WO2012016540A1 - 一种喷墨打印机负压系统的自动检测方法 - Google Patents

一种喷墨打印机负压系统的自动检测方法 Download PDF

Info

Publication number
WO2012016540A1
WO2012016540A1 PCT/CN2011/078029 CN2011078029W WO2012016540A1 WO 2012016540 A1 WO2012016540 A1 WO 2012016540A1 CN 2011078029 W CN2011078029 W CN 2011078029W WO 2012016540 A1 WO2012016540 A1 WO 2012016540A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative pressure
pressure system
detection
branch
pressure pump
Prior art date
Application number
PCT/CN2011/078029
Other languages
English (en)
French (fr)
Inventor
张原�
Original Assignee
北京美科艺数码科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京美科艺数码科技发展有限公司 filed Critical 北京美科艺数码科技发展有限公司
Publication of WO2012016540A1 publication Critical patent/WO2012016540A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves

Definitions

  • the invention relates to an automatic detecting method for an ink jet printer, in particular to quickly determining a negative pressure system by controlling opening and closing of a solenoid valve in a negative pressure system and detecting a pressure value in a negative pressure chamber and a pipeline within a certain period of time. The location of the fault and the method of predicting the health of the negative pressure system.
  • FIG. 1 is a schematic diagram of the ink supply system that supplies ink to the nozzle by the principle of siphon.
  • the liquid level in the secondary ink tank 1 is lower than that of the nozzle 2, such as h, and the secondary ink tank 1 moves with the nozzle 2.
  • the installation is too high, the ink flow rate is too fast, the nozzle 2 is easy to overflow the ink; the sub-tank 1 is installed too low, the ink flow rate is too slow, and the print process is prone to the nozzle 2 Broken ink phenomenon.
  • the ink supply system has a simple structure, but since it must be lower than the working platform of the nozzle, the flat material cannot be printed, and the sub ink tank is too long from the nozzle pipe, which tends to cause the negative pressure on the surface of the nozzle to be unstable.
  • Figure 2 is a schematic diagram of an ink supply system that supplies ink to the nozzle using a negative pressure.
  • the installation height of the secondary ink tank 3 is usually higher than that of the nozzle 4, such as H.
  • the ink flows from the sub-tank 3 through the ink supply tube into the nozzle under the action of gravity 4 .
  • the secondary ink tank can be continuously, stably and appropriately supplied to the nozzle according to the printing demand.
  • FIG. 3 is a structural diagram of a negative pressure system of a six-color printing inkjet printer in the prior art, the negative pressure system mainly comprising six sub-tank 21 ⁇ 26 , nine solenoid valves 31 ⁇ 33 , 211 ⁇ 261 , one negative pressure sensor 11 , one negative pressure chamber 7 , one negative pressure pump 6 , one positive pressure pump 5 , one pressure gauge 10 , 25 Section gas pipe, 50 joints, two bleed valves 8 , 9 and control circuit.
  • the negative pressure system is set on the printing trolley.
  • the negative pressure system reciprocates with the trolley, and the pipe joints are easy to loosen the air leakage.
  • the pipeline is aged for a long time, and the negative pressure pump cannot work normally.
  • the deflation valve is faulty, the pressure sensor is damaged, the wire of the control solenoid valve is damaged, the solenoid valve and the vacuum pump are frequently turned on and off, the service life is shortened, and other factors will make the negative pressure unstable, and the ink overflows from the nozzle, causing the nozzle to fail to print normally. .
  • an object of the present invention is to provide an automatic detection method for an inkjet printer negative pressure system with high automation and simple operation.
  • the negative pressure sensor detects the negative pressure value of the negative pressure system after a predetermined time to determine the location of the fault, and by setting the detection display program in the inkjet printer circuit, the user can quickly know the location and negative of the inkjet printer negative pressure system fault. The health of the compression system.
  • the invention discloses an automatic detecting method for a negative pressure system of an inkjet printer, and a negative pressure system detecting program stored by the processor, which is characterized in that the method comprises the following steps:
  • the software control system controls the opening and closing of the solenoid valve in the negative pressure system and the start and stop of the negative pressure pump according to the detection scheme;
  • test results are obtained by comparing the detected values and the reference values in the detection scheme.
  • the detection scheme includes a full detection mode and a single detection mode.
  • the full detection mode includes detection of a negative pressure pump, a bleed valve, a main gas pipeline, and all auxiliary gas pipeline branches of the negative pressure system.
  • the single detection mode includes detection of a negative pressure pump, a bleed valve, a main gas path pipe, and a sub-pass pipe branch of the negative pressure system.
  • the main gas path pipe is a gas path pipe connecting a negative pressure pump and a solenoid valve connected to each of the sub ink tanks.
  • the auxiliary air pipe branch is a gas pipe connecting the electromagnetic valve and the sub ink tank.
  • the detection value when the negative pressure pump is detected, the detection value is the negative pressure value of the negative pressure system after the negative pressure pump operates for a certain period of time; when the air release valve is detected, the detection value is determined by the deflation valve deflation The negative pressure value of the negative pressure system after the time; when detecting the main gas circuit pipe and the auxiliary gas circuit pipe branch, the detected value is the working frequency of the negative pressure pump within a certain period of time.
  • the reference value is an empirical value of a normal system operation parameter obtained by calculation and experimental test on a negative pressure system.
  • the above-mentioned negative pressure system automatic detecting method further comprises receiving data through an input interface or a software interface to adjust a reference value in the negative pressure system detecting program.
  • the above automatic detection method of the negative pressure system further includes selecting a detection scheme through an input interface or a software interface.
  • the detecting step of the single detection mode is specifically:
  • step b) Under normal working condition of the negative pressure pump, check whether the deflation valve is working normally, open the venting valve, and compare the negative pressure value of the negative pressure system to the reference negative pressure value after a certain time of deflation; , the deflation valve works normally and proceeds to the next step of detection, and if not, the detection is ended and the bleed valve is abnormally output;
