WO2012014249A1 - 電動機制御装置及び電動機制御装置の制御方法 - Google Patents

電動機制御装置及び電動機制御装置の制御方法 Download PDF

Info

Publication number
WO2012014249A1
WO2012014249A1 PCT/JP2010/004740 JP2010004740W WO2012014249A1 WO 2012014249 A1 WO2012014249 A1 WO 2012014249A1 JP 2010004740 W JP2010004740 W JP 2010004740W WO 2012014249 A1 WO2012014249 A1 WO 2012014249A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
torque
motor
speed
current
Prior art date
Application number
PCT/JP2010/004740
Other languages
English (en)
French (fr)
Inventor
智弘 野口
敏之 貝谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/004740 priority Critical patent/WO2012014249A1/ja
Priority to RU2013108278/07A priority patent/RU2013108278A/ru
Priority to JP2012526189A priority patent/JP5172042B2/ja
Priority to KR1020137003921A priority patent/KR101302762B1/ko
Priority to US13/811,539 priority patent/US20130193895A1/en
Priority to CN201080068262.1A priority patent/CN103081349B/zh
Priority to TW099126565A priority patent/TW201206047A/zh
Publication of WO2012014249A1 publication Critical patent/WO2012014249A1/ja
Priority to HK13109971.9A priority patent/HK1182840A1/xx

