WO2012019381A1 - β-环糊精包合依达拉奉的口服药物组合物及其制备方法 - Google Patents

β-环糊精包合依达拉奉的口服药物组合物及其制备方法 Download PDF

Info

Publication number
WO2012019381A1
WO2012019381A1 PCT/CN2010/077574 CN2010077574W WO2012019381A1 WO 2012019381 A1 WO2012019381 A1 WO 2012019381A1 CN 2010077574 W CN2010077574 W CN 2010077574W WO 2012019381 A1 WO2012019381 A1 WO 2012019381A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
edaravone
mixed
pharmaceutical composition
mass ratio
Prior art date
Application number
PCT/CN2010/077574
Other languages
English (en)
French (fr)
Inventor
任勇
曾建
余书勤
周成梁
Original Assignee
南京师范大学
南京百特生物工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京师范大学, 南京百特生物工程有限公司 filed Critical 南京师范大学
Publication of WO2012019381A1 publication Critical patent/WO2012019381A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • A61K31/41521,2-Diazoles having oxo groups directly attached to the heterocyclic ring, e.g. antipyrine, phenylbutazone, sulfinpyrazone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/145Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to a pharmaceutical composition, and in particular to an oral edaravone pharmaceutical composition and the same A method of preparing a composition.
  • Edaravone is the first type of free radical scavenger for the treatment of cerebral infarction drugs, which was developed by Mitsubishi Pharmaceutical Co., Ltd. in 2001. Domestic companies were approved for production in December 2003. This product can scavenge free radicals and inhibit lipid peroxidation, thereby inhibiting oxidative damage of brain cells, vascular endothelial cells and nerve cells.
  • Pharmacological studies have shown that intravenous administration of edaravone after ischemia/ischemia reperfusion prevents cerebral edema and progression of cerebral infarction, relieves accompanying neurological symptoms, and inhibits delayed neuronal death. At present, edaravone is administered by injection in a clinical manner.
  • the injection is prepared by dissolving edaravone with propylene glycol, and then adding various stabilizers and antioxidants.
  • the product in solution form needs to be provided in a nitrogen-filled ampoule package for clinical use; Dalafang oral is difficult to absorb. There are currently no oral preparations, and patients with inconvenient, non-injectable preparations are rarely reported.
  • Cyclodextrin fCyclodextrin is a cyclic oligosaccharide with a glucosyl group bonded by 1,4 glycosidic bonds. It has the hydrophobicity of the outer edge (Rim) and the inner cavity fCavity).
  • the cyclodextrin acts as the host fHost) Molecules can form a specific "host-guest" complex inclusion complex with various small molecule guest fGuest, enhance the solubility and stability of guest molecules, and thus are widely used in the medical field. Sato T. et al. (Int J Pharm.
  • oral spray intravenous injection of 140.4: 119.6; oral administration has the lowest bioavailability, even with the addition of large doses of sodium bisulfite and cysteine (increased bioavailability), its oral bioavailability 26.60/0 for oral spray only.
  • the object of the present invention is to provide an oral pharmaceutical composition of ⁇ -cyclodextrin-containing edaravone, which is an orally effective edaravone product, which is encapsulated in a neutral aqueous solution of cyclodextrin.
  • the preparation of the solid inclusion compound with strong stability and good pharmacy performance does not require the addition of other absorption enhancers or auxiliary agents, and the preparation has the characteristics of being effective and convenient for oral administration. It is a more convenient and effective new clinical application of edaravone.
  • the present invention also provides a process for the preparation of such an oral pharmaceutical composition.
  • the technical solution of the present invention is: an oral pharmaceutical composition containing ⁇ -cyclodextrin-containing edaravone, characterized in that the mass ratio composition of the composition is
  • the cyclodextrin described above may be: ⁇ -cyclodextrin ( ⁇ -CD), or ⁇ -cyclodextrin and hydroxypropyl- ⁇ -cyclodextrin ( ⁇ - ⁇ -CD) or sulfobutyl- ⁇ - cyclodextrin (SBE-p-CD), or a mixed cyclodextrin of any ratio of ⁇ -cyclodextrin to hydroxypropyl- ⁇ -cyclodextrin and sulfobutyl- ⁇ -cyclodextrin.
  • ⁇ -CD ⁇ -cyclodextrin
  • ⁇ -CD ⁇ -cyclodextrin and hydroxypropyl- ⁇ -cyclodextrin
  • SBE-p-CD sulfobutyl- ⁇ -cyclodextrin
  • the optimization scheme of the above-mentioned pharmaceutical composition is:
  • the mass ratio of edaravone to cyclodextrin is 1: 6 to 50, wherein the mass ratio of ⁇ -cyclodextrin is 1: 6 to 20,
  • the mass ratio of the mixed cyclodextrin is 1: 8 to 50.
  • the optimal solution of the above pharmaceutical composition is:
  • the mass ratio of edaravone to cyclodextrin is 1: 8 ⁇ 25.0, wherein the mass ratio of ⁇ -cyclodextrin is 1:8, ⁇ - The mass ratio of cyclodextrin/hydroxypropyl- ⁇ -cyclodextrin mixed cyclodextrin is 1:10, and the mass ratio of ⁇ -cyclodextrin/sulfobutyl- ⁇ -cyclodextrin mixed cyclodextrin is 1: 25.
  • the oral edaravone pharmaceutical composition is a composition prepared by one of the following methods:
  • a further optimization scheme is: mixing ⁇ cyclodextrin, or mixed cyclodextrin with 1 to 4 times of water to prepare a solution or suspension, and slowly adding a selected mass ratio of edaravone with stirring. After thoroughly grinding or stirring for 1 hour, the water was distilled off at a temperature of 50 ° C, and dried under reduced pressure at room temperature to obtain a white powdery clathrate.
  • a further optimization scheme is: mixing ⁇ -cyclodextrin, or mixed cyclodextrin with 1 to 4 times of water to prepare a solution or suspension, and slowly adding a selected mass ratio of edaravone with stirring The solution prepared in 10 times ethanol was sufficiently ground or stirred for 1 hour, and then ethanol and water were distilled off at a temperature of 50 ° C, and dried under reduced pressure at room temperature to obtain a white powdery clathrate.
  • the buffer salt is commonly used NH 4 Ac or H 3 P0 4 -NaOH, and is prepared into a buffer solution having a pH range of 6.:! ⁇ 7.9.
  • Solid pharmaceutical inclusions are commonly used in the preparation of pharmaceutically acceptable excipients such as tablets, capsules, granules or dispersion tablets.
  • the above solid inclusion compound is prepared into a solid preparation, and the auxiliary materials to be added can be selected from the following materials: ⁇ -cyclodextrin, microcrystalline cellulose, starch, citric acid, talc, sodium carboxymethyl starch, stearic acid, pre- Gelatinized starch, lactose, mannitol, crospovidone, talc, PEG4000 (polyethylene glycol 4000), low-substituted hydroxypropyl cellulose, micro-silica gel, sodium carboxymethyl starch, PEG6000 (polyethylene glycol 6000) .
  • the solid inclusion complexes of the invention and their preparation are technically critical. Compared with the commercially available edaravone injection, the absolute bioavailability of the inclusion compound preparation can reach above 55Q/ 0 , compared with the edaravone common suspension preparation (Fig. 6), its relative bioavailability is high. About lOOOQ/o (10 times). The edaravone preparation prepared by the non-inclusion technique is difficult to achieve the technical effects of the present invention even if it has good solubility.
  • Edaravone is easily soluble in ethanol and its solubility in water is not high (2.623 mg.ml-i).
  • edaravone has strong absorption in the ultraviolet range of 230nm-260nm.
  • the absorbance of the drug increases regularly with the increase of cyclodextrin concentration, indicating that the aqueous solution is in the ring.
  • the apparent inclusion constant can be determined by the change of cyclodextrin concentration and drug absorbance.
  • the relationship between splitting and the change of methyl peak displacement, package There are two structures in which the benzene ring first enters and the heterocyclic ring enters first.
  • the structure in which the heterocycle first enters has the characteristic of configuration b, and the methyl group penetrates into the cyclodextrin, and the shielding effect is obvious.