  • step b) in the above step b), in the normal operation of the bleed valve, check whether the main air line pipe is working normally, close all the solenoid valves in the negative pressure system, and compare whether the working frequency of the negative pressure pump is greater than the reference frequency; if yes, then End detection and output abnormality of the main gas pipeline; if not, the main gas pipeline works normally and proceeds to the next step to detect the auxiliary gas pipeline branch;
  • step c Under the normal operation of the main gas pipeline in the above step c), check whether the auxiliary gas pipeline branch is working normally, open the solenoid valve connected with the branch of the gas pipeline, and compare the working frequency of the vacuum pump It is greater than the reference frequency; if it is, the manifold of the gas pipe is abnormal. If not, the branch of the gas pipe is output normally, and then the detection is finished.
  • the detecting step of the full detection mode is specifically:
  • step b) Under normal working condition of the negative pressure pump, check whether the deflation valve is working normally, open the venting valve, and compare the negative pressure value of the negative pressure system to the reference negative pressure value after a certain time of deflation; , the deflation valve works normally and proceeds to the next step of detection, and if not, the detection is ended and the bleed valve is abnormally output;
  • step b) in the above step b), in the normal operation of the bleed valve, check whether the main air line pipe is working normally, close all the solenoid valves in the negative pressure system, and compare whether the working frequency of the negative pressure pump is greater than the reference frequency; if yes, then End detection and output abnormality of the main gas pipeline; if not, the main gas pipeline works normally and enters the next step while detecting all the gas pipeline branches;
  • step c Under the normal operation of the main gas pipeline in the above step c), simultaneously detect whether all the pneumatic pipeline branches are working normally, and close all the solenoid valves in the negative pressure system, and compare whether the working frequency of the negative pressure pump is greater than the reference frequency. If it is, one or more or all of the gas pipeline branches in the gas pipeline branch branch are abnormal and enter the next gas pipeline branch branch detection. If not, the detection is terminated and all the gas pipeline branch branches are normal.
  • the method for detecting the branch of the gas path tube in the step d) is the same as the method for the step d) in the single detection mode, and the method is performed one by one for each of the gas path tube branches according to the method until The test is completed.
  • the automatic detection method of the negative pressure system is used for a closed loop control negative pressure system with feedback action.
  • the automatic detection method of the negative pressure system of the inkjet printer proposed by the invention has the following advantages:
  • the automatic detection method of the negative pressure system of the invention has high automation degree and simple operation, and can be detected without special technicians.
  • the automatic detection method of the invention can be used for periodically (one week or one month) to detect the negative pressure system of the inkjet printer, and can detect the health state of the negative pressure system of the printer, such as good, normal, decay, fault, and convenient for the operator. Maintenance to prevent more serious problems from occurring.
  • the automatic detection method of the negative pressure system of the invention can detect the whole negative pressure system one by one, and can also separately detect a certain auxiliary air circuit branch. When an error occurs in a sub-pass pipe branch, it is only necessary to separately test the sub-pipe branch after maintenance.
  • FIG. 1 is a schematic view showing the relative position between a nozzle and a secondary ink tank for supplying ink to a nozzle by using a siphon principle in the prior art
  • FIG. 2 is a schematic view showing the relative position between a nozzle and a secondary ink tank that use a negative pressure to supply ink to the nozzle;
  • FIG. 3 is a schematic diagram of a vacuum system of an inkjet printer for supplying ink to six sub-tank tanks in the prior art
  • FIG. 4 is a schematic view showing main detecting parts of a six sub-ink tank inkjet printing negative pressure system according to the present invention.
  • Figure 5 is an entry interface of the negative pressure detecting system of the present invention.
  • Figure 8 is a parameter setting interface of the negative pressure detecting system of the present invention.
  • FIG. 9 and FIG. 10 are flowcharts showing the full detection mode of the negative pressure system of the inkjet printer of the present invention.
  • Figure 11 is a display interface in the main channel detection of the negative pressure system of the present invention.
  • Figure 12 is a display interface of the negative detection system of the present invention.
  • FIG. 13 and FIG. 14 are flowcharts showing a single detection mode of the negative pressure system of the inkjet printer of the present invention.
  • Figure 15 shows the display interface in the sub-channel branch detection of the negative pressure system M of the present invention.
  • the main detecting component in the negative pressure system of the inkjet printer is divided into five parts, namely: a main gas pipe for connecting the negative pressure pump and each of the secondary ink tanks. a connected solenoid valve; a secondary gas pipe for connecting the solenoid valve and the secondary ink tank; a negative pressure pump for pumping out the gas in the secondary ink tank to generate a negative pressure; and a vent valve for detecting the secondary ink tank
  • the negative pressure is high, it is used to automatically put in part of the air to reduce the negative pressure in the secondary ink tank;
  • the negative pressure chamber in the present invention, the negative pressure chamber is considered to be airtight during the detection process, and no detection is performed.
  • the following parameter values are determined by calculation and experiment on the negative pressure system: 1 ) Close the solenoid valve, the negative pressure system reaches the suction time T1 required by the negative pressure value P1; 2) Open the bleed valve and record the negative pressure value P2 in the negative pressure chamber after the deflation time T2; 3) Work of the negative pressure pump frequency f.
  • FIG 5 shows the entry interface of the negative pressure system detection of the present invention. Select Start to enter the detection selection interface as shown in Figure 6. Setting enters the parameter setting interface as shown in Figure 7. As shown in Figure 8, T1, T2, P1, f and detection duration T can be set.