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Definitions

  • the present invention relates to an electric motor control device equipped with a torque abnormality detection function during operation.
  • a motor control device has disclosed a technique for detecting a torque during operation for the purpose of preventing a failure of the motor and outputting an alarm when the torque value is abnormal.
  • Patent Document 1 the torque when the electric motor is operated in a certain operation pattern is taken as an initial value and stored in the data storage unit. Then, the torque in actual operation is always compared with the torque limit value stored in the data storage unit, and the load state is constantly monitored. As a result, a method of outputting an alarm when the motor torque value exceeds the torque limit value is shown.
  • Patent Document 2 discloses that a torque abnormality detection pattern is generated from a current command for an elapsed time corresponding to a door opening / closing operation in advance and a torque command pattern obtained from a speed command, and the value of the torque command is a torque value during actual operation. A method for detecting a door abnormality when an abnormality detection pattern is exceeded is shown.
  • Japanese Unexamined Patent Publication No. 2007-28865 (4th page, 5th page, FIG. 3) Japanese Patent Laying-Open No. 2005-212963 (page 10, page 11, FIG. 10)
  • the present invention has been made in view of the above-described problems.
  • a torque value at each speed of the motor control device is obtained, and a table of the motor speed and the torque value is created.
  • the operation step, the torque correction step, and the torque abnormality determination step the abnormality of the machine corresponding to the electric motor or the load of the electric motor is compared by comparing the table created in the test operation step with the torque value detected in the operation step. It is an object of the present invention to provide an electric motor control device and a control method therefor that are effective in detecting the motor and protecting the electric motor or machine.
  • a current / speed detector that detects a current value flowing through the motor and a motor speed value, a torque calculator that calculates a torque value using the detected current value, and a motor speed transferred from the current / speed detector
  • the table creation unit that creates a table based on the torque value output from the torque calculation unit and the motor speed value detected by the current / speed detection unit and the torque value at that time are stored in the table.
  • a torque correction unit that corrects the torque value at a motor speed value approximate to the detected motor speed value is compared with the corrected torque value and the calculated torque value.
  • a torque abnormality determination unit that determines whether or not the calculated torque value is an abnormal value.
  • the abnormality of the motor is detected quickly and accurately, and the motor or the machine corresponding to the load of the motor is protected. It is effective.
  • FIG. 1 is a configuration diagram showing the motor control device of the first embodiment.
  • the present invention is not limited to the first embodiment.
  • the current / speed detector 5 in the motor control device 1 detects the current flowing from the motor control device 1 to the motor 15 and the speed of the motor 15 at every predetermined sampling period.
  • the torque calculator 6 obtains the first torque value from the detected current in the test operation step, or the second torque value from the detected current in the operation step. Further, the torque calculation unit 6 outputs the speed of the electric motor 15 and the first torque value to the table creation unit 7.
  • the test operation step indicates a step of detecting the motor speed and torque for determining the allowable torque range of the motor 15 by the motor control device 1, and the operation step is a parameter set by the motor control device 1 in advance.
  • the table creation unit 7 creates a table of the speed of the motor 15 and the first torque value based on the speed of the motor 15 and the first torque value output from the torque calculation unit 6, and the internal memory
  • the data is output to the table storage unit 9 in FIG.
  • the internal memory 8 is a table storage unit 9 that stores a table of the speed and first torque value of the electric motor 15, parameters necessary for driving the electric motor control device 1 such as acceleration / deceleration time and motor constants, and abnormalities.
  • the parameter storage unit 10 stores parameters of detection conditions.
  • the torque correction unit 11 obtains the first torque value at the speed value closest to the speed value of the electric motor 15 obtained in the operation step and the speed value closest thereto, and the table of the table storage unit 9. A value is selected and acquired from the table storage unit 9. Then, a third torque value that is a basis of the torque abnormality determination value in the detected speed value of the electric motor 15 is obtained by linear approximation correction from the two obtained first torque values, and a torque abnormality determination unit Output to 4.
  • the torque abnormality determination unit 4 obtains an upper limit value and a lower limit value of an allowable torque value at the motor speed, and in the torque abnormality determination step, the motor speed detected by the current / speed detection unit 5 while the motor 15 is operating and the second value.
  • the upper limit value and the lower limit value of the allowable torque value are compared based on the abnormality detection parameter stored in the parameter storage unit 10.
  • the torque abnormality determination unit 4 The following processing is performed in accordance with the degree to which the second torque value that has been exceeded exceeds the torque allowable value. That is, when the difference between the upper limit value or the lower limit value of the torque and the detected second torque value is small, a command for outputting an alarm display is output to the display unit 11 and the terminal 12.
  • the motor 15 is A command to stop is output to the speed control unit 2, and a command to output an error display is output to the display unit 11 and the terminal 12.
  • the abnormality detection parameter include an alarm output upper limit value, an alarm output lower limit value, an error stop upper limit value, and an error stop lower limit value.
  • the torque at each speed of the motor control device is obtained in the test operation step, a table of the motor speed and the torque value is created, and then the operation step, the torque correction step, and the torque abnormality determination step, A series of operations of the motor control device 1 for detecting an abnormality of the motor corresponding to the load of the motor or the motor by comparing the table created in the test operation step with the torque value detected in the operation step. This will be described with reference to the flowchart of FIG.
  • step 2A in FIG. 2 it is automatically switched to the test operation step (2B) or the operation step (2D).
  • the processing may be realized such that the user switches by software using a parameter, or may be realized by providing a changeover switch in the motor control device 1 and switching by hardware.
  • FIG. 3 shows a processing flow when the test operation step (2B) is shifted to the above.
  • the user sets the following test operation conditions in this test operation step. That is, the user sets an operation pattern such as an acceleration / deceleration time and an operation frequency of the motor, and then sets a test period in the operation pattern and a cycle for detecting torque and motor speed, that is, a sampling cycle.
  • the user can switch whether to specify the number of test operations or the test operation time as the test period.
  • the number of test operations and the test operation time can be arbitrarily set to values within a pre-settable settable range.
  • step 3A After completion of the setting in step 3A, the motor control device 1 receives the signal for starting the test operation, such as the user turning on the start signal in step 3B, so that the motor control device 1 has the specified period set in step 3A. In the meantime, the electric motor is test-operated in accordance with the motor test operating condition set in step 3A.
  • step 3C the current / speed detection unit 5 detects the current value and the motor speed value flowing through the motor according to the sampling cycle determined in advance.
  • step 3D a first torque value is calculated from the detected current value flowing through the electric motor.
  • step 3G it is possible to stop, pause and resume the learning by the user's operation even during the learning period (step 3E, step 3F), and even if the user stops or pauses the learning, The data of the motor speed value and the first torque value detected so far are retained.
  • step 3G the test operation step is terminated (step 3G).
  • the motor speed value and the first torque value data detected in the test operation step can be output in real time from the terminal 13 provided in the motor control device 1, and the data is measured by a measuring instrument such as a memory high coder. Can be confirmed.
