WO2012017937A1 - 電力需給平準化システム - Google Patents
電力需給平準化システム Download PDFInfo
- Publication number
- WO2012017937A1 WO2012017937A1 PCT/JP2011/067416 JP2011067416W WO2012017937A1 WO 2012017937 A1 WO2012017937 A1 WO 2012017937A1 JP 2011067416 W JP2011067416 W JP 2011067416W WO 2012017937 A1 WO2012017937 A1 WO 2012017937A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- battery
- demand
- capacity
- charge
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/305—Communication interfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/66—Arrangements of batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/10—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
- B60L53/14—Conductive energy transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/30—Constructional details of charging stations
- B60L53/31—Charging columns specially adapted for electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/51—Photovoltaic means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/50—Charging stations characterised by energy-storage or power-generation means
- B60L53/52—Wind-driven generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/63—Monitoring or controlling charging stations in response to network capacity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/64—Optimising energy costs, e.g. responding to electricity rates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/65—Monitoring or controlling charging stations involving identification of vehicles or their battery types
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/66—Data transfer between charging stations and vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/60—Monitoring or controlling charging stations
- B60L53/68—Off-site monitoring or control, e.g. remote control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L55/00—Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
- H02J3/32—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
- H02J3/322—Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/30—AC to DC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/54—Drive Train control parameters related to batteries
- B60L2240/545—Temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/70—Interactions with external data bases, e.g. traffic centres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/16—Driver interactions by display
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
- Y02T90/167—Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
- Y04S10/126—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/12—Remote or cooperative charging
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S30/00—Systems supporting specific end-user applications in the sector of transportation
- Y04S30/10—Systems supporting the interoperability of electric or hybrid vehicles
- Y04S30/14—Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing
Definitions
- the present invention supplies electric power from an electric power company such as an electric power company to each electric power consumer such as a plant, a business place or a home through a distribution line, and manages electric power supply and demand based on electric power supply and demand information from the electric power company.
- the present invention relates to a power supply and demand leveling system that charges and discharges a battery of an electric vehicle parked at each power demander by charge and discharge commands output from the center to each power demander, thereby leveling the power supply and demand.
- the electric power company is not limited to the electric power company as a utility company, but also to ISO (Independent System Operator) and TSO (Transmission). System Operator), Independent Electricity System (IESO) Also includes system operators such as Operator).
- the electric power supply and demand leveling system described in the patent document 1 has the battery capacity of an electric vehicle used for commuting to a business place that is a power demander while being parked in the daytime, which is the peak of the electric power demand. It focuses on the fact that there is room to use. Therefore, the system releases the power stored in the battery of the electric vehicle at the peak of the power demand to compensate for the power shortage in the business site, while charging the battery at the non-peak demand of the power demand to peak the next power demand At the same time, we are trying to reduce electricity rates by leveling the power supply and demand and reducing the contract power of our business establishments.
- Patent Document 1 aims at leveling of the power supply and demand in the office as is clear from the description of reduction of the contracted power. That is, the technology of Patent Document 1 is different from the so-called smart grid concept, in which each power demander is regarded as an individual grid, and for the purpose of leveling the power supply and demand in the entire power grid constructed by these grids. is there.
- the smart grid enables bidirectional power transfer between the power utility and each power demander, and the power balance in the power demander can not be completed, for example, the excess power via the power utility Supply to the power demanders of the power supply network, thereby suppressing the imbalance of the power supply and demand among the power demanders, and also suppressing the fluctuation of the power supply and demand of the entire power supplier. Leveling has been achieved. Therefore, even when using the battery capacity of an electric vehicle parked by each power consumer, the usage should be used not only to adjust the power supply and demand to other power consumers, but also to each power consumer. However, as described above, the technology of Patent Document 1 can not be said to effectively use the battery capacity of each electric vehicle because it is limited to the utilization of the battery capacity in the power consumer.
- the present invention has been made to solve such problems, and the object of the present invention is not only to utilize the battery capacity of an electric vehicle within individual power consumers, but also to power in the entire smart grid.
- An object of the present invention is to provide a power supply and demand leveling system which can effectively utilize the battery capacity of each electric vehicle for leveling supply and demand.
- the present invention provides a plurality of power consumers, each of which is supplied with power from a power utility via a distribution line, and in which the electric vehicle is optionally parked and connected to the distribution line.
- Power supply and demand situation determination means for determining the total power supply and demand situation of the entire power demander based on each input information while inputting the power supply and demand situation of the power demander separately, and for each electric vehicle being parked from each power demander
- Battery capacity determination means for individually inputting the usable capacity by charging and discharging the mounted battery and determining the usable total capacity of all the batteries based on each input information, and each power demand from the power supply and demand situation determination means Input the individual power supply and demand situation of the consumer and the total power supply and demand situation of the entire power demander, and from the battery capacity determination means, the individual usable capacity of each battery and the total capacity of all the batteries.
- Charge / discharge command setting means for setting a charge / discharge command for each battery of each electric vehicle and outputting each set charge / discharge command to the corresponding power demander, provided for each power demander, charge / discharge command setting means And charge / discharge control means for performing charge / discharge control of the corresponding batteries based on the charge / discharge command input from the.
- each has input means for inputting, as usable capacity, a capacity that can be charged / discharged for leveling power supply / demand, and outputs the usable capacity inputted by the input means to the battery capacity determination means,
- the capacity determination means determines the total usable capacity of all the batteries based on the usable capacity input from each power demander.
- the battery capacity determination means separately inputs the usable capacity of the battery from each traveling electric car in addition to the electric car parked at each power demander, and additionally, the electric power demand as a destination
- the estimated time of arrival to the person in charge is separately input
- the charge / discharge command setting means secures the usable capacity of the battery of the electric vehicle at the estimated time of arrival of the traveling electric vehicle to the electric power consumer. It is preferable to set the charge / discharge command of each battery at present on the premise of this.
- the individual power supply and demand condition of each power demander and the total power supply and demand situation of the entire power demander and the electric vehicle parked in each power demander Based on the individual usable capacity of each mounted battery and the total usable capacity of all the batteries, a charge / discharge command is set for each battery of each electric vehicle, and each battery is charged / discharged based on these charge / discharge commands. I made it to control.
- the power consumption is set, not only the battery capacity of the electric vehicle is utilized within the individual power consumers, but also the battery capacity can be utilized by other power consumers, and as a result, the power supply and demand in the entire smart grid
- the battery capacity of each electric vehicle can be used effectively for leveling.
- connection of the electric vehicle to the distribution line makes it possible to use the battery for leveling the power supply and demand, and at a plurality of times and at each time
- the available capacity is input to the input means, and the total usable capacity of all the batteries is determined based on the available capacity for each time of each battery input, whereby each battery is within the usable capacity range.
- Charge / discharge control can be performed, and as a result, the battery capacity can be used to the maximum extent to leveling of the power supply and demand.
- the electric consumer can secure the usable capacity of the battery of the electric car. Since the charge and discharge command can be set, charge and discharge control of each battery can be more appropriately performed in order to equalize the power supply and demand.
- FIG. 1 is an entire configuration diagram showing a power supply and demand leveling system of the present embodiment.
- the power supply and demand leveling system (equivalent to a so-called smart grid) as a whole is equivalent to a power company 1 such as a power company, a plurality of power consumers 2 such as a home 2a or a factory, and an office 2b (a grid constituting a smart grid) And a power supply and demand management center 3 that manages and balances the power supply and demand in the smart grid.
- Each electric power demander 2 is connected to the electric power company 1 via the distribution line 4, and the electric power generated by the power plant (not shown) is supplied from the electric power company 1 to each electric power demander 2 via the distribution line 4 Ru.
- the power consumer 2 is provided with a power generation facility such as a solar panel or a wind power generator, if surplus power that can not be consumed by the power consumer 2 is generated by these power generation facilities, the surplus power is generated.
- FIG. 2 is a detailed view showing a typical home 2a as an example of a power demander.
- the power from the electric power company 1 passes through the power line 6 in the home and the power controller 5 (hereinafter abbreviated as PCS), which is an AC-DC bidirectional converter, a television or a refrigerator installed in the home, etc.
- PCS power controller 5
- a solar panel 8 is installed on the roof, and the electric power generated by the solar panel 8 is also supplied to the electric load 7 via the PCS 5 and is additionally used.