  • the automatic detecting method of the negative pressure system of the inkjet printer of the present invention comprises the following steps: the user selects a detection scheme of the negative pressure system through the input interface according to actual needs; P1, T1, T2, f measured according to the experiment And T adjust the reference standard value in the detection scheme through the input interface; detect the negative pressure value of the negative pressure system through the negative pressure sensor; compare whether the detected value in the detection scheme is the set reference value and output the detection result.
  • the detection scheme in the present invention includes a full detection mode and a single detection mode.
  • the full detection mode includes the detection of the negative pressure pump, the bleed valve, the main gas pipeline and all the auxiliary gas pipeline branches of the negative pressure system;
  • the single detection mode includes the negative pressure pump and the bleed valve for the negative pressure system.
  • the detection of the main gas pipeline and a sub-pipeline branch When detecting the negative pressure pump, the detection value is the negative pressure value of the negative pressure system after the negative pressure pump operates for a certain period of time; when detecting the deflation valve, the detection value is the negative pressure value of the negative pressure system after the deflation valve is deflated for a certain period of time.
  • the detected value is the operating frequency of the negative pressure pump within a certain period of time.
  • the negative pressure self-test display interface of the present invention includes eight buttons, which are respectively All, W1, W2, K, C, M, Y, Exit. Select All to check for negative pressure pump, bleed valve, main air line pipe and all auxiliary air circuit branches; W1, used to detect whether the first white (W1) ink sub-tank air passage is leaking; select W2 to detect whether the second white (W2) ink sub-tank air passage is leaking; C It is used to detect whether the cyan (C) ink sub-tank air passage is leaking; select M to detect whether the red (M) ink sub-tank air passage is leaking; select Y for inspection Yellow (Y ) Whether the air in the ink tank of the ink sub-tank passes through the air; select K to detect whether the black (K) ink sub-tank air passage is leaking, and select Exit to exit the vacuum self-test procedure.
  • buttons which are respectively All, W1, W2, K, C, M, Y, Exit.
  • the precondition for the full detection mode is that the negative pressure chamber of the negative pressure system works normally.
  • the detection mode includes a negative pressure pump, a bleed valve, a main gas pipe and W1, W2, C, M, Y, K Detection of air leakage in the auxiliary air pipe branch.
  • the negative pressure pump will first pump 10s Time, the negative pressure value in the negative pressure chamber is detected by the negative pressure sensor, and the negative pressure value in the negative pressure chamber is compared with the preset reference standard value -3 Kpa, if the negative pressure value in the negative pressure chamber is close to -3 Kpa, then In the LCD The negative pressure pump OK is displayed and the next step is to check the bleed valve; if not, the test program is exited and the negative pressure pump is output on the LCD, and the operator replaces the negative pressure pump.
  • the negative pressure value is measured by the negative pressure sensor. If the negative pressure value is reduced to the set normal level of 0Kpa, the bleed valve is normal and the next step is to detect the main gas pipe; if not, Then exit the test and The output bleed valve is faulty on the LCD and the operator replaces the bleed valve.
  • the auxiliary gas pipeline branch is normal; the system enters the inspection of the next auxiliary gas pipeline branch, that is, the inspection of the W2 auxiliary gas pipeline branch, opening with W2
  • the solenoid valve connected to the secondary ink tank closes the solenoid valve connected to the other sub-tank to detect whether the working frequency of the negative pressure pump is greater than the set frequency 10 times / 3min, and if yes, the description is W2 If the auxiliary gas pipeline branch is leaking, if not, enter the observation period. After 3 minutes of observation, if the working frequency of the negative pressure pump continues to be lower than the set frequency, display W2 on the LCD.
  • the auxiliary gas pipeline branch is normal; the system enters the inspection of the M auxiliary gas pipeline branch, and the cycle is completed until all the Y, C, and K auxiliary gas pipeline branches have been tested, and the system ends the inspection.
  • Figure 12 The interface diagram for the entire negative pressure system.
  • the detection mode is to directly detect whether a sub-pipe branch is leaking. Before detecting the sub-pipe branch, the detection system first applies a negative pressure pump, a bleed valve, and a main gas pipeline. Whether it is normal work for testing, only when the negative pressure pump, the bleed valve and the main gas pipeline work normally, can detect a certain auxiliary air pipeline branch.
  • the negative pressure pump will first pump 10s Time, the negative pressure value in the negative pressure chamber is detected by the negative pressure sensor, and the negative pressure value in the negative pressure chamber is compared with the preset reference standard value -3 Kpa, if the negative pressure value in the negative pressure chamber is close to -3 Kpa, then In the LCD The negative pressure pump OK is displayed and the next step is to check the bleed valve; if not, the test program is exited and the negative pressure pump is output on the LCD, and the operator replaces the negative pressure pump.
  • the negative pressure value is measured by the negative pressure sensor. If the negative pressure value is reduced to the set normal level of 0Kpa, the bleed valve is normal and the next step is to detect the main gas pipe; if not, Then exit the test and The output bleed valve is faulty on the LCD and the operator replaces the bleed valve.
  • the negative pressure self-test display interface has three display states: the blinking green indicates that the channel is being detected; the red indicates that the channel is NG (leakage); green indicates that the channel is detected.
  • the result is Excellent, Good, OK (normal). Is the health of each airway channel Excellent or Good or OK? It is determined by the operating frequency of the negative pressure pump. The lower the operating frequency of the negative pressure pump, the better the tightness of the gas passages of the negative pressure system.
  • the automatic detecting method of the negative pressure system of the inkjet printer proposed by the invention realizes automatic detection of the negative pressure system by adding a negative pressure automatic detecting and displaying program in the existing inkjet printer circuit, simplifies the negative pressure detecting process, and predicts the negative pressure
  • the system health status is quick and convenient to find the fault of the negative pressure system to ensure the stability of the negative pressure system of the inkjet printer.

