WO2012020556A1 - 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体 - Google Patents

基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体 Download PDF

Info

Publication number
WO2012020556A1
WO2012020556A1 PCT/JP2011/004390 JP2011004390W WO2012020556A1 WO 2012020556 A1 WO2012020556 A1 WO 2012020556A1 JP 2011004390 W JP2011004390 W JP 2011004390W WO 2012020556 A1 WO2012020556 A1 WO 2012020556A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
temperature
heating
container
annealing
Prior art date
Application number
PCT/JP2011/004390
Other languages
English (en)
French (fr)
Inventor
真果 柴垣
かおり 真下
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to US13/808,338 priority Critical patent/US8691676B2/en
Priority to DE112011102676.5T priority patent/DE112011102676B4/de
Priority to JP2012528592A priority patent/JP5543601B2/ja
Publication of WO2012020556A1 publication Critical patent/WO2012020556A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/26Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a substrate heat treatment apparatus used for a heat treatment process of a semiconductor device, a temperature control method for the substrate heat treatment apparatus, a semiconductor device manufacturing method using the same, a temperature control program for the substrate heat treatment apparatus, and a recording medium recording the same About.
  • a silicon carbide (SiC) substrate has a very small thermal diffusion coefficient of impurities, so that a thermal diffusion process of impurities cannot be used practically. Therefore, in order to control the electrical conductivity of the SiC substrate, it is necessary to activate the impurity by performing an annealing process at a temperature of about 1500 ° C. to 2000 ° C. after the impurity ion implantation.
  • preheating in the furnace is performed in order to raise the inside of the furnace to a predetermined temperature.
  • a predetermined temperature For example, in Patent Document 1, in a method of annealing a processing substrate with a halogen lamp, the inside of the furnace is preheated before the processing substrate is carried into the heating furnace, and the processing substrate is processed after the inside of the furnace reaches a predetermined temperature.
  • a technique for carrying in the furnace is disclosed.
  • Patent Document 2 when a preliminary annealing is performed by repeating a series of steps from loading to unloading of a dummy substrate in the same process as the actual in a lamp annealing apparatus, the temperature rise time is within a predetermined value.
  • a technique for sometimes terminating the preheating is disclosed.
  • the processing substrate is subjected to the activation annealing process at a high temperature by the electron impact heating apparatus, even if the inside of the furnace is preheated to a predetermined temperature, if the processing substrate is continuously carried into the furnace, the first first sheet
  • the quality of the second substrate and the second and subsequent substrates may be different.
  • Such a difference in substrate quality is considered to be a problem peculiar to the heating method by electron impact. That is, the electron impact heating method uses heat radiation by applying an acceleration voltage from an acceleration power source to the thermoelectrons generated from the filament in the vacuum heating container, and colliding the accelerated thermoelectrons to heat the heating container. Then, the processing substrate is heated. Therefore, if the preheating technique of the lamp heating method as in Patent Documents 1 and 2 is applied as it is, there is a problem that the substrate quality is different.
  • the present invention provides a substrate heat treatment apparatus capable of maintaining the same substrate quality even when the treatment substrate is continuously loaded into the treatment container when the activation annealing treatment is performed by the electron impact heating method.
  • the purpose is to do.
  • the present invention provides a temperature control method for a substrate heat treatment apparatus, a semiconductor device manufacturing method, a temperature control program for a substrate heat treatment apparatus, and a recording medium that can achieve the above object.
  • the temperature control method of the substrate heating apparatus includes a conductive heating container incorporating a filament in a processing container that can be evacuated, The acceleration voltage applied between the filament and the heating container accelerates the thermoelectrons generated from the filament, and the accelerated thermoelectrons collide with the heating container to heat the heating container.
  • a temperature control method for a substrate heat treatment apparatus for annealing a substrate by heat of a container Before carrying the substrate into the processing container, after heating the processing container at a temperature higher than the annealing temperature of the substrate and longer than the annealing time, to a temperature below the annealing temperature. Performing preheating to cool; A step of carrying out an annealing treatment by raising the temperature to the annealing treatment temperature after carrying the substrate into the processing vessel in which the preliminary heating step is completed; A temperature control method for a substrate heat treatment apparatus.
  • the substrate quality can be maintained equivalent even if the processing substrate is continuously loaded into the processing container. Has an effect.
  • FIG. 5 is an enlarged view of FIG. 4.
  • FIG. 1 is a schematic view schematically showing the overall configuration of an electron impact heating apparatus.
  • the electron impact heating apparatus 1 of the present embodiment applies an acceleration voltage from an acceleration power source 42 to the thermoelectrons generated from the filament 14, collides the accelerated thermoelectrons with the heating container 11, heats the heating container 11, and releases the heat.
  • This is an apparatus for performing a heat treatment of the processing substrate 21 arranged to face the surface 11a.
  • the electron impact heating apparatus 1 includes a processing chamber 3 that can be evacuated to form a compartment by connecting a processing chamber 2a for heat-treating a processing substrate 21 and a standby chamber 2b in the vertical direction.
  • a heating device (hereinafter referred to as “heater”) 10 in which a filament 14 is incorporated is provided inside the upper processing chamber 2a.
  • the heater 10 includes a cylindrical heating container 11 whose one end is closed, a filament base 12, a support column 13 and a filament 14 housed therein.
  • the filament 14 is, for example, a closed end face (heat dissipating face) of the heating container 11 by a tantalum support 13 having a diameter of 2 mm that stands on a filament base 12 made of a carbon fiber reinforced composite material (hereinafter referred to as “CC composite”). It is stretched substantially parallel to 11a.
  • CC composite carbon fiber reinforced composite material
  • the filament 14 for example, a tungsten / rhenium wire or a tungsten wire to which a rare earth such as potassium or lanthanum is added is used, and one having a diameter of ⁇ 0.8 mm and a length of 900 mm is used.
  • the heating container 11 is formed of a conductor. Specifically, for example, pyrolytic carbon is coated on the outer surface of the heating container 11 so as to reduce the amount of released gas.
  • the heating vessel 11 is connected to a vacuum evacuation unit (not shown), and the inside can be evacuated independently of the processing vessel 3.
  • a CC composite substrate stage 20 is arranged so as to face the heating plate (heat radiating surface) 11a on the closed end face of the heating container 11.
  • a processing substrate (wafer) 21 is placed facing the heater 10.
  • a silicon carbide (SiC) substrate is employed as the processing substrate 21, but is not limited thereto.
  • the substrate stage 20 is supported by a cylindrical column 4, and a two-color radiation thermometer 7 is connected to the tip of the through hole 5 of the column 4 via a quartz viewing port 6. .
  • the viewing port 6 closes the vacuum space to define a vacuum state and an atmospheric state. Radiation light from the substrate stage 20 or the SiC substrate 21 reaches the two-color radiation thermometer 7 through the viewing port 6.
  • the two-color radiation thermometer 7 includes, for example, a condensing unit 8 and a detector 9, and indirectly measures the temperature of the heater 10 via a substrate stage 20 made of CC composite. This temperature measurement is not limited to the temperature measurement of the substrate stage 20, and the temperature of the heat radiation surface 11 a or the heating container 11 may be measured.
  • a support plate 31 is fixed to the lower end of the support column 4, and a bellows 32 is interposed between the support plate 31 and the processing container 3. Further, an elevating arm 33 having a screw hole (not shown) is fixed to the support plate 31, and a ball screw 34 connected to the rotation drive device 35 is inserted into the screw hole of the elevating arm 33. That is, by rotating the ball screw 34 by the rotation drive device 35, the lifting arm 33 moves up and down along the ball screw 34, and the substrate stage 20 connected to the lifting arm 33 via the support column 4 can be moved up and down. It has become.
  • the bellows 32, the lifting arm 33, the ball screw 34, and the rotation driving device 35 constitute main components of the substrate stage lifting device for approaching or separating the substrate stage 20 and the heat radiation surface 11 a of the heating container 11.
  • the substrate stage 20 is moved up and down, but at least one of the substrate stage 20 and the heater 10 may be configured to be movable up and down.
  • the inside of the processing vessel 3 is evacuated by an exhaust device (not shown) connected to the exhaust port 25.
  • a slit valve 22 is provided on one side wall of the standby chamber 2b of the processing container 3. By opening the slit valve 22, the substrate 21 is carried into the processing container 3 by a transfer robot (not shown), or The processing container 3 is carried out.