- a connection port 9 is provided at a predetermined position of the power consumer 2, for example, at a predetermined position such as a house outer wall in the case of the home 2a, and between the electric vehicle 10 parked by the power consumer 2 via the connection port 9 Power for battery charging and input / output of battery information to be described later are performed.
- the energy management system 13 (hereinafter referred to as EMS) that manages the power supply and demand in the home are also connected via the signal line 14.
- a power line 15 and a signal line 16 (in practice, integrated into one outside the vehicle) from the electric vehicle 10 can be arbitrarily connected to the connection port 9, and the power line 15 is a battery in the vehicle.
- the signal line 16 is connected to the motor 17.
- the motor control for causing the vehicle to travel, management of the remaining capacity of the battery 17 during traveling, control of the air conditioner, and control of the navigation device provided at the driver's seat are integrated.
- the ECU 18 electronic control unit
- the ECU 18 is configured by an input / output device, a storage device (ROM, RAM, etc.) provided for storing a control program, a control map, etc., a central processing unit (CPU), a timer counter and the like.
- ROM read-only memory
- RAM random access memory
- a touch panel display 19 or the like of the navigation device is connected to the input side of the ECU 18, and the driver can arbitrarily input information through the display 19.
- the EMS 13 of each power demander 2 is connected to the power supply and demand control center 3 described above via a signal line 20 such as a telephone line, for example.
- the EMS 13 inputs battery information from the ECU 18 of the electric vehicle 10 through the connection port 9 and the PCS 5 and calculates usable capacity (usable capacity) for balancing power supply and demand in the smart grid based on the battery information. Then, the signal is output to the power supply and demand management center 3 through the signal line 20.
- the capacity required for traveling of the electric vehicle 10 (corresponding to C2 of the second embodiment to be described later)
- the subtracted value is regarded as usable capacity and is output to the power supply and demand management center 3.
- the usable capacity of the battery 17 is not limited to the above.
- the remaining capacity of the battery 17 largely differs according to the traveling condition up to that point, and the remaining capacity is extremely reduced and falls below the lower limit of the usable area.
- it is necessary to charge immediately to prepare for the next run. Therefore, it differs from the case where it can be used on the discharge side (the side that compensates for the shortage of power supply and demand) and the charge side (the side that consumes the excess of power supply and demand) in the usable area as in the normal battery 17.
- the electric vehicle 10 in which the remaining capacity of the battery 17 is reduced may use the battery capacity only on the charging side regardless of the usable capacity until the charging is completed.
- the EMS 13 determines the power demand / supply status supplied from the power provider 1 to the power demander 2 based on the operation status of the PCS 5, and outputs the determination result to the power demand / supply management center 3 via the signal line 20.
- the power demander 2 is a factory or a business office, it is almost the same as in the case of a home, and the number of parked electric vehicles 10 increases. The only difference is that the reuse battery 22 is provided.
- the power supply and demand management center 3 can grasp the presence or absence of parking of the electric vehicle 10 at each power demander 2 and the usable capacity of the battery 17 at the time of parking, and the power supply and demand situation of each power demander 2 Can understand Based on the input information, the power supply and demand management center 3 controls each power demander 2 in order to suppress the fluctuation of the power supply and demand fluctuation of the entire power demander 2 (in the smart grid) and the imbalance of the power supply and demand among the power demanders 2.
- a charge / discharge command is output to the EMS 13 of 2.
- the EMS 13 of each power consumer 2 causes the PCS 5 to function as an AC-DC converter, and performs charge / discharge control of the battery 17 of the parked electric vehicle 10 to achieve equalization of power supply / demand. Yes (charging and discharging control means). Therefore, the processing procedure for setting the charge / discharge command for each battery 17 based on the power demand / supply status of each power consumer 2 and the usable capacity of the battery 17 of each electric vehicle 10 will be described in detail according to the schematic diagram shown in FIG. .
- the power demand / supply status according to the excess or deficiency of power is successively determined according to time series by the EMS 13, and the power demand / supply status is input to the power demand / supply status determination unit 3a of the power demand / supply management center 3.
- Ru the power demand / supply status determination unit 3a
- the total power demand / supply status of the entire power demander 2 is calculated as the sum of the input power demand / supply status of each power demander 2 (power demand / supply status determination means).
- the situation is input to the comparison unit 3b.
- the total power supply / demand situation also fluctuates according to the time series according to the fluctuation of the individual power supply / demand situation, and the shortage and excess of the power supply / demand will occur.
- the usable capacity of the battery 17 of the electric vehicle 10 parked in each power demander 2 is sequentially determined by the EMS 13, and these usable capacities are respectively input to the battery capacity determination unit 3c of the power supply and demand management center 3. Ru.
- the usable total capacity of all the batteries 17 is calculated as the sum of the input usable capacities of the respective batteries 17 (battery capacity determination means), and this usable total capacity is stored in the comparison unit 3b. It is input.
- the total usable capacity obtained by subtracting the capacity necessary for traveling from the total capacity is a constant value according to the specification of the battery 17, the total number of electric vehicles 10 parked by each power consumer 2 fluctuates Thus, the total usable capacity also varies according to time series.
- comparison section 3b the total power demand / supply status of power demander 2 as a whole and the total usable capacity of all batteries 17 are sequentially compared, and the comparison result is input to charge / discharge command setting section 3d.
- the total power supply and demand situation represents the excess and deficiency of the electric power supply and demand of the entire power demander 2 in time series, and the usable total capacity is the same as the time series of the total capacity of all batteries 17 usable to suppress the excess and deficiency of electric power supply and demand. Is represented by. Then, if there is a shortage of power supply and demand at that time, the power shortage will be compensated by the discharge of the battery 17, and if the power supply and demand is excessive, the power surplus will be stored by the charging of the battery 17.
- the amount of charge and discharge of the battery 17 as a whole in order to suppress the fluctuation of the power supply and demand of the entire power demander 2 by comparing the total power supply and demand condition of the whole and the usable total capacity of the entire battery 17 You can guess what is required. For example, the required charge / discharge amounts of all the batteries 17 set from such a viewpoint are input to the charge / discharge command setting unit 3d as the comparison result.
- the charge / discharge command setting unit 3d receives, as a comparison result from the comparison unit 3b, together with the required charge / discharge amount of all the batteries 17, the individual power demand / supply situation of each power demander 2 and the usable capacity of each battery 17 described above. Be done.
- the charge / discharge command setting unit 3d sets a charge / discharge command for each battery 17 so as to satisfy the following requirements (charge / discharge command setting means).
- various evaluation functions are set in advance based on the above requirements 1) to 3), and in the charge / discharge command setting unit 3d, the optimum charge / discharge amount of each battery 17 is the charge / discharge command based on those evaluation functions.
- Set as The set charge / discharge command is output from the charge / discharge command setting unit 3d to each power demander 2.
- charge and discharge control of the battery 17 of each electric vehicle 10 in parking is controlled by the EMS 13.
- the charge and discharge control of each battery 17 as described above for example, when the power supply and demand of the entire power demander 2 is insufficient, the power shortage is compensated by the discharge of each battery 17 and each power supply and demand is excessive.
- the charging of the battery 17 stores the excess power, and as a result, fluctuation of the power supply and demand in the time series of the entire power demander 2 is suppressed.
- the usable capacity is different according to the specification of the battery 17 of each electric vehicle 10, when the required charge amount of all the batteries 17 is distributed to each battery 17, the available capacity is smaller than that of the battery 17 having a smaller usable capacity.
- a larger charge / discharge amount is set as the charge / discharge command for the battery 17 having a large usable capacity, whereby the charge / discharge load of each battery 17 can be equalized.
- the total power supply and demand condition of the entire power demander 2 is determined based on the individual power supply and demand situation of each power demander 2.
- the total usable capacity of all batteries 17 is determined based on the individual usable capacity of each power consumer, and based on the comparison result between the total power demand / supply condition of the entire power demander 2 and the total usable capacity of all batteries 17, power consumer 2
- the required charge and discharge amount of all the batteries 17 necessary to suppress the fluctuation of the overall power supply and demand is determined, and the required charge and discharge amount and the individual power demand and supply conditions of each power demander 2 described above and the individual of each battery 17
- a charge and discharge command is set for each battery 17 based on the usable capacity, and charge and discharge control of each battery 17 is performed.