Landscapes

  • Ink Jet (AREA)

Abstract

本发明公开了一种喷墨打印机负压系统的自动检测方法,具体为:软件控制系统根据检测方案控制负压系统中电磁阀的开启闭合以及负压泵的启停;通过负压传感器检测负压系统的负压值;通过对比检测方案中的检测值与参考值得出检测结果。本发明提出的喷墨打印机负压系统的自动检测方法,通过在现有喷墨打印机电路中增加负压自动检测和显示程序,实现负压系统的自动检测,简化负压检测过程,实现预测负压系统健康状态的同时能快捷方便地找出负压系统的故障点,保证喷墨打印机负压系统的稳定性。

Description

一种喷墨打印机负压系统的自动检测方法
本发明根据专利法第二十九条享有中国在先申请发明专利的优先权,申请号为 201010246854.X,申请日为 2010 年 8 月 6 日,现将该专利的全部内容引入本发明中。
技术领域
本发明涉及一种喷墨打印机的自动检测方法,尤其涉及一种通过控制负压系统中电磁阀的开启闭合及检测一定时间内负压腔和管路中的压力值来快速判断负压系统中故障所在位置及预测负压系统健康状况的方法。
背景技术
随喷墨技术的逐步发展,喷墨打印技术广泛应用于各行各业,如广告业、包装业、印刷业等。现有技术中的喷墨打印机供墨系统主要分两大类,一种采用虹吸原理供墨,另一种采用负压系统供墨。图 1 为采用虹吸原理向喷头供墨的供墨系统示意图,副墨罐 1 中液位高度低于喷头 2 ,如 h ,副墨罐 1 随喷头 2 一起移动。副墨罐 1 安装太高,墨水流速太快,喷头 2 易溢墨;副墨罐 1 安装太低,墨水流速太慢,打印过程易出现喷头 2 断墨现象。这种供墨系统结构简单,但由于其必须低于喷头工作平台,不能打印平板类材料,且副墨罐离喷头管道太长,容易造成喷头表面负压不稳。
图 2 为采用负压向喷头供墨的供墨系统示意图,副墨罐 3 安装高度通常高于喷头 4 ,如 H ,墨水在重力的作用下从副墨罐 3 经供墨管流入喷头 4 。通过负压系统提供负压来克服墨水的重力,即可实现副墨罐根据打印需求持续、稳定、适量地向喷头供墨。
图 3 为现有技术中六色打印喷墨打印机负压系统的结构图,该负压系统主要包括六个副墨罐 21~26 、九个电磁阀 31~33 , 211~261 、一个负压传感器 11 、一个负压腔 7 、一个负压泵 6 、一个正压泵 5 、一个压力表 10 、 25 段气路管、 50 个接头,两个放气阀 8 、 9 及控制电路等。
对扫描式喷墨打印机,负压系统设置在打印小车上,在打印过程中负压系统随小车做往复运动,各管接头容易松脱漏气,长时间使用管路老化,负压泵不能正常工作,放气阀故障,压力传感器损坏,控制电磁阀的电线损坏,电磁阀和真空泵频繁通断电使用寿命减短等因素都将使负压不稳定,墨水从喷头溢出,导致喷头无法进行正常打印。
喷墨打印机的负压系统一旦漏气,其出问题的可能之处很多,现有技术采用手工一处一处排查,由于气路漏气的不可见性,其检测费时,费力,难度大。
发明内容
针对现有技术提出的问题,本发明的目的在于提出一种自动化程度高、操作简单的喷墨打印机负压系统的自动检测方法。通过负压传感器检测既定时间后负压系统的负压值来判断故障所在位置,并通过在喷墨打印机电路中设置检测显示程序,方便使用者快速知道喷墨打印机负压系统故障所在位置及负压系统的健康状况。
本发明提出的喷墨打印机负压系统自动检测方法,处理器运行存储的负压系统检测程序,其特征在于,包括以下步骤:
a)软件控制系统根据检测方案控制负压系统中电磁阀的开启闭合以及负压泵的启停;
b)通过负压传感器检测一定时间内负压系统的负压值;
c)通过对比检测方案中的检测值与参考值得出检测结果。
上述负压系统自动检测方法中,所述检测方案包括全检测模式和单检测模式。
上述负压系统自动检测方法中,所述全检测模式包括对负压系统的负压泵、放气阀、主气路管和所有副气路管支路的检测。
上述负压系统自动检测方法中,所述单检测模式包括对负压系统的负压泵、放气阀、主气路管和某一副气路管支路的检测。
上述负压系统自动检测方法中,所述主气路管为连接负压泵与和各副墨罐连接的电磁阀的气路管。
上述负压系统自动检测方法中,所述副气路管支路为连接电磁阀和副墨罐的气路管。
上述负压系统自动检测方法中,检测负压泵时,其检测值为负压泵工作一定时间后负压系统的负压值;检测放气阀时,其检测值为放气阀放气一定时间后负压系统的负压值;检测主气路管和副气路管支路时,其检测值为一定时间内负压泵的工作频率。
上述负压系统自动检测方法中,所述参考值是在负压系统上通过计算和实验测试得出的正常系统操作参数经验值。
上述负压系统自动检测方法还包括通过输入界面或软件界面接收数据,以调整所述负压系统检测程序中的参考值。
上述负压系统自动检测方法还包括通过输入界面或软件界面选择检测方案。
上述负压系统自动检测方法中,所述单检测模式的检测步骤具体为:
a)在负压腔正常工作情况下,检测负压泵是否正常工作,开启负压泵对负压系统抽气,通过对比抽气一定时间后负压传感器检测到的负压值是否达到参考负压值;若是,则负压泵正常工作并进入下一步检测,若否,则结束检测并输出负压泵异常;
b)在上述步骤a)中负压泵正常工作情况下,检测放气阀是否正常工作,打开放气阀,对比放气一定时间后负压系统的负压值是否达到参考负压值;若是,则放气阀正常工作并进入下一步骤检测,若否,则结束检测并输出放气阀异常;
c)在上述步骤b)中放气阀正常工作情况下,检测主气路管是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则结束检测并输出主气路管异常,若否,则主气路管正常工作并进入下一步对副气路管支路进行检测;
d)在上述步骤c)中主气路管正常工作情况下,检测副气路管支路是否正常工作,打开与需要检测气路管支路连接的电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则输出该气路管支路异常,若否,则输出该气路管支路正常,然后结束检测。