  • a water-cooled shutter mechanism (hereinafter referred to as “shutter”) 24 connected to the rotation device 23 is provided in the standby chamber 2b of the processing container 3 so as to be rotatable in the horizontal direction. The shutter 24 enters between the substrate stage 20 and the heat radiating surface 11a of the heating container 11 when the substrate stage 20 is retracted into the standby chamber 2b, and blocks the substrate 21 from the heat radiating surface 11a. It has become.
  • FIG. 3 is a schematic diagram showing the configuration of the control system of the electron impact heating apparatus.
  • the control system 40 of this embodiment includes a filament power source, an acceleration power source, an acceleration voltmeter, a filament ammeter, an emission ammeter, a heating power source including a thyristor, a multi-function temperature controller, a sequencer, and a pyrometer.
  • a condensing part and a pyrometer main body are provided.
  • the filament power supply 41 is an AC power supply that supplies power for heating the filament 14 and can be variably applied, for example, up to 50 A (ampere).
  • a filament ammeter 45 is connected to the connection circuit of the filament 14 and the current value of the filament 14 is measured.
  • the accelerating power source (HV power source) 42 is a DC power source that applies an accelerating voltage between the grounded heating vessel 11 and the filament 14, and is variable from 0 V (volt) to ⁇ 3.0 KV with respect to the filament 14, for example. Thus, an acceleration voltage can be applied.
  • An acceleration voltmeter (HV voltmeter) 46 that measures an acceleration voltage and an emission ammeter 47 that measures an emission current value are connected to the connection circuit of the acceleration power source 42.
  • the multi-function temperature controller 43 for example, SDC-46A manufactured by Yamatake Corporation is adopted.
  • the temperature controller 43 receives an input signal from the filament ammeter 45, an input signal from the emission ammeter 47, and an input signal from the acceleration voltmeter 46, and also receives a set value from the sequencer 49.
  • the set value of the sequencer 49 is also input to the thyristor 48.
  • the multi-function temperature controller 43 transmits an output signal to the filament power supply 41 via the thyristor 48.
  • FIG. 2 is a schematic view showing a state where the substrate stage of the electron impact heating apparatus of FIG. 1 is lowered.
  • FIG. 4 is an explanatory diagram showing the relationship between the substrate stage back surface temperature and the processing time in the preheating in the temperature control method of the present embodiment.
  • the algorithm of the temperature control method including preheating according to the present invention is stored as a temperature control program in a storage unit of a control device (PC) connected to the control system 40, and is read by the CPU at the start of preheating. It is issued and executed.
  • PC control device
  • the temperature control program is a program for causing the control device to perform temperature control of the heater 10 based on a detection signal or the like of the substrate stage back surface temperature. That is, the temperature control program of the present embodiment heats the inside of the processing container at a temperature higher than the annealing temperature of the substrate and longer than the annealing time before carrying the substrate into the processing container, and then performs the annealing process. It has the procedure of performing the preheating which cools to the temperature below temperature. In addition, there is a procedure for carrying out the annealing treatment by raising the temperature to the annealing treatment temperature after carrying the substrate into the processing container for which the preheating procedure has been completed.
  • the temperature control program is recorded on a recording medium readable by a control device such as a computer (PC) and installed in a storage unit of the PC.
  • a control device such as a computer (PC) and installed in a storage unit of the PC.
  • Recording media include floppy (registered trademark) disks, ZIP (registered trademark) magnetic recording media, MO magneto-optical recording media, CD-R, DVD-R, DVD + R, DVD-RAM, DVD + RW (registered trademark). And optical disks such as PD. Further, there are flash memory systems such as CompactFlash (registered trademark), SmartMedia (registered trademark), Memory Stick (registered trademark), SD card, and removable disks such as Microdrive (registered trademark) and Jaz (registered trademark).
  • the annealing temperature is increased after heating the processing container at a temperature higher than the annealing temperature of the substrate and longer than the annealing time.
  • each temperature in “annealing temperature”, “heating the inside of the processing container to a temperature higher than the annealing temperature”, and “cooling to a temperature lower than the annealing temperature” is determined based on the same measurement place temperature in the processing container. . Specifically, although it is determined by measuring the substrate stage back surface temperature or the temperature of the heating container, it is preferable to measure the substrate stage back surface temperature from a point closer to the substrate.
  • the temperature control method of the present embodiment is performed at a temperature higher than the actual annealing temperature and longer than the annealing time before the processing substrate 21 is carried into the processing container 3. Then, a preheating step in the processing container including the substrate stage 20 is performed. Then, after the preheating process is completed, the processing substrate 21 is carried into the processing container 3 by a transfer robot and an actual annealing process is performed. Specifically, without placing a dummy substrate on the substrate stage 20, the substrate stage 20 is raised, and the distance between the upper surface of the stage 20 and the heat radiating surface 11a at the closed end of the heating container 11 (for example, Approach up to 5mm).
  • the substrate stage back surface temperature is controlled to be higher (eg, 1700 ° C.) than the actual annealing temperature (eg, 1575 ° C.), and held for a longer time (eg, 4 minutes) than the annealing time (eg, 1 minute). And preheat.
  • filament heating is performed to release the adsorbed gas to the filament 14 to prevent the filament 14 from deteriorating.
  • a signal is input from the sequencer 49 to the multi-function temperature controller 43, and the filament current value is gradually increased until the current value of the filament ammeter 45 reaches a set value (for example, 30 A).
  • the multi-function temperature controller 43 compares the signal from the sequencer 49 with the return signal from the filament ammeter 45 and outputs a signal to the thyristor 48.
  • the filament power supply 41 gradually increases the output of the filament current value and heats the filament 14 until the current value of the filament ammeter 45 reaches 30A.
  • an acceleration voltage (HV) is applied from the acceleration power source 42 to the filament 14 to gradually increase the voltage, thereby preventing an abrupt increase in the emission current value and preventing abnormal discharge.
  • the filament current value is fixed at a set value (for example, 30 A)
  • a signal is output from the sequencer 49 to the thyristor 48, and an acceleration voltage (HV) of a set voltage (for example, ⁇ 500 V) is applied.
  • the acceleration power supply 42 applies an acceleration voltage (HV) of ⁇ 500 V to the filament 14 in accordance with the input from the thyristor 48.
  • the sequencer 49 outputs a signal to the thyristor 48, and gradually increases the acceleration voltage (HV) so that the acceleration voltage (HV) becomes a set voltage (for example, ⁇ 1800V).
  • the acceleration power source 42 gradually increases the output of the acceleration voltage (HV) in accordance with the input of the thyristor 48 so that the acceleration voltage (HV) becomes ⁇ 1800 V and generates an emission current.
  • a signal is input from the sequencer 49 to the multi-function temperature controller 43 so that the emission current value becomes a set value (for example, 10.7 A).
  • the multi-function temperature controller 43 compares the signal from the sequencer 49 with the output signal from the emission ammeter while keeping the acceleration voltage (HV) fixed at ⁇ 1800V.
  • the multi-function temperature controller 43 inputs a signal for controlling the filament current value to the thyristor 48 so that the emission current value becomes 10.7 A.
  • the filament power supply 41 controls the emission current value to be 10.7A.
  • the substrate stage back surface temperature is raised in a short time so that it becomes a set temperature (for example, 1590 ° C.).
  • the filament power supply 41 compares the current value of the emission ammeter 47 with the input signal through the sequencer 49, the multi-function temperature controller 43 and the thyristor 48. Further, the filament power supply 41 controls the filament current value so that the emission current value becomes a set value (for example, 9.8 A), and raises the temperature to a set temperature (for example, 1640 ° C.).
  • the acceleration voltage (HV) at this time is kept constant at ⁇ 1800V.
  • the emission current value is maintained at a set value (for example, 7.7 A) and heated for a set time (for example, 3 minutes). Further, the emission current value is maintained at a set value (for example, 7.5 A), and heating is performed for a set time (for example, 2 minutes). The maximum temperature at this time was 1710 ° C.
  • the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is increased to perform cooling.
  • the temperature measured on the side surface of the heater reaches a set temperature (for example, 1200 ° C.) with the two-color radiation thermometer 7, the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is further increased. Then, the water cooling shutter 24 isolates the upper surface of the substrate stage 20 and the heat radiating surface 11 a of the heating container 11. Thus, the processing substrate 21 is taken in and out so that the radiant heat from the heater 10 does not affect the transfer robot arm.
  • a set temperature for example, 1200 ° C.
  • an annealing process is performed to activate the impurity by annealing.
