WO2012017937A1 - 電力需給平準化システム - Google Patents

電力需給平準化システム Download PDF

Info

Publication number
WO2012017937A1
WO2012017937A1 PCT/JP2011/067416 JP2011067416W WO2012017937A1 WO 2012017937 A1 WO2012017937 A1 WO 2012017937A1 JP 2011067416 W JP2011067416 W JP 2011067416W WO 2012017937 A1 WO2012017937 A1 WO 2012017937A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
battery
demand
capacity
charge
Prior art date
Application number
PCT/JP2011/067416
Other languages
English (en)
French (fr)
Inventor
百瀬 信夫
誠 片庭
中井 康博
宏之 熊澤
達司 撫中
岡崎 佳尚
雄一郎 志村
田中 宏
寛 入江
仁 前島
Original Assignee
三菱自動車工業株式会社
三菱商事株式会社
三菱電機株式会社
株式会社三菱総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社, 三菱商事株式会社, 三菱電機株式会社, 株式会社三菱総合研究所 filed Critical 三菱自動車工業株式会社
Priority to JP2012527710A priority Critical patent/JP5562423B2/ja
Priority to US13/814,154 priority patent/US9340117B2/en
Priority to EP11814563.0A priority patent/EP2602901B1/en
Priority to CN201180038685.3A priority patent/CN103190052B/zh
Publication of WO2012017937A1 publication Critical patent/WO2012017937A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/51Photovoltaic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/52Wind-driven generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/68Off-site monitoring or control, e.g. remote control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/70Interactions with external data bases, e.g. traffic centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention supplies electric power from an electric power company such as an electric power company to each electric power consumer such as a plant, a business place or a home through a distribution line, and manages electric power supply and demand based on electric power supply and demand information from the electric power company.
  • the present invention relates to a power supply and demand leveling system that charges and discharges a battery of an electric vehicle parked at each power demander by charge and discharge commands output from the center to each power demander, thereby leveling the power supply and demand.
  • the electric power company is not limited to the electric power company as a utility company, but also to ISO (Independent System Operator) and TSO (Transmission). System Operator), Independent Electricity System (IESO) Also includes system operators such as Operator).
  • the electric power supply and demand leveling system described in the patent document 1 has the battery capacity of an electric vehicle used for commuting to a business place that is a power demander while being parked in the daytime, which is the peak of the electric power demand. It focuses on the fact that there is room to use. Therefore, the system releases the power stored in the battery of the electric vehicle at the peak of the power demand to compensate for the power shortage in the business site, while charging the battery at the non-peak demand of the power demand to peak the next power demand At the same time, we are trying to reduce electricity rates by leveling the power supply and demand and reducing the contract power of our business establishments.
  • Patent Document 1 aims at leveling of the power supply and demand in the office as is clear from the description of reduction of the contracted power. That is, the technology of Patent Document 1 is different from the so-called smart grid concept, in which each power demander is regarded as an individual grid, and for the purpose of leveling the power supply and demand in the entire power grid constructed by these grids. is there.
  • the smart grid enables bidirectional power transfer between the power utility and each power demander, and the power balance in the power demander can not be completed, for example, the excess power via the power utility Supply to the power demanders of the power supply network, thereby suppressing the imbalance of the power supply and demand among the power demanders, and also suppressing the fluctuation of the power supply and demand of the entire power supplier. Leveling has been achieved. Therefore, even when using the battery capacity of an electric vehicle parked by each power consumer, the usage should be used not only to adjust the power supply and demand to other power consumers, but also to each power consumer. However, as described above, the technology of Patent Document 1 can not be said to effectively use the battery capacity of each electric vehicle because it is limited to the utilization of the battery capacity in the power consumer.
  • the present invention has been made to solve such problems, and the object of the present invention is not only to utilize the battery capacity of an electric vehicle within individual power consumers, but also to power in the entire smart grid.
  • An object of the present invention is to provide a power supply and demand leveling system which can effectively utilize the battery capacity of each electric vehicle for leveling supply and demand.
  • the present invention provides a plurality of power consumers, each of which is supplied with power from a power utility via a distribution line, and in which the electric vehicle is optionally parked and connected to the distribution line.
  • Power supply and demand situation determination means for determining the total power supply and demand situation of the entire power demander based on each input information while inputting the power supply and demand situation of the power demander separately, and for each electric vehicle being parked from each power demander
  • Battery capacity determination means for individually inputting the usable capacity by charging and discharging the mounted battery and determining the usable total capacity of all the batteries based on each input information, and each power demand from the power supply and demand situation determination means Input the individual power supply and demand situation of the consumer and the total power supply and demand situation of the entire power demander, and from the battery capacity determination means, the individual usable capacity of each battery and the total capacity of all the batteries.
  • Charge / discharge command setting means for setting a charge / discharge command for each battery of each electric vehicle and outputting each set charge / discharge command to the corresponding power demander, provided for each power demander, charge / discharge command setting means And charge / discharge control means for performing charge / discharge control of the corresponding batteries based on the charge / discharge command input from the.
  • each has input means for inputting, as usable capacity, a capacity that can be charged / discharged for leveling power supply / demand, and outputs the usable capacity inputted by the input means to the battery capacity determination means,
  • the capacity determination means determines the total usable capacity of all the batteries based on the usable capacity input from each power demander.
  • the battery capacity determination means separately inputs the usable capacity of the battery from each traveling electric car in addition to the electric car parked at each power demander, and additionally, the electric power demand as a destination
  • the estimated time of arrival to the person in charge is separately input
  • the charge / discharge command setting means secures the usable capacity of the battery of the electric vehicle at the estimated time of arrival of the traveling electric vehicle to the electric power consumer. It is preferable to set the charge / discharge command of each battery at present on the premise of this.
  • the individual power supply and demand condition of each power demander and the total power supply and demand situation of the entire power demander and the electric vehicle parked in each power demander Based on the individual usable capacity of each mounted battery and the total usable capacity of all the batteries, a charge / discharge command is set for each battery of each electric vehicle, and each battery is charged / discharged based on these charge / discharge commands. I made it to control.
  • the power consumption is set, not only the battery capacity of the electric vehicle is utilized within the individual power consumers, but also the battery capacity can be utilized by other power consumers, and as a result, the power supply and demand in the entire smart grid
  • the battery capacity of each electric vehicle can be used effectively for leveling.
  • connection of the electric vehicle to the distribution line makes it possible to use the battery for leveling the power supply and demand, and at a plurality of times and at each time
  • the available capacity is input to the input means, and the total usable capacity of all the batteries is determined based on the available capacity for each time of each battery input, whereby each battery is within the usable capacity range.
  • Charge / discharge control can be performed, and as a result, the battery capacity can be used to the maximum extent to leveling of the power supply and demand.
  • the electric consumer can secure the usable capacity of the battery of the electric car. Since the charge and discharge command can be set, charge and discharge control of each battery can be more appropriately performed in order to equalize the power supply and demand.
  • FIG. 1 is an entire configuration diagram showing a power supply and demand leveling system of the present embodiment.
  • the power supply and demand leveling system (equivalent to a so-called smart grid) as a whole is equivalent to a power company 1 such as a power company, a plurality of power consumers 2 such as a home 2a or a factory, and an office 2b (a grid constituting a smart grid) And a power supply and demand management center 3 that manages and balances the power supply and demand in the smart grid.
  • Each electric power demander 2 is connected to the electric power company 1 via the distribution line 4, and the electric power generated by the power plant (not shown) is supplied from the electric power company 1 to each electric power demander 2 via the distribution line 4 Ru.
  • the power consumer 2 is provided with a power generation facility such as a solar panel or a wind power generator, if surplus power that can not be consumed by the power consumer 2 is generated by these power generation facilities, the surplus power is generated.
  • FIG. 2 is a detailed view showing a typical home 2a as an example of a power demander.
  • the power from the electric power company 1 passes through the power line 6 in the home and the power controller 5 (hereinafter abbreviated as PCS), which is an AC-DC bidirectional converter, a television or a refrigerator installed in the home, etc.
  • PCS power controller 5
  • a solar panel 8 is installed on the roof, and the electric power generated by the solar panel 8 is also supplied to the electric load 7 via the PCS 5 and is additionally used.
  • a connection port 9 is provided at a predetermined position of the power consumer 2, for example, at a predetermined position such as a house outer wall in the case of the home 2a, and between the electric vehicle 10 parked by the power consumer 2 via the connection port 9 Power for battery charging and input / output of battery information to be described later are performed.
  • the energy management system 13 (hereinafter referred to as EMS) that manages the power supply and demand in the home are also connected via the signal line 14.
  • a power line 15 and a signal line 16 (in practice, integrated into one outside the vehicle) from the electric vehicle 10 can be arbitrarily connected to the connection port 9, and the power line 15 is a battery in the vehicle.
  • the signal line 16 is connected to the motor 17.
  • the motor control for causing the vehicle to travel, management of the remaining capacity of the battery 17 during traveling, control of the air conditioner, and control of the navigation device provided at the driver's seat are integrated.
  • the ECU 18 electronic control unit
  • the ECU 18 is configured by an input / output device, a storage device (ROM, RAM, etc.) provided for storing a control program, a control map, etc., a central processing unit (CPU), a timer counter and the like.
  • ROM read-only memory
  • RAM random access memory
  • a touch panel display 19 or the like of the navigation device is connected to the input side of the ECU 18, and the driver can arbitrarily input information through the display 19.
  • the EMS 13 of each power demander 2 is connected to the power supply and demand control center 3 described above via a signal line 20 such as a telephone line, for example.
  • the EMS 13 inputs battery information from the ECU 18 of the electric vehicle 10 through the connection port 9 and the PCS 5 and calculates usable capacity (usable capacity) for balancing power supply and demand in the smart grid based on the battery information. Then, the signal is output to the power supply and demand management center 3 through the signal line 20.
  • the capacity required for traveling of the electric vehicle 10 (corresponding to C2 of the second embodiment to be described later)
  • the subtracted value is regarded as usable capacity and is output to the power supply and demand management center 3.
  • the usable capacity of the battery 17 is not limited to the above.
  • the remaining capacity of the battery 17 largely differs according to the traveling condition up to that point, and the remaining capacity is extremely reduced and falls below the lower limit of the usable area.
  • it is necessary to charge immediately to prepare for the next run. Therefore, it differs from the case where it can be used on the discharge side (the side that compensates for the shortage of power supply and demand) and the charge side (the side that consumes the excess of power supply and demand) in the usable area as in the normal battery 17.
  • the electric vehicle 10 in which the remaining capacity of the battery 17 is reduced may use the battery capacity only on the charging side regardless of the usable capacity until the charging is completed.
  • the EMS 13 determines the power demand / supply status supplied from the power provider 1 to the power demander 2 based on the operation status of the PCS 5, and outputs the determination result to the power demand / supply management center 3 via the signal line 20.
  • the power demander 2 is a factory or a business office, it is almost the same as in the case of a home, and the number of parked electric vehicles 10 increases. The only difference is that the reuse battery 22 is provided.
  • the power supply and demand management center 3 can grasp the presence or absence of parking of the electric vehicle 10 at each power demander 2 and the usable capacity of the battery 17 at the time of parking, and the power supply and demand situation of each power demander 2 Can understand Based on the input information, the power supply and demand management center 3 controls each power demander 2 in order to suppress the fluctuation of the power supply and demand fluctuation of the entire power demander 2 (in the smart grid) and the imbalance of the power supply and demand among the power demanders 2.
  • a charge / discharge command is output to the EMS 13 of 2.
  • the EMS 13 of each power consumer 2 causes the PCS 5 to function as an AC-DC converter, and performs charge / discharge control of the battery 17 of the parked electric vehicle 10 to achieve equalization of power supply / demand. Yes (charging and discharging control means). Therefore, the processing procedure for setting the charge / discharge command for each battery 17 based on the power demand / supply status of each power consumer 2 and the usable capacity of the battery 17 of each electric vehicle 10 will be described in detail according to the schematic diagram shown in FIG. .
  • the power demand / supply status according to the excess or deficiency of power is successively determined according to time series by the EMS 13, and the power demand / supply status is input to the power demand / supply status determination unit 3a of the power demand / supply management center 3.
  • Ru the power demand / supply status determination unit 3a
  • the total power demand / supply status of the entire power demander 2 is calculated as the sum of the input power demand / supply status of each power demander 2 (power demand / supply status determination means).
  • the situation is input to the comparison unit 3b.
  • the total power supply / demand situation also fluctuates according to the time series according to the fluctuation of the individual power supply / demand situation, and the shortage and excess of the power supply / demand will occur.
  • the usable capacity of the battery 17 of the electric vehicle 10 parked in each power demander 2 is sequentially determined by the EMS 13, and these usable capacities are respectively input to the battery capacity determination unit 3c of the power supply and demand management center 3. Ru.
  • the usable total capacity of all the batteries 17 is calculated as the sum of the input usable capacities of the respective batteries 17 (battery capacity determination means), and this usable total capacity is stored in the comparison unit 3b. It is input.
  • the total usable capacity obtained by subtracting the capacity necessary for traveling from the total capacity is a constant value according to the specification of the battery 17, the total number of electric vehicles 10 parked by each power consumer 2 fluctuates Thus, the total usable capacity also varies according to time series.
  • comparison section 3b the total power demand / supply status of power demander 2 as a whole and the total usable capacity of all batteries 17 are sequentially compared, and the comparison result is input to charge / discharge command setting section 3d.