  • FIG. 4 shows a detailed processing flowchart of the data processing step.
  • the table creation unit 7 decomposes the motor speed value and the first torque value into data on the motor 15 in an acceleration state, data on a constant speed state, and data on a deceleration state.
  • the table creation unit 7 is based on the motor speed value and the first torque value output from the current / speed detection unit 5, and the acceleration state as shown in FIG. A table of motor speed values and first torque values for each time in each of the constant speed state and the deceleration state is created.
  • step 4C the table creation unit 6 deletes the time data from the table, and the detected motor speed value and the first torque value as shown in FIG. Set the data format to a pair.
  • step 4D the table creation unit 6 rearranges the set of data in ascending order of the motor speed, as shown in FIG. 5C.
  • step 4E the rearranged motor speed value and first torque value data are output to the table storage unit 9.
  • the data processing step (2C) ends.
  • the process returns to step 2A in FIG.
  • the motor control device 1 drives the motor 15 based on parameters necessary for the motor control device 1 to drive the motor 15 which are preset and stored in the parameter storage unit 10.
  • the process by the motor control device 1 in the operation step (2D) will be described with reference to FIG.
  • the current value and the motor speed value flowing through the motor are detected by the current / speed detector 5 in accordance with the sampling cycle determined in advance in step 6A.
  • the torque calculation unit 6 calculates a second torque value from the detected current value flowing through the motor in step 6B, and the second torque value is output to the torque abnormality determination unit 4 in step 6C.
  • the operation step (2D) is finished.
  • the motor speed value and the second torque value data detected in this operation step can be output in real time from the terminal 13 provided in the motor control device 1, and the data can be output by a measuring instrument such as a memory high coder. Can be confirmed.
  • step 7A it is identified whether the electric motor 15 is in an acceleration state, a constant speed state, or a deceleration state.
  • step 7B the speed value closest to the motor speed value and the first torque value at the speed value detected in the operation step (2D) in step 7B are stored in the table storage unit 9 in the data processing step (2C). Extract from the table stored in.
  • step 7C the speed value second closest to the motor speed value detected in the operation step (2D) and the first torque value at the speed value are stored in the table in the data processing step (2C). Extract from the table stored in the unit 9.
  • a third torque value in the motor speed value detected in the operation step is calculated by linearly approximating each of the first torque values extracted in Step 7D.
  • the third torque value is output to the torque abnormality determination unit 4, and the torque correction step (2E) is terminated.
  • the user sets in advance a torque allowable value based on the third torque value as the abnormality detection parameter.
  • a torque allowable value As the allowable torque value, an error stop torque allowable value for stopping the electric motor 15 and a slight torque abnormality that does not require the electric motor 15 to stop are generated in order to prevent the electric motor 15 from malfunctioning.
  • an alarm output torque allowable value for outputting an alarm to the user is provided. Further, the alarm output torque allowable value is set to be closer to the third torque value calculated in the torque correction step (2E) than the error stop torque allowable value.
  • the user uses a value obtained by multiplying the third torque value by a constant magnification, or a value obtained by adding or subtracting a constant value to the third torque value as the allowable torque value. Can be selected.
  • an actual torque with respect to the torque command value output from the motor control device 1 to the motor 15 is set. It is possible to detect both an abnormality in which becomes larger than the allowable value and an abnormality in which the actual torque value becomes smaller than the allowable value.
  • the torque should be applied to the motor 15 originally, but when the torque is not sufficiently applied due to physical damage of the machine or when the overload is rebounded for a moment. The case where torque becomes small is assumed.
  • the user can determine whether the multiplication factor of the third torque value or a constant value to be added to or subtracted from the third torque value is within a predetermined range based on the absolute maximum rating of the torque allowable value of the motor 15. If so, the abnormality detection parameter can be set to an arbitrary value.
  • the user can set an independent torque allowable value corresponding to each of when the motor 15 is accelerated, at a constant speed, or decelerated. That is, for example, when the motor 15 is accelerated and decelerated, a value obtained by multiplying the third torque value by a constant magnification is used as a torque allowable value, and when the motor 15 is at a constant speed, the third torque value is used as a torque allowable value.
  • a suitable torque allowable value is set according to the operating conditions. be able to.
  • step 8A according to a predetermined sampling cycle, the second torque value calculated in the operation step (2D) and the third torque value calculated in the torque correction step (2E) are used.
  • step 8B it is determined in step 8B whether the torque of the operating motor 15 is within the set torque allowable value range.
  • Step 8C the motor control device 1 performs a process of stopping the error of the motor 15 or outputting an alarm to the outside of the motor control device 1. Specifically, when the second torque value of the operating electric motor 15 falls outside the range of the allowable torque for stopping the error, the electric motor control device 1 immediately stops the free run or Controls to decelerate and stop. At this time, whether the motor 15 is to be free-run stopped or decelerated and stopped can be set in advance by the user using the abnormality detection parameter. At this time, simultaneously with the above control, the display unit 12 displays that the electric motor 15 has stopped in error, and displays the frequency and torque value when the electric motor 15 has stopped in error. In this case, unless the motor control device 1 is reset, the motor 15 can be made fail-safe by preventing the motor 15 from being operated again.
  • the motor control device 1 displays an alarm indicating that the torque of the motor 15 exceeds the range of the allowable torque value for alarm output, and displays the frequency and torque value of the motor 15 at this time.
  • the motor control device 1 is configured such that when the second torque value of the motor 15 exceeds the range of the allowable torque value for alarm output or exceeds the range of the allowable torque value for error stop, By changing the output signal level of the terminal 13, the user can check the state of the electric motor 15 using a measuring instrument such as a memory high coder. When the above processing is completed, the torque abnormality determination step ends.
  • the torque / speed curve detected by the motor control device 1 the upper limit value and the lower limit value of the allowable torque range for error stop, and the upper limit value and the lower limit value of the allowable torque range for alarm output are shown.
  • An example is shown in FIG.
  • the upper limit value and the lower limit value of the allowable torque range for error stop and the upper limit value and the lower limit value of the allowable torque range for alarm output are as described above for each speed. Since it is detected and set in the test operation step (2B) and the data processing step (2C), it is effective for detecting the abnormality of the electric motor quickly and accurately and protecting the machine.
  • the motor speed value and the torque value detected in accordance with a predetermined sampling period from the operating motor, and the test The upper limit value and lower limit value of the allowable torque range for error stop and the upper limit value and lower limit value of the allowable torque range for alarm output, which are detected and set in the operation step and the data processing step, are compared.
  • the detected torque value exceeds the upper limit value of the torque allowable range for error stop or falls below the lower limit value, in order to stop the motor, in any speed range including the low speed range, It is effective in detecting the torque abnormality of the electric motor quickly and accurately and protecting the machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】電動機または電動機の負荷に相当する機械の異常を検出し、電動機または機械を保護するのに有効な電動機制御装置及びその制御方法を提供する。 【解決手段】稼働中の電動機から検出された電動機速度及び上記第二のトルク値と、上記第三のトルク値から求めたトルク許容値の上限値及び下限値とを比較する。その結果、上記第三のトルク値が、上記トルク許容値の上限値又は下限値を超えた場合には、上記第三のトルク値とトルク許容値との差に応じて、電動機を停止させる。以上により、低速域を含む電動機のあらゆる速度範囲において、電動機の異常を迅速かつ正確に検出し、電動機または電動機の負荷に相当する機械を保護するのに有効である。