  • Table 2 shows that the content of non-inclusive edaravone bulk drug decreased under light and heat conditions (all less than 95Q/0); while the content of edaravone in the inclusion compound was relatively stable. It is indicated that the inclusion of cyclodextrin significantly improves the stability of edaravone. In addition, compared with the inclusion complexes prepared under different pH conditions, the neutral water conditions are not only beneficial to the cyclodextrin inclusion edaravone, but also the stability of the prepared inclusion complex is obviously enhanced; Dala is poorly stable. Bioavailability test:
  • Test drugs edaravone/cyclodextrin inclusion complex (inclusion ratio), edaravone CMC-Na suspension, edaravone Tween-80 (10%) solution and injection” Must be stored (commercially available), a total of six test samples.
  • the cyclodextrin/edarabine inclusion compound has good oral effect, and its bioavailability is compared with injection.
  • the relative bioavailability of 550/0 or more, compared with edaravone common preparation (CMC-Na suspension and ⁇ / ⁇ Tween-80 solution preparation) is 9.8 11 times and 1.8 2.1 times, respectively.
  • the oral effect of the fine inclusion compound is relatively close, the difference is small, showing that the bioavailability of edaravone is improved not only with dissolution
  • the degree of increase is related, and more closely related to the cyclodextrin inclusion characteristics, showing that the cyclodextrin inclusion compound has the advantages of the present invention before good clinical application:
  • the edaravone inclusion compound is orally effective and has a high bioavailability, providing patients with new and more convenient routes and methods of administration.
  • the edaravone prepared by the invention has complete inclusion, low impurity content and solvent residue, and no antioxidant, absorption enhancer and other complex auxiliaries, ensuring product quality and drug safety.
  • the solid inclusion compound is stable in nature, easy to store and transport, and has good pharmacy properties. It is suitable for various oral dosage forms and is convenient to use.
  • Figure 1 a and b configurations of edaravone under different solvent conditions
  • Figure 3 Nuclear magnetic resonance spectrum of edaravone in chloroform solvent: iH-NMR (CDC): 67.83-7.81 [dd, 2H]; 7.37-7.33 (dd, 2H); 7.16-7.12 (dd, 1H); 3.39 ( s, 2H, -CH 2 -]; 2.16 ( s, 3H, CH 3 )
  • Fig. 6 is a time chart of the animal drug metabolism test of the edaravone CMC-Na suspension preparation and the three cyclodextrin inclusion complex preparations.
  • Example 3 which is basically the same as Example 1, but using 10 g of ⁇ -cyclodextrin plus 90 g of hydroxypropyl- ⁇ -cyclodextrin 400 ml of 0.05 ⁇ 1 ⁇ 1 guanidine phosphate buffer having a pH of 7.5 was mixed to prepare about 110 g of a white solid clathrate.
  • Example 4 substantially the same as Example 1, but using 70 g of ⁇ -cyclodextrin and 10 g of hydroxypropyl- ⁇ -cyclodextrin mixed cyclodextrin with 400 ml of O.lmol i phosphate buffer pH 7.9 The liquid was mixed to obtain about 90 g of a white solid clathrate.
  • Example 5 which was substantially the same as Example 1, except that a mixed cyclodextrin of 70 g of ⁇ -cyclodextrin and 10 g of sulfobutyl- ⁇ -cyclodextrin was used to prepare about 90 g of a white solid clathrate.
  • Example 6 substantially the same as Example 1, but using a mixed cyclodextrin of 100 g of ⁇ -cyclodextrin, 20 g of hydroxypropyl- ⁇ -cyclodextrin and 20 g of sulfobutyl- ⁇ -cyclodextrin, Approximately 150 grams of a white solid clathrate was prepared.
  • Example 7 substantially the same as Example 1, but using a mixed cyclodextrin of 90 g of ⁇ -cyclodextrin, 5 g of hydroxypropyl- ⁇ -cyclodextrin and 5 g of sulfobutyl- ⁇ -cyclodextrin, Approximately 110 grams of a white solid clathrate was prepared.
  • Example 8 substantially the same as Example 1, but using 30 g of ⁇ -cyclodextrin and 30 g of hydroxypropyl- ⁇ -cyclodextrin and 30 g of sulfobutyl- ⁇ -cyclodextrin mixed cyclodextrin, Approximately 100 grams of a white solid clathrate was prepared.
  • Example 10 which was substantially the same as in Example 1, except that 150 ml of pure water was used to prepare about 90 g of a white solid inclusion.
  • Example 11 Basically the same as Example 1, except that 200 ml of pure water was used to prepare about 90 g of a white solid inclusion.
  • Example 12 which was substantially the same as in Example 1, except that 60 g of ⁇ -cyclodextrin and 60 ml of pure water were used to prepare about 70 g of a white solid clathrate.
  • Example 13 Basically the same as Example 1, except that 160 g of ⁇ -cyclodextrin and 150 ml of pure water were used to prepare about 170 g of a white solid clathrate.
  • Example 14 Basically the same as Example 1, except that 500 g of ⁇ -cyclodextrin and 700 ml of pure water were used to prepare about 510 g of a white solid clathrate.
  • Example 15 Basically the same as Example 1, except that 1000 g of ⁇ -cyclodextrin and 1000 ml of pure water were used to prepare about 1,100 g of a white solid clathrate.
  • Example 16 Basically the same as Example 1, except that 79 g of ⁇ -cyclodextrin and 1 g of hydroxypropyl- ⁇ -cyclodextrin and 100 ml of pure water were used to prepare about 90 g of a white solid clathrate.
  • Example 17 substantially the same as Example 1, except that 250 g of ⁇ -cyclodextrin and 10 g of hydroxypropyl- ⁇ -cyclodextrin and 260 ml of pure water were used to prepare about 270 g of a white solid clathrate.
  • Example 19 was carried out in substantially the same manner as in Example 1, except that 490 g of ⁇ -cyclodextrin and 10 g of sulfobutyl- ⁇ -cyclodextrin and 750 ml of pure water were used to prepare about 510 g of a white solid clathrate.
  • Example 20 10 g of edaravone was dissolved in 100 ml of ethanol to prepare a solution for use.
  • Mix 75 g of ⁇ -cyclodextrin with 400 ml of pure water to make a suspension (pH 7.5); slowly add ethanol-soluble edaravone solution with stirring, fully grind or stir for 1.5 hours at 50 °C
  • the ethanol and water were distilled off, and dried under reduced pressure at room temperature to obtain about 85 g of a white solid clathrate.
  • Example 21 was substantially the same as Example 20 except that edaravone was dissolved in acetone to obtain about 85 g of a white solid clathrate.
  • Example 22 90.0 g of the clathrate prepared in Example 1 was taken and sieved through a 100 mesh sieve, and 72.0 g of microcrystalline cellulose, 20.0 g of starch, 16.0 g of sodium carboxymethyl starch and 2.0 g of magnesium stearate were weighed. After mixing through a 60 mesh sieve, mix 2/3 of the medicinal excipients and the solid inclusion compound, pass through a 80 mesh sieve, then wet the fabric with 700/0 ethanol, and sieve through 14 mesh sieves, 50 After drying at °C, add another 1/3 of the medicinal excipients after granulation. After thoroughly mixing, determine the content of edaravone, and press the tablets according to the dosage requirements to prepare edaravone inclusion tablets.
  • Example 23 90.0 g of the clathrate prepared in Example 4, mixed with 32.0 g of PEG4000, 26.0 g of sodium carboxymethyl starch, thoroughly mixed through a 80 mesh sieve, and 15 ml of a 10% solution of lOQ/o hydroxypropylcellulose. The mixture was thoroughly mixed in a mixer, dried at 50 ° C for 2 hours, sieved to prepare a powder having a particle size of 250 ⁇ m, and the content of edaravone was measured. The edaravone capsule was prepared by filling the empty capsule according to the dosage requirement.
  • Example 24 90.0 g of the clathrate prepared in Example 9 was mixed with 30 g of pregelatinized starch, 30 g of lactose, 30 g of mannitol and 20 g of sodium carboxymethyl starch, and thoroughly mixed through a mesh of 80 mesh. It was made into a granule with a 700/0 ethanol soft material, sieved with a pellet machine, and the edaravone granules were prepared by dispensing according to the dosage requirements.
  • Example 25 90.0 g of the clathrate prepared in Example 8 was mixed with 8 g of sodium carboxymethyl starch, 80 g of microcrystalline cellulose fMCq, 12 g of mannitol, 10 g of micronized silica gel, and dried by wet granulation at 50 ° C. After 2 hours, the content was measured, and the edaravone dispersible tablet was pressed according to the dosage requirement.

