corresponding method for purifying a fluid
AT513929A1 (de) * 2013-02-05 2014-08-15 Vanor Wasseraufbereitungs Gmbh Verfahren und Vorrichtung zur Entsalzung von Salzwasser
EP2810922A1 (en) * 2013-06-06 2014-12-10 Centre National De La Recherche Scientifique Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor
WO2014195897A1 (en) * 2013-06-06 2014-12-11 Centre National De La Recherche Scientifique Method and device to remove ions from an electrolytic media, such as water desalination, using suspension of divided materials in a flow capacitor

Also Published As

Publication number Publication date
US9963363B2 (en) 2018-05-08
JP2013541407A (ja) 2013-11-14
JP6161667B2 (ja) 2017-07-12
EP2605326A4 (en) 2017-01-25
BR112013003263A2 (pt) 2017-02-21
BR112013003263B1 (pt) 2020-12-08
CN103109336A (zh) 2013-05-15
EP2605326B1 (en) 2020-10-07
EP2605326A2 (en) 2013-06-19
US20130209916A1 (en) 2013-08-15
WO2012021048A3 (ko) 2012-05-10
CN103109336B (zh) 2015-12-16
KR101233295B1 (ko) 2013-02-14
JP2016115662A (ja) 2016-06-23
KR20120015964A (ko) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2012021048A2 (ko) 유동상 전극시스템, 이를 이용한 대용량 전력저장 및 수처리방법
KR101221562B1 (ko) 흐름전극장치를 이용한 수처리장치
KR101210525B1 (ko) 흐름전극장치를 이용한 에너지 저장 장치
US3288641A (en) Electrical energy storage apparatus
CN107171002B (zh) 一种半固态锂液流电池反应器、电池系统及工作方法
KR101318331B1 (ko) 흐름전극을 이용한 농도차 발전장치
WO2011016662A2 (ko) 이온제거용 축전식 전극 및 그를 이용한 전해셀
WO2013147380A1 (ko) 특정 이온 선택성 축전식 탈염 복합탄소전극 및 이의 제조방법
JPH1012261A (ja) レドックスフロー電池
WO2013015509A1 (ko) 금속이온 회수용 전극모듈의 제조방법, 금속이온 회수용 전극모듈 및 이를 구비한 금속이온 회수 장치
KR20110027710A (ko) 슈퍼캐패시터, 슈퍼캐패시터 탈염 셀, 슈퍼캐패시터 탈염 장치 및 슈퍼캐패시터 제조 방법
WO2018048180A1 (ko) 채널형 흐름전극 단위 구조체를 구비한 전기화학적 셀
CN101719556A (zh) 氧化还原液流电池的电堆结构
KR20150002364A (ko) 전도성 폼을 구비한 축전식 탈염 장치
WO2016140521A1 (ko) 격자형 흐름전극구조체
WO2013103236A1 (ko) 적층형 유동상 축전식 탈이온화장치
US20090110806A1 (en) Method for producing an electrode and device
KR20150008348A (ko) 하이브리드 해수 담수화 시스템
US20180123145A1 (en) Electrochemical cell comprising channel-type flowable electrode units
KR20150003094A (ko) 흐름전극 축전식 탈염 장치
EP3321990B1 (en) Flow battery, process for its manufacture, and use thereof
US20230201773A1 (en) Flow-electrode cartridge unit and submerged flow-electrode capacitive deionization device using same
WO2022102884A1 (ko) 탈염 장치
EP2056310A1 (en) Method for producing an electrode and device
US20210043880A1 (en) Flow battery, process for the manufacture, and use thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043941.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816664

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013524057

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011816664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13816888

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013003263

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013003263

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130208