- the charge and discharge command of each battery 17 can be set so that the fluctuation of the power supply and demand in the time series of the power demander 2 as a whole can be suppressed.
- the charge and discharge command of each battery 17 can be set so as to reduce.
- charge and discharge commands of each battery 17 based on individual information (power supply and demand condition, usable capacity) of each power demander 2 and information (total power supply and demand condition, usable total capacity) of the entire power demander 2
- individual information power supply and demand condition, usable capacity
- information total power supply and demand condition, usable total capacity
- the power supply and demand leveling system of the present embodiment has the same basic configuration as that described in the first embodiment, and the difference lies in the setting of the usable capacity of each battery 17. That is, in the first embodiment, the battery capacity necessary for traveling the electric vehicle 10 is always secured, and the surplus is made the usable capacity. Therefore, the battery capacity that can be used to level the power supply and demand is so large. It was not.
- FIG. 4 is a graph showing an input example of the usable capacity of the battery 17 for each time with respect to the electric vehicle 10 parked by a certain power demander 2.
- the vertical axis in the figure indicates the battery capacity from 0 to the total capacity Cmax, and the horizontal axis in the figure is the time at which the time when the electric vehicle 10 is connected to the connection port 9 of the power consumer 2 It shows.
- the input of the usable capacity of the battery 17 at each time is performed using the required capacity (total capacity Cmax ⁇ usable capacity) as the battery capacity to be secured as an index.
- C1 is input to secure the minimum battery capacity before time t1 when there is no plan to use, and battery capacity is gradually increased in the period from time t1 to t2 when there is a possibility of starting to use at the time of schedule change.
- C2 (determined in consideration of the distance to be traveled, etc.) is input as the battery capacity capable of traveling.
- the usable capacity is set as a value obtained by subtracting the required capacity C2 for traveling from the total capacity Cmax.
- the electric vehicle 10 starts to be used before the use start time t2. Large usable capacity is secured.
- FIG. 4 is only one input example of the usable capacity, and graphs of various characteristics are set according to the operation situation of the electric vehicle 10. Further, in the above-described example, although the usable capacity until the next start of use is input, the present invention is not limited to this. For example, the usable capacity until the next start of use may be input, The available capacity up to one month later may be input based on the operation schedule of the electric vehicle 10 during the one month period.
- the actual driver's input is performed using, for example, the touch panel display 19 for navigation (input means).
- a blank graph (only the vertical axis and the horizontal axis) similar to FIG. 4 is displayed on the display 19, and the intersection point between the time when the driver plans to start using the electric vehicle 10 and the required capacity at each time Are sequentially touched to determine t1 and C1 points and t2 and C2 points, and a graph is created by automatically connecting the intersections thereof.
- the input of the usable capacity for each time is not limited to this example, and for example, the times t1 and t2 and the required capacities C1 and C2 may be key input.
- the usable capacity for each time set as described above is input from the ECU 18 to the EMS 13 through the connection port 9 and the PCS 5, and is further output from the EMS 13 to the power supply and demand management center 3.
- the power supply and demand management center 3 based on the usable capacity thus input by the driver for each electric vehicle 10, the charge / discharge command of each battery 17 is set according to the processing procedure of FIG. 3 as in the first embodiment. .
- the charge / discharge status of the battery 17 is indicated by a broken line.
- each power demander 2 controls the battery 17 to the charge side to transmit excess power to the battery 17.
- the battery 17 is controlled to the discharge side to compensate for the power shortage when the power supply and demand in the smart grid is insufficient, and these charge and discharge control is always performed within the usable capacity range. For example, as shown between time t1 and t2 in the figure, if the battery capacity deviates from the lower limit of the usable capacity during discharge (less than the required capacity), the battery capacity is suppressed to the lower limit of the usable capacity Ru.
- FIG. 1 the battery capacity deviates from the lower limit of the usable capacity during discharge (less than the required capacity
- the start of use of the electric vehicle 10 is delayed from the scheduled time t2 to t2 ′, and such a shift in the scheduled travel start often occurs, but after the time t2 Since the travelable battery capacity C2 is continuously secured, vehicle travel can be started without any problem.
- the power supply and demand balance of the mounted battery 17 is performed based on the operation schedule of the electric vehicle 10 parked in each power consumer 2 Therefore, the driver is made to input the usable capacity available for each time, and the input usable capacity is applied to the setting of the charge / discharge command of the battery 17. Therefore, each battery 17 is charge / discharge controlled within the usable capacity range, and as a result, the battery capacity can be utilized to the maximum extent for leveling of the power supply and demand.
- the charge / discharge range of the battery 17 is limited based on the usable capacity. In addition to this, frequent charge / discharge or rapid charge / discharge causing the battery deterioration is prevented. You may take measures. Specifically, an integrated power limit value for limiting the integrated value of input / output power to battery 17 and a maximum power limit value for limiting the maximum value of input / output power to battery 17 are set in advance. However, when the integrated value of input / output power reaches the integrated power limit value at the time of charge / discharge control, charge / discharge control is stopped at that time, or rapid charge / discharge of battery 17 is required based on the power supply / demand situation.
- the maximum value of the input / output power of the actual battery 17 may be suppressed to the maximum power limit value.
- the integrated power limit value and the maximum power limit value are values unique to the battery set as values near the upper limit that do not cause the battery 17 to deteriorate rapidly, the battery 17 has already deteriorated in the use process, or If the temperature deviates from the normal operating temperature range, the appropriate limit value fluctuates accordingly. Therefore, the integrated power limit value or the maximum power limit value may be corrected based on the use period integrated by the ECU 18 during charging and discharging of the battery 17 or the battery temperature detected by the temperature sensor 31 (shown in FIG. 2) In this way, charge / discharge control of the battery 17 can be executed more accurately.
- the power supply and demand leveling system of this embodiment has the same basic configuration as that described in the first embodiment, and the difference is that not only the electric vehicle 10 parked at each power consumer 2 but also while traveling The electric vehicle 10 is also to be considered. That is, even if the electric vehicle 10 is currently traveling and can not be used to level the power supply and demand, if the estimated arrival time to the power consumer 2 who is the destination is known, the battery 17 can be used for the estimated arrival time. It is possible to have the prospect of securing extra usable capacity.
- charge / discharge control of each battery 17 is performed by setting the charge / discharge command of each battery 17 at present based on the premise that the usable capacity of the battery 17 is increased by the power demander 2 at the scheduled arrival time. In the following, the process will be described in detail.
- the electric vehicle 10 is equipped with a mobile communication system so that the telematic service can be used. As shown in FIG. 1, the power supply and demand management center 3 can be used by using the mobile communication service even while traveling. Communication with is possible.
- the usable capacity of the battery 17 reflecting the battery capacity of the electric vehicle 10 in operation by the power consumer 2, the estimated time of arrival of the electric vehicle 10 to the electricity consumer 2 and the use of the battery 17 It is desirable to predict the remaining capacity of the battery 17 upon arrival, taking into consideration the case where the available capacity is necessary, and the remaining capacity of the battery 17 is less than the lower limit of the available capacity in the previous travel.
- the driver is made to input various information such as the power demander 2 at the destination, the estimated arrival time, and the travel route from the current point to the power demander 2.
- the ECU 18 determines the estimated arrival time to the power consumer 2 and determines the current remaining capacity of the battery 17 and the travel distance determined from the travel route to the power consumer 2
- the predicted remaining capacity of the battery 17 at the time of arrival at 2 is calculated.
- the power consumption of the battery 17 is affected not only by the travel distance but also by the acceleration / deceleration frequency of the vehicle and the unevenness of the road surface, so the travel distance is based on traffic information obtained from VICS etc. or road information obtained from the navigation system.
- the predicted remaining capacity of the battery 17 calculated from the above may be corrected.
- the ECU 18 manages the power supply and demand of the information and the available capacity of the battery 17 mounted thereon by the mobile communication system.
- the calculation accuracy of the estimated remaining capacity of the battery 17 improves as it approaches the destination, so the estimated remaining capacity is calculated and updated at predetermined intervals from the current position obtained from the navigation system and the current remaining capacity of the battery. Then, they may be transmitted to the power supply and demand management center 3 one by one.
- the power supply and demand management center 3 based on the information received from each of the electric vehicles 10 while traveling, it is expected that the battery capacity of the electric vehicles 10 can be secured at the estimated arrival time of the electric vehicles 10 in each of the power consumers 2.