Description

β-环糊精包合依达拉奉的口服药物组合物及其制备方法 技术领域 本发明涉及一种药物组合物, 具体涉及一种可供口服的依达拉奉药物组合物以及这种药 物组合物的制备方法。 技术背景 依达拉奉 (Edaravone ) , 商品名: 必存, 化学名: 3-甲基 -1-苯基 -2-B比唑啉 -5-酮 ( 3-methyl-l-phenyl-2-pyrazolin-5-one), 分子式: C10H10N20, 分子量: 174.2; 结构研究表 明, 芳杂环类的依达拉奉分子在不同溶剂条件下具有不同的构型 (J. Braz. Chem. Soc., 2008, 19 ( 6): 1207〜: 1214), 极性较强的 DMS0中依达拉奉为 1,2-二氢吡唑啉酮式结构(a, 附图 1), 而在疏水性氯仿溶液中为单一的 2,4-二氢吡唑啉酮式构型(b, 附图 1); 两种酮式结构 a 与 b的区别在于,其 a的核磁共振谱于 δ= 5.36处有 =CH- 质子峰, 而 b则在 δ= 3.39处出现 -CH2- 质子峰。
依达拉奉是第一个自由基清除剂类型的治疗脑梗塞药物, 由日本三菱制药公司 2001年 开发上市。 国内企业于 2003年 12月获批生产。 本品可清除自由基, 抑制脂质过氧化, 从而 抑制脑细胞、血管内皮细胞和神经细胞的氧化损伤。 药理研究表明, 大鼠在缺血 /缺血再灌注 后静脉给予依达拉奉, 可阻止脑水肿和脑梗塞的进展, 缓解伴随的神经症状, 抑制迟发性神 经元死亡。 目前依达拉奉临床以注射方式用药, 注射剂系采用丙二醇溶解依达拉奉, 再添加 各种稳定剂和抗氧剂制得, 溶液形式的产品需以充氮安瓿包装方式提供临床使用; 依达拉奉 口服难以吸收目前没有口服制剂, 患者使用不便, 非注射制剂产品的研究报道较不多见。
环糊精 fCyclodextrin, 简称 CD〕是葡萄糖基以 1, 4糖苷键键合的环状低聚糖, 具有外缘 (Rim)亲水而内腔 fCavity)疏水的特性, 环糊精作为主体 fHost)分子能够与各种小分子客体 fGuest)形成特定"主-客体"作用的包合物, 增强客体分子的溶解性和稳定性, 因而在医药领域 得到广泛应用。 Sato T.等 (Int J Pharm. 2009 May 8;372〔l-2〕:33-8) 将羟丙基 -β-环糊精 /依达 拉奉(质量比 20: 1 )用枸橼酸缓冲液 (ρΗ4.5 )配制成供试样品溶液, 避光 50°C存放 14天 对其热稳定性进行考察发现, 溶液中依达拉奉相对含量降低至 93.7Q/Q, 而加入 0.:!〜 0.6质量 比的亚硫酸氢钠 (SHS)、 半胱氨酸 (Cys) 或苯并三唑 (BTA) 的溶液依达拉奉相对含量能够 保持稳定不变。 含量稳定的样品溶液再加入依达拉奉代谢抑制剂具有较好的透皮吸收效果。 进一步对羟丙基 -β-环糊精 /依达拉奉(质量比 20: 1)溶液 (ρΗ4.5的枸橼酸缓冲液)进行动 物口服、 口腔黏膜及直肠给药的药代动力学试验 (Pharmacology. 2010;85(2):88-94), 结果 表明, 样品溶液中加入亚硫酸氢钠 (SHS) 和半胱氨酸 (Cys) 能够显著提高依达拉奉生物利 用度,三种给药方式以口腔黏膜喷雾给药效果最好,与等剂量静脉给药 AUC比较:口腔喷雾: 静脉注射为 140.4: 119.6; 口服给药生物利用度最低, 即使加入大剂量亚硫酸氢钠和半胱氨 酸 (提高生物利用度), 其口服生物利用度也仅为口腔喷雾给药的 26.60/0 。
Sato T. 等以 pH4.5的羟丙基 -β-环糊精 /依达拉奉溶液为试验样品, 没有验证溶液中羟丙 基 -β-环糊精 /依达拉奉是否存在有效包合作用、 能否形成稳定的包合物, 也没有制得方便使 用、 容易携带的固体包合物, 其溶液中需要加入多种助剂才具一定的口服吸收, 因此, 其羟 丙基 -β-环糊精的使用没有取得具有实际应用价值的效果。
发明内容
本发明的目的是提供一种 β-环糊精包合依达拉奉的口服药物组合物, 是一种口服有效的 依达拉奉产品, 是采用环糊精的中性水溶液包合依达拉奉, 制备稳定性强、 药剂学性能良好 的固体包合物,无需添加其他吸收促进剂或助剂,该类制剂具有口服有效、方便使用的特点。 是一种更加方便有效的依达拉奉新的临床应用。 本发明还将提供这种口服药物组合物的制备 方法。
本发明的技术方案是: 一种 β-环糊精包合依达拉奉的口服药物组合物, 其特征在于, 该 组合物的质量比组成为,
依达拉奉 1份
环糊精 6〜: 100份
以上所述的环糊精可以是: β-环糊精(β-CD)、或 β-环糊精与羟丙基 -β-环糊精(ΗΡ-β-CD) 或磺丁基 -β-环糊精(SBE-p-CD)、或 β-环糊精与羟丙基 -β-环糊精和磺丁基 -β-环糊精任意比的 混合环糊精。
以上所述的药物组合物的优化方案是: 依达拉奉与环糊精的质量比为: 1: 6〜50, 其中 采用 β-环糊精所用的质量比为 1: 6〜20, 采用混合环糊精的质量比为 1: 8〜50。
以上所述的药物组合物的最优方案是: 依达拉奉与环糊精的质量比为: 1: 8〜25.0, 其 中采用 β-环糊精所用的质量比为 1: 8, β-环糊精 /羟丙基 -β-环糊精混合环糊精的质量比为 1: 10, β-环糊精 /磺丁基 -β-环糊精混合环糊精的质量比为 1: 25。
上述组合物的进一步限定, 所述的口服依达拉奉药物组合物是按以下方法之一制备得到 的组合物:
方法 1:
将 β-环糊精, 或混合环糊精加 1〜5倍质量的水混合, 再加入选定质量比的依达拉奉, 充分研磨或搅拌 1〜2小时, 然后, 在不高于 60 °C温度下蒸除水份, 再减压干燥得到白色粉 状包合物。
其进一步的优化方案是: 将 β·环糊精, 或混合环糊精与 1〜4倍质量的水混合制成溶液 或悬浊液, 搅拌下缓慢加入选定质量比的依达拉奉, 充分研磨或搅拌 1小时, 然后, 于 50°C 温度下蒸除水份, 再室温减压干燥得到白色粉状包合物。
方法 2 :