  • the total power supply and demand situation represents the excess and deficiency of the electric power supply and demand of the entire power demander 2 in time series, and the usable total capacity is the same as the time series of the total capacity of all batteries 17 usable to suppress the excess and deficiency of electric power supply and demand. Is represented by. Then, if there is a shortage of power supply and demand at that time, the power shortage will be compensated by the discharge of the battery 17, and if the power supply and demand is excessive, the power surplus will be stored by the charging of the battery 17.
  • the amount of charge and discharge of the battery 17 as a whole in order to suppress the fluctuation of the power supply and demand of the entire power demander 2 by comparing the total power supply and demand condition of the whole and the usable total capacity of the entire battery 17 You can guess what is required. For example, the required charge / discharge amounts of all the batteries 17 set from such a viewpoint are input to the charge / discharge command setting unit 3d as the comparison result.
  • the charge / discharge command setting unit 3d receives, as a comparison result from the comparison unit 3b, together with the required charge / discharge amount of all the batteries 17, the individual power demand / supply situation of each power demander 2 and the usable capacity of each battery 17 described above. Be done.
  • the charge / discharge command setting unit 3d sets a charge / discharge command for each battery 17 so as to satisfy the following requirements (charge / discharge command setting means).
  • various evaluation functions are set in advance based on the above requirements 1) to 3), and in the charge / discharge command setting unit 3d, the optimum charge / discharge amount of each battery 17 is the charge / discharge command based on those evaluation functions.
  • Set as The set charge / discharge command is output from the charge / discharge command setting unit 3d to each power demander 2.
  • charge and discharge control of the battery 17 of each electric vehicle 10 in parking is controlled by the EMS 13.
  • the charge and discharge control of each battery 17 as described above for example, when the power supply and demand of the entire power demander 2 is insufficient, the power shortage is compensated by the discharge of each battery 17 and each power supply and demand is excessive.
  • the charging of the battery 17 stores the excess power, and as a result, fluctuation of the power supply and demand in the time series of the entire power demander 2 is suppressed.
  • the usable capacity is different according to the specification of the battery 17 of each electric vehicle 10, when the required charge amount of all the batteries 17 is distributed to each battery 17, the available capacity is smaller than that of the battery 17 having a smaller usable capacity.
  • a larger charge / discharge amount is set as the charge / discharge command for the battery 17 having a large usable capacity, whereby the charge / discharge load of each battery 17 can be equalized.
  • the total power supply and demand condition of the entire power demander 2 is determined based on the individual power supply and demand situation of each power demander 2.
  • the total usable capacity of all batteries 17 is determined based on the individual usable capacity of each power consumer, and based on the comparison result between the total power demand / supply condition of the entire power demander 2 and the total usable capacity of all batteries 17, power consumer 2
  • the required charge and discharge amount of all the batteries 17 necessary to suppress the fluctuation of the overall power supply and demand is determined, and the required charge and discharge amount and the individual power demand and supply conditions of each power demander 2 described above and the individual of each battery 17
  • a charge and discharge command is set for each battery 17 based on the usable capacity, and charge and discharge control of each battery 17 is performed.
  • the charge and discharge command of each battery 17 can be set so that the fluctuation of the power supply and demand in the time series of the power demander 2 as a whole can be suppressed.
  • the charge and discharge command of each battery 17 can be set so as to reduce.
  • charge and discharge commands of each battery 17 based on individual information (power supply and demand condition, usable capacity) of each power demander 2 and information (total power supply and demand condition, usable total capacity) of the entire power demander 2
  • individual information power supply and demand condition, usable capacity
  • information total power supply and demand condition, usable total capacity
  • the power supply and demand leveling system of the present embodiment has the same basic configuration as that described in the first embodiment, and the difference lies in the setting of the usable capacity of each battery 17. That is, in the first embodiment, the battery capacity necessary for traveling the electric vehicle 10 is always secured, and the surplus is made the usable capacity. Therefore, the battery capacity that can be used to level the power supply and demand is so large. It was not.
  • FIG. 4 is a graph showing an input example of the usable capacity of the battery 17 for each time with respect to the electric vehicle 10 parked by a certain power demander 2.
  • the vertical axis in the figure indicates the battery capacity from 0 to the total capacity Cmax, and the horizontal axis in the figure is the time at which the time when the electric vehicle 10 is connected to the connection port 9 of the power consumer 2 It shows.
  • the input of the usable capacity of the battery 17 at each time is performed using the required capacity (total capacity Cmax ⁇ usable capacity) as the battery capacity to be secured as an index.
  • C1 is input to secure the minimum battery capacity before time t1 when there is no plan to use, and battery capacity is gradually increased in the period from time t1 to t2 when there is a possibility of starting to use at the time of schedule change.
  • C2 (determined in consideration of the distance to be traveled, etc.) is input as the battery capacity capable of traveling.
  • the usable capacity is set as a value obtained by subtracting the required capacity C2 for traveling from the total capacity Cmax.
  • the electric vehicle 10 starts to be used before the use start time t2. Large usable capacity is secured.
  • FIG. 4 is only one input example of the usable capacity, and graphs of various characteristics are set according to the operation situation of the electric vehicle 10. Further, in the above-described example, although the usable capacity until the next start of use is input, the present invention is not limited to this. For example, the usable capacity until the next start of use may be input, The available capacity up to one month later may be input based on the operation schedule of the electric vehicle 10 during the one month period.
  • the actual driver's input is performed using, for example, the touch panel display 19 for navigation (input means).
  • a blank graph (only the vertical axis and the horizontal axis) similar to FIG. 4 is displayed on the display 19, and the intersection point between the time when the driver plans to start using the electric vehicle 10 and the required capacity at each time Are sequentially touched to determine t1 and C1 points and t2 and C2 points, and a graph is created by automatically connecting the intersections thereof.
  • the input of the usable capacity for each time is not limited to this example, and for example, the times t1 and t2 and the required capacities C1 and C2 may be key input.
  • the usable capacity for each time set as described above is input from the ECU 18 to the EMS 13 through the connection port 9 and the PCS 5, and is further output from the EMS 13 to the power supply and demand management center 3.
  • the power supply and demand management center 3 based on the usable capacity thus input by the driver for each electric vehicle 10, the charge / discharge command of each battery 17 is set according to the processing procedure of FIG. 3 as in the first embodiment. .
  • the charge / discharge status of the battery 17 is indicated by a broken line.
  • each power demander 2 controls the battery 17 to the charge side to transmit excess power to the battery 17.
  • the battery 17 is controlled to the discharge side to compensate for the power shortage when the power supply and demand in the smart grid is insufficient, and these charge and discharge control is always performed within the usable capacity range. For example, as shown between time t1 and t2 in the figure, if the battery capacity deviates from the lower limit of the usable capacity during discharge (less than the required capacity), the battery capacity is suppressed to the lower limit of the usable capacity Ru.
  • FIG. 1 the battery capacity deviates from the lower limit of the usable capacity during discharge (less than the required capacity
  • the start of use of the electric vehicle 10 is delayed from the scheduled time t2 to t2 ′, and such a shift in the scheduled travel start often occurs, but after the time t2 Since the travelable battery capacity C2 is continuously secured, vehicle travel can be started without any problem.
  • the power supply and demand balance of the mounted battery 17 is performed based on the operation schedule of the electric vehicle 10 parked in each power consumer 2 Therefore, the driver is made to input the usable capacity available for each time, and the input usable capacity is applied to the setting of the charge / discharge command of the battery 17. Therefore, each battery 17 is charge / discharge controlled within the usable capacity range, and as a result, the battery capacity can be utilized to the maximum extent for leveling of the power supply and demand.
  • the charge / discharge range of the battery 17 is limited based on the usable capacity. In addition to this, frequent charge / discharge or rapid charge / discharge causing the battery deterioration is prevented. You may take measures. Specifically, an integrated power limit value for limiting the integrated value of input / output power to battery 17 and a maximum power limit value for limiting the maximum value of input / output power to battery 17 are set in advance. However, when the integrated value of input / output power reaches the integrated power limit value at the time of charge / discharge control, charge / discharge control is stopped at that time, or rapid charge / discharge of battery 17 is required based on the power supply / demand situation.
  • the maximum value of the input / output power of the actual battery 17 may be suppressed to the maximum power limit value.
  • the integrated power limit value and the maximum power limit value are values unique to the battery set as values near the upper limit that do not cause the battery 17 to deteriorate rapidly, the battery 17 has already deteriorated in the use process, or If the temperature deviates from the normal operating temperature range, the appropriate limit value fluctuates accordingly. Therefore, the integrated power limit value or the maximum power limit value may be corrected based on the use period integrated by the ECU 18 during charging and discharging of the battery 17 or the battery temperature detected by the temperature sensor 31 (shown in FIG. 2) In this way, charge / discharge control of the battery 17 can be executed more accurately.
  • the power supply and demand leveling system of this embodiment has the same basic configuration as that described in the first embodiment, and the difference is that not only the electric vehicle 10 parked at each power consumer 2 but also while traveling The electric vehicle 10 is also to be considered. That is, even if the electric vehicle 10 is currently traveling and can not be used to level the power supply and demand, if the estimated arrival time to the power consumer 2 who is the destination is known, the battery 17 can be used for the estimated arrival time. It is possible to have the prospect of securing extra usable capacity.
  • charge / discharge control of each battery 17 is performed by setting the charge / discharge command of each battery 17 at present based on the premise that the usable capacity of the battery 17 is increased by the power demander 2 at the scheduled arrival time. In the following, the process will be described in detail.
  • the electric vehicle 10 is equipped with a mobile communication system so that the telematic service can be used. As shown in FIG. 1, the power supply and demand management center 3 can be used by using the mobile communication service even while traveling. Communication with is possible.
  • the usable capacity of the battery 17 reflecting the battery capacity of the electric vehicle 10 in operation by the power consumer 2, the estimated time of arrival of the electric vehicle 10 to the electricity consumer 2 and the use of the battery 17 It is desirable to predict the remaining capacity of the battery 17 upon arrival, taking into consideration the case where the available capacity is necessary, and the remaining capacity of the battery 17 is less than the lower limit of the available capacity in the previous travel.
  • the driver is made to input various information such as the power demander 2 at the destination, the estimated arrival time, and the travel route from the current point to the power demander 2.
  • the ECU 18 determines the estimated arrival time to the power consumer 2 and determines the current remaining capacity of the battery 17 and the travel distance determined from the travel route to the power consumer 2
  • the predicted remaining capacity of the battery 17 at the time of arrival at 2 is calculated.
  • the power consumption of the battery 17 is affected not only by the travel distance but also by the acceleration / deceleration frequency of the vehicle and the unevenness of the road surface, so the travel distance is based on traffic information obtained from VICS etc. or road information obtained from the navigation system.
  • the predicted remaining capacity of the battery 17 calculated from the above may be corrected.
  • the ECU 18 manages the power supply and demand of the information and the available capacity of the battery 17 mounted thereon by the mobile communication system.
  • the calculation accuracy of the estimated remaining capacity of the battery 17 improves as it approaches the destination, so the estimated remaining capacity is calculated and updated at predetermined intervals from the current position obtained from the navigation system and the current remaining capacity of the battery. Then, they may be transmitted to the power supply and demand management center 3 one by one.
  • the power supply and demand management center 3 based on the information received from each of the electric vehicles 10 while traveling, it is expected that the battery capacity of the electric vehicles 10 can be secured at the estimated arrival time of the electric vehicles 10 in each of the power consumers 2.
  • I can do it. More specifically, when the estimated remaining capacity of battery 17 is within the usable area, it can be considered that extra available battery capacity can be secured for both charging and discharging within the usable capacity at the estimated arrival time. If the predicted remaining capacity is lower than the lower limit of the usable area, it can be considered that the battery capacity available only for the charging side (both charging and discharging after completion of charging) can be secured extra at the estimated arrival time.
  • the estimated remaining capacity of the battery 17 is not necessarily required, and only the estimated arrival time to the power consumer 2 and the usable capacity of the battery 17 are transmitted. You may As described above in detail, according to the power supply and demand leveling system of the present embodiment, the scheduled arrival time for the power consumer 2 of the destination to the power supply and demand management center 3 from the electric vehicle 10 during traveling Of the remaining capacity of the battery 17 and the usable capacity of the battery 17 are transmitted. Therefore, in the power supply and demand management center 3, it is predicted that the battery capacity of the electric vehicle 10 can be secured at the estimated arrival time of the electric vehicle 10 by each power demander 2. Under the premise, each current battery 17 Since the charge / discharge command can be set, charge / discharge control of each battery 17 can be more appropriately performed in order to equalize the power supply and demand.
  • the aspect of the present invention is not limited to this embodiment.
  • it is necessary to suppress the fluctuation of the power supply and demand of the entire power consumer 2 based on the comparison result of the total power supply and demand condition of the entire power consumer 2 and the usable total capacity of all the batteries 17.
  • the required charge and discharge amount of all the batteries 17 is determined, the required charge and discharge amount of all the batteries 17 need not necessarily be calculated.
  • each battery based on the individual power demand / supply status of each power demander 2 and the total power demand / supply status of the entire power demander 2 and the individual usable capacity of each battery 17 and the usable total capacity of all the batteries 17
  • the charge / discharge command of may be set.
  • the electric vehicle in the present invention is not limited to the electric vehicle 10 shown in the above embodiment, and may be a plug-in hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