- I can do it. More specifically, when the estimated remaining capacity of battery 17 is within the usable area, it can be considered that extra available battery capacity can be secured for both charging and discharging within the usable capacity at the estimated arrival time. If the predicted remaining capacity is lower than the lower limit of the usable area, it can be considered that the battery capacity available only for the charging side (both charging and discharging after completion of charging) can be secured extra at the estimated arrival time.
- the estimated remaining capacity of the battery 17 is not necessarily required, and only the estimated arrival time to the power consumer 2 and the usable capacity of the battery 17 are transmitted. You may As described above in detail, according to the power supply and demand leveling system of the present embodiment, the scheduled arrival time for the power consumer 2 of the destination to the power supply and demand management center 3 from the electric vehicle 10 during traveling Of the remaining capacity of the battery 17 and the usable capacity of the battery 17 are transmitted. Therefore, in the power supply and demand management center 3, it is predicted that the battery capacity of the electric vehicle 10 can be secured at the estimated arrival time of the electric vehicle 10 by each power demander 2. Under the premise, each current battery 17 Since the charge / discharge command can be set, charge / discharge control of each battery 17 can be more appropriately performed in order to equalize the power supply and demand.
- the aspect of the present invention is not limited to this embodiment.
- it is necessary to suppress the fluctuation of the power supply and demand of the entire power consumer 2 based on the comparison result of the total power supply and demand condition of the entire power consumer 2 and the usable total capacity of all the batteries 17.
- the required charge and discharge amount of all the batteries 17 is determined, the required charge and discharge amount of all the batteries 17 need not necessarily be calculated.
- each battery based on the individual power demand / supply status of each power demander 2 and the total power demand / supply status of the entire power demander 2 and the individual usable capacity of each battery 17 and the usable total capacity of all the batteries 17
- the charge / discharge command of may be set.
- the electric vehicle in the present invention is not limited to the electric vehicle 10 shown in the above embodiment, and may be a plug-in hybrid vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Secondary Cells (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
Abstract
Description
System Operator)、IESO(Independent Electricity System
Operator)などの系統運用者も含む。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、個々の電力需要者内で電気自動車のバッテリ容量を利用するだけに留まらず、スマートグリッド全体における電力需給の平準化に各電気自動車のバッテリ容量を有効利用することができる電力需給平準化システムを提供することにある。
さらに、走行中の電気自動車の電力需要者への到着予定時刻において、この電気自動車のバッテリの使用可能容量を電力需要者で確保できる見通しをたて、その前提の下で今現在の各バッテリの充放電指令を設定できるので、電力需給を平準化するために各バッテリの充放電制御を一層適切に行うことができる。
以下、本発明を具体化した電力需給平準化システムの第1実施形態を説明する。
図1は本実施形態の電力需給平準化システムを示す全体構成図である。
全体として電力需給平準化システム(所謂スマートグリッドに相当)は、電力会社などの電力事業者1、家庭2a或いは工場、事業所2bなどの複数の電力需要者2(スマートグリッドを構成するグリッドに相当し、以下スマートグリッドともいう)、及びスマートグリッド内の電力需給を管理して平準化を図る電力需給管理センター3から構成されている。
図2は電力需要者の一例として一般的な家庭2aを示した詳細図である。この場合には、電力事業者1からの電力が家庭内の電力線6を経てAC-DC双方向変換器であるパワーコントローラ5(以下、PCSと略す)や家庭内に設置されたテレビや冷蔵庫などの電気負荷7に供給される。
電力需要者2の所定位置、例えば家庭2aの場合には家屋外壁などの所定位置に接続ポート9が備えられ、この接続ポート9を介して電力需要者2に駐車された電気自動車10との間でバッテリ充電のための電力、及び後述するバッテリ情報の入出力が行われる。
この接続ポート9には、電気自動車10からの電力線15及び信号線16(実際には車両外では1本に集約されている)が任意に接続可能となっており、車両内において電力線15はバッテリ17に接続され、信号線16は、車両を走行させるためのモータ制御、走行中のバッテリ17の残存容量の管理、エアコンディショナの制御、運転席に設けられたナビゲーション装置の制御などを統合的に行うECU18(電子制御ユニット)に接続されている。
図示しないがECU18は、入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタなどにより構成されている。ECU18の入力側には、ナビゲーション装置のタッチパネル式ディスプレイ19などが接続され、運転者がディスプレイ19により任意に情報を入力可能となっている。
なお、図1に示すように、電力需要者2が工場、事業所であっても家庭の場合とほとんど同様であり、電気自動車10の駐車台数が増加したり、電気自動車10のバッテリ17に加えてリユースバッテリ22が備えられたりする点が相違するだけである。
そこで、各電力需要者2の電力需給状況及び各電気自動車10のバッテリ17の使用可能容量に基づき各バッテリ17に対する充放電指令を設定するための処理手順を図3に示す模式図に従って詳述する。
一方、各電力需要者2に駐車されている電気自動車10のバッテリ17の使用可能容量がEMS13により逐次判定され、これらの使用可能容量は電力需給管理センター3のバッテリ容量判定部3cにそれぞれ入力される。バッテリ容量判定部3cでは、入力された各バッテリ17の使用可能容量の総和として全バッテリ17の使用可能総容量が算出され(バッテリ容量判定手段)、この使用可能総容量は上記した比較部3bに入力される。
比較部3bでは、入力された電力需要者2全体の総電力需給状況及び全バッテリ17の使用可能総容量が逐次比較され、その比較結果が充放電指令設定部3dに入力される。
そして、その時点において電力需給が不足する場合にはバッテリ17の放電により電力不足分が補われ、電力需給が過剰な場合にはバッテリ17の充電により電力過剰分が蓄えられるが、電力需要者2全体の総電力需給状況と全バッテリ17の使用可能総容量とを比較することにより、電力需要者2全体での電力需給の変動を抑制するために、全体としてどの程度のバッテリ17の充放電量が要求されるかを推測できる。例えば、このような観点で設定された全バッテリ17の要求充放電量が上記した比較結果として充放電指令設定部3dに入力される。
充放電指令設定部3dには、比較部3bからの比較結果として全バッテリ17の要求充放電量と共に、上記した各電力需要者2の個別の電力需給状況及び各バッテリ17の使用可能容量が入力される。充放電指令設定部3dでは、以下の要件を満足するように各バッテリ17に対する充放電指令が設定される(充放電指令設定手段)。
2)各電力需要者2間の電力需給の不均衡を抑制すること。
3)上記1),2)を満足した上で、個々の使用可能容量内で劣化防止のために各バッテリ17の充放電負荷を可能な限り軽減すること。
全バッテリ17の要求充放電量を満足するように各電力需要者2に駐車された電気自動車10のバッテリ17を充放電制御すれば、上記要件1)は満たされる。但し、上記要件2)や要件3)を満足するには、各電力需要者2の個別の電力需給状況を把握する必要があり、また、各バッテリ17の使用可能容量を把握する必要もある。そこで、これらの情報も充放電指令設定部3dに入力している。
以上のような各バッテリ17の充放電制御により、例えば電力需要者2全体の電力需給が不足する場合には各バッテリ17の放電により電力不足分が補われ、電力需給が過剰な場合には各バッテリ17の充電により電力過剰分が蓄えられ、結果として電力需要者2全体の時系列での電力需給の変動が抑制される。
また、各電気自動車10のバッテリ17の仕様に応じて使用可能容量が相違することから、全バッテリ17の要求充電量を各バッテリ17に振り分ける際には、使用可能容量が小のバッテリ17よりも使用可能容量が大のバッテリ17に対してより大きな充放電量が充放電指令として設定され、これにより個々のバッテリ17の充放電負荷の均等化が図られる。