将 β-环糊精, 或混合环糊精加 1〜5倍质量的水混合, 再加入选定质量比的依达拉奉与 10倍可溶性有机溶剂 (乙醇、 丙酮) 配制的溶液, 充分研磨或搅拌 1〜2小时, 然后, 在不 高于 60 °C温度下蒸除有机溶剂和水份, 再减压干燥得到白色粉状包合物。
其进一步的优化方案是: 将 β-环糊精, 或混合环糊精与 1〜4倍质量的水混合制成溶液 或悬浊液,搅拌下缓慢加入选定质量比的依达拉奉与 10倍乙醇配制的溶液,充分研磨或搅拌 1小时, 然后, 于 50 °C温度下蒸除乙醇和水份, 再室温减压干燥得到白色粉状包合物。
上述组合物的制备过程中所使用的水, 依据原料的酸碱性偏差即可是中性 (pH = 7 ) 的 纯水, 也可使用 0.05〜0.1mol i浓度的缓冲盐稀溶液。 其缓冲盐为常用的 NH4Ac 或 H3P04-NaOH , 配制成为 pH范围 6.:!〜 7.9的缓冲溶液使用。
固体包合物配伍常用药用辅料制备成可口服的剂型如片剂、 胶囊、 颗粒剂或分散片等制 剂。 上述固体包合物制成固体制剂, 需要添加的辅料可以从以下物质中选用: β-环糊精、 微 晶纤维素、 淀粉、 柠檬酸、 滑石粉、 羧甲淀粉钠、 硬脂酸、 预胶化淀粉、 乳糖、 甘露醇、 交 联聚维酮、 滑石粉、 PEG4000 (聚乙二醇 4000)、 低取代羟丙纤维素、 微粉硅胶、 羧甲淀粉 钠、 PEG6000 (聚乙二醇 6000)。
本发明的固体包合物及其制备是技术关键。与市售依达拉奉注射剂对比试验, 其包合物 制剂的绝对生物利用度可达 55Q/0以上, 与依达拉奉普通悬液制剂比较(附图 6), 其相对生物 利用度高达约 lOOOQ/o ( 10倍)。 非包合技术制备的依达拉奉制剂即使有较好溶解性, 也难以 达到本发明的技术效果。
以下说明本发明技术特点。
包合可行性: 依达拉奉易溶于乙醇而水中溶解度不高 (2.623 mg.ml-i)。 水溶液中, 依达 拉奉在 230nm-260nm紫外区间有较强吸收, 加入自身无紫外吸收的各种环糊精后, 药物吸 光度随环糊精浓度的增加呈现规律性增强, 表明水溶液中, 环糊精与依达拉奉存在明显的包 合作用。 通过环糊精浓度与药物吸光度的变化, 可以测得表观包合常数, 结果见表 1 (测定 条件: pH = 4.52或 pH = 6.86的 0.1 mol'L-i憐酸缓冲液, 240nm)。 表 1: 依达拉奉的表观包合常数 Ka〔240 nm, 15 ± 5°C〕 环糊精
pH 4.52 pH 6.86
β-环糊精 150.7 639.1 羟丙基 -β-环糊精 247.8 1331.3 磺丁基 -β-环糊精 509.6 2346.6 试验表明, 环糊精包合依达拉奉效果与介质的酸度有关, 中性水溶液中有较大的表观包 合常数, 各种环糊精均能与依达拉奉形成稳定的包合物, 这对提高依达拉奉的稳定性、 改善 依达拉奉的药剂学性质十分有利。 酸性条件下(ρΗ = 4.52 ), 依达拉奉易质子化, 分子极性增 强, 导致包合能力下降 (Ka 降低明显), 因此, 不利于产生稳定的包合物。
以相溶解度法考察环糊精对依达拉奉溶解度的影响,结果表明,饱和 β-环糊精使依达拉 奉溶解度增加 1.4倍; 10<½〜20<½羟丙基 -β-环糊精溶液增加 2.8〜7.2倍; 10<½〜30<½磺丁基 -β- 环糊精溶液增加 3.3〜: 11.8倍。 混合环糊精可使依达拉奉溶解度增加 2倍以上, 优于单一 β- 环糊精, 但随 β-环糊精含量减少, 成本也迅速增加。
研究依达拉奉核磁共振谱1 HNMR, 发现强极性的溶剂水中 (附图 2 ), 依达拉奉无 =CH- 特征峰, 表明水中依达拉奉不以 a构型存在; 与有机溶剂氯仿中的核磁共振谱 (附图 3) 也 具有显著差异而无 -CH2- 特征峰, 其芳香质子在水中形成难分辨的多重峰 ( δ= 7.26〜7.47), 同时甲基分裂为强弱不等的两个单峰(附图 2 );其 "CNMR谱即无 -CH2- (δ=42.81 )也无 C=0 (δ=170.26) 的特征峰, 表明水中依达拉奉的构型即不同于 a也不同于 b, 水溶液中依达拉 奉以一新的 (烯醇式) 构型存在, 该构型目前尚未见文献报道。 测定依达拉奉的系列环糊精包合物核磁共振谱 (WNMR), 发现水溶液中包合前后依达 拉奉 iHNMR谱出现显著差异, β-环糊精包合物的 iHNMR谱见附图 4: 包合后的依达拉奉芳 香质子多重峰 (δ= 7.26〜7.47) 产生分裂, 除保留水溶剂中的构型峰外还形成与氯仿溶剂中 依达拉奉1 HNMR谱相似的 S7.67〔dd, 2H〕、 7.42〔 dd, 2H〕和 7.26〔 m, 1H〕 的三组独立峰, 其 甲基质子出现二个单峰且发生低场位移(由 δ= 2.14-2.07移至 δ= 2.15-2.11), 说明包合物 含有构型 b及水溶剂中原有的新构型; 包合物中 β-环糊精的环内 3-Η和 5-Η质子皆出现高场 位移, 说明水溶液中依达拉奉与 β-环糊精包合完全, 且包合物具有芳香结构进入环糊精空腔 深层 (5-Η 质子位移) 的稳定结构。 芳香质子峰的分裂及与甲基峰位移的变化关系说明, 包 合物同时存在苯环先进入和杂环先进入的两种结构, 其中杂环先进入的结构中依达拉奉具有 构型 b的特征,其甲基深入环糊精内,屏蔽效应明显而有较大的低场位移 (δ=2.07至 δ=2.11 ), 苯环质子发生分裂, 成为三组峰; 而苯环先进入的结构保持了水中原有构型, 深入环糊精内 的苯环质子低场位移明显 (δ= 7.39〜7.37 δ= 7.43〜7.42), 而甲基处于环糊精外缘受到较 少屏蔽, 因此, 出现较小的低场位移 (δ=2.14至 δ=2.15); 甲基峰的二个单峰分别为水中构 型保持的甲基和包合后构型转化的 (构型 b) 甲基, 其面积积分比即为两种构型的比例, 其 中 β-环糊精包合物中构型 b含量达 38。/ο(羟丙基 -β-环糊精和磺丁基 -β-环糊精包合物的构型 b 含量分别为 44Q/Q 和 37<½ )。 酸性条件下 (pH = 4.5)制备的依达拉奉 "包合物", 其 WNMR 谱则与水中依达拉奉相似, 基本保持了水中的构型。 中性条件制备的包合物中构型 b的存在 说明该条件下, 环糊精不仅能够有效包合依达拉奉, 同时还提供了类似有机溶剂的环境, 使 依达拉奉产生弱极性的构型, 其构型 b的存在可能是环糊精大幅提高依达拉奉生物利用度的 重要原因。