 各電力需要者2の個別の電力需給状況に基づき電力需要者2全体の総電力需給状況を判定する一方、各電力需要者2に駐車された電気自動車10のバッテリ17の使用可能容量に基づき全バッテリ17の使用可能総容量を判定し、電力需要者2全体の総電力需給状況と全バッテリ17の使用可能総容量との比較結果に基づき全バッテリ17の要求充放電量を求め、この要求充放電量と各電力需要者2の電力需給状況及び各バッテリ17の使用可能容量とに基づき各バッテリ17を充放電制御する。

Description

電力需給平準化システム
 本発明は、電力会社などの電力事業者から配電線を介して工場、事業所或いは家庭などの各電力需要者にそれぞれ電力を供給すると共に、電力事業者からの電力需給情報に基づき電力需給管理センターから各電力需要者に出力される充放電指令により、各電力需要者に駐車中の電気自動車のバッテリを充放電制御して電力需給を平準化する電力需給平準化システムに関する。なお、本発明における電力事業者は、公益事業体としての電力会社だけでなく、ISO(Independent System Operator)やTSO(Transmission
System Operator)、IESO(Independent Electricity System
Operator)などの系統運用者も含む。
 この種の電力需給平準化システムとしては、各電力需要者などに設置した定置型のバッテリを利用したものがあり、このシステムでは、電力需要に比較的余裕がある夜間にバッテリを充電し、昼間の電力需要のピーク時にバッテリを放電することにより電力需給の平準化を図っている。しかしながら、このような定置型バッテリを利用した電力需給平準化システムは、大がかりな設備を要することから低コストでの実施は困難であった。その対策として、近年では定置型バッテリに代えて電気自動車やハイブリッド電気自動車(以下、電気自動車と総称する)に搭載されたバッテリを利用した電力需給平準化システムが提案されている(例えば、特許文献1参照)。
 当該特許文献1に記載された電力需給平準化システムは、電力需要者である事業所への通勤に使用されている電気自動車が電力需要のピークである昼間に駐車されたままで、そのバッテリ容量を利用する余地が存在する点に着目したものである。そこで、当該システムでは、電力需要のピーク時に電気自動車のバッテリに蓄えた電力を放出して事業所内の電力不足分を補う一方、電力需要の非ピーク時にバッテリを充電して次回の電力需要のピーク時に備え、これにより電力需給を平準化して事業所の契約電力を低減することで電気料金の削減を図っている。
特願2007-282383号公報
 しかしながら、特許文献1に記載された電力需給平準化システムは、契約電力の低減という記載から明らかなように事業所内での電力需給の平準化を目的としたものである。即ち、特許文献1の技術は、各電力需要者を個々のグリッドと見なし、これらのグリッドにより構築された電力網全体における電力需給の平準化を目的とした所謂スマートグリッドの概念とは相違するものである。
 スマートグリッドでは、電力事業者と各電力需要者との間で双方向に電力移送を可能とし、電力需要者内での電力収支が完結しない分、例えば電力過剰分を電力事業者を介して他の電力需要者に供給することにより、各電力需要者間の電力需給の不均衡を抑制し、且つ電力事業者全体の電力需給の変動を抑制しており、これによりスマートグリッド全体における電力需給の平準化を達成している。従って、各電力需要者に駐車されている電気自動車のバッテリ容量を利用する場合でも、その利用は個々の電力需要者内だけではなく他の電力需要者への電力需給の調整にも利用すべきであるが、上記のように特許文献1の技術では電力需要者内でのバッテリ容量の利用に留まることから、各電気自動車のバッテリ容量を有効利用しているとは言い難かった。
 本発明はこのような問題点を解決するためになされたもので、その目的とするところは、個々の電力需要者内で電気自動車のバッテリ容量を利用するだけに留まらず、スマートグリッド全体における電力需給の平準化に各電気自動車のバッテリ容量を有効利用することができる電力需給平準化システムを提供することにある。
 上記目的を達成するため、本発明は、電力事業者から配電線を介してそれぞれ電力を供給されると共に、電気自動車が任意に駐車されて配電線に接続される複数の電力需要者と、各電力需要者の電力需給状況を個別に入力すると共に、各入力情報に基づき電力需要者全体の総電力需給状況を判定する電力需給状況判定手段と、各電力需要者から駐車中の各電気自動車に搭載されたバッテリについて充放電により使用可能な容量を個別に入力すると共に、各入力情報に基づき全バッテリの使用可能な総容量を判定するバッテリ容量判定手段と、電力需給状況判定手段から各電力需要者の個別の電力需給状況及び電力需要者全体の総電力需給状況を入力すると共に、バッテリ容量判定手段から各バッテリの個別の使用可能容量及び全バッテリの使用可能総容量を入力し、これらの情報に基づき、電力需要者全体の電力需給の変動及び各電力需要者間の電力需給の不均衡を共に抑制して電力需給を平準化させるために必要な充放電指令を各電気自動車のバッテリ毎に設定し、設定した各充放電指令を対応する電力需要者に出力する充放電指令設定手段と、各電力需要者にそれぞれ備えられ、充放電指令設定手段から入力された充放電指令に基づき対応するバッテリをそれぞれ充放電制御する充放電制御手段とを備えたものである。
 好ましくは、各電力需要者が、駐車されている各電気自動車の運用予定に基づき、配電線への電気自動車の接続以降の複数の時刻、及び各時刻において電気自動車に搭載されているバッテリの全体容量の内、電力需給の平準化のために充放電を許諾できる容量を使用可能容量として入力する入力手段をそれぞれ備え、入力手段により入力された使用可能容量をバッテリ容量判定手段に出力し、バッテリ容量判定手段が、各電力需要者から入力された使用可能容量に基づき全バッテリの使用可能総容量を判定するものであるのがよい。
 また、バッテリ容量判定手段が、各電力需要者に駐車中の電気自動車に加えて、走行中の各電気自動車からもバッテリの使用可能容量を個別に入力すると共に、加えて目的地である電力需要者への到着予定時刻を個別に入力し、充放電指令設定手段が、走行中の電気自動車の電力需要者への到着予定時刻において、電気自動車のバッテリの使用可能容量が電力需要者で確保されることを前提として、現在の各バッテリの充放電指令を設定するものであるのが好ましい。
 以上説明したように本発明の電力需給平準化システムによれば、各電力需要者の個別の電力需給状況及び電力需要者全体の総電力需給状況と、各電力需要者に駐車中の電気自動車に搭載された各バッテリの個別の使用可能容量及び全バッテリの使用可能総容量とに基づき、各電気自動車のバッテリ毎に充放電指令を設定し、これらの充放電指令に基づき各バッテリをそれぞれ充放電制御するようにした。このように、各電力需要者の個別の情報(電力需給状況、使用可能容量)と電力需要者全体での情報(総電力需給状況、使用可能総容量)とに基づき各バッテリの充放電指令を設定していることから、個々の電力需要者内で電気自動車のバッテリ容量を利用するだけに留まらず、他の電力需要者でのバッテリ容量の利用も可能となり、結果としてスマートグリッド全体における電力需給の平準化に各電気自動車のバッテリ容量を有効利用することができる。
 また、各電力需要者での電気自動車の運用予定に基づき、配電線への電気自動車の接続によりバッテリを電力需給の平準化に利用可能となった以降の複数の時刻、及び各時刻におけるバッテリの使用可能容量を入力手段に入力し、入力された各バッテリの時刻毎の使用可能容量に基づき全バッテリの使用可能総容量を判定するようにしたことにより、各バッテリを使用可能容量の範囲内で充放電制御でき、結果としてバッテリ容量を電力需給の平準化に最大限に有効利用することができる。
 さらに、走行中の電気自動車の電力需要者への到着予定時刻において、この電気自動車のバッテリの使用可能容量を電力需要者で確保できる見通しをたて、その前提の下で今現在の各バッテリの充放電指令を設定できるので、電力需給を平準化するために各バッテリの充放電制御を一層適切に行うことができる。
実施形態の電力需給平準化システムを示す全体構成図である。 電力需要者の一例として一般的な家庭を示した詳細図である。 各電力需要者の電力需給状況及び各電気自動車のバッテリの使用可能容量に基づき各バッテリに対する充放電指令を設定するための処理手順を示した概念図である。 第2実施形態における時刻毎のバッテリの使用可能容量の入力例を示すグラフである。
[第1実施形態]
 以下、本発明を具体化した電力需給平準化システムの第1実施形態を説明する。
 図1は本実施形態の電力需給平準化システムを示す全体構成図である。
 全体として電力需給平準化システム(所謂スマートグリッドに相当)は、電力会社などの電力事業者1、家庭2a或いは工場、事業所2bなどの複数の電力需要者2(スマートグリッドを構成するグリッドに相当し、以下スマートグリッドともいう)、及びスマートグリッド内の電力需給を管理して平準化を図る電力需給管理センター3から構成されている。
 各電力需要者2は配電線4を介して電力事業者1に接続されており、図示しない発電所で発電された電力が電力事業者1から各電力需要者2に配電線4を経て供給される。また、電力需要者2がソーラーパネルや風力発電などの発電設備を備えている場合、これらの発電設備で発電されて電力需要者2内で消費しきれなかった余剰電力が生じると、その余剰電力は配電線4から電力事業者1を介して他の電力需要者2に供給されるようになっている。
 図2は電力需要者の一例として一般的な家庭2aを示した詳細図である。この場合には、電力事業者1からの電力が家庭内の電力線6を経てAC-DC双方向変換器であるパワーコントローラ5(以下、PCSと略す)や家庭内に設置されたテレビや冷蔵庫などの電気負荷7に供給される。
 なお、この例では屋根にソーラーパネル8が設置されており、このソーラーパネル8により発電された電力もPCS5を介して電気負荷7に供給されて補助的に利用される。
 電力需要者2の所定位置、例えば家庭2aの場合には家屋外壁などの所定位置に接続ポート9が備えられ、この接続ポート9を介して電力需要者2に駐車された電気自動車10との間でバッテリ充電のための電力、及び後述するバッテリ情報の入出力が行われる。
 より具体的には、家庭のPCS5は電力線11及び信号線12を介して接続ポート9に接続される一方、家庭内の電力需給を管理するエネルギーマネージメントシステム13(以下、EMSと略す)に対しても信号線14を介して接続されている。
 この接続ポート9には、電気自動車10からの電力線15及び信号線16(実際には車両外では1本に集約されている)が任意に接続可能となっており、車両内において電力線15はバッテリ17に接続され、信号線16は、車両を走行させるためのモータ制御、走行中のバッテリ17の残存容量の管理、エアコンディショナの制御、運転席に設けられたナビゲーション装置の制御などを統合的に行うECU18(電子制御ユニット)に接続されている。
 なお、以下に述べるように電気自動車10のバッテリ17はスマートグリッド内の電力需給の平準化に利用されるため、例えば家庭では帰宅後に、工場、事業所では出勤後に、バッテリ充電が不要な場合であっても速やかに接続ポート9に接続することが推奨されている。