即ち、各電力需要者2の個別の情報(電力需給状況、使用可能容量)と電力需要者2全体での情報(総電力需給状況、使用可能総容量)とに基づき各バッテリ17の充放電指令を設定していることから、上記特許文献1に記載された技術のように個々の電力需要者2内で電気自動車10のバッテリ容量を利用するだけに留まらず、他の電力需要者2でのバッテリ容量の利用も可能となり、結果としてスマートグリッド全体における電力需給の平準化に各電気自動車10のバッテリ容量を有効利用することができる。
次に、本発明を別の電力需給平準化システムに具体化した第2実施形態を説明する。
本実施形態の電力需給平準化システムは、第1実施形態で説明したものと基本的な構成は同一であり、相違点は各バッテリ17の使用可能容量の設定にある。即ち、第1実施形態では、電気自動車10の走行に必要なバッテリ容量を常に確保し、余剰分を使用可能容量としていることから、電力需給の平準化のために利用できるバッテリ容量はそれほど多くはなかった。そこで、本実施形態では、各電力需要者2において駐車中の電気自動車10の今後の運用予定に基づき、電気自動車10のバッテリ17が有する全体容量の内、どの程度の容量を電力需要の平準化に利用してもよいかを使用可能容量として予め時刻毎に運転者に入力させ、これにより使用可能容量の増大を図ったものであり、以下、当該処理を重点的に詳述する。
時刻毎のバッテリ17の使用可能容量の入力は、確保しておきたいバッテリ容量である必要容量(全体容量Cmax-使用可能容量)を指標として行われる。図の入力例では、時刻t1以前では電気自動車10を使用する予定が全くなく、時刻t2で使用開始の予定であるが、予定変更により時刻t1~t2までの期間内で電気自動車10の使用開始を早める可能性がある場合を示している。
このため、使用予定がない時刻t1以前では最低限のバッテリ容量を確保すべくC1が入力され、予定変更のときに使用開始する可能性がある時刻t1~t2の期間ではバッテリ容量を次第に増加させ、ほぼ確実に使用開始する時刻t2以降では、走行可能なバッテリ容量としてC2(走行予定の距離などを考慮して決定)が入力されている。
言うまでもないが、図4は使用可能容量の入力例の一つに過ぎず、電気自動車10の運用状況に応じて種々の特性のグラフが設定される。また、上記した例では、次回の使用開始時までの使用可能容量を入力したが、これに限ることはなく、例えば次々回の使用開始時までの使用可能容量を入力するようにしてもよいし、1ヶ月の期間中の電気自動車10の運用予定に基づき、1ヶ月後までの使用可能容量を入力するようにしてもよい。
以上のようにして設定された時刻毎の使用可能容量はECU18から接続ポート9及びPCS5を経てEMS13に入力され、さらにEMS13から電力需給管理センター3に出力される。電力需給管理センター3では、このようにして運転者が電気自動車10毎に入力した使用可能容量に基づき、第1実施形態と同じく図3の処理手順に従って各バッテリ17の充放電指令が設定される。
例えば、図中の時刻t1~t2間に示すように、放電中にバッテリ容量が使用可能容量の下限から逸脱する(必要容量を下回る)場合には、バッテリ容量は使用可能容量の下限に抑制される。なお、図4では、電気自動車10の使用開始が予定時刻t2に対してt2’まで遅延しており、このような走行開始予定のズレは往々にして発生することであるが、時刻t2以降は走行可能なバッテリ容量C2が確保され続けるため、何ら問題なく車両走行を開始できる。
具体的には、予めバッテリ17への入出力電力の積算値を制限するための積算電力制限値、及びバッテリ17への入出力電力の最大値を制限するための最大電力制限値を設定しておき、充放電制御時において入出力電力の積算値が積算電力制限値に達すると、その時点で充放電制御を中止したり、或いは電力需給状況に基づき急激なバッテリ17の充放電が求められていても、実際のバッテリ17の入出力電力の最大値を最大電力制限値に抑制したりすればよい。これらの処理により、頻繁なバッテリ17への充放電及び急激なバッテリ17への充放電を防止でき、バッテリ17の充放電負荷を一層軽減することができる。
次に、本発明を別の電力需給平準化システムに具体化した第3実施形態を説明する。
本実施形態の電力需給平準化システムは、第1実施形態で説明したものと基本的な構成は同一であり、相違点は各電力需要者2に駐車中の電気自動車10のみならず、走行中の電気自動車10も考慮する点にある。即ち、今現在走行中で電力需給の平準化に利用できない電気自動車10であっても、目的地である電力需要者2への到着予定時刻が判明していれば、到着予定時刻にはバッテリ17の使用可能容量を余分に確保できる見通しをたてることができる。そこで、到着予定時刻にその電力需要者2でバッテリ17の使用可能容量が増加するという前提の下で、今現在の各バッテリ17の充放電指令を設定することにより、各バッテリ17の充放電制御を一層適切に行うものであり、以下、当該処理を重点的に詳述する。
電力需要者2において走行中の電気自動車10のバッテリ容量を反映したバッテリ17の使用可能容量の見通しをたてるには、当該電気自動車10の電気需要者2への到着予定時刻及びバッテリ17の使用可能容量が必要であり、さらに、それまでの走行でバッテリ17の残存容量が使用可能容量の下限を下回っている場合を考慮して、到着時のバッテリ17の残存容量を予測することが望ましい。
電力需給管理センター3では、走行中の各電気自動車10からの受信された情報に基づき、各電力需要者2において電気自動車10の到着予定時刻には当該電気自動車10のバッテリ容量を確保できる見通しをたてることができる。
より詳しくは、バッテリ17の予測残存容量が使用可能領域内にある場合には、到着予定時刻において使用可能容量内で充放電共に利用可能なバッテリ容量を余分に確保できると見なせ、バッテリ17の予測残存容量が使用可能領域の下限を下回っている場合には、到着予定時刻において充電側のみ(充電完了後は充放電共に)に利用可能なバッテリ容量を余分に確保できると見なせる。
これにより電力需給の過剰を抑制できるだけでなく、当該電気自動車10のバッテリ17の充電を迅速に完了できる。このため、電気自動車10をより早期に使用可能にできると共に、電力需給の平準化のためにバッテリ17を充放電共に利用可能な状態に速やかに移行させることができる。勿論、この利用態様は一例であり、他にも種々の充放電指令の設定を行うことにより、バッテリ充放電制御の最適化を図ることができる。
以上詳述したように本実施形態の電力需給平準化システムによれば、走行中の電気自動車10から電力需給管理センター3に目的地の電力需要者2への到着予定時刻、到着時のバッテリ17の予測残存容量、及びバッテリ17の使用可能容量を送信するようにした。従って、電力需給管理センター3では、各電力需要者2で電気自動車10の到着予定時刻には当該電気自動車10のバッテリ容量を確保できる見通しをたて、その前提の下で今現在の各バッテリ17の充放電指令を設定できるため、電力需給を平準化するために各バッテリ17の充放電制御を一層適切に行うことができる。
更に、本発明における電気自動車としては上記実施形態に示した電気自動車10に限らずプラグインハイブリッド車であってもよい。
2 電力需要者
3a 電力需給状況判定部(電力需給状況判定手段)
3c バッテリ容量判定部(バッテリ容量判定手段)
3d 充放電指令設定部(充放電指令設定手段)
4 配電線
10 電気自動車
13 EMS(充放電制御手段)
17 バッテリ
19 ディスプレイ(入力手段)
P2010-0353/WO<FPMC-1485PC>
Claims (3)
- 電力事業者から配電線を介してそれぞれ電力を供給されると共に、電気自動車が任意に駐車されて上記配電線に接続される複数の電力需要者と、
各電力需要者の電力需給状況を個別に入力すると共に、各入力情報に基づき電力需要者全体の総電力需給状況を判定する電力需給状況判定手段と、
上記各電力需要者から上記駐車中の各電気自動車に搭載されたバッテリについて充放電により使用可能な容量を個別に入力すると共に、各入力情報に基づき全バッテリの使用可能な総容量を判定するバッテリ容量判定手段と、
上記電力需給状況判定手段から各電力需要者の個別の電力需給状況及び電力需要者全体の総電力需給状況を入力すると共に、上記バッテリ容量判定手段から各バッテリの個別の使用可能容量及び全バッテリの使用可能総容量を入力し、これらの情報に基づき、上記電力需要者全体の電力需給の変動及び各電力需要者間の電力需給の不均衡を共に抑制して電力需給を平準化させるために必要な充放電指令を上記各電気自動車のバッテリ毎に設定し、設定した各充放電指令を対応する上記電力需要者に出力する充放電指令設定手段と、
上記各電力需要者にそれぞれ備えられ、上記充放電指令設定手段から入力された充放電指令に基づき対応するバッテリをそれぞれ充放電制御する充放電制御手段と
を備えたことを特徴とする電力需給平準化システム。 - 上記各電力需要者は、駐車されている上記各電気自動車の運用予定に基づき、上記配電線への電気自動車の接続以降の複数の時刻、及び各時刻において該電気自動車に搭載されているバッテリの全体容量の内、上記電力需給の平準化のために充放電を許諾できる容量を上記使用可能容量として入力する入力手段をそれぞれ備え、該入力手段により入力された使用可能容量を上記バッテリ容量判定手段に出力し、
上記バッテリ容量判定手段は、上記各電力需要者から入力された使用可能容量に基づき上記全バッテリの使用可能総容量を判定することを特徴とする請求項1記載の電力需給平準化システム。 - 上記バッテリ容量判定手段は、上記各電力需要者に駐車中の電気自動車に加えて、走行中の各電気自動車からも上記バッテリの使用可能容量を個別に入力すると共に、加えて目的地である電力需要者への到着予定時刻を個別に入力し、
上記充放電指令設定手段は、上記走行中の電気自動車の上記電力需要者への到着予定時刻において、該電気自動車のバッテリの使用可能容量が該電力需要者で確保されることを前提として、現在の各バッテリの充放電指令を設定することを特徴とすることを特徴とする請求項1または2記載の電力需給平準化システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012527710A JP5562423B2 (ja) | 2010-08-05 | 2011-07-29 | 電力需給平準化システム |
US13/814,154 US9340117B2 (en) | 2010-08-05 | 2011-07-29 | Power supply and demand leveling system |
EP11814563.0A EP2602901B1 (en) | 2010-08-05 | 2011-07-29 | Power demand-and-supply equalization system |
CN201180038685.3A CN103190052B (zh) | 2010-08-05 | 2011-07-29 | 电力供需调平系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-176162 | 2010-08-05 | ||
JP2010176162 | 2010-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012017937A1 true WO2012017937A1 (ja) | 2012-02-09 |
Family
ID=45559438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/067416 WO2012017937A1 (ja) | 2010-08-05 | 2011-07-29 | 電力需給平準化システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9340117B2 (ja) |
EP (1) | EP2602901B1 (ja) |
JP (1) | JP5562423B2 (ja) |
CN (1) | CN103190052B (ja) |
WO (1) | WO2012017937A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013183521A (ja) * | 2012-03-01 | 2013-09-12 | Hitachi Ltd | 移動型蓄電媒体を用いた分散電源制御装置、方法、およびプログラム |
WO2014042223A1 (ja) * | 2012-09-12 | 2014-03-20 | 日本電気株式会社 | 電力管理方法、電力管理装置およびプログラム |