以差示热分析对比试验进行验证, 结果表明, 采用本发明制备方法能够制得各种环糊精 的依达拉奉包合物, 其中仅以 β-环糊精包合物为例的测定结果见附图 5。
样品稳定性试验
将系列依达拉奉 /环糊精包合物(包合比: β-CD 为 1: 8、 ΗΡ-β-CD 为 1: 15、 SBE-p-CD 为 1: 22 ) 与依达拉奉原料分别置于 40°C热和 4500±500 LX光下进行十天稳定性实验。 分 别于第 5和 10天取样, HPLC含量检测。 相对含量 (以 0天 100Q/Q 计) 检测结果见表 2。 表 2: 样品中依达拉奉相对百分含量〔 ± s〕
〔4500± 500〕lx 40 °C
环糊精
5 d 10 d 5 d 10 d
0 95.2 ± 0.46 93.9 ± 0.40 96.6 ± 0.94 94.8 ± 0.30 β-CD * 97.5 ± 0.33 95.4 ± 0.27 97.9 ± 0.24 95.2 ± 0.18 β-CD 98.8 ± 0.21 96.6 ± 0.25 99.2 ± 0.26 97.5 ± 0.06
ΗΡ-β-CD 98.5 ± 0.31 97.9 ± 0.40 98.2 ± 0.21 98.0 ± 0.26
SBE-p-CD 97.9 ± 0.20 97.5 ± 0.15 98.7 ± 0.06 98.9 ± 0.21
: 采用 pH = 4.5 水溶液制备, 其他皆为 pH = 6.86 制备
HPLC条件: ODS-C18色谱柱〔5μηι, 250 mm χ 4.6 mm ); 甲醇: pH=3.5磷酸二氢钾溶 液 (O.OSmol-L1) =50 50流动相; l.Oml'm-1流速; 25°C柱温; 检测波长: 240 测定 时间: 17min
表 2显示, 光、 热条件下非包合的依达拉奉原料药含量下降明显 (均不足 95Q/0); 而包 合物中依达拉奉含量相对稳定。说明,环糊精包合使依达拉奉的稳定性得到明显提高。另外, 对比不同 pH 条件制备的包合物, 中性水条件不仅有利于环糊精包合依达拉奉, 制备的包合 物稳定性也明显得到增强; 而酸性条件制备的包合物依达拉奉稳定性较差。 生物利用度试验:
1、 受试药物: 依达拉奉 /环糊精包合物 (包合比同上)、 依达拉奉 CMC-Na悬液、 依达拉奉吐 温 -80 (10%) 溶液及注射剂"必存" (市售), 共六个供试样品。
2、动物实验: 试验动物 SD大鼠分为六组, 按照"化学药物非临床药代动力学研究技术指导原 则 (【H】 GPT5-1) "的要求设计方案开展试验, HPLC法测定血药浓度, 结果分别见表 3和附 图 6
表 3: 实验样品的药代动力学
Edaravone cyclodextrin Complex (po.)
Parameter
(iv.)
0 β-CD ΗΡ-β-CD SBE-p-CD
C μg/mL 280.8 ±24.5 3.53 ±0.53 27.9 ± 3.13* 21.6 ±4.16* 21.4 ±3.83*
T h 0.0333±0 0.50 ±0.14 0.5 ±0.01 0.42 ± 0.14 0.25 ±0.01
AUCo-8h 109.07 ± 103.37 ±
183.0±15.3 10.56 ± 1.9 119.4±41.3*
/mL-h) 19.8* 17.4*
Ke h-i 3.74±0.543 0.56 ±0.22 0.29 ±0.05 0.23 ± 0.07 0.24 ± 0.07
0.187±0.02
Tl/2 1.41 ±0.71 2.42 ± 0.45 3.24 ± 0.90 3.08 ±0.86
5
* 与依达拉奉普通制剂 (0) 有显著差异, P<0.05. 试验结果显示, 依达拉奉普通制剂中, CMC-Na悬液口服生物利用度最低 (AUCo-8h10.56 ± 1.9 Ιθο/ο吐温 -80溶液生物利用度有所提高 (AUC0-8h57.41 ±36.7), 证明溶解状态的依达 拉奉具有一定的口服吸收效果 (绝对生物利用度约 3 /Q), 但溶液状态依达拉奉易分解、 稳 定性差, 助剂副作用强, 而且制剂不易保存、 使用携带不便, 产业化难度高; 环糊精 /依达拉 奉包合物口服效果良好, 与注射对比其生物利用度 550/0以上, 与依达拉奉普通制剂(CMC-Na 悬液和 Ιθο/ο吐温 -80溶液制剂) 比较的相对生物利用度分别为 9.8 11倍和 1.8 2.1倍, 各 种环糊精包合物的口服效果相对接近, 差异较小, 显示依达拉奉生物利用度提高不仅与溶解 度增加有关, 而且更与环糊精包合特性关系密切, 显示环糊精包合物具备良好的临床应用前 本发明的优点:
1. 依达拉奉包合物口服有效, 且有较高生物利用度, 为患者提供了新的更为方便的给药途径 和方法。
2. 本发明制备的依达拉奉包合完全, 杂质含量及溶剂残留量低, 并且无抗氧剂、 吸收促进剂 及其他复杂助剂, 确保了产品质量和用药安全性。
3. 固体包合物性质稳定, 易于保存运输, 药剂学性质良好, 适宜用于各种口服剂型, 使用携 带皆方便。
4. 制备方法简单、 操作简便、 成本低且无环境污染。
附图说明
图 1: 不同溶剂条件下的依达拉奉的 a和 b构型;
图 2: 依达拉奉在溶剂水中的核磁共振谱: iH-NMR O^O ) : δ7.47-7.26〔m, 5H〕; 3.58 ( s, 2H, -CH2-〕; 2.14-2.08 ( ss, 3H, CH3
图 3: 依达拉奉在氯仿溶剂中的核磁共振谱: iH-NMR (CDC ): 67.83-7.81 〔 dd, 2H〕; 7.37-7.33 ( dd, 2H〕; 7.16-7.12 ( dd, 1H〕; 3.39 ( s, 2H, -CH2-〕; 2.16 ( s, 3H, CH3 )