 図示しないがECU18は、入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタなどにより構成されている。ECU18の入力側には、ナビゲーション装置のタッチパネル式ディスプレイ19などが接続され、運転者がディスプレイ19により任意に情報を入力可能となっている。
 各電力需要者2のEMS13は、例えば電話回線などの信号線20を介して上記した電力需給管理センター3に接続されている。EMS13は接続ポート9及びPCS5を介して電気自動車10のECU18からバッテリ情報を入力し、そのバッテリ情報に基づきスマートグリッド内の電力需給の平準化のために使用可能な容量(使用可能容量)を算出して信号線20を介して電力需給管理センター3に出力する。本実施形態では電気自動車10の使用開始に常に備える必要があることを鑑みて、バッテリ17が有する全体容量から電気自動車10の走行に必要な容量(後述する第2実施形態のC2に相当)を減算した値を使用可能容量と見なして電力需給管理センター3に出力している。
 但し、バッテリ17の使用可能容量は上記に限ることはない。例えば電力需要者2に到着した直後の電気自動車10は、それまでの走行状況に応じてバッテリ17の残存容量が大きく相違し、残存容量が極端に低下して使用可能領域の下限を下回っている場合には次回の走行に備えるために早急に充電する必要がある。従って、通常のバッテリ17のように使用可能領域内で放電側(電力需給の不足を補う側)にも充電側(電力需給の過剰を消費する側)にも利用できる場合とは相違し、充電が完了する(上記走行に必要な容量に達する)までは充電側のみへの利用に限るべきである。そこで、このようなバッテリ17の残存容量が低下している電気自動車10は、充電完了までは使用可能容量とは関係なく充電側にのみバッテリ容量を利用するようにしてもよい。
 また、EMS13はPCS5の作動状況に基づき電力事業者1から電力需要者2に供給されている電力需給状況を判定し、その判定結果を信号線20を介して電力需給管理センター3に出力する。
 なお、図1に示すように、電力需要者2が工場、事業所であっても家庭の場合とほとんど同様であり、電気自動車10の駐車台数が増加したり、電気自動車10のバッテリ17に加えてリユースバッテリ22が備えられたりする点が相違するだけである。
 以上の構成により電力需給管理センター3では、各電力需要者2での電気自動車10の駐車の有無、及び駐車時にはそのバッテリ17の使用可能容量を把握できると共に、各電力需要者2の電力需給状況を把握できる。これらの入力情報に基づき、電力需給管理センター3は電力需要者2全体(スマートグリッド内)の電力需給の変動及び各電力需要者2間の電力需給の不均衡を抑制すべく、各電力需要者2のEMS13に対して充放電指令を出力する。そして、この充放電指令に基づき各電力需要者2のEMS13がPCS5をAC-DC変換器として機能させ、駐車中の電気自動車10のバッテリ17を充放電制御することにより電力需給の平準化を達成している(充放電制御手段)。
 そこで、各電力需要者2の電力需給状況及び各電気自動車10のバッテリ17の使用可能容量に基づき各バッテリ17に対する充放電指令を設定するための処理手順を図3に示す模式図に従って詳述する。
 まず、各電力需要者2ではEMS13により電力の過不足に応じた電力需給状況が時系列に従って逐次判定され、これらの電力需給状況は電力需給管理センター3の電力需給状況判定部3aにそれぞれ入力される。電力需給状況判定部3aでは、入力された各電力需要者2の個別の電力需給状況の総和として電力需要者2全体の総電力需給状況が算出され(電力需給状況判定手段)、この総電力需給状況は比較部3bに入力される。個別の電力需給状況の変動に応じて総電力需給状況も時系列に応じて変動し、電力需給の不足及び過剰が発生することになる。
 一方、各電力需要者2に駐車されている電気自動車10のバッテリ17の使用可能容量がEMS13により逐次判定され、これらの使用可能容量は電力需給管理センター3のバッテリ容量判定部3cにそれぞれ入力される。バッテリ容量判定部3cでは、入力された各バッテリ17の使用可能容量の総和として全バッテリ17の使用可能総容量が算出され(バッテリ容量判定手段)、この使用可能総容量は上記した比較部3bに入力される。
 なお、全体容量から走行に必要な容量を減算して得た使用可能容量はバッテリ17の仕様に応じた一定値となるが、各電力需要者2に駐車される電気自動車10の総数が変動することから、使用可能総容量も時系列に応じて変動することになる。
 比較部3bでは、入力された電力需要者2全体の総電力需給状況及び全バッテリ17の使用可能総容量が逐次比較され、その比較結果が充放電指令設定部3dに入力される。
 総電力需給状況は電力需要者2全体の電量需給の過不足を時系列で表し、使用可能総容量は電力需給の過不足を抑制するために使用可能な全バッテリ17の総容量を同じく時系列で表している。
 そして、その時点において電力需給が不足する場合にはバッテリ17の放電により電力不足分が補われ、電力需給が過剰な場合にはバッテリ17の充電により電力過剰分が蓄えられるが、電力需要者2全体の総電力需給状況と全バッテリ17の使用可能総容量とを比較することにより、電力需要者2全体での電力需給の変動を抑制するために、全体としてどの程度のバッテリ17の充放電量が要求されるかを推測できる。例えば、このような観点で設定された全バッテリ17の要求充放電量が上記した比較結果として充放電指令設定部3dに入力される。
 なお、当然ながら、電力需給の過不足がバッテリ17の使用可能総容量を上回る場合には、使用可能総容量に対応する全バッテリ17の要求充放電量が設定される。
 充放電指令設定部3dには、比較部3bからの比較結果として全バッテリ17の要求充放電量と共に、上記した各電力需要者2の個別の電力需給状況及び各バッテリ17の使用可能容量が入力される。充放電指令設定部3dでは、以下の要件を満足するように各バッテリ17に対する充放電指令が設定される(充放電指令設定手段)。
1)電力需要者2全体の時系列での電力需給の変動を抑制すること。
2)各電力需要者2間の電力需給の不均衡を抑制すること。
3)上記1),2)を満足した上で、個々の使用可能容量内で劣化防止のために各バッテリ17の充放電負荷を可能な限り軽減すること。
 全バッテリ17の要求充放電量を満足するように各電力需要者2に駐車された電気自動車10のバッテリ17を充放電制御すれば、上記要件1)は満たされる。但し、上記要件2)や要件3)を満足するには、各電力需要者2の個別の電力需給状況を把握する必要があり、また、各バッテリ17の使用可能容量を把握する必要もある。そこで、これらの情報も充放電指令設定部3dに入力している。
 実際には上記要件1)~3)に基づき種々の評価関数を予め設定しておき、充放電指令設定部3dでは、それらの評価関数に基づき各バッテリ17の最適な充放電量が充放電指令として設定される。そして、設定された充放電指令は充放電指令設定部3dから各電力需要者2に出力され、各電力需要者2では駐車中の各電気自動車10のバッテリ17がEMS13により充放電制御される。
 以上のような各バッテリ17の充放電制御により、例えば電力需要者2全体の電力需給が不足する場合には各バッテリ17の放電により電力不足分が補われ、電力需給が過剰な場合には各バッテリ17の充電により電力過剰分が蓄えられ、結果として電力需要者2全体の時系列での電力需給の変動が抑制される。
 また、各電力需要者2間に電力需給の不均衡に起因する電圧格差が生じている場合には、まず、電圧上昇傾向の電力需要者2に駐車中の電気自動車10のバッテリ17の放電を抑制(若しくは充電を促進)すると共に、電圧低下傾向の電力需要者2に駐車中の電気自動車10のバッテリ17の放電を促進(若しくは充電を抑制)することにより、電力需給の不均衡が抑制される。さらに、このようなバッテリ17の充放電制御だけでは個々の電力需要者2内での電力収支が完結しない場合には、電圧上昇傾向の電力需要者2から電力余剰分が電力事業者1を介して電圧低下傾向の電力需要者2に供給されることにより、電力需給の不均衡が抑制される。
 また、各電気自動車10のバッテリ17の仕様に応じて使用可能容量が相違することから、全バッテリ17の要求充電量を各バッテリ17に振り分ける際には、使用可能容量が小のバッテリ17よりも使用可能容量が大のバッテリ17に対してより大きな充放電量が充放電指令として設定され、これにより個々のバッテリ17の充放電負荷の均等化が図られる。
 以上詳述したように本実施形態の電力需給平準化システムによれば、各電力需要者2の個別の電力需給状況に基づき電力需要者2全体の総電力需給状況を判定する一方、各バッテリ17の個別の使用可能容量に基づき全バッテリ17の使用可能総容量を判定し、電力需要者2全体の総電力需給状況と全バッテリ17の使用可能総容量との比較結果に基づき、電力需要者2全体の電力需給の変動を抑制するために必要な全バッテリ17の要求充放電量を求め、この要求充放電量と上記した各電力需要者2の個別の電力需給状況及び各バッテリ17の個別の使用可能容量とに基づき各バッテリ17毎に充放電指令を設定して各バッテリ17を充放電制御している。
 従って、全バッテリ17の要求充放電量に基づき、電力需要者2全体の時系列での電力需給の変動を抑制可能なように各バッテリ17の充放電指令を設定でき、また、各電力需要者2の個別の電力需給状況や各バッテリ17の使用可能容量に基づき、各電力需要者2間での電力需給の不均衡を抑制可能なように、或いは各バッテリ17の充放電負荷を可能な限り軽減するように、各バッテリ17の充放電指令を設定できる。
 即ち、各電力需要者2の個別の情報(電力需給状況、使用可能容量)と電力需要者2全体での情報(総電力需給状況、使用可能総容量)とに基づき各バッテリ17の充放電指令を設定していることから、上記特許文献1に記載された技術のように個々の電力需要者2内で電気自動車10のバッテリ容量を利用するだけに留まらず、他の電力需要者2でのバッテリ容量の利用も可能となり、結果としてスマートグリッド全体における電力需給の平準化に各電気自動車10のバッテリ容量を有効利用することができる。
[第2実施形態]
 次に、本発明を別の電力需給平準化システムに具体化した第2実施形態を説明する。
 本実施形態の電力需給平準化システムは、第1実施形態で説明したものと基本的な構成は同一であり、相違点は各バッテリ17の使用可能容量の設定にある。即ち、第1実施形態では、電気自動車10の走行に必要なバッテリ容量を常に確保し、余剰分を使用可能容量としていることから、電力需給の平準化のために利用できるバッテリ容量はそれほど多くはなかった。そこで、本実施形態では、各電力需要者2において駐車中の電気自動車10の今後の運用予定に基づき、電気自動車10のバッテリ17が有する全体容量の内、どの程度の容量を電力需要の平準化に利用してもよいかを使用可能容量として予め時刻毎に運転者に入力させ、これにより使用可能容量の増大を図ったものであり、以下、当該処理を重点的に詳述する。
 図4はある電力需要者2に駐車された電気自動車10に対する時刻毎のバッテリ17の使用可能容量の入力例を示すグラフである。図中の縦軸は0から全体容量Cmaxまでのバッテリ容量を示し、図中の横軸は、電気自動車10が電力需要者2の接続ポート9に接続された時点を起点の0とした時刻を示している。
 時刻毎のバッテリ17の使用可能容量の入力は、確保しておきたいバッテリ容量である必要容量(全体容量Cmax-使用可能容量)を指標として行われる。図の入力例では、時刻t1以前では電気自動車10を使用する予定が全くなく、時刻t2で使用開始の予定であるが、予定変更により時刻t1~t2までの期間内で電気自動車10の使用開始を早める可能性がある場合を示している。