Description

電動機制御装置及び電動機制御装置の制御方法
 本発明は、運転中のトルク異常検出機能を搭載した電動機制御装置に関するものである。
 従来より、電動機制御装置では、電動機の故障防止の目的で運転中のトルクを検出し、トルク値が異常の場合には、アラームを出力するなどの技術が開示されている。
 例えば、特許文献1には、電動機を一定の動作パターンで動作させた時のトルクを初期値として取り込み、データ記憶部に保存する。そして、実動作におけるトルクとデータ記憶部に記憶されているトルク限界値を常に比較し、負荷状態を常に監視する。その結果、電動機トルク値がトルク限界値を超えた場合、アラーム出力をする方法が示されている。
 また、特許文献2には、あらかじめドア開閉動作に応じた経過時間に対する電流指令と、速度指令から求められるトルク指令パターンから、トルク異常検出パターンを生成して、実稼動時にトルク指令の値がトルク異常検出パターンを超えたときにドア異常であることを検出する方式が示されている。
特開2007-28865号公報(第4頁、第5頁、図3) 特開2005-212963号公報(第10頁、第11頁、図10)
 しかしながら上述の特許文献1の技術では、動作パターン中の最大トルクを基準にして異常を検出するため、トルク限界値よりも十分小さいところでトルク異常が生じてもアラーム出力しないという問題がある。その結果、アラーム出力が動作しない程度のトルク異常が継続して発生することで機械を破損してしまうことが考えられる。例えば、低減トルク負荷では負荷トルクが速度の二乗に応じて変化するため、低速域では負荷トルクが小さい。このような低速域でトルク異常が発生しても、アラーム出力しない、という課題があった。
 また、上述の特許文献2の技術では、トルク指令値に対して一定の値を超えた場合に異常を検出するため、負荷にトルクがかかるはずにも関わらず、機械の物理的破損により、トルクが十分にかからない場合や、過負荷の反動で、一瞬トルクが小さくなる場合のような、トルク指令値より小さい方向に出た異常に対しては、アラーム出力しない、という課題があった。
 本発明は、上述の問題を鑑みてなされたものであり、試験稼動ステップで電動機制御装置の各速度におけるトルク値を求め、電動機速度とトルク値のテーブルを作成する。その後稼動ステップ、トルク補正ステップ及びトルク異常判定ステップで、上記試験稼動ステップで作成したテーブルと上記稼動ステップで検出されたトルク値とを比較することにより、電動機または電動機の負荷に相当する機械の異常を検出し、電動機または機械を保護するのに有効な電動機制御装置及びその制御方法を提供するものである。
 電動機に流れる電流値及び電動機速度値を検出する電流・速度検出部と、上記検出された電流値を用いてトルク値を算出するトルク算出部と、上記電流・速度検出部から転送された電動機速度値と上記トルク算出部から出力されたトルク値とをもとにテーブルを作成するテーブル作成部と、上記電流・速度検出部により検出された電動機速度値とそのときのトルク値を、上記テーブルに保存されている電動機速度値のうち、上記検出された電動機速度値に近似な電動機速度値におけるトルク値に補正するトルク補正部と、上記補正されたトルク値と上記算出されたトルク値とを比較し、上記算出されたトルク値が異常値になっているか否かを判定するトルク異常判定部とからなることを特徴とする。
 以上のように本発明に記載の電力変換装置によれば、低速域を含む電動機のあらゆる速度範囲において、電動機の異常を迅速かつ正確に検出し、電動機または電動機の負荷に相当する機械を保護するのに有効である。
この発明の実施の形態1による電動機制御装置を示す構成図である。 この発明の実施の形態1における電動機または電動機の負荷に相当する機械の異常を検出する、電動機制御装置の一連の動作についてのフロー図である。 この発明の実施の形態1における試験稼動ステップでの電動機制御装置の動作を示すフロー図である。 この発明の実施の形態1におけるデータ処理ステップにおける電動機制御装置の動作を示すフロー図である。 この発明の実施の形態1におけるデータ処理ステップでのテーブル作成方法を示す図である。 この発明の実施の形態1における稼動ステップにおける電動機制御装置の動作を示すフロー図である。 この発明の実施の形態1におけるトルク補正ステップにおける電動機制御装置の動作を示すフロー図である。 この発明の実施の形態1におけるトルク異常判定ステップでの電動機制御装置の動作を示すフロー図である。 この発明の実施の形態1における電動機制御装置が検出したトルク・速度曲線と、エラー停止用のトルク許容範囲の上限値および下限値、並びにアラーム出力用のトルク許容範囲の上限値および下限値の関係を表す曲線の一例を示す図である。
 実施の形態1.
 図1は、この実施の形態1の電動機制御装置を示す構成図である。なお、この実施の形態1によりこの発明が限定されるものではない。この図において、電動機制御装置1内の電流・速度検出部5は、あらかじめ定めたサンプリング周期毎に、電動機制御装置1から電動機15に流れる電流及び電動機15の速度を検出する。次に、トルク算出部6で、試験稼動ステップにおいては、上記検出された電流から第一のトルク値を、または稼動ステップにおいては、上記検出された電流から第二のトルク値をそれぞれ求める。さらに、トルク算出部6は、テーブル作成部7に、電動機15の速度及び第一のトルク値を出力する。ここで、試験稼動ステップとは、電動機制御装置1により電動機15のトルク許容範囲を定めるための電動機速度及びトルクを検出するステップを示し、稼動ステップとは、電動機制御装置1が予め設定されたパラメータに従い電動機15を稼働させるステップを示す。
 テーブル作成部7は、上記トルク算出部6から出力された上記電動機15の速度及び上記第一のトルク値をもとに、電動機15の速度と第一のトルク値のテーブルを作成し、内部メモリ8内のテーブル記憶部9に出力する。ここで、内部メモリ8は、上記電動機15の速度と第一のトルク値のテーブルを記憶するテーブル記憶部9、並びに加減速時間、モータ定数などの電動機制御装置1の駆動に必要なパラメータ及び異常検出条件のパラメータを記憶するパラメータ記憶部10とからなる。