图 4 β-环糊精 /依达拉奉包合物(质量比 8: 1, 摩尔比 1.2 : 1 )的核磁共振谱: iH-NMR ( D20, 依达拉奉部分相关峰) : 67.67〔 dd, 2H〕; 7.43〔 m, 5H〕; 7.42( dd, 2H〕; 7.26〔 m, 1H〕; 2.15-2.11〔ss, 3H, CH3
图 5 依达拉奉 (a)、 依达拉奉与 β-环糊精物理混合物 (b)、 β-环糊精 (c )、 β-环糊精 包合物 (d) 的 DTA图对比。
图 6 依达拉奉 CMC-Na悬液制剂与三种环糊精包合物制剂的动物药物代谢试验药时曲 线图。
具体实施方式
实施例 1, β-环糊精 80克与 400毫升纯水混合, 使成混悬液(ρΗ = 6.9), 加入 10克粉 末状依达拉奉, 混合、 充分研磨搅拌 1个小时, 于 50°C下减压除水, 然后再于室温减压干燥 过夜, 得约 90克白色固体包合物。
实施例 2, 与实施例 1基本相同, 但是采用 10克 β-环糊精加 240克磺丁基 -β-环糊精与 400毫升 ρΗ = 6.1的 O.lmol*! 1 NH4Ac缓冲液混合, 制得约 260克白色固体包合物。
实施例 3, 与实施例 1基本相同, 但是采用 10克 β-环糊精加 90克羟丙基 -β-环糊精与 400毫升 pH = 7.5的 0.05ηιο1·1 ΐ磷酸缓冲液混合, 制得约 110克白色固体包合物。
实施例 4, 与实施例 1基本相同, 但是采用 70克 β-环糊精和 10克羟丙基 -β-环糊精的 混合环糊精与 400毫升 pH = 7.9的 O.lmol i磷酸缓冲液混合, 制得约 90克白色固体包合 物。
实施例 5, 与实施例 1基本相同, 但是采用 70克 β-环糊精和 10克磺丁基 -β-环糊精的 混合环糊精, 制得约 90克白色固体包合物。
实施例 6, 与实施例 1基本相同, 但是采用 100克 β-环糊精、 20克羟丙基 -β-环糊精和 20克磺丁基 -β-环糊精的混合环糊精, 制得约 150克白色固体包合物。
实施例 7, 与实施例 1基本相同, 但是采用 90克 β-环糊精、 5克羟丙基 -β-环糊精和 5 克磺丁基 -β-环糊精的混合环糊精, 制得约 110克白色固体包合物。
实施例 8, 与实施例 1基本相同, 但是采用 30克 β-环糊精和 30克羟丙基 -β-环糊精及 30克磺丁基 -β-环糊精的混合环糊精, 制得约 100克白色固体包合物。
实施例 9, 与实施例 1基本相同, 但是采用 80毫升 pH = 7.1的 0.05mol*l i磷酸缓冲液 混合, 制得约 90克白色固体包合物。
实施例 10, 与实施例 1基本相同, 但是采用 150毫升纯水, 制得约 90克白色固体包合 物。
实施例 11, 与实施例 1基本相同, 但是采用 200毫升纯水, 制得约 90克白色固体包合 物。
实施例 12, 与实施例 1基本相同, 但是采用 60克 β-环糊精和 60毫升纯水, 制得约 70 克白色固体包合物。
实施例 13, 与实施例 1基本相同, 但是采用 160克 β-环糊精和 150毫升纯水, 制得约 170克白色固体包合物。
实施例 14, 与实施例 1基本相同, 但是采用 500克 β-环糊精和 700毫升纯水, 制得约 510克白色固体包合物。
实施例 15, 与实施例 1基本相同, 但是采用 1000克 β-环糊精和 1000毫升纯水, 制得 约 1100克白色固体包合物。
实施例 16, 与实施例 1基本相同, 但是采用 79克 β-环糊精和 1克羟丙基 -β-环糊精和 100毫升纯水, 制得约 90克白色固体包合物。
实施例 17, 与实施例 1基本相同, 但是采用 250克 β-环糊精和 10克羟丙基 -β-环糊精 和 260毫升纯水, 制得约 270克白色固体包合物。 实施例 18, 与实施例 1基本相同, 但是采用 110克 β-环糊精和 10克磺丁基 -β-环糊精 和 150毫升纯水, 制得约 130克白色固体包合物。
实施例 19, 与实施例 1基本相同, 但是采用 490克 β-环糊精和 10克磺丁基 -β-环糊精 和 750毫升纯水, 制得约 510克白色固体包合物。
实施例 20,以 100毫升乙醇溶解 10克依达拉奉配制成溶液备用。 β-环糊精 75克与 400 毫升纯水混合, 使成混悬液 (pH = 7.5 ); 搅拌下缓慢加入乙醇溶解的依达拉奉溶液, 充分研 磨或搅拌 1.5小时, 于 50°C温度下蒸除乙醇和水份, 再于室温下减压干燥制得约 85克白色 固体包合物。
实施例 21, 与实施例 20基本相同, 但是采用丙酮溶解依达拉奉, 制得约 85克白色固 体包合物。
实施例 22, 取实施例 1制备的包合物 90.0克, 过 100目筛备用, 称取微晶纤维素 72.0 克、 淀粉 20.0克、 羧甲淀粉钠 16.0克、 硬脂酸镁 2.0克混合, 过 60目筛充分混合, 混匀后 取 2/3量药用辅料与固体包合物混合, 过 80目筛, 然后用 700/0乙醇润湿制软材, 过 14目筛 制粒, 50°C干燥、 整粒后加入另外 1/3量药用辅料, 充分混匀后测定依达拉奉含量, 按照剂 量要求压片制得依达拉奉包合片。
实施例 23, 取实施例 4制备的包合物 90.0克, 与 32.0克 PEG4000、 26.0克羧甲淀粉 钠混合, 过 80 目筛充分混匀, 再与 lOQ/o羟丙纤维素乙醇溶液 15毫升于混合机中充分混合, 50°C干燥 2小时, 过筛制成粒度 250微米粉末, 测定依达拉奉含量, 按照剂量要求装入空胶 囊中即制得依达拉奉胶囊剂。
实施例 24, 取实施例 9制备的包合物 90.0克, 与预胶化淀粉 30克、 乳糖 30克、 甘露 醇 30克及羧甲淀粉钠 20克混合, 过 80目筛充分混匀, 再与 700/0乙醇制软材, 用颗粒机 14 目筛制成颗粒, 测定依达拉奉含量, 按照剂量要求分装即制得依达拉奉颗粒剂。
实施例 25,取实施例 8制备的包合物 90.0克,与羧甲淀粉钠 8克、微晶纤维素 fMCq 80 克、 甘露醇 12克、 微粉硅胶 10克混合, 湿法制粒 50°C干燥 2小时, 测定含量, 按照剂量要 求压制得依达拉奉分散片。