上述负压系统自动检测方法中,所述全检测模式的检测步骤具体为:
a)在负压腔正常工作情况下,检测负压泵是否正常工作,开启负压泵对负压系统抽气,通过对比抽气一定时间后负压传感器检测到的负压值是否达到参考负压值;若是,则负压泵正常工作并进入下一步检测,若否,则结束检测并输出负压泵异常;
b)在上述步骤a)中负压泵正常工作情况下,检测放气阀是否正常工作,打开放气阀,对比放气一定时间后负压系统的负压值是否达到参考负压值;若是,则放气阀正常工作并进入下一步骤检测,若否,则结束检测并输出放气阀异常;
c)在上述步骤b)中放气阀正常工作情况下,检测主气路管是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则结束检测并输出主气路管异常,若否,则主气路管正常工作并进入下一步同时对所有气路管支路进行检测;
d)在上述步骤c)中主气路管正常工作情况下,同时检测所有气路管支路是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则气路管支路中的一条或者多条或者所有气路管支路异常并进入下一步气路管支路检测,若否,则结束检测并输出所有气路管支路正常。
上述负压系统自动检测方法中,所述步骤d)中气路管支路的检测方法和单检测模式下的步骤d)方法一致,按照该方法逐一对各气路管支路进行检测,直至检测完毕。
上述负压系统自动检测方法中,所述负压系统自动检测方法用于带有反馈作用的闭环控制负压系统。
和现有技术相比,本发明提出的喷墨打印机负压系统的自动检测方法具有如下优点:
1.本发明的负压系统自动检测方法,其自动化程度高,操作简易性强,不需要专门的技术人员即可进行检测。
2.本发明的自动检测方法可用于定期(一周或一个月)对喷墨打印机负压系统进行检测,通过检测可预告打印机负压系统的健康状态,如良好,正常,衰减,故障,方便操作者及时维护以防更严重的问题出现。
3.本发明的负压系统自动检测方法可对整个负压系统进行逐一检测,也可对某一副气路管支路进行单独检测。当检测到某一副气路管支路出错时,只需对该副气路管支路维修后进行单独检测即可。
4.在检测出打印机负压系统故障的情况下,能够自动寻找出错点,缩小查找范围,节省维修时间。
附图说明
图 1 为现有技术中采用虹吸原理向喷头供墨的喷头与副墨罐之间相对位置示意图;
图 2 为现有技术中采用负压向喷头供墨的喷头与副墨罐之间的相对位置示意图;
图 3 为现有技术中六个副墨罐供墨的喷墨打印机的负压系统原理图;
图 4 为本发明中六个副墨罐喷墨打印负压系统的主要检测部件示意图;
图 5 为本发明的负压检测系统进入界面;
图 6 为本发明的负压系统检测模式选择界面;
图 7 为本发明的负压系统检测参数设置进入界面;
图 8 为本发明的负压检测系统参数设置界面;
图 9 和图 10 为本发明的喷墨打印机负压系统全检测模式的流程图;
图 11 为本发明负压系统主通道检测中显示界面;
图 12 为本发明负压系统全检测完毕显示界面;
图 13 和图 14 为本发明的喷墨打印机负压系统的单检测模式流程图;
图 15 为本发明负压系统 M 副通道支路检测中显示界面。
具体实施方式
如图 4 所示,本发明的一个具体实施例中将喷墨打印机负压系统中的主要检测元器件分为五个部分,分别是:主气路管,用于连接负压泵和与各副墨罐连接的电磁阀;副气路管,用于连接电磁阀与副墨罐;负压泵,用于抽走副墨罐中的气体产生负压;放气阀,当检测到副墨罐中的负压较高时,用于自动放入部分空气以降低副墨罐中的负压;负压腔,本发明中认为负压腔在检测过程中是不漏气的,不做检测。
在运行本发明的负压自动检测方法以前,在负压系统上通过计算和实验测得以下参数值: 1 )关闭电磁阀,负压系统达到负压值 P1 需要的抽气时间 T1 ; 2 )打开放气阀,记录放气 T2 时间后负压腔内的负压值 P2 ; 3 )负压泵的工作频率 f 。不同负压系统的上述 P1 、 P2 、 T1 、 T2 、 f 的值不同。本实施例中 P1=-3Kpa , T1=10s , P2=0KPa , T2=10s , f=10 次 /3min ,检测持续时间 T=3min 。
图 5 为本发明负压系统检测的进入界面,选择 Start 即进入检测选择界面如图 6 所示,选择 Setting 即进入参数设置界面如图 7 所示,如图 8 所示可对 T1 , T2 , P1 , f 以及检测持续时间 T 进行设定。
本发明的喷墨打印机负压系统的自动检测方法,包括以下步骤:用户根据实际需要通过输入界面选择负压系统的检测方案;根据实验测得的 P1 、 T1 、 T2 、 f 及 T 通过输入界面调整检测方案中的参考标准值; 通过负压传感器检测负压系统的负压值;对比检测方案中的检测值是否为设定参考值并输出检测结果。
本发明中的检测方案包括全检测模式和单检测模式。其中,全检测模式包括对负压系统的负压泵、放气阀、主气路管和所有副气路管支路的检测;单检测模式包括对负压系统的负压泵、放气阀、主气路管和某一副气路管支路的检测。检测负压泵时,其检测值为负压泵工作一定时间后负压系统的负压值;检测放气阀时,其检测值为放气阀放气一定时间后负压系统的负压值;检测主气路管和副气路管支路时,其检测值为一定时间内负压泵的工作频率。
用户可通过如图 6 所示界面选择检测模式,如图 6 所示,本发明中的负压自检显示界面包括八个按钮,分别是 All , W1 , W2 , K , C , M , Y , Exit 。选择 All ,用于检测负压泵,放气阀,主气路管和所有副气路支路是否漏气;选择 W1 ,用于检测第一个装白色( W1 )墨水副墨罐气路通道是否漏气;选择 W2 ,用于检测第二个装白色( W2 )墨水副墨罐气路通道是否漏气;选择 C ,用于检测装青色( C )墨水副墨罐气路通道是否漏气;选择 M ,用于检测装品红色( M )墨水副墨罐气路通道是否漏气;选择 Y ,用于检测装黄色( Y )墨水副墨罐气路通过是否漏气;选择 K ,用于检测装黑色( K )墨水副墨罐气路通道是否漏气,选择 Exit ,用于退出负压自检程序。