 トルク補正部11は、トルク補正ステップにおいて、上記稼動ステップにおいて求められた電動機15の速度値に最も近い速度値およびその次に近い速度値における第一のトルク値を、上記テーブル記憶部9のテーブル値から選択して上記テーブル記憶部9から取得する。そして、上記取得した2個の第一のトルク値から線形近似補正により、上記検出された電動機15の速度値におけるトルク異常判定値のもととなる第三のトルク値を求め、トルク異常判定部4へ出力する。トルク異常判定部4は、当該電動機速度におけるトルクの許容値の上限値および下限値を求め、トルク異常判定ステップにおいて、電動機15が稼働中に電流・速度検出部5が検出した電動機速度及び第二のトルク値と、前記トルクの許容値の上限値および下限値とを、パラメータ記憶部10に記憶された異常検出パラメータにもとづいて比較する。その結果、上記稼動ステップにおいて検出された第二のトルク値が第二のトルク値が上記許容値の上限値を超え、又は下限値を下回った場合には、トルク異常判定部4は、上記検出された第二のトルク値が上記トルク許容値から超えた程度に応じて以下の処理を行う。すなわち、上記トルクの上限値又は下限値と、上記検出された第二のトルク値の差が小さい場合は、アラーム表示を出力する指令を表示部11及び端子12に出力する。そして、上記トルクの上限値又は下限値と、上記検出された第二のトルク値の差が大きく、電動機15や電動機制御装置1が故障することが懸念されると判断した場合は、電動機15を停止させる指令を速度制御部2に出力し、エラー表示を出力する指令を表示部11及び端子12に出力する。ここで、上記異常検出パラメータとしては、例えばアラーム出力用上限値、アラーム出力用下限値、エラー停止用上限値、エラー停止用下限値などがある。
 以下、この実施の形態1における、試験稼動ステップで電動機制御装置の各速度におけるトルクを求め、電動機速度とトルク値のテーブルを作成し、その後稼動ステップ、トルク補正ステップ及びトルク異常判定ステップで、上記試験稼動ステップで作成したテーブルと上記稼動ステップで検出されたトルク値とを比較することにより、電動機または電動機の負荷に相当する機械の異常を検出する、電動機制御装置1の一連の動作について、図2のフロー図をもとに説明する。
 まず、電動機制御装置1に予めインストールされた制御プログラムにより、図2のステップ2Aで、試験稼動ステップ(2B)へ移行するか、稼動ステップ(2D)へ移行するか自動的に切替えられる。該処理については、あるいは、ユーザーがパラメータでソフトウェア的に切替えるように実現させてもよいし、あるいは、電動機制御装置1に切替スイッチを設けてハードウェア的に切替えるように実現させてもよい。
 上記で、試験稼動ステップ(2B)へ移行した場合の処理フローを図3に示す。まずステップ3Aで、ユーザーは、この試験稼動ステップにおける、以下に示す試験稼動条件を設定する。すなわち、ユーザーは、電動機の加減速時間や運転周波数などの稼動パターンを設定し、次に上記稼動パターンでの試験期間、並びにトルク及び電動機速度を検出する周期すなわちサンプリング周期の設定を行う。ここで、当該試験期間として試験稼動回数を指定するか、試験稼働時間を指定するかはユーザーが切替えることが可能である。また、上記試験稼動回数や試験稼働時間は、予め指定された設定可能範囲内の値に任意に設定することができる。
 ステップ3Aでの設定終了後、ステップ3Bでユーザーが起動信号をONさせるなど、試験稼動を起動させるための信号が入力されることにより、電動機制御装置1は、ステップ3Aで設定された指定期間の間、同じくステップ3Aで設定された電動機の試験稼動条件に従って電動機を試験稼動させる。そして、ステップ3Cであらかじめ定めたサンプリング周期に従い電流・速度検出部5により電動機に流れる電流値と電動機速度値を検出する。次に、ステップ3Dで前記検出された電動機に流れる電流値から第一のトルク値を算出する。なお、上記学習期間の途中でもユーザーの操作により、上記学習を停止、一時停止及び再開することが可能であり(ステップ3E、ステップ3F)、またユーザーが上記学習を停止又は一時停止させても、それまでに検出した電動機速度値及び第一のトルク値のデータは保持される。また、ステップ3Aで設定された試験期間が経過すると、試験稼動ステップを終了する(ステップ3G)。
 なお、この試験稼動ステップにおいて検出した電動機速度値と第一のトルク値のデータを、リアルタイムで電動機制御装置1に設けた端子13から出力することができ、上記データをメモリハイコーダなどの計測器で確認することができる。
 図2において、試験稼動ステップ(2B)が終了すると、次にデータ処理ステップ(2C)に移行する。図4にデータ処理ステップの詳細な処理フロー図を示す。まず、ステップ4Aにて、テーブル作成部7は、電動機速度値及び第一のトルク値を、電動機15が加速状態のデータ、定速状態のデータ、減速状態のデータに分解する。次にステップ4Bにて、テーブル作成部7は、電流・速度検出部5から出力された電動機速度値及び第一のトルク値をもとに、図5(a)に示すような、加速状態、定速状態及び減速状態のそれぞれの状態における、時刻毎の電動機速度値と第一のトルク値のテーブルを作成する。次に、ステップ4Cにおいて、テーブル作成部6は、上記テーブルから時刻のデータを削除して、図5(b)に示すような、前記検出された電動機速度値と第一のトルク値という、一組のデータ形式にする。その後、ステップ4Dにおいて、テーブル作成部6は、図5(c)に示すように、前記一組のデータを電動機速度が小さい順に再配列する。そしてステップ4Eにおいて、前記再配列した電動機速度値と第一のトルク値のデータをテーブル記憶部9に出力する。その結果、テーブル記憶部9に上記再配列されたデータが加速状態、定速状態及び減速状態のそれぞれのテーブルに分類されて保存される。前記処理の完了によりデータ処理ステップ(2C)は終了する。そして、データ処理ステップ(2C)が終了すると、図2におけるステップ2Aに戻る。
 次に、図2のステップ2Aで稼動ステップ(2D)へ移行した場合の処理について説明する。稼動ステップへ移行すると、電動機制御装置1は、予め設定されパラメータ記憶部10に記憶された、電動機制御装置1が電動機15を駆動するために必要なパラメータに基づいて、電動機15を駆動する。
 ここで、稼動ステップ(2D)での電動機制御装置1による処理について、図6を用いて説明する。まず、ステップ6Aであらかじめ定められたサンプリング周期に従い電流・速度検出部5により電動機に流れる電流値と電動機速度値を検出する。次に、ステップ6Bで前記検出された電動機に流れる電流値から、トルク算出部6で第二のトルク値を算出し、ステップ6Cで上記第二のトルク値をトルク異常判定部4へ出力して、稼動ステップ(2D)を終了する。
 なお、この稼動ステップにおいて検出した電動機速度値と第二のトルク値のデータを、リアルタイムで電動機制御装置1に設けた端子13から出力することができ、上記データをメモリハイコーダなどの計測器で確認することができる。
 図2において、稼動ステップ(2D)が終了すると、トルク補正ステップ(2E)へ移行する。ここで、トルク補正ステップ(2E)での電動機制御装置1による処理について、図7を用いて説明する。まず、ステップ7Aで電動機15が加速状態、定速状態あるいは減速状態のいずれの状態にあるかを識別する。