Claims

权 利 要 求
1. 一种 β-环糊精包合依达拉奉的口服药物组合物, 其特征在于, 该组合物的质量比组成为, 依达拉奉 1份
环糊精 6〜100份。
2. 根据权利要求 1所述的 β-环糊精包合依达拉奉的口服药物组合物,其特征在于,所述的环 糊精选自: β-环糊精、 或 β-环糊精与羟丙基 -β-环糊精或磺丁基 -β-环糊精任意比的含有 β- 环糊精的混合环糊精、 或 β -环糊精与羟丙基- β -环糊精和磺丁基- β -环糊精任意比的含有 β - 环糊精的混合环糊精。
3. 根据权利要求 1所述的 β-环糊精包合依达拉奉的口服药物组合物,其特征在于,所述的药 物组合物的质量比组成为是: 依达拉奉与环糊精的质量比为: 1: 6〜50。
4. 根据权利要求 3所述的 β-环糊精包合依达拉奉的口服药物组合物,其特征在于,其中单独 采用 β-环糊精时, 依达拉奉与 β-环糊精的质量比为 1: 6〜20, 采用含有 β-环糊精的混合环 糊精时, 依达拉奉与含有 β-环糊精的混混合环糊精的质量比为 1: 8〜50。
5. 根据权利要求 1所述的 β-环糊精包合依达拉奉的口服药物组合物,其特征在于,所述的药 物组合物的质量比为是:依达拉奉与环糊精的质量比为: 1: 8〜25.0,其中采用 β-环糊精时, 依达拉奉与 β-环糊精的质量比为 1: 8; 依达拉奉与 β-环糊精与羟丙基 -β-环糊精的混合环糊 精的质量比为 1: 10, 依达拉奉与 β-环糊精与磺丁基 -β-环糊精的混合环糊精的质量比为 1: 25。
6. 根据权利要求 1-5之一所述的 β-环糊精包合依达拉奉的口服药物组合物, 其特征在于, 所 述的口服药物组合物是按以下方法之一制备得到的组合物:
将 β -环糊精、或 β -环糊精与羟丙基- β -环糊精或磺丁基- β -环糊精任意比的含有 β -环糊精的 混合环糊精、或 β -环糊精与羟丙基- β -环糊精和磺丁基- β -环糊精任意比的混合环糊精加 1〜 5倍质量的水混合, 再加入选定质量比的依达拉奉, 或加入依达拉奉与 10倍可溶性有机溶剂 配制的溶液, 充分研磨或搅拌 1〜2小时, 然后, 在不高于 60°C温度下蒸除水份, 再减压干 燥得到白色粉状包合物。
7. 权利要求 1所述的 β-环糊精包合依达拉奉的口服药物组合物的制备方法,其特征在于,步 骤如下:
将 β-环糊精、 或 β-环糊精与羟丙基 -β-环糊精或磺丁基 -β-环糊精任意比的混合环糊精、 或 β -环糊精与羟丙基- β -环糊精和磺丁基- β -环糊精任意比的混合环糊精, 加 1〜5倍质量的水 混合, 再加入选定质量比的依达拉奉, 或加入依达拉奉与 10倍可溶性有机溶剂配制的溶液, 充分研磨或搅拌 1〜2小时, 然后, 在不高于 60°C温度下蒸除水份, 再减压干燥得到白色粉 状包合物。
8. 根据权利要求 7所述的 β -环糊精包合依达拉奉的口服药物组合物的制备方法,其特征在于, 各步骤的具体操作方法是: 将 β -环糊精、 或 β -环糊精与羟丙基 - β -环糊精或磺丁基 - β -环糊 精任意比的混合环糊精、 或 β -环糊精与羟丙基- β -环糊精和磺丁基- β -环糊精任意比的混合 环糊精与 1〜4倍质量的水混合制成溶液或悬浊液, 搅拌下缓慢加入选定质量比的依达拉奉, 充分研磨或搅拌 1小时, 然后, 于 50°C温度下蒸除水份, 再室温减压干燥得到白色粉状包合 物。
9. 根据权利要求 7或 8所述的 β -环糊精包合依达拉奉的口服药物组合物的制备方法,其特征 在于, 所述的可溶性有机溶剂选自: 乙醇或丙酮。
10. 根据权利要求 7或 8所述的 β -环糊精包合依达拉奉的口服药物组合物的制备方法, 其特 征在于, 制备过程中所使用的水, 是指 ΡΗ = 7中性的纯水, 或 O.OS O.lmo L-1浓度的缓冲 盐稀溶液, 所述的缓冲盐溶液为 NH4Ac或 H3P04-NaOH, 配制成为 pH范围 6.1〜7.9的缓冲 溶液。
PCT/CN2010/077574 2010-08-10 2010-10-06 β-环糊精包合依达拉奉的口服药物组合物及其制备方法 WO2012019381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102500225A CN101953832B (zh) 2010-08-10 2010-08-10 β-环糊精包合依达拉奉的口服药物组合物及其制备方法
CN201010250022.5 2010-08-10