  • the power supply power is controlled so that the emission current value becomes a predetermined value (for example, 3A) until the substrate stage back surface temperature reaches a set temperature (for example, 1200 ° C.).
  • the substrate 21 is degassed to prevent deterioration of surface flatness.
  • the emission current value is set to a set value (for example, 10.2 A), the temperature is rapidly increased, the emission current value is gradually reduced, and the heat is held at a predetermined value (for example, 7.1 A).
  • the filament current value is reduced to a set value (for example, 20 A), the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is increased, and the processing substrate 21 is moved. Cooling. When the substrate stage back surface temperature reaches a set temperature (for example, 1200 ° C.), the substrate stage 20 is lowered and the water-cooled shutter 24 is closed. Then, the slit valve 22 is opened, the processing substrate 21 is unloaded by the transfer robot, and the next processing substrate 21 is loaded. By repeating the above series of steps, the plurality of processing substrates 21 are sequentially processed.
  • the present invention even when annealing is performed at a high temperature, the same substrate quality can be ensured for the first substrate and the subsequent substrates.
  • the reason why the substrate quality can be kept equal in this way is considered to be as follows.
  • the heating is performed at a temperature higher than the annealing temperature, it is possible to reduce the amount of gas released from the inner wall of the processing vessel and the internal components during the annealing. This is because the gas release depends on the temperature, and the higher the temperature, the easier the gas release.
  • the inside of the heating container 11 of the electron impact heating apparatus 1 is kept at a high vacuum, when the gas is released to the heating container 11, the degree of vacuum in the heating container 11 is temporarily reduced, and the electron emission from the filament 14 is performed. May not be controlled and may cause a spark. Along with this, the heater temperature changes, and when it is severe, heating is stopped.
  • the present invention by preliminarily setting the temperature of the preheating step to be higher than the actual annealing temperature, gas is released from the heating container 11 in the preheating stage. Therefore, it is possible to reduce the occurrence of gas release in the annealing process, and to control the temperature increase rate in the annealing process at a high speed and within a certain range.
  • the productivity of silicon carbide (SiC) devices can be greatly improved by improving the reproducibility of the annealing temperature and greatly improving the throughput of the annealing process by the electron impact heating apparatus 1.
  • Example 1 describes a case where a semiconductor device is manufactured using the electron impact heating apparatus 1 shown in FIGS. 1 and 2 by using the temperature control method including preheating according to the present invention.
  • the electron impact heating apparatus 1 of the present embodiment includes a load lock chamber (not shown) that accommodates a cassette that accommodates a plurality of processing substrates 21, and a transfer chamber that connects the load lock chamber and the electron impact heating apparatus 1. (Not shown).
  • SiC substrates 10 silicon carbide substrates (SiC substrates) are accommodated in a quartz cassette, and the cassette is accommodated in a load lock chamber to exhaust the inside thereof. At the same time as the exhaust of the load lock chamber is started, the preheating process is started. Then, during the preheating process, the roughing of the load lock chamber is finished.
  • a slit valve serving as a partition wall between the transfer chamber and the load lock chamber is opened, and the transfer chamber is evacuated by a turbo molecular pump (TMP) until the pressure in the transfer chamber becomes 1 ⁇ 10 ⁇ 3 Pa or less.
  • TMP turbo molecular pump
  • the preheating step is a step of increasing the temperature in the processing vessel including the heater 10 and the substrate stage 20 in advance as described above. Specifically, without using a dummy substrate, the substrate stage 20 is raised and brought close so that the distance between the upper surface of the stage 20 and the heat radiation surface 11a of the closed end of the heating container 11 becomes 5 mm. Then, the back surface temperature of the substrate stage 20 is set to 1710 ° C., which is higher than the actual annealing temperature 1575 ° C., and is heated for a longer time (4 minutes) than the actual processing time (1 minute). To do.
  • filament heating is performed to release the adsorbed gas to the filament 14 to prevent the filament 14 from deteriorating.
  • a signal is input from the sequencer 49 to the multi-function temperature controller 43, and the filament current value is increased by 1A per second until the current value of the filament ammeter 45 reaches 30A.
  • the multi-function temperature controller 43 compares the signal from the sequencer 49 with the return signal from the filament ammeter 45 and outputs a signal to the thyristor 48.
  • the filament power supply 41 gradually increases the output of the filament current value and heats the filament 14 until the current value of the filament ammeter 45 reaches 30A.
  • an acceleration voltage (HV) is applied from the acceleration power source 42 to the filament 14 to gradually increase the voltage, thereby preventing an abrupt increase in emission current value and preventing abnormal discharge.
  • a signal is output from the sequencer 49 to the thyristor 48 and an acceleration voltage (HV) -500 V is applied.
  • an acceleration voltage (HV) ⁇ 500 V is applied to the filament 14 in accordance with an input from the thyristor 48.
  • the sequencer 49 outputs a signal to the thyristor 48, and increases the acceleration voltage (HV) by -100V per second so that the acceleration voltage (HV) becomes -1800V.
  • the acceleration power source 42 gradually increases the output of the acceleration voltage (HV) in accordance with the input of the thyristor 48 so that the acceleration voltage (HV) becomes ⁇ 1800 V and generates an emission current.
  • a signal indicating an emission current value of 10.7 A is input from the sequencer 49 to the multi-function temperature controller 43.
  • the filament current value is controlled so that the emission current value becomes 10.7A compared with the output signal from the emission ammeter while the acceleration voltage (HV) remains constant at -1800V.
  • HV acceleration voltage
  • the filament power supply 41 controls the emission current value to be 10.7A.
  • the temperature is raised in a short time so that the back surface temperature of the substrate stage 20 becomes 1590 ° C. at an emission current value of 10.7 A.
  • the filament power supply 41 compares the current value of the emission ammeter 47 with the input signal through the sequencer 49, the multi-function temperature controller 43 and the thyristor 48. Further, the filament power supply 41 increases the temperature to 1640 ° C. by controlling the filament current value so that the emission current value becomes 9.8 A.
  • the acceleration voltage (HV) at this time is kept constant at ⁇ 1800V.
  • cooling is performed by setting the distance between the upper surface of the substrate stage 20 and the heat radiating surface 11a of the heating container 11 to 72 mm in a state where the filament current value is reduced to 20 A so that no emission current is generated.
  • the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is increased to 198 mm. Then, the space between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is closed by the water-cooled shutter 24, and the SiC substrate is taken in and out so that the radiant heat from the heater 10 does not affect the transfer robot arm.
  • the power supply power is controlled so that the emission current value becomes 3A, and the gas is discharged until the back surface temperature of the substrate stage 20 reaches about 1200 ° C. in 90 seconds. Prevents surface flatness degradation.
  • the temperature is rapidly raised at an emission current value of 10.2 A, the emission current value is 9.5 A when the substrate stage back surface temperature is 1515 ° C. to 1535 ° C., and the emission current value is between 535 ° C. and 1555 ° C.
  • the temperature is raised at a value of 8.4A.
  • the temperature is raised at an emission current value of 7.3 A when the substrate stage back surface temperature is between 1555 ° C.
  • the substrate stage back surface temperature as a contact point, the emission current value is decreased stepwise, so that the high temperature can be stably controlled at high speed even with a large-diameter heater having a diameter of 200 mm.
  • the filament current value is reduced to 20A, the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 is increased to 72 mm, and the SiC substrate is cooled.
  • the substrate stage back surface temperature reaches 1200 ° C.
  • the substrate stage 20 is lowered so that the distance between the upper surface of the substrate stage 20 and the heat radiation surface 11a of the heating container 11 becomes 198 mm.
  • the water-cooled shutter 24 is closed, the slit valve 22 is opened, the SiC substrate is unloaded by the transfer robot, and the next SiC substrate is loaded.
  • the temperature of the side surface of the heater 10 is measured by a radiation thermometer so that the temperature of the side surface of the heater 10 becomes 1200 ° C. by standby heating, and the heater temperature is maintained by controlling the power.
  • FIG. 4 shows the relationship between the substrate stage back surface temperature and the processing time
  • FIG. 5 shows an enlarged view thereof.
  • the processing time was 1 hour 47 minutes, and a throughput of 5 sheets / hour or more was achieved.
  • the maximum temperature difference at the annealing holding temperature of 1575 ° C. for all 10 SiC substrates is + 3 ° C., and the minimum temperature difference is ⁇ 4 ° C., so that temperature reproducibility is sufficiently ensured and the quality of the substrate is maintained. I found out.
  • 1 substrate heating processing device electronic impact heating device
  • 3 processing vessel 10 heating device, 11 heating vessel, 14 filament, 21 processing substrate, 24 shutter mechanism, 42 acceleration power supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