 次に、ステップ7Bで上記稼動ステップ(2D)にて検出された、電動機速度値に最も近い速度値およびその速度値における第一のトルク値を、上記データ処理ステップ(2C)においてテーブル記憶部9に保存したテーブルから抽出する。また、ステップ7Cで、上記稼動ステップ(2D)にて検出された、電動機速度値に二番目に近い速度値およびその速度値における第一のトルク値を、上記データ処理ステップ(2C)においてテーブル記憶部9に保存したテーブルから抽出する。
 次に、ステップ7Dで上記抽出したそれぞれの第一のトルク値を線形近似することにより、上記稼動ステップにおいて検出された電動機速度値における、第三のトルク値を算出する。そして、ステップ7Eで上記第三のトルク値をトルク異常判定部4へ出力し、トルク補正ステップ(2E)を終了する。
 図2において、トルク補正ステップ(2E)が終了すると、トルク異常判定ステップ(2F)へ移行する。ここで、トルク異常判定ステップ(2F)での電動機制御装置1による処理について、図8を用いて説明する。
 ユーザーは、あらかじめ、上記異常検出パラメータとして上記第三のトルク値をもとにしたトルク許容値を設定する。このトルク許容値としては、電動機15が故障するのを防ぐために、電動機15を停止させるためのエラー停止用のトルク許容値と、電動機15を停止させる必要がない程度の軽度なトルク異常が発生したとして、ユーザーに対してアラームを出力する、アラーム出力用のトルク許容値とを設ける。また、アラーム出力用のトルク許容値の方が、エラー停止用のトルク許容値よりも、上記トルク補正ステップ(2E)において算出された、第三のトルク値に近い値となるように設定する。
 ユーザーは、上記トルク許容値として、上記第三のトルク値に一定の倍率を乗じて求めた値を使用するか、上記第三のトルク値に一定の値を加減して求めた値を使用するかを選択することができる。また、上記トルク許容値として、上記第三のトルク値に対して上限値と下限値を設定することにより、電動機制御装置1が電動機15に対して出力したトルク指令値に対して、実際のトルクが許容値よりも大きくなる異常および、実際のトルク値が許容値よりも小さくなる異常の両方を検出することが可能となる。なお、上記トルクが小さくなる異常の要因としては、本来は、電動機15にトルクがかかるはずであるのに対して、機械の物理的破損によりトルクが十分にかからない場合や、過負荷の反動で一瞬トルクが小さくなる場合などが想定される。
 さらにユーザーは、上記第三のトルク値に乗じる倍率又は第三のトルク値に加減する一定の値については、電動機15のトルク許容値の絶対最大定格などをもとにして、予め定めた範囲内であれば、上記異常検出パラメータとして任意の値に設定することができる。
 さらにユーザーは、電動機15の加速時、定速時または減速時のそれぞれに対応して、独立したトルク許容値を設定することができる。すなわち、例えば電動機15の加速時と減速時にはトルク許容値として上記第三のトルク値に一定の倍率を乗じて求めた値を用い、電動機15が定速時にはトルク許容値として上記第三のトルク値に一定の値を加減して求めた値を用いるというように、トルク許容値の定め方を電動機15の稼動状態に対応して変えることにより、稼動条件に応じた好適なトルク許容値を設定することができる。
 次に、ステップ8Aで、あらかじめ定めたサンプリング周期に従い、上記稼動ステップ(2D)で算出された第二のトルク値と、上記トルク補正ステップ(2E)で算出された第三のトルク値をもとにして求めたトルク許容値の上限値及び下限値とを比較することによって、ステップ8Bで稼働中の電動機15のトルクが上記の設定したトルク許容値範囲内であるかを判定する。
 次にステップ8Cにおいて、電動機制御装置1は、電動機15をエラー停止させるか、電動機制御装置1の外部にアラーム出力する処理を行う。具体的には、稼働中の電動機15の第二のトルク値が、上記エラー停止用のトルク許容値の範囲外となった場合、ただちに電動機制御装置1は、電動機15に対してフリーラン停止または減速停止を行う制御を行う。なお、このとき電動機15をフリーラン停止させるか、減速停止させるかは、ユーザーがあらかじめ上記異常検出パラメータで設定することができる。このとき、上記制御と同時に、表示部12に電動機15がエラー停止している旨の表示並びに、電動機15がエラー停止したときの周波数およびトルク値の表示を行う。この場合、電動機制御装置1をリセットしない限り、電動機15を再度稼動させることができないようにすることにより、フェールセーフな電動機制御装置とすることができる。
 一方、稼動中の電動機15の上記第二トルク値が、上記アラーム出力用のトルク許容値の範囲を超えたが、上記エラー停止用のトルク許容値の範囲内である場合、電動機制御装置1は表示部12に電動機15のトルクがアラーム出力用のトルク許容値の範囲を越えた旨のアラーム表示並びに、このときの電動機15の周波数およびトルク値の表示を行う。
 なお、電動機制御装置1は、電動機15の上記第二のトルク値が上記アラーム出力用のトルク許容値の範囲を超えた場合や、上記エラー停止用のトルク許容値の範囲を超えた場合に、端子13の出力信号レベルを変化させることにより、ユーザーはメモリハイコーダーなどの測定器を用いて前記電動機15の状態を確認することができる。以上の処理が完了すると、トルク異常判定ステップは終了する。
 ここで、電動機制御装置1が検出したトルク・速度曲線と、エラー停止用のトルク許容範囲の上限値および下限値、並びにアラーム出力用のトルク許容範囲の上限値および下限値の関係を表す曲線の一例を図9に示す。図9に示すとおり、この実施の形態1においては、各速度に対してエラー停止用のトルク許容範囲の上限値および下限値、並びにアラーム出力用のトルク許容範囲の上限値および下限値が、上記試験稼動ステップ(2B)及びデータ処理ステップ(2C)で検出され設定されているので、電動機の異常を迅速かつ正確に検出し、機械を保護するのに有効である。
 以上のようにこの実施の形態1に記載の電力変換装置によれば、上記トルク異常判定ステップにおいて、稼働中の電動機からあらかじめ定めたサンプリング周期に従い検出された電動機速度値及びトルク値と、上記試験稼動ステップ及びデータ処理ステップにおいて検出され設定された、エラー停止用のトルク許容範囲の上限値および下限値、並びにアラーム出力用のトルク許容範囲の上限値および下限値がとを比較する。その結果、上記検出されたトルク値が、エラー停止用のトルク許容範囲の上限値を超えた場合又は下限値を下回った場合には、電動機を停止させるため、低速域を含むあらゆる速度範囲において、電動機のトルク異常を迅速かつ正確に検出し、機械を保護するのに有効である。
  1 電動機制御装置
  2 速度制御部
  4 トルク異常判定部
  5 電流・速度検出部
  7 テーブル作成部
  9 テーブル記憶部
 11 トルク補正部