 このため、使用予定がない時刻t1以前では最低限のバッテリ容量を確保すべくC1が入力され、予定変更のときに使用開始する可能性がある時刻t1~t2の期間ではバッテリ容量を次第に増加させ、ほぼ確実に使用開始する時刻t2以降では、走行可能なバッテリ容量としてC2(走行予定の距離などを考慮して決定)が入力されている。
 従って、各時刻において全体容量Cmaxから必要容量C1,C2を減算した図中にハッチングで示す領域が使用可能容量として設定されることになる。第1実施形態では、全体容量Cmaxから走行のための必要容量C2を減算した値として使用可能容量を設定したが、これに対して本実施形態では、電気自動車10の使用開始時刻t2以前で格段に大きな使用可能容量が確保される。
 言うまでもないが、図4は使用可能容量の入力例の一つに過ぎず、電気自動車10の運用状況に応じて種々の特性のグラフが設定される。また、上記した例では、次回の使用開始時までの使用可能容量を入力したが、これに限ることはなく、例えば次々回の使用開始時までの使用可能容量を入力するようにしてもよいし、1ヶ月の期間中の電気自動車10の運用予定に基づき、1ヶ月後までの使用可能容量を入力するようにしてもよい。
 実際の運転者による入力は、例えばナビゲーションのタッチパネル式ディスプレイ19を使用して行われる(入力手段)。具体的には、図4と同様の空欄のグラフ(縦軸及び横軸のみ)をディスプレイ19に表示させ、運転者が電気自動車10の使用開始予定などの時刻と各時刻における必要容量との交点を逐次タッチすることによりt1,C1点やt2,C2点を確定し、それらの交点を自動的に結ぶことによりグラフが作成される。但し、時刻毎の使用可能容量の入力はこの例に限ることはなく、例えば時刻t1,t2及び必要容量C1,C2をキー入力するようにしてもよい。
 以上のようにして設定された時刻毎の使用可能容量はECU18から接続ポート9及びPCS5を経てEMS13に入力され、さらにEMS13から電力需給管理センター3に出力される。電力需給管理センター3では、このようにして運転者が電気自動車10毎に入力した使用可能容量に基づき、第1実施形態と同じく図3の処理手順に従って各バッテリ17の充放電指令が設定される。
 図4では破線でバッテリ17の充放電状況を示しており、例えばスマートグリッド内の電力需給が過剰な場合には各電力需要者2でバッテリ17を充電側に制御して過剰電力をバッテリ17に充電し、スマートグリッド内の電力需給が不足する場合にはバッテリ17を放電側に制御して電力不足分を補うが、これらの充放電制御は常に使用可能容量の範囲内で実行される。
 例えば、図中の時刻t1~t2間に示すように、放電中にバッテリ容量が使用可能容量の下限から逸脱する(必要容量を下回る)場合には、バッテリ容量は使用可能容量の下限に抑制される。なお、図4では、電気自動車10の使用開始が予定時刻t2に対してt2’まで遅延しており、このような走行開始予定のズレは往々にして発生することであるが、時刻t2以降は走行可能なバッテリ容量C2が確保され続けるため、何ら問題なく車両走行を開始できる。
 以上詳述したように本実施形態の電力需給平準化システムによれば、各電力需要者2に駐車されている電気自動車10の運用予定に基づき、搭載されているバッテリ17を電力需給の平準化のために使用可能な使用可能容量を時刻毎に運転者に入力させ、この入力された使用可能容量をバッテリ17の充放電指令の設定に適用している。従って、各バッテリ17は使用可能容量の範囲内で充放電制御され、結果としてバッテリ容量を電力需給の平準化のために最大限に有効利用することができる。
 ところで、上記第1及び第2実施形態では、使用可能容量に基づきバッテリ17の充放電範囲を制限したが、これに加えてバッテリ劣化の要因となる頻繁な充放電や急激な充放電を防止する対策を講じてもよい。
 具体的には、予めバッテリ17への入出力電力の積算値を制限するための積算電力制限値、及びバッテリ17への入出力電力の最大値を制限するための最大電力制限値を設定しておき、充放電制御時において入出力電力の積算値が積算電力制限値に達すると、その時点で充放電制御を中止したり、或いは電力需給状況に基づき急激なバッテリ17の充放電が求められていても、実際のバッテリ17の入出力電力の最大値を最大電力制限値に抑制したりすればよい。これらの処理により、頻繁なバッテリ17への充放電及び急激なバッテリ17への充放電を防止でき、バッテリ17の充放電負荷を一層軽減することができる。
 また、積算電力制限値及び最大電力制限値は、バッテリ17を急激に劣化させない上限付近の値として設定されたバッテリ固有の値であるが、バッテリ17が使用過程で既に劣化していたり、或いはバッテリ温度が通常使用温度域から逸脱していたりすると、それに伴って適切な制限値は変動する。そこで、ECU18がバッテリ17の充放電中に積算した使用期間、或いは温度センサ31(図2に示す)により検出したバッテリ温度に基づき積算電力制限値や最大電力制限値を補正してもよく、このようにすればバッテリ17の充放電制御をより的確に実行することができる。
[第3実施形態]
 次に、本発明を別の電力需給平準化システムに具体化した第3実施形態を説明する。
 本実施形態の電力需給平準化システムは、第1実施形態で説明したものと基本的な構成は同一であり、相違点は各電力需要者2に駐車中の電気自動車10のみならず、走行中の電気自動車10も考慮する点にある。即ち、今現在走行中で電力需給の平準化に利用できない電気自動車10であっても、目的地である電力需要者2への到着予定時刻が判明していれば、到着予定時刻にはバッテリ17の使用可能容量を余分に確保できる見通しをたてることができる。そこで、到着予定時刻にその電力需要者2でバッテリ17の使用可能容量が増加するという前提の下で、今現在の各バッテリ17の充放電指令を設定することにより、各バッテリ17の充放電制御を一層適切に行うものであり、以下、当該処理を重点的に詳述する。
 電気自動車10はテレマティクサービスを利用可能なように移動体通信システムが搭載されており、図1に示すように、走行中であっても移動体通信サービスを利用することにより電力需給管理センター3との通信を可能としている。
 電力需要者2において走行中の電気自動車10のバッテリ容量を反映したバッテリ17の使用可能容量の見通しをたてるには、当該電気自動車10の電気需要者2への到着予定時刻及びバッテリ17の使用可能容量が必要であり、さらに、それまでの走行でバッテリ17の残存容量が使用可能容量の下限を下回っている場合を考慮して、到着時のバッテリ17の残存容量を予測することが望ましい。
 そこで、例えばナビゲーションのタッチパネル式ディスプレイ19を使用し、目的地の電力需要者2、到着予定時刻、現在地点から電力需要者2までの走行経路などの諸情報を運転者に入力させる。これらの入力情報に基づきECU18は、電力需要者2への到着予定時刻を確定すると共に、現在のバッテリ17の残存容量及び電力需要者2までの走行経路から割り出した走行距離に基づき、電力需要者2に到着した時点でのバッテリ17の予測残存容量を算出する。バッテリ17の電力消費は、走行距離のみならず車両の加減速頻度や路面の起伏などの影響も受けるため、VICSなどから得た渋滞情報、或いはナビゲーションシステムから得た道路情報などに基づき、走行距離から算出したバッテリ17の予測残存容量を補正するようにしてもよい。
 このようにして電気需要者2への到着予定時刻及びバッテリ17の予測残存容量を算出すると、ECU18はこれらの情報、及び搭載されているバッテリ17の使用可能容量を移動体通信システムにより電力需給管理センター3に送信する。なお、バッテリ17の予測残存容量については目的地に接近するほど算出精度が向上することから、ナビゲーションシステムから得た現在位置と現在のバッテリ残存容量とから予測残存容量を所定時間毎に算出・更新して電力需給管理センター3に逐次送信するようにしてもよい。
 電力需給管理センター3では、走行中の各電気自動車10からの受信された情報に基づき、各電力需要者2において電気自動車10の到着予定時刻には当該電気自動車10のバッテリ容量を確保できる見通しをたてることができる。
 より詳しくは、バッテリ17の予測残存容量が使用可能領域内にある場合には、到着予定時刻において使用可能容量内で充放電共に利用可能なバッテリ容量を余分に確保できると見なせ、バッテリ17の予測残存容量が使用可能領域の下限を下回っている場合には、到着予定時刻において充電側のみ(充電完了後は充放電共に)に利用可能なバッテリ容量を余分に確保できると見なせる。
 従って、例えば到着予定時刻及び予測残存容量に基づき、ある電力需要者2に間もなくバッテリ17の残存容量が極端に低下している電気自動車10が到着することが判明している場合、その時点で電力過剰分を駐車中の各電気自動車10のバッテリ17に充電予定であったとしても、走行中の電気自動車10が到着するまでは待機し、電気自動車10の到着後に当該電気自動車10のバッテリ17を優先して充電する。
 これにより電力需給の過剰を抑制できるだけでなく、当該電気自動車10のバッテリ17の充電を迅速に完了できる。このため、電気自動車10をより早期に使用可能にできると共に、電力需給の平準化のためにバッテリ17を充放電共に利用可能な状態に速やかに移行させることができる。勿論、この利用態様は一例であり、他にも種々の充放電指令の設定を行うことにより、バッテリ充放電制御の最適化を図ることができる。
 なお、電気自動車10から電力需給管理センター3に送信する情報として、バッテリ17の予測残存容量は必ずしも必要でなく、電力需要者2への到着予定時刻及びバッテリ17の使用可能容量のみを送信するようにしてもよい。
 以上詳述したように本実施形態の電力需給平準化システムによれば、走行中の電気自動車10から電力需給管理センター3に目的地の電力需要者2への到着予定時刻、到着時のバッテリ17の予測残存容量、及びバッテリ17の使用可能容量を送信するようにした。従って、電力需給管理センター3では、各電力需要者2で電気自動車10の到着予定時刻には当該電気自動車10のバッテリ容量を確保できる見通しをたて、その前提の下で今現在の各バッテリ17の充放電指令を設定できるため、電力需給を平準化するために各バッテリ17の充放電制御を一層適切に行うことができる。
 以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では、電力需要者2全体の総電力需給状況と全バッテリ17の使用可能総容量との比較結果に基づき、電力需要者2全体の電力需給の変動を抑制するために必要な全バッテリ17の要求充放電量を求めたが、全バッテリ17の要求充放電量は必ずしも算出する必要はない。例えば、各電力需要者2の個別の電力需給状況及び電力需要者2全体の総電力需給状況と、各バッテリ17の個別の使用可能容量及び全バッテリ17の使用可能総容量とに基づき、各バッテリの充放電指令を設定するようにしてもよい。
 更に、本発明における電気自動車としては上記実施形態に示した電気自動車10に限らずプラグインハイブリッド車であってもよい。
  1  電力事業者
  2  電力需要者
  3a 電力需給状況判定部(電力需給状況判定手段)
  3c バッテリ容量判定部(バッテリ容量判定手段)
  3d 充放電指令設定部(充放電指令設定手段)
  4  配電線
 10 電気自動車
 13 EMS(充放電制御手段)
 17 バッテリ
 19 ディスプレイ(入力手段)