下面结合图 9-10 ,及图 13-14 详细说明本发明喷墨打印机的负压系统检测方法的两种检测模式:
一、全检测模式
全检测模式的前提条件是负压系统的负压腔正常工作。该检测模式下包括对负压泵、放气阀、主气路管和 W1 、 W2 、 C 、 M 、 Y 、 K 副气路管支路是否漏气的检测。
先检测负压泵是否正常工作,负压泵先抽气 10s 时间,通过负压传感器检测负压腔内的负压值,并将负压腔内的负压值与预设参考标准值 -3Kpa 作比较,如果负压腔内负压值接近 -3Kpa ,则在 LCD 上显示负压泵 OK 并进入下一步对放气阀的检测;如果不是,则退出检测程序并在 LCD 上输出负压泵故障,操作人员对负压泵进行更换。
接下来检测放气阀是否正常工作,等待 10s 时间后,通过负压传感器测量负压腔内负压值,如果负压值降低到设定的正常水平 0Kpa ,则说明放气阀正常并进入下一步对主气路管的检测;如果不是,则退出检测并在 LCD 上输出放气阀故障,操作人员对放气阀进行更换。
接下来检测主气路管是否漏气,关闭所有与副墨罐连接的电磁阀,开启负压泵,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明主气路管漏气,系统退出检测程序,操作人员对主气路管进行检修;若否,则进入观察时期,观察 3min 后,若负压泵的工作频率持续低于设定频率,则在 LCD 上显示主气路管正常并进入对所有副气路管支路的检测。图 11 为正在检测主气路管界面图。
接下来整体检测所有副气路管支路是否漏气,打开所有与副墨罐连接的电磁阀,开启负压泵,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明所有副气路管支路中至少有一条支路漏气,系统将自动进入对每一副气路管支路排查的检测;若否,则退出检测并在 LCD 上显示所有副气路管支路正常,负压自动检测结束。
接下来逐一排查各气路管支路是否漏气,先检测 W1 副气路支路,保持与 W1 副墨罐连接电磁阀处于打开状态,关闭与其他副墨罐连接的电磁阀,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明 W1 副气路管支路漏气,若否,则进入观察时期,观察 3min 后,若负压泵的工作频率持续低于设定频率,则在 LCD 上显示 W1 副气路管支路正常;系统进入对下一副气路管支路的检查,即对 W2 副气路管支路检查,打开与 W2 副墨罐连接的电磁阀,关闭与其他副墨罐连接的电磁阀,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明 W2 副气路管支路漏气,若否,则进入观察时期,观察一段时间 3min 后,若负压泵的工作频率持续低于设定频率,则在 LCD 上显示 W2 副气路管支路正常;系统进入对 M 副气路管支路的检查,如此循环直至 Y 、 C 、 K 副气路管支路全部检测完毕,系统结束检测。图 12 为整个负压系统检测完毕的界面图。
二、单检测模式
该检测模式是直接对某一副气路管支路是否漏气进行检测,在对该副气路管支路进行检测前,检测系统会先对负压泵、放气阀、主气路管是否正常工作进行检测,只有在负压泵、放气阀和主气路管正常工作的情况下,才能对某一副气路管支路进行检测。
如,在检测模式选择界面 6 中,选择对 M 副气路管支路进行检测来说明本发明的单检测模式的检测步骤。
先检测负压泵是否正常工作,负压泵先抽气 10s 时间,通过负压传感器检测负压腔内的负压值,并将负压腔内的负压值与预设参考标准值 -3Kpa 作比较,如果负压腔内负压值接近 -3Kpa ,则在 LCD 上显示负压泵 OK 并进入下一步对放气阀的检测;如果不是,则退出检测程序并在 LCD 上输出负压泵故障,操作人员对负压泵进行更换。
接下来检测放气阀是否正常工作,等待 10s 时间后,通过负压传感器测量负压腔内负压值,如果负压值降低到设定的正常水平 0Kpa ,则说明放气阀正常并进入下一步对主气路管的检测;如果不是,则退出检测并在 LCD 上输出放气阀故障,操作人员对放气阀进行更换。
接下来检测主气路管是否漏气,关闭所有与副墨罐连接的电磁阀,开启负压泵,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明主气路管漏气,系统退出检测程序,操作人员对主气路管进行检修;若否,则进入观察时期,观察 3min 后,若负压泵的工作频率持续低于设定频率,则在 LCD 上显示主气路管正常并进入对 M 副气路管支路的检测。
接下来检测 M 副气路管支路是否漏气,保持 M 副气路管支路的电磁阀处于打开状态,关闭与其他副墨罐连接的电磁阀,检测负压泵的工作频率是否大于设定频率 10 次 /3min ,若是,则说明 M 副气路管支路漏气,系统退出检测程序,操作人员对 M 副其路管支路进行检修;若否,则进入观察时期,观察 3min 后,若负压泵的工作频率持续低于设定频率,则在 LCD 上显示 M 副气路管支路正常,并结束检测程序。图 15 为 M 副气路管支路的检测界面图。
负压自检显示界面中气路管通道有三种显示状态,分别是:闪烁的绿色,表明该通道正在检测中;红色,表明该通道检测结果为 NG (漏气);绿色,表明该通道检测结果为 Excellent , Good , OK (正常)。其中各气路通道的健康状况是 Excellent 还是 Good 还是 OK 是由负压泵的工作频率来决定的,负压泵的工作频率越低说明负压系统各气路管通道的密闭性越好。
本发明提出的喷墨打印机负压系统的自动检测方法,通过在现有喷墨打印机电路中增加负压自动检测和显示程序,实现负压系统的自动检测,简化负压检测过程,预测负压系统健康状态的同时快捷方便的找出负压系统的故障处,保证喷墨打印机负压系统的稳定性。