 電子衝撃加熱方式にて活性化アニール処理を行なう場合に、処理容器内へ連続的に処理基板を搬入しても、基板品質を同等に保つことができる温度制御方法を提供する。 電子衝撃加熱方式により基板のアニール処理を行う基板加熱処理装置の温度制御方法であって、真空排気可能な容器3内への基板21の搬入前に、基板21のアニール処理温度よりも高温、かつアニール処理時間よりも長時間で、処理室2aの内部を加熱した後、アニール処理温度を下回る温度まで冷却する予備加熱を行なう工程と、予備加熱工程が終了した真空排気可能な容器3内へ基板21を搬入した後、アニール処理温度まで昇温してアニール処理を行う工程と、を有する。

Description

基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体
 本発明は、半導体デバイスの熱処理工程に用いる基板加熱処理装置、基板加熱処理装置の温度制御方法、これを利用した半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及びこれを記録した記録媒体に関する。
 炭化ケイ素(SiC)基板は、不純物の熱拡散係数が非常に小さく、実用上不純物の熱拡散工程を用いることができない。そのため、SiC基板の電気伝導性を制御するには、不純物のイオン注入後に1500℃から2000℃程度の温度でアニール処理を施して不純物を活性化する必要がある。
 この活性化アニール工程の実施前には、炉内を所定の温度に上昇させるために、炉内の予備加熱が行なわれている。例えば特許文献1には、ハロゲンランプで処理基板をアニール処理する方法において、処理基板の加熱炉への搬入前に炉内を予備加熱しておき、炉内が所定の温度に達した後に処理基板の炉内搬入を行なう技術が開示されている。
 また特許文献2には、ランプアニール装置にて、実際と同一の工程でダミー基板の搬入から搬出までの一連の工程を繰り返して予備加熱を行う場合に、昇温時間が所定値以内になったときに予備加熱を終了する技術が開示されている。
特開昭60-247936号公報 特開平8-37158号公報
 しかしながら、電子衝撃加熱装置にて処理基板を高温で活性化アニール処理する場合に、炉内を所定温度に予備加熱しても、炉内へ連続的に処理基板を搬入すると、最初の1枚目の基板と2枚目以降の基板の品質が異なることがあった。
 このような基板品質の差異は、電子衝撃による加熱方式に特有の問題であると考えられる。即ち、電子衝撃加熱方式は、真空の加熱容器内のフィラメントから発生する熱電子に加速電源から加速電圧を印加し、加速した熱電子を衝突させて加熱容器を加熱することにより、その放熱を利用して処理基板を加熱する。したがって、特許文献1及び2のようなランプ加熱方式の予備加熱技術をそのまま適用すると、基板品質に差異が生じるという問題があった。
 そこで本発明は、電子衝撃加熱方式にて活性化アニール処理を行なう場合に、処理容器内へ連続的に処理基板を搬入しても、基板品質を同等に保つことができる基板加熱処理装置を提供することを目的とする。
 さらに本発明は、上記目的を達成しうる基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体を提供する。
 上記の目的を達成すべく成された本発明の構成は以下の通りである。
 即ち、本発明に係る基板加熱処理装置の温度制御方法は、真空排気可能な処理容器内に、フィラメントを組み込んだ導電体の加熱容器を備え、
 上記フィラメントと上記加熱容器との間に印加された加速電圧で、上記フィラメントから発生する熱電子を加速し、該加速した熱電子を前記加熱容器に衝突させて該加熱容器を加熱し、該加熱容器の熱により基板のアニール処理を行う基板加熱処理装置の温度制御方法であって、
 上記処理容器内への上記基板の搬入前に、上記基板のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて上記処理容器内を加熱した後、上記アニール処理温度を下回る温度まで冷却する予備加熱を行なう工程と、
 上記予備加熱工程が終了した上記処理容器内へ前記基板を搬入した後、上記アニール処理温度まで昇温してアニール処理を行う工程と、
を有することを特徴とする基板加熱処理装置の温度制御方法である。
 本発明によれば、電子衝撃加熱装置を用いて高温で活性化アニール処理を行う場合に、処理容器内へ連続的に処理基板を搬入しても、基板品質を同等に保つことができるという優れた効果を奏する。
本発明の温度制御方法を適用する電子衝撃加熱装置の全体構成を模式的に示す概略図である。 図1の電子衝撃加熱装置の基板ステージが降下している状態の模式図である。 図1の電子衝撃加熱装置の制御系の構成を示す概略図である。 本実施形態の温度制御方法における予備加熱の基板ステージ裏面温度と処理時間の関係を示す説明図である。 図4の拡大図である。
 以下、図面を参照して、本発明の実施の形態を説明するが、本発明は本実施形態に限定されるものではない。
 まず、図1を参照して、本発明を適用する電子衝撃加熱方式を利用した基板加熱処理装置(以下、「電子衝撃加熱装置」という。)の一態様について説明する。図1は、電子衝撃加熱装置の全体構成を模式的に示す概略図である。
 本実施形態の電子衝撃加熱装置1は、フィラメント14から発生する熱電子に加速電源42から加速電圧を印加し、加速した熱電子を加熱容器11に衝突させて加熱容器11を加熱し、その放熱面11aに対向配置した処理基板21の熱処理を行なう装置である。この電子衝撃加熱装置1は、処理基板21を熱処理する処理室2aと待機室2bとを上下に連通させて区画形成する真空排気可能な処理容器3を備えている。上部の処理室2aの内部には、フィラメント14が組み込まれた加熱装置(以下、「ヒータ」という。)10を備えている。
 ヒータ10は、一端が閉塞された円筒体状の加熱容器11、その内部に収納されたフィラメントベース12、支柱13及びフィラメント14から構成されている。
 フィラメント14は、例えば、炭素繊維強化複合材料(以下、「CCコンポジット」という。)製のフィラメントベース12上に起立された直径φ2mmのタンタル製支柱13によって、加熱容器11の閉塞端面(放熱面)11aに略平行に張設されている。
 フィラメント14としては、例えば、タングステン・レニウム線または、カリウムやランタン等の希土類が添加されたタングステン線が採用され、直径φ0.8mm、長さ900mmのものが使用される。
 加熱容器11は、導電体により形成されている。具体的には、加熱容器11の外面には、放出ガスが少なくなるように、例えば、熱分解カーボンがコーティングされている。この加熱容器11は、不図示の真空排気手段に接続され、内部が上記処理容器3と独立に真空排気可能となっている。
 また、加熱容器11の閉塞端面の加熱プレート(放熱面)11aに対向するようにCCコンポジット製の基板ステージ20が配置されている。この基板ステージ20上には、上記ヒータ10に臨ませて処理基板(ウェハ)21が載置される。本実施形態では、処理基板21として、例えば、炭化珪素(SiC)基板が採用されるが、これに限定されない。
 基板ステージ20は円筒体状の支柱4により支持されており、この支柱4の貫通孔5の先端には、石英製のビューイングポート6を介して2色式放射温度計7が接続されている。ビューイングポート6は、真空空間を閉塞して真空状態と大気状態とを画している。このビューイングポート6を通じて、基板ステージ20またはSiC基板21からの放射光が2色式放射温度計7に到達する。
 2色式放射温度計7は、例えば、集光部8と検出器9とからなり、CCコンポジット製の基板ステージ20を介して、間接的にヒータ10の温度を測定するようになっている。この温度測定は、基板ステージ20の温度測定に限らず、放熱面11aまたは加熱容器11の温度を測定してもよい。
 支柱4の下端には支持板31が固定され、この支持板31と処理容器3との間にはベローズ32が介設されている。さらに、支持板31には不図示のネジ孔の形成された昇降アーム33が固定され、この昇降アーム33のネジ孔には回転駆動装置35に接続されたボールネジ34が挿通されている。即ち、回転駆動装置35でボールネジ34を回転させることにより、昇降アーム33はボールネジ34に沿って昇降移動し、この昇降アーム33に支柱4等を介して接続された基板ステージ20が昇降移動可能となっている。すなわち、ベローズ32、昇降アーム33、ボールネジ34及び回転駆動装置35は、基板ステージ20と加熱容器11の放熱面11aとを接近または離間させるための基板ステージ昇降装置の主要部品を構成する。本実施形態では、基板ステージ20を昇降移動させているが、基板ステージ20とヒータ10との少なくともいずれか一方を昇降移動可能に構成すればよい。
 処理容器3の内部は、排気口25に接続された不図示の排気装置により真空排気される。また、処理容器3の待機室2bの一側壁にはスリットバルブ22が設けられており、このスリットバルブ22を開放することにより、不図示の搬送ロボットで基板21を処理容器3内へ搬入、あるいは処理容器3内から搬出するようになっている。さらに、処理容器3の待機室2b内には、回動装置23に接続された水冷シャッタ機構(以下、「シャッタ」という。)24が水平方向へ回動可能に設けられている。このシャッタ24は、基板ステージ20が待機室2b内へ後退したときに、この基板ステージ20と加熱容器11の放熱面11aとの間に侵入して、基板21を放熱面11aから遮断するようになっている。
 次に、図3を参照して、図1の電子衝撃加熱装置に備えられた制御系の構成の一態様について説明する。図3は、電子衝撃加熱装置の制御系の構成を示す概略図である。
 図3に示すように、本実施形態の制御系40は、フィラメント電源、加速電源、加速電圧計、フィラメント電流計、エミッション電流計、サイリスタを含む加熱電源、多機能式温調計、シーケンサ、パイロメータ集光部及びパイロメータ本体を備えている。