P2010-0353/WO<FPMC-1485PC>

Claims (3)

  1.  電力事業者から配電線を介してそれぞれ電力を供給されると共に、電気自動車が任意に駐車されて上記配電線に接続される複数の電力需要者と、
     各電力需要者の電力需給状況を個別に入力すると共に、各入力情報に基づき電力需要者全体の総電力需給状況を判定する電力需給状況判定手段と、
     上記各電力需要者から上記駐車中の各電気自動車に搭載されたバッテリについて充放電により使用可能な容量を個別に入力すると共に、各入力情報に基づき全バッテリの使用可能な総容量を判定するバッテリ容量判定手段と、
     上記電力需給状況判定手段から各電力需要者の個別の電力需給状況及び電力需要者全体の総電力需給状況を入力すると共に、上記バッテリ容量判定手段から各バッテリの個別の使用可能容量及び全バッテリの使用可能総容量を入力し、これらの情報に基づき、上記電力需要者全体の電力需給の変動及び各電力需要者間の電力需給の不均衡を共に抑制して電力需給を平準化させるために必要な充放電指令を上記各電気自動車のバッテリ毎に設定し、設定した各充放電指令を対応する上記電力需要者に出力する充放電指令設定手段と、
     上記各電力需要者にそれぞれ備えられ、上記充放電指令設定手段から入力された充放電指令に基づき対応するバッテリをそれぞれ充放電制御する充放電制御手段と
    を備えたことを特徴とする電力需給平準化システム。
  2.  上記各電力需要者は、駐車されている上記各電気自動車の運用予定に基づき、上記配電線への電気自動車の接続以降の複数の時刻、及び各時刻において該電気自動車に搭載されているバッテリの全体容量の内、上記電力需給の平準化のために充放電を許諾できる容量を上記使用可能容量として入力する入力手段をそれぞれ備え、該入力手段により入力された使用可能容量を上記バッテリ容量判定手段に出力し、
     上記バッテリ容量判定手段は、上記各電力需要者から入力された使用可能容量に基づき上記全バッテリの使用可能総容量を判定することを特徴とする請求項1記載の電力需給平準化システム。
  3.  上記バッテリ容量判定手段は、上記各電力需要者に駐車中の電気自動車に加えて、走行中の各電気自動車からも上記バッテリの使用可能容量を個別に入力すると共に、加えて目的地である電力需要者への到着予定時刻を個別に入力し、
     上記充放電指令設定手段は、上記走行中の電気自動車の上記電力需要者への到着予定時刻において、該電気自動車のバッテリの使用可能容量が該電力需要者で確保されることを前提として、現在の各バッテリの充放電指令を設定することを特徴とすることを特徴とする請求項1または2記載の電力需給平準化システム。
PCT/JP2011/067416 2010-08-05 2011-07-29 電力需給平準化システム WO2012017937A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012527710A JP5562423B2 (ja) 2010-08-05 2011-07-29 電力需給平準化システム
US13/814,154 US9340117B2 (en) 2010-08-05 2011-07-29 Power supply and demand leveling system
EP11814563.0A EP2602901B1 (en) 2010-08-05 2011-07-29 Power demand-and-supply equalization system
CN201180038685.3A CN103190052B (zh) 2010-08-05 2011-07-29 电力供需调平系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-176162 2010-08-05
JP2010176162 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012017937A1 true WO2012017937A1 (ja) 2012-02-09