Claims (14)

  1. 一种喷墨打印机负压系统的自动检测方法,处理器运行存储的负压系统检测程序,其特征在于,包括以下步骤:
    a)软件控制系统根据检测方案控制负压系统中电磁阀的开启闭合以及负压泵的启停;
    b)通过负压传感器检测一定时间内负压系统的负压值;
    c)通过对比检测方案中的检测值与参考值得出检测结果。
  2. 如权利要求1所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述检测方案包括全检测模式和单检测模式。
  3. 如权利要求2所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述全检测模式包括对负压系统的负压泵、放气阀、主气路管和所有副气路管支路的检测。
  4. 如权利要求2所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述单检测模式包括对负压系统的负压泵、放气阀、主气路管和某一副气路管支路的检测。
  5. 如权利要求3或4所述的喷墨打印负压系统的自动检测方法,其特征在于,所述主气路管为连接负压泵与和各副墨罐连接的电磁阀的气路管。
  6. 如权利要求3或4所述的喷墨打印负压系统的自动检测方法,其特征在于,所述副气路管支路为连接电磁阀和副墨罐的气路管。
  7. 如权利要求3或4所述的喷墨打印机负压系统的自动检测方法,其特征在于,检测负压泵时,其检测值为负压泵工作一定时间后负压系统的负压值;检测放气阀时,其检测值为放气阀放气一定时间后负压系统的负压值;检测主气路管和副气路管支路时,其检测值为一定时间内负压泵的工作频率。
  8. 如权利要求1所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述参考值是在负压系统上通过计算和实验测试得出的正常系统操作参数经验值。
  9. 如权利要求1所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述方法还包括通过输入界面或软件界面接收数据,以调整所述负压系统检测程序中的参考值。
  10. 如权利要求1所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述方法还包括通过输入界面或软件界面选择检测方案。
  11. 如权利要求2所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述单检测模式的检测步骤具体为:
    a)在负压腔正常工作情况下,检测负压泵是否正常工作,开启负压泵对负压系统抽气,通过对比抽气一定时间后负压传感器检测到的负压值是否达到参考负压值;若是,则负压泵正常并进入下一步检测,若否,则结束检测并输出负压泵异常;
    b)在上述步骤a)中负压泵正常工作情况下,检测放气阀是否正常工作,打开放气阀,对比放气一定时间后负压系统的负压值是否达到参考负压值;若是,则放气阀正常并进入下一步骤检测,若否,则结束检测并输出放气阀异常;
    c)在上述步骤b)中放气阀正常工作情况下,检测主气路管是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则结束检测并输出主气路管异常,若否,则主气路管正常并进入下一步对副气路管支路进行检测;
    d)在上述步骤c)中主气路管正常工作情况下,检测副气路管支路是否正常工作,打开与需要检测气路管支路连接的电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则输出该气路管支路异常,若否,则输出该气路管支路正常,然后结束整个检测。
  12. 如权利要求2所述的喷墨打印机负压系统的自动检测方法,其特征在于,所述全检测模式的检测步骤具体为:
    a)在负压腔正常工作情况下,检测负压泵是否正常工作,开启负压泵对负压系统抽气,通过对比抽气一定时间后负压传感器检测到的负压值是否达到参考负压值;若是,则负压泵正常并进入下一步检测,若否,则结束检测并输出负压泵异常;
    b)在上述步骤a)中负压泵正常工作情况下,检测放气阀是否正常工作,打开放气阀,对比放气一定时间后负压系统的负压值是否达到参考负压值;若是,则放气阀正常并进入下一步骤检测,若否,则结束检测并输出放气阀异常;
    c)在上述步骤b)中放气阀正常工作情况下,检测主气路管是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则结束检测并输出主气路管异常,若否,则主气路管正常工作并进入下一步同时对所有气路管支路进行检测;
    d)在上述步骤c)中主气路管正常工作情况下,同时检测所有气路管支路是否正常工作,关闭负压系统中的所有电磁阀,对比负压泵的工作频率是否大于参考频率;若是,则气路管支路中的一条或者多条或者所有气路管支路异常并进入下一步气路管支路检测,若否,则结束检测并输出所有气路管支路正常。
  13. 如权利要求12所述的喷墨打印机负压系统的自动检测方法,其特征在于:所述步骤d)中气路管支路的检测方法和单检测模式下的步骤d)方法一致,按照该方法逐一对各气路管支路进行检测,直至检测完毕。
  14. 如权利要求1所述的喷墨打印机负压系统的自动检测方法,其特征在于:所述负压系统自动检测方法用于带有反馈作用的闭环控制负压系统。
PCT/CN2011/078029 2010-08-06 2011-08-04 一种喷墨打印机负压系统的自动检测方法 WO2012016540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010246854XA CN102343720A (zh) 2010-08-06 2010-08-06 一种喷墨打印机负压系统的自动检测方法
CN201010246854.X 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012016540A1 true WO2012016540A1 (zh) 2012-02-09

Family

ID=45542951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078029 WO2012016540A1 (zh) 2010-08-06 2011-08-04 一种喷墨打印机负压系统的自动检测方法

Country Status (2)