 フィラメント電源41は、フィラメント14の加熱用に電力供給する交流電源であって、例えば、最大50A(アンペア)まで可変的に印加可能である。フィラメント14の接続回路にはフィラメント電流計45が接続され、フィラメント14の電流値が計測される。
 加速電源(HV電源)42は、接地された加熱容器11とフィラメント14との間に加速電圧を印加する直流電源であって、例えば、フィラメント14に対し0V(ボルト)から-3.0KVまで可変的に加速電圧を印加可能となっている。加速電源42の接続回路には、加速電圧を計測する加速電圧計(HV電圧計)46と、エミッション電流値を計測するエミッション電流計47が接続されている。
 多機能式温調計43は、例えば、山武社製のSDC-46Aが採用される。この温調計43は、フィラメント電流計45からの入力信号、エミッション電流計47からの入力信号及び加速電圧計46からの入力信号を受信すると共に、シーケンサ49からの設定値を受信する。シーケンサ49の設定値はサイリスタ48にも入力される。さらに、多機能式温調計43は、サイリスタ48を介してフィラメント電源41への出力信号を送信するようになっている。
 次に、図2から図4を参照して、上記電子衝撃加熱装置1に適用する本実施形態の予備加熱を含む温度制御方法について説明する。図2は、図1の電子衝撃加熱装置の基板ステージが降下している状態の模式図である。図4は、本実施形態の温度制御方法の予備加熱における基板ステージ裏面温度と処理時間の関係を示す説明図である。
 本発明に係る予備加熱を含む温度制御方法のアルゴリズムは、制御系40に接続された制御装置(PC)の記憶部に温度制御プログラムとして記憶されており、予備加熱の開始の際にCPUにより読み出されて実行される。
 ここで、温度制御プログラムは、基板ステージ裏面温度の検出信号等に基づいて、上記制御装置にヒータ10の温度制御を実行させるプログラムである。即ち、本実施形態の温度制御プログラムは、処理容器内への基板搬入前に、基板のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて処理容器内を加熱した後、アニール処理温度を下回る温度まで冷却する予備加熱を行なう手順を有する。さらに、予備加熱手順が終了した処理容器内へ基板を搬入した後、アニール処理温度まで昇温してアニール処理を行う手順を有する。
 上記温度制御プログラムは、コンピュータ(PC)等の制御装置により読み取り可能な記録媒体に記録されて、PCの記憶部にインストールされる。
 記録媒体としては、フロッピー(登録商標)ディスク、ZIP(登録商標)等の磁気記録媒体、MO等の光磁気記録媒体、CD-R、DVD-R、DVD+R,DVD-RAM、DVD+RW(登録商標)、PD等の光ディスク等が挙げられる。また、コンパクトフラッシュ(登録商標)、スマートメディア(登録商標)、メモリースティック(登録商標)、SDカード等のフラッシュメモリ系、マイクロドライブ(登録商標)、Jaz(登録商標)等のリムーバブルディスクが挙げられる。
 本発明に係る温度制御方法は、処理容器内への基板の搬入前に、基板のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて処理容器内を加熱した後、アニール処理温度を下回る温度まで冷却する工程を含む。
 ここで、「アニール処理温度」、「アニール処理温度より高温に処理容器内を加熱」、「アニール処理温度を下回る温度まで冷却」における、各温度は、処理容器内の同一測定場所温度で判断する。具体的には、基板ステージ裏面温度あるいは加熱容器の温度を測定することにより、判断するが、より基板に近い点から、基板ステージ裏面温度を測定することが好ましい。
 本実施形態の温度制御方法は、上述したように、処理容器3内へ処理基板21を搬入する前に、実際のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて、ヒータ10、基板ステージ20を含む処理容器内の予備加熱工程を行う。そして、予備加熱工程の終了後、搬送ロボットにより処理基板21を処理容器3内へ搬入し、実際のアニール処理工程を行なう方法である。具体的には、基板ステージ20上にダミー基板を載置せずに、基板ステージ20を上昇させて、該ステージ20の上面と加熱容器11の閉塞端部の放熱面11aとの距離を(例えば5mmまで)接近させる。そして、基板ステージ裏面温度が実際のアニール処理温度(例えば1575℃)よりも高温(例えば1700℃)となるように制御し、アニール処理時間(例えば1分間)よりも長時間(例えば4分間)保持して予備加熱する。
 図3及び図4を参照して、本実施形態における予備加熱工程を含む本実施形態の温度制御方法を説明する。
 まず、フィラメント加熱を行ってフィラメント14への吸着ガスを放出させ、フィラメント14の劣化を防ぐ。具体的には、シーケンサ49から多機能式温調計43へ信号を入力し、フィラメント電流計45の電流値が設定値(例えば30A)になるまで、フィラメント電流値を徐々に上昇させる。多機能式温調計43は、シーケンサ49からの信号をフィラメント電流計45からのリターン信号と比較し、サイリスタ48へ信号を出力する。サイリスタ48からの入力に従って、フィラメント電源41はフィラメント電流値の出力を徐々に増加させ、フィラメント電流計45の電流値が30Aになるまで、フィラメント14を加熱する。
 次に、加速電源42からフィラメント14に加速電圧(HV)を印加して、徐々に電圧を上昇させることで、急激なエミッション電流値の上昇を防ぐと共に、異常放電を防止する。具体的には、フィラメント電流値は設定値(例えば30A)で固定のまま、シーケンサ49からサイリスタ48へ信号を出力し、設定電圧(例えば-500V)の加速電圧(HV)を印加する。加速電源42では、サイリスタ48からの入力に従い、加速電圧(HV)-500Vをフィラメント14に印加する。さらに、シーケンサ49はサイリスタ48へ信号を出力し、加速電圧(HV)が設定電圧(例えば-1800V)になるように、加速電圧(HV)を徐々に上昇させる。加速電源42では、サイリスタ48の入力に従い、加速電圧(HV)の出力を徐々に増加させ、加速電圧(HV)が-1800Vになるようにし、エミッション電流を発生させる。
 さらに、エミッション電流値が設定値(例えば10.7A)となるように、シーケンサ49から多機能式温調計43へ信号を入力する。具体的には、多機能式温調計43では、加速電圧(HV)を-1800Vで固定のまま、シーケンサ49からの信号とエミッション電流計からの出力信号と比較する。さらに、多機能式温調計43は、エミッション電流値が10.7Aになるように、フィラメント電流値を制御するための信号をサイリスタ48へ入力する。サイリスタ48からの入力信号により、フィラメント電源41はエミッション電流値が10.7Aになるように制御する。そして、エミッション電流値10.7Aにて、基板ステージ裏面温度が設定温度(例えば1590℃)になるように短時間で昇温させる。
 そして、基板ステージ裏面温度が1590℃になったら、シーケンサ49、多機能式温調計43及びサイリスタ48を通した入力信号により、フィラメント電源41はエミッション電流計47の電流値と比較する。さらにフィラメント電源41は、エミッション電流値が設定値(例えば9.8A)になるようにフィラメント電流値を制御して、設定温度(例えば1640℃)まで昇温する。このときの加速電圧(HV)は-1800Vで一定のまま維持させる。
 次に、エミッション電流値を設定値(例えば7.7A)に維持して、設定時間(例えば3分間)加熱する。さらに、エミッション電流値を設定値(例えば7.5A)に維持して、設定時間(例えば2分間)加熱する。このときの最高温度は、1710℃であった。
 その後、エミッション電流が出ないようにフィラメント電流値を設定値(例えば20Aまで)絞った状態で、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を拡げて、冷却を行う。
 2色式放射温度計7にてヒータの側面の測定温度が設定温度(例えば1200℃)になったら、基板ステージ20の上面と加熱容器11の放熱面11aとの距離をさらに拡げる。そして、基板ステージ20の上面と加熱容器11の放熱面11aとの間を水冷シャッタ24で隔離する。このようにヒータ10からの輻射熱が搬送用ロボットアームに影響しないようにして、処理基板21の出し入れを行う。
 この間、スタンバイ加熱により、ヒータ側面温度が1200℃になるように入力パワーをPID制御する。このとき、冷却時にヒータパワーをオフしてしまうと、次のスタンバイ加熱時の昇温開始が大幅に遅れ、温度再現性の劣化や、スループットの低下を招く。
 次に、基板(炭化珪素基板)に不純物をイオン注入した後、アニール処理して不純物を活性化させるアニール処理工程を行なう。基板ステージ20上に処理基板21を載置した後、エミッション電流値が所定値(例えば3A)になるように電源パワーを制御して、基板ステージ裏面温度が設定温度(例えば1200℃)になるまで基板21のガス出しを行い、表面平坦性の劣化を防ぐ。
 さらに、エミッション電流値を設定値(例えば10.2A)にして急速に昇温し、エミッション電流値を段階的に下げ、所定値(例えば7.1A)で加熱保持する。
 アニール保持時間(例えば1分間)が終了した後、フィラメント電流値を設定値(例えば20A)に絞り、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を拡げて、処理基板21を冷却する。基板ステージ裏面温度が設定温度(例えば1200℃)になったら、基板ステージ20を降下させ、水冷シャッタ24を閉じる。そして、スリットバルブ22を開けて、搬送ロボットにより処理基板21を搬出し、次の処理基板21を搬入する。以上の一連の工程を繰り返して、複数の処理基板21を順次処理する。