EP2713467A1 (en) * | 2012-09-28 | 2014-04-02 | Alcatel-Lucent | Method for supporting power balancing |
WO2014136353A1 (ja) * | 2013-03-04 | 2014-09-12 | 日本電気株式会社 | エネルギーマネジメントシステムおよびエネルギーマネジメント方法 |
WO2015001767A1 (ja) * | 2013-07-03 | 2015-01-08 | パナソニックIpマネジメント株式会社 | 制御装置、電力管理システム |
JP2015035848A (ja) * | 2013-08-07 | 2015-02-19 | パナソニックIpマネジメント株式会社 | 電力供給システム、放電装置 |
JP2015510199A (ja) * | 2012-02-13 | 2015-04-02 | アクセンチュア グローバル サービスィズ リミテッド | 電気自動車の分散型インテリジェンス |
JP2015100203A (ja) * | 2013-11-19 | 2015-05-28 | 本田技研工業株式会社 | 電力品質確保補助システム及び電動車両 |
JP2017077176A (ja) * | 2017-01-19 | 2017-04-20 | 三菱重工業株式会社 | 電気自動車 |
US9701203B2 (en) | 2013-02-26 | 2017-07-11 | Mitsubishi Heavy Industries, Ltd. | On-board unit and electric vehicle management system |
WO2017170741A1 (ja) * | 2016-03-29 | 2017-10-05 | 京セラ株式会社 | 電力管理装置、電力管理システム及び電力管理方法 |
JP2018093614A (ja) * | 2016-12-02 | 2018-06-14 | 本田技研工業株式会社 | 蓄電システム、輸送機器及び蓄電システムの制御方法 |
JP2018093613A (ja) * | 2016-12-02 | 2018-06-14 | 本田技研工業株式会社 | 電力伝送管理装置及び電力伝送方法 |
JP2018190249A (ja) * | 2017-05-09 | 2018-11-29 | 三菱重工業株式会社 | 管理方法、サービス管理装置、サービス管理システム及びプログラム |
JP2018205871A (ja) * | 2017-05-31 | 2018-12-27 | 三菱重工業株式会社 | 調整方法、制御装置、電力調整システム及びプログラム |
JP6552769B1 (ja) * | 2018-10-15 | 2019-07-31 | 三菱電機株式会社 | エネルギー表示システム、表示装置およびエネルギー表示方法 |
JP2020096416A (ja) * | 2018-12-10 | 2020-06-18 | 株式会社Nttファシリティーズ | 電力供給システムおよび電力供給方法 |
JP2020202625A (ja) * | 2019-06-06 | 2020-12-17 | 本田技研工業株式会社 | 管理装置、管理方法、およびプログラム |
WO2023063383A1 (ja) * | 2021-10-13 | 2023-04-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 生成方法、生成装置、及び生成プログラム |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8938320B2 (en) * | 2011-02-23 | 2015-01-20 | Kabushiki Kaisha Toshiba | Regional energy management system, regional energy integrated management device and regional energy integrated management method used in regional energy management system |
JP5919525B2 (ja) * | 2011-11-22 | 2016-05-18 | パナソニックIpマネジメント株式会社 | 車両管理システム |
WO2014167830A1 (ja) * | 2013-04-09 | 2014-10-16 | 日本電気株式会社 | 電力制御システム |
US20160164313A1 (en) * | 2013-07-31 | 2016-06-09 | Nec Corporation | Power supply and demand adjustment system and power supply and demand adjustment method |
JP5669902B1 (ja) * | 2013-08-30 | 2015-02-18 | 三菱電機株式会社 | 空調機制御システム、センサ機器制御方法及びプログラム |
US9205754B2 (en) | 2013-09-30 | 2015-12-08 | Elwha Llc | Communication and control regarding electricity provider for wireless electric vehicle electrical energy transfer |
US9412515B2 (en) | 2013-09-30 | 2016-08-09 | Elwha, Llc | Communication and control regarding wireless electric vehicle electrical energy transfer |
US9463704B2 (en) | 2013-09-30 | 2016-10-11 | Elwha Llc | Employment related information center associated with communication and control system and method for wireless electric vehicle electrical energy |
US10093194B2 (en) | 2013-09-30 | 2018-10-09 | Elwha Llc | Communication and control system and method regarding electric vehicle for wireless electric vehicle electrical energy transfer |
US10220671B2 (en) * | 2015-02-23 | 2019-03-05 | Ford Global Technologies, Llc | Electrified vehicle conditioning using grid power |
WO2017038753A1 (ja) * | 2015-08-31 | 2017-03-09 | ニチコン株式会社 | 給電装置 |
FR3045900B1 (fr) * | 2015-12-21 | 2018-11-16 | Electricite De France | Systeme et procede de pilotage d'un dispositif de stockage d'energie |
US10427548B2 (en) * | 2016-10-17 | 2019-10-01 | Eaton Intelligent Power Limited | Electric vehicle charging device and method for charging electric vehicle |
CN108183515B (zh) * | 2016-12-08 | 2022-05-13 | 南京理工大学 | 一种无需增容的电动车充电监控系统 |
DE102017214439A1 (de) * | 2017-08-18 | 2019-02-21 | Continental Automotive Gmbh | Ladeabbruchsteuerungseinrichtung zur Benachrichtigung des Nutzers |
CN107499163B (zh) * | 2017-08-21 | 2019-12-06 | 中国能源建设集团江苏省电力设计院有限公司 | 一种适用于电动汽车充电站的充电控制方法 |
WO2019181210A1 (ja) * | 2018-03-19 | 2019-09-26 | 本田技研工業株式会社 | 電力融通装置、プログラム及び電力融通方法 |
JP7055208B2 (ja) * | 2018-08-07 | 2022-04-15 | 京セラ株式会社 | 制御装置及び制御方法 |
JP2020042686A (ja) * | 2018-09-13 | 2020-03-19 | 本田技研工業株式会社 | 電力需給管理装置 |
CN109606191B (zh) * | 2018-12-26 | 2021-06-08 | 深圳供电局有限公司 | 供电控制方法、装置、计算机设备和存储介质 |
JP6892881B2 (ja) * | 2019-01-17 | 2021-06-23 | 本田技研工業株式会社 | 制御装置及びプログラム |
JP6918032B2 (ja) * | 2019-01-17 | 2021-08-11 | 本田技研工業株式会社 | 送受電管理装置及びプログラム |
JP6913114B2 (ja) * | 2019-01-17 | 2021-08-04 | 本田技研工業株式会社 | 制御装置及びプログラム |
CN110391663A (zh) * | 2019-06-06 | 2019-10-29 | 中国电力科学研究院有限公司 | 一种用于对移动式储能装置进行调用的方法及系统 |
FR3102019B1 (fr) * | 2019-10-11 | 2021-10-22 | Nw Joules | Dispositif de recharge rapide d’un vehicule automobile |
CA3165601A1 (en) * | 2020-01-21 | 2021-07-29 | Adaptr, Inc. | Delivery of stored electrical energy from generation sources to nano-grid systems |
JP7404917B2 (ja) * | 2020-02-14 | 2023-12-26 | トヨタ自動車株式会社 | 電力管理システム、電力管理方法および電力管理装置 |
DE102020203407A1 (de) * | 2020-03-17 | 2021-09-23 | Siemens Aktiengesellschaft | Energiemanagementverfahren sowie Energiemanagementsystem |
US20210342958A1 (en) * | 2020-04-30 | 2021-11-04 | Uchicago Argonne, Llc | Transactive framework for electric vehicle charging capacity distribution |
CN113320413B (zh) * | 2021-03-08 | 2023-06-30 | 深圳职业技术学院 | 一种居民区电动汽车充电功率控制方法 |
CN114050633B (zh) * | 2021-06-11 | 2023-11-10 | 上海玫克生储能科技有限公司 | 一种锂电池储能系统的动态管控方法、装置和电子设备 |
US12086428B2 (en) * | 2021-11-15 | 2024-09-10 | Samsung Electronics Co., Ltd. | Memory controller adjusting power, memory system including same, and operating method for memory system |
JP2023079645A (ja) | 2021-11-29 | 2023-06-08 | トヨタ自動車株式会社 | コンピュータ、及び電力調整方法 |