Claims (7)

  1.  電動機に流れる電流値及び電動機速度値を検出する電流・速度検出部と、
    上記検出された電流値を用いてトルク値を算出するトルク算出部と、
    上記電流・速度検出部から転送された電動機速度値と上記トルク算出部から出力されたトルク値とをもとにテーブルを作成するテーブル作成部と、
    上記電流・速度検出部により検出された電動機速度値とそのときのトルク値を、上記テーブルに保存されている電動機速度値のうち、上記検出された電動機速度値に近似な電動機速度値におけるトルク値に補正するトルク補正部と、
    上記補正されたトルク値と上記算出されたトルク値とを比較し、上記算出されたトルク値が異常値になっているか否かを判定するトルク異常判定部と、
    からなる電動機制御装置。
  2.  電動機に流れる電流値及び電動機速度値を検出する電流・速度検出部と、
    電動機のトルク許容値である第三のトルク値を求めるための試験稼働中に、検出された電流値を用いて第一のトルク値を算出すると共に、電動機の稼働中に検出された電流値を用いて第二のトルク値を算出するトルク算出部と、
    上記試験稼働中に、上記電流・速度検出部から転送された電動機速度値と上記トルク算出部から出力された第一のトルク値とをもとにテーブルを作成するテーブル作成部と、
    上記電動機の稼働中に上記電流・速度検出部により検出された電動機速度値とそのときの第二のトルク値を、上記テーブルにおける速度値と第一のトルク値との対応関係に基づき、上記稼働中に検出された速度値におけるトルク許容値を算出するトルク補正部と、
    上記トルク許容値と第二のトルク値とを比較し、第二のトルク値が異常値になっているか否かを判定するトルク異常判定部と、
    からなる電動機制御装置。
  3.  上記トルク許容値は、上記テーブル内における上記稼働中に検出された速度値に近い複数の電動機速度値と、それらに対応する第一のトルク値とから近似により算出されることを特徴とする、請求項1及び2に記載の電動機制御装置。
  4.  電動機を試験稼動して、上記電動機に流れる電流値及び電動機速度値を検出し、上記電流値を用いて第一のトルク値を算出する試験稼動ステップと、
    上記試験稼動ステップにおいて検出された電動機速度値及び算出された第一のトルク値をデータ処理するデータ処理ステップと、
    電動機を稼動して、上記電動機に流れる電流値及び電動機速度値を検出し、上記電流値を用いて第二のトルク値を算出する稼動ステップと、
    上記試験稼動ステップにおいて検出された電動機速度値及び上記第一のトルク値をもとに、上記稼動ステップにおいて検出された電動機速度値における第三のトルク値に補正するトルク補正ステップと、
    電動機が稼働中に検出された電動機速度値及び、トルク算出部により算出された第二のトルク値と、上記第三のトルク値をもとにして算出されたトルク許容値とを比較し、上記第二のトルク値が上記トルク許容値の上限値又は下限値を超えたか否かを判定するトルク異常判定ステップと、
    からなることを特徴とする電動機制御装置の制御方法。
  5.  上記試験稼動ステップは、
    予め定められたサンプリング周期に従い電流・速度検出部により電動機に流れる電流値と
    電動機速度値を検出するステップと、
    上記電動機に流れる電流値から第一のトルク値を算出するステップと、
    からなることを特徴とする請求項4に記載の電動機制御装置の制御方法。
  6.  上記データ処理ステップは、
    上記電動機速度値及び第一のトルク値を加速状態のデータ、定速状態のデータ、減速状態のデータに分解するステップと、
    上記電動機速度値が小さい順に、電動機速度値と第一のトルク値を並べ替えるステップと、
    上記各データをもとにテーブルを作成するステップと、
    上記テーブルに格納された第一のトルク値をもとに、トルク許容値を算出するステップと、
    からなることを特徴とする請求項4に記載の電動機制御装置の制御方法。
  7.  上記トルク補正ステップは、
    上記検出された電動機速度値に最も近い速度値とそのときのトルク値及び二番目に近い速度値とそのときのトルク値とをテーブルから取得するステップと、
    上記二個のトルク値をもとに近似により上記検出された電動機速度における第三のトルク値を求めるステップと、
    からなることを特徴とする請求項4に記載の電動機制御装置の制御方法。
PCT/JP2010/004740 2010-07-26 2010-07-26 電動機制御装置及び電動機制御装置の制御方法 WO2012014249A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2010/004740 WO2012014249A1 (ja) 2010-07-26 2010-07-26 電動機制御装置及び電動機制御装置の制御方法
RU2013108278/07A RU2013108278A (ru) 2010-07-26 2010-07-26 Способ управления для устройства управления двигателем
JP2012526189A JP5172042B2 (ja) 2010-07-26 2010-07-26 電動機制御装置の制御方法
KR1020137003921A KR101302762B1 (ko) 2010-07-26 2010-07-26 전동기 제어 장치의 제어 방법
US13/811,539 US20130193895A1 (en) 2010-07-26 2010-07-26 Motor control apparatus and control method thereof
CN201080068262.1A CN103081349B (zh) 2010-07-26 2010-07-26 电动机控制装置的控制方法
TW099126565A TW201206047A (en) 2010-07-26 2010-08-10 Motor control device and control method of motor control device
HK13109971.9A HK1182840A1 (en) 2010-07-26 2013-08-26 Method of controlling motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/004740 WO2012014249A1 (ja) 2010-07-26 2010-07-26 電動機制御装置及び電動機制御装置の制御方法

Publications (1)

Publication Number Publication Date
WO2012014249A1 true WO2012014249A1 (ja) 2012-02-02

Family

ID=45529502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004740 WO2012014249A1 (ja) 2010-07-26 2010-07-26 電動機制御装置及び電動機制御装置の制御方法

Country Status (8)