 本発明によれば、高温でアニール処理を行う場合であっても、1枚目の基板とそれ以降の基板とで同等の基板品質を確保することができる。このように基板品質を同等に保つことができるのは、以下の理由によるものと考えられる。
 すなわち、本発明によれば、予備加熱において、アニール処理温度よりも高温で加熱しているので、アニール処理時に処理容器の内壁や内部の部品から放出されるガス量を低減することができる。ガス放出は温度に依存するので、高温になるほどガス放出し易くなるからである。
 電子衝撃加熱装置1の加熱容器11内は高真空に保たれているので、ガスが加熱容器11に放出されると一時的に加熱容器11内の真空度が低減し、フィラメント14からの電子放出が制御できず、スパークを生じることがある。それに伴い、ヒータ温度が変化することや、酷い場合には加熱を停止してしまうことになる。
 一方、本発明では、予め予備加熱工程の温度を実際のアニール処理温度よりも高温に設定することにより、予備加熱の段階で加熱容器11からのガス放出が生じる。したがって、アニール処理工程においてガス放出が生じるのを低減することができ、アニール処理における昇温速度を高速にかつ一定の範囲に制御することができる。
 また、アニール処理温度の再現性を高め、電子衝撃加熱装置1によるアニール処理のスループットを大幅に改善することで、炭化ケイ素(SiC)デバイスの生産性を大幅に向上させることができる。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々の変更が可能である。
 以下、実施例を挙げて、本発明に係る基板加熱処理装置の温度制御方法をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 〔実施例1〕
 実施例1は、図1及び図2の電子衝撃加熱装置1を用いて、本発明の予備加熱を含む温度制御方法を用いて半導体デバイスを製造する場合について説明する。
 本実施例の電子衝撃加熱装置1には、複数の処理基板21を収納したカセットを収容するロードロック室(図示せず)と、このロードロック室と電子衝撃加熱装置1とを接続するトランスファ室(図示せず)と、が付帯されている。
 まず、石英製カセットに炭化珪素基板(SiC基板)を10枚収納し、このカセットをロードロック室に収容して、その内部の排気を行う。ロードロック室の排気が開始されると同時に、予備加熱工程を開始する。そして、予備加熱工程を行っている間に、ロードロック室の粗引きを終了する。
 その後、トランスファ室とロードロック室との隔壁となるスリットバルブを開放し、トランスファ室のターボモレキュラポンプ(TMP)により、トランスファ室の圧力が1×10-3Pa以下になるまで排気する。
 予備加熱工程(ダミーアニール)は、上述したように、ヒータ10、基板ステージ20を含む処理容器内の温度を予め上昇させておく工程である。具体的には、ダミー基板を用いることなく、基板ステージ20を上昇させて、該ステージ20の上面と加熱容器11の閉塞端部の放熱面11aとの距離が5mmになるように接近させる。そして、基板ステージ20の裏面温度が実際のアニール処理温度1575℃よりも高温の1710℃になるように設定し、実際の処理時間(1分間)よりも長時間(4分間)だけ保持して加熱する。
 ここで、図3を参照して、本実施例における予備加熱工程を具体的に説明する。
 まず、フィラメント加熱を行ってフィラメント14への吸着ガスを放出させ、該フィラメント14の劣化を防ぐ。具体的には、シーケンサ49から多機能式温調計43に信号を入力し、フィラメント電流計45の電流値が30Aになるまで、フィラメント電流値を1秒間に1Aずつ上昇させる。多機能式温調計43は、シーケンサ49からの信号とフィラメント電流計45からのリターン信号とを比較し、サイリスタ48へ信号を出力する。サイリスタ48からの入力に従って、フィラメント電源41はフィラメント電流値の出力を徐々に増加させ、フィラメント電流計45の電流値が30Aになるまで、フィラメント14を加熱する。
 次に、加速電源42からフィラメント14に加速電圧(HV)を印加して、徐々に電圧を上昇させることで、急激なエミッション電流値の上昇を防ぎ、異常放電を防止する。フィラメント電流値は30Aで固定のまま、シーケンサ49からサイリスタ48へ信号を出力し、加速電圧(HV)-500Vを印加する。加速電源42では、サイリスタ48からの入力に従い、例えば、加速電圧(HV)-500Vをフィラメント14に印加する。さらに、シーケンサ49はサイリスタ48へ信号を出力し、加速電圧(HV)が-1800Vになるように、1秒間に加速電圧(HV)を-100Vずつ上昇させる。加速電源42では、サイリスタ48の入力に従い、加速電圧(HV)の出力を徐々に増加させ、加速電圧(HV)が-1800Vになるようにし、エミッション電流を発生させる。
 さらにシーケンサ49から、エミッション電流値が10.7Aとなる信号を多機能式温調計43へ入力する。多機能式温調計43では、加速電圧(HV)が-1800Vで一定のまま、エミッション電流計からの出力信号と比較し、エミッション電流値10.7Aになるように、フィラメント電流値を制御するための信号をサイリスタ48へ入力する。サイリスタ48からの入力信号により、フィラメント電源41はエミッション電流値が10.7Aになるように制御する。そして、エミッション電流値10.7Aにて、基板ステージ20の裏面温度が1590℃になるように短時間で昇温させる。
 そして、基板ステージ20の裏面温度が1590℃になったら、シーケンサ49、多機能式温調計43及びサイリスタ48を通した入力信号により、フィラメント電源41はエミッション電流計47の電流値と比較する。さらにフィラメント電源41は、エミッション電流値が9.8Aになるようにフィラメント電流値を制御して1640℃まで昇温する。このときの加速電圧(HV)は-1800Vで一定のまま維持させる。
 次に、エミッション電流値7.7Aにて、3分間加熱する。さらに、エミッション電流値7.5Aにて、2分間加熱する。加熱初期段階でのヒータ10や基板ステージ20の温度により最高到達温度が変化するため、これらの加熱制御は、温度をトリガーにするのではなく、時間を固定したパワー制御を行なっている。これにより、初期段階の温度がいずれの場合にあっても、ダミーアニール工程を再現性良く行なうことができる。このときの最高温度は、1710℃であった。
 その後、エミッション電流が出ないようにフィラメント電流値を20Aまで絞った状態で、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を72mmにして冷却を行う。
 2色式放射温度計7にて基板ステージ20の裏面温度が1200℃になったら、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を198mmまで拡げる。そして、基板ステージ20の上面と加熱容器11の放熱面11aとの間を水冷シャッタ24で閉じ、ヒータ10からの輻射熱が搬送用ロボットアームに影響しないようにして、SiC基板の出し入れを行う。
 この間、スタンバイ加熱により、ヒータ側面温度(加熱容器側面温度)が1200℃になるように入力パワーをPID制御する。このとき、冷却時にヒータパワーをオフしてしまうと、次のスタンバイ加熱時の昇温開始が大幅に遅れ、温度再現性の劣化や、スループットの低下を招く。
 なお、スタンバイ加熱においては、水冷シャッタにより基板ステージの裏面温度の測定はできないため、ヒータ側面温度を測定した。
 SiC基板が基板ステージ20に載置された後、エミッション電流値が3Aになるように電源パワーを制御して、90秒間で基板ステージ20の裏面温度が約1200℃になるまでのガス出しを行い、表面平坦性の劣化を防ぐ。次に、エミッション電流値10.2Aで急速に昇温し、基板ステージ裏面温度1515℃~1535℃の間はエミッション電流値9.5Aで、基板ステージ裏面温度1535℃~1555℃の間はエミッション電流値8.4Aで昇温させる。さらに、基板ステージ裏面温度1555℃~1575℃の間はエミッション電流値7.3Aで昇温させ、1575℃で1分間はエミッション電流値7.1Aで加熱保持する。ここで、基板ステージ裏面温度を接点として、エミッション電流値を段階的に下げていくことで、直径φ200mmの大口径ヒータでも高温を高速かつ安定的に制御できる。
 アニール保持時間1分間が終了した後、フィラメント電流値を20Aに絞り、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を72mmまで拡げて、SiC基板を冷却する。基板ステージ裏面温度が1200℃になったら、基板ステージ20の上面と加熱容器11の放熱面11aとの距離を198mmになるように基板ステージ20を降下させる。そして、水冷シャッタ24を閉じ、スリットバルブ22を開けて、搬送ロボットによりSiC基板を搬出させ、次のSiC基板を搬入する。この間は、スタンバイ加熱により、ヒータ10の側面の温度が1200℃になるように、放射温度計にて、ヒータ10の側面の温度を計測し、パワーを制御してヒータ温度を保持させておく。
 同様の工程で複数のSiC基板を順次処理し、最終10枚目のSiC基板の処理が完了した後、ロードロック室に回収してスタンバイ加熱を終了させ、一連の処理が完了となる。
 このときの基板ステージ裏面温度と処理時間との関係を図4に示すと共に、その拡大図を図5に示す。本実施例によれば、処理時間は1時間47分であり、スループット5枚/時以上が達成できた。このとき、10枚全てのSiC基板のアニール保持温度1575℃での最大温度差は+3℃で、最低温度差は-4℃となり、温度再現性が十分に確保され、基板の品質が保持されていることが判った。
1 基板加熱処理装置(電子衝撃加熱装置)、3 処理容器、10 加熱装置、11 加熱容器、14 フィラメント、21 処理基板、24 シャッタ機構、42 加速電源