DE102023107416A1 (de) | 2023-03-24 | 2024-09-26 | Audi Aktiengesellschaft | Verfahren zum Bestimmen eines Betriebsmodus für ein Energieversorgungssystem sowie Energieversorgungssystem und Fahrzeug |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007282383A (ja) | 2006-04-07 | 2007-10-25 | Kyushu Institute Of Technology | 電力負荷平準化方法及びシステム |
WO2008073453A1 (en) * | 2006-12-11 | 2008-06-19 | V2Green, Inc. | Power aggregation system for distributed electric resources |
WO2008141246A2 (en) * | 2007-05-09 | 2008-11-20 | Gridpoint, Inc. | Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation |
JP2009183086A (ja) * | 2008-01-31 | 2009-08-13 | Eco Tribute:Kk | 車載蓄電池を利用した電力供給システム |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10271694A (ja) * | 1997-03-24 | 1998-10-09 | Nissan Motor Co Ltd | 2次電池の充放電システム |
JPH11313403A (ja) * | 1998-04-28 | 1999-11-09 | Honda Motor Co Ltd | 電動車両共用システム |
US7256516B2 (en) * | 2000-06-14 | 2007-08-14 | Aerovironment Inc. | Battery charging system and method |
JP3782924B2 (ja) * | 2000-07-27 | 2006-06-07 | 日本電信電話株式会社 | 分散型エネルギーコミュニティーシステムとその制御方法 |
DK1470627T3 (da) * | 2002-01-24 | 2006-12-18 | Aloys Wobben | Elektroköretöj som spidsbelastningsforsyningsenhed |
DE10331084A1 (de) * | 2003-07-09 | 2005-03-24 | Aloys Wobben | Kraftfahrzeug |
US20050228553A1 (en) * | 2004-03-30 | 2005-10-13 | Williams International Co., L.L.C. | Hybrid Electric Vehicle Energy Management System |
US20080040263A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green, Inc. | Business Methods in a Power Aggregation System for Distributed Electric Resources |
US20080039979A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources |
US7747739B2 (en) * | 2006-08-10 | 2010-06-29 | Gridpoint, Inc. | Connection locator in a power aggregation system for distributed electric resources |
US20080052145A1 (en) * | 2006-08-10 | 2008-02-28 | V2 Green, Inc. | Power Aggregation System for Distributed Electric Resources |
US20090043519A1 (en) * | 2006-08-10 | 2009-02-12 | V2Green, Inc. | Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources |
US7949435B2 (en) * | 2006-08-10 | 2011-05-24 | V2Green, Inc. | User interface and user control in a power aggregation system for distributed electric resources |
US20080040296A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Electric Resource Power Meter in a Power Aggregation System for Distributed Electric Resources |
US20090043520A1 (en) * | 2006-08-10 | 2009-02-12 | V2Green, Inc. | User Interface and User Control in a Power Aggregation System for Distributed Electric Resources |
US20080040295A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green, Inc. | Power Aggregation System for Distributed Electric Resources |
US20080040223A1 (en) * | 2006-08-10 | 2008-02-14 | V2 Green Inc. | Electric Resource Module in a Power Aggregation System for Distributed Electric Resources |
US7844370B2 (en) * | 2006-08-10 | 2010-11-30 | Gridpoint, Inc. | Scheduling and control in a power aggregation system for distributed electric resources |
JP5168891B2 (ja) * | 2006-11-28 | 2013-03-27 | 日産自動車株式会社 | 電動車両充電電力マネジメントシステム |
WO2008073456A2 (en) * | 2006-12-11 | 2008-06-19 | Loegering Mfg. Inc. | Apparatus for converting a wheeled vehicle to a tracked vehicle |
US20100017045A1 (en) * | 2007-11-30 | 2010-01-21 | Johnson Controls Technology Company | Electrical demand response using energy storage in vehicles and buildings |
US8116915B2 (en) * | 2008-03-03 | 2012-02-14 | University Of Delaware | Methods and apparatus using hierarchical priority and control algorithms for grid-integrated vehicles |
US7928693B2 (en) * | 2008-03-13 | 2011-04-19 | International Business Machines Corporation | Plugin hybrid electric vehicle with V2G optimization system |
US8093862B2 (en) * | 2008-09-03 | 2012-01-10 | Modalis Engineering, Inc. | Systems, apparatus and methods for battery charge management |
US20100094496A1 (en) * | 2008-09-19 | 2010-04-15 | Barak Hershkovitz | System and Method for Operating an Electric Vehicle |
JP4713623B2 (ja) * | 2008-09-25 | 2011-06-29 | 株式会社日立製作所 | 充放電管理装置 |
CA2749770C (en) * | 2009-01-14 | 2021-07-20 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
US8359126B2 (en) * | 2009-04-30 | 2013-01-22 | GM Global Technology Operations LLC | Method to resolve a remote electrical outlet for an electrically-powered vehicle |
WO2011100377A1 (en) * | 2010-02-09 | 2011-08-18 | Fleet Energy Company Usa, Llc | Apparatus, system and method for grid storage |
DE102011003993A1 (de) * | 2010-02-15 | 2011-08-18 | DENSO CORPORATION, Aichi-pref. | Laderegler und Navigationsvorrichtung für ein Plug-In-Fahrzeug |
-
2011
- 2011-07-29 CN CN201180038685.3A patent/CN103190052B/zh active Active
- 2011-07-29 JP JP2012527710A patent/JP5562423B2/ja active Active
- 2011-07-29 WO PCT/JP2011/067416 patent/WO2012017937A1/ja active Application Filing
- 2011-07-29 EP EP11814563.0A patent/EP2602901B1/en active Active
- 2011-07-29 US US13/814,154 patent/US9340117B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007282383A (ja) | 2006-04-07 | 2007-10-25 | Kyushu Institute Of Technology | 電力負荷平準化方法及びシステム |
WO2008073453A1 (en) * | 2006-12-11 | 2008-06-19 | V2Green, Inc. | Power aggregation system for distributed electric resources |
WO2008141246A2 (en) * | 2007-05-09 | 2008-11-20 | Gridpoint, Inc. | Method and system for scheduling the discharge of distributed power storage devices and for levelizing dispatch participation |