Country Link
CN (1) CN102343720A (zh)
WO (1) WO2012016540A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184309A1 (en) * 2015-12-24 2017-06-28 SCREEN Holdings Co., Ltd. Inkjet printer and method of checking liquid feeding state
CN113444642A (zh) * 2021-07-29 2021-09-28 中国科学院长春光学精密机械与物理研究所 一种用于细胞加载的气动系统和控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103287107B (zh) * 2012-02-28 2015-08-19 北京美科艺数码科技发展有限公司 一种喷墨打印机用供墨控制系统故障自动检测方法
CN108481908A (zh) * 2018-05-29 2018-09-04 胡永标 一种方便检测维修的印刷机系统及其方法
CN113059931B (zh) * 2019-01-08 2022-10-21 森大(深圳)技术有限公司 打印机异常自动检测方法、装置、设备及存储介质
CN110605924B (zh) * 2019-08-31 2021-03-30 森大(深圳)技术有限公司 打印机稳定性连续测试方法、存储介质、设备及打印机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160499A (en) * 1980-05-15 1981-12-10 Nippon Kokan Kk <Nkk> Method of detecting leak from liquid transportation pipeline
WO2002040274A1 (de) * 2000-11-15 2002-05-23 Röhm GmbH & Co. KG Beschriftungsvorrichtung und extrusionsanlage mit einer solchen beschriftungsvorrichtung
JP2007021955A (ja) * 2005-07-19 2007-02-01 Seiko Epson Corp 液体噴射装置及び液体噴射装置におけるエアリーク検査方法
WO2008143621A1 (en) * 2007-05-24 2008-11-27 Select Comfort Corporation System and method for detecting a leak in an air bed
JP2009291958A (ja) * 2008-06-02 2009-12-17 Ricoh Co Ltd 液体供給装置、及び液体供給装置を備える画像形成装置。
CN101695883A (zh) * 2009-09-29 2010-04-21 北京美科艺数码科技发展有限公司 一种喷墨打印机喷头负压系统及其负压控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4145672B2 (ja) * 2003-01-29 2008-09-03 シャープ株式会社 画像形成装置
WO2005118300A1 (ja) * 2004-06-01 2005-12-15 Canon Finetech Inc. インク供給装置、記録装置、インク供給方法、および記録方法
CN2792958Y (zh) * 2005-04-29 2006-07-05 吴为荣 一种卷烟包装机负压检测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160499A (en) * 1980-05-15 1981-12-10 Nippon Kokan Kk <Nkk> Method of detecting leak from liquid transportation pipeline
WO2002040274A1 (de) * 2000-11-15 2002-05-23 Röhm GmbH & Co. KG Beschriftungsvorrichtung und extrusionsanlage mit einer solchen beschriftungsvorrichtung
JP2007021955A (ja) * 2005-07-19 2007-02-01 Seiko Epson Corp 液体噴射装置及び液体噴射装置におけるエアリーク検査方法
WO2008143621A1 (en) * 2007-05-24 2008-11-27 Select Comfort Corporation System and method for detecting a leak in an air bed
JP2009291958A (ja) * 2008-06-02 2009-12-17 Ricoh Co Ltd 液体供給装置、及び液体供給装置を備える画像形成装置。
CN101695883A (zh) * 2009-09-29 2010-04-21 北京美科艺数码科技发展有限公司 一种喷墨打印机喷头负压系统及其负压控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184309A1 (en) * 2015-12-24 2017-06-28 SCREEN Holdings Co., Ltd. Inkjet printer and method of checking liquid feeding state
CN113444642A (zh) * 2021-07-29 2021-09-28 中国科学院长春光学精密机械与物理研究所 一种用于细胞加载的气动系统和控制方法

Also Published As

Publication number Publication date
CN102343720A (zh) 2012-02-08

Similar Documents

Publication Publication Date Title
WO2012016540A1 (zh) 一种喷墨打印机负压系统的自动检测方法
JP4866682B2 (ja) 圧力センサを保有する流量制御装置を用いた流体供給系の異常検出方法
KR101814876B1 (ko) 연료 전지 시스템, 차량 및 개폐 밸브의 구동 불량 판정 방법
TW201305765A (zh) 附帶監測器壓力式流量控制裝置與使用該流量控制裝置之流體供應系的異常檢測方法及監測流量異常時之處置方法
JP5679367B2 (ja) バッテリーボックス気密検査装置
CN113540532B (zh) 燃料电池氢系统的瓶口阀故障诊断方法
JPH06502006A (ja) タンク排気装置及びタンク排気装置を備えた自動車、並びにタンク排気装置の機能を検査するための方法及び装置
WO2009068065A1 (en) Apparatus and method for testing an aircraft tank system
JPH04344441A (ja) タンク通気装置並びに同装置を検査する方法及び装置
WO2012033307A2 (ko) 연료탱크의 리크 진단 방법 및 이에 적용되는 장치
WO2014171571A1 (ko) 차압식 누설 검사 장치 및 누설 검사 방법
WO2011149184A1 (ko) 선박용 디젤엔진의 연료분사밸브를 용이하게 반복 측정할 수 있도록 한 테스트 장치 및 테스트 방법
WO2008071402A1 (en) Leakage test in a fuel cell system
CN219830230U (zh) 一种检测装置
CN114233534A (zh) 一种egr单向阀失效的判定方法、装置及系统
JP5392220B2 (ja) バッテリーボックス気密検査装置
CN219796913U (zh) 一种pmc气源台架
KR100482555B1 (ko) 차량의 연료라인의 연료누출 진단 시스템 및 그 방법
CN210856331U (zh) 一种能够快速锁定异常流量计的管式镀膜装置
CN214948233U (zh) 一种便于检测气体泄漏的混合气体供应设备
CN114705381A (zh) 一种清洁检测装置、检测方法及清洁方法
CN219257344U (zh) 一种地铁风源系统多阀集成组件及地铁风源系统
CN220986183U (zh) 清洗补液系统
CN214121532U (zh) 一种阀门检测系统
KR101947359B1 (ko) Eol공정에서의 연료 누설 진단 방법 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814123

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814123

Country of ref document: EP

Kind code of ref document: A1