Claims (7)

  1.  真空排気可能な処理容器内に、フィラメントを組み込んだ導電体の加熱容器を備え、
     前記フィラメントと前記加熱容器との間に印加された加速電圧で、前記フィラメントから発生する熱電子を加速し、該加速した熱電子を前記加熱容器に衝突させて該加熱容器を加熱し、該加熱容器の熱により基板のアニール処理を行う基板加熱処理装置の温度制御方法であって、
     前記処理容器内への前記基板の搬入前に、前記基板のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて前記処理容器内を加熱した後、前記アニール処理温度を下回る温度まで冷却する予備加熱を行なう工程と、
     前記予備加熱工程が終了した前記処理容器内へ前記基板を搬入した後、前記アニール処理温度まで昇温してアニール処理を行う工程と、
    を有することを特徴とする基板加熱処理装置の温度制御方法。
  2.  炭化珪素基板に不純物をイオン注入した後、アニール処理して不純物を活性化させるアニール処理工程を有する半導体デバイスの製造方法において、
     請求項1に記載の予備加熱工程を含む温度制御方法により温度制御して前記アニール処理を行うことを特徴とする半導体デバイスの製造方法。
  3.  真空排気可能な処理容器内に、フィラメントを組み込んだ導電体の加熱容器を備え、
     前記フィラメントと前記加熱容器との間に印加された加速電圧で、前記フィラメントから発生する熱電子を加速し、該加速した熱電子を前記加熱容器に衝突させて該加熱容器を加熱し、該加熱容器の熱により基板のアニール処理を行う基板加熱処理装置の温度制御プログラムであって、
     前記処理容器内への前記基板の搬入前に、前記基板のアニール処理温度よりも高温、かつアニール処理時間よりも長時間にて前記処理容器内を加熱した後、前記アニール処理温度を下回る温度まで冷却する予備加熱を行なう手順と、
     前記予備加熱手順が終了した前記処理容器内へ前記基板を搬入した後、前記アニール処理温度まで昇温してアニール処理を行う手順と、
    を基板加熱処理装置の制御装置に実行させることを特徴とする基板加熱処理装置の温度制御プログラム。
  4.  前記真空排気可能な処理容器と、
     フィラメントを組み込んだ導電体の加熱容器を備え、前記フィラメントと前記加熱容器との間に印加された加速電圧で、前記フィラメントから発生する熱電子を加速し、該加速した熱電子を前記加熱容器に衝突させて該加熱容器を加熱し、該加熱容器の放熱面からの熱により基板の熱処理を行う加熱装置と、
     前記基板を載置する基板ステージと、
     前記処理容器内において、前記基板ステージと前記加熱容器の放熱面とを接近または離間させるために、前記基板ステージと前記加熱装置との少なくともいずれか一方を昇降移動させる昇降装置と、
     これらを制御する制御装置とシーケンサを少なくとも備える制御系と、
    を備え、
     前記制御装置に、請求項3に記載の温度制御プログラムが組み込まれていることを特徴とする基板加熱処理装置。
  5.  前記基板ステージと前記加熱容器の放熱面とをシャッタで隔壁するためのシャッタ機構を有し、
     前記制御装置に、前記基板を搬送する際、前記基板ステージと前記加熱容器の放熱面との間をシャッタで隔離した状態で、前記加熱容器の温度を放射温度計で測定し、該測定温度に基づいて温度制御するスタンバイ加熱の温度制御プログラムが組み込まれていることを特徴とする請求項4に記載の基板加熱処理装置。
  6.  前記シャッタは水冷シャッタであることを特徴とする請求項5に記載の基板加熱処理装置。
  7.  請求項3に記載の温度制御プログラムを記録したコンピュータで読み取り可能な記録媒体。
PCT/JP2011/004390 2010-08-09 2011-08-03 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体 WO2012020556A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/808,338 US8691676B2 (en) 2010-08-09 2011-08-03 Substrate heat treating apparatus, temperature control method of substrate heat treating apparatus, manufacturing method of semiconductor device, temperature control program of substrate heat treating apparatus, and recording medium
DE112011102676.5T DE112011102676B4 (de) 2010-08-09 2011-08-03 Substratwärmebehandlungsgerät, Temperatursteuerungsverfahren für Substratwärmebehandlungsgerät, Herstellungsverfahren für Halbleitervorrichtung, Temperatursteuerprogramm für Substratwärmebehandlungsgerät und Aufzeichnungsträger
JP2012528592A JP5543601B2 (ja) 2010-08-09 2011-08-03 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-178458 2010-08-09
JP2010178458 2010-08-09