JP2009183086A (ja) * | 2008-01-31 | 2009-08-13 | Eco Tribute:Kk | 車載蓄電池を利用した電力供給システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2602901A4 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9766671B2 (en) | 2012-02-13 | 2017-09-19 | Accenture Global Services Limited | Electric vehicle distributed intelligence |
JP2018206438A (ja) * | 2012-02-13 | 2018-12-27 | アクセンチュア グローバル サービスィズ リミテッド | 電気自動車の分散型インテリジェンス |
US10126796B2 (en) | 2012-02-13 | 2018-11-13 | Accenture Global Services Limited | Electric vehicle distributed intelligence |
JP2015510199A (ja) * | 2012-02-13 | 2015-04-02 | アクセンチュア グローバル サービスィズ リミテッド | 電気自動車の分散型インテリジェンス |
CN108082002A (zh) * | 2012-02-13 | 2018-05-29 | 埃森哲环球服务有限公司 | 用于电力跟踪和电力分配的分布式智能的方法和系统 |
CN108082002B (zh) * | 2012-02-13 | 2021-06-22 | 埃森哲环球服务有限公司 | 用于电力跟踪和电力分配的分布式智能的方法和系统 |
JP2013183521A (ja) * | 2012-03-01 | 2013-09-12 | Hitachi Ltd | 移動型蓄電媒体を用いた分散電源制御装置、方法、およびプログラム |
WO2014042223A1 (ja) * | 2012-09-12 | 2014-03-20 | 日本電気株式会社 | 電力管理方法、電力管理装置およびプログラム |
JPWO2014042223A1 (ja) * | 2012-09-12 | 2016-08-18 | 日本電気株式会社 | 電力管理方法、電力管理装置およびプログラム |
EP2713467A1 (en) * | 2012-09-28 | 2014-04-02 | Alcatel-Lucent | Method for supporting power balancing |
US10850630B2 (en) | 2013-02-26 | 2020-12-01 | Mitsubishi Heavy Industries, Ltd. | On-board unit and electric vehicle management system |
US9701203B2 (en) | 2013-02-26 | 2017-07-11 | Mitsubishi Heavy Industries, Ltd. | On-board unit and electric vehicle management system |
US10828996B2 (en) | 2013-02-26 | 2020-11-10 | Mitsubishi Heavy Industries, Ltd. | On-board unit and electric vehicle management system |
US9912157B2 (en) | 2013-03-04 | 2018-03-06 | Nec Corporation | Energy management system and energy management method |
WO2014136353A1 (ja) * | 2013-03-04 | 2014-09-12 | 日本電気株式会社 | エネルギーマネジメントシステムおよびエネルギーマネジメント方法 |
WO2015001767A1 (ja) * | 2013-07-03 | 2015-01-08 | パナソニックIpマネジメント株式会社 | 制御装置、電力管理システム |
JP2015035848A (ja) * | 2013-08-07 | 2015-02-19 | パナソニックIpマネジメント株式会社 | 電力供給システム、放電装置 |
JP2015100203A (ja) * | 2013-11-19 | 2015-05-28 | 本田技研工業株式会社 | 電力品質確保補助システム及び電動車両 |
WO2017170741A1 (ja) * | 2016-03-29 | 2017-10-05 | 京セラ株式会社 | 電力管理装置、電力管理システム及び電力管理方法 |
JPWO2017170741A1 (ja) * | 2016-03-29 | 2019-01-31 | 京セラ株式会社 | 電力管理装置、電力管理システム及び電力管理方法 |
JP2018093613A (ja) * | 2016-12-02 | 2018-06-14 | 本田技研工業株式会社 | 電力伝送管理装置及び電力伝送方法 |
JP2018093614A (ja) * | 2016-12-02 | 2018-06-14 | 本田技研工業株式会社 | 蓄電システム、輸送機器及び蓄電システムの制御方法 |
JP2017077176A (ja) * | 2017-01-19 | 2017-04-20 | 三菱重工業株式会社 | 電気自動車 |
JP2018190249A (ja) * | 2017-05-09 | 2018-11-29 | 三菱重工業株式会社 | 管理方法、サービス管理装置、サービス管理システム及びプログラム |
JP2018205871A (ja) * | 2017-05-31 | 2018-12-27 | 三菱重工業株式会社 | 調整方法、制御装置、電力調整システム及びプログラム |
JP6552769B1 (ja) * | 2018-10-15 | 2019-07-31 | 三菱電機株式会社 | エネルギー表示システム、表示装置およびエネルギー表示方法 |
WO2020079725A1 (ja) * | 2018-10-15 | 2020-04-23 | 三菱電機株式会社 | エネルギー表示システム、表示装置およびエネルギー表示方法 |
US10994625B2 (en) | 2018-10-15 | 2021-05-04 | Mitsubishi Electric Corporation | Energy display system, display device, and energy display method |
JP2020096416A (ja) * | 2018-12-10 | 2020-06-18 | 株式会社Nttファシリティーズ | 電力供給システムおよび電力供給方法 |
JP7084292B2 (ja) | 2018-12-10 | 2022-06-14 | 株式会社Nttファシリティーズ | 電力供給システムおよび電力供給方法 |
JP2020202625A (ja) * | 2019-06-06 | 2020-12-17 | 本田技研工業株式会社 | 管理装置、管理方法、およびプログラム |
WO2023063383A1 (ja) * | 2021-10-13 | 2023-04-20 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ | 生成方法、生成装置、及び生成プログラム |
Also Published As
Publication number | Publication date |
---|---|
US9340117B2 (en) | 2016-05-17 |
EP2602901A4 (en) | 2016-10-26 |
EP2602901B1 (en) | 2021-01-06 |
JPWO2012017937A1 (ja) | 2013-10-03 |
US20130184882A1 (en) | 2013-07-18 |
EP2602901A1 (en) | 2013-06-12 |
JP5562423B2 (ja) | 2014-07-30 |
CN103190052B (zh) | 2016-06-08 |
CN103190052A (zh) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012017937A1 (ja) | 電力需給平準化システム | |
JP5666593B2 (ja) | 電力需給平準化システムのバッテリ情報出力装置 | |
JP5071545B2 (ja) | 電力需給システム | |
CN104269896B (zh) | 适用于大规模电动汽车有序充放电的控制方法 | |
JP5490834B2 (ja) | 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法 | |
JP5714073B2 (ja) | スマートグリッドシステムおよび車載装置 | |
JP5396549B1 (ja) | 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法 | |
AU2022279109A1 (en) | Electric-quantity-based path planning method for electric vehicle compatible with energy storage charging pile | |
US20140117933A1 (en) | Charging System, Power Management Server, Vehicle Management Server, and Power Management Program | |
JP2014511661A (ja) | 自動車のバッテリを充電するためのシステムおよび方法 | |
JP7377854B2 (ja) | 蓄電要素の受電制御方法、及び受電制御装置 | |
JP4426504B2 (ja) | ハイブリッド型電気自動車の2次電池の供給制御装置及び電力供給システム | |
WO2013122073A1 (ja) | 充給電器および充給電管理装置、エネルギーマネジメントシステム、並びに充給電管理方法 | |
JP2021016243A (ja) | 充放電システム | |
WO2018180438A1 (ja) | 売電情報通知装置、売電情報通知方法および充電システム | |
US11705733B2 (en) | Method for controlling an exchange power between a charging infrastructure and an electricity supply grid | |
JP5991228B2 (ja) | 蓄電装置 | |
WO2023085334A1 (ja) | 移動体充電システムおよび移動体充電方法 | |
JP5471327B2 (ja) | マイクログリッドにおける充電設備管理システム | |
CN117124920A (zh) | 双向电动车辆充电系统 | |
US12049153B2 (en) | Automated bidirectional energy transfer support selection for transient loads based on battery life modeling | |
US20230256855A1 (en) | Electrified vehicle fleet charging control system and method | |
AU2022402318A1 (en) | A method of charging an auxiliary battery | |
JP2022156628A (ja) | 運用計画作成装置、充電計画作成装置、充電システム、運用計画作成方法および運用計画作成プログラム | |
GB2613423A (en) | A method of charging an auxiliary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11814563 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012527710 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011814563 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13814154 Country of ref document: US |