Family

ID=45559438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067416 WO2012017937A1 (ja) 2010-08-05 2011-07-29 電力需給平準化システム

Country Status (5)

Country Link
US (1) US9340117B2 (ja)
EP (1) EP2602901B1 (ja)
JP (1) JP5562423B2 (ja)
CN (1) CN103190052B (ja)
WO (1) WO2012017937A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013183521A (ja) * 2012-03-01 2013-09-12 Hitachi Ltd 移動型蓄電媒体を用いた分散電源制御装置、方法、およびプログラム
WO2014042223A1 (ja) * 2012-09-12 2014-03-20 日本電気株式会社 電力管理方法、電力管理装置およびプログラム
EP2713467A1 (en) * 2012-09-28 2014-04-02 Alcatel-Lucent Method for supporting power balancing
WO2014136353A1 (ja) * 2013-03-04 2014-09-12 日本電気株式会社 エネルギーマネジメントシステムおよびエネルギーマネジメント方法
WO2015001767A1 (ja) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 制御装置、電力管理システム
JP2015035848A (ja) * 2013-08-07 2015-02-19 パナソニックIpマネジメント株式会社 電力供給システム、放電装置
JP2015510199A (ja) * 2012-02-13 2015-04-02 アクセンチュア グローバル サービスィズ リミテッド 電気自動車の分散型インテリジェンス
JP2015100203A (ja) * 2013-11-19 2015-05-28 本田技研工業株式会社 電力品質確保補助システム及び電動車両
JP2017077176A (ja) * 2017-01-19 2017-04-20 三菱重工業株式会社 電気自動車
US9701203B2 (en) 2013-02-26 2017-07-11 Mitsubishi Heavy Industries, Ltd. On-board unit and electric vehicle management system
WO2017170741A1 (ja) * 2016-03-29 2017-10-05 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
JP2018093614A (ja) * 2016-12-02 2018-06-14 本田技研工業株式会社 蓄電システム、輸送機器及び蓄電システムの制御方法
JP2018093613A (ja) * 2016-12-02 2018-06-14 本田技研工業株式会社 電力伝送管理装置及び電力伝送方法
JP2018190249A (ja) * 2017-05-09 2018-11-29 三菱重工業株式会社 管理方法、サービス管理装置、サービス管理システム及びプログラム
JP2018205871A (ja) * 2017-05-31 2018-12-27 三菱重工業株式会社 調整方法、制御装置、電力調整システム及びプログラム
JP6552769B1 (ja) * 2018-10-15 2019-07-31 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
JP2020096416A (ja) * 2018-12-10 2020-06-18 株式会社Nttファシリティーズ 電力供給システムおよび電力供給方法
JP2020202625A (ja) * 2019-06-06 2020-12-17 本田技研工業株式会社 管理装置、管理方法、およびプログラム
WO2023063383A1 (ja) * 2021-10-13 2023-04-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 生成方法、生成装置、及び生成プログラム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8938320B2 (en) * 2011-02-23 2015-01-20 Kabushiki Kaisha Toshiba Regional energy management system, regional energy integrated management device and regional energy integrated management method used in regional energy management system
JP5919525B2 (ja) * 2011-11-22 2016-05-18 パナソニックIpマネジメント株式会社 車両管理システム
WO2014167830A1 (ja) * 2013-04-09 2014-10-16 日本電気株式会社 電力制御システム
US20160164313A1 (en) * 2013-07-31 2016-06-09 Nec Corporation Power supply and demand adjustment system and power supply and demand adjustment method
JP5669902B1 (ja) * 2013-08-30 2015-02-18 三菱電機株式会社 空調機制御システム、センサ機器制御方法及びプログラム
US9205754B2 (en) 2013-09-30 2015-12-08 Elwha Llc Communication and control regarding electricity provider for wireless electric vehicle electrical energy transfer
US9412515B2 (en) 2013-09-30 2016-08-09 Elwha, Llc Communication and control regarding wireless electric vehicle electrical energy transfer
US9463704B2 (en) 2013-09-30 2016-10-11 Elwha Llc Employment related information center associated with communication and control system and method for wireless electric vehicle electrical energy
US10093194B2 (en) 2013-09-30 2018-10-09 Elwha Llc Communication and control system and method regarding electric vehicle for wireless electric vehicle electrical energy transfer
US10220671B2 (en) * 2015-02-23 2019-03-05 Ford Global Technologies, Llc Electrified vehicle conditioning using grid power
WO2017038753A1 (ja) * 2015-08-31 2017-03-09 ニチコン株式会社 給電装置
FR3045900B1 (fr) * 2015-12-21 2018-11-16 Electricite De France Systeme et procede de pilotage d'un dispositif de stockage d'energie
US10427548B2 (en) * 2016-10-17 2019-10-01 Eaton Intelligent Power Limited Electric vehicle charging device and method for charging electric vehicle
CN108183515B (zh) * 2016-12-08 2022-05-13 南京理工大学 一种无需增容的电动车充电监控系统
DE102017214439A1 (de) * 2017-08-18 2019-02-21 Continental Automotive Gmbh Ladeabbruchsteuerungseinrichtung zur Benachrichtigung des Nutzers
CN107499163B (zh) * 2017-08-21 2019-12-06 中国能源建设集团江苏省电力设计院有限公司 一种适用于电动汽车充电站的充电控制方法
WO2019181210A1 (ja) * 2018-03-19 2019-09-26 本田技研工業株式会社 電力融通装置、プログラム及び電力融通方法
JP7055208B2 (ja) * 2018-08-07 2022-04-15 京セラ株式会社 制御装置及び制御方法
JP2020042686A (ja) * 2018-09-13 2020-03-19 本田技研工業株式会社 電力需給管理装置
CN109606191B (zh) * 2018-12-26 2021-06-08 深圳供电局有限公司 供电控制方法、装置、计算机设备和存储介质
JP6892881B2 (ja) * 2019-01-17 2021-06-23 本田技研工業株式会社 制御装置及びプログラム
JP6918032B2 (ja) * 2019-01-17 2021-08-11 本田技研工業株式会社 送受電管理装置及びプログラム
JP6913114B2 (ja) * 2019-01-17 2021-08-04 本田技研工業株式会社 制御装置及びプログラム
CN110391663A (zh) * 2019-06-06 2019-10-29 中国电力科学研究院有限公司 一种用于对移动式储能装置进行调用的方法及系统
FR3102019B1 (fr) * 2019-10-11 2021-10-22 Nw Joules Dispositif de recharge rapide d’un vehicule automobile
CA3165601A1 (en) * 2020-01-21 2021-07-29 Adaptr, Inc. Delivery of stored electrical energy from generation sources to nano-grid systems
JP7404917B2 (ja) * 2020-02-14 2023-12-26 トヨタ自動車株式会社 電力管理システム、電力管理方法および電力管理装置
DE102020203407A1 (de) * 2020-03-17 2021-09-23 Siemens Aktiengesellschaft Energiemanagementverfahren sowie Energiemanagementsystem
US20210342958A1 (en) * 2020-04-30 2021-11-04 Uchicago Argonne, Llc Transactive framework for electric vehicle charging capacity distribution
CN113320413B (zh) * 2021-03-08 2023-06-30 深圳职业技术学院 一种居民区电动汽车充电功率控制方法
CN114050633B (zh) * 2021-06-11 2023-11-10 上海玫克生储能科技有限公司 一种锂电池储能系统的动态管控方法、装置和电子设备
US12086428B2 (en) * 2021-11-15 2024-09-10 Samsung Electronics Co., Ltd. Memory controller adjusting power, memory system including same, and operating method for memory system
JP2023079645A (ja) 2021-11-29 2023-06-08 トヨタ自動車株式会社 コンピュータ、及び電力調整方法
DE102023107416A1 (de) 2023-03-24 2024-09-26 Audi Aktiengesellschaft Verfahren zum Bestimmen eines Betriebsmodus für ein Energieversorgungssystem sowie Energieversorgungssystem und Fahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282383A (ja) 2006-04-07 2007-10-25 Kyushu Institute Of Technology 電力負荷平準化方法及びシステム
WO2008073453A1 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Power aggregation system for distributed electric resources
WO2008141246A2 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
JP2009183086A (ja) * 2008-01-31 2009-08-13 Eco Tribute:Kk 車載蓄電池を利用した電力供給システム