Country Link
US (1) US20130193895A1 (ja)
JP (1) JP5172042B2 (ja)
KR (1) KR101302762B1 (ja)
CN (1) CN103081349B (ja)
HK (1) HK1182840A1 (ja)
RU (1) RU2013108278A (ja)
TW (1) TW201206047A (ja)
WO (1) WO2012014249A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931911A (zh) * 2012-11-19 2013-02-13 深圳市航盛电子股份有限公司 一种功率器件主动过流保护方法和装置
JP2015231298A (ja) * 2014-06-05 2015-12-21 ファナック株式会社 スラスト荷重を抑制する機能を備えた歯車電動機装置
JP2016096632A (ja) * 2014-11-13 2016-05-26 東芝機械株式会社 電動機械およびプログラム
JP6380628B1 (ja) * 2017-07-31 2018-08-29 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014181936A1 (en) 2013-05-08 2014-11-13 Samsung Electronics Co., Ltd. Image forming apparatus, motor control apparatus, and method of controlling a motor
KR102176579B1 (ko) * 2013-06-24 2020-11-09 삼성전자주식회사 영구자석 동기 전동기의 토크를 제어하는 방법 및 제어 장치.
KR101343403B1 (ko) * 2013-08-14 2013-12-20 (주)한국툴모니터링 공작기계 운전시의 이상 검출방법
TW201517502A (zh) * 2013-09-03 2015-05-01 Fairchild Taiwan Corp 驅動電動機的控制電路和控制電動機的速度的方法
CN103746635B (zh) * 2013-11-27 2016-11-16 广东威灵电机制造有限公司 一种电机转速限制方法及系统
US9352744B2 (en) * 2014-01-17 2016-05-31 Ford Global Technologies, Llc Hybrid vehicle braking limit determination system and method
US9447746B2 (en) * 2014-02-03 2016-09-20 Caterpillar Inc. System and method for controlling engine
DE102015213084B4 (de) * 2015-07-13 2017-02-09 Baumüller Nürnberg GmbH Verfahren zur Überwachung eines Lagersystems
JP6623112B2 (ja) * 2016-04-15 2019-12-18 株式会社日立産機システム 巻上機および巻上機の制御方法
CN109640731A (zh) * 2016-08-12 2019-04-16 Ykk株式会社 电动拉链系统和电动拉链控制方法
US10158303B2 (en) * 2016-09-15 2018-12-18 The Boeing Company Methods and apparatus to perform torque balance control of co-shafted motors
US11698046B2 (en) * 2018-12-12 2023-07-11 Eaton Intelligent Power Limited EGR pump system and control method of EGR pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112669A (ja) * 1997-06-13 1999-01-06 Nippon Densan Corp モータ負荷の異常検出方法及び装置
JP2004350387A (ja) * 2003-05-21 2004-12-09 Denso Corp モータ異常検出装置及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592970B1 (ko) * 1996-08-19 2006-06-26 다이킨 고교 가부시키가이샤 동기모터구동방법, 압축기구동방법 및 이들의 장치 및부러시레스 디씨모터 구동장치
US6222335B1 (en) * 2000-01-27 2001-04-24 General Motors Corporation Method of controlling a voltage-fed induction machine
US6362586B1 (en) * 2000-09-15 2002-03-26 General Motors Corporation Method and device for optimal torque control of a permanent magnet synchronous motor over an extended speed range
US6407531B1 (en) * 2001-01-09 2002-06-18 Delphi Technologies, Inc. Method and system for controlling a synchronous machine over full operating range
JP4170161B2 (ja) 2003-05-23 2008-10-22 株式会社エス・エフ・シー 電力の貯蔵システム
US6949908B2 (en) * 2003-10-06 2005-09-27 Wavecrest Laboratories, Llc Fault-tolerant electric motor control system
US7332884B2 (en) * 2004-07-16 2008-02-19 Hamilton Sundstrand Corporation Electric motor control strategies

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112669A (ja) * 1997-06-13 1999-01-06 Nippon Densan Corp モータ負荷の異常検出方法及び装置
JP2004350387A (ja) * 2003-05-21 2004-12-09 Denso Corp モータ異常検出装置及び方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102931911A (zh) * 2012-11-19 2013-02-13 深圳市航盛电子股份有限公司 一种功率器件主动过流保护方法和装置
JP2015231298A (ja) * 2014-06-05 2015-12-21 ファナック株式会社 スラスト荷重を抑制する機能を備えた歯車電動機装置
JP2016096632A (ja) * 2014-11-13 2016-05-26 東芝機械株式会社 電動機械およびプログラム
US9733635B2 (en) 2014-11-13 2017-08-15 Toshiba Kikai Kabushiki Kaisha Electric machine and display method
KR101805985B1 (ko) * 2014-11-13 2017-12-06 도시바 기카이 가부시키가이샤 전동 기계 및 표시 방법
JP6380628B1 (ja) * 2017-07-31 2018-08-29 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法
JP2019028765A (ja) * 2017-07-31 2019-02-21 株式会社安川電機 電力変換装置、サーバ、及びデータ生成方法
US11038454B2 (en) 2017-07-31 2021-06-15 Kabushiki Kaisha Yaskawa Denki Power conversion device and server

Also Published As

Publication number Publication date
TW201206047A (en) 2012-02-01
KR101302762B1 (ko) 2013-09-02
JP5172042B2 (ja) 2013-03-27
RU2013108278A (ru) 2014-09-10
HK1182840A1 (en) 2013-12-06
US20130193895A1 (en) 2013-08-01
KR20130039765A (ko) 2013-04-22
CN103081349A (zh) 2013-05-01
CN103081349B (zh) 2014-12-17
JPWO2012014249A1 (ja) 2013-09-09

Similar Documents

Publication Publication Date Title
JP5172042B2 (ja) 電動機制御装置の制御方法
US7638964B2 (en) Machine having movable unit to be controllably driven by servo motor
EP3809580B1 (en) Electric vehicle, method and device for diagnosing rotary transformer initial position, and computer readable medium
JP4816645B2 (ja) Ac同期モータの初期磁極位置推定装置
KR101394556B1 (ko) 영구자석 동기전동기의 회전자 위치센서 고장검출 장치 및 그 방법
WO2009051321A3 (en) Motor controller and method of controlling motor
CN1215215A (zh) 监测抽头选择器的功能性能的方法
US9751178B2 (en) Servo control apparatus having function of sensorless controlled stop
JP2008079441A (ja) モータ制御装置およびモータ制御装置を含む制御機器
EP2860871A1 (en) Motor protection device, motor protection method, and motor control system using the same
WO2018196177A1 (zh) 一种限位传感方法
CN104590965A (zh) 一种检测电梯运行异常的方法及装置
KR101754441B1 (ko) 전동기의 기동판별 장치
US9059654B2 (en) Motor driving device, and motor control method
CN104699076A (zh) 一种电机控制系统及其微电子故障检测方法和装置
CA2654554A1 (en) Motor driving system and controlling method of the same
KR20150078661A (ko) 모터 감자 에러 감지 장치 및 방법
KR101421997B1 (ko) 임베디드 시스템 및 그 고장 검출 방법
KR100706205B1 (ko) 전원공급장치의 릴레이 구동장치 및 그 제어방법
JP6247755B2 (ja) 系統電圧異常による系統連系インバータの過電流抑制装置及びその方法
JP4964179B2 (ja) 電力開閉装置の動作時間予測装置及び方法
JP2011024295A (ja) 電動機制御装置とその電流検出異常時停止方法
WO2012070275A1 (ja) モータの駆動制御システムおよび駆動制御方法
JP2005080332A (ja) モータの追従異常検出方法
KR20170052298A (ko) 모터 구동 시스템 및 모터 구동 시스템의 물체 감지 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068262.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526189

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137003921

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013108278

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13811539

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10855260

Country of ref document: EP

Kind code of ref document: A1