Publications (1)

Publication Number Publication Date
WO2012020556A1 true WO2012020556A1 (ja) 2012-02-16

Family

ID=45567531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004390 WO2012020556A1 (ja) 2010-08-09 2011-08-03 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体

Country Status (4)

Country Link
US (1) US8691676B2 (ja)
JP (1) JP5543601B2 (ja)
DE (1) DE112011102676B4 (ja)
WO (1) WO2012020556A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030231A (ko) * 2015-12-30 2018-03-21 맷슨 테크놀로지, 인크. 밀리세컨드 어닐 시스템을 위한 예열 공정
TWI728505B (zh) * 2018-10-23 2021-05-21 日商斯庫林集團股份有限公司 熱處理方法及熱處理裝置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146161A1 (ja) 2014-03-24 2015-10-01 キヤノンアネルバ株式会社 半導体基板の熱処理方法、半導体基板の製造方法、熱処理装置、及び基板処理システム
JP7091222B2 (ja) * 2018-10-23 2022-06-27 株式会社Screenホールディングス 熱処理方法および熱処理装置
JP2022026758A (ja) 2020-07-31 2022-02-10 株式会社Screenホールディングス 熱処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232108A (ja) * 1999-02-12 2000-08-22 Dainippon Screen Mfg Co Ltd 基板加熱方法および基板加熱装置
JP2002324802A (ja) * 2001-02-21 2002-11-08 Shin Etsu Handotai Co Ltd アニールウェーハの製造方法
JP2005056964A (ja) * 2003-08-01 2005-03-03 Sukegawa Electric Co Ltd 電子衝撃加熱装置
JP2005056582A (ja) * 2003-05-09 2005-03-03 Sukegawa Electric Co Ltd 電子衝撃加熱器の温度制御装置と温度制御方法
JP2009206503A (ja) * 2008-01-30 2009-09-10 Canon Anelva Engineering Corp 基板加熱装置、加熱処理方法および半導体デバイスを製造する方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60247936A (ja) 1984-05-23 1985-12-07 Dainippon Screen Mfg Co Ltd 熱処理方法
JP3102832B2 (ja) 1994-07-21 2000-10-23 大日本スクリーン製造株式会社 基板の熱処理方法及び熱処理装置
US7320733B2 (en) 2003-05-09 2008-01-22 Sukegawa Electric Co., Ltd. Electron bombardment heating apparatus and temperature controlling apparatus and control method thereof
JP5406279B2 (ja) 2009-03-26 2014-02-05 キヤノンアネルバ株式会社 基板処理方法および結晶性炭化ケイ素(SiC)基板の製造方法
WO2011077702A1 (ja) * 2009-12-25 2011-06-30 キヤノンアネルバ株式会社 基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232108A (ja) * 1999-02-12 2000-08-22 Dainippon Screen Mfg Co Ltd 基板加熱方法および基板加熱装置
JP2002324802A (ja) * 2001-02-21 2002-11-08 Shin Etsu Handotai Co Ltd アニールウェーハの製造方法
JP2005056582A (ja) * 2003-05-09 2005-03-03 Sukegawa Electric Co Ltd 電子衝撃加熱器の温度制御装置と温度制御方法
JP2005056964A (ja) * 2003-08-01 2005-03-03 Sukegawa Electric Co Ltd 電子衝撃加熱装置
JP2009206503A (ja) * 2008-01-30 2009-09-10 Canon Anelva Engineering Corp 基板加熱装置、加熱処理方法および半導体デバイスを製造する方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180030231A (ko) * 2015-12-30 2018-03-21 맷슨 테크놀로지, 인크. 밀리세컨드 어닐 시스템을 위한 예열 공정
KR102177121B1 (ko) * 2015-12-30 2020-11-11 베이징 이타운 세미컨덕터 테크놀로지 컴퍼니 리미티드 밀리세컨드 어닐 시스템을 위한 예열 공정
TWI728505B (zh) * 2018-10-23 2021-05-21 日商斯庫林集團股份有限公司 熱處理方法及熱處理裝置

Also Published As

Publication number Publication date
US8691676B2 (en) 2014-04-08
DE112011102676T5 (de) 2013-06-27
JP5543601B2 (ja) 2014-07-09
DE112011102676B4 (de) 2019-01-03
US20130109109A1 (en) 2013-05-02
JPWO2012020556A1 (ja) 2013-10-28

Similar Documents

Publication Publication Date Title
US8450193B2 (en) Techniques for temperature-controlled ion implantation
US7655933B2 (en) Techniques for temperature-controlled ion implantation
JP5543601B2 (ja) 基板加熱処理装置、基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体
KR0165898B1 (ko) 진공처리방법 및 장치
US7485190B2 (en) Apparatus for heating a substrate in a variable temperature process using a fixed temperature chuck
US6500686B2 (en) Hot plate and method of manufacturing semiconductor device
JP5469678B2 (ja) 基板加熱処理装置の温度制御方法、半導体デバイスの製造方法、基板加熱処理装置の温度制御プログラム及び記録媒体
US9978599B2 (en) Wafer cooling apparatus and method
JP6005966B2 (ja) 熱処理装置および熱処理方法
JP2010251718A (ja) 加熱装置の温度制御方法及び記憶媒体
US20070197046A1 (en) Substrate processing method and substrate processing apparatus
JP5523735B2 (ja) 熱処理方法および熱処理装置
JP5828998B2 (ja) 半導体素子の製造方法
KR100608214B1 (ko) 반도체 웨이퍼의 열처리 방법
JP3813877B2 (ja) 基板の処理方法
JP2010073787A (ja) 熱処理装置
US10227693B1 (en) Outgassing impact on process chamber reduction via chamber pump and purge
JP4037431B2 (ja) 基板の処理方法及び基板の処理装置
JP5483710B2 (ja) 印加電圧設定方法、熱処理方法および熱処理装置
JP5770880B2 (ja) 熱処理方法
JP5143436B2 (ja) 熱処理装置
JP5474317B2 (ja) 半導体デバイスの製造方法及び基板処理装置
JP2005093621A (ja) 半導体装置の製造方法
JP2014146831A (ja) 熱処理方法
JP2009099787A (ja) 熱処理装置および熱処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11816225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13808338

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012528592

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120111026765

Country of ref document: DE

Ref document number: 112011102676

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11816225

Country of ref document: EP

Kind code of ref document: A1