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271694A (ja) * 1997-03-24 1998-10-09 Nissan Motor Co Ltd 2次電池の充放電システム
JPH11313403A (ja) * 1998-04-28 1999-11-09 Honda Motor Co Ltd 電動車両共用システム
US7256516B2 (en) * 2000-06-14 2007-08-14 Aerovironment Inc. Battery charging system and method
JP3782924B2 (ja) * 2000-07-27 2006-06-07 日本電信電話株式会社 分散型エネルギーコミュニティーシステムとその制御方法
DK1470627T3 (da) * 2002-01-24 2006-12-18 Aloys Wobben Elektroköretöj som spidsbelastningsforsyningsenhed
DE10331084A1 (de) * 2003-07-09 2005-03-24 Aloys Wobben Kraftfahrzeug
US20050228553A1 (en) * 2004-03-30 2005-10-13 Williams International Co., L.L.C. Hybrid Electric Vehicle Energy Management System
US20080040263A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Business Methods in a Power Aggregation System for Distributed Electric Resources
US20080039979A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources
US7747739B2 (en) * 2006-08-10 2010-06-29 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
US20080052145A1 (en) * 2006-08-10 2008-02-28 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20090043519A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US7949435B2 (en) * 2006-08-10 2011-05-24 V2Green, Inc. User interface and user control in a power aggregation system for distributed electric resources
US20080040296A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources
US20090043520A1 (en) * 2006-08-10 2009-02-12 V2Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080040295A1 (en) * 2006-08-10 2008-02-14 V2 Green, Inc. Power Aggregation System for Distributed Electric Resources
US20080040223A1 (en) * 2006-08-10 2008-02-14 V2 Green Inc. Electric Resource Module in a Power Aggregation System for Distributed Electric Resources
US7844370B2 (en) * 2006-08-10 2010-11-30 Gridpoint, Inc. Scheduling and control in a power aggregation system for distributed electric resources
JP5168891B2 (ja) * 2006-11-28 2013-03-27 日産自動車株式会社 電動車両充電電力マネジメントシステム
WO2008073456A2 (en) * 2006-12-11 2008-06-19 Loegering Mfg. Inc. Apparatus for converting a wheeled vehicle to a tracked vehicle
US20100017045A1 (en) * 2007-11-30 2010-01-21 Johnson Controls Technology Company Electrical demand response using energy storage in vehicles and buildings
US8116915B2 (en) * 2008-03-03 2012-02-14 University Of Delaware Methods and apparatus using hierarchical priority and control algorithms for grid-integrated vehicles
US7928693B2 (en) * 2008-03-13 2011-04-19 International Business Machines Corporation Plugin hybrid electric vehicle with V2G optimization system
US8093862B2 (en) * 2008-09-03 2012-01-10 Modalis Engineering, Inc. Systems, apparatus and methods for battery charge management
US20100094496A1 (en) * 2008-09-19 2010-04-15 Barak Hershkovitz System and Method for Operating an Electric Vehicle
JP4713623B2 (ja) * 2008-09-25 2011-06-29 株式会社日立製作所 充放電管理装置
CA2749770C (en) * 2009-01-14 2021-07-20 Integral Analytics, Inc. Optimization of microgrid energy use and distribution
US8359126B2 (en) * 2009-04-30 2013-01-22 GM Global Technology Operations LLC Method to resolve a remote electrical outlet for an electrically-powered vehicle
WO2011100377A1 (en) * 2010-02-09 2011-08-18 Fleet Energy Company Usa, Llc Apparatus, system and method for grid storage
DE102011003993A1 (de) * 2010-02-15 2011-08-18 DENSO CORPORATION, Aichi-pref. Laderegler und Navigationsvorrichtung für ein Plug-In-Fahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007282383A (ja) 2006-04-07 2007-10-25 Kyushu Institute Of Technology 電力負荷平準化方法及びシステム
WO2008073453A1 (en) * 2006-12-11 2008-06-19 V2Green, Inc. Power aggregation system for distributed electric resources
WO2008141246A2 (en) * 2007-05-09 2008-11-20 Gridpoint, Inc. Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation
JP2009183086A (ja) * 2008-01-31 2009-08-13 Eco Tribute:Kk 車載蓄電池を利用した電力供給システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602901A4

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766671B2 (en) 2012-02-13 2017-09-19 Accenture Global Services Limited Electric vehicle distributed intelligence
JP2018206438A (ja) * 2012-02-13 2018-12-27 アクセンチュア グローバル サービスィズ リミテッド 電気自動車の分散型インテリジェンス
US10126796B2 (en) 2012-02-13 2018-11-13 Accenture Global Services Limited Electric vehicle distributed intelligence
JP2015510199A (ja) * 2012-02-13 2015-04-02 アクセンチュア グローバル サービスィズ リミテッド 電気自動車の分散型インテリジェンス
CN108082002A (zh) * 2012-02-13 2018-05-29 埃森哲环球服务有限公司 用于电力跟踪和电力分配的分布式智能的方法和系统
CN108082002B (zh) * 2012-02-13 2021-06-22 埃森哲环球服务有限公司 用于电力跟踪和电力分配的分布式智能的方法和系统
JP2013183521A (ja) * 2012-03-01 2013-09-12 Hitachi Ltd 移動型蓄電媒体を用いた分散電源制御装置、方法、およびプログラム
WO2014042223A1 (ja) * 2012-09-12 2014-03-20 日本電気株式会社 電力管理方法、電力管理装置およびプログラム
JPWO2014042223A1 (ja) * 2012-09-12 2016-08-18 日本電気株式会社 電力管理方法、電力管理装置およびプログラム
EP2713467A1 (en) * 2012-09-28 2014-04-02 Alcatel-Lucent Method for supporting power balancing
US10850630B2 (en) 2013-02-26 2020-12-01 Mitsubishi Heavy Industries, Ltd. On-board unit and electric vehicle management system
US9701203B2 (en) 2013-02-26 2017-07-11 Mitsubishi Heavy Industries, Ltd. On-board unit and electric vehicle management system
US10828996B2 (en) 2013-02-26 2020-11-10 Mitsubishi Heavy Industries, Ltd. On-board unit and electric vehicle management system
US9912157B2 (en) 2013-03-04 2018-03-06 Nec Corporation Energy management system and energy management method
WO2014136353A1 (ja) * 2013-03-04 2014-09-12 日本電気株式会社 エネルギーマネジメントシステムおよびエネルギーマネジメント方法
WO2015001767A1 (ja) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 制御装置、電力管理システム
JP2015035848A (ja) * 2013-08-07 2015-02-19 パナソニックIpマネジメント株式会社 電力供給システム、放電装置
JP2015100203A (ja) * 2013-11-19 2015-05-28 本田技研工業株式会社 電力品質確保補助システム及び電動車両
WO2017170741A1 (ja) * 2016-03-29 2017-10-05 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
JPWO2017170741A1 (ja) * 2016-03-29 2019-01-31 京セラ株式会社 電力管理装置、電力管理システム及び電力管理方法
JP2018093613A (ja) * 2016-12-02 2018-06-14 本田技研工業株式会社 電力伝送管理装置及び電力伝送方法
JP2018093614A (ja) * 2016-12-02 2018-06-14 本田技研工業株式会社 蓄電システム、輸送機器及び蓄電システムの制御方法
JP2017077176A (ja) * 2017-01-19 2017-04-20 三菱重工業株式会社 電気自動車
JP2018190249A (ja) * 2017-05-09 2018-11-29 三菱重工業株式会社 管理方法、サービス管理装置、サービス管理システム及びプログラム
JP2018205871A (ja) * 2017-05-31 2018-12-27 三菱重工業株式会社 調整方法、制御装置、電力調整システム及びプログラム
JP6552769B1 (ja) * 2018-10-15 2019-07-31 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
WO2020079725A1 (ja) * 2018-10-15 2020-04-23 三菱電機株式会社 エネルギー表示システム、表示装置およびエネルギー表示方法
US10994625B2 (en) 2018-10-15 2021-05-04 Mitsubishi Electric Corporation Energy display system, display device, and energy display method
JP2020096416A (ja) * 2018-12-10 2020-06-18 株式会社Nttファシリティーズ 電力供給システムおよび電力供給方法
JP7084292B2 (ja) 2018-12-10 2022-06-14 株式会社Nttファシリティーズ 電力供給システムおよび電力供給方法
JP2020202625A (ja) * 2019-06-06 2020-12-17 本田技研工業株式会社 管理装置、管理方法、およびプログラム
WO2023063383A1 (ja) * 2021-10-13 2023-04-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 生成方法、生成装置、及び生成プログラム

Also Published As

Publication number Publication date
US9340117B2 (en) 2016-05-17
EP2602901A4 (en) 2016-10-26
EP2602901B1 (en) 2021-01-06
JPWO2012017937A1 (ja) 2013-10-03
US20130184882A1 (en) 2013-07-18
EP2602901A1 (en) 2013-06-12
JP5562423B2 (ja) 2014-07-30
CN103190052B (zh) 2016-06-08
CN103190052A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
WO2012017937A1 (ja) 電力需給平準化システム
JP5666593B2 (ja) 電力需給平準化システムのバッテリ情報出力装置
JP5071545B2 (ja) 電力需給システム
CN104269896B (zh) 适用于大规模电动汽车有序充放电的控制方法
JP5490834B2 (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP5714073B2 (ja) スマートグリッドシステムおよび車載装置
JP5396549B1 (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
AU2022279109A1 (en) Electric-quantity-based path planning method for electric vehicle compatible with energy storage charging pile
US20140117933A1 (en) Charging System, Power Management Server, Vehicle Management Server, and Power Management Program
JP2014511661A (ja) 自動車のバッテリを充電するためのシステムおよび方法
JP7377854B2 (ja) 蓄電要素の受電制御方法、及び受電制御装置
JP4426504B2 (ja) ハイブリッド型電気自動車の2次電池の供給制御装置及び電力供給システム
WO2013122073A1 (ja) 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法
JP2021016243A (ja) 充放電システム
WO2018180438A1 (ja) 売電情報通知装置、売電情報通知方法および充電システム
US11705733B2 (en) Method for controlling an exchange power between a charging infrastructure and an electricity supply grid
JP5991228B2 (ja) 蓄電装置
WO2023085334A1 (ja) 移動体充電システムおよび移動体充電方法
JP5471327B2 (ja) マイクログリッドにおける充電設備管理システム
CN117124920A (zh) 双向电动车辆充电系统
US12049153B2 (en) Automated bidirectional energy transfer support selection for transient loads based on battery life modeling
US20230256855A1 (en) Electrified vehicle fleet charging control system and method
AU2022402318A1 (en) A method of charging an auxiliary battery
JP2022156628A (ja) 運用計画作成装置、充電計画作成装置、充電システム、運用計画作成方法および運用計画作成プログラム
GB2613423A (en) A method of charging an auxiliary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814563

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012527710

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011814563

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13814154

Country of ref document: US