Publications (1)

Publication Number Publication Date
WO2012019381A1 true WO2012019381A1 (zh) 2012-02-16

Family

ID=43481591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/077574 WO2012019381A1 (zh) 2010-08-10 2010-10-06 β-环糊精包合依达拉奉的口服药物组合物及其制备方法

Country Status (2)

Country Link
CN (1) CN101953832B (zh)
WO (1) WO2012019381A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133957A1 (en) 2017-01-17 2018-07-26 Treeway Tw001 B.V. Medical treatment comprising enteral administration of edaravone
WO2018134243A1 (en) 2017-01-17 2018-07-26 Treeway Tw001 B.V. Treatment comprising oral or gastric administration of edaravone

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101953832B (zh) * 2010-08-10 2012-02-15 南京师范大学 β-环糊精包合依达拉奉的口服药物组合物及其制备方法
CN103191436B (zh) * 2013-04-19 2014-10-22 江南大学 一种复合环糊精提高制霉菌素溶解度的方法
CN103351342B (zh) * 2013-07-03 2015-08-05 浙江中医药大学 一种依达拉奉药物共晶及其制备方法
CN103845736B (zh) * 2014-04-01 2016-05-25 扬州大学 海藻酸酯胶束包载阿霉素的快速释放方法
CN105816423B (zh) * 2016-03-16 2018-07-20 福建天泰医药科技有限公司 依达拉奉剂型
CN110381923A (zh) * 2017-01-17 2019-10-25 萃微Tw001公司 包括肠内施用依达拉奉的医学治疗
EP3648760A1 (en) 2017-07-06 2020-05-13 Treeway TW001 B.V. Use of edaravone in oral treatment of oxidative-stress mediated neurodegenerative disorders
CN109431966B (zh) * 2018-04-27 2020-09-22 首都医科大学附属北京天坛医院 依达拉奉药物组合物
CN114099499A (zh) * 2020-08-26 2022-03-01 上海博志研新药物技术有限公司 依达拉奉口服持续释放组合物、制备方法及应用
CN113125608B (zh) * 2021-04-21 2023-08-29 扬子江药业集团上海海尼药业有限公司 一种依达拉奉氯化钠注射液的杂质检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052172A (ja) * 2004-08-12 2006-02-23 Mikasa Seiyaku Co Ltd ピラゾロン系製剤
US20080104001A1 (en) * 2006-10-27 2008-05-01 Kipp James E Algorithm for estimation of binding equlibria in inclusion complexation, host compounds identified thereby and compositions of host compound and pharmaceutical
CN101953832A (zh) * 2010-08-10 2011-01-26 南京师范大学 β-环糊精包合依达拉奉的口服药物组合物及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440749A (zh) * 2003-03-24 2003-09-10 南昌弘益科技有限公司 易达拉封注射剂及其制备工艺——治疗急性脑梗塞

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052172A (ja) * 2004-08-12 2006-02-23 Mikasa Seiyaku Co Ltd ピラゾロン系製剤
US20080104001A1 (en) * 2006-10-27 2008-05-01 Kipp James E Algorithm for estimation of binding equlibria in inclusion complexation, host compounds identified thereby and compositions of host compound and pharmaceutical
CN101953832A (zh) * 2010-08-10 2011-01-26 南京师范大学 β-环糊精包合依达拉奉的口服药物组合物及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIAKI SATO ET AL.: "A novel administration route for edaravone: I. Effects of metabolic inhibitors on skin permeability of edaravone", INTERNATIONAL JOURNAL OF PHARMACEUTICS, 4 January 2009 (2009-01-04), pages 33 - 38, ISSN: 0378-5173, Retrieved from the Internet <URL:http://www.sciencedirect.com.> *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018133957A1 (en) 2017-01-17 2018-07-26 Treeway Tw001 B.V. Medical treatment comprising enteral administration of edaravone
WO2018134243A1 (en) 2017-01-17 2018-07-26 Treeway Tw001 B.V. Treatment comprising oral or gastric administration of edaravone
KR20190111929A (ko) * 2017-01-17 2019-10-02 트리웨이 티더블유001 비.브이. 에다라본의 경구 또는 위 투여를 포함하는 치료
EP3785703A1 (en) 2017-01-17 2021-03-03 Treeway TW001 B.V. Treatment comprising oral or gastric administration of edaravone
US10966960B2 (en) 2017-01-17 2021-04-06 Treeway Tw001 B.V. Medical treatment comprising enteral administration of edaravone
KR102550376B1 (ko) 2017-01-17 2023-07-04 트리웨이 티더블유001 비.브이. 에다라본의 경구 또는 위 투여를 포함하는 치료

Also Published As

Publication number Publication date
CN101953832A (zh) 2011-01-26
CN101953832B (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2012019381A1 (zh) β-环糊精包合依达拉奉的口服药物组合物及其制备方法
Tiwari et al. Cyclodextrins in delivery systems: Applications
CA2595606C (en) Oral formulations for delivery of catecholic butanes including ndga compounds
KR101290626B1 (ko) 보리코나졸이 포함된 약물 제제 및 그 제조 방법
JP2019510059A (ja) パルボシクリブの医薬製剤およびその調製方法
Wang et al. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide
JP2008280352A (ja) 溶解性または経口吸収性の改善された組成物
CN102811718A (zh) 提高普拉格雷溶出度的药物组合物及其制备方法
JPH0370705B2 (zh)
WO2008031286A1 (fr) Composition pharmaceutique contenant une inclusion de cyclodextrine/paclitaxel et procédé de fabrication
CN101683322B (zh) 超临界二氧化碳法制备纳米盐酸小檗碱脂质体的方法
Jablan et al. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state
CN102406622A (zh) 一种托伐普坦的固体制剂
CN105796567B (zh) 新利司他固体分散体及其药物制剂
CN101020060A (zh) 恩替卡韦的环糊精包合物及其制备方法和药物应用
CN107638571B (zh) 一种特考韦瑞口服药物组合物及其制备方法
CN116350592A (zh) 一种司替戊醇纳米晶及其制备方法与应用
Goyal et al. Complexation approach for fixed dose tablet formulation of lopinavir and ritonavir: an anomalous relationship between stability constant, dissolution rate and saturation solubility
CN103222964B (zh) 一种奥利司他口服制剂及其制备方法
CN109276543A (zh) 一种西格列他固体分散体及其制备方法和应用
CN109925314B (zh) 一种盐酸雷洛昔芬磷脂复合物固体分散体及其制备
CN102309767A (zh) 可溶性蛇床子素包合物、分散片及其制备方法
CN103405782A (zh) 一种含塞来昔布的包合物及其制备方法
EP3395346B1 (en) Oral preparation and preparation method therefor
WO2004089338A1 (fr) Clathrate a base d&#39;arbidol, son procede de preparation et son utilisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10855802

Country of ref document: EP

Kind code of